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STELLINGEN

I

De in dit proefschrift gegeven berekening van het snelheidsprofiel van
een brandingsstroom, aangedreven door onregelmatige golven, is uit te
breiden met de turbulente horizontale uitwisseling van hoeveelheid
beweging. Er mag echter verwacht worden dat het effect hiervan gering
zal zijn.

I1

De door Longuet-Higgins en Stewart gegeven definitie van de 'radi-
ation stress" in staande golven bevat de over de diepte gelntegreerde
drukverhoging overeenkomend met de door de golven teweeggebrachte
verandering van de over de tijd gemiddelde waterstand. Dit is

niet logisch, en ook niet consistent met de door deze schrijvers gege-
ven definitie en toepassingen van de 'radiation stress' in lopende
golven.

(M.S. Longuet-Higgins en R.W. Stewart, Deep—Sea Research, 11, 1964,

p. 529-562).

IIT
In Nederland moeten betere mogelijkheden worden gerealiseerd voor het
verrichten van metingen in de natuur ten behoeve van fundamenteel
onderzoek van de beweging van water en zand bij stranden.

v
Voor een wetenschappelijk verantwoorde vaststelling van ontwerp-—
criteria voor zeedijken is destructief onderzoek van prototypen
onontbeerlijk.

v

Publicaties van resultaten van waterloopkundige proeven op schaal

dienen in ieder geval de model-waarden te bevatten, en niet slechts
de tot het prototype omgerekende waarden.



VI

De modelwetten die door Yalin en Russell zijn afgeleid voor het op
verkleinde schaal nabootsen van sediment transport door golven zijn
niet geschikt voor praktische toepassing, in tegenstelling tot wat
door deze auteurs wordt gesuggereerd.

(S. Yalin en R.C.H. Russell, Proc. 8th Conf, Coastal Eng., Mexico,
1962, p. 151-167).

VII

Volgens de conventionele opvatting vindt de energie overdracht in
trochoidale zwaartekrachtsgolven uitsluitend plaats door advectie
van potentiéle energie. Er is echter een alternatieve benadering
mogelijk, waarin de energie overdracht geheel bestaat uit het ver-
mogen geleverd door de druk. Beide opvattingen hebben recht van
bestaan.

VIII

Het feit dat de groepssnelheid van zwaartekrachtsgolven op diep water
de helft is van de fasesnelheid wordt veelal "uitgelegd" door gebruik
te maken van het feit dat de potentiele energie de helft is van de
totale, en door te stellen dat de potentiéle energie met de golfvorm
zou mee bewegen. Deze uitleg geeft een fundamenteel verkeerd beeld
van het mechanisme van de energie overdracht.in golven; het is slechts
bij toeval dat hij voor de genoemde categorie tot een numeriek

juist resultaat leidt.

IX

In beschouwingen over zandtransport door golven langs een kust wordt
veel gebruik gemaakt van een grootheid die men pleegt te noemen

"the longshore component of the energy flux per unit length of
shoreline"; dit is een onbestaanbaar begrip.

X

Het onderwijs in de mechanica van golven is bij uitstek geschikt om een
bijdrage te leveren tot de verwezenlijking van de derde doelstelling
van het wetenschappelijk onderwijs, n.l., het bevorderen van het

inzicht in de samenhang der wetenschappen.

(Wet op het Wetenschappelijk Onderwijs, art. 1).



XI

Het is een misvatting te menen dat alle universitaire studenten 1id
moeten kunnen zijn van een vakgroep volgens de Wet Universitaire
Bestuurshervorming 1970,

XI1

Medische specialisten die hun beroep uitoefenen in ziekenhuizen doen
dit veelal als vrije ondernemers, en niet in dienstverband. Aan

deze situatie, die meer in het persoonlijk belang is van de specia-
listen dan in dat van de patienten of van de Nederlandse gezondheids-—
zorg in het algemeen, dient zo spoedig mogelijk een einde te worden
gemaakt.

=
XIIT
Het zou tot de gewone omgangsvormen moeten behoren dat men in een

gesloten ruimte niet rookt dan na zich ervan te hebben overtuigd
dat hiertegen bij eventueel overige aanwezigen geen bezwaar bestaat.

J.A., Battjes
maart 1974
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INTRODUCTION

The impingement of wind-generated water waves on seashores
is a phenomenon which is of great interest, not only because of the
aesthetic, sportive and other pleasures which may be derived from it,
but also from the professional viewpoint of coastal engineers, who
often have reason to consider the power released by the waves on the
shores with some concern. The latter is particularly true if the sea
is bordered by a beach of sand or gravel, or by a man-made dike
or seawall.

Beaches can serve funetions in the recreational sphere as well
as in the context of flood protection; both functions generally demand
that beach stability should satisfy certain minimum requirements.
Similarly, the structural integrity of dikes or seawalls should be
maintained if these structures are to perform satisfactorily.

The stability of beaches and dikes can be affected by a number
of factors. In many cases the effects of wind-generated waves are
relatively important or even predominant, and it is fitting that this
is reflected in the pertinent research which is carried out.

Past investigations have partly been aimed at the effects of
a given, stable beach or structure on an incident wave train. The
results obtained from such studies can serve as bhoundary conditions
for subsequent investigations of the response of beach or dike to the
waves, or they may be of interest in other contexts, regardless of
the effects on stability. The subjects have included wave-induced
longshore currents and changes in mean water lewel ("set—up”) on
beaches as well as run-up and overtopping on dikes. These are of
importance in various engineering applications.

The majority of the investigations up to the present have been
restricted to regular waves; this is a major drawbaek sinece the
results should be applied to wind-generated waves, which are essentially
irregular,

This thesis deals with the problems of calculating the effects

mentioned above, taking the random character of the waves into account,




The solutions to these problems are mot trivial, since wave breaking
is almost invariably involved in the processes of wind-wave motion

on beaches or dikes. Wave breaking is a highly nonlinear phenomenon,
the details of which are not well understood. An approach based on the
details of the water motion in the breakers is therefore not (yet)
practicable. The approach used in the following utilizes empirical
knowledge of the gross characteristics of periodic breaking waves, and
represents an attempt to use this knowledge in a formulation in which
moreover those elements are incorporated which are deemed essential to
a deseription of irregular waves. Non-breaking waves are not considered
extensively since these are not nearly as common as are breaking

waves on beaches or on sea—dikes exposed tc wind-generated waves,

The main body of this thesis has been divided into two parts,
Part I, "Phenomenological, hydrodynamic and probabilistic description
of waves', contains basic information which is necessary for the comput-
ational models outlined in Part II, "Computation of set-up, lengshore
currents, run-~up and overtopping'.

Part I is made up as follows. In chapter 2 a description is given
of the characteristic features of waves incident on a plane slope, as
functions of the wave steepness and the slope angle. The primary
purpose of this chapter is to provide an integral view of the total
subject matter, so that the elements into which it can be divided can
be seen in a proper perspective. Chapter 3 summarizes the necessary
hydrodynamics; it includes a ré&sumé of the theory of sinuseidal pro-
gressive waves, as well as equations for the effects of waves on a mean
flow, with a summary of previous calculations of set-up and longshore
current velocities due to periodic waves. The stochastic aspects of
wind-generated waves are reviewed in chapter 4.

Part II consists of the chapters 5 through 9. In chapter 5 the
effects of the irregularity of the waves on the radiation stresses
are considered, both ocutside the surf zone, where the waves are
treated as a linear superposition of independent sinusoidal spectral

components, and inside the surf zome, where the nonlinearities of the




breaking process cannot be ignored. The results of chapter 5 are
applied in chapter 6 for the calculations of the set-up and longshore
currents induced by irregular waves. In these chapters the bottom
slope is assumed to be gentle. The run—up and overtopping of irregular
waves on relatively steep slopes is considered in the chapters 7 and 8.
A summary of the results is given in chapter 9.

Following part II, three appendices provide auxiliary information,
in Appendix 1, various properties of the bivariate Rayleigh probability
density function are given. Appendix 2 contains a list of symbols,

while the references are listed in Appendix 3.



CHARACTERISTIC FEATURES OF REGULAR WAVES ON PLANE SLOPES
Introduction

The purpose of this chapter is to provide necessary general
background information as a preliminary to the more detailed analy-
ses in following chapters. To this end the major features of the
propagation of waves onto a slope will be mentioned in broad terms.
A situation will be comsidered with the simplest possible geometry
aﬁd boundary conditions compatible with this end, i.e. a rigid,
plane, impermeable slope extending to deep water or to water of con-
stant depth from which periodic, long-crested waves are approaching.
The wave crests are in general assumed to be parallel to the depth
contours, Oblique incidence is mentioned only briefly.

The motion will be assumed to be determined wholly by the slope
angle o (fig. 2.1), the still water depth d and the incident wave
height H at the toe of the slope, the wave period T, the acceleration
of gravity g, the viscosity u and the mass density p of the water;
g, & and p are assumed to be constants. Effects of surface tension

and compressibility are ignored.

FPig. 2.1 - Definition sketch

Let X be any dimensionless dependent variable, then

H
X=f(oc,-—-2-,—-d—2,Re), (2.1.1)
gT gT
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in which Re is a typical Reynolds number. An equivalent formulation

is
H d
X = f{a, »— , — , Re) (2.1.2)
Ly 7 Ly
in which
g’
Ly = el (2.1.3)

i.e. the deep-water wavelength of small-amplitude sinusoidal, long-
crested gravity surface waves with period T. The ratio H/Lo is a
wave steepness, if we define this parameter in a generalized sen-

se as the ratio of a wave height to a wave length. Various steep-—
nesses will be used in the following; the precise definition will in

each case be given im the context.

Phenomenological description

In this section the major flow regimes which can be establighed
by regular waves incident on a plane slope will be considered as
functions of the independent parameters in the right-—hand side of
{2.1.2), We shall be mainly concerned with the changes brought about
by variations in slope angle and wave steepness. The relative depth
d/L0 is of far smaller influence, particularly if the waves are
breaking on the slope [1-3], while the Reynolds number is assumed to
be larger than some minimum value above which variations in its ac-—
tual value do not significantly affect the resultant motion. At
first only the variation of the flow with the slope angle o will be
considered. Thus, until further notice it is assumed that the inci-
dent wave parameters are kept constant.

For sufficiently large o the waves do not break and there is
almost complete reflection, unless the incident (progressive) waves
are only marginally stable. The resultant motion is highly orga-—
nized and can be described by deterministiec analytical theories ap-

propriate for standing waves. The amplitude of the vertical motion




-f -

of the waterline (intersection of water surface and slope facing) is
of the same order of magnitude as the incident wave height; it in-
creases with decreasing slope angle. Due to nonlinearities both the
mean position of the waterline and the position midway between the
maximem and minimum elevation are above the still water level
(S.W.L.).

For values of o decreasing below some critical limit, which is

dealt with in par. 2.3.1, the waves are no longer stable and breaking

sets in. This is accompanied by aeration of the water and the irre-
versible transformation of o%ganized wave energy into turbulent en-
ergy, which greatly increases the total rate of energy dissipation.
The reflection diminishes as a result, and the motion approaches
that of a progressive wave.

The aﬁplitude of thg vertical motion of the waterline reaches
a maximum for slope angles for which the transition occurs from nom-—
breaking to breaking. It decreases with decreasing o below this tran-
aition value. The mean elevation of the waterline above still water
level also decreases, but at a lower rate, so that it increases rela-

tive to the variable part of the run-up.

The character of the breakers alsec varies with the slope angle.
The major distinction is between plunging and spilling breakers.
This is described in some detail in par. 2.3.2. In plunging breakers
the wave profile and the particle motions vary drastically within
relatively short distances and time intervals. These variations are
much more gradual in spilling breakers, which can occur on gentle
slopes only.

The flow in breaking waves is highly complex and does not lend
itself to a detailed deterministic treatment. However, provided the
overall properties vary omnly gradually, the relationships between
various flow parameters can in & first approximation be assumed to
be the same as for stable waves in water of constant depth. This
approach is restricted to gentle slopes, and particularly to spilling
breakers; it cannot reasonably be applied in the area of rapid wave

deformation occurring in plunging breakers.




Outside the breaker zone the dissipation of energy occurs main-
ly in the laminar or turbulent Eoundary layers at the bottom and at
the free surface, and to a smaller extent in the remaining parts of
the water. This consumes generally only a minor portion of the imci-
dent wave power, the bulk of which is dissipated in the surf zone.
However, for very low values of o all of the incident wave power is
dissipated gradually, so that wave breaking does not occur.

So far the properties of the oscillatory flow have been empha-
sized. However, the mean flow is also of interest. This is affected
by the oscillatory motions, which give rise to a change in the time-
averaged flux of momentum. These additional fluxes have been called
radiation stresses [4], and appear as surface stresses in the equa-
tions of motion for the mean flow. One of their effects is a slight
depression of the mean water level in shoaling waves outside the
breaker zone and a set-up inside the breaker zone. Another effect
is the generation of a mean longshore current in the surf zone by

obliquely incident waves.

In the preceding description the slope angle was the only inde-—
pendent variable which was varied. We shall next consider the
effects of varying H/LO. Low values of this parameter give rise to
non-breaking, almost sinuscidal standing waves. With increasing
values of H/LO (at constant o) a sequence of flow regimes is estab-
lished which in the main correspond to those described above for
decreasing values of o (at constant H/LO). An illustration of this
is afforded by the fact that for a considerable range of values of

o and H/L. a number of flow parameters appears to be a function of

¢
the similarity parameter £ only, defined by

tam 2 (2.2.1)

Er—=
%H/LO

Thus, insofar as this is true, the slope angle and the wave steep-—

ness need not be known separately for the determination of these

parameters. A paramount example is the breaking criterion given by
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Iribarren and Negales [5], which is expressed in terms of £ only.
In section 2.3 special attention will be paid to this eriteriem,
and to the rBle and interpretation of the parameter £ in general,

because of its relevance to this study.

Several of rhe phenomena mentioned above are amenable to ap—
proximative calculations. This holds particularly for non~breaking
waves, which can be described by means of deterministic analytical
theories. Most of these imply an irrotational osecillatory main flow
with laminar or turbulent boundary layers at the bottom and at the
free surface; with a superimposed weak rotational mean velocity
field. On gentle slopes the local effects of the bottom slope can
be neglected, so that locally constant~depth-solutions can be applied.
These are connected in such a manner that the wave frequency is con-
served and that the energy balance, integrated vertically and over
one wave period, is fulfilled. In this manner the main cumulative

effects of the bottom slope are accounted for.

The regimes mentioned azbove can be broadly divided into three
categories:

{a) non-breaking, standing waves;

{(b) breaking, progressive waves;

(¢) non-breaking, progressive waves (on very mild slopes).
Not all of these are of equal relevance to this study, which is
aimed primarily at waves bregking on beaches or dikes, as has been
pointed out in the Introduction. Cases (a) and {c) are therefore
excluded from further consideration. Additional information con-

cerning case (b) is given in the following section.

Characteristics of surf

The purpose of this section is to provide some of the details
omitted from the rather general and mainly qualitative consider-

ations of section 2.2, insofar as these details are related to waves
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breaking on a slope. Many characteristic properties of the surf ap-
pear to be governed by the parameter £ defined by (2.2.1), which may
therefore be called the surf-similarity parameter. Its rGle will
receive special attentiom in the following pages. The importance of
£ has also been noted by Bowen et al {6], though with a more re-~
stricted scepe than is given here, and without an attempt at inter—

pretation.
2.3.1 Breaking criterion

We shall in this paragraph discuss three criteria for the oc-

currence of wave breaking on a slope.

Iribarren and Nogales [5] have given an expression for the
condition at whieh the transition occurs between non-breaking and
breaking of waves approaching a slope whieh is plane in the neigh-
bourhood of the still-water line. They use the shallow—water tro-
choidal theory for umiform, progressive waves. According to this
theory, progressive waves are at the limit of stability if their
amplitude ({H) equals the mean depth (d). Thus, denoting the con-

dition of incipient breaking by the index "g",

M =4 . (2.3.1)

The depth d at which this would occur is equated by Iribarren and
Nogales to the mean undisturbed depth in the one-quarter wavelength
adjacent to the still-water line (see fig. 2.2), or

1.1+ i
dc = E(% Lc tan ac) = E-Lc tan o . (2.3.2)

The wavelength Lc is calculated as Te Vg&c, so that

d =

i
c E‘Tc vfgdc tan C!C ' (2.3.3)




Fig. 2.2 = Breaking depth according to Iribarren
and Nogaleg.

Elimination of d  between (2.3.1) and (2.3.3) gives
(T/g/H tan @), = 47 (2.3.4)

or, substituting (2.1.3) and rearranging,

tan o 4
£ .= ( ) = —— N 2.3 (2.3.5)
[ad ﬁ——-———v/L c f""'ﬂ u

°

Laboratory experiments by Iribarren and Nogales and others [1,7]
have confirmed the validity of (2.3.5), with the proviso that
£ 2.3 corresponds to a regime about halfway between complete re-
flection and complete breaking. This quantitative agreement is con-
sidered to be fortuitous because one can raise valid objectiomns
against the derivation on several scores. These pertain to the numer-
ical estimates used by Iribarren and Nogales, rather than to the ap-—
proach as such. For instance, the limitiﬁg height for waves in shal-
low water is given by (2.3.1) as twice the depth, which is unrealis-

tic. A height—to-depth ratio of order one seems more reasonable. Also,
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the wave height at imcipient breaking is the height of a standing
wave, i.e. roughly twice the height of the incident wave, instead of
one times this height, as implied by Iribarren and Nogales. Thus,

instead of (2.3.1) it is preferred to write
ZHC =d {Z2.3.6)

in which Hc is the height of the indident wave for conditions of in-
cipient breaking. Furthermore, the depth 4, is equated by Iribarren
and Nogales to the depth at one-eighth wavelength from the still-wa-
ter line. It seems to be more logical to choose the depth at one-
half wavelength distance, since that location corresponds to the
first antinode seaward from the shore (see fig. 2.3). This gives,

instead of (2.3.2),

=L
dc =3 Lc tand a, - (2.3.7)

Lastly, the length LC/4 in (2.3.2) is calculated by Iribarren and

Nogales on the basis of the phase speed corresponding to the mean
1

SWL

Fig., 2.3 -~ Breaking depth at location of antinode.

depth (dc) in the interval considered, whareas it is more accurate
to base it on the harmonic mean of the phase speed in this interval.

This follows from the fact that it is the phase difference A} across
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the interval which is the determiaing faetor. It is given by

;
&y = J k(x)dx = w [ c%’:)— , (2.3.8)

in which k is the wave number, & is the angular frequency (27/T)
and ¥ is a horizontal coordinate perpendicular to the still-water
line. Putting ¢ = ¥gd and x = d cot o, integrating fromd = 0 to

d = dc, and equating the result to 7 (in view of eq. 2.3.7) gives
Ap = 2wc cot a fdc/g =T ., (2.3.9)
After some rearrangement this can be written as

d =11 Ved, tan a_ (2.3.10)
which replaces (2.3.3). Elimination of dc between (2.3.6) and
(2.3.10) gives (2.3.5). The fact that this result is exactly the
same as that originally given by Iribarren and Nogales is consider-
ed to be significant only insofar as the original result had been
confirmed empirically. The agréement between the calculated results
merely shows how certain variations in a set of numerical factors
can just compensate for each other in the end. This, together with
the fact that the factors used by Iribarren and Nogales are consid-
ered to be not quite realistic, seems to justify the statement that
it may have been accidental that the result they obtained is as

good as it is now known to be.

The preceding derivations suggest a physical interpretation of
the parameter £, at least if wave breaking occurs (§ < ic). Congider
the local steepness of the breaking waves. Their celerity is pro-
portional to (gd)%, their wavelength to T(gd)%, and their steepness
to H/(T(gd)s), or to (H/gTz)é, since H/d is of order one for waves

breaking in shallow water. Thus, the parameter £, given by
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£z tan & _ 1 tan o (2.3.11D)

) vﬁ/Lo “/%_; /ﬁngz ’

is roughly proportional to the ratio of the tangent of the slope

angle (the slope "steepness”) to the local steepness of the break-
ing wave. The criterion for Hreaking given by Iribarren and Nogales
can therefore be said to imply that incipient breaking corresponds

to a critical value of this ratio.

Munk and Wimbush [8] give a different derivation of a breaking
criterion than Iribarren and Nogales, though the result is very
similar. They argue that the downslope component of the particle
acceleration cannot exceed g sin o, and that breaking sets in if
this limit value is attained. An expression for the critical condi-
tion iz obtained by equating the maximum downslope acceleration in
harmonic motion with frequency w= 2%/T, and with vertical amplitude
A (at the slope), to g sin al

2

w A _ .
<in a)c =gsina_ . (2.3.12)

(

In their discussion of this equation, Munk and Wimbush implicitly
equate A to the amplitude of the incident (progressive) wave. How~
ever, it seems to be more logical to set it approximately equal to
the height H of the incident wave, since we are dealing with the
limiting conditions for the existence of a standing wave. On this
understanding, and with substitution of (2.1.3), eq. (2.3.12) can be

transformed into

EED = Iy 25, (2.3.13)
GV

It can be seen that the criteria (2.3.5) and (2.3.13) are roughly
equal, except on very steep slopes. It may be wondered to which ex-
tent the derivations have a common base, although they are quite

different when considered superficially. It has already been remark-
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ed that the criterion given by Iribarren and Nogales corresponds to

a critical value of the ratio of the slope angle to a local wave
steepness. This is closely related to the criterion adopted by Munk
and Wimbush; for the occurrence of a maximum downslope acceleration
equal to g sin o implies a zero pressure gradient parallel to the
slope facing, which means that the maximum water surface slope equals
the structure slope (or, that the angle B indiecated in fig. 2.3 is
zero). Thus, whereas Iribarren and Nogalés implicitly relate the
structure slope to a wave steepness (height-length ratio), Munk and
Wimbush relate it to a local surface slope. The correspondence be-

tween the two is obwvious.

The kinematical criterion B = 0 has been used previously by
Miche [9], who applieg it to his linear, potential-flow solution for
periodie, standing waves on a plane slope extending to deep water.

The resulting breaking criterion is

H 2
(=% =sin oyl o L (2.3.14)
LO c n it — 4

in which Hy is the height of the incident waves at deep water. This

equation contains an additional factor proportiomal to va, compared

to (2.3.13). This is due to, the fact that Miche takes account of the
calculated ratio between amplitude at the slope and incident wave

height:

(2.3.15)

ml?
1l
=

0

Empirical data indicate that Miche's equation (2.3.14) is valid
as a criterion for the omnset of breaking [7]. It differs in this
respect from (2.3.5) and (2.3.13), which more nearly correspond to
conditions halfway between just-not-breaking and "complete” breaking.

It has been noted above that the basis for Miche's criterion
(B = 0) is equivalent to the one used By Munk and Wimbush (maximum

downslope acceleration cannot exceed g sin o). Interestingly emough,
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if the eritical incident wave steepness given by {2.3.14) is substi-
tuted in Miche's equations for the wave motion, then it appears that
the maximum downslope acceleration would be 2g siﬁ 2. The discrepan-—
cy is due to the approximations in the linear theory, which is in-

adequate for a good description of waves at the limit of stability.

The preceding criteria for the incipient breaking of standing
waves on a slope are to be distinguished from criteria for the limit
of stability of waves propagating without change of shape in water
of constant depth. This limit is genmerally supposed to be attained
if the particle speed at the crest equals the phase speed. Miche [7]

has given the following result for periodic waves:

H _ 2nd

(iﬂmax = (.14 tanh = {2.3.16)
which in shallow water reduces to

(gﬁ =0.14 x 27 ~ 0.88 (2.3.17)

d’'max - A T i A

while the limiting height of a solitary wave is given by McCowan

[10] as

(gémax = 0.78 . (2.3.18)
Theoretically, these egquations camnot be expected to indicate whether
waves advancing and deforming on a slope will break, but it turns out
that they are in fair agreement with measured H/d-values at the
breakpoint of periodic, spilling breakers {see paragraph 2.3.3). The
fact that this is true even for the theoretical solitary-wave result
is fortuitous, since it has been shown that solitarylwaves breaking
on slopes have a H/d-ratio at breaking considerably in excess of

0.78, even on slopes ag gentle as 1 : 50 [11].




2.3.2 Breaker types

So far the parameter £ has been considered only in the context
of a breaking criteriom, that is, as an aid in answering the ques-—
tion whether wave breaking will occur. However, it also gives an
indication of how the waves break. The main types are surging, col-
lapsing, plunging and spilling breakers {12 - 14]. These occur in the
order of increasing wave steepness and/or decreasing slope angle.
They are illustrated in fig. 2.4.

A wave which surges up and down the slope with minor air en-—
trainment, at the base only, is said to be a surging breaker [14].
With increasing steepness of the incident waves the front face of
8 surging wave advancing on the slope gradually steepens. It may be-—
come vertical and lose its stability over the lower portion, after
which the wave collapses. The so-called collapsing breaker was in-
troduced as & separate type by Galvim [14]. In previous breaker clas-
sifications {12, 13] it was included in the category of surging
breakers, which were then more broadly defined. However, in the more
restricted definition proposed by Galvin, as well as in a photo-

graph presented by him [15}, the surging breakers are gso much like

standing waves that it seems hardly justified to call them 'breakers'.

In plunging breakers the crest becomes strongly asymmetric; it

curls over, enclosing an air pocket, after which it impinges on the
trough water ahead. It imparts some forward momentum to this trough
water, eantraining air and generating turbulence in the process. The
water motion in the impact area is not at all wave-like in appearance.
However, some distance shoreward from this area a travelling bore is
formed, carrying the relatively small wave momentum and energy which

is left after the plunge. With increasing wave steepness and for

decreasing slope angle the crest of a plunging breaker becomes less
asymmetric, and the forward-projected jet of water from the crest
becomes less and less pronounced. Its point of impact moves closer
to the point of detachment, i.e. it moves from the trough to the

sloping face of the breaker; the violence of the impact thereby



surging

collapsing

plunging

spilling

Pig. 2.4 - Breaker types as a function of E.
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decreases. The enclosed air pocket diminishes in size, and for suf-
fiently steep waves and gentle slopes the air pocket and the jet of
water emanating from the crest are no longer identifiable. Ome then
speaks of spilling breakers. The wave form as a whole in these
breakers is fairly stable, since the zone of instability is confined
to the crest region. The wave-energy dissipation takes place much more
gradually than in plunging breakers.

It is clear from the preceding description that there is a grad-
ual transition from one breaker type to another. It would therefore
be meaningless to try teo pinpoint precise combinations of H/LG and o
delineating regions in which one or another of the breaker types oc-
curs. The values mentioned in what follows zhould be considered as
indicating the order of magnitude only of the values in the transi-
tion ranges.

Galvin [14] has presented criteria regarding breaker types in
terms of an "offshore parameter" HO/(L0 tanza), in which H0 is a
deep-water wave height calculated from the motion of the generator
bulkhead and the water depth, and an "inshore parameter”

Hb/(gTz tan a). The index '"b" refers to values at the break point,
which generally is taken to be the most seaward location where some
point of the wave front is vertical, or, if this does not occur, the
location where foam first appears at the crest.

Galvin's offshore parameter can be written as 552, in which
the index "0" refers to deep water (wave height). Converting the

critical values of the cffshore parameter given by Galvin to values

of EO gives
surging or collapsing if EO > 3.3
plunging if 0.5 < EO < 3,3 {2.3.19)
spilling if EO < 0.5
These results are based on experiments on slopes of | @ 5, 1 : 10
and 1 t 20.

: 2 .
The inshore parameter used by Galvin, Hb/(gT tan a), is mot
equivalent to the parameter gb used here. However, a re-analysis of

Galvin's data in terms of £y = (HB/LO)W% tan o showed that the class-
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ification of breakers as piuﬁging or spilling could be performed
equally well with Eb as with Galvin's inshore parameter. The results

are given in fig. 2.5, The following approximate transition values

may be noted:

surging or collapsing if £b > 2.0
plunging if 0.4 < £, < 2.0 (2.3.20)
spilling if Eb < 0.4
Legend: A spiliing & coliapsing
o plunging O surging
FYy Ao o omoo oo o<ﬂr§mm ccolee o o »
j 1 I i r T 1 L I 1 I 1 1 I 1 1 1 r 1
19" I 10° 1!

Fig. 2.5 = Breaker type classification based on Galvin's
data [14].

The possibility of using a parameter equivalent to Eb as a breaker
type discriminator has also been noted by Galvin in a recent review
of breaker characteristies [15].

Fig. 2.4 gives some fairly typical profiles across the surf
zone for a number of values of E£. The incident wave steepness has
been chosen fairly large in all cases for better legibility of
the figure. The variation of § has been obtained mainly by varying
the slope angle. Inspection of the figure shows that not only the
form of a breaking wave varies with £, but the distance of the
break point from the mean water line as well. This distance, ex-
pressed 1n wavelengths, is estimated at roughly {d cot @} /(3T V_uu}

v 0.8 ﬁb ,» whare we have put Hb Y d « Observations by the author on
slopes between 1 ¢ 3 and 1 & 25, Wlth £-values from 0.15 to 1.9,
have indicated that this estimate is qualitatively correct, but

that it is roughly 20%7 too high. With spilling breakers there are
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at least two breaking or broken waves in the surf zone simmlta-
neously. This number ranges from zerc to two for plunging breakers.
Collapsing breakers occur almost at the instantaneous water's edge,
so that there is at most one of these present at any one time. Ref-
erence should be made in this connection te Kemp [16], who points
out that the total phase difference across the surf zone is indic-—
ative of the type of wave motion, and of the corresponding equilib-

rium profile of sand or shingle beaches.

Breaker height-to~depth ratio

The ratio of wave height to water depth at breaking is an im-

portant parameter of the surf zone; it is here denoted by the symbol

Yb-

Y, = (2.3.21)

o™

The depth db is here defined as the still-water depth at the break
point.

Values of Yy generally range between 0.7 and [.2. Bowen et al
[6] suggest that Y, may be a function of £y only. The data presented
by them are given in fig. 2.6. In addition, data have been plotted
from Iversen [i2}, from Goda [17], and from unpublished results
gathered for this study. It can be observed that the results from
Bowen et al [6] form a separate group, outside the range of the
others. The reason for this i1s not knowm. The other points in fig.
2.6 show a weak trend with gy For values of £y less than about 0.2,
in the range of spilling breakers, they are scattered about a value
of Yp 0.8, while there is a slow increase with £y for higher
values. According to Galvin [14], depth-to-height ratios at break-
ing (ygl) of 1.2, 0.9 and 0.8 are typical for spilling, plunging and
collapsing breakers. The first two of these values are consistent
with the results presented in fig. 2.6.

The scatter in the results may partly be due to the fact that

for this purpose the independent variables H/LO and o cannot ade-
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Data from: @& [versen + Bewen et al
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Fig. 2.8 - Breaker height—to-depth ratio.

quately be combined in the single parameter £. However, even values
presented by various authors for the same values of o and H/L0 show
considerable scatter. This is undoubtedly to some extent due to the
difficulties and ambiguities inherent in defining (experimentally)
and measuring breaker characteristics. Another factor comtributing
to the scatter may be the occurrence of parasitic higher-harmonic
free waves which are often inadvertently generated along with the
intended wave train. The secondary waves affect the breaking process
in a manner depending on the phase difference with the primary wave,
which in turn depends (among others) on the distance from the wave
generator. This distanee is not commonly introduced as an independent
variable, so that any effects which it may have on the results can

appear as unexplained scatter.

Set-up, run-up and run-dowm

The subjects of set-up and run-up will receive extensive treat-
ment in the chapters 3, & and 7. For this reason they will only
briefly be mentioned here.

The set—-up is defined as the wave-induced height of the mean
level of the water surface above the undisturbed water level. The-~

oretical and experimental results [6, 18] indicate that the gradient
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of the set-up in the surf zome on gently sloping beaches is propor-—
tional to the beach slope; the coefficient of proportionality is a
function of vy, the average height—depth ratio of the waves in the
surf zone. The maximum set-up is caleculated from this in par. 3.4.1.
It is roughly equal to 0.3 v Hb.

The run—up height R is defined as the maximum elevation of the
waterline above the undisturbed water level. It is gemerally deter-—
mined empirically. A simple and reliable empirical formula for the
run—up height of waves breaking on a smooth slope has been given by

Hunt [1}. It can be written as

for 0.1 < g < 2.3 . (2.3.22)

w[ 5o
1]
Ay

An investigation by Battjes and Roos [19] of some details of the
run-up of breaking waves on dike slopes (1 : 3,1 : 5, I : 7}, such as
the mean velocity of advance, particle velocities, layer thickness
and so on, has shown that many of these parameters are functions of
£ only if normalized in terms of the incident wave characteristics.
Measurements of the run-down height (minimum elevation of the
waterline above the undisturbed water level) are very scarce, and, if
available, not very accurate since run-down is rather ill-defined
experimentally. An analysis of the measurements by Battjes and Roos
[19], supplemented with unpublished data gathered for this study,
ipdicates that in the experimental range (cot ¢ = 3,5,7,10;
0.02 < H/LO < 0.09; 0.3 < £ < 1.9} the ratio of run-down height to
run~up height is roughly equal to (! - 0.4 £). In other words, the
ratio of the variable part of the vertical motion of the waterline
to the maximum elevation (above S.W.L.) is approximately 0.4 £. It
has a maximum value of about 1 for waves in the transition from non-—
breaking to breaking, and decreases with decreasing £. For very small

£ the set~up constitutes the greater part of the run-up height.

2.3.5 Reflection and absorption

The relative amount of wave energy that can be reflected off a
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slope is intimately dependent on the breaking processes and the
attendant energy dissipation. Because of this, and in view of the
fact that these processes appear to be governed to such a large ex—
tent by the parametér £, it is natural to try to relate the reflec-
tion coefficient to E. The reflection coefficient r is defined as
the ratio of the amplitude of the reflected wave to the amplitude of
the incident wave. The estimation of r on a slope gemerally takes
place according to a procedure given by Miche [7]. The theoretical
reflection coefficient is set equal to ! for non-breaking waves.
For breaking waves Miche assumes that the reflected wave height
equals the maximum height possible for a non-breaking wave of the
given period on the given slope; in other words, only the energy
corresponding to the height in excess of the critical height is

assumed to be dissipated. This gives

(Ha/LO) o

o = —§E7ig—— if this is less than 1

la
t

(2.3.23)

=1 otherwise,

in which (HO/LO)c is the critical steepness for the onset of break-

ing, according to Miche's formula (2.3.14}. The index "th" refers

to “"theoretical®™. The actual reflection coefficient will be smaller

than Tin due to effects of viscosity, roughness, and permeability.

Miche recommends a multiplication factor of 0.8 for smooth slopes.
Miche's assumption regarding the reflection coefficient can be

expressed in terms of £ and Iribarren and Nogales' breaking criteri-

on. Substitution of (2.2.1) into {(2.3.23) gives

= (g/gé)z if this is less than !

lal
k

th
(2.3.24)

= | otherwise,

in which Eé is the critical value of £ for the onset of breaking,

as distinguighed from Egs the value given by Iribarren and Nogales
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for the condition halfway between the omset of breaking and com~
plete breaking (EC v 2.3). According to Hunt [1], the reflection
coefficient corresponding to & = 2.3 is about 0.5, so that (2.3.24)

becomes

rpn 0.1 & if this is less than 1
{2.3.25)

otherwise.

[}
[

An extensive series of measurements of the reflection coefficient of

plane slopes has recently been presented by Moraes [20]. His results

for slopes with tan o = 0,10, 0.15, 0.20 and 0.30 are given in fig.
2.7.

tap a=03% 015 020 030

}Mofacs' data
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Fig. 2.7 - Reflection coefficient ve wave steepngss, for various

glope angles.

Also shown .are the curves according to (2.3.23), and to (2.3.23)

combined with (2.3.14). These equations give almost identical re-
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sults for the three smallest values of tan ¢. Only for tana= 0.3
do they differ significantly. Eq. (2.3.25) gives the best agreement
with the experimental data. Applying the reduction of 207 to Miche's
theoretical reflection coefficients would improve the agreement of
his formula with the data for the 0.3 slope, but would worsen it for
the others.

1)

A replotting of Moraes' data in terms of r vs £ is presented

in fig. 2.8. The experimental points for the four slopes more or less

ot
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Fig. 2.8 = Refleetion coefficient vs E.

coincide with each other and with the curve representing eq.
(2.3.25) for £ < 2.5, i.e. as long as the waves break. For £ ¥ 2.5
they diverge, gentler slopes giving less reflection than steeper
slopes {at the same value of ).

D

The author is indebted to Dr. Moraes for providing the original

data in tabulated form.
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2.3.6 General comments regarding the parameter §.

In the preceding paragraphs examples have been given of a
number of characteristic surf parameters for the determination of
which it is not necessar¥ to specify both o and H/LO, but only the
combination tan a/(H/LO)z. It may be useful to summarize them
here: a breaking criterion, the breaker type, the breaker height—
to-depth ratio, the number of waves in the surf zone, the reflection
coefficient (therefore also the discrimination between progressive
waves and standing waves), and the relative importance of set-up
and run—up. They have been collected in Table 2.1. Characteristic
values of £ are given in the upper row of the table. Each of the
following rows indicates how one of the parameters just mentioned
varies with f.

The recognition of the possibility that several properties can
roughly be expressed as functions of £ alone contributes to a more
unified understanding of the phenomena involved. Such understanding
would be deepened by further insight in the nature of the parameter
E itself. One interpretation has already been mentioned in para-
graph 2.3.1, page 13, where it was observed that £ is approximately
proportional to the ratio of the tangent of the slope angle to the
shallow-water wave steepness. In paragraph 2.3.2, E"] was seen to
be approximately proportional to the number of wavelengths within
the surf zone. This is in essence equivalent to saying that £ is
approximately proportional to the relative depth change across one
wavelength in the surf zone. This interpretation is obviously rele-
vant to the dynamics of the breaking waves, particularly with re-
gard to their rate of deformation. It makes it plausible that £ is
of importance, but it does not prove that £ serves as the sole de-
termining factor for the {suitably normalized) parameters of the
surf. Indeed, there are valid arguments which throw doubt on this
possibility of full similarity. In this regard it is useful to con-
sider two situations of different slope angle and wave steepness as
a prototype and a distorted scale model thereof. It is well known

f211 that Froudian model-prototype similarity can be cbtained even




g N 041 0.5 1.0 2.0 3.0 4.0 5.0
breaking o _____?quﬁfﬁﬁiP%_
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H /dy ~ 0.8 1.0 1.1 1.2
w*) 6-7 273 1-2 0-1 0-1
r 107 1072 107} 4107 8x107}
absorption reflection
progressive wave standing wave
set-up predominant . run-up predominant
x)

number of waves in surf zone

Table 2.1
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in distorted models, provided the assumption of hydrostatic pressure

distribution is valid both in the prototype and in the model. Per-

tinent scale ratios ()) are given in Table 2.2, expressed in terms

of the horizontal and vertical geometrical scales and the scale of

the gravitational acceleration (unity).

Variable Symbol Scale ratio
horizontal length £ Ai
depth d kd
gravity acceleration g Ag =1
_ -1

bottom slope tan o can o dkz
wave height H AH = Ad
wave length L AL = Ag

; i - 12
wave celerity cu(gd) A, A

-1

wave period T = L/c Ap = Aﬁldz

Table 2.8 - Seale ratiog for a distorted long-wave model.

Since £ is defined as

its scale ratio is

which becomes, using the values given in Table 2.2,

Y

. @&
E = (ZﬁH tan o , (2.3.26)
- i
P A (2.3.27)
(Agxf)(aj)mdn\;‘) =1, (2.3.28)
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In other words, a distorted long-wave model which is dynamically
similar to its prototype necessarily has the same £ as this proto-
type. Conversely, a distorted wave-model with the same value of E
as its prototype is similar te this prototype if the pressure dis-
tribution in both is hydrostatic. This is not the case in breaking
or near—breaking waves in shallow water, where some effects of the
vertical accelerations must be taken into account due to the fact
that the surface curvature is locally strong. Thus, the existence
of similarity of the surf in distorted models is not proved, and
must be doubted to the extent that deviations from the long-wave
approximations have a significant effeet. Such effects are certainm
to be of importance for the details of the local flow patterms, but
this is not necessarily the case for overall properties of the surf.
{One example of this is the total phase change across the surf zone;
the phase speed in shallow water is only weakly affected by curva-
ture of the streamlines,) The final check on this must of course be
obtained empirically. In this regard it appears justified to draw
the conclusion from the data presented in the preceding paragraphs
that the factor £ is a good indicator of many overall properties of
the. surf zone, and may indeed be given the name of "surf-similarity
parameter’.

Lt should be noted that in the arguments presented above two
situations were compared with different slope and different wave
steepness, but with the same £. Thus, the similarity referred to
above pertains to two different surf zones as a whole. It might also
be wondered whether similarity would exist within a surf zone. Thus,
considering the lowermost sketch in fig. 2.4, is the surf in sector
0A dynamically similar to the surf in OB? Such similarity would re-
quire equality of the parameters £ for the two sectors. But EA > EB’
since the two sectors have the parameters o and LO in common, whi-
le ®, < HB' In other words, the surf zone possesses no self-similar-

A
ity. This has recently also been noted by Longuet-Higgins [22].
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Implications for further work

We shall conclude this chapter with a few remarks concerning
the calculations of properties of waves breaking on a slope. Ideal-
iy, a unified approach would be developed which is valid for all
values of £ in the range of breaking waves. However, the differences
in the flow regimes associated with small and moderate values of £
have so far rendered this impossible.

Various local properties of waves propagating on a slope can in
a first approximation be mutually related by applying results de-
rived for waves which propagate without change of shape. This ap-
proach is evidently valid only if the wave characteristics vary
gradually, i.e. for small values of £, which implies a gentle slope
and spilling breakers. For small £ the variable part of the ele-
vation of the waterline above 5.W.L. (the difference between run-up
and run-down) is insignificant compared with the steady part (the
set~up). The latter is approximately proportional to Yﬁb; the wave
period influences this only through its effect on vy and on Hb/H.

I1f £ is not small, but of order unity, then the situatiom is
quite different: we have plunging breakers, in which the flow var-
ies-rapidly; a steady—wave approximation is inapplicable. The var=
iable part of the elevation of the waterline above 8.W.L. is pre-
dominant compared to the set-up, and is strongly influenced by the
wave period (R is proportional to T in Hunt's formula).

In view of the differences mentioned above it is natural to
give separate treatment in the calculation of irregular-wave pro-—
perties to cases of small £ and to cases in which £ is of order

unity (£ »> | implies non-breaking waves; these are not considered

here}. The chapters 5 and & deal with the first of these, giving
calculations of the radiation stresses and of the set—up and long-
shore currents due to irregular waves on gently sloping beaches,
respectively. The cases in which £ is of order one are considered
in the chapters 7 and 8, which deal with run-up and overtopping of

irregular waves on dikes. The calculations therein are based on
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empirical results for regular waves. The values of £ corresponding
to the limits of validity of the respective approaches canmot be gi~
ven beforehand; they should be determined empirically.

A final remark regarding the relation between £ and o seems in
order. Small values of £ imply small values of &, since H/LO cannot
exceed an upper limit which is of order 10“1. Thus, spilling break-
ers (£ < 0.4 approximately) can occur only on slopes less than about
1 : 10, such as are typical for sand beaches. They cannot cccur on
slopes which are typical for sea dikes, which are generally steeper
than 1 : 10. On the other hand, the lower bound of H/L0 is formally
zero, so that moderate or large values of £ do not necessarily imply
moderate or large values of tan «. However, if we restrict ourselves
to wave steepnesses greater than one percent, say (common values in
expesed locatioms), then the slope should be steeper than about

I : 15 for plunging to occur.
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EQUATIONS OF MOTION

Introduction

The purpose of this chapter is to summarize some results from
analytical theories for periodic progressive gravity surface waves,
and to formulate comservation equations for a steady flow acted upon
by gradually varying waves.

We consider gravity waves on the surface of water, which is
assumed to be a Newtonian fluid with constant viscosity and constant
mass density, subject to gravity as the only volume force. The air-
water interface is assumed to be subjected to a constant normal stress
only, the atmospheric pressure. The value of this constant pressure
plays no part in the problems to be considered here, and is set equal
to zero. The scale of the waves is considered to be small enough to
permit effects of the rotation and eurvature of the earth to be ne-
glected, while on the other hand we assume that the Reynolds number
of the flow is large and that the effects of surface tension are
negligible. The faet that the Reynolds number is large does not justi-
fy the conclusion that all viscous effects can be neglected, if only
because energy dissipation should be possible. It does imply, however,
that throughout most of the flow region the viscosity terms in the
equations of motion are quite small relative to the other terms.

It can be shown [23,24] that under the conditions mentioned above
vorticity canmnot be generated in the interior of the water but at the
boundaries omly, from where it spreads to the interior. However, in
wave motions the vorticity generated at the boundaries is mainly
oscillatory in nature; the steady component is relatively weak. If
the wave Reynolds number is large the oscillatory vorticity remains
restricted to thin regions adjacent to the boundaries, while omnly
the steady component can penetrate the whole fluid, given enough time.
But, since the steady vorticity is relatively weak it can be neglected
in a first approximation of the wave dynamics. Thus, outside the

boundary layers the oscillatory flow can be considered to bde irrota-
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tional. At first only this part of the flow will be dealt withj par-
ticular emphasis will thereby be placed on periodic progressive waves.
The effects of gradually varying waves on a weak mean flow will be

considered in the sections 3.3 and 3.4.

Irrotational wave motion

Basic equations

A résumé of the governing equations is given below. The follow—
ing notation is used: t is time; x = (x,¥,z) is the coordinate vec—
tor; the x- and y—axes are horizomtal, while z is measured positive
upwards from the undisturbed water level; the equation of the free
surface is z = L{x,y,t); the undisturbed depth is d; the particle
velocity is u = {u,v,w); the velocity potential is ¢, and p is the
fluid pressure.

The velocity u, given by

=9 (3.2.1)
must have zero divergence because of the assumed incompressibility

of the fluid, so
Ve =0 . (3.2.2)

This is the Laplace equation. Since this is of the elliptic type we

must specify boundary conditioms on ¢ and/or its normal derivative at
the whole surface enclosing the domain in whieh a solution of (3.2.2)
is sought. The normal component of the particle velocity relative to

a fixed or moving boundary should vanish. This gives

3% - -
— 0 at z d {3.2.3)

and

35, 35 39, 38 36 34 .,

3t 9X 9X  dy d¥Y o=z (3.2.4)

13
v
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The kinematic boundary conditions at the bottom (3.2.3) and at
the free surface (3.2.4) hold rather generally. They must be supple-
mented with boundary conditions at surfaces enclosing the solution
domain laterally. These depend om the applications being considered.
In some cases only conditions of spatial periodicity and symmetry
need be given. Initial conditions will in general have to be specified
as well. This is not necessary when a solution is sought which is
periodic in time.

The momentum equation for irrotational flow can be integrated
once with respect to the space variables, yielding the Bernoulli

equation for unsteady flow:

) 2
B2y tlwllte) . (3.2.5)
3t p

The function of time appearing in the right-hand side can be chosen
arbitrarily, and will be set equal to zero for comvenience. The con-

dition of zero pressure at the free surface can then be written as

-g-i-+gg+ §§v¢|2= 0 at z = ¢ (3.2.6)
The problem of finding a solution to the preceding equations is
greatly complicated by the fact that the boundary conditions at the
free surface contain nonlinear terms, and that they are specified
at a surface which itself is an unknown function of space and time.
Stokes [25] gave a formal procedure to arrive at approximate solu-~
tions. His method involves a Taylor series expansion about the mean
water level for the free surface conditions, while all of the depen-
dent variables are expressed as a series in powers of a small para-
meter, say 0, which is of the order of the wave slope. For instance,

the velocity potential is written as

2
b = ¢O + c¢} + g ¢2 S sn¢n + 0(sn+!) . (3.2.7)
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The convergence of the series 1s rapid, provided the wave slope is
sufficiently small. A method of successive approximations can then be
applied.

Terms in series such as (3.2.7) which are proportional to Uk are
said to be kth—order terms, We refer to an mth-order quantity if the
first non-zero term in its power series is of mth order. An approximate
solution which is arrived at by retaining only the terms of order n or
less is called an nth—order solution or an nth-order approximation.

The first-order approximations to (3.2.4), (3.2.5) and (3.2.8) are

RE-:1} _

iy atz=10 |, (3.2.8)

3% .2 -

Tt + . + gz 0 . (3.2.9)
and

Higr=0 az=0 . (3.2.10)

Up to the first order the equations appear to be linear; they possess
solutions which are harmonic in time. Linear superposition of such

elementary solutions permits the analysis of more complicated motions.
Progressive waves in water of constant depth

In this paragraph we shall summarize the linear solution for a
long-crested sinuseidal progressive wave in water of constant depth.
The wave amplitude is denoted as a; the angular frequency is w. The

-

wave number is E = (kx’ k 0), with absolute magnitude Iﬁl = k; e

>
is a unit vector in the d{rection of propagation: e = ﬁ/k. Other sym-
bols will be defined where they first appear. Expressions are given
for a number of zero~ and first-order quantities as well as for the
mean value of some second-~order guantities; the latter can readily

be found from the fi}st—order results,
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> >
Phase: x = k.x - wt . (3.2.11)
Surface profile: £ = acos y . (3.2.12)

Velocity potential: ¢ = Q% Cosgiﬁédkg z) sin ¥ . (3.2.13)

Dispersion equation: m2 = gk tanh kd . (3.2.14)

=~§—tanh xd . (3.2.15)

=|e

Phase speed: c =

Horizontal particle velocity:

cosh k(d + z)

(u,v) = wa sinh kd cos x(ex, ey)

(3.2.16)
Vertical particle velocity:
w=wa SRR KL 2 Lo (3.2.17)

sinh kd
Pressure fluctuation:

_ - cosh k(d + z)
Ap = p + pgz = pga cosh kd cos %.{3.2.18)

Mean potential energy per unit area:

_ 1 2
EP = rga . (3.2.19}

Mean kinetic energy per unit area:

1 2
A L -C I (3.2.20)

Mean total energy per unit area:

E = % pga2 . {3.2.21)
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Mean energy transfer per unit time per unit length:

ES S S
P =Fnce =P e (3.2.22)
in which
_1 kd
NS Tt iTh 2R (3.2.23)

Mean momentum per unit area, or mean mass flux per unit

length:

xR 1=
(L3

. (3.2.24)

The preceding equations give the first non—~zero terms in the power
series assumed for the respective parameters. Additional terms can be
found by carrying the solution to higher orders of approximation. These
will give only relatively small corrections if the wave steepness is
small and the wavelength/depth ratio is not very large. The Stokes
series becomes divergent if the latter condition is mot fulfilled.
However, even if this occurs it does not necessarily imply that all

of the results from the lowest approximation, summarized in the aqua-
tions {3.2.11} through (3.2.24), are unrealistic. It only means that
higher—order approximations of some or all of the dependent variables
are poorer than those of lower order. The use of low—order Stokes
approximations has in faet proved quite seceessful in the applications
to be considered here, even in very shallow water [6], particularly
regarding predictions depending on the waves only through thelr mean
second-order properties such as energy, energy flux, momentum £lux ete.
For this reason these approximations will also be employed here, An
alternative might have been to use a cnoidal wave theory, which is a
nonlinear shallow-water theory for periodic, progressive waves. This
alternative has not been adopted because the cnoidal theory has the
practical disadvantage of yielding equations which are far less tract-

able than those resulting from the Stokes theory.
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Progressive waves in water of variable depth

Consider temporally periedic, long-crested, progressive waves
in water of variable depth. There are a number of factors contributing
to a modification of these waves as they propagate. A change in depth
causes changes in phase speed and wavelength and in the velocity of
energy transfer (i.e., the ratio of energy transfer per umit time to
energy density), which in turn give rise to variations in amplitude.
Refraction occurs if the phase veloecity varies along the wave crests.
This causes a variation of the separation between orthogonals to the
wave crests, which leads to additional changes in wave amplitude,
since the average energy flux is directed along the orthogomals. The
variability of the amplitude in turn affects the phase speed and the
energy transfer [26,27]. However, these effects are very weak in
gradual refraction. fhey are important only if there are other fac-—
trors involved, such as the occcurrence of caustics, or the presence
of obstacles about which the waves diffract. Since such circumstances
will not be considered here, we shall neglect the effects of the
smplitude variations on the wave propagation. This is tantamount to
considering the waves to be locally homogeneous. In other words, the
local wave parameters are assumed to be interrelated by the equatioms
(3.2,11) through (3.2.24). The problem is hereby reduced to the geo-
metrical-optics problem of determining the ray paths in an inhomoge-
neous medium in which the velocity of propagation is known, and to
the calculation of the amplitudes from a simple emergy balance. We

will in the following give a brief summary of this approach.
The water surface elevation is written as
(x,y,t) = a{x,y) cosfiwt — ¥{x,y)} . {3.2.25)

The local wave-number vector ig V. On the basis of the above mentio-

ned assumptions we have

lvp(x, | = kx,7) (3.2.26)
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where k(x,y} is the positive real root of

w? = gk(x,y) tanhik(z,y)d(,y} . (3.2.27)

Eq. {3.2.26) is the two-dimensional eiconal equation of geometrical op-
tics. It is a nonlinear first—order partial differential equation. If

¥ and VY are given at some point (x,y) then there is a uniquely deter-
mined curve (a characteristic) in the x-y-} space passing through the
point (x,¥,y), along which the values of V¢ are determined in accord-
ance with (3.2.26). The projection of the characteristic on the x-y

plane is a wave ray or orthogonal. The differential equations for the

ray, the characteristic curve and for V¢ are

dy dy
ds dx _dy _dy _ _".X _ ¥
k—“@_--%_—%_kk’ =T e (3.2.28)
» X ¥ k W X »

in which ¢,£ = %% , ete., and s is a coordinate along the ray [28].
The family of characteristics passing through the points on a curve
along which { and Vi are given generates a solution surface, provided
the given curve is not itself a characteristic.

Once a solution of ¥ has been determined in a given problem, the

amplitudes can be calculated from the time-averaged energy balance

M
+
m

]
<

v (3.2.29)

in which €, is the mean dissipation of energy per unit area per unit
time. It depends on the local values of the wave amplitude, water depth,
bottom roughness etc., as well as on some constant parameters such as
the wave frequency and the viscosity.

By applying Gauss'divergence theorem, (3.2.29) can be transformed

into
3(Pob
—~§-3-;--)- tedb=0 |, (3.2.30)

in which P = l%! and 8b{s) is the perpendicular distance between two ad~
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jacent wave rays. This equation can be solved for P by finite difference

methods if the dependence of &,_ on the local wave properties is speci-

t
fied. If a turbulent boundary layer develops at the bottom then it can
be assumed that the rate of energy dissipation in this layer, denoted

by ez, can be written as

4 wa )3

- 3.4 _ wa
e = Ce o IWlp =37 G P Gimia ’ (3.2.30)

in which Cf is a coefficient which is of order 10_2 [29]1, and the index
B refers to the value of the indexed variable at the bottom. Outside
the surf zone we can usually neglect the other contributions to the
energy dissipation, in which case Ee W S

If the energy dissipation canm be totally neglected then (3.2.30)

reduces to

___a(fa’zb) =0 (3.2.32)
which gives
a n. c, Sh
2 1NN
£ e (——) , (3.2.33)
a n2c26b2

where the indices ! and 2 refer to the values of the variables at twoe
different positions along the ray. The parameter (HECI/HZCZ)% is a
so—called shoaling coefficient; it expresses the effects on the ampli-
tude brought about by changes in depth. Similarly, the parameter
(6b1/6b2)% is referred to as a refraction coefficient.

The preceding equations are simplified if the depth contours are
straight and parallel, say in the y-directionm, and if the time-mean
properties of the incident waves are independent of y. In that case the
time-independent and the time-mean wave properties everywhere are

independent of y. In particular,

—X_-0 and —L=0 . (3.2.34)
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But
Ekx 3k
-3-;_= —-lax (3.2.35)

> . . . ca
since k = Vy§. Thus ky is a constant. Introducing the direction of

propagation with respect to the x~axis, 9, we have

ky = k sin 6§ = constant s {(3.2.36)

or, since w 1s constant,

si7k6 _ 512 8 , (3.2.37)

which is Snell's law.

The energy balance (3.2.29) reduces to
Tote, =0 (3.2.38)

which for negligible energy dissipation becomes

d
§§§ = (Enc cos 8) = 0 (3.2.39)
or
H a n,c, cos B, |
ﬁg - ;Z = (nlc1 cos 81)2 (3.2.40)
1 1 272 2

The ratio cos Si/cos 8, is equal to 651/6b2 in the situation considered

here, i.e. straight, parallel depth contours. It therefore equals the

square of the refraction coefficient from point ! to point 2,
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Equations of motion for a wesk current in the presence of waves

Introduction

In this section we hall be dealing with situations in which the
bottom slope is small, and where gradually varying progressive waves
are superimposed on a weak, nearly horizontal mean flow. Most of
what follows in the paragraphs 3.3.! through 3.3.4 has been adapted from
Phillips [30].

Both the waves and the mean flow are permitted to vary horizon-—
tally and in time on a length-scale and a time-scale which are large
compared with a typical wavelength and wave period. The local con-
servation equations can then be averaged over a time interval which is
large compared with a typical wave period, but which is short in rela-
tion to the time scale of the gradual variations. Averages to be used
in the following will be so defined, and be indicated by an overbar.
Fluctuations about these averages will be denoted by a prime. The slow
variation horizontally permits us to consider the waves locally as if
they were horizontally homogeneous. The restriction to weak, nearly
horizontal mean fiows allows us to deal with these flows only in a
vertically-averaged sense, and to ignore their effects on the waves.

We shall continually have to distinguish the horizontal motion
from the vertical one. It is therefore comvenient to introduce separate
notations for the horizontal coordinates, the horizontal velocities,
and so on. We will use the Cartesian tensor notation for these variables,
with s representing the horizontal coordinates and q; the horizontal
velocities {i=1,2)}. The total velocity vector is therefore % = (E,w).
The mean elevation of the free surface above the plane z = 0, T, was
constant and equal to zero in the preceding section. It must now be
permitted to vary because of the variation of all the mean flow pro-
perties. The equation of the bottom is z = -d(xl,xz). The instantaneous
depth therefore is d + 3 its mean value d + r is written as D.

In the following paragraphs conservation equations will be given
for a fixed control volume. The instaantaneous equations will in general

be presented first, after which time-mean values will be taken., These




3.3.2

_43..

should be separated into the contributions of the mean current and
those of the unsteady flow, since the calculations are aimed at the
effects of the waves on the mean current. Before such separation can
be carried out the terms of both categories should be properly defined.
For fixed points which are always submerged the velocity of the mean
current is simply defined as‘ai. However, this definition is not suit-
able for points which are submerged only part of the time, i.e. for
points at an elevation between the wave troughs and the wave crests.
This can be most easily seen for waves propagating in one direction,
say the xl—direction, and for which E; = 0 in all points below the
wave troughs., It is justified to say that in this situation there is
nc mean horizontal current. Yet the time-mean horizontal velocity in
fixed points between the troughs and the crests is then not zero, for,
considering a point above the mean water level, 4 is either positive
(if the point is submerged) or zero (if the water level drops below 1t).
These non-zero mean velocities should in this case be wholly ascribed
to the wave motion. They can be seen to arise as a consequence of the
positive correlation between r' and qi. The result is a net wave-
induced mass transport, which, in the Eulerian frame which has been
adopted, is wholly confined to the region between the wave crests and
the wave troughs. The situation is slightly more complex if Ei #0
below the troughs, for in that case the mean current also contributes
to Ei above the troughs. The mean current velocity in this region can
then by definition be determined from an extrapolation from below.

It is assumed in the following that only the organized wave motions
contribute significantly to the unsteady velocity field, which can
then be expressed in terms of the external wave parameters. This is in
contrast to cases in which turbulence is relatively important. Such

cases are not considered here.

Conservation of mass

Consider a control volume of unit horizontal area, extending

vertically from the bottom to a height above the free surface. The
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equation expressing the balance of mass for this control volume reads

[
3 pdz +—— |pg.dz=0 (3.3.1)
at axi i ’
or, after averaging,
aM,
aph i_
el S;; =0 , (3.3.2)

in which M, is the time-mean mass flux per unit width:

z
Mi = J Pq; dz . (3.3.3)
-d
Mi congists of a part due to the mean current, designated by a super-

seript "e" and defined by

S q, dz =pD U 4

;= pgq, dz =p i > (3.3.4)
~d

in which ﬁi is the vertically-averaged mean current velocity, and a

part due to the waves, designated by a superscript "w' and defined

by

L 14
L ] — Y
M, = J Pq; dz -__[ pqs dz . (3.3.5)
-.d [

Conservation of vertical momentum

Consider a control volume with unit horizontal area, extending
vertically from an arbitrary level between the bottom and the free
surface to a level above this surface. The balance of vertical momentum

for this control volume is, neglecting stresses due to molecular vis-

cosity,
g Z
3. * % 2 N
5T J pw dz + J P, dz” - pw(z)” ~ p(z) + pg(g - 2) = 0O

F * Z
(3.3.6)
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Taking the time-mean value gives
3 t x 3 - x TUY e —
T f pw dz” + 3;; J pq; W dz” - pw(z)” - ple) + pg(g —2) =0
z z (3.3.7)

We have restricted ourselves to nearly horizontal, slowly varying
mean flows. This implies that the first term of (3.3.7) can be ne-
glected. The second term vanishes identically im a wave field which
is horizontally homogeneous; the restriction to gradually varying
progressive waves permits this term to be neglected. Reference is
made to Dorrestein [31}, who shows that in typical cases of waves on
beaches the errors involved in these approximations are quite small.

Eq. (3.3.7) then reduces to

p(2) = pg(s - 2) - pw(z)* (3.3.8)

which shows that the mean pressure is less than the hydrostatic value
by an amount pw(z)2 [31]. At a rigid horizontal bottom the vertical

velocity vanishes, in which case

Py = 08t + ) =ogD . (3.3.9)
The index B refers to the value of the indexed variable at z = -d.
At gently sloping bottoms w2 is guite small, being only of the order
of the bottom sliope squared times a second-order quantity, and any

effects which it may have on,Eg will be neglected.

Conservation of horizontal momentum

Consider a éontrol volume of unit horizontal area, extending
vertically from the bottom to a height above the free surface. The
balance of horizontal momentum for this control volume is, neglecting

lateral shear stresses,
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4 z
2 3 3d
3t J Pq; dz + 3 J(pqiqj *p8yide + Ty Ppax, -0
—~d -4 (3.3.10)
in which Sij ig the Kronecker delta, defined by
6ij =1 if i = j
(3.3.11)

0 if i# j s

and T, is the horizontal component of the shear force per unit hori-
zontal area ezerted by the water on the bottom, which for gently sloping
bottoms is very nearly equal to the tangential stress at the bottom.

Taking the average of {3.3.10) and substituting (3.3.3) and (3.3.9)

gives
aMi 3 ; — od
EE‘-“'*'"'B';{':' f(;}qiqj +p6ij)dz + T pgDs';;-‘- o . (3.3.12)

+ g

This equation will be transformed into a momentum balance for a mean
flow with depth D and mass flux Mi; these quantities define a mean

velocity U, as

PR S S S S T {3.3.13)

This parameter should be distinguished from ﬁi’ which is the vertically-
averaged mean current velocity, and also from the time-mean value of
the instantaneous vertically-averaged horizontal velocity.

The contributions of the mean value and of the £luctuations of
the horizontal velocity to the integral in (3.3.12) are separated
as follows:

¢ ¢
f pq;q; dz = f p(E}E& + E}qg *aja; *qjqi) de

-d -d
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4

oy JATE * 4 ot
y oD U,0, + Ul M‘;ﬁj + f paja} dz
-d
MM L
= - .....:L_..J..._ + 'al R
UJ.Mi oD qiqJ dz (3.3.14)

The last term in (3.3.1Z2) can be rewritten as

ad 3 ., 2 ¥
PO T < g (h B0 b (3.3.15)

Substitution of (3.3.14) and (3.3.15) into (3.3.12) gives the momentum

palance for the mean flow in the form

M, B -
----at + ‘—""'axj (UjMi + Sij) + Ti + pgD —-—axi =0 (3.3.18)
in which the quantity Sij’ defined by
L v
S = (p 'q' + pd..)dz - 4 prz ) —'"i—i (3.3.17)
ij qi j P ij 2 ij oD 1) =2

represents the contribution of the upsteady flow to the mean horizontal
flux of horizontal momentum. It appears as a stress (force per unit
length) in the vertically integrated equation of motion of the mean
flow. It has already heen pointed out that the contribution of the
turbulence to Sij will be neglected. The contribution of the waves to

1

§.. has been called "radiation stress" by Longuet-Higgins and Stewart

wig developed the concept and gave many of its applicatioms [4,18,32-35]).
it has been introduced independently by Dorrestein [ 36} and Ludgren [37]:
these authors deal with two-dimensional motion only.

An expression for the radiation stresses im progressive waves to
the second order of approximation can be given as follows [34]. The
wave momentum M? is of second order, so that M?M?f(pD) need not be taken

into account. The integral in (3.3.17) can be divided into four parts:
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4 4 z
v _ 1 1 1 -

f pqiqj dz + [ pqiqj dz + J D aij dz + Jp 6ij dz .

-d T -d T €3.3.18)

The second and fourth integral in (3.3.18) have an interval of integra-
tion equal to ¢ - ¢ = ¢', which is of first order in the wave amplitude.
The second integral can therefore be neglected, since the integrand is
of second order, while the fourth can be evaluated to second order by
using a hydrostatic pressure distribution on the interval of integra-
tion. Eq. (3.3.8) for the mesn pressure is substituted in the third
integral in (3.3.18). (The validity of the result is thereby restricted
to quasi-steady and quasi-homogeneous waves, for which (3.3.8) is applic—
able.) Eq. (3.3.17) then beccmes

& — 2

- ToT ol 1 '
Sij J p(qiqj w Sij)dz + 3 pgt ‘Sij . (3.3.19)
-d

The quantities qi, w and §', which are of first order, appear in
(3.3.19) in product form only. It is therefore sufficient to use the
respective first-order approximations for these variables for the eva-
luation of Sij to the second order of approximation. We shall give the
result for a long-crested, progressive simumsoidal wave, to which the
equations (3.2.11) through (3.2.24) are applicable, provided the still-
water depth d used in these equations is replaced by the mean water
depth D = d + T . Substitution of (3.2.12), (3.2.16) and (3.2.17) iato

(3.3.19) and integration gives

Sij = { neiej + (n - %)Sij 1E , (3.3.20)

in which n is given by (3.2.23), If the direction of propagatiom with

respect to the xl-axis is 0 then

$,, = (n cosze +n- E R (3.3.21)

W
[

P2 821 = (pn sin 0 cos 6)E R (3.3.22)
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and

S$., = {(n sin29 +n- DE . {3.3.23)

22
The largest primcipal stress, which has a magnitude of (2n - 1)E, acts
across a planme perpendicular to the direction of propagation. The

smallest principal stress has a magnitude of (n - {)E and acts across

a plane perpendicular to the wave crests.
Steady, irrotational mean flow

1f the flow is irrotational and steady (after averaging over the

waves, as described in paragraph 3.3.1) then (3.3.2) and (3.3.16) reduce

to
BMi
= = (3.3.24)
1
and _
3 S T =
ij (UjMi) + ij Sij + pgD 3-;{-; 0 . (3.3.25)

For the waves to drive a mean current, there should be an imbalance
between the divergence of the radiation stresses on the one hand, and
the horizontal pressure gradient associated with the wave—induced
changes in mean water level (wave set-up) on the other hand. However,
such imbalance is impossible in steady irrotational flows, as has
been pointed out by Bowen [38], who notes that a second-order inter-
action of two sets of waves im a conservative field produces an effect
equivalent to a fluctuating pressure field at the surface {33}, and
that the radiation stress in periodic waves is the steady component
of the second-order self-interaction of the waves., Thus, a steady
distribution of radiation stress in irrotational waves is equivalent
to a steady distribution of normal pressures at the water surface,
and should give rise to (spatial) variatioms in the surface elevation

only, without driving 2 mean current. The same conclusion is given by
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Longuet-Higgins [22], who states "if there were no dissipation at all,
there would be no current. This is as we might expect, since without
dissipation it is impossible to generate vorticity in a fluid initially
irrotational; and without vorticity we expect no currentx, since the
fluid at infinity is at rest. ..... Thus, even if the wave amplitude we-
re to vary in an arbitrary mamnner along the coastline, due perhaps to
refraction by uneven bottom contours, still ne currents would be gener-
ated unless there were some digsipation by breaking; the stress gradients
would simply be balanced by a wave set-up or set-down. A special case of
this general result was discovered by Bowen (1969), but it is possible
also te give a general proof.” Lenguet-Higgins refers for this proof

to some of his unpublished lecture notes. From a logical point of view
it is of course not necessary to give a proof in addition to the argu-
ments just quoted. But it may nevertheless be instructive to give a
proof expressed explicitly in terms of the equations of motion. This
will be dome in the following, based on the geometrical-optics approx-—

imation of irrotational waves in water of gradually varying depth. It

is not known to the author whether this is of the same generality as
the unpublised proof referred to by Longuet-Higgins., However, before
presenting our proof we should first complete the quotation given
above. At the point marked:xthe following footnote is added [22]:
"This expectation derives from a neglect of the Stokes velocity, which
however is negligible for all but extremely small beach slopes (see
Longuet-Higgins 1970b, Appendix 2)." The reference given in this foot=-
note is Longuet-Higgins' paper on longshore currents [39], in which

it is shown that the ratio of the longshore component of the wave-

induced Lagrangian mass transport velceity to the velocity of the wave-
driven longshore current in the surf zone is negligible for ordinary
beach slopes. Although this is true it does not, in the author's opinion,
warrant the neglect of the Stokes veloeity (i.e., the wave—induced
Lagrangian mean velocity) in the present context, for it concerns a

ratio of two velocities in a situation in which dissipation oceurs,

and in which the waves drive a rotational mean current. The magnitude

of this ratio does not appear to be relevant to the question of the
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negligibility of the Stokes velocity in the framework of non—dissipa~
tive, irrotational flows. And within this framework it would be incon—
sistent to neglect the Stokes velocity In relation to the wave-driven
mean current velocity, since the latter is expected to be zero. It is
therefore preferred to say only that in steady, irrotational flow the
waves do not drive a mean current as defined in paragraph 3.3.1, i.e.

a mean Eulerian velocity field which is non-zero below the wave troughs.

We shall now present a proof of the following equality:

3 aL
-5;‘_-3- Sij + pgh 'é'_;c': =0 . (3.3.26)

This proof will not be given for completely arbitrary irrotational
gravity waves, but only for the kind of waves considered in this
thesis, i.e. progressive waves of gradually varying amplitude and
wavelength in water of gradually varying depth, in which horizontal
inhomogeneities of the average properties have a negligible influence
on the loecal wave dynamics. In other words, the geometrical-optics
approximations are used. Let the water surface elevation above its

mean value be given, to first order, by
;’(x},xz,t) = a(x, ,xz) cos {ot - bix, ’Xz) .o (3.3.27)

Locally the equatioms (3,2.11) through (3,2.24) hold, provided d is
replaced by D, while

|vo} = (—B-IP"%-_—)% =k (3.3.28)

39X, 9%
i

({see eq. 3.2.26), so that

13 -1 3
e, = w7 T 2L (3.3.29)
1 r

The local radiation stresses are given by (3.3.20), i.e. by
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Sij =nE eiej + (n - DE Sij . (3.3.30)
The elevation of the mean water level above the undisturbed value, E,
still needs to be defined independently of (3.3.26). It can be ex-
pressed directly in terms of local flow parameters by means of the
Bernoulli equatien for unsteady flow, eq. (3.2.5). Longuet-Higgins
and Stewart [35] take the average of this equation at the elevation

z = 0, and supplement this with the time-averaged balance of vertical

momentum between z = 0 and z = , to arrive at the result

- 1 2 2

[ = const - ié'(q - w )z -0 . (3.3.31)
in which q is the magnitude of the horizontal velocity vector. This
result follows also from Bernoulli's equation by taking its average
value at z = ¢, taking account of the fact that the mean value of %%
at the variable elevation z = r(t) is not zero, even in periodic

waves, but is given, to second order, by

) a¢J , 8 a¢J , o B¢J , 9ot
——tra My — +; ——— i =C — r\Jc ——
th =T + 0O LRy z=F Jz ot z2=7 9t 3z z = Em ot 3t
3_ .. 3L sc'@ _ _ eg' 2 ZJ _ 2
ARSI TRl ve B e v S ] PRI “’Jz=o .
£3.3.32)

Substitution of (3.2.16), (3.2.17) and (3.2.14) into (3.3.31) gives

- kaz

©7 7 2 sinh 20’ (3.3.33)
where E-has been chosen to be zero in deep water. Eg. (3.3.33) is
due to Longuet-Higginas and Stewart [34] and Lundgren [37].

From (3.3.29) and {3.,3.30) we have
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2 S 2% 3% 2 -1
ax Slj - axj (0 x 2 e 3%, 9, )+ axj {(a-HE 6ij}

=—al~b—.—{—a—(nka2‘i‘.-§§.—)}+nk EE‘L-B (EAL)«» {(n—l)E}.
j
(3.3.34)

Utilizing (3.2.15), (3.2.22), (3.2.29) and (3.3.29), the first term in
the right-hand side of (3.3.34) can be written as

- e. 3P
» ke, {m—-m-—Ee )}=Ei

.

L

s (3.3.35)

X

i
= = - .
o] 1

@
[ By

in which €, is the power dissipated per unit area, which is zero on
the present assumptions. The second term of the yight-hand side of
(3.3.34) can be written as

~2 g 3 A . -2 B
nk " E o QE;T) =ink E 3%, axi (Eﬁ; BxJ) =

=§nk'2E%§7=nk"E%§~_ , (3.3.36)
1 1

where use has been made of (3.3.28). Substitution of the dispersion
equation (3.2.27) and of the definition of n given by (3.2.23) gives

after some manipulations

-1 3k _ K 3D
nk ax; _ simh 2kD % (3.3.37)

Finally, the factor (a - }) in the third term of the right-hand side
of (3.3.34) equals kD/sinh 2kD, as can be seen from (3.2,23), so that

2 e-_ KB 3D . 3 __KDE . 98 _ _ KE
axj i] sinh 2kD ax, = B, sinh 2kD ax; sinh 2kD

(3.3.38)
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Substitution of E = } pga2 and of (3.3.33) gives

Z —
g - 3 k4 opga” _ _ 3
T, 8;5 =D 5% simn 2kp U8 = (3.3.39)

which proves (3.3.26).

If the waves being considered approach a shore from deep water
which is otherwise at rest, and if they break on a beach, then the flow
is approximately irrotational and non-dissipative outside the gurf-
zone, and highly rotational and dissipative inside this zone. The wave-
driven current is then confined to a relatively narrow region along
the shore. The surf zone can be considered as a boundary layer bordering
on the flow in deeper water. This similarity is more than superficial,
for the mechanism generating a longshore current in the surf zone is
in various respects similar to the mechanism generating a mass trans—
port current in the bottom boundary layer under a progressive wave. In
the latter case a boundary layer develops because of the no-slip con-
dition at the bottom; in cur situation the analogous condition is the
vanishing of the wave height {thus, also the momentum flux) at the
shore due to breaking. The mass transport current in the bottom boun=-
dary layer under a progressive wave arises as a consequence of an im-
phase relationship between velocity components parallel and normal to
the bottom, causing a net downward f£lux of horizontal momentum, equi-
valent to a net shear stress exerted by the waves on the bottom. The
in-phase normal velocity components in turn are due to phase differ-
ences within the boundary layer in the longitudinal direction, which
are a consequence of the progressive character of the waves. The ana-
logy in our situation is given by the phase differences in the long-
shore direction, which exist if the waves come in obliquely. Associa-
ted herewith are veloeity fluctuations in the direction parallel to
the shore. These are in phase with the velocity fluctuations perpen—
dicular to the shore, so that there is a net shoreward flux of long-

shore momentum: the radiation shear stress.
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3.3.6 Steady, uniform mean flow

Consider the guasi-two-dimensional situation of an impermeable
beach with straight depth contours, parallel to the xz—axis (see

£ig. 3.1), and obliquely incident waves which are uniform in the

ray
crest

depth contour

breaker ling

surf zone)

Fig., 3.1 - Plan view of beach (definition sketch)

xz-direction, apart from phase differences. All time-independent or
time-mean quantities are assumed to he independent of X,. The mean

mass balance (3.3.24) then reduces to

dMl

_.__dXI =0 : (3.3.40)

or

M] = constant = 0 s (3.3.41)
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so that, in view of (3.3.13),

AT
U, = -~ —— (3.3.42)

The momentum balance for the steady and uniform mean flow is ob-—
tained from (3.3.16) by equating the acceleration terms to zero., The
bottom shear stress ;; is retained, and {3.3.26) is not used, since

the flow is not assumed to be everywhere irrotatiomal. It follows that

3 - a
ij Sij +1; + pgD 7, =0 . (3.3.43)

This expresses a static balance between the driving force due to the
divergence of the radiation stresses, the bottom friction, and the

vertically integrated pressure gradient due to the mean tilt of the
free surface. Writing the two components of (3.3.43) explicitly, and

utilizing the fact that mean properties are independent of Xy gives

s, dr
dxl + 7 + pgh E;I'l— = 0 (3.3.44)

for the mementum balance in the x}—direction, and

2.7 -0 (3.3.45)

in the xz-direction. According to (3.3.42) the mean current in the
direction perpendicular to the shore only compensates for the wave-
induced onshore mass flux., This means that it is weak relative to the
oscillatory particle velocities. For this reason ;} will be neglected

in (3.3.44), which then reduces to

11 ar
— pep =0 . (3.3.46)

Set-up and longshore currents due to regular waves

The preceding equations have been used by various authors for



3.4.1

_.57_

caleulations of the set—up of the mean water level and the longshore
current velocities induced by regular waves. Some results will be
summarized here for future reference., The same situation is considered
as in the previous paragraph, viz. a quasi-steady and guasi-two-dimen-—
sional flow, uniform in %, {see fig. 3.1). The waves are assumed to be
pericdic. The bottom slope is supposed to be small, so that the waves

break on the beach with negligiblie reflection.

Set-up

Qutside the surf zone the flow is considered to be irrotatiomal;
the wave-induced change in mean water level is then given by (3.3.33).

Inside the breaker zone the energy dissipation must be taken into
account. A semi-empirical similarity approach to this problem was given
by Longuet-Higgins and Stewart {34}, who postulated that after breaking
the wave height H would decay in constant proportion to the undisturbed
depth. This was modified by Bowen et al [6] who assumed that H would be
proportional to the mean total depth, including the effect of the set-

up. They put
H=vy (d+7) =D (3.4.1)

in the breaker zone. This assumption is reasonable for spilling breakers,
which propagate with relatively minor changes in shape. It is further-
more assumed that within the surf zone the shallow-water approximations
to the wave equations apply. In particular, it is assumed that n = |

(eq. 3.2.23), so that, for perpendicular incidence,

3
8., = 75 E =33 pgH R (3.4.2)

11

as follows from (3.3.21), or

3 2 — 2
11 = Tg o8 Y d+ 1) . £3.4.3)
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Substitution of this expression in (3.3.46) gives

3.2

8 dd
2 dx

+ ¥ i

(3.4.4)

mfe] <

[6}. IL can be seen that there is a set—up in the surf zone, with a

gradient proportional to the local bottom slope. Experiments by

Bowen et al [6] have confirmed the validity of (3.3.33) and (3.4.4).
The total rise of the mean water level in the surf zome can

be calculated by integrating (3.54.4) from the dreakpoint to the point

of maximum set—-up. This gives

(3.4.5)

or

Z;— wc_. +

nax b (3.4.6)

in whieh £. is the set-up at the breaker line, which is estimated

b
from (3.3.33) as

2 2
a
- 1 b i Hb
c Ny T omm e— = e ——— - (3-&-7)
b 4 Db 16 Db
With the substitution of Hb = yDb we find
AR 0.3 (3.4.8)
max 6 ¥ Hb N ’YHb ' s

Longshore currents

A review of longshore current theories was given by Galvin in
1967 [40]. He correctly concluded that the theories then available
were not in satisfactory agreement with experimental data. All of the
theories developed until 1967 invelve averaging over the width of the
surfzone in a very early stage of the development. This not only

leads to a loss of information regarding the velocity variationm with
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distance offshore, but it may also give erroneocus results for the
average velocity. Furthermore, some of the earlier theories include
unknown coefficients introduced ad hoc. The theories involving a
momentum balance generally assume a bottom friction proportional to
the square of the longshore current veloecity, independent of the os-—
cillatory velocities due to the waves. More recent theories [39,41-43]
have given improvements on these points. We shall deal with these
theories only. Their purpose is the prediction of the vertically-
averaged mean current velocity in the longshore direction, %2. This
will for brevity be called the longshore current velocity, denoted
as V. The term "longshore current profile" shall refer to the varia-
tion of V with the distance offshore,

The driving force for the longshore current is supplied by the

gradient of the radiation shear stress. This is given by

ds dP sin ©

12 d . in 9 1 G
a—}§—=a§T(En31n6cos®=i~3-E§T=-Tet s (3.4.9)

where use has been made of Snell's law and of the energy balance
{(3.2.29) with %;3 = ( [39]. e is the mean rate of energy dissipation
per unit area, wﬁich will be set equal to zero outside the surfzome.
If follows that in this approximation the longshore thrust exerted by
the incident waves across vertical planes parallel to the depth con-
tours is independent of the distance offshore, and therefore equal
to the value which it has in deep water. This result was first proved
by Bowen [41], in the manner just described, (It follows also direct-
ly from (3.3.26), equating the xz—derivatives to zero.)

Inside the surf zone the approximation (3.4.1) for the wave
height is assumed to hold. Furthermore, breaking generally takes place
in shallow water, go that c gj(gD)%, n o 1 and cos Bx I. With these

approximations, (3.4.9) becomes

45 sin 8 sin @
12 0 d _1_ 22 — _ _3 2 .3/2 4]
dgl"“ CQ dx[ (8 pgy D gh) = 16 Y mD slgh) ”T;;" »

(3.46.10)
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in which m, is the mean-depth gradient,

d(d + ¢
my = - 3 '“—’“—(dx 8 (3.4.11)

1 1

which can be expressed in terms of the bottom slope by means of (3.4.4).

The longshore ecurrent was assumed to be unaccelerated. Thus, there
should be a balance between driving forces and resistive forces. In the
simplest form of the theory the shear stress at the bottom is the only
resistance, as in (3.3.45). More refined meodels take lateral shear
stresses into account, due to turbulent exchange of horizontal momentum,
which is generally assumed to be expressible as a gradient-type diffus-
ion. These two types of resistive foreces play very different r8les in
the dynamics of the littoral zome. This can be seen most easily from
the momentum balance of the whole nearshore water mass between the water-—
line and a point seaward of the surf zone, where the turbulent momentum
exchange is negligible. The lomgshore thrust exerted by the incident
waves on this mass must in the steady, uniform flow regime be balanced
by the integrated longshore bottem shear stress f ?é dxl. The intermal
shear stresses do not appear 1in this overall balance. The order of
magnitude of the longshore current velocity is therefore mainly deter-
mined by the longshore bottom shear stress, while the lateral stresses
only redistribute this velocity in the direction normal to the shore.
Their effects will at first be neglected. The mean bottom stress can
then be determined from (3.3.45). It should next be expressed in terms
of V.

Bowen [41] assumes ?é to be proportional to V, with a coefficient
of proportionality which is constant #n the surf zone; Thisz assumption
does not seem to be justifiable inasmuch as the flow in the botteom
boundary layer is ordinarily turbulent, due to the relatively strong
wave-induced oscillatory velocities. This has been taken into account
by Thormton [42], and shortly after him, though apparently indepen-
dently, by Longuet-Higgins [39] and Bakker [43]. These authors use a
quadratic relationship between the instantaneous shear stress and the

instantaneous velocity outside the bottom boundary layer. The time-
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mean value of the longshore shear stress can then be written as

—
T, = Cf pd, Eq! . (3.4.12)

The longshore current velocity is generally small compared with the
maximum oscillatory particle velocity, and is directed roughly per-
pendicular to it. This means that the absolute magnitude of the re-
sultant velocity in a first approximation can be egquated to the
oseillatory particle velocity. Assuming a sinusoidal variation of

~
this velocity in time, with an amplitude q', gives

T, oo (@, + &) sinwt) | @ sinot]=2c, 00 7 (3.4.13)
2"\.: f qz 2 q T f 2) P Y
in which, in shallow water,
~
vo_wa  owd_ B !
e R o Al I T R AT (3.4.14)

as follows from (3.2.16)}. Thoraton and Longuet-Higgins implicitly in-

clude the coefficient of proportionality between 32 and the vertically-

averaged mean velocity V in the coefficient Cf, which gives
C.pq' Vv . {3.4.15)

Thornton uses a semi-empirical expression for Cs in terms of bottom
roughness and total particle excursion, obtained by Jonsson [ 441 for

a wave boundary layer with zero mean flow, in the presence of artifi-
cial roughness, Thornton's procedure can be seen to imply that Jomsson's
results still hold even in the case of a superimposed mean flow, and

that the value of 52 just outside the (relatively tﬁin) wave boundary
layer is equal to the vertically-averaged mean flow velocity V. Longuet-
Higgins bases his estimate of Ce on empirical data for steady, unidirvect-
ional flow past a flat plate of finite length. The finite length of the
plate limits the boundary layer growth, just as the finite duration of

flow-in-one-direction does under oscillatory waves.The plate length can




then be compared to the total particle excursion just outside the
boundary layer. Bakker arrives at (3.4.15), and at an expression for
Cgs om the basis of Bijker's results concerning the mean bottom shear
stress due to a combination of waves and current [45], by considering
the limiting case of a rélatively'weak current perpendicular to the
direction of wave propagation. This limiting case is in itself appro-
priate in the presenf problem, but it is not consistent with the
assumptions originally made by Bijker in his derivations, which in
effect imply a relatively strong current. This is reflected in Bakker's
result, according to which Cf would be determined by the ratio of bot-
tom roughness to mean water depth. The latter is not a relevant para-
meter for the boundary layer flow if this is mainly governed by the
oscillatory wave motion. However, in a more recent publication [46]
Bakker calculates the turbulent shear stress in the wave boundary
layer and arrives at results comparable to Jonsson's.

Because of the uncertainties in the values predicted by either
of the methods deseribed, it is preferred not to assign a priori
values to Ces but to deal with it as a coefficient to be determined’
empirically. An analysis of available data by Longuet-Higgins [39}
indicates that its order of magnitude should be 0.0l. This agrees
with empirical results obtained by Bretschneider and Reid [29] from
measurements involviﬁg wave energy dissipation, referred to in par.
3.2.3.

It may be of interest to point out that a formula similar to
{3.4.15) has already been given in 1927 by Mazure [47] in an analysis
of tidal motion in the presence of a net (river) discharge. In this
case the current 1s directed against the direction of wave propaga-
tion, rather thaﬁ perpendicular to it. The change in absolute mag-
-nitude of the imstantaneous total velocity isgthen of first order in
the mean velocity, which gives a factor &4/ instead of 2/ in the
right-hand side of (3.4.15). The same result has been given by Bowden
[48]. The equation for the mean bottom shear stress so obtained is
used in the prediction of storm surges at sea [49].

Substitution of (3.4.10), (3.4.14) and {3.4.15) into (3.3.45)
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gives the following result for the lonmgshore current velocity inside

the surfzone:

57 IE_D sS1in 80

v = 2L gD , (3.4.16)"
6 ¢, ¢, _
or, equivalently,
.
vl s VED . (3.4.17)
16 Ce b Db

This equation has been given, in essentially the form shown here, by
Thornton, Longuet-Higgins and Bakker. Outside the surf zone the long-
shore current velocity is zero, to the present approximation. The total
longshore current profile is shown graphically in fig. 3.2, for a

beach with a constant bottom slope. The velocity at the theoretical

without tateral mixing
= e With tateral mixing

A —*x
breaker tine

Fig. 3.2 ~ Caleulated longshore gurrent profiles due
to periodic waves on a plane beach [38, 41 - 43].

breaker line 1s discontinuous, due to the fact that the wave energy

dissipation was implipitly assumed to be discontinuous, and that
lateral mixing was neglected. As noted previously, some form of
lateral mixing can be taken into account [3%, 41 - 42]. This will

of course smoothen the calculated profile, particularly mear the
bregker line. However, it need not have much effect on the calculated

values away from the breaker line, especially on beaches of gentle
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slope, where the lomgshore current varies only slowly with distance
offshore. It should also be remembered that the theoretical results
mentioned here are for periodic waves only, and that the calculated
discontinuity is ultimately due to the fact that all the waves are
assumed to break at the same distance from the shore. This is obvious-—
ly not the case for random waves, to be dealt with in the following
chapters. The variability in breaker position of these waves gives
rise to a smooth longshore current profile, guite apart from the
effects of lateral friction due to turbulence. These effects should

therefore be much less in random waves than in periodic waves.
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PROBABILISTIC DESCRIPTION OF WIND WAVES

Introduction

Randomness is one of the characteristic properties of wind-
generated water waves, Realistic descriptioms of these waves should
therefore be not just hydrodynamical in nature but probabilistic as
well., In this chapter a summary will be given of methods and results
which will be used for this purpose in the remaining chapters,

In section 4.2 elementary concepts from the theory of stochas-
tic processes in one dimension will be introduced. Following this,
the sea surface in the presence of wind waves will in sectionm 4.3 be
described as a Gaussian process in space and time, The statistical
properties of wind waves at a fixed point are dealt with in section
4.4, Empirical data pertaining specifieally to wind-driven waves are
presented in section 4.3.

It may be noted that a distinction is made between wind-driven
waves ("sea") and wind waves in general. The first term refers to
those waves which are still acted upon by the wind field generating
them. Their properties depend on the local wind field. The term wind
waves refers to waves gensrated by wind, regardless of whether they
are still wind-driven or have already to some extent transformed into
swell, or whether they consist of a mixture of wind-driven waves and

swell,

General concepts

The purpose of this section is to introduce some concepts re-
lated to stochastic processes, Such processes can be considered at
an abstract level, in which one deals with non-physical enmtities
using deductive formalisms based on the axioms of probability theory
{50,51}, or from a more applied point of view, when one has to deal

with physical realities having certain observable frequencies of
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occurrence which are assumed to converge to limit values if the number
of observations would be increased indefinitely {52, 53]. The supposed
limits are equated to probabilities of the events being considered.
Once the probabilities have been so assigned they can be used for
deductive reasoning, using the methods of probability theory. We

shall intreduce various concepts which are of use for the description
of stochastic processes from this applied point of view.

Consider a series of experiments in which a certain dependent
(real) variable z varies with one independent variable, which for
convenience will be taken to be the time. We shall assume that the
values of z are affected by a large number of uncontrollable small
factors which cannot be described in detail and which vary on repe-
tition of the experiment. We thus obtain a series of different time
functions kz(t), k=1, 2, vvev., which can be regarded as realiza-
tions of a stochastic process [52,53]. The infinite collection of
time functions which are actually obtained, or which could conceivably
have been obtained from repetitions of the experiment, is called the
ensemble,

A description of the process should aim at the properties which
are common to the various realizations, rather than at the erratic
differences between them, These common properties can be found from
ensemble~averages., For an arbitrary function h of the values of z at

times 15 (i = 1,2, vv.s.yn) the ensemble average is defined as

k k
T h{TZ(t,}, veesraeeney 2(t 0} . (4.2,1)
Norco N k=1 i n

1 N
< h>=1lim

0f fundamental importance for the description of the process is the

function defined by

kU

13

Uoif (M2(e) 2y, veeennnn. o Fe(t) £z ) (4.2.2)

0 otherwise

The ensemble average of this function equals the fraction of the total

number of realizations in which the event described by the expression
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in the brackets occurs, It represents the joint probability function

of the stochastic variables s i=1, 2, +.., . (Stochastic variables
i . .

are underscored,) Regarded as a function of the z; this 1s calied the

distribution function F:

z Zn} = F(Zis"'aznﬂ:ls---stn)

(4.2.3)

The explicit expression of the dependence of F on the parameters

(tl,..., tn) will be omitted in the following.

The mathematical expectation of a function h(it srees Z ) is
i n

defined in terms of the distribution function as
o o

)} = J..... Jh(zi,.....,zn)dF(z},.....,zn).

w - (4.2.4)
It follows from the definitions given that the mathematical expectation
of a guantity is equal to its ensemble average. Furthermore, since the
stochastie process is described in terms of ensemble averages, it is
specified if the joint distribution function of the variables Zo s
i=1, 2, ..., n, is known for an arbitrary number n of arbitrar% in-
stants f, within the interval of definition of the process.

The n—th partial derivative of F with respect to the 2 is

L TCHRR

le.........azn

= f(zl, seenny zn) . (4.2.5)

It is the joint probability density funetion {abbreviated as p.d.f.)

of the stochastic variables Qgt sesssesZ ). It is allowed to contain

t
Dirac delta functionsx)§54}. Thé expectat%on of h given by (4.2.4) can

* . . . .
) The term '"function” is used here instead of the more correct designa-

tion "distribution" in order to avoid confusion with probabiiity dis-

tributions and distribution functions.
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be expressed in terms of the p.d.f. as

e «©

¥ o= J...Jh(zi,.....zn)f(z], ..... zn)ézl""'dzn

—03 0

E{h(_z_t pennens 2,
1 n

(4.2.6)
The first-order moments of the jeint p.d.f., are equal to the mean

or expected values of the z,_ :

t.
u(ti) = E'{Eti} = J...j z: f(zl,.....zn)dz].....dzn = J z, f(zi)dzi’
(4.2.7)
in which
f(zi) = J.... f J.... J f(zl"""zn)dzl""'dzi—E dzi+].....dzn
(4.2.8)

is the marginal p.d.f. of 2y -
The second—order moments of the joint p.d.f. about the mean values

{p(t]),-....p(tn)}, denoted by C(ti,tj), are defined by

Cltyhes) = E (Eti - ;:_(ti))(gtj ELASITRA A (4.2.9)
They are of major importance as quantitative measures of the variability
of z at certain times tss and of the degree to which the variability of
Z at time t; is related to the variability of z at time tj' They are
called the covariances of the stochastic variables (Et.’gt.}' For i = j
they are called the variances of the variables Zo s fof brgvity written

as oiz. The standard deviation of z is ci(z_O).1

t.
i
A stochastic process {zt} is said to be stationary if

Pr{_g_t < Zisreernes2, i_zn} = Pr{_z_t

< Bpaeeeens?, z_1}
* 1 n i

<
tn+'1'— n
(4.2.10)

+T
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for arbitrary t, n and ti(i = 1,2,0s0s4,0), It follows from this defini-
tion that in stationary processes the mathematical expectation of an
arbitrary function h of Et.(i = 1,2,0000.,0) does not depend on the n
values of the times t, butlonly on their (n - 1) differences. Thus,

the expected value and the variance of z, are constant:

u(ti) = E{Et} = const = (4.2,11)
i
and
ciz = E{(Et - u(ti)f}== const = 02 , (4.2.12)
i

while the covariances C(ti’tj) depend on the time difference ti*tj

onlys
Clrpptp) = Bz, =W =W = O g, (G219
or, writing £ - tj =T,
E{(z, - u)(gtﬁ- uyl = ¢ty . (4.2.14)

C{1) is the auto-covariance function of the stationary stochastic
process {Et}' Its Fourier transform, which may include delta functioms,
is a non-negative function called the spectral demnsity g(m) of the
process {Et}, often referred to as the power spectrum or the energy

spectrum:

o0

$w) = %F j cmye T g0 (4.2.15)

—o0

The inverse relation is

o«

cee) = { ¥wrel® 4w | (4.2.16)

-
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The variance of {it} is given by
-
o = c(o) = f ¥w) du (4.2.17)
which suggests that g(w) should be interpreted as the contribution
to the variance of {f{} per unit of frequency.
The process {Et} was assumed to be real and stationary. It follows
that the auto-covariance function C(t) is even and real, so that (4.2.15)

can be written as

L=l o

g(m) = %F J C{t) cos wr dt = jC(T) cos wt dT (4,2.18)

—co

3|

"y
so that S(u) is also even and real. Eq. (4.2.16) can therefore be writ—

ten as

oo frd

ety = J ¥(w) cos wr du = 2 J ¥(w) cos wr dw . (4.2.19)
cnr 0

» r\" 2 > - . - I3 -
Since S(w) is even, we can restrict its interval of definition to noan-

negative frequencies, and define
Sw) = 28(w) for w >0 . (4.2.20)

This gives the so—called Wiener-Khinchine relations:

=)

J C(t) cos wt dt (4.2.21)
0

o

f 8(w) cos wT dw . {4.,2.22)

I
ERINY

S(w)

ci{t)

The spectral density function is a particularly useful tool if
linear transformations are applied to a stochastic process [52, 53].
Consider a linear, time-invariant system, not necessarily a physical
system., It may, for example, also represent a mathematical operator.

. . iwt ]
Let the response of this system to an input Re{e ® } be given by
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i . . .
Re{H(w)e1 t} ; H(w) is the freguency response functiom. If a stochastic
process {gt}, with spectral density Suu(m), acts as an iaput to this

system, then the spectral density of the output process {Xt} is given

by
8, (@) = |H(w) | 5 @ (4.2.23)

In particular, if the system acts as an ideal band-pass filter, spe-

cified by

1 £
or w, fw< Wy

0 otherwise, (4.2.24)

LICH

then the variance of the filtered process is
¥z
J Suu(m)dm (4.2.25)

O
1]

W

1

as compared to

@

J Suu(m)dm (4.2.26)
0

for the unfiltered process. This permits the interpretation of the

Q
1]

spectral demsity as the contribution to the variance per unit of

frequency of spectral components.

In stationary processes {Et} it is often useful to consider avera-

ges of functions of kz(t) with respect to time in individual realiza-

tions, For an arbitrary function this time average 1s defined as

T
. k k k
lim 7= J n{ "z (), Z(E+T ) s vunan, z(t+Tn—E)} dr .
T
~T
Time averages can in general depend on the particular realization in
which they have been determined, Stationary processes for which this

is not the case are called ergodie., Time-averaging of arbitrary func-—




4.2.2

_72_

. k . .
tions of "z(t) in such processes yields the same results as ensemble-

averaging.

Gaussian processes

An important class of stochastiec processes are those which can
be regarded as the result of a superposition of a large number of
stochastically independent components. In many such cases the central
1imit theorem can be applied. This theorem states that under certain
not very restrictive conditions the sum of a large number of stochas-
tically independent variables is approximately Gaussian distributed
{51}].

Consider n stochastic variables Z; (i =1,.v...0) with mean values
ug = E {Ed} and covariances Ci' = E{(fi - ui)(_g_j - uj)L They are said

3
to be jointly Gaussian distributed if their p.d.f. is given by

ja | n

-1
olt ewp (-4 llcll ) I
i=t j=1

=1
z

L )

f(z],.....,zn) = (27)

]Cijl (z, - ui)(zj -ual o, (4.2.27)

i ]
[51], in which |Cijl is the cofactor of Cij in the determinant ||C|!
of the covariance matrix (Cij)' For n = 1 (4.2.27) reduces to
=1 ~1
£(z)) = (20 P oy exp {~i{—m—)"} , (4.2.28)
1

in which
g =C , (4.2.29)

the variance of Zpe

A stochastic process {Egris said to be Gaussian if the joint
p.d.f. of the variables 2z, is of the form (4.2.27) for an arbitrary
number n of arbitrary instants £ (i=1,..0.y n). Rice [55] shows

that the (weak) conditions which are sufficient for the applicability
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of the central limit theorem are fulfilled in processes which have

a finite spectral density and which result from the superposition

of independent compoments. In other words, such processes are Gaussian.
They are completely specified by the mean values u(ti) and the auto-
covariances C(ti,tj). Stationary Gaussian processes are therefore com-
pletely specified by the mean value y and the auto-covariance function
c(t), or, in view of (4.2.22), by u and the spectral demsity function
S(@). The value of the mean, u, is generally of no importance for the
description of the process. It will assumed to be zero in the follow-
ing.

It can be shown that stationmary Gaussian processes are ergodic if
and only if the spectral demsity is finite for every frequency [50].
This condition, which means that there shall be no finite contribution
to the variance at discrete frequencies, is fulfilled in the applica-—
tions to be considered in the following chapters. A conseguence of the
ergodicity is that the probability of an "event", interpreted as the
relative frequency of occurrence in the ensemble, is equal in value
to the fraction of time during which the event occurs in any one rea-
lization. The two interpretations will be used interchangeably in what
follows.

An important property of Gaussian processes is that they remain
Gaussian under a linear transformation. This follows from the follow-
ing theorem [56], If the stochastic variables 2; (i = lyueaes,yn) are
jointly Gaussian in n dimensions, then the variables zj obtained as

linear combinations of the Zs according to

n
zZ, = 1 Ajpzg s I=L2ccem, (4.2.30)
. i=1

for arbitrary constants Aij’ are jointly Gaussian in m dimensions. The
output of a linear system can be regarded as (the limit of) a weighted
sum of values of the input at different times [52,53]. Thus, the res-—
ponse of a linear system to a Gaussian process is again a Gaussian
process., It is fully specified by its spectrum, which for stationary

processes can be found simply by application of (4.2,23),
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Although we only need to know the spectral density function of

a stationary Gaussian process in order to determine its statistical

properties, it may be advantageous to have an explicit representa-

tion of the process as a random funetion of time, Many representations

are possible, in view of the wide range of applicability of the central

limit theorem, A model which has found many applicatiomns
dom phase model due to Rice [55]:

2 T,
k1

13

: aj cas(wjt + ga) (wj > 0} .

Thephasesgﬁ are Independent random variables, each with

of (Zﬁ)-1 on the interval (-m,n). This makes the process

is the ran-

(4.2.31)

a uniform p.d.
(4.2.31) a

stationary one, because the addition of a conmstant time lag 7 to t

merely changes the point of zero phase, This is of no consequence for

the ensemble averages, since the integrations over the phases are still

carried out over an. interval of length 2w, with equal weight being given

to all the phases on that interval., A similar argument applies to time

averages, provided that there is no zero-freguency term,

as indicated in

(4.2.31)., The process given by (4.2.31) is therefore also ergodic.

The expected value of z_ is zero. The auto—covariance function is

a 2cos WLt
] i ’

C(t)

I
0~
(TR

i

the variance is
n
2 2
c) =o" = | fa’
and the spectrum is

S(w)

n
2 i a-2 §(w - mj) ’

(4.2.32)

(4.2,33)

(£.2.34)

in which § is the Dirac delta function., The spectrum is discrete

since the wvariance consists of finite contributions at discrete fre—

quencies, In order to obtain a continuous spectrum we should take
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the limit of the preceding expressions for n -+ «, such that each in-
finitesimally narrow frequency interval (w, w + dw) contains an un-
countably infinite number of spectral components which together con-
tribute to the total variance of {zt} in proportion to dw:

widw

1im Zga.2=3(m)dw . (4.2.35)
o wj'-’w 4

max (wj+1 - mj) + 0

In this case the central limit theorem is applicable, so that the pro-
cess given by (4.2.31) is Gaussian after passage to the limit.

In the representation mentioned above the process {Et} is express-
ed as the sum of an uncountably infinite number of spectral components
of different frequencies. This results in an oscillatory but nonperiodic
appearance of the realizations z(t). The structure of these realiza-
tions is wholly governed by the shape of the variance demsity spectrum.
If this is narrow, which means that the spectral density is significant
only in a relatively narrow frequency band, then the realizations re-
semble amplitude-modulated sine curves, The realizations of broad-
spectrum processes are less regular because of the superposition of
sinusoids of widely different frequencies but of appreciable variance
content,

The statistical properties of ergodic Gaussian processes have been
the subject of extensive studies [55, 57 - 59], which have yielded
numerous useful results. Some of these will be mentioned in section
4,4, together with empirical data for wind waves. However, before
turning to these details we shall first comsider the quantitative
description of wind waves from a more general point of view in the

following section,
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General considerations

The sea surface in the presence of wind waves is a random, mo-
ving surface; it is a stochastic process in three dimensions: two
space dimensions in addition to time., If we are interested not only
in the surface itself but also in sub-surface phenomena associated
with the wind waves, then we have to consider three independent space
variables and time, Although the preceding section dealt with random
processes in one dimension only, many of the concepts mentioned there
are quite general, and apply directly to multidimensiomal processes.

The elevation of the sea surface above a horizomntal datum plane
is denoted as L, which is a function of location % = (x,y) and time
t. The stochastic process {Eﬁg,t)} can be described through the joint
distribution functions of the variables Eﬁ;i,ti), 1= 1y 2y0eeaa,yll,
for arbitrary n and arbitrary values of §i and t.. As before, the
process is stationmary if these distribution functions are invariant
under the addition of am erbitrary constant time lag to the instants
;. If these distribution functions are invariant under the addition
of an arbitrary constant (horizontal) vector to the Qi, then the wave
field is said to be horizontally homogeneous.

For a consideration of local properties, sea waves can often be
deseribed as quasi-stationary and quasi-homogeneous, since variations
of mean wave properties in time and space generally take place on
scales which are large compared to typical wave periods and wave-
lengths. If {Eﬁ§,t)} is a stationary and homogeneous process then
its mean value is a constant, which will be assumed to be zero, while
its auto-covariance function is a function of time— and space-differ-

ences onlys:
E{r(,0) 5(x + £, t + D} = CF,0) . (4.3.1)

+ .
The three-dimensiomal Fourier transform of C{(r,7) gives the spectral

density in wavenumber-frequency spave {30]. Reduced forms of this
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three-dimensional spectral density function are obtained by integrating
it either over the frequencies, which gives the two-dimensional wave-
number spectrum, or over the wavenumbers, which gives the one-dimension—
al frequency spectrum. The first of these resolves the variance of

Eﬁ;; t = constant) into the contributions of a continuum of long~crested
sinusoidal spectral components in space. The latter resolves the vari-
ance of r(t; % = constant) into the contributions of a continuum of
sinusoidal spectral components in time.

The variance of z is, apart from a constant factor ipg, equal to
the average gravitational potential energy of the waves per unit heori-
zontal area. For this reason the various variance demsity spectra. are
frequently referred to as energy density spectra, or simply as energy
spectra.

Important simplifications are obtained by assuming that the waves
behave linearly, This implies that the spectral components are hydro-
dynamically independent of each other, The linear dispersiom equation
(3.2.14) then applies to individual spectral components, making the
absolute value of the wavenumber a known function of the wave frequen-
¢y, 80 that the number of independent dimensions of the spectral den-
sity funetion in effect is reduced to two. Instead of having to deal
with a three~dimensional wavenumber—frequency spectrum it is suffi-
cient to deal with the spectrum as a function of two wavenumber-com—
ponents (kx’ky)’ or as a function of the absclute value of the wave-
number and the direction of propagation (k,8), or as a function of
the frequency and direction (w,&). We shall use the latter form,
written as G{w,8).

A consequence of the assumed hydrodynamical independence of the

spectral components is that they can be also stochastically independent.
This is commonly the case for wind waves, even for those generated in a

single wind field, because such fields are usually so large that they
can be sub-divided into many areas in which the processes of wave
generation are mutually independent.

The assumption that the sea surface can be regarded as the result
of a superposition of an uncountably infinite number of spectral com-

ponents which are stochastically independent is sufficient for the
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applicability of the central limit theorem. Under these circumstances
the wave field can be considered to be Gaussian, and completely des-—
cribed by its two-dimensional spectral density function. Needless to
say, this is only épproximately the case for real waves, which are
not exactly linear, It turns out however that for many applications

the approximation is quite good (see section 4,4).

An explicit representation

A representation of the sea surface as a stationary Gaussian process
in space and time can be obtained by a straightforward generalization

of the cne~dimensional Rice representation [60]:

j=]

m .
Llx,y,t) = jgl 223 a.ﬁcos(mjt - ij cos 82 - kjy sin BR - iji}
{(4.,3.2)

The phases are independent random variables, each with a uniform p.d.
of (ZH)M} on the interval (~w,w). The wave {requency and wavenumber
are related according to the dispersion relation

") z k. tanh k.d (4.3.3)

i Ty i =

The spectrum of the process described by (4.3.2) is discrete, which
is not realistic for wind waves. In order to cbtain a continuous spec—
trum we should consider the limit of (4.3.2) for now, maxEmj+1 - ij - 0,

o and maxle - Bli -+ 0, such that the spectral components with an-

4+
gular frequencies in the infinitesimal interval (w, w + dw) and with
directions of propagation in the infinitesimal interval (8, 8+ d8) con-

tribute to the total variance of 7 in proportion to dudé:

wtdw O+dO 5
) D a;, + G(w,0)dedd . (4.3.8)
w.=w § =5 J
1 2

The total variance of ; is then given by
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©
o = J J G(w,8)dudd . (4.3.5)
6 -7
If the surface elevation is considered as a function of time, at
a fixed point (x,y), then the phase term (ij cos 62 + kjy sin 82) in
(4.3.2) is & gonstant, say ajl’ for each pair {(j,g):

it m

Ty = jz} gz] ajl cos(mjt - Gjﬁ - Ejl) . (54.3.6)

This expression can be put into in a form similar to the representa-
tion {4.2.31) for a one-dimensional process as follows. Eq. {(4.3.8)

can be written as

n iw.t m -ia,, + . ) n i, t
L, = Be T e ] ) a;, e 12 R b b.e ,
j=t =1 1 4=t 3
(4.3.7}
in which
m —ida,, * oW, )
b:= ] a; e %A (£.3.8)
3,5 i
Define
B. = ib. = . . 3.
Byo= ibgl 5 By =are P (4.3.9)
then (4.3.7) becomes
n
B = jzk B, cos(ust + £) . (443410)

It follows from (4.3.8) and from the given p.d.f. of Ejg that the pha-

ses §j are mutually independent, each with a uniform p.d. of (Zﬂ)-}

on the interval (-w,n),while the random amplitudes Ej {(which in the

limit for ms= are Rayleigh—distributed [61]) have mean-square values

2

¢t {(4.3.11)

5 m
E{B."} = z a,
=1 2=1 ]
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With this information the auto-covariance function and the spectral
density function of {ct} can be derived in a straightforward manner

from (4.3.10), with the result

n
2
c(r)y = Y E{} B. } cos w.T (4,.3.12)
1= =] ]
]
and
n 2 n m 2
S = ] BB Y stw-w) = T (] 4 a8 w) .
ji=1 j=t =1
(4.3.13)
T 2
Thus, the contribution to the variance of Ly at w = mj equals E 3 ajz,

which is the sum, over all thedirections of propagation, of th%=$ari~
ances of the components with w = ws . It follows that in the limit when
the frequencies mj and the directions of propagation 82 are densely
distributed in (0,=) and {-v,7), respectively, the spectral density
S(w) can be obtained from the two-dimensional spectrum G(w,8) by inte-
gration over B:

G
S{w) = J G(w,6)de . (4.3.14)
w

The two-dimensional spectrum G(w,8) can therefore conveniently be
factorized into the one-dimensional frequemncy spectrum 5{w), the inte-
gral of which yields the variance of 5, and a directional spectrum

D{0;w) which has unit area, or
G(w,8) = S(w) D(B3w) > (4.3.15)
in which

m

J D{Ojw)do = 1 (4.3.16)
-7

for all w.
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The representation of the sea surface as a quasi-stationary and
quasi-homogeneous Gaussian process has many realistic features [62,63].
The superposition of spectral components of different frequencies and
wavelengths results in an oscillatory but non-periodic behaviour of
the surface in time and in space, while the fact that these components
have different directions of propagation causes short-crestedness.

Both properties are clearly present in wind waves., A quantitative test
of the agreement between the Gaussian model and real waves can obvious—
1y be made only on those items for which quantitative theoretical and
empirical results are available or obtainable., Many theoretical results
concerning the statistical properties of the waves considered as a
random moving surface have been derived by Longuet-Higgins. However,

no empirical data are available for most of these., The situation is
quite different in the simpler case of the variation of the elevation
of the water surface with time at a fixed point, of which many measure-
ments have been made, analysed and compared with theoretical predic-
tions. A numher of these will be presented in section 4.4, We shall pay
no attentionm to the statistical geometry of the sea surface, since the
equations presented in chapter 3, which are to be used in the chapters
5 and 6, are based exclusively on mass- and momentum balances for a
fixed control volume of infinitesimal horizontal extent. The waves
appear in these equations only in their time-averaged properties at
fixed points. These properties can in a first approximation be calcula—
ted from the two-dimensional energy spectrum, without having to go into

the details of the surface geometry.

T;gpgformation of the spectrum due to shoaling, refraction and dissi-

Eation

it has been observed in the introduction of this section that
statistical wave properties generally vary relatively slowly in time
and space, so that for a description of the local properties the field
can be considered to be stationary and homogeneous., However, it may be
necessary to take account of the variationms of the local properties if

the waves are considered on a larger scale, This is in fact the case
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in the problems to be dealt with in following chapters, in which
predictions have to be made concerning the wave motion in the nearshore
region, for a given topography and given wave properties offshore.

In such cases the spectral density is considered as a slowly varying
function of space and time. Its transformation can be calculated from
an energy balance, assuming the geometrical-optics approximation to

be applicable, The formulation is simplest in terms of the two-dimen-—

sional wave-number spectrum G'(ﬁ), which is related to G(w,9) according

to
tEy = et = 3{w,8) ="I§__U’- -
G'{k) = G (kx’ky) G(w,d) STE:TQ;T k oy G{w,0)
-1 (4.3,17)
= ccg G(w,8)
in which
Jw
= ne . (£.3.18)

Cg = 5E

Longuet-Higgins [64] has shown that in the statistically steady sta-
te the spectral density G'(E) is constant along wave rays, if there

is no generation or dissipation, This can also be written as

3
3;{ ce, Glw,8}=0 (4,3,19)

in which s is a coordinate along the wave ray traced by the spectral

component (w,6). More generally, it can be shown [30} that

d > _ > > >
I 61 0eE,) = op+ E‘g L V) G(Kx,t) = Qlkix,t)  ,  (4.3.20)

in which Q 1s a source function, which may contain terms representing
energy transfer between wind and waves, wave-wave interactions, ener-

gy dissipation, ete. Collins [65] describes procedures for the in-

tegration of (4.3.20) in which several of these possible source terms

are taken into account, If §Q = 0 then the spectral density in wave-~
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number space is constant, following a wave group.

Introduction

In this section we shall swmmarize theoretical and empirical
results concerning a number of statistical properties of wind waves
at a fixed point which will be used in subsequent chapters, Particular
attention will be paid to the distributions of crest heights and wave
heights. .

The theoretical results to bhe mentioned in the following have been
derived from the assumed model of a statiomary Gaussian process with
zero mean, eXxcept where otherwise stated. These results will simply
be referred to as "theoretical® in order to aveoid repeated use of the
more complete description. Similarly, the term "empirical” will be
used to refer to results based on the analyses of wind wave records.

The theoretical results are conveniently expressed in terms of

the moments of the spectrum of I about w = 0:

w©
mj = f mj S({w)dw (4.4.1)
4]
The moments are assumed to exist up to all orders required, The zeroth

moment equals the variance of 7:

o0

02 = J S{w)dp = my . (4.4,2)

0

Distribution of instantaneous values

The theoretically predicted Gaussian distribution of. instantaneous

values of the water surface elevation, or of variables which linearly

depend thereon, has been reasonably verified empirically, both in the
univariate case {66] and in the multivariate case [67]. Needless to
say, the assumption that the elevations at various times are jointly

Gaussian distributed is also checked indirectly through the theoretical
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results to be mentioned in the following paragraphs, which are with—
out exception based on this assumptiom.

Though the Gaussian function is a good first approximation to the
measured surface elevation distribution, it is no more than that. De-~
tailed analyses of wave records by Kinsman [68] brought small but
systematic differences to light, in the sense that high positive ele-
vations had a greater p.d. than the best-fit Gaussian curve, while the
opposite was true for negative elevations of large absolute value, re-
sulting in a positive gkewness, Similar deviations from the Gaussian
distribution were found by Koelé and de Bruyn [69] and by Collins [70].
These deviations are due to the nonlinear character of the waves, which
causes the crests to be narrower than the troughs, and at a greater
distance from the mean water level, Longuet-Higgins [71,72] has con-
sidered theoretically the perturbations on the Gaussian p.d.f. due to
the nonlinear coupling between the spectral components, His results are

in very close agreement with Kinsman's and Collins' data.

Average interval between level crossings

Consider the time intervals Tn between successive crossings of
a level n by a realization z(t). Rice [55] has derived the following

theoretical result for their average value:

mo 1 2
_ 3 .0
E{gﬂ} =7 (EE? exp(zmo) . (4.4.3)

Distribution of zero-crossing intervals

An important special case of (4.4.3) is obtained by putting n= 0,
resulting in an expression for the average interval between successive

zero~crossings:

m oy
E{Io} = 7 (EFQZ . (4.4,4)
2

In later applications the time interval between successive zero-
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upcrossings will be considered, denoted by T (see fig. 4.1). This

quantity will for brevity be referred to as "zero-crossing period",

—é— zero— ypcrossing
—Q— zero- downcressing

—— —— height of a2 maximum (‘{m}

wm.w— height of a crest (Im)

Fig. 4.1 = Definition sketch

or simply as "period". Its theoretical mean value is
pLY P

g = o (512) . (4.4.5)
2

My 1

]
Empirical data are in genersl in agreement with this relationship
[70,731.

The caleculation of the p.d.f, of g or of T poses a formidable
theoretical problem. A first approximation was given by Rice [55],
Further contributions are due to McFadden [74,75] and Ehrenfeld et
al [76] and in particular to Longuet-Higgins [77-79]. The p.d.f.
depends in a complicated manner on the spectrum, It has to be cal-
culated numerically, Some results obtained from numerical simulation
of Gaussian processes with various spectral shapes have been given

by Goda [80}.
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Distribution of intervals between maxima

A maximum of [(t) corresponds to a downward zero-crossing
of z'(t) = Qﬁéﬁl . The distribution of the time intervals between
maxima of E(t)’ denoted as Im’ can therefore be calculated using
the theoretical results pertaining to the distribution of zero—cross-
ing intervals, referred to in the preceding paragraph. These results
should then be applied to the process {;'(t)}, of which the spectral
density is wZS(w). It follows in particular that the average time in-
terval between maxima can theoretically be calculated from (4.4.5),

provided the zeroth and second moment of {g'(t)} are used, This gives

m, |
o _ 2
Tm =E{T } =21 (Ez) ’ (4.4.6)

a result which is due to Rice [55].

Distribution of the heights of the maxima

Rice [55] has derived the theoretical probability distribution of
the heights of the maxima. His result has been elaborated by Cartwright
and Longuet-Higgins [{58].

It is convenient to normalize the process fz{t)} so that it will

have a standard deviation of unity. We therefore define

()

i

£t = . (4.4.7)

:

Mo
The value of £(t) at a maximum is denoted by i (see fig. 4.1). The

theoretical expressions for the p.d.f. and the probability of exceed~

ance of ém’ written as f(n) and Q{n), are

2 o/ (1=}

-1 1 -1
(27) °? (1-\;2)2 e + yne 2N e dv

()
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and
o 2 2 ‘.nre.f(h-\;z)é 2
Q(n} = (2ﬂ)—% [ 7 e dv + ve i" f e gy
- - (4.4.9)
in which
™2
v = ;;;;:;;;{ . (4.,4.10)

The parameter v is related as follows to the widely used parameter ¢

introduced by Cartwright and Longuet-Higgins [58]:

Veeta1 . (boba11)

i
The reason for using v instead of ¢ is that the term (1 - 22)2, which
is v, occurs much more frequently in what follows than ¢ itself.

Substitution of (4.4.5) and (4,4.8) in (4.4,10) gives

(4.4.12)

in which N and N, are the number of upward zero~crossings and of

maxima in a long time interval, It follows that for conmtimuous processes
v < 1. The lower bound on v is theoretically zero [58]. This case is of
no practical importance, however, as it would imply that there are in—
finitely more maxima that zero-crossings. It will be included here on-

ly for the sake of completeness., Thus we have

0<v<1 (4.6.13)

which can also be inferred directly from the definition of v given in
(4.4.10). The value of v is wholly determined by the shape of the
spectral demsity function. A spectrum is said to be narrow if the mo-

ments about the mean frequency

% = m /m, (4ot 14)
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are small compared with the moments gbout w = 0, In this case

m v (;}j My, so that v = 1, The realizations then have the appearance
of a slowly-amplitude~modulated sine curve with a well-defined en-
velope. There are no positive minima or negative maxima, so v = N/Nm;tl.

For v = 1 the eqs. (4.4.8) and (4.4.9) reduce to

f(n) =0 for n =<0
—in? (4.,4.,15)
= ne for n>0
and
Q) = 1 for n<0
1.2 (4,4.16)
= e 21 for n>0 .

These equations describe the Rayleigh-distribution {61]: Eq. (4.4.16)
follows also from (4.4.3) and from the fact that there are no posi-
tive minima if v = 1, so that in this case the number of upcrossings
of a given positive level equals the number of maxima above that
level,

With increasing spectral width, v diminishes in value. The corres~
ponding realizations are less regular in appearance, having more ex—
tremes than zero-crossings, In other words, the proportion of nega-
tive maxima (and of positive minima) increases [58}. It is equal to
1-Q(0), which, from (4.4.9)}, equals 1(} - v)}. In the extreme case
v = 0 the distribution of Em reduces to the Gaussian form.

The parameter (- v) can be shown to be equal to the coefficient
of linear correlation between £(t) and its second derivative, or,
roughly speaking, between the elevation and the curvature, The impor-
tance of this correlation coefficient for the statistical properties
of a statiomary random process was already pointed out in 1921 by
Tayler in his pioneering paper on the diffusion by coentinuous move—

ments [81], in which he also introduced the auto-covariancefunction.
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The expression (4.4.9) for the probability of exceedance of Em
with arbitrary v is somewhat unwieldy for analytical work, However,
1
with increasing values of wn/(1 - vz)z the integrals occurring in
H

(4.4.9) converge rapidly to 0 and to (27)% respectively, in which case

2
Q(n) v &7t (4.4.17)

[55, 58], or, substituting (4.4.12),

-én . (4.4,18)

R?“.lz

Q) %

The errors in this approximation are small even for moderate values
of vn/(l- vz)%. For example, for v = 0.7, which is a common value
for wind-driven waves, the relative error is less than 0.02 for n > 1,
i.e. for all the maxima higher than (only)} one standard deviation
above the mean level, The error diminishes rapidly with increasing
values of nand/or v.

Eq. (4.4.18) can be interpreted as follows. Q(H)Nm/N, which is
the ratio of the expected number of maxima with a height in excess of
n (>0) to the expected number of zero-upcrossings, is nearly equal
to exp(—-n }, which is of the same form as the probability of excee-
dance of the Rayleigh distribution. This theoretical result is relevaat
to the practice of considering not every maximum in a record but only
the highest maximum in each interval between a zero-upcrossing and the
next zero~downcrossing. This subelass of all the maxima will for bre-
vity be referred to as crest height, denoted by Em’ (see fig. 4.1),
and by Em in normalized form. It follows from the definition of the
crest heights that they are positive, and equal in number to the up—
ward zero-crossings. Their theoretiecal distribution is not known ex—
cept for the case of a narrow spectrum {v = 1), when it is of the
Rayleigh type., The following arguments show that the Rayleigh dis-
tribution applles approx1mate1y for other values of v as well, pro—
vided vn/(1 ~ v )2 is not small.

The probability of occurrence of more than one maximum above n on
an interval between a zeré—upcrossing and the next zero—downcrossing

diminishes with increasing n. This implies that for moderate and large
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values of n the expected number of occurrences of {Em > n} is approxi-
mately equal to (but never larger than) the expected number of occur-
rences of £§m > n}. If we divide both by the expected number of zero—

crossings we obtain

=

Y]

gouer (> by Bam . (4eha19)

Substitution of (4.4.18) gives

¥ v e*%nz . (4.4.20)
The errors in (4.4.18) and (4,4.19) are of opposite sign, and they
diminish rapidly with increasing n and/or v. Thus, the conclusion is
that theoretically, for sufficiently large values of vn/(l - vz)%, the
crest heights are appromimately Rayleigh distributed. This is in
agreement with data presented by Koel& and de Bruyn [69]. The equi-
valent of the crest height based on the trough depth was also found

to be Rayleigh distributed, though it was systematically smaller., This
ig to be expected if nonlinear effects play a measurable r&le, The same
trend is shown by data given by Collins [70}. In this case there was
good agreement with the Rayleigh distribution only in the upper 807

(G > 0.2). The effects of nonlinearities on the p.d.f. of the heights
of all the maxima (not just the highest maxima between successive zero-

crossings) is dealt with by Longuet-Higgins [72].

Consider z(t) on a time interval between two successive ZEro~upcross-—
ings. The height of the highest maximum on this interval above the
height of the lowest minimum on the same interval is called a zero-
crossing wave height, or simply wave height, denoted by H {see fig.
4.1), The zero-creossing wave height is used extensively in the analysis
of wind wave records, particularly in civil engineering applicationms.

The distribution of H is known theoretically oaly in the case

of a narrow spectrum, v = 1, when it is of the Rayleigh type. The
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applicability of the Rayleigh distribution to the heights of sea waves
seems to have been first suggested by Barber [82]. Longuet-Higgins
[57] gave an outline of the arguments underlying the assumption of a
Gaussian model for the wave motion, and the conditions for the spec~
trum to be narrow, as well as numerous relationships between charac—
teristic parameters of the Rayleigh distribution and of the distri-

bution of the largest wave height in a finite sample.

The Rayleigh distribution for H can be written as

I for H< O
-z(H/H) (4.4.21)
=1 -e for H> 0

F(H)

in which H

1]

E{H} . (4.4.22)

The root-mean—-square wave height (Hrms) is related to the standard

deviation of z(t) and to T as follows:

u dgf
TS

®E: = o = F . (6.4.23)

2
s
The so-called significant wave height, which is defined as the mean
value of the highest one-third fraction of the heights, is given by

By v LALH o b /my (4.4.24)

1/3
Empirical date on wave height distributions have been collected
and analysed by a score of investigators. The earliest systematic
efforts in this direction preceded the theoretical developments,
Based on the data available at the time, most of which had been ob-
tained with pressure recorders, Longuet-Higgins [57] concludes "In
examples quoted above, the discrepancy between theory and observa-
tion is in all cases less than 8%, and in some cases it is smaller
still, In view of the somewhat strict assumptions made in deriving
the theoretical probability-distribution, this agreement is surpris-
ingly close; and it may indicate that the probability-distribution

does not depend very critically upon the narrowness of the wave
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spectrum."” The wealthof data gathered since then, both with pressure
meters and with surface sensors, in swell as well as in wind-driven
waves, gives strong support to Longuet-Higgins’last-mentioned state-
ment, and confirms the applicability of the Rayleigh distribution

for wave heights in general {69, 83-87]. This is particularly note-
worthy because in many of the measurements the spectrum was far from
narrow, and probably much wider than the spectra of the pressure re-
cords on which Longuet-Higgins®conclusions were based. For example,

in most of the cases analysed by Koel& and de Bruyn [69] the value of
vz(also of 52) was between 0.4 and 0.6, Even so these authors could
state '"we have seen that the distributions of H and zm are independent
of the width of the energy spectrum (expressed in terms of ¢). The
distributions f{H) and £(n) correspond to a great extent with the
formula of the Rayleigh distribution”. Similarly, Goodkanight and
Russell [84], after analysing wave records taken in the Gulf of Mexico
during hurricanes, conclude "The agreement of the theoretical and
experimental values suggest that, for practical purposes, the parti-
cular statistics studied for waves generated by a distant hurricane
may be approximated by a Rayleigh distribution. The results of these
tests are in agreement with other work im this field. It should be
emphasized that these data were collected during severe oceanogra-
phic conditions (maximum wave heights to 20 ft in a 33-ft water depth),
and the data were measured with a surface sensing instrument.'

The goodness~of-fit of the Rayleigh distribution to deep-water
wave height data can be judged from Table 4.1, adapted from Titov
[87}, in which average values derived from "a large number of wave
recordings taken in different seas and oceans under a large variety

of meteorological conditions" are compared to values obtained from

(4.4.21).

100 F(E/B) 1 10 20 30 40 50 60 70 80

H/H, measured 0.10 0.37 0.54 0.69 0,81 0,93 1,05 1.21 1.38
H/H, eq.(4.4,21) | 0,11 0.37 0.53 0.67 0,81 0,94 1,08 1,24 1,43
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100 F(H/D) 96 95 97 98 99

H/H, measured 1.69 1,91 2,10 2.28 2.52
H/H, eq.(4.4.21)1 1,71 1.95 2,11 2.23 2.42

Table 4.1

The table illustrates the fact that the Rayleigh distribution gives
an excellent description of the short—term wave height variability,
This is in strong contrast with the dictum "The basic law of the
seaway is the apparent lack of any law", which, interestingly emnough,
is due to Rayleigh himself [30]. (Rayleigh derived the distribution
named after him for the intensity of sound consisting of a large
number of components of the same frequency in random phases [61]. It
took almost 70 years before it was realized that under certain cir-

cumstances a similar model applied to wind waves,)

The empirical fact that the zero-crossing wave heights are to a
good approximation Rayleigh distributed, even if the waves are defi-
nitely nonlinear and do not possess a narrow spectrum, calls for an
explanation, The nonlinearity of the waves gives rise to higher crests,
but alsc to higher troughs, The wave height is only slightly affected
by this since it is measured from crest to trough. The fact that the
spectral width appears to have no measurable influence on the dis-
tribution of H can probably be explained with reference to the crest
heights, which were shown theoretically and empirically to be approxi-
mately Rayleigh distributed. The only additional assumption required
is that the crest height, defined as the largest maximum between
successive zero-crossings, is strongly correlated with the immediately
following largest trough depth between successive zero-crossings. This
assumption is rejected by Jahns and Wheeler [88], who point out that
for a wide spectrum a relatively high crest is on the average follow—
ed by a not-so-deep trough. This would be the case for a purely
Gaussian process, quite apart from hydrodynamical nonlinearities,. The
use of a Rayleigh distribution for H would therefore, according to these
authors, result in an overestimation of the probability of exceedance

for the relatively high waves, if the spectrum is not narrow,
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It ig difficult to establish empirically whether the effect men-—
tioned above is real in wind waves, because to do so would require
long~lasting records in stationary conditions in order to obtain sta-
tistically significant results at the Iow levels of probability under
consideration, This applies also to the effects of wave breaking.
This phenomenon occurs so infrequently in deep water that it does
not have an appreciable influence on the measured distributions for
the short sample lengths which are commonly used (typically 100 to
200 waves)}. Svasek [86] reports that "The wave recordings of limited
duration, e.g. 30 min., at some stations in the shallow part of the
North Sea show only small deviations of the extreme values of wave
heights from the Rayleigh distribution." The wave heights at the
exceedance probability level of 0.57 were found to be "almost never"
more than 157 greater or 10Z smaller than the corresponding heights
obtained frem the Rayleigh distribution., In this regard it is also
pertinent to note that theoretical predictions concerning the lar-—
gest crest height in a finite sample have been well verified empi-
rically, as shown by Cartwright [59], who states “one may justifiably
suspect that non—~linearities might become important for the largest
waves considered in a theory of extreme values, But the satisfactory
results of measurements shown ..., confirm that the assumed represen—
tation still holds good well into the tail of the probability dis-
tribution," The data on which this conclusion is based were obtained
with a shipborme wave recorder, The data derived from surface sensors
at a fixed point should under the same conditions have a wider spec—
trum as well as stronger nonlinearities. Yet also for such measure-—
ments there is agreement with predictions concerning the largest wave
height, based on an assumed Rayleigh distribution for the individual
wave heights [73, 84]. This was the case even in hurricane waves,
where the theory is put to a severe test, The inevitable conclusion
is that the short—term probability distribution of wave heights is
not significéntly affected by wave breaking, at least in deep water.
The situation in this regard is of course quite different in shallow
water where the larger wave heights may be of the same order of mag—

nitude as the water depth. This case will be considered in chapter 5.
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The distribution function of the largest wave height in a finite
sample has been derived by Longuet-Higgins [57]. Consider an ensemble
of records, each containing N wave heights. If the records contain
at least a few wave groups, then the N realizations of the wave height
H in each record can be considered as N independent random samples from
a universe of wave heights. The probability that the height H shall
not exceed a value U is given by F(H). The probability that all of
the N heights in a record shall not exceed H is then given by {F(H)}N.
It is equal to the probability that the maximum wave height in the

record, denoted by Emax’ shall not exceed H:
- _ N

F(H) = Pr {0 < H} = {F®)} . (4,4.25)
Expressed in terms of the probability of exceedance of H,

Q(H) = 1 - F(H) , {(4.4.26)
(4.4.23) becomes

N

FN(H) = {} - Q(H)} . (4.4,27)
For large N, FN(H) is vanishingly small unless Q(H) is of order NME.
Therefore only relatively large values of H are of interest, Eg.
(4.4,27) then approxXimates to

Fg(d) = ¢ N0 ‘ (4.4.28)

Substitution of the Rayleigh distributiom for H gives

T -2

Fy(H) = o~ Ne . (4.4.29)
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The expected value of Emax has been calculated from this distribution
function by Longuet-Higgins [57}, with the result

E{H _} o *~E {(n N)Ji + 0,29(in N)_%} . (4.,4,30)

2
—max’ v
which is valid for N > 20 approximately., Empirical data are in good
agreement with this theory [57, 73, 84].

The distribution of the largest maximum (Em ) has been considered
by Cartwright [59], who uses the approximate form of the probability of
exceedance of Em given by (4.4,18), which, apart from the constant fac-
tor N/Nm, equals the probability of exceedance according to the Rayleigh
distribution. The resulting distribution function of En is therefore
equal to the one derived by Longuet-Higgins for %Emax’ %%gvided the

number of maxima (Nm) is replaced by the number of upward zero—crossings

(M),

Empirical data for wind-driven waves

It will be assumed in the applications to be given in the foliowing
chapters that the incident waves at some point offshore are known in
terms of parameters such as the two~dimensional spectrum and the joint
distribution of zero—crossing wave heights and -periods, No specific
functions will be postulated 3 priori for these parameters, with the ex—
ception of the marginal distribution of the wave heights, which can be
assumed to be of the Rayleigh type without great loss of generality,
Both the two-dimensional spectrum and the distribution of the wave
periods can vary between wide limits so that no generally applicable
functions can be given. They could almost be chosen at will if gquan-—
titative evaluations would be required. However, it is preferred to
choose somewhat realistic conditions for the cases to be worked out
analytically or numerically. These conditions will be chosen to corres-
pond to wind-drivenwaves in a more or less stationary and homogeneous
wind field., It is for this purpose that some empirical data concerning

wind-driven waves are presented in this sectionm,
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Directional spectra

Directional spectra are difficult to measure, and detailed data
are correspondingly scarce. We shall present some of the results.
The directional spectrum D(8;w) is defined by the egs. (4.3.14)
and (4.3.13). The angle 9 will be measured from the mean direction
of propagation, The parameters appearing in the analytical expressions
for D{f:w) to be presented do not depend on §; they may depend on w.
The coefficients are determined so as to agree with
ki
J D{(H;w)dd = 1} (4.5.1)
=T

for all w.

St,Denis and Pierson [89] propose the eguation

(=R RN

D](B;m) = Dl(e) c0526 for |6| i_%- {(4.5.2)

otherwise.

This result seems to have heen inferred from observed angular spreading
of swell.

Titov [87] presents a result which in appearance is very similar
to (4.5.2), but it applies to a differently defined quantity. He
considers what could properly be described as a marginal directional

spectral density,

DY(B) = J Gw,8)dw » (4.5.3)
o

as opposed to the conditiomal density defined by (4.3.14~153).
Titov states that in the open sea R'(8) varies as cosze. This is
based on stereophotographs of the sea surface, The result given by
Titov is of course implied by (4,5.2), but the reverse is not neces-—
sarily true, However, it does give indirect support to the validity
of (4.5.2), at least in the frequency band which contributes mest to

the variance.
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Various authors have propesed an equation similar to {4.5.2) but

with different exponents:

m T
D,(850) = By(cos 6) for |o] =2 (4.5.4)

=0 otherwise.
In view of (4.5.1), the coefficient B2 is given by

1

B, = {Im} " (4.5.5)
in which T
2
= m - r(}m+ i) -
I(m) = j (COS 8) de = &“W N (m > }) 3
- %. (4.5.6)
where I(.)} is the gamma function {903, defined by
r{x) = [ tX“1 e_t dt for x > 0
0 (4.5.7)
T(x+1) = x7 (x) for x+# 0,~1,~2,....
Two useful particular cases of (4.5.7) are
'ty =1 (4.5.8)
and
r(y) = /v . (4.5.9)
The International Ship Structures Congress Committee on Environmental
Conditions [91] recommends (%4.5.4) with m = 4, but scme of its data
represented swell, which of course has a narrower angular distribution

of the energy than wind~-driven wavas, Moreover, its choice for the
exponent m was deliberately on the high side because this was consi-
dered to be the safe side for the applications envisaged. The distri-

bution measured by Barber {92] is approximately proportional to
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00348 [93], but "it is not expected that {this result) will apply
to open water", where the distribution can be expected to be broader,
"hbecause the fetch in the wind direction was much greater than else-
where", It appears then that if (4.5.4) is used as a representation
of the directional spectrum of wind~driven waves, the exponent m
should be nearer to 2 than to 4.

The data available at the time when (4.5.2) was proposed (1953)
did not permit to formulate a variation of D with w. Later investiga-
tions have shown that the width of the anpular energy distribution
increases with increasing frequency. The first clear evidence of this
came from the analysis of stereophotographs of the sea surface in a

project named SWOP [93], which provided the basis for the equation

21 2 & T
D3(B,w) = - (AO + AZ cos 0 + A4 cos 9) for iei i‘z
=0 otherwise,
(4.5.10)
in which
AO = % {1 - C) ’
A2 =1~ 0,92 C s {4.5.11)
A, = 2,56 C ,
where
c= exv{-%(“—’%)!*} R (4.5.12)

and W is the mean wind speed at anemometer height (15 ft above sea level).
The peak of the frequency spectrum was at v = & » 0.85 g/W. The dis~-
tribution (4.5.10-12) is wider tham {4.5.2) at high frequencies, and
narrower at low frequencies, Cote et al [93] state that this "would
appear to give more realistic swell forecasts than previously used
formulas" (i.e,, than eq. 4.5.2),

Longuet-Higgins et al [94] have fitted the following function to

their data, which had been obtained with a pitch and-roll buoy:
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D,(85u) = B, (cos j&)°° (£.5.13)
with
1 s+ 1)
B, = {21(28)} ' = = L £ D) (4.5.14)
’ 2/r [le + 2

The exponent s is in general a decreasing function of w; this is
qualitatively in agreement with (4.5.10-12).
Krylov et al [95] have proposed a directional spectrum as in

(4.5.4), with
ma 2Ble . (4.5.15)

This distribution breoadens with increasing frequency; it agrees
with (4.5.2) at the peak of the frequency spectrum, The fact that
(4.5.4) would apply with m inversely proportional to w has also been
noted by St.Denis [96], based on the data of Longuet-Higgins et al
[94].

Frequency spectra

The first empirical formula for a one-dimensional spectrum of
fully developed wind waves on deep water has been given by Neumann
[973. It can be written as

S(w) = 0,025 g2 o0 exp {_2(§§)~2} , (4.5.16)

in which W is the average wind velocity at 7.5m above sea level,
The coefficient 0,025 has the dimension [5_1]. The Neumann spectrum
is mainly based on visual wave observations,., Strekalov [98] proposes
a spectrum similar to Neumann's, that is to say, with the same ex-—
ponents of w.

Pierson and Moskowitz {99] have given the following spectrum for

fully developed waves in deep water:
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5(w) = By g2 m_s exp {- 52(§E)~4} {(&.5.17)
with
8, = 8.107° , 8, = 0.74 . (4.5.18)

W is the mean wind velocity at 19.5m above sea level. The Piersocn-
Moskowitz spectrum is based on measurements made in the North Atlantic
Ocean with a ship-borne wave recorder. A gpectrum similar to (4.5.17)
has been given by Davidan [100], based on measurements in the Barents
Sea and in the Atlantic,.

It may be seen that for high frequencies the spectral density
in the Pisrson-Moskowitz spectrum is proportiomal to gz w—B, with a
dimensionless coefficient of proportionality. That this should be
so0 had been inferred on dimensional grounds by Phillips [i101]. He
argued that breaking limits the wave growth, and that comsequently
there should be a range of frequencies in the spectrum of wind-driven
waves in which the spectral density has reached a saturation value,
This range is called the equilibrium range. The equilibrium spectral
density, denoted as Se(m), should be independent of the wind velocity,
duration, feteh, etc., and be wholly determined by the frequency
and the gravitational acceleration g. (Effects of finite depth and
of surface tension and viscosity are not considered.) On dimensional
grounds the equilibrium spectrum should then be given by

S =88 w o (4.5.19)

in which 8 is a dimensionless constant. However, it has been found
that the coefficient 8 is not actually a comstant but that it decreases

with increasing values of the dimensionless fetch F, defined by

& (4.5.20)
W
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inwhich Fis the (dimensiomnal) fetch and W is the mean wind velocity.
Strekalov et al [102] report measured B-values from approximately
1ob x 1077 at F* =10, to 0.6 x 1072 at ¥* = 4 x 10%,

In the examples to be given later we shall mainly use the Pierson—
Moskowitz spectrum, because this is dimensionally ﬁomogeneous. While this
spectrum was determined from fully developed waves, it turns out [73,91]
that for many practical purposes the spectra of developing waves in

simple wind fields can be considered similar to it. One then writes
2 -5 58,4
S(w) = B g v~ exp { 70y (4.5.21)
in which B and & vary with the stage of the wave growth (& is the

frequency at which S{w) attains its maximum), The significant wave

and the mean zero—crossing period T can be expressed in terms

height H!/3
of B8 and Dfor vica versa) by means of (4.4.24) and (4.4.5), which gives
. e W E o2 '
H g = /BT(;- Wz ed (4.5.22)
and
= _ b o} a1
T = 21 Jmy/m, = 2n(g)" B ’ (4.5.23)

If we define a wave steepness ¥ by
A oy
§ = H!/B/LG » (4.5,24)

in which ED is a wavelength defined by

-2
v _ gl
LO = 5 R (4.5.25)
then
v o2 ™ e
§ B = —= YRy (4.5.26)
TE =




- 103 -

Corresponding to the above-mentioned range of 8 from 1,4 x 10"2 to
0.6 x 10_2 we find & in the range from 0.067 to 0,044; the wave

. . . . . x
steepness is a decreasing function of the dimensionless fetch F .

4.5.3 Distribution of wave ?eriods

It has been noted in paragraph 4.4.4 that the shape of the p.d.f.
of the wave period T (the time interval between successive zero-up-
crossings) varies with the shape of the energy spectrum. Energy spectra
of wind-driven waves are to a fair degree similar. It is therefore not
unreasonable to expect the same of the corresponding p.d.f. of I. Bret-
schneider {83] finds that 2% is approximately Rayleigh-distributed.

The distribution function of T can fhen be written as

- FA(%)(T/'T')A ~0.675(T/D"
=1-e (4.5.27)

F(T) = | = e
This distribution is also given by Titov [87], who presents results
obtained by Vilenskii and Glukhovskii from the same data as were used
for Table 4.1, A comparison of average values of these data with values

obtained from (4.5.27) is given in Table 4,2. It can be seen that

100 ¥(T/T) 1 10 20 30 40 50 60 70 81 90

T/T, measured 0.44 0.66 0.76 0.85 0.93 1,00 1,07 1,15 1,23 1,37
Tf?, eq. 4.5.27.1 0.35 0.62 0.76 0.85 0.93 1,00 1,07 }.I5 1.24 1.35

95 97 98 99

1.47 1.52 1,57 1.65
1.45 1.52 1,55 1,61

Table 4.2

(4.5.27) gives a very good fit indeed to the averaged data points.
Goda [80] made numerical simulatioms of stationary Gaussian
processes with various spectra, including a Pierson-Moskowitz spec-—

trum, as well as spectra which were much narrower or broader, The
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width of F(T) was found to vary qualitatively in the same way as the
width of S(w). It is interesting to note that the calculated distri-
bution corresponds to (4.5.27) only for the process with a Pierson-

Moskowitz type spectrum,

An empirical expression for the joint p.d. of H and T for fully
developed waves has been given by Bretschneider [83]. He considered
the coefficient of linear correlation of H and 22, defined by

cov (E,1°)
AR ——— (4.5.28)

in which the numerator represents the covariance of H and 22, while

Iy and UTZ are the standard deviations of H and I?. Bretschneider found
that A varied in a systematic manner with the wave "age" (ratio of phase
speed to wind speed), therefore also with the dimensionless fetch or
duration of the wind, in the sense that A tended to high values in a
young sea and to zero in a fully developed sea, The joint p.d.f. of

H and 22 in the latter case is given by Bretschneider as the product

of the marginal p.d, functions. Thus, he implicitly assumes that £{H,T)
is such that zero correlation implies stochastic independence. For

cases of nonzero correlation Bretschneider does not give an explieit
expression for £(H,T). He states "The joint distribution of wave heights
and lengths (or wave heights and periods) in general is difficult to
describe completely for all conditioms of correlation. ... The fact that
both marginal distributions are of the same type is of some help., The
bivariate asymptotic problem of joint distribution for the Rayleigh

type (or a modified Rayleigh type) distribution has yet to be solved.”
Lacking an explicit expression for £{H,T) for arbitrary A, Bretschnei-
der assumed that the mutual regressions of H and 12 on each other would
be linear, in order to be able to proceed. However, the bivariate
Rayleigh distribution had already been defined as the joint distribu-—
tion of the values (say x and }Q of the envelope of a narrow-band

Gaussian process at two different times, It has been derived by Uhlenbeck
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[103] and again by Rice [55]. The p.d.f. is

2 2
2 (/e )" + (y/u)
£ry) = B e erp (- § B L
{uxuy) {17} 1 -«

T {—E Ky

3 for x>0,y >0
2(1=x7) uxu

¥

# 0 otherwise , (4.5.29)

in which U= E{x} and u_ = E{y}, and K‘2 is the coefficient of linear

correlation of 3_:_2 and 12? Further details related to the bivariate
Rayleigh distribution are given in Appendix }. We shall here only
remark that without supporting data it cannot be regarded as established
that the joint p.d. of H and 22 in wind-driven waves would be of the
form (4.5.29), even if both marginal distributions would be perfectly
of the Rayleigh type, because an infinite number of bivariate dis-
tributions can exist for a given pair of marginal distributions [104].
Thus, any use which we make of (4.5.29) as the joiant p.d. of H and ’_i‘_z

is of a tentative nature,
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RADIATION STRESSES

Introduction

The calculation of wave—induced longshore current velocities
and changes in mean water level requires the specification of the
radiation stresses as a function of location in the nearshore region,
in terms of the wave properties offshore. The problem of obtaining
such specifications for wind-generated waves will be dealt with in
this chapter. We shall seek only approximations of lowest order. For
the radiation stresses these are the second-order approximations,
which can be found from a first-order wave solution. The radiation
stresses can then be expressed in terms of the two-dimensional energy
spectrum of the surface elevation. Outside the surf zone this spec-
trum can be evaluated from the given deep-water waves and the topo-
graphy, using available methods of refraction computatieons. These
methods are bésed on linear potential flow theory, possibly corrected
for a relatively weak energy dissipation in the boundary.layers. They
are not applicable within the surf zone because of strong non—lineari-
ties and because of the rapid transformation of organized wave motiom
into turbulent motion, The estimation of the radiation stresses in the
offshore region and in the surf zome will therefore be considered se-
parately, in the seections 5,2 and 5.3 respectively,

The radiation stresses are defined as the momentum fluxes induced
by the waves, averaged over a certain time interval. For a definition
of this interval it is necessary to distinguish various time scales.
The incident waves themselves have a characteristic period, while their
overall properties may vary on a much longer time scale., The latter
is supposed to be so large that the corresponding rate of change has
no significant dynamic effect on the water mass in the surf zone. In
other words, it is assumed that the incident waves can be considered
to be statistically stationary, as far as the dynamics of the surf zone
are concerned, However, there is still another time scale; nonlinear
self-interactions of the incident waves give rise to motions with

characteristic perieds corresponding to the difference-frequencies
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existing in the ineident wave spectrum. These relatively slow and

weak motions are appreciable only, if at all, in the surf zone ("surf

beat"}. Cur aim is to calculate the steady part (zero-freguency com~

ponent) of these motions. The fluctuating part will be averaged out,

This is considered permissible because the surf beat is far weaker

than the incident waves (ratio of emergies per unit area is of order

10_2), so that its effect on the steady part of the surf "beat" is

negligible compared with that of the breaking waves. The time-averages

to be used throughout the following will therefore be based on an

averaging interval which is long compared with the characteristic

period of the surf beat, while it should be short compared with the

time scale of the variations of the statistical parameters of the

incident waves,

sgectrum

General formulation

The radiation stresses in a statistically stationary and homo-

geneous wave field are given, to second order, by (3.3.,19). Since we

are at first dealing with waves in a fixed point, without a mean flow,

we can temporarily omit the primes on the fluctuating quantities, and

choose E'= 0, in which case
0 — r—
S,., = p{q.q. - w26 dz + ) ggz S, .
7] ij 2P ij
-d
We shall represent the wave field as in paragraph 4,.3.2:
L(x;%,,E) = % 1% 8y cos ¥

with

Yym

. (5.2.1)

(5.2.2)

= wt - k2 X cos Bm - kg X, sin Sm = Bom® {(5,2.3)
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The notation has been changed slightly by using xi(i = 1,2) instead
of (x,y). As in paragraph 4.3.2, the limit of (5.2.2) should be con-
sidered in which the frequencies and the directioms of propagation of
the spectral components are continuously distributed, and in which the
spectral density G{w,8) is everywhere finite.

The restriction to horizontal homogeneity precludes standing
waves from the considerations. The spectral density function should

therefore satisfy the relation
G{w,8) G(w, 6 + 7} =0 (5.2.4)

for all (w,8). A sufficient condition for (5.2.4), though not a neces-—
gsary one, is that the directional spectral density is zere in a con-
tinuous interval of w radians. The empirical spectra {4,5.2), (4.5.4)
and (4,5.10) satisfy this condition,

The mean products of the velocity components appearing in (5.2,1)
can be expressed in terms of the two~dimensional spectrum of f by
applying the results from the linear theory of long-crested sinusoidal
progressive waves (eqs, 3.2.16-17) to individual spectral components.

This gives

o
cosh k{d + z),2
9493 = f f fo " ka0 &8y Glw,e)de db (5.2.5)
0 =-w
in which
(e], e2) = {cos 8, sin &) , (5.2.6)
and
= ki3

sinh k{d + z),2 0
sinh kd P Glu,0)du d

z
]
o
Ty
~—

sinh k(d + Z)}Z S (w)du (5,2.7)

sinh kd

]
L
o
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It can be seen from (5.2.7) that the mean square vertical velocity
depends on G(ws,0) only through the frequency spectrum S(w}; it is
independent of the directional energy spectrum. The same holds for

the mean square modulus of the horizontal velocity vector:

Q" =q.q. = | |{w L) 1 (cosze + sinza) G(LU,B) dw db

"
fa]
fea]

"

2 J J{ cosh k(d + 2),2

cosh k(d + z) }2

sinh kd S(w)dw . (5.2.8)

1
Tor——y
——

0
Substitution of (5.2.5) and (5.2.7) into {5.2.}) gives

0 « g

2
;5 = o J f J o2 [ cosh k(% + z) s -
40 - sinh kd

sinhzk(d + z)

- ————— Gi.} G(w,8)dz dw 48 +
sinh"kd J

. 7

+ 3 pgl ‘Sij . (5.2,9)

Performing the integration with respect to z, and substituting

I =

% - J J G(w,0)dw do = {S(w)dm-ﬁ% , (5.2.10)
~T
gives
=
Sij = pg J J {n eje; + {n - é)ﬁij} G(w,8)dw d8 ,  (5.2.11)
0 =-=

where n is given by (3.2.23)., Eq. (5.2.11) could have been written
down at once, in view of (3.3.20) and the definition of G(w,8). It
was preferred to give a more detailed derivation because seme of the
intermediate results will be needed in what follows. Egq. 5.2.11 will

be written in abbreviated form as




5.2.2

- 110 -
= T oo ol |
Sij E {n ege; + (n Z)Sij} . {(5,2.12)

in which the double overbar denotes an average over frequency and

direction of propagation, weighted with the spectral density:
I

flw,0)6(w,0)dw 46

£(0,8) dgf 0 =

(5.2.13)

o

J J G(w,8)dw do
0 -7

For later veference, the components of Sij are written explicity:

Sil = E(n c0528 +m =4y, (5.2.14}

Sy = E(n sinze +n- 8, (5.2.15)
and

S5 = 8y = E(n sin 8 cos 8) . (5.2,16)

Effects of short—crestedness on the radiation stresgses

Prior to the development of suitable statistical theories for the
description of wind-generated waves it was customary to deal with these
waves on the basis of a periodic, unidirectional wave train which was,
or was assumed to be, equivalent to the irregular ones with respect
to a few mean properties, such as the mean energy, pericd and direction
of propagation, Needless to say, the elementary substitute-waves dif-
fer from the more complicated ones in other respects., The errors in-
curred by the use of a so—called equivalent wave may be acceptable
for certain purposes. However, usually no explicit justification is
given for applying this approximation. The fact that this method in
one form or another has persisted up tc the present time is reason
to inquire into the errors which may arise from its use for the cal-

culation of Sij' Particular attention will thereby be given to the
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effects of short—crestedness, for the following reason [105]. The ra-
diation stresses are proportional to the mean wave energy per unit area,
E. In unidirectional waves, the coefficients of proportionality depend
on 1 only, which in deep water and in shallow water is the same for
periodic waves as it 1s for waves with a continuous frequency spectrum.
Lumping the energy in one frequency therefore does not affect the radia—
tion stresses in these cases, The situation is quite different with -
respect to the directional spectrum, which we will therefore consider

in more detail,

We shall initially deal with the principal values of the radiation
stress tensor Sij' The X and Xymaxes can without loss of generality
be chesen to be the principal axes of Sij’ in which case Siy and 822,
given by (5.2.14) and (5.2.15), are the principal stresses. If the
directional spectrum is symmetric about a mean direction which is
common to all the frequencies then this direction defines one of the
principal axes of Sij’ say the xl—axis. S11 will then be the largest
principal stress, for typical forms of the energy spectrum.

The effect of the short-crestedness of the waves on the magnitudes
of the radiation stresses will be examined by comparing the values of
Sl} and 522 in the given, short-crested wave system, with energy spec-
trum G(w,8) = S(w)D(83w), to the values in a unidirectional wave
system with the same frequency spectrum $(w) and with a direction of
propagation perpendicular to the plane across which the largest prin=-
cipal radiation stress acts in the short-crested waves. The energy

spectrum of this second system, written as ECw,B), is therefore given

by
c*(w,8) = S(w)s(e) . (5.2,17)

Since the two wave systems considered differ only in the directional
distribution of the energy, they have the same value of the mean
square modulus of the horizontal particle velocity at each depth.
The mean square horizontal velocity components in the direction of

the X~ and x,-axes are (qf, qg) and (qz,O) for the short-crested and
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o

the long-crested waves, respectively, in which qz = q? + q%. Thus,

the principal radiation stresses in the substitute wave system are

given by
0 — —
3?1 J o(q% - whdz + logt’ = B(n - 1) (5.2.18)
-d
and
0 ———
82 = J o (- whdz + dogt’ = E(m - 1), (5.2.19)
-~d
as compared to
0 - - — -
S " J D(CI? - wz)dz + %pgcz = E(n cos?e + 1 - 1) (5.2,20)
-d
and
0 o - —_
Sg9 = J ng - W2)dz + épgcz = E(n sin%g + 1 - 1 (5.2.21)
~d

in the short—crested waves. The absolute value of the differences is

0 -
* * 2 . 2
= - = — = = g
A = 87 S}1 8,9 322 J P, dz = E(n sin"0) , (5.2.22)
-d
The relative error in the horizontal velocity-square term in Sl§ in
G
J q2 dz
2
—d n sin29
§ = 5 = — (5.,2,23)
7 n 00528
qI dz

which in deep water reduces to

. 2 . 2
st = sin § sin O . (5.2.24)

2 , 2
cos 9§ 1 - sin @
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The relative error in Sll itself is

. 2
I 11 - SA - n sin 8 , (5.2.25)
11 11

2 =
ncos 8 +n- 4

which in deep water reduces to 6; = §', The relative error in the

smallest principal stress is

ES

§.. -8 ., 2
5,2 A Beln® , (5.2.26)
22 22

n sin29 +n -}

which in deep water reduces to
65 = -1 . (5.2.27)

The radiation shear stress across a vertical plane inclined at

an angle o to the xt—axis is given by

= i - i
T, 5(511 522) sin 20 , (5.2.28)
which is proportional ta the difference between the largest and the
smallest principal stress., It follows that an overestimation of SEI
and an underestimation of 822 will give rise to relatively large errors
in the calculated value of T The shear stress in the substitute waves

is

w

x - S
T, = 1(8]) = §55) sin 20, (5.2.29)

which has a relative error

Tx - T 2
§ =% 8. Znsing (5.2.30)
t " = .7
n-2nsin o
In deep water this reduces to
' 2 sin26 281
8 = - = rr—— . (5.2.31)
T 2 1 -5t

1 -2sin 9
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Numerical evaluation, - It appears from the preceding equations

that the relative effects of the short~crestedness on the radiation
stresses in deep water are wholly determined by sinzﬁ. We shall cal-
culate this value for a few typical spectra of wind-driven waves.

The definition of sinzﬂ can be written as
wr-

f Jsinza D(90;w)de] S(w)dw

sin%e = 2L . (5.2.32)

@

JS(m)dw
0

The factor in the brackets is the average of sinZ8 over the direc~
tions of propagation at a fixed frequency; if the directional dis~
tribution of energy is independent of the frequency them it also
represents sinze . It will be calculated first, for the directional
spectra described by (4.5.2), (4.5.4) and 4,5.10),

For the spectra given by (4.5.4) we have

T
" . 2 -1 2 2 m
J sin 9 Dz(e;w)de {I(m)} J {I - cos Bcos 9 ds =

i 1

T 7 (5.2.33)

1

i

I(m + 2) _ -
- P

in which I(m) is defined by (4.5.6). If m is independent of w then

sin’e = (m+ 2)"0 . (5.2.34)

Putting m = 2, as in (4,5,2), we find sin28 = 0.25. If m is variable,
as in (4,5,15), then the average value of {m{w) + 2}-_E has to be de-~
termined, weighted with S{w). This average has been calculated numeri-
cally for a_gpectrum of the Pierson-Moskowitz type (eq. 4.5.21}, with
the result sinzﬁ = 0.30. Using the SWOP spectrum (4.5.10) gives
T
sin%s D, (03w)d0 = | - JA, - S A, ~ 2 A (5.2.35)
3 o T2 7T h ree
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which becomes, upon substitution of (4,5,11) and (4.5.12),
w
J sin’e Dy(9;0)d9 = 0.375 - 0,205 exp {—g(gﬂ)é} . (5.2.36)
-7
The average of this quantity over the frequencies, using the Pierson-—

Moskowitz spectrum (4.5.17) as a weighting function, equals

sin® = 0.375 - 0.205 /28, K, (VZ8,) » 0.27 (5.2.37)

in which K, is the modified Bessel function of the third kind of order

Zero,.

The three values of sin28 calculated from the above-mentioned
spectra for wind-drivenwaves are in fair agreement, Substituting the
lowest and the highest calculated values, 0,25 and 0.30, in (5.2.24)

and (5.2.31), we find &' = 6; v 0.33 to 0.43 and 6; = 1,0 to 1.5,
which means that the radiation shear stress in wind-driven deep-water

waves can be overestimated by 1007 to 1507 if the waves are assumed

to be long-crested. This is noteworthy particularly in view of the
importance of this shear stress to the generation of longshore currents
in the surfzone.

The preceding equations for the radiation stresses in deep-water
are illustrated by means of Mohr circles in fig, 5.1 for an assumed
value of sinzﬂ = 0,25 {6; = 1/3, 6; = 1},

Comparison with measurements. = The preceding calculations were hased
on theoretical relations between the fluectuating velocity field and the
surface motion, applied to idealised empirical spectra, It would be
interesting to have a direct check on the order of magnitude of the
results. To this end measurements of horizontal particle velocities

at various depths in wind-driven deep-water waves would be required,
from which the vertically-integrated horizontal convection of horizomtal
momentum could be caleulated, Such measurements are not known to the
author. The situation is slightly better if we relax the conditions on

the empirical data and are satisfied with measurements at ome or two
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tangential strass
§ tans

S* " normat stress
1t

Mahr circle for unidirectianal waves

Mohr circie for short-crested waves

Flg, 5.1 = Mohr civeles for the radiation stresses in long-
orested and short-crested waves, for an assumed
value sin’s = 0.25 (5,./5%, = 0.75).

points in a vertical, not necessarily in deep water, Nagata [106] has
presented some results obtained near the bottom in fairly shallow
water subject to incident waves from deep water. Velocity data were
collected successively at various points, with mean depths ranging
from only 2m to approximately 10m. The mean period was about 7s

while the mean wave height varied from 0.4m to 0.8m. The effects of
refraction were considerable. These generally tend to narrow the
angular distribution of energy as the waves move into shallower water
with more or less parallel depth contours. However, because of the
somewhat irregelar topography the angular width of the spectrum was
found to increase shoreward in a number of areas. These will not be
considered further, Three of the measuring locations were in an area
with nearly straight and parallel depth contours. It is useful to
consider the results in these points in more detail since they should

give a lower bound to the deep-water values of the short-crestedness
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which occurred,

Simultaneous values of horizontal particle velocities in two mutu-
ally perpendicular directions were obtained by Nagata; these will be
denoted by uj{t) and up(t). The principal values of the tensor EEEE
{i.e., :ijmax and ;?]min’ considering @ as a function of its azimuth)

can be calculated from these data according to

— — — J— — — 2
7 ) Z .2 [2 7.2 _.+.2}
= 1 1 _
u Jmax’ he Jmin z[ul M UZ] R (ul uZ) * 4 b b ’

(5.2.38)
The parameter ' defined by
]
p? - —cmin (5.2.39)
)
u
max

is a quantitative measure of the short-—crestedness. It can range
from 0 in a unidireectional wave train to | in waves which are horizon-
tally isotropic.

The wvalue of F2 is closely related to the relative error (§) in
the velocity contributions to the largest prinmcipal stress, which
would result from assuming the waves to be unidirectional. This error
has been defined in (5,2.23). The velocity components qy and 5
appearing in this equation were referred to the principal axes of

Sij’ which implies that (5.2.23) can be written as
-0 -

J uzdz

§= -4 __Smin (5.2.40)

max

The resemblance of F2 and & is evident from the egs. (5.2.39) and
(5.2,40), but so is their difference. The parameter § is defined in

. . . 2 . .
terms of a vertically integrated quantity, whereas I is defined as
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a function of the vertical coordinate z. They are equal only, for arbi-
trary values of z, if Fz is independent of z. This cannot be expected
to be the case, for the rate of attenuation of the wave motion with dis-
tance below the surface increases with increasing frequency, and
higher~frequency spectral compoments have a broader angular distribu-—
tion of emergy than lower—frequency components, The net effect is that
the directional spectrum narrows with depth below the surface. It is
therefore expected that r? will be larger than ¢ near the surface and
less than ¢ near the bottom.

The preceding arguments are based on an assumed velocity field
which is fully coherent with the surface motion, In measurements at
sea, turbulence can also contribute to the variances of the velocity.
Thismzill in general decrease the relative differences between u2J

max
2 . . .
and u J . s because the turbulence is more nearly isotropic than the

min
waves.

With the above-mentioned reservations in mind we can compare the
measured values of F2 with the calculated values of ¢, The measurements
reported by Nagata were performed in waves wich had been generated in
deep water by a local storm, but the observations were made "after
the storm had almost subsided'., On the day following the storm, values
"of ' of 0.58 and 0.4} were measured at two points with depths of
10,1 m and 5.7 m respectively, The next day a value of 0.34 was
measured at the 5.2 m contour. The deerease of the angular width of
the energy spectrum is ascribed by Nagata to the greater distance
of the storm from the measuring site. The three values of ?2, 0.34,
0,17 and 0.12, can be compared with the calculated values of 67, which
ranged from 0.33 to 0.43, It is to be remembered that the measurements
should give a lower bound on €', because the calculations were dome
for wind-driven waves in deep water, while the measurements were made
in waves which had at least partly transformed into swell, and which
moreover had refracted considerably. It would therefore appear that
the calculated value of 8' of 0.33 is not unrealistically high. A
similar conclusion can be derived from more recent measurements by

Yefimov and Khristoforov [107] in deep water in the Black Sea, The
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regults presented by them which are of use for our present purpose
are given in the first six columns of Table 5.1. Values of u2 max
and uszin were caleulated from these data using eq. (5.2.38). The

resulets as well as their ratios are given in the last three columns

of the Table, With the same reservations as mentioned above , the

z o ZE ::75 u,u ;HE :F? :F? ?2

1 172 2 max min

- 2 - - - - -

(m (rad s1) () (em’s %) (em’s 2) (em’s %) | (enPs ) (em®s %)
~1.25 1,51 515 340 39 150 348 142 0.41
-1.25 1,92 315 290 39 200 285 205 0,72
-2,50 1,92 315 160 17 70 162 68 0.42

Table 5.1

5.3

5.3.1

measured values of ?2 can be compared with the calculated values of &',
The second of the measured values is quite high, It canmot be explained
on the basis of known directional properties of single wind-driven wave
systems, The paper by Yefimov and Khristoforov suggests that such waves
in fact prevailed during the measurements, The first and the third
value of F2 are in the upper calculated renge of §'. On the whole the
data indicate that the computed values of u2 min/hzjmax are not too
high., This in turn means that the relative errors in the radiatiom
stresses in wind-driven deep-water waves, due to the use of "equi-
valent" wunidirectional waves, would be at least as large as iIndicated

by the calculations,
Radiation stresses in the surf zone

Intreduction

The aim of this section is to establish a procedure with which

the radiation stresges can be calculated in the surf zone of wind-
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generated waves. The approximations which will have to be made for
this purpose are necessarily cruder than those employed in the pre-
ceding section, which dealt with the waves outside the surf zone.
Needless to say, the approximations should be such that those features
of the physical phenomena are incorporated in the computational model
which are deemed essential for the purpose at hand. In making such
approximations we are guided by a general, qualitative knowledge of
the problem, by a theoretical and empirical guantitative knowledge

of statistical properties of non~breaking waves, by some empirical
knowledge concerning the breaking of periodic waves, and by the know-
ledge that the breaking of an individual wave in a random wave field
is gqualitatively similar to the breaking of individual waves in a
periodic-wave train. This similarity pertains both to the mode of
breaking (plunging, spilling) and to the order of magnitude of the
height—-depth ratio, However, there is an essential difference between
the surf zones of random waves and of periodic waves as a whole. In
the latter case there is a reasonably well defined seaward limit, the
breaker line, at which there is an abrupt change in flow regime and a
discontinuity in the computational model. In random waves no point can
be defined inshore of which all the waves are breaking while offshore
from it no waves would break, Instead, at each point only a certain
percentage of the waves passing it is breaking or broken, while this
percentage in general varies gradually with the distance offshore.
Associated herewith is a gradual variation of average values of other
wave parameters, such as energy density, energy flux, momentum flux,
ete, It is considered essential to represent this gradual variation
in the computational model, This precludes the possibility of re-
placing the given, irregular wave train by an "equivalent" periodic
wave train, on quite different grounds than those mentioned in the
preceding paragraph, which dealt with the effects of short—crestedness.
The problem then centres on a suitable description of the waves in the
surf zone, one which does justice both to the random character of the
waves and to the effects of wave breaking, in particular the dissipa—

tion of wave energy and the attendant decrease in radiation stress,
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Regarding the applicability of the spectral appreach there are
two distinct problems: prediction of the spectrum as a functiom of
location in the surf zone, and calculation of the local radiation
stresses from the given {computed or measured) local energy spec—
trum. Concerning the latter of these problems, we derive a clue
from the analogous situation with periodic waves, for which Bowen et
al {6] found empirical confirmation of theoretical predictions based
on the assumption that the principal radiation stress SH could be
expressed in terms of the local wave height by the second-order
equation (3.4.2), despite the fact that the wave profile is far from
sinusoidal, On this basis it seems reasonable to assume that (5.2,.11)
is adequate for the calculation of the radiation stresses from the
local spectrum in irregular waves, even in the surf zome. If this is
accepted, at least as a first approximation, then “only" the problem
of spectrum prediction remains. Ideally, the effects of wave breaking
should be expressed as a contribution to the spectral source function
Q(i;g,t), defined in paragraph 4.3,3, However, present knowledge is
insufficient for this purpose. In numerical spectral schemes for the
prediction of wind-driven deep-water waves, it is usually assumed that
the effects of wave breaking can be accounted for by using Phillips'
equilibrium spectral demsity (eq. 4.5.19) as a ceiling, and by making
some assumption regarding the rate of approach to this ceiling. Collins
[65] applies this method even in shallow water, although Phillips’
equilibrium spectrum was not derived for such conditions. A caleulation
of an equilibrium spectral density in water of arbitrary depth is given
by Ijima et al [108}. This will be considered in paragraph 5.3.2, where
it is concluded that the assumptions used by Ijima et al are too arbi-
trary, snd that the result is not as generally valid as is suggested.
An alternative approach to the problem of calculating emergies and
radiation stresses in the surf zone of random waves will be given in

paragraph 5.3.3.
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5.3.2 The equilibrium range of shallow-water wave spectra proposed by

Ijima, Matsuo and Koga

We shall first summarize the derivation given by Ijima et al,
and make some comments afterwards.

The authors consider the maximum height of a wave as a function of
its period, the local mean depth and the local bottom slope. They use
rhe following empirical adaptation of Miche's theoretical breaking
criterion {2.3.16}:
¢, L tanh {f(@Z) (5.3.1)

max 1 4

o
u

in which

2/3

f(a) cosh (3.5 )y o, (5.3.2)

C! is a coefficient of proportionality which is left undetermined by
the authors, and L is a wavelength calculated from T and D using the
classical dispersion relation for linear gravity waves, The factor
f(a) expresses the tendency for Hmax to increase with slope angle 4,
at least in shallow water.

Iin order to establish the equilibrium spectrum Se(m), the authors
consider an arbitrary frequency band extending from w-jiw to wtidw,
and assume that there are N discrete spectral components in this band,
These comporents are assumed to have a common wave height, HT’
proportional to Hmax' The reason for this proportionality is that
"the limiting wave height o is interpreted as the result that all
the phases of component waves whose periods are within narrow range of
period band between T-iAT and T+i{AT eentered at period T happened to

coincide and their spectral wave heights were summed up to attain the

limiting height Hmax'” The total enmergy in the band can then be written

as

_ 2 _ 2
Se(m)Am = C2 NH, =

T C3 N Hmax' (5.3.,3)
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The number of spectral components in the band "is considered to become
large when the period band AT becomes wide, but to become small when
the period T becomes large for limited lemgth of wave rtecord", Om

this basis the authors assume that N is proportional to AT/T, or to

Awfw, so that

~ -t 2
Se(m) = C4 6 Hmax (5.3.4)
or
S () = Cc w ! L% canh® {£(e)ZTR), (5.3.5)
e 5 L
in deep water this reduces to
- -1 .2 2 2 =3
Se(m) = C5 © L0 = C5 4t g7 w 7, (5.3.6)

which is identical in form to Phillips' equilibrium range {(eq. 4.5.19),

Bquating the coefficients gives
2
C.S = S/lﬂT . (503-7)
In shallow water (5.3.5) reduces to

s () = ¢, o ! {f(a) 2u0)2 (5.3.8)

or

5, () = s2¢a) D2 WL, ' (5.3.9)

In order to estimate the actual shallow-water spectrum from a given

deep-water spectrum Sg(w), 1jima et al simply equate the local spectral
density to So(m) or to Se(w), whichever is smaller, Effects of shoaling
and refraction are not considered. Examples are given for a wind-driven

wave spectrum and a (narrow) swell spectrum,

This concludes our summary of the approach and the results

given by Ijima et al. The following remarks can be made,
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The authors use a discrete spectrum in order to derive a
result concerning a continuous spectrum, This procedure is used
more often. It gives valid results if it can be showns that the partic-

ular discretization adopted has no effect on the final result regarding

the continuous spectrum. It is on this point that the arguments
presented by Ijima et al are believed to be inadequate. In fact,
they do not even mention it.

The number of components in the period band (T-1AT, T+3AT) is
assumed by the authors to be proportiomal to AT/T. The inverse
proportionality of N with T is argued with reference to the limited
length of the record, This does not seem to be a particularly
relevant parameter in the present context, since the value of a
possiblie equilibrium range is quite independent of sampling
procedures which are used.

The preceding objections were raised against the derivation
given by the authorsj we shall in the following comsider the result
itself, apart from its derivation.

An important point in the discussion of the result given by
Ijima et al is the interpretation of the "equilibrium" spectral
density, represented in eq. 5.3.5. It appears from the authors'
statements and examples that they consider Se(w) as a saturation
value which cannot be exceeded, regardless of the fact whether one
deals with wind-driven waves (as Phillips does) or with swell, or,
emphasizing an important difference between these categories,
regardless of the width of the energy spectrum. If this were
indeed correct then the maximum energy (per unit area) which can
be present in water of a given mean depth D would have an upper
limit which diminishes with the width of the spectrum. The

calculated maximum possible r,m.s, wave height would then be only

a minute fraction of the depth or the wavelength 1f the spectrum
were narrow, so that virtually no waves would break, This is not
consistent with the assumption of saturation. It is believed
that a more realistic estimate of the saturation conditions can

be obtained by relating the actually occurring wave heights to the
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maximum value possible without breaking, rather than the so-called
spectral wave heights., The actual wave heights are representative of
the total energy per unit area of the wave system. In this manner we

are led to an upper limit of the total energy in shallow water, deter-
mined by the depth D, independent of the width of the spectrum. (In
deep water such limit would be determined by the wavelengths which

are present in the spectrum.) In order words, according to this view,
it is the integral of the spectrum which has an upper bound in shallow
water, rather than the spectral density itself, This alternative

approach will be elaborated in the following paragraph.

In the preceding discussion an approach was suggested for the
determination of the saturation conditions in shallow water. By a
slight extension the same method can be used for the estimation of
the local energy in water of intermediate depth, where the saturation
conditions are not yet attained. The basic assumption is that at
each depth a limiting wave height Hb can be defined (which may also
depend om the wave period), which canmot be exceeded by the
individual waves of the random wave field, and that those wave
heights which in the absence of breaking would exceed H ~are
reduced by breaking to the value Hb.In other words, the energy
corresponding to the height in excess of the local breaker height is
assumed to be dissipated. The breaker height decreases gradually
with decreasing depth., Thus, the caleculated percentage of broken or
breaking waves passing each point gradually increases with decreasing
depth {excluding waves on very gentle slopes, on which the emergy
is dissipated without breaking). In this manner the calculated
energy varies gradually from deep water to shallow water, partly
because of the effects of shoaling, refraction and bottom friction,
partly because of the imcreasing number of breaking waves. There
is no well-defined seaward boundary of the surf zone in this approach.

The caleulations can proceed without change from deep water to shallow
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water. For this reason shallow-water relarions such as n=l, c=(gh)
ete, are not assumed a priori, although it is realized that it is
only in the shallow-water zone that the effects being calculated,
i.e, the spatial variations of the radiation stresses and the resul-
tant set—up and longshore currents, become pronounced, The shallow-
water conditions should therefore receive relatively much weight when
approximations have to be introduced which are not uniformly valid
in water of arbitrary depth,

Collins [109] has previously considered rhe probabilities
of breaking-wave characteristics in order to arrive at estimates of
the energy, energy fiux, ete, There is an essential difference
between his approach and the one just described. Collins treats
the irregular-wave situation entirely as an ensemble of periodic—
wave situations, each with a constant wave height (HO), length (LO)
and direction of propagation (q)) in deep water, Dependent variables
such as epergy, energy £lux and longshore current velocities are
expressed, or are assumed to be expressible, in terms of (HO,LO,@O)
using periodic-wave relations, The mathematical expectations of the
dependent variables can then be calculated, assuming that the joint
p.d.f, of EO’ EG and 90 is known, Our approach is based on the two-
dimensional random phase model, or another spectral model similar
to this, according to which in any one realization the incident waves
consist of a large number of independent spectral components of
different amplitudes, frequencies, directions of propagation, and
phases. A reali mtion in this model has the properties of irregularity
which are characteristic of wind waves, This is in contrast with
Collins® model, in which individual realizations represent periodic,
unidirectional waves. This model is of course not intended to be a
realistic simulation of wind waves. It is used only as a means to
and end, apparently on the implied assumption that ensemble averages
determined from it give results equivalent to those obtainable from
models in which the different waves are present more or less simulta-—

neously. But there are various nonlinearities in the equations governing

the mean motion.which invalidate this assumption. We can cite as
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examples the nonlinear imteractions between the waves and the mean
motion (e.g., the waves give rise to a set-up which in turn affects
the waves), the inclusion of the set-up in the mean depth in the
differential equation for the set-up (eq., 3.3.49), and a nonlinear
relation between the bottom shear stress and the longshore current
velocity. In consequence of each of these causes the contribution
of a wave of certain characteristics to the set-up and the longshore
current velocity is affected by the presence of waves of different
characteristics. In other words, with regard to the mean motion it is
not indifferent whether a wave is part of a periodic, long-crested
wave train or whether it is part of a random wave field. Thus,
instead of caleulating expected values (ensemble averages) of time-
-mean responses to periodic waves, it is preferred to calculate the
responses to the (time-mean) radiation stresses in the random waves,
taking the afore-mentioned interactions inte account.

The approach outlined abeve will be worked out in the following,
For clarity of presentation we shall at first restrict ourselves to a
narrow frequency spectrum and a narrow directional spectrum, so that
only the variability of the wave heights need be taken into account.
The effects of variable period and direction of propagation will be

considered afterwards.

The breaking criterion which has been adopted for uss is based
on Miche's formula for the limiting steepness of stable periedic

waves in water of constant depth, eq. (2,3.16):

_ 28D _ tanh kD
H = 0.14 1, tanh - {0.88 ) } D, (5.3.10)
which in shallow water approximates to
H = 0.88 D. {(5.3.11)

Since we are here dealing with deforming waves in water of variable

depth, Miche's formula cannot be expected to apply exactly, even if
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the waves were periodic. The data presented in fig. 2.6 illustrate
that the breaker height-to-depth ratio {y) in shallow water varies
mildly with the beach slope and the wave steepness. Thus, instead

of (5.3.10), which a priori assigns the constant value of 0.88 to v,

we prefer a form which in shallow water reduces to
Hb = v D, (5.3.12)

The coefficient v is in principle a variable, though its actual
value is expected to deviate but little from 0,8 in the case of
spilling breakers, with which alone we are concerned.

I+ was noted above that we want to use expressions which are
not restricted to shallow water. For this reason we should include the
effzct of the depth-length ratio on the wave breaking in the formula-
tion. We are guided in this by Miche's formula. A simple choice would

be

. tanh kD =X 27D
0 o= {y o) 1 D 5 L tanh < . (5.3.13)

However, this would imply that the bottom slope could affect the
wave breaking even in deep water. The following expression is therefore
preferred:

H, = 0.14 L tanh. (5igg 2y (5.3.14)

0.88 1
Actually, whether we use (5.3.13) or (5.3.14) is of little influence
on the results of the final calculations since the two expressions
can differ significantly in deep water only, where ordimarily the
waves break very infrequently, Even the use of (5.3.12) throughout the
region from deep water tc shallow water may give a good approximation,
particularly for waves of low initial steepness, for which the depth-
-length ratio is very small where they begin to break in significant
numbers, Steeper waves begin to break in water of greater relative
de?th. The use of (5.3.12) for such waves would therefore underestimate

the width of the surf zome.
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Equation (5.3.14) will be applied as a breaking criterion for
individual waves in an irregular wave train. The wavelength L
will be calculated from the depth D and the zero-crossing peried T,
using (3.2.14); it can at first be treated as a constant in view of

the restriction to a narrow spectrum,

Having adopted a breaking criterion, we now need to estimate
the fraetion of the waves whieh would aetually be breaking, and the
mean energy which would remain. Even if breaking did not occur then
the energy petr unit area would vary as the waves enter shallow water,
because of shoaling, refraction and bottom friction. These effects
can be calculated by conventional means referred to in paragraph 4.3.3.
(As long as the frequency spectrum and the directional spectrum
are assumed to be narrow we can even use the methods derived for
monochromatic, unidirectional waves described in chapter 3,) This
results in a local energy per unit area, denoted as Bes which is a
fictitious gquantity because wave breaking is not yet accounted for,
Corresponding to Ef we define fictitious wave heights H. Their mean
square value gg-is by definition related to Ef according to

———

1 2
E. = g 08 He . (5.3.15)
The fictitious wave heights are assumed to be Rayleigh-distributed;

their distributien function can be wrxitten as

for H<0
— (5.3.16)
2,2
1 - exp(- H /Hf) for H>0 .

1
o

Ff(B) g Pr {’_ﬁ_f < H} =

I}

In accordance with the assumption that the height of a breaking wave
equals the local breaker height Hb’ we shall clip the fictitious wave
height distribution at HeH, in order to obtain an approximation to

the actual wave heipght distribution:
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F(H) = Pr {H < R} = 0 e for H<D
- A A
=1 - exp(— E /Hf) for Q§B<Hb {5.3.17)
= } for Hzﬁb.

This distribution function is discontinuous at H=Hb' This is a result
of the assumption that a finite fraction of all the wave heights
would be equal to Hb.

The mean energy per unit area at a fixed point, taking account

of breaking, is calculated from

-
E =g o8 B, (5.3.18)
in which _ -
W= pE’) - f e ar(m . (5.3.19)

Substitution of (5.3,17) and integration gives

)

H = J n2 a(1 - exp(- HZ/EET)} . HE exp(- I-LE/HE)
0
5B
= —H2 exp(—~ Hzfﬁza + J exp(~H2/;ESdH2 +
¢ 4]
= (1 - exp(-HY/ED)) HY (5.3.20)
oY
i - Fg(H,) Eff . (5.3.21)

If we introduce the probability of exceedance for the fictitious

wave heights,

Qf(H) = Pr {Hf?H} = exp(-Hzlﬂﬁ) for H>0, (5.3.22)




- 131 -

then (5.3.21) can be written as

W= () - Qq ()} gff (5.3.23)
or as g_ H—-z—
= o) (3.3.24)
H

which may be stated in words as follows: clipping the upper fraction.
Qf(Hb) of the fictitious wave height distribution reduces the mean

square wave height by a relative amount equal to Qf(Hb). (It may be shown
that only the Rayleigh distribution has this property,) Stated more
briefly, the relative reduction in energy due to breaking equals the

fraction of the waves that break,

So far we have only dealt with the case of a narrow frequency
spectrum and a narrow directional spectrum. We shall now consider
how the preceding calculations should be modified in order to include
the effects of variability in period and direction. The fictitious
two—dimensional spectrum Gf(w,e) and, therefore, the fictitious energy
E; can be calculated in a straightforward manner using the transfor-
mation rules for the spectrum, referred to in par. 4.3,3. The next
step 1s to estimate the effects of the variability of wave peried and
direction on the breaker heights. The latter effect is very weak,
particularly in shallow water, where the waves are propagating nearly
perpendicular to the shore as a result of refraction. As noted
previously, the conditions in the shallow-water zone should be empha-
sized in formulating our assumptions, since it 1s there that most of
the waves begin to break. This i1s an additional reason for neglecting
the effects of the variability of wave direction on the breaking
process, The effects of the period variability could be taken into
account by calculating for each depth a range of breaker heights

corresponding to the range of periods. However, it does not seem
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worthwhile to do this inasmuch as it is (again) precisely in the
important shallow-water zome that the period vanishes from the breaking
criterion, which there reduces to a constant height—to-depth ratio.

And in order to estimate the period-effect on the breaker heights

in deeper water, it is comsidered sufficient to use only the mean
period and to neglect the effects of the period variability, since

the wave breaking in deeper water is of minor importance anyhow.

The preceding approximations refer to the calculated breaker
heights only. They should not be interpreted to imply that in the
proposed approach the variability of wave period and direction would
have no effect on the wave breaking at all, For the complete two-—
~dimensional spectrum is used im the calculations of the fictitious
wave heights, and so the differences in shoaling and refractiom of

different component—waves are taken into account.

The following remarks can be made regarding the computational
model outlined above. __

1} It can happen that in very shallow water HE/H§<<I. In that case
eq. (5.3.20) reduces to

n = Hb . (5.3.25)

It may be seen that H® in this limiting case equals the value
which it would have for periodic waves with height Hb' This is
to be expected because the approximation involved in effect consists
of considering almost all the wave heig%ps to be equal to Hb’
while neglecting the contributions to H from wave heights less
than Hb' It follows that (5.3.25) represents the saturation
condition already referred to in qualitative terms at the end of
the previous paragraph. It should be noted that this conditiom
does not necessarily occur whenever the waves travel into very
shallow water, for on very gentle slopes the dissipation im the
bottom boundary layer may become of such importance that the
inequality Hé/H§<<l does not hold anywhere., These cases are

rather exceptional, however,
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The condition HE/H§<<I usually implies D/L<<l, in which case
(5,3.12) is a valid approximation of (5.3.14). With this sub-
stitution {5.3.25) becomes

w = 2%, (5.3.26)

so that the energy in irregular waves according to this model
appreaches that which is usuvally assumed for regular waves, as the
relative depth decreases., It follows that under these circumstances
the caleulated local set-up gradient is equal to the value given

in section 3.4 for regular waves,

The wave height distribution is assumed to be discontinuous at H
=Hb' The actual distribution is naturally smoother, because of
various causes which have not been taken into account, such as the
effects of preceding larger or smaller waves, the variability of the
wave period, and the changes in depth (averaged over a time interval
of the order of a few wave periods) due to surf beat. Some waves
with a height larger than the calculated Hb will therefore pass a
point unbroken, while others with a smaller height do break. However,
this does not necessarily mean that the mean square wave height
calculated £rom (5.3.17) would be seriously in error. And it is

only this result which is used in subsequent calculations of the
radiation stresses and their effects.

The calculation of the fictitious wave heights may include
dissipation of wave enmergy due to the generation of turbulence in
the bottom boundary layer, which is a nonlinear damping process.

If wave breaking decreases the wave heights then the rate of

damping due to bottom friction is less than it would be in the
absence of breaking., In such cases the calculation of the resultant
wave energy at each point cannot be carried out by going only

once through the two-step process in which E; is caleculated first
(with shoaling, refraction and bottom friction), and in which
preaking is taken into account afterwards by putting E=(1-Qb)Ef.

1t becomes necessary to go through this loop repeatedly, and so to

find E by iteratiom,
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5) In the computational meodel given above, the wave heights are
related to the local breaker height in such a manner that they
not only decrease with decreasing breaker height, which occurs in
shoaling water, but they also increase with increasing breaker
height, which occurs after passage of an offshore bér. In other
words, the process of "dissipation" of energy in breaking, which
consists mainly of the transformation of organized wave motion
into disorganized turbulent motion, would be reversible in the
computational model. This violation of the second law of thermo-
dynamies must be excluded, which can be achieved by giving the
calculated losses due to breaking a lower limit equal to zero.
This limit is not quite realistie, since the random nature of the
waves gives rise to occasional bresking, even if the depth is
constant or increasing in the propagation direction.The corresponding
energy losses have in effect been neglected in comparison with

those occurring in shoaling water,

We have so far in this paragraph considered the wave energy
only, while our actual aim was to calculate radiation stresses,
As stated in the introduction to this section (par. 5.3.1), the
radiation stresses can be calculated to second order, as weighted
integrals of the two-~dimensional spectral demsity G(w,0). Now the
procedure described above leads to a fictitious speetral density
Gf(m,e) ~from which fictitious radiation stresses Sijf can be
determined according to eq. 5.2.11, to its integral Ef and to
the reduection of this integral due to breaking, but it does not
lead directly to the reduced spectrum G(w,8). Breaking does not
necessarily affect the spectral components equally, so that it may
not be correct to reduce the spectral demsity in the same proportion
(E/Ef) for all (w,8). In particular the shape of the frequency
spectrum may be altered by the breaking process, But the only
frequency-dependent weight factor in the calculation of Sij from
G(w,8) is n, which in shallow water is in effect independent

of w, and approximately equal to one, It seems reasonable therefore




- 135 -

to assume that the radiation stresses are reduced by breaking in

the same proportiomn as the total energy:
E 2,2
Sij = ET'Sij = {1 exp( Hb/Hf)}Sij . (5.3.27)
f £ f
Meedless to say, the validity of this approximation increases

with decreasing width of the fregueney spectrum and of the

directional spectrum.
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SET-UP AND LONGSHORE CURRENTS

Introduction

In the preceding chapter an outline has been given of a method to
calculate radiation stresses in random waves. This method will now be

applied in the computation of the set-up and the longshore current veloc—
ity profile in a few typical cases. To this end, supplementary equa-
tions will be given in section 6.2, Results of numerical computations

are presented and discussed in section 6.3, while a comparison with
experimental data on wave height decay and set-up in the surf zone

is given in section 6.4,

The same situation is considered as in paragraph 3.3.6, fig. 3.1,
viz, an infinitely long beach with straight and parallel depth con-
tours, and incident waves which are statistically stationary, and
homogeneous in the xzudirection. This implies that time—averaged flow
parameters vary with ¥, at most. The waterdepth is assumed to

decrease monotonically in the shoreward directiom,

ﬁhoalinﬁwand_rgﬁ;gp;ipp

The transformation of the incident waves propagating towards
the shore will be calculated with neglect of local generation, and of
dissipation other than through wave breaking, in which case the
fictitious spectral density obeys the differential equation (4.3.1%),

In the situation of no xz—dependence, this becomes simply

3
3;: {c cg Gf(m,ﬂ)} =0 , (6,2.1)

provided the auxiliary relations

3B (6.2.2)
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and

3 ,sin 8, _ 3 , _
3;; 3amws } =0 or ax] (k sin 8) = 0 (6.2.3)

hold, The boundary condition to be used in comjunction with (6.2.1)

is a spectral density function at some point offshore. In subsequent
calculations we use a deep-water spectrum for this purpose, written

as Go(m,ﬁo}. Corresponding to this spectrum we have a r.m.s, wave

height
H. = (8 mo)i (6.2.4)

and a characteristic (angular) frequency

£
= i:-'
o (mzfmo) Zﬁ/TO s (6.2.5)
in which TO is the mean zero—crossing period in deep water, and m,
and m, are the zeroth— and second~order moment of the deep water
frequency spectrum defined by
il
So(m) = GD(w,BO) dBO . (6.2.6)
=T

The local fictitious spectral density can be expressed in terms of

Go(m,eo) by means of (6.2.1) through (6.2.3), which gives

CO gg
Gf(w,a) = TE;GO(m’e ) . (6,2.7)

The fictitious mean square wave height can then be found from

12 T
3 8 = G (w,0) du d0 . (6.2.8)

0 =~x
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Substitution of {6,2.7) into (6.2.8) and changing the angular vari-

able of integration from 0 to 90 gives

e
175 CO ch .ae
B Hf = e HEY I GO(m’BO) dw deo s (6.2.9)
g 0
0 =m
or, using (6.2.3),
é ¥ c cos 8
1 -7 0 0
3 Hf = E;"'ESE“E— GO(M,BO) duw deD . (6.2.10)
0 -

The factor in the brackets is the square of the product of the
shoaling coefficient and the refraction coefficient,.referred to in
paragraph 3.2.3. .

- It can be seen that the determination of Hg in general requires
a double integration over the spectrum. However, the calculations
are reduced considerably if the spectrum is narrow, with mean frequen—
ey » and mean direction of propagation 50, say. Eq. (6.2.10) then

approximates to

— ¢ ©
I .2 g
g0 v T Cos B J JGO(‘”’B)d“‘deo :
& R
en e (6.2.11)
90= 80
which is equivalent to
. c cos 80
H2 a 0 H2
£ e cos § o , (6.,2,12)
in which the designation srrrrrr indicates the value of the term

verenss fOr w =-w and SD = EO' Eq. {6.2,12) is here given as a special
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case of the more general eq. (6.2.8); it could as well have been
written down at once, from the known results for monochromatic waves
(eq. 3.2.40).

The radiation stresses Sij are calculated from Gf(m,a) according

to

Sij = {1 ~ Qb) Sijf . {(6.2.13)

in which

C Y ¢
= { =1 R .
Sijf og J J 1neiej + (n-1) éij} Gf(m,e) dw dbd
0 -z
(6.2.14})

and Qb equals Qf(Hb)’ the fraction of breaking waves, calculated from
He and H_ using (5.3.22), In principle, the radiation shear sStress
S;zf need not be calculated at each step. (i.e., each value of xi),

because it is independent of x., It was nevertheless determined at

each step from the 1oca1_value; of Gf, in order to obtaimn a check on
the numerical integration procedures, It varied by less than by
0.5% in all of the calculations.

If the spectrum is narrow then the radiation stfesses can be

expressed directly in terms of Hz:

—

e3¢ Hz . (6.2.15)

e L L e e -

1
Sij = {neiej + (n~§)6ij}. 3

6.2.2 Set-up

The differential equation for.the set-up reads

48 T
1L ogeasd) EE—= 0 (6.2.16)
dx dx ’ see

1 1
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This equation is integrated mumerically with the boundary condition

£ = 0 in deep water, The radiation stress S, , depends on the mean depth

D=d+ , and therefore on E. Eq. (6.2.16)];u5t therefore in general
be integrated iteratively, in which 81} has to be re-calculated in each
iteration, This requires two double integrations over the spectrum

in each iterationm: one for %If and ogg for Eg {(to be used for the
calculation of Qf(Hb)). However, if = £ 0 for ail X, which is the
cagse if the depth decreases monotunically towards the shore, then

{6.2,16) can be rewritten as

as ac
=L+ ogD==0 . (6.2.17)

[his equation can be integrated with D as the independent variable,
without having to iterate with respect to S]1 at each step. The result
is £ as a function of D, from which 7 can be found as a function of
d (=D = ) simply by subtraction.

A partial check on the results is provided by the known behav-
iour of E in shallow water. If D » 0 we have cos 8 - 1 and n ~ 1 for
all of the spectral components, so that SH 4—%&. Furthermor;, )

i
Hrms - Hb + v D (eqs. 5.3.25 and 5.3.26), so that E *‘g pg v D . It

follows that

- 3.2
dg rli
— - 57 for D+ 0O (6.2,18)

(compare with eq. 3.4.4).




- 141 -

Two equations for the longshore current velocity which are not

affected by the randommess of the waves are

ds;, _

=, + T, =0 (6.2.19)
and

- m———

T, = Cgp 4,lal . (6.2.20)

In (6.2.20), the value of E near the bottom should be used. The aver—

age longshore bottom shear stress T. will be expressed in terms of the

local velocity field by the same apgroximation as is generally used
for pericdic waves, referred to in chapter 3. That is to say, the mean
current velocity is supposed to be small compared with the wave-
~induced fluctuations, and to be directed approximately perpendicular

to them, Eq. (6.2.20) then becomes

———pea

5
L, ¥ C oV g . (6.2.21)

» '_)| L] 3 - [
For the caleulation of |q | we conmsider first a random wave traim with

Q = 2v/T .. For these waves

a narrow spectrum, with mean frequency u

0
we have, to first order,
-+ ' £ H
lq) = -;;:—’1-}-1——{5- x g | = - (6.2.22)
i sifth kD w

(see eq. 3.2.16), in which ¥ is a wavenumber calculated from
92 = g@ tanh ¥D. Eq. (6.2.22) will in what follows be used for

an arbitrary spectrum, even if this is not narrow. This implies a




- 142 -

neglect of the effects of the period variability. This is considered
3 - " 3 >
permissible because the effects of the wave period on !q'! vanish in

the important shallow-water region:

—— = - - R
ERR TSR [ P
w =0 w = Q

The mean wave height ¥ appearing in (6.2.22) and (6.2.23) can be
expressed in terms of the local breaker height H and the local fic-
titious wave heights by means of the clipped Rayleigh distribution

given by (5.3.17):

h

H = E{H} = J H il - exp (- Hzlﬁg)} + Hb exp{— Hi/ﬂg)
0
v
=5 Hf erf(Hb/Hf Yo, (6.2.24)
rms ms
in which
-5 4
Hf = (Hf) (6.2.25)
rms

and erf is the error functiom defined by

2
j e du . (6.2.26)

It follows from the behaviour of erf(x) for small or large values ofx

that

H- Hb for Hb/Hfrms +~ 0 , (6.2,27)
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which occurs in very shallow water, where the clipped Rayleigh proba-

bility density becomes narrowly concentrated near H = Hb’ and

==
¥
By

Hfrms for Hb/HfrmS - s (6.2.28)
which is the deep-water result for the {unclipped) Rayleigh p.d.f.

For general values of Hb/Hf , a rational approximation to the error
function can be employed in'Aimerical computations [90].

It can be seen from the preceding equations that, strictly
speaking, H should be calculated at each point where V is to be deter-
mined, in additiom to Hrms’ which is needed for the radiation stresses,
However, only relatively small errors are made if Hrms is used in
{(6.2.22) instead of H, because the ratio between them varies theoret-
ically (i.e., based on the clipped Rayleigh distribution) from
ﬁ/Hrms = §E~% 0,89 in deep water, to ﬁ/Hrms = 1 in shallow water.

Substitution of (6.2.21) and (6.2.22) into (6.2.19) and solving

for V gives

T . 45,
— sinh kD . (6.2.29)

£ H dx]

20 C

Using the preceding equations, V can be calculated as a function of
Xy the distance offshore. However, it is considered more meaningful
to determine a dimensioniess velocity as a function of the dimension-

less mean depth D/HO. We have

ds as an ds
12 % _ %2
%, @b "dx. ~db ™ (6.2.30)

1 I
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The mean—depth gradient (mD) is not known a priori from the bottom
profile since it also depends on the set—up., It can however be expressed
in terms of the bottom slope m, (= -d&/dxl) by means of (6.2.16),

which gives

dD d _ 1 dS” 1 dSH
mD"" -'&'};']'= "a‘}'{'l"(d“'ﬁ) =md +5-é-ﬁ-a-£;—= md ‘B-gﬁ“a‘:ﬁ”m]), (6.2-31)
so that 1 ds]; iy
m = md(l + E—g—D-"'a-ﬁ-" . (6,2.32)

Eq. (6.2.29) then becomes

m, T ds I 48 _
v=-d 0 ginhip 2 (4 T (6.2.33)
2p Cf H dD pgh 4D

A normalized current velocity Vx will now be defined as

C
VL 8y . (6.2.34)

4 0

=3

=

Substitution of (6.2.33) vyields

2
1T ds 1 as

Ve e i B 2 0+ — 57T (62035
2mp HDH dD pgh 4D

which can also be written as

X
D ds ds

v = 0 ginh B0 =2 (e + —D7! (6.2.36)
HO H dD dD

This is the equation which will be used in numerical calculations. A
partial check on the results is provided by the known behaviour of
Vv (or Vx) in shallow water. The following approximations hold for

D + 0, in addition to those mentiomed in the previous paragraph:
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1
sinh ¥ + D - © (%)2 , (6.2.37)

and, if the incident wave spectrum is narrow,

.= - o= .= ¥Ygh
S$,, > ok sin 8 cos & ~ E sin 6 Y E sin 8, :;L- (6.2.38)
c
0
in which %0 = g/0. Substitution of these approximations and of those

presented in paragraph 6.2.2 gives

5T m - -
Vo v s 3y Dsin 5, 2 for 2= >0, (6.2.39)
f CO 0

which agrees with eq. 3.4,16 (if the difference between m, and n, is

taken into account), and

oo+ 2 eindy 2 for 2> 0 . (6.2.40)
B g o Ty i

Thus, a plot of V* ve. D/H0 should approach a straight line through
the origin for small values of D/HO, with a gradient which is indepen-—
dent of the incident wave steepness, and proportional to sin 60. If
the directional spectrum of the incident waves is mot narrow them V

is expected to be less than the value indicated by (6.2.39), as

has been pointed out in chapter 5.

Numerical evaluation

In this paragraph the boundary conditions will be stated which
have been chosen for some sample calculations based on the equa-

tions presented in section 6.2 and in chapter 5.
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The two—~dimensional spectral density function in deep water is

factorized as follows:
Go(m,so) = §,(wn (050 (6.3.1)

If it is narrow then only the total energy (E), the mean frequency
(5) and the mean direction of propagation (50) need be given, or, in
terms of dimensionless quantities, only the wave steepness (HO/EO)
and 80. Two series of calculations were made with a narrow spectrum.
In series I the wave steepness was kept constant (HO/’ﬁO = 0.02) and

8 was varieds 6. = 0°, 15°, 30°, 45°, 60°, 75° and 85°. In series II,

0 0
— 0 -
6 . was kept constant at 157, and the wave steepness was varied:

Hg/to = (0,005, 0.01, 0.02, 0.03 and 0.04. A third calculation (III)
was performed with HD/zO = 0.04 and 50 = 150, but with a wide spec-—
trum, more representative of wind-driven waves. So(w) was chosen
similar to a Pierson-Moskowitz spectrum. Expressed in terms of H0
and 0, which have been defined in (6.2.4) and (6.2.5), it can be

written as

4
So(m) = %? HO2 QA W exp{- £§é£i~} . (6.3.2)

2
The directional spectrum was chosen to be of the cos -type:

i

8) for le - 6 5 (6.3.3)

Dy(8g) ol 2

otherwise.
50 is the mean angle of incidence of the wave system in deep water
with respect to the xl—direction. For 50 # 0 the directional spectrum

(6.3.3) includes non-zero components for which !60| > %3 and which

therefore propagate offshore. These were excluded in the calculatioms.




6.3.2

- 147 -

Presentation and discussion of results

The equations summarized in section 6.2, supplemented with the
above~mentioned boundary conditions, have been programmed in Fortran IV
for computation on an IBM 360-~65. The results are shown in the figures
6.1 through 6.4, in which E/HO has been plotted vs. d/HO, and V©
Vs, D/HD. A value v = 0,8 has been used,

The set—up curves display the characteristic slowly-varying neg-
ative values in deep water and a fairly steep rise in shallow water,
with a gradual transition. In very shallow water the set-up gradient
appreaches a constant value; it can be verified that the value of this
constant agrees with {6.2.18), The points of maximum set-up
correspond to D = 0, or, in other words, to d + z = 0. The locus of
these points is therefore given by a straight line through the
origin in the (E,d) plane (the dashed line in the figures 6.1 and
6.3), corresponding to the beach elevation., 1t appears from fig. 6.1
that the value of Emax/HG decreases with increasing gO' This can
be expected in view of the increasing effect of refractiom, which
tends to reduce the wave heights occurring at a certain depth (for
a given deep-water wave steepmness), thereby narrowing the surf zome.
Fig. 6.3 shows that Emax/HO decreases with increasing wave steepness,
although not nearly as fast as in inverse proportion. Thus, in-
creasing the wave height at constant wave leagth results in an almost
proportionate increase in maximum set—up, Conversely, an increase
in wave length at constant wave height gives rise to a moderate

increase of g only,
max

The longshore current profiles in the figures 6.2 and 6.4 show
a smooth variation from a zero value in deep water to a maximum in
an intermediate depth, from where it falls off gradually to zereo
in the point of maximum set-up (D = 0}, It should be noted that
the prefiles for series LI, shown in fig, 6,4, have a common tangent
at the point D = 0, which agrees with (6.2.40). Those in fig. 6.2

have a gradient at D = 0 proporticnal to sin 60' Furthermore, fig., 6.2




- 148 =

H/T, = o2

X: i)

cates.I {narrow  spectrum)

— d/H,
Fig., 6.1, Calculated sei-up curves for various mean angles of incidence,

G5

/L, = a0z
X= a8

cales.I {marrow  spectrum)

— D/H,

Fig. 6.3. Calewlated longshore curvent velocity profiles for. varicus

mean angles of incidence.
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Fig. 6.3, Calculated set-up curves for various wave steepnesses.
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Fig. 6.4. Caleulated longshore current velocity profiles for
various wave steepnesses.
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shows clearly how the angle of incidence affects not only the value

of the meximum longshore current velocity in a profile {which is
greatest for 50%600), but the whole profile as well, which narrows
with increasing obliqueness of the waves, This is due to refraction,
which causes the waves te break nearer to the shore, Although the
location of the maximum of the calculated profiles varies considerably,

depending on the values of the parameters & and HO/EO’ it was found from

0
inspection of the original calculated data that in all cases this
maximum occurs very near to the point where de/dxl reaches its
maximum, This can be expected in view of the fact that at the latter
point the driving forceldSEzldeEobtains its maximum value (because
. S . .
512"(E_Qb)552f and dSlzf/dxl—O), while V° is proportional to this
driving force, apart from the relatively slowly varying factor
merg—
la"
#ithin rather narrow limits, from 0.55 to O. 58 approximately, An

. The value of Qb at the point of max1mum V was found to vary

illustration of the preceding observations is given in fig. 6.5,

15+

8, = 3¢

x: 0.8

cale I narrow spestrum, s—(of-l;:aﬂl

i DIH,

Figure 6.5.
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in which Qb and Vx are plotted vs. D/HO for one of the calculations of
series 1. The values of Hfrms/HO and Hrms/HO are also shown,

It is of interest to compare the velocity profile in calculation
III (broad spectrum) with the result in series II (narrow spectrum) at
the same values of 50 (150) and HO/%O (0.04). Both profiles are given
in fig._é:ﬁf The longshore current velocities were calculated as
;zf{pcf!a1}}. It has been pointed out in paragraph 5.2.2 that the total
longshore thrust exerted on the surf zone is reduced by a factor | if
the waves are short-crested, with a directional spectrum proportional
to cosz(eoﬂgo), instead of being long-crested., This is equivalent
to saying that the laterally integrated longshore bottom shear stress
(I¥2 dx}) is reduced by a factor i, but it does not imply that the
local shear stresses TZ(XI) are reduced in the same proportion,
because the lateral distribution of these stresses may be different
in the two cases of a broad spectrum and a narrow spectrum, THe same
applies to TE:T; and, therefore, also to the velocity V itself. Thus,
although it may be expected that in caleulation III the veleccities
are less than those in series II by a factor which is of the order of

one half (for the same 5, and HO/EO), there 1is no a priori reason to

0
expect the profiles in the two cases ro be exactly similar. In order

to check whether such similarity did nevertheless exist, VII and ZVIII
(in an obvious notation) were plotted vs, D/H0 in a single graph.

The result is not shown here because the differences between the two
curves would not even be visible in a graph of the size which is used
here, it would appear, then, that for the purpose of longshore current
calculations based on the method presented in this thesis, and in cases
such as considered above, the wave energy can be lumped into a very
narrow frequency-and-direction interval, thereby obviating the need

to carry out a mumber of numerical integrations over the two-
dimensional spectrum at each step, provided the velocities so

obtained are afterwards reduced by a factor equal to the ratio of the
deep-water radiation shear stresses corresponding to the actual
spectrum and the lumped, narrow spectrum. In terms of the notation used
in paragraph 5.2.2, this ratio can be written as 822/813, or as

2 sin 80.
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Comparison with empirical data

The computational model put forward in chapter 5 and section 6.2
needs empirical verification. This requires measurements in the field
and/or in the laboratory. Dorrestein [36] has made measurements of set-
~up on a natural beach; his results will be dealt with in paragraph
6.4.2. For the purpose of the present study, measurements have been
made of the set—up due to random waves in a laboratory flume., The aim
of these experiments was restricted to the verification of those as-—
pects of the theory which relate to the two-dimensional situation of
a unidirectional wave train of perpendicular incidence, in particular
the prediction of the wave height decay in the shoreward direction and

che associated set=-up,

Field data

Dorrestein [36] has made field measurements of the set-up induced
by wind-generated waves; he compared the results to the set~up
calculated from an eguation equivalent to (3.3.46)}, and arrived at the
conclusion "... it can be stated that the theory presented to relate
the wave set-up on a beach to the wave properties in relatively deep
water is in fair agreement with the observations but that the accura-
cy of both the theory and the observations can be improved.'" Actually,
this conclusion is not quite warranted, since the theory presented by
Dorrestein deals with the relation between set-up and local wave
properties, which in the calculations of the set-up were known from
direct measurements, The relation between the wave properties in
the surf zome and the wave properties in relatively deep water
are not considered in [36]. This is precisely the relation considered
in this thesis, particularly in chapter 5, the results of which
were used in the computations presented in the preceding paragraph.
For this reasomn it is of interest to compare these computations

with Dorrestein's measurements. Five such measurements
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are presented in [36], with different combinations of water level (tide)
and incident waves, In three cases, a considerable fraction of the
waves was breaking on an offghore bar, so that the calculated
relationships between set-up on the beach and the deep-water wave prop-
erties, presented in section 6.3, are not applicable, The data
pertaining to the other two cases are presented in Table 6.112 The
first column gives the characteristics of the incident waves. The
period T equals ZW/G, in which o is the frequency at which S5(w)
reaches its maximum, The second and third column give the depths at
the locatjons of the measurements, and the values of E. Due to inaccu-
racies in leveling and reading the various gsuges, the measured values
of 7 have a probable unsystematic error of about 0.5 cm to 0.8 com,
and a possible constant error of about 0.5 em. In addition, there is
a sampling error of at least | em to 2 em, due to the rather short
averaging interval which was used (72 s), so that the given values may
be in error by at least * 2 cm, as indicated in the table.

Tn the calculations of ¢, no refraction effects were taken into
account because the waves were of almost perpendicular incidence,
The mean zero-crossing period in deep water was taken to be equal
to T at the most seaward measurement location; this is comsidered
permissible because the set—up is not very semsitive to variations
in TO' The values of y which have been used are indicated in the
table. The results are given in the fourth column. (Those for
v=0.75 can be obtained approximately from the curves in fig. 6.3.)
The difference Emeas - Ecalc is listed in the last column of
Table 6.1. Its average value is - 0.5 cm for the first case, and
- 0.7 cm for the second case. The maximum deviation from this aver-
age is about 1,6 cm., These values are of the same order as the possible

constant and unsystematic errors in [ , which are mentioned above.

meas
It is concluded that these field measurements lend support to the
computational model used for the calculation of E from the incident

wave properties,

*) The author is indebted to Dr. Dorrestein for providing the original

data.
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ine. waves d (cm) L neas {cm) Zeale {cm) Cmeas Feale
{(+ 2 cm) {cm)
/ig=21 cm, 254 0.5 0.0 + 0.5
T=6.6 s 35.0 6.5 6.9 - 0.4
at d=4,55 m, 22,7 7.0 9.1 - 2.1
Hg/Lg=0.009 12.5 8.8 10,7 - 1.9
Assumed: 3.7 11.7 12.3 - 0,6
v=0,75 - 2,9 13,8 13.4 + 0.4
- 7.3 14.7 14,2 * 0.5
/ng=15 cm, 27.6 0.7 2.5 - 1.8
T=2.8 s 22,5 2,1 - 2.9 - 0.8
at d=6,00 m, 16.2 3,7 3.6 + 0.1
HOJLO=O.035. 7.0 4,4 4.6 - 0.2
Assumed:
y=0. 65
Table 6,1

Laboratory measurements

Measurements of wave set-up were carried out in a random-wave
flume of the Delft Hydraulics Laboratory. The flume which was used
is 100 m long and 2 m wide; the water in the constant-depth por-
tion of the flume was about 0,55 m deep. A hydraulically driven wave
board capable of generating irregular waves is located at one end
of the flume. At the other end a 1:20 plywood slope was installed. For
measurements of the change in mean water level, particularly the set—-
-up in the surfzone, 7 pressure taps (inner diameter 4 mm) were pro-
vided, flush with the slope. The taps were connected by plastic
tubes (inner diameter 16 mm) to 15 cm inner diameter stilling wells,
where a vibrating-point gauge sensed the water surface elevation

to an accuracy of approximately 0.1 mm,
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Four resistance type, temperature-corrected surface elevation sen—
sors were installed. The gauges in a mean depth less than 20 cm were
inserted through the plywood slope in order to maintain the minimum
submergence necessary for a linear gaupe response. As a conseguence
of this arrangement, these gauges could not easily be moved. The
signal from each gauge was fed into analog equipment for the on—line
determination of wave height histograms (based on 1000 wave heights
between zero crossings) and energy spectra. The signals could also be
recorded,

A r.m.s5, incident wave height HO of 7 cm to 8 cm was used in al}
runs, It was kept more or less constant so that the pressure taps
and the shallow-water wave gauges would be in the zone of breaking
waves without being moved between runs. The mean period T0 was approx-—
imately 1.2 s or 2.0 s. Each combination of HO and T0 was used in con—
junction with three different spectral widths, It appeared from the
measurements that the applied variation of the width of the energy
spectrum hardly affected the wave energy decay and the set-up. Its
influence will not be further discusgsed.

A comparison of measured and calculated r.m.s. wave heights is
given in table 6.2, The calculations are bhased on a value y=0.8 for
TOFI.Z s and v=0.9 for TO

-depth portion of the flume (d=55 cm) was taken as a boundary cendi-

=2.0 s, The value of H in the constant-
rms

tion. This is indicated by arrows in the table.

It appears that the calculated value of Hrms at d=36 cm 1s consis-—
tently approximately 107 too high. This value is not affected by
the choice of y (within reasonable 1limits) because at the depth of
36 em virtually no waves were breaking. At the remaining measurement
points with smaller depths, where breaking did occur, the differences
between computed and measured values are generally considerably
smaller; the average absolute value of the deviation in these points
is 4%. This is considered to be satisfactory.

Two examples of measured and computred sat-up are given in fig. 6.6,

one for T0=!.2 s and one for T0¢2.{J s,
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To=l.2 8 TO=2.G 5
a
{cm)
H o (em) o (cm)
imeas cale meas cale meas calc | meas cale meas calc meas calc
o 7.85 8.22 8.11 7.70 8.48 7.95
55.017.2527.25 7.60-7,60 7,507,501 7.26-7.26 7.99+7.99 7.49>7.49
36.0f - 7.15 6,75 7.50 6.81 7,40} -~ 7.70 7.66 8,48 7.17 7.95
15.9{6.88 7.21 6.50 7.45 6.90 7.42 18,41 B, 46 8,81 9,05 9.29 8.67
8.,815.71 5.70 5.64 5.85 6,02 5,82 | 6.53 6,70 6.98 6.95 6.87 6.84
4.113.54 3,43 - 3,58 - 3.54 | 4.50 4.15 = 4,49 —~ 4,45
Table 6.2

The data which are not shown are in essence similar to those in fig. 6.6.
The above-mentioned values of v (0.8 and 0.9 respectively) were used

in the calculations, while the value of E at the toe of the slope was
taken to be =zero.

Inspection of fig, 6.6 shows that the set-down at the most seaward
measuring point is fairly well predicted by the theory; this point is
located outside the surf zone., Shoreward from this point, from d N 15 em
tod~ 8 cm, the computed values show a much stronger rise towards the
shore than the measurements, In smaller depths the computed values
have very nearly the same trend as the data points.,

The disagreement between thepry and experiment was systematically
present in all the laboratory data. It is therefore necessary to inquire
into its possible causes. The theory was found to describe the r.m.s,
wave height variation fairly well, particularly in the region
d < 16 em, which contains the area where the calculated set-up differs
essentially from the measured set-up., In order to eliminate any uncer-
tainties which nevertheless might be present in the theoretically
calculated wave heights, the set-up between the wave gauges was computed
using measured rather than calculated wave heights. As expected, the

disagreement—hardly diminished.




- 157 -

‘Lu_.
? {em)
T,# 1Is
s . H = 8% em
+ meas.
eate. (x-.- 08}
+
oo : i ' \
o e dlem) 04 + 15
1_5_
¥ tcm)
10 T=20s
an 85cm
+ + meas.
cals. (qus}
a5 -
+
a0 +— | ; 4 1 7
0 g > dicm) 10 + 35

Fig., 6.6. Comparison of computed and measured set—up.
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There is a region in which the mean square wave heights decrease
considerably in the shoreward direction, which leads one to expect a
proportionate decrease in the radiation stress SE] and a corresponding
rise of the mean water level, while the measurements show a much smaller
rise, The conclusion is that the measurements are in error, and/or that
the theory used in relating wave characteristics and set-up is in error.
The following remarks can be made regarding the measurements,

The wave height gauges are considered reliable, Calibrations were
carried out freguently; they showed good linearity and no measurable
drife,

The measurements of the mean water level were made indirectly,
by means of bottom—mounted pressure taps. It has been shown by
Dorrestein [31] and Longuet-Higgins and Stewart [33] that the mean
pressure head at the bottom equals the mean depth, if the waves are
statistically statiomary in time and homogemeous in the horizontal
coordinates (see eq. 3,3.9)., The latter condition is not exactly met
in the present tests but an analysis such as given by Dorrestein shows
that errors arising from the horizontal inhomogeneities which occcurred
in the experiments cammot account for the observed discrepancy. In an
interim report dealing with these measurements[110] the author conjec—
tured that air entraimment in the water, due to breaking waves, might
give a systematic error which could possibly explain the discrepancy.
The reasoning behind this was as follows.

If wave breaking causes air entrainment then this occurs in the
water of the £lume only, not in the stilling well. It follows that the
wave~induced rise in mean water level in the flume (E) is greater than
the rise measured in the stilling well (denoted by ES). The difference

can be found by equating the mean bottom pressures:

[ TF 8
J p gdz = [ pg dz, (6.4.1)
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in which p' is the mean density of the air-water mixture in the flume,
which is roughly equal to p(1-C), if C denotes the time—averaged
volume concentration of air in water, It follows from (6,3.1) that the
mean water level in the flume is underestimated by an - amount equal to
T
T - T % | Cle) dz = SarD) = O, (6.4.2)

-d

in which € is the air concentration averaged with respect to time and
deptht. The difference (E—ES) vanishes outside the surf zone, where
E+O, and in very shallow water, where D0, For small values of 8, the
absolute error is small compared with the total depth D, but not
necessarily with respect to the set-up L. In order to check whether
the air entraimment which does oceur is sufficient to cause the
observed differences, additional measurements were made with periodic
waves (the experimental arrangement in the random~wave flume had
already been dismantled)., In these tests the change in mean water
level was measured with a bhottom-mounted pressure—gauge and with a
surface elevation sensor; the measurement errors were of the order

of 0.2 mm. No significant differences were found; if they occurred then
they were totally inadequate to explain the discrepancy between
measured and computed set-up in the random-wave experiments, which
amounted to several mm (see fig, 6.6).

In summary, it can be said that for the conditions in these
experiments, the mean pressure head at the bottom may be equated with
the local mean depth. The problem then centres on the measurement of
the mean bottom pressure, which was done by means of pressure taps
connected by tubes to stilling wells., In an evaluation of this proce-
dure, distinction should be made between the hydrodynamic and the
electronic aspects of the system, i,e., between the water in the
connection tubes and the stilling well, and its response to the
varying pressure at the bottom of the fiume on the one hand, and the

electronic measurement of this response on the other hand.
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The electronic part was frequently calibrated and is not suspect.
Therefore, only the hydrodynamic aspects of the system are considered
further, If this system were linear, as had been assumed initially,
then the mean water level inside the stilling well would correspond
to the mean bottom pressure in the flume, However, the connection tubes
had several sudden profile contractions and enlargements; some of
these were brought about by clamps on the plastie tubes. Such profile
changes give rise to a quadratic flow resistance, which implies that
the mean water level in the well is not necessarily the same as that
in the flume, The difference varies with the asymmetry in the back-
-and-forth motions. For steep waves in shallow water, with narrow
crests and elongated troughs, the mean level in the stilling well
would be lower than that in the flume. Unfortunately, the geometrical
characteristics of the profile changes are not known sufficiently

for a quantitative analysis, so that it remains uncertain whether
this effect can account for the observed discrepancies between theory
and experiments. The measurements should be repeated with a better
system for measuring the bottom pressure, e.g. with electronic

pressure gauges mounted in the bottom,

Apart from the possibility of errors in the measurements, one
should consider the question at which points the theory is most likely
to be in error. The differential equation for the set-up (eq. 3.3.46)
is obtained from eq. 3.3.44, which is exact in the problem under con-
sideration, by neglecting the mean bottom shear stress in the omshore
direction (;1). Although good estimates of this term are mot available,
it is difficult to see how it could account for the effects being in-
vestigated. It is therefore considered very unlikely that (3.3.46)
would be seriously in error. Needless to say, in this statement it is
assumed that SEE represents the total comtribution of the unsteady
motion to the mean horizontal flow of horizontal momentum; its def~
inition involves an integral over the depth of terms involving the
pressure and the horizomtal velocity fluctuations. These have not

been measured; they have instead been expressed in terms of the wave
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heights, This is achieved by neglecting the contributions of the
trurbulence, and by using two essentially different approximations
relating to the wave motion., The first of these is the neglect of the
influence of inhomogeneities of average wave properties on the magni-
tude of the local radiation stress; the second is the use of a linear
theory. It has been assumed so far that these approximations would
give reasonable resul;s. It is however quite conceivable that
application to breaking waves gives erroneous results. For instance,

in shallow water the following approximation is used for 511°

C ——— —
S, % eoaitaz e dog 0F W 2E 4 E, v3E (6.4.3)

—-d

It can be seen that this implies that the kinetic energy of the waves
equals the potential energy. However, in higher-~order approximations,
such as Stokes' third order, tha kinetic energy exceeds the potential
energy [111]. Furthermore, the ratio of kinetic energy to potential
energy may depend on the rate of deformation of the waves. If these
effects are significant at all then this is expected to be the case
for relatively high waves in shallow water, particularly where many
waves start breaking. A decrease in potential energy (wave heights) in
such an area would then be accompanied by 2 less than proportionate
decrease in kinetic energy. In addition to this, the intensity of the
turbulence is relatively high in this ragion. As a result of these
effacts, S11 will decrease mot as fast as calculated on the basis of
the decrease in wave heights, and the set-up gradient is therefore
overestimated in the area where the wavaes begin breaking in significant
numbers,

It should be emphasized that the preceding arguments are of a
hypothetical nature, in the sense that the effects which are mentioned
are not known quantitatively, Additional measurements are needed to
investigate thisg matter. The internal velocity field should be consid-

ered explicitly therein.
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A question which arises in the present context is whether the

hypothesis which has been advanced with respect to the magnitude of 514
is compatible with the conclusions arrived at by Bowen et al [6],.
whose expérimental results are generally considered as confirmation
of the "set-up theory". It is believed that such compatibility does
exist. Bowen et al, using periodic waves, found agreement between
theory and experiment with respect to the set-down (eq. 3.3.33)

"in the region well outside the breakpoint", which is not significantly
affected by the hypothesis given above, and with respect to the
gradient of the set-up (eq. 3.4.4) "further inshore, where the bore
was well formed"” (thus, inshore of the area of most rapid wave
deformation). The absolute value of the set-up in the surf zome

is not considered in the comparison of theory and experiment given
by Bowen et al, because they omitted the area near the breakpoint

of the waves from the calculations. Because of this, no boundary
condition was available for the integration of the set-up gradient
shoreward of the bfeakpoint. The measured mean water level was found
to be practically constant in the area from the breakpoint (where
the crest of the wave begins to curl over) to the peoint where the
wave form collapses, although the measured wave heights there
deéreased considerably. This is the same phenomenon as was observed

in the experiments reported here.

Let us summarize the comparison of the theory with field data
and laboratory data. The field data give support to the theory.
The laboratory data give support to the theoretical prediction of
the wave height decay in the surf zone, while systematic differ-
ences appeared to exist between measured and calculated set-up,
However, the system which was used for the set-up measurements
represents to some degree an uncertain element due to nonlinearities
which are unknown in a quantitative sense, In conclusion, it must be
gaid that the comparison of the theory with the field data and the
laboratery data has been promising, but ultimately inconclusive,
Additional imnvestigations are required for more defimnitive answers

to the guestions which have been raised.
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RUN-UP

Introduction

The preceding chapters dealt with waves on beaches, for which the
similarity parameter E was sufficiently small for the occurrence of
spilling breakers. In this and the following chapter we shall be con-
cerned with waves breaking on steeper slopes, typical of sea dikes.

The similarity parameter £ is supposed to be of order ome, which implies
plunging breakers and a significant yp—and-down motiom of the water

along the slope. We shall in particular consider the run—up height

R, i.e. the maximum height above S.W.L. reached by a wave rushing up

the slope: This is a frequently used parameter in considerations of
the required height of a dike. It will for brevity be called the
run-up if no confusion is possible with the process of run-up. The
run-up B associated with random waves is a random variable. Its dis-
tribution function will be considered extensively.

Most studies of run-up which have been made in the past were
based on periodic waves. The approach has been predominantly empiri-
cal, particularly for the conditions of breaking waves envisaged in
this chapter. The run—up for such waves varies non-linearly with the
incident wave height, so that it is not possible to simulate the
stochastic run—up process by linear superposition of periodic-wave
solutions. In this respect we face the same situation as in the cal-
culation of the set-up and the longshore current due to irregular,
spilling breskers on a beach. There is an important difference, how-
ever. In the latter case the calculations were aimed at the time-mean
value of a continuous variable to which all of the different waves in
a random wave f£ield contribute. In the case of the run-up height R
we deal with discrete occurrences which can be attributed to indivi-
dual waves breaking on the slope. For this reason run—up relation-
ships for individual waves will play a key role in the computations.

Distribution functions of the run-up R were first galeulated by
Saville [i112l, who assigned to each indiwvidual wave of a random wave

train the run-up value of a periodic wave train of corresponding height
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and period. The hypothesis that this gives valid results will be re-
ferred to as the hypothesis of equivalency. A similar hypothesis has
been widely and successfully used to compute distributions of non-
linear wave forces on piles [113].

It should be noted that the hypothesis of equivalency does not
necessarily imply that each individual wave causes a run-up equal
to the run-up of the corresponding uniform wave train. The assumption
is weaker, as it pertains to the distribution of wave height and period
on the one hand, and of run—up on the other hand. In other words, it
pertains to averages of many values, rather thanm to individual values.
Empirical evidence supporting the hypothesis of equivalency has been
given by van Oorschot and d'Angremond [114.

The run—up R of periodic waves of perpendicular incidence on a
plane glope is determined mainly by the height H and the period T
of the incident waves, by the gravitational acceleration g, and by
the slope angle a: R = R(H,T,g,a). Therefore, in order to calculate
the distribution function of the run-up R of random waves of perpen-
dicular incidence on a plane slope by means of the hypothesis of
equivalency, the function R(H,T,g,a) should be known, as well as the
joint distribution function of H and T. Saville uses the empirical
run-up data published previcusly by him [115, and the joint distri-
bution of H and T proposed by Bretschneider [83] for the case where
these are stochastically independent, referred to in paragraph 4.5.4.
The resulting distributions of the normalized run-up 5/H1/3 have to
be calculated numerically for each combination of structure slope
and wave steepness.

The approach used herein is similar to the one used by Saville,
as far as the hypothesis of equivalency is concerned. However, this
hypothesis is elaborated differently in various respects, By con-
sidering only waves which break on the slope, Hunt's formula (eq.
2.3.22) can be used for the run—up of periodic waves. An analysis
is made of existing laboratory data in order to cheek the validity
of this approach. The use of Hunt's analytical expression enables us
to nmormalize the run-up in such a way that it becomes independent

of the slope angle and the wave steepness, obviating the need to
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compute the run-up distribution anew for each combination of these
parameters. It also permits the transformation of the joint distri-
bution of H and T into the distribution of R to be carried out graph-
ically or analytically. The analytical transformation is carried out
first for an arbitrary joint distribution of H and T, and subsequently
for waves with a bivariate Rayleigh distribution of H and E? and arbi-
trary degree of correlation. Results are given in closed form. They are

compared to empirical data.

Run-up of periodic waves breaking on a slope

Hunt [1] has given the following empirical equation for the run-—
up of periodic waves of perpendicular incidence breaking on a plane

slope:
R = 2.3%H tan & . (7.2.1)

Eq. (7.2.1) is stated in the ft-sec system. Restoring dimensional
homogeneity by substitution of g = 32.2 ft/sz, (7.2.1) may be written

as

R = O.QT/gﬁ'tan o, (7.2.2)
or, in view of (2.1.3), as
R = VELO tan o, (7.2.3)

which is equivalent to (2.3.22}.

Eg. 7.2.1 is based on measurements made at the Waterways
Experiment Station in Vicksburg, Mississippi, and at the Beach
Erosion Board in Washington, D.C. According to Hunt, the breaking
eriterion of Iribarren and Nogales (eq. 2.3.5) is adéquate to describe
the transition from breaking to no breaking.

The author has previously given the following physical inter-

pretation of Hunt's empirical equation [ijg]. The formula applies to
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waves breaking on the slope. The initial horizontal velocity of the
water particles in the mass of water which runs up the slope must be
of the same order of magnitude as the particle velocities in the
breaking wave, i.e., 0(/§ﬁ3. The motion is periodic, with period T,
and the run-up time is ¢(T). If it is assumed that the shape of the
velocity-time curve of the advancing wave front does not signifi-
cantly depend on the slope angle and the wave steepness, then the
displacements along the slope are expected to be 0 (T/gH), and the
vertical displacements, including the run-up height, are expected

to be of order T/gﬁ'tan a. This agrees with (7.2.2).

The interpretation given suggests certain similarities in the
rup—up process. In order to investigate this a series of experiments
was carried out in which the details of the run—up and run-down above
S.W.L. were considered [19]. Slopes of 1&3, 1;5 and 1:7 were used,
with wave steepnesses H/Lo from 0.02 to 0.09. The parameter £ ranged
from 0.5 to 1.9. It was found that the interpretation given above
needs some adjustment. The time of run—up from S.W.L. to the maximum
height (tr)’ and the mean velocity of the run—up front above 5.W.L.
(cr), normalized with T and /gH respectively, were not in faet

independent of o and EILG.'They were found to wvary with §:

tr —i

7= 0.7 (7.2.4)
and

s

=06t . 7:2:5)

/g

The run—up height R which can be calculated from these equations

deviates less than 47 from the value according to Hunt's formula.

The empirical data referred to above were obtained with waves
of perpendicular incidence. The run-up of waves of oblique incidence
is usually assumed to be proporticnal to the cosine of the angle of

incidence [3T. This proportionality has been argued by noting that




7.

3

- 167 -

the run-up of breaking waves of perpendicular incidence is propor-
tional to tam @, i.e. to the component of the slope in the direction
of propagation. This component reduces to (cos 6)(tan a) if 8 is the
angle of incidence. Empirical data presented by Hosoi and Shuto [117]
are in reasonable agreement with this reduction, at least for breaking
waves and IBI < 50°. (For non-breaking waves the reduction is less

than it is for breaking waves.)

A check of the applicability of Hunt's formula to irregular waves

It has been mentioned in the introduction to this chapter that
run-up distributions will be calculated by applying Hunt's formula
to individual waves. Before proceeding to elaborate deductions which
can be made from this premiss we will in this paragraph present some
laboratory data which can be used for a partial check of the validity
of the approach. The check can be no mere than partial because of
the restricted variation in the available data. These data were ob-
tained in the Delft Hydraulics Laboratory in a study of run—up carried
out on behalf of the Department of Zuiderzee Works [ 3]. The results
have partly been published by Wassing [118. Additional information has
been gathered by the author from the original, unpublished data.

In fhe experiments the run-ups of irregular waves on various
plane slopes were measured. The waves were generated by a combination
of wind and a bulkhead with a periodic motion. As a result, the model
waves were not natural wind waves on & small scale. The measured wave
height distribution was much narrower than the Rayleigh distribution.
The deviation from natural conditions was even greater for the wave
periods, which in the model varied but very little. They will be
considered to be constant.

Two series of measurements were made, with a nominal wave height
of 0.10 m and 0.07 m, respectively. It is not clear from the original
report how the wave heights had been defined. For this reason they
are called the nominal wave heights, Rnom' The waterdepth (0.35 m),
the mean wave period (1s), and the mean wavelength (1.40 m) were the

same in both series.
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We have to check to what extent the application of Hunt's formula
(R = 0.4 T/gH tan o) to individual waves yields a run-up distribution
in agreement with the measured distribution. The proportionality of
the fun—up with T cannot be investigated because T was not varied.
Only the proportionality with YH tan o can be checked. This will be
done in two stages. First, the magnitude of the median run-up (RSO)
is considered, and after that the shape of the run-up distribution,
as given by Rn/RSO’ in which n is the probability of exceedance,
expressed as a percentage [n = 100 (1 - F}].

The raw experimental data regarding RSO are given in the first
three columns of Table 7.1. The last two columns represent the experi-

mental values of the dimensionless parameter Rgo defined by

R
R§0 = 20 , (7.3.1)
0.4 T vgH tan o
Nnont

which should be a constant according to the hypothesis to be tested.
The value of the comstant cannot be predicted because of the uncertain-

ty with respect to Enom' The agreement between R§0 values for the same

tan & RSO R§O
Hnom = 10 em Hnom =7 cm Hnom = 10 em Hnom =7 cm

0.1 4.7 3.7 1.17 1.11
0.15 6.9 5.7 .15 1.14
6.2 9.3 8.1 1.16 1.21
0.25 1.8 9.3 1.18 1.12
0.286 i5.4 13.4 1.35 1.40
0.333 15.8 13.2 i.19 1.19
0.4 17.5 15.4 1.09 1.15

Table 7.1

value of tan « is good within 5Z, and confirms the proportiomality

of R and YH. The agreement between R§0 values within one column is
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fairly good; this confirms the proportionality of R and tan a. Only
the two points for tan o = 0.286 (1 : 31) deviate considerably from
the others, for unknown reasons. Apart from these two, all measured
values of R§0 are grouped closely around the mean value of (.15,
with a maximum deviation of approximately 5% only. This means that
for these experiments the variation of the median run—up with wave
height and slepe angle is adequately expressed by Hunt's equation,
Whether or not this is also the case for run-up values with a dif-
ferent probability of exceedance can be investigated by comparing
Rn/RSO to (Hn/HSO)é' According to the hypothesis to be tested, these
parameters should be egual to each other for all n, because T was
assumed to be constant. Such a comparison has been given in Table
7.2 for values of n from 50 to 2. The values of Rn/R50 and Hn/}l50

have been obtained by averaging over the different slope angles

n(® Ro/Rsg 8 /g, (R /Ry o) /A Ty
(a) Hnom = 7 cm
50 1.00 .00 1.00
40 1.04 1.09 1.00
30 1.08 1.18 1.00
20 1.13 1.30 0.99
10 1.20 1.46 0.99
5 1.27 1.60 1.00
2 1.33 1.71 1.02
() H__ =10 cm
50 1.00 1.00 1.00
40 1.06 111 1.01
30 1.12 1.26 1.00
20 1.19 .41 1,00
10 1.29 1.58 1.03
5 1.37 1,77 1.03
2 1.46 1.96 1.04

Table 7.2
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in each of the two series. It can be seen that the ratio between
Rn/RSO and (Bn/HSO)% deviates at most a few percent from one. This
lends strong support to the approach which has been adopted, and

which will be elaborated in the following sections of this chapter.

Run-up distributions of breaking waves with arbitrary joint dis-

tribution of H and kﬂ

Analytical solution

In this section run—up distributions for waves of perpendicular
incidence will be determined by assigning to each wave a run-up height
according to Hunt's formula. It is assumed that effects of oblique
incidence on the run-up can be accounted for by multiplying the cal-
culated run—ups for perpendicular incidence with a constant factor,
tentatively taken to be the cosine of the mean angle of incidence.
The fact that this factor is common to all the waves in a given wave
train implies that the influence of the variability of the direction
of propagation on the run-up is neglected.

It is convenient to use Hunt's formula as given by (7.2.3),
rather than (7.2.2), since (7.2.3) is symmetric in H and LO' On the
basis of the hypothesis of equivalency a similar equation is assumed

to hold for random waves:

R = Vﬁ_éo tan a . (7.4.1)

The quantity EO is defined as gi?/Zﬁ, in which T is the zero-cross-
ing peried. L, will for brevity be called the deep-water wave-length
even though this interpretation is valid for periodic waves only.

It is to be noted that in (7.4.1) H, L, and tan a appear in a
product of powers. This has the advantage that the run-up can be so
normalized as to make its distribution independent of slope angle and

mean wave steepness. The variables will be normalized as follows:
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(7.4.2)

[£=2
[l

1=

=
i

(7.4.3)

| =
]

and

L

R/(VE Ty tan o) . (7.4.4)
Substitution of (7.4.1), (7.4.2) and (7.4.3) into (7.4.4) gives

r= Jhg . (7.4.5)
Thus, the distribution of the normalized run—up equals the distribu-

tion of ﬁig. Denoting the distribution function of r by F(r), we have
F(r) = Prir < r} = Pelvh & < r} . (7.4.6)

It should be determined from the joint p.d.f. of h and L, which is

agsumed to be known in the present context; it is written as £(h,%}

and defined by

Pr{h <h <h +dh and £ < g < £ +d2} = f(h,8}dh d2 . (7.4.7)

The right-hand side of (7.4.7) is called a probability element. The
probability that h and £ simultaneously assume values in a certain
interval of the (h,%) plane is determined by summing the corresponding
probability elements, i.e. by integrating f(h,%) over the area of the
(h,%) plane under consideration. Thus, F{r) is found by integration

of (h,2) with respect to h and % for all values thereof which fulfil
the inequality ¢gf-f_r:

F(xr) = JJ f(h,2)dh d2 . (7.4.8)
all h,t for
which vhE < r
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Only positive values of h, £ and r need be considered. The interval
of integration is imdicated in fig. 7.1 by the hatched area of the
(h,2) plane. It is bordered by the hyperbola hi = r2 and by the

straight lines h = 0 and L = 0. The integral can be written as
2 .
= r°/h
Flr) = th f f(h,8)de . (7.4.9)
0 0

Ng

0

Fig. 7.1 — Area of integration in the (h,%) plane.

Pifferentiation of this expression with respect to r yields the
probability density of}g:

&

2
£y = EE. o ( F £, =) an . (7.4.10)

0
A more formal derivation of this result can be given by using the
rules for the transformation of one multi-dimensional p.d.f. inte
another one of the same number of dimensions [51]. If (h,%) and (p,q)

are single-valued functions of each other then

f(p,q) = £(h,2) |J| , (7.4.11)
in which
3h  3h
ap a9
J= %%%*%% = (7.4.12)
i 3% 3%
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is the Jacobian of the transformation, which is agsumed to be non-
zero. We choose one of the variables p and g to be equal to /hi (=1);
the other, say p, is a dummy variable which can be chosen for conve-
nience. The p.d.f. of r can then be found as a marginal p.d.f. of

f(p,r) by integration with respect to the dummy variable p. Choosing

p = h gives

5e AL /T (7.4.13)

3(h,7he)

so that

£(h,/h)) = 2\/% £(h,8) (7.6.14)
or

2r r2
£(h,r) = — £(h, ) (7.4.153)

from which (7.4.10) follows by imtegration with respect to h.

The equations 7.4.9 and 7.4.10 represent the formal solutiom
to the problem of determining the run-up distribution from a known
joint distribution of wave height and period, if Hunt's equatiom is
applied to individual waves. These expressions are valid for arbitrary
f(h,%), as long as the waves are breaking on the slope. Before substi-
tuting specifie functions for f£(h,2) a graphical method of estimating

F(r) from discrete data on wave heights and periods is presented.

Graphical solution for discrete data

In this paragraph it will be assumed that a scatter diagram is
available of wave height versus period, in which each realization of
(H,T) is represented by a dot. The problem is to compute an estimate of
the associated run-up distribution, if for individual waves the run-up
is given by Hunt's equation.

A practical solution to this problem is suggested by the analyti-

cal derivation in the preceding paragrapa. On a transparent sheet of
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paper a fFamily of curves is drawn along each of which T4 is constant.
{On double-log paper such curves will be straight lines). This sheet
is used as an overlay over the given scatter diagram. By simply
counting the number of dots of the scatter diagram between consecutive
pairs of curves T¥H = constant, the number of anticipated run—ups in
certain classes can be determined. The cumulative probability can

next be found by summation.

Run-up distributions of waves with a bivariate Rayleigh &istrihption
of B and _I__.n

Probability density and distributien funetion

The expressions for the run—up distribution obtained in para-—
graph 7.4.1 can be used for waves with an arbitrary joint p.d.f.
of H and LO' In order to obtain more specific results we shall now
confine ourselves to winddriven waves for which H and LO are tenta-
tively assumed to be jointly Rayleigh-distributed. Referring to
Appendix 1, the p.d.f. of the normalized wave heipht and length can

then be written as

2 2.2
+ T
£(h,2;K) = %——-—13-”‘—-2— exp(—%—-———-«——h "2) 1, —S—5n), (7.5.1)
i -k

1 -k 1 -~k

in which
0<x <1 . {(7.5.2)

The dependence on the parameter x is indicated explicitly for later
reference.

Eg. 7.5.1 can be substituted inte (7.4.10) with the result

€0

2 3 2 4 =2
. _ T r 7K 2 I _mnh +rh
f(rsK) = 2 7 10(2 2 r ) fh EXP( 4 7 )dh
1 - x I -« 0 1 - x

(7.5.3)
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By substituting

2
™ h
t = A (7.5.4)
1 -~ x
and
T r2
X = =y {(7.5.5)
1 -k

—t ] ..._}E_
J e (e 4t ydc . {7.5.6)

It is equal to Ko(x}, the modified Bessel function of the third kind
of order zero [ 80, eq. 29.3.120]. Substitution into (7.5.3) gives

wz r3 T K 2 L r2
frye) =5 7 Lz 7 T Ky 7—3)
1 - x 1 - x I -«

(7.5.7)

This function is shown graphiecally in fig. 7.2 for six values of x
which have been so¢ selected as to give equal increments of A, the

coefficient of linear correlation between h and £ (see Appendix 1).

The distribution function may be found by integration of f£(r):

T
F(r) = J £(e®y ar® . (7.5.8)
0
In order to carry out this integration, it is eonvenient to transform
to the variable x defined by (7.5.5). Because x is a single-valued

function of r, and vice versa (for r > 0), we have
f(x) = £(r) & (7.5.9)
Tx . .5.

Substitution of (7.5.5) and (7.5.7) into (7.5.9) gives
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Fig., 7.2 = Probability density of normalized run—up.
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Flxs) = (1 - &%) x 1,(xx) Ko@) (7.5.10)

The distribution function is

X
F(x:k) = (1 - Kz) f xx IO(KX*) Ko(x*) dx* L(7.5.10)
0
The following relations hold between IO’ Il, K0 and K] and their

derivatives:

Ié(z) = Il(z) s (7.5.12)

{z Ii(z)}' =z IO(Z) . {7.5.13)

Ka(z) = - K}(z) . (7.5.14)
and

{z Kl(z)}' = -z Ko(z) s (7.5.13)

in which a prime denotes a differentiation with respect to z {90].
With these relationships (7.5.11) can be evaluated by repeated inte-

gration by parts:

{ X IO(KX) Ko(x) dx = = f IO(KX) d {x Ki(x)}

I

= Ioﬂxx) b4 KI(X) + | x K](x) d IO(KX)

= =% Io(mx) K}(x) + f X Ki(x) K Ii(xx) dx

'
= - x IO(KX) Kl(x) - J KX Ii(Kx) d Ko(x)

f
X IO(KX) Ki(x) - xx Il(mx) Ko(x) + J Ko(x) d {«x I}(KX)}
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= - x Io(xx) K](x) - % Il(Kx) KG(X) + zz [ Ko(x) x IO(KX) dx

(7.5.16}

50 that
(1 - K2) J-x IO(KX) Ko(x) dx = - x IG(KX) ﬁl(x) - KX Il(Kx) Ko(x)
(7.5.17)

The Bessel functions in (7.5.17) behave as follows for small values

of their argument:
IO(Z) =1 0,

IICZ) - %Z »

KD(Z) - —-ln z ,

and Ki(z) > 2 for z + 0 , (7.5.18)
so that
lim x IO(KX) Ki(x) = (7.5.19)
%0
and
lim «x I, (kx) Ko(x) =0 . . (7.5.20)
x0

Tt follows from (7.5.11), (7.5.17), (7.5.19) and (7.5.20) that
F{x;x)} = 1 - x IO(KX) Ki(x) - KX Il(Kx) Ko(x) . {(7.5.21)

Substitution of (7.5.5) in the right-hand side of (7.5.21) gives

F{r;x), which has been plotted in fig. 7.3 for selected wvalues of k.
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7.5.2 Special values

Eq. 7.5.2] reduceg to simpler forms in the two special caseé'of
zero correlation and 100 correlation between h and %. In the first

case we have ¥ = 0, so that
x = % r2 ‘ (7.5.22)
as follows from (7.5.5), and

F(r;0) = 1 - 212 K, (22D . (7.5.23)
. 2 12

In the second case, € = 1, s0 that x is unbounded if r # 0. The

asymptotic behaviour of the Bessel functions in (7.5.21) for large

values of their argumeut is given by

3
I () ~ for z + = (7.5.24)
m
2nz
and
Km(z)+V %E e 2 for z + = (7.5.25)

for m = 0, 1, ete. Substitution of (7.5.5), (7.3.24) and (7.5.25)

into (7.5.21) gives-after some manipulation

+ K

Ve

exp(~ %.?—Euza for « + 1 {7.5.26)

F{r;x) = 1 - 1

so that
F(r;l) = 1 = exp(—-}rz) , o (7.5.2D)

which is the (univariate) Rayleigh distribution function. This is to be
be expected, since « = | implies that h = & with 100Z probability

(see Appendix 1). This in turn means that

r=/i2=h=4% , (7.5.28)
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so that the distribution function of r for v - | converges to that of
hor &, i.e. to the Rayleigh distribution function. Indeed, the prece=-
ding investigation of the behavicur of F{r;k) for v« = ! is given more
as a check on the general formula (7.5.21) than because of its prac-
tical importance, for the case ¥ = 1 is not expected to cccur in

actual wind waves. However, it is interesting to note that (7.5.26)
represents not only the asymptotic behaviour of F(r;k) for k + ] but
also that of F(r:k) for r + = at a constant value of ¥ # 0, since in
both cases x +~ « and xx -+ =, as follows from {7.5.3). This implies

that for large r and arbitrary x > (0 a plot of F(r;k) on Rayleigh -
probability~-paper approaches a straight line through the origin, as

can indeed be seen in fig, 7.3. This may be shown by noting that in the
Rayleigh—probabi1ity-paper of fig. 7.3 the scale of r along the abscis-
sa is linear, while the scale of F is chosen so that the plot of

F(r;1) gives a straight line; this can be achieved by plotting the
inverse function of F(r;1) linearly along the ordinate. This inverse

function is, from (7.5.27),

g__{ - in(l - F)}% . (7.5.29)
T

Substitution of (7.5.26) into {(7.5.29) gives

T r2 1 +x .4
{"'2' - in 1 R {7.5.30)

2
YT I+ x 2v

which approximates to

-——)% r (7.5.31)

for sufficiently large r. If ¥ = 0 then we must start from {(7.5.23).
Using (7.5.25) it can be shown that

F(r;0) -1 - % r exp(- %—rz) for r +~ =(7.5.32)

Substitution of this equation into (7.5.29) leads to the same result
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as (7.5.31) for « = 0, since % r2 - mn(%-r) N % r2 for large r.

The mean of the normalized run-up can be found as a moment of the
joint p.d.f. of h and 2, a general expression for which has been given

in Appendix 1. Substituting (Al.19) gives

- 1} 2 2
r = E{R'2) =My, = 2 {r(%)} GFpl=dy = &5 15 <)
"
(7.5.33)
This expression reduces to
T =2 {r(%)}2 v 0.93 if «x=0 (7.5.34)
ki3
and to
r=1 if k=1 . (7.5.35)

The associated cumulative probabilities are 0.535 and 0.544 res-—
pectively, i.e. approximately 0.54 in both cases. From the momnotonic
behaviour of the functions involved it may be inferred that this
value will also hold for other values of x.

The mean square normalized run—up can also be calculated as a
moment of £{h,%4). Using (Al.23) and (A1.27) we find
T Rt N M T I - DER I

{7.5.36)

It may be useful to revert briefly to non-normalized variables.

Using (2.1.3), eq. 7.4.4 can be written as

R = :::_Vﬁi tan o = 0.4 _g:_VgE_f 'I'2= tan o (7.5.31)

0

This equation can be expressed in terms of the commonly used para-

meters T and H]/3 by utilizing the following relationships, whieh
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2

hold if H and T are Rayleigh-distributed:
= _ o5 o2 W2
T = () T(7) VIO p0.96 VT (7.5.38)
and
H v 0.625 HI/B . (7.5.39)
This yields
R=0.33 ¢ E'VgHIIS tan o , (7.5.40)

n
or, using the wave steepness 0 defined by (4.5.24),

R=0.8c8%u , tamna . (7.5.41)

1/3
As an example, the value exceeded by 27 of the run—ups will be con-
sidered for the limiting cases ¥ = 0 and ¢« = 1. The 2Z-value is chosen
in view of a comparison with empirical data in section 7.7. Entering
fig. 7.3 with the value F = 0.98 and reading the corresponding values

of r gives

1.78  if k=10 (7.5.42)

21
3]
]

and
r, = 2.23 if Kk = 1 R (7.5.43)

in which the subscript refers to the exceedance percentage. Substi-
tuting these into (7.5.40) and (7.5.41) we find

R, = 0.59 T ¢ tan o = }.47 g_é H tan o ife=20

2 g, /3 1/3

(7.5.44)
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and

- = - -4 . _
R, = 0.74 T /g, 7 tan a 1.84 8 Hypptana if x=1 .

(7.5.45)

These formulae are compared to empirical data im section 7.7.

Maximum run-up

Consider the maximum normalized run-up height (Emax) in a series
of ¥ run-ups. Its distribution function FN(r) can be derived by the
reasoning already referred to in paragraph 4.4.8 with respect to

H . Thus,
—max

_ N
Fo(r) = Pr 1 ax <r} = {F{(r)} . (7.5.46)
As in paragraph 4.4.8, we consider large values of N (greater than

100, say), in which case only large values of r are of interest.

Eg. (7.5.46) then approximates to

Py(r) = e 0 (7.5.47)

in which
Qlr) =1 -F{x) . (7.5.48)

The expected value of Eoax COR be calculated from this distribution

function as

] o o

E{r _} = [ r dFN(r) = - J r dQN(r) = [ QN(r) dr
0 0 0 (7.5.49)

in which

Quiz) =1 = Eg(r) (7.5.50)



- 184 -

Substitution of (7.5.21) and (7.5.5) and numerical integration has

given the result shown in fig. 7.4.

3.5
£{Cmax) Rl

3.9 ’///
w=05

)s / /
H=10

2.6 4

10% 10° N i0
—

Fig. 7.4 - Expected value of normaliszed maxinum run—up.

An approximate expression in closed form for E{Emax} can be

found by using the approximation to F(rik) givenm by (7.5.26), which

can be written as

2
* _ _l *k _r_x
F{r;x) v F r;e) = 1 exp( 5 Th:—EQ ’ (7.5.51)
2vx
2
and which is valid for large 33 s This gives
I -k 2
-r_I
. "N“-‘—--’;_ge 21 +x
- - 2
Nl - F (o)} _ e K (7.5.52)

* -
FN(r) i FN(r) = p
It then follows from analogy with (4.4.29) and (4.4.30) that

2 % n 1 Ay _%
E{gmax} v {; {1 + <)Y% (en M2 + 0.29 (&n N} %} (7.5.53)
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in which

Y -lrEy (7.5.54)

As noted previously, the approxzimation (7.5.51) is not valid for
x + 0. However, a comparison of (7.5.53) with the result calculafed
numerically from the exact distribution function F{r;k) has shown that
for N > 100 the relative error is less than 1Z for ¢ > 0.1 and less
than 5% for x > 0.01, so §hat the lower limit of x, for which (7.5.53)

is still a useful approximation, is quite small.

Steepness distribution

It has been pointed out that Hunt's equation is not applicable
to waves for which the steepness 8 = H/LO is less than the ecritical
value given by Iribarren and Nogales' breaking eriterion. Like B
and Ly, 8§ is a stochastice variable., Its distribution function will
be determined in order to be able to estimate for a given random
wave train the fraction of the waves that will break on the slope.

The steepness will be normalized as follows:

s HL
8=—-= =_——~—_’_~° ) (7.6.1)
H/LO H/LO

or, using (7.4.1) and (7.4.2),

8 = h/k . (7.6.2)
The distribution function and the probability density of s cam be
obtained from f£(h,%) by exactly the same procedures as were used in
paragraph 7.4.1 for r. The results are
@ 5%
F(s) = [ de [ £(h,2) dh (7.6.3)
0 0
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and

£(s) = J L £(s2,0) d& . (7.6.4)
G
Only positive values of s need be considered.
Substitution of the bivariate Rayleigh probability density for
£(h,2) into (7.6.4) gives

2 2
_ W S 3 _ml+s 2 T K8 2
fsjr) = e f 27 exp( A— 3 )10(2 — L7y da
1 - 1 — I — x
0 (7.6.5)
By substituting
yoloxe 2 (7.6.6)
1 - «x
and
1 + 52
P = (7.6.7)
(7.6.5) becomes
1 - K2 ” -
£(s;x) = — f’y e PY Io(y) dy . (7.6.8)
2k s 0

The integral in (7.6.8) converges if and only if p > I [119]. This ean
be seen from the asymptotic behaviour of Io(y) for large y, given by

{7.5.24) ., The condition p > ! can also be written as
1
s _*s8) (7.6.9)

The numerator is greater than 1 except for s = 1, in which case it
equals 1. The denominator is at most |. Thus, only ifk= 1 and s = 1
does the integral fail to converge. This is to be expected inasmuch

as k = 1 implies that h = & , or s =1, with a probability of 100Z. The
corresponding probability demsity is zero for all s # 1 and it is un-

bounded for s = 1. It is described by Dirac's unit impulse function:
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f(s31) = 8(s - 1) . (7.6.10)

The distribution in this case is the unit step function centred at
s = 1.
If k <1, which will always be the case for actual waves, then
p > 1 for all s, and the integral in (7.6.8) is bounded. It has been
evaluated using section 13.2 from Watson [1id, with the result
«
[ y e P 1(y) dy =
0

(7.6.11)
2 2

(~ - 1)3/
Substitution of (7.6.7) and (7.6.11) into (7.6.8) gives for the p.d.f.

of s

2 s(1 + s

f(s3k) = 2(1 - &) 4 5 o 3/2 . (7.6.12)
{5+ (2 - 4 e)s” + 1}

This equation has been plotted in fig. 7.5 for selected values of

ki For « = 0 it reduces to

28

—_——a . (7.6.13)
(1 + s%?

f(s;0) =

The distribution function F(s;k) can be found by integration of

(7.6.12). It is convenient to transform to a variable g defined

by
q=s . (7.6.14)

The transformed p.d.f. is

1+ g

fae) = (1 - <D, )
{4 + (2 - 4 x")q + 1}

3/2 ° (7.6.15)

which can readily be integrated. The result, transformed back in

terms of s, is
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2
F(s3k) = } + $ . (7.6.16)
20t + (2 - 4 Hs? + 1

For « = 0 it reduces to
2

F(s30) = —— = ! = . (7.6.17)
1+ s 1 + s

Graphs of F(sjx) are given in fig. 7.6.

It is evident from this figure as well as from (7.6.16) that the
median of the normalized steepness does not depend om k; it is alweys
f.

The mean steepness has been evaluated as a moment of £{h,2):

o o0

s = E{g} = I f (h/2) £(h,2) dh 42 . (7.6.18)
0 0
Substitution of (A1.19) and (A1.29) gives

s = E{x) , (7.6.19)

the complete elliptic integral of the second kind of modulus k.
Utilizing the relationship between r and : given in Appendix 1, = is
plotted as a function of XA in fig. 7.7. Eq. (7.6.19) may be compared
to a result given by Bretschneider [83], who in his work on wave
variability referred to in paragraph 4.5.4 considered not only the
wave heights and periods but the steepness as well., He did not de-~
termine its distribution function but only the mean value, with the

result

- 1 5
s =35 -2 Cf -1 s {7.6.20)

which is shown in fig. 7.7. Only for A = 0 and A = 1 da (7.6.19) and
{7.6.20) give the same result. Bretschaneider's derivatiom is based

on knowledge of the marginal distributions of H and LO alone (Rayleigh),
and on the assumption that the mutual regressions of H and L, would
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be linear, while (7.6.19) is based on a bivariate Rayleigh distribu-

tion of H and . It has been shown in Appendix ! that the assumption

}_0
of linear regression is incompatible with the assumption of a bivariate
Rayleigh distribution, except in the limiting cases A = 0 and A = 1.
Therefore, only in these limiting cases is exact agreement between
(7.6.19) and (7.6.20) to be expected. For intermediate values of A the

difference between the two is at most 5Z.

The distribution function F(s;x) may be used to estimate the frac-
tion of the waves for which Hunt's formula would (not) be applicable.
As an example, consider a case in which tan a =1 3 5, ﬁ/fo = .03,
and H and éG are uncorrelated. The critical steepness for the occur—
rence of breaking is given by Iribarren and Nogales' criteriom, eq.

2.3.5, as
_ tan o, 2 2
Sc = (H/Lo)c b ('7.-3——) & 0.19 tar” « » (7.6.21)

which gives 5, =0.19 (0.2)2 = 0.0076. The corresponding normalized
critical steepness is s, = 0.0076/0.03 ~ 0.25. From fig. 7.6 or from
(7.6.17) it can be seen that F{0.25;0)

the example given, Hunt's formula would be applicable to 94% of the

Ny
LT
» 0.06. This means that, im

waves in the wave train.

Comparison with empirical data

The derivations in section 7.5 were based on the following
premisses:
Pt The distribution function of the run—up of waves of perpendicular
ineidence on a plane slope can be determined by assigning to
each individual wave, characterized by a pair of values of height
and period, a run-up according to Hunt's formula.

P2 H and have a bivariate Rayleigh distribution.

L,

The first of these premisses has been partly verified in section

7.3, using laboratory data. The waves in the laboratory had been
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generated mainly with a wave board with a periodic motion, and modified
by wind. The statistical properties of the waves were not gimilar to
those in nature: the variability of the wave heights was much less than
for a Rayleigh-distributed variable, while the period was approximately
constant. It is therefore useful to make additional checks on the vali-
dity of P! for more matural wave conditioms.

Van Oorschot and d'Angremond [1!4] have carried out run-up experi-
ments in the laberatory with irregular waves generated with a programmed
wave board. In addition, a wind with a mean velocity of up to 3m/s was
blown over the water surface. The resulting waves were a much more rea-
listic simulation of natural wind waves than the laboratory waves used
previously. This was checked with respect to the energy spectra, some
of which were in fact modelled on measured North Sea spectra, and with
respect to the wave height distributions., However, no data are given
with respect to the wave period distribution. While the experimental
results therefore cannot be used for a detailed check of the validity
of P1 or P2, it is nevertheless deemed useful to use them for com-
parison with the deductions made from (Pl + P2) in order to obtain an
indication of whether or not the calculated results are realistic.

The main object of the study by van Oorschot and d'Angremond was
the effect of the spectral shape on the wave run-up, in particular the
effect of the spectral width. The parameter ¢ introduced by Cartwright
and Longuet-Higgins (see eqs. 4.4.10 and 4.,4,11) was used as a quan-—
titative measure of the spectral width. (It can be shown [63] that e,
if small, represents the relative root-mean-square width of the spec-
tral denmsity function,) The values of e were computed after cutting
off the high-frequency tail of each spectrum at the frequency at which
the spectral demsity was 5% of the maximum value. As a result, the
actual e-values are considerably underestimated (by about 407 for a
Pierson-Moskowitz or a Neumann-spectrum). This is of no concerm, how-
ever, as in this application there is no compelling reason to use
just ¢ as a measure of the spectral width.

A spectrum which was roughly similar to that given by Pierson—

Moskowitz was used as a reference spectrum; its e-value was 0.453. This
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spectrum was considered to be of medium width. The values of £ in the
other spectra ranged from 0.34 for a narrow spectrum to 0.59 for a
wide spectrum (excluding a case of ¢ = 0.22 in one run in which the
waves were generated entirely by wind, and in which the wave height
distribution was quite different from the Rayleigh distribution, in
contrast to the other runs).

In addition to £ , the following parameters were varied: T, the
period of the spectral component with maximum energy density (0.71s
to 1. 645), 173 the significant wave helght (3.7 e to 13.6 cm);

1/3/gT (4 ¢ x 10 -3 to 12 2x 10 ) d/gT , a relative waterdepth
(1.7 = 10 to 8.1 x 10 ); and tan a (1 ¢ 4 and 1 : 6).

The effects of wave height, wave period and slope angle on the
run—up were found to be adequately expressed by a Hunt-type formula
with a proportionality factor which is given as a function of n, the

exceedance percentage, and of £:

Rn = Cn(e) T f—_;;;-tan a . (7.7.1)
This implies that the shape of the run-up distribution is signifi-
cantly affected by e only, not by the wave steepness, the relative
water depth or the slope angle. It is in agreement with Pl if the
additional assumption is made that the shape of the distribution of
H and T is determined by the spectral shape, as is indeed the case
in the linear approximatiom.

For a comparison of (7.5.40) with (7.7.1), it is necessary that
both equations be expressed in terms of the same parameters. The
characteristic wave period inm (7.5.40) is T, while that in (7.7.1)
is T. The ratio T/T in the laboratory experiments was roughly 1.05,

so that (7.7.1) can be written as

R % 1.05C (e) T VeH 1/3 tan o . (7.7.2)

(It is not known which of the equatioens (7.7.1) and (7.7.2) should be

preferred if §f§¥1.05.) However, the relationship between ¢ and A is
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not known, so that (7.5.40) and (7.7.2) cannot be compared for speci-
fic values of these parameters. For an coverall comparison, the measured
range and the calculated range will be considered. Van Oorschot and
d'Angremond give the values of the coefficient Cn(e) for n = 2Z. It
ranges from 0.57 to 9.73 for 0.34 < e < 0.59. This gives a range of
1.05 02 from (.60 to 0.77 approximately, as compared to the calculated
range of the coefficients in (7.5.44) and {(7.5.45) from (.59 to 0.74.

It appears that the calculated range is realistic.

In a discussion of empirical run-up data reference should be made
to the following formula, which is well known and widely used in the

Netherlands:

RZ = § H}/3 tan @ . (7.7.3)
This equation is nominally valid for a steepness of 0.05 [118]. It is
based partly on the laboratory data already referred to in section
7.3, and partly on unpublished visual observations during storms in
the Yssel Lake and the Wadden Sea [3]. Wassing {118] gives the follo-

wing formulae, based on the laboratory data alone:

7.5 H tan o for H/L = 0.05 (7.7.4)

Ry
and

7 H tan a for H®/L = 0.07 . (7.7.3)

o
(3%
n

H is referred to by Wassing as '"the average height of the .... waves
in the model which did not vary very much". Regarding the transforma-
tion of the latter equations into (7.7.3), Wassing observes:

"Since the waves in the model were proportionally too steep

(resulting in too small values of Rz), the difficulty arose

how to transfer the model results to the prototype. After con-

sidering all the factors involved, it was decided to increase
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the factor 7.5 in the model to 8 in the prototype, for the 27

run-up on & dike with a stone revetment and waves of a steepness

of 0.05. The run—up is thereby expressed in the "significant

wave height" H3/3. In this way the following formula was obtained:
R2/H1/3 = § tan o (for H/L = 0.05)

This formula ..... proved to be in good agreement with the proto-

type observations carried out in the Netherlands for slopes not

steeper than 16 degreas',

The author has elsewhere [3] given a detailed re-analysis of the
laboratory data; it was concluded that these give more support to a
proportionality of the rum~up with TVH tan o than to a proportionality
with H tan o. Reference is made to paragraph 7.3. Furthermore, the
laboratory results cannot unambiguously be transferred to prototype
conditions, even for the same wave steepness, because the statisti-
cal properties of the laboratory waves were very different from those
in natura. Also, the prototype data referred to by Wassing were only
few in number, and they were obtained visually, so that their quan-
titative value is doubtful. (Wave recorders did not yet exist at the
time of the observations.) In summary, it appears that the factual
basis of (7.7.3) is rather weak. The formula is to be regarded as
giving an indication only. (It was not intended to be more when it
was first formulated [3]. But this fact is at present not as well
known as the formula itself.) For this reason it will not be used

as a standard of reference for checking the validity of the calculated
results. At most a rough comparison is appropriate. Eq. (7.7.3) is
nominally valid for a steepness of 0.05. Substituting this value for

¥ into (7.5.44) and (7.5.45) we find

R2 = (6.6 to 8.2) H}/3 tan o for 0 <A <1 .

(7.7.6)

It can be seen that (7.7.3) and {7.7.6) are not mutually exclusive.
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OVERTOPPING

Introduction

The considerations in the preceding chapter concerning the run-up
of waves were based on the tacit assumption that the crest of the dike
was of sufficient height to prevent owertopping. Situations in which
overtopping does occur can also be of major interest; they will be
dealt with in this chapter. The overtopping volumes of water will first
be related to the run-up heights of periodic waves. The result will be
applied in the calculation of the distribution function and the expected

value of the overtopping volumes in random waves.
Overtopping due to periodic waves breaking on a slope

Relation between run~up and overtopping

In chapter 7 reference has been made to a study by Battjes and
Roos [19] concerning certain details of the process of run-up of perio~-
dic, breaking waves. Information was obtained about the variation of
the profile of the water in the uprush and in the downrush on the
slope above S.W.L. as a function of time. The results have been used
in relation to overtopping, although this phenomenon did not actually
oceur in the experiments. A certain hypothetical relation has been

formulated. Before this is given here we need to define a number of

parameters.

(b} Overtapping

Fig. 8.1 - Definition sketeh
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A coordinate axis (x) is chosen, directed upward along the slope,
with the origin at the still-water line (see fig. 8.1). Let ¥(x,t) re-
present the instantaneaous volume of water on the slope above a point
at a distance x from the still-water line, as measured in the run—up
experiments (without overtopping). This function is periodie in t for
periodic waves; its local maximum value is denoted as Ym(x). Further-
more, let B(xc) represent the volume of water which would overtop the
dike during one wave period if the crest were located at x = X s other
conditions being the same. In the following we use volumes per unit
width, so that ¥ and B actually represent areas.

In order to express overtopping quantities (such as B) in terms

of run-up parameters (such as ¥) it was tentatively assumed that

B(xc) = ?E4 . (8.2.1)
X =X
e
The values of Tm should be expressed in terms of the incident wave
parameters. In this regard it is convenient to use the run-up height

according to Hunt's formula as a scaling parameter. It is written
as RH:
RH E VELO tan o . (8.2.2)

The corresponding run-up length along the slope is given by

R, L

gin o cos o

» {8.2.3)

't

which on gentle slopes is nearly equal to ﬁﬁ;; The layer thicknesses
on the slope were experimentally found to be proportional to /ﬁfa:
This led to the expectation that ¥ would be proportional to HLO.
An analysis of the data confirmed this. However, the ratio Wm/HLO was
found to increase with o, approximately in proportion to vtam «, at a

constant value of the fractional distance along the slope defined by

. (8.2.4)

=3
[IH

o [




- 197 -

aic
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Pig, 8.3 — Normalized volume of uprush and of overtopping.
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In other words, the normalized wolume wm’ defined by

¥
v = - , (8.2.5)
HL. vtan o

is approximately a function of n only. The experimental results are
shown in fig. 8.2. A smooth curve has been drawn through the data
points to indicate the trend more clearly. The data have been replotted
as $m versus (! — n) in f£ig. 8.3 on double-logarithmic paper (solid
cirecles). The parameter {1 — n) has been chosen instead of n itself
because {1 -~ n) represents a relative excess of run-up length past the
location on the slope under consideration; it may be surmised that

the normalized volume above this location is more simply related to

{1 = n) than to n itself. Inspection of fig. 8.3 shows that wm is

roughly proportienal to (1 =~ n)z.

The volume which is overtopped in one wave period will be normal-

ized as follows:

b=z —2 (8.2.6)

HLO Ytan o

According to the hypothesis expressed by (8.2.1) we have

b(n ) = men (8.2.7)

_nc

in which
n == . (8.2.8)

If we dénote the crest height of the dike above S.W.L. by Z. (see
fig. 8.1b) then {(8.2.8) is equivalent to

(8.2.9)
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and (1 - nc) then represents a relative excess of run—up height above
crest height.

It should be pointed out that the parameter %m in (8.2.4) depends
on the incident waves through the product HL, only. This is signifi-
cant because the steepness H/L0 was varied considerably in the experi-
ments (from 0.02 to 0.09 approximately). In view of (8.2.2) it implies
that Wm can be expressed as a funetion of the run-up height RH’ for a
given slope angle. The same then holds for the volume which overtops
per wave (B), provided (8.2.1) is true. It should be said that B is
expected to be somewhat underestimated by (8.2.1), because the uprush
in each wave is te a certain extent impeded by the water which is still
on the slope due to the preceding wave, and this is less if overtopping
oceurs than in the absence of overtopping. The effect of this has to be
checked empirically. Even if the hypothesis adopted would not lead
to quantitatively correct results, them it may still serve a purpose

in suggesting suitable normalization factors, i.e. by suggesting that
b= f(nc) s (8.2.10)
in which £ is an unspecified function to be determined empirically.

Empirical data

Experimental results concerning overtopping of pericdic waves
breaking on sloping structures have been presented by Saville [119.
Only the tabulated values for plane slopes will be used here. The
results are given as a mean discharge per unit width, q. It follows

from the definitions of B, g and T that
B=9gqT . (8.2.11)

Values of the normalized volume b were calculated according to (8.2.6).
They have been plotted in fig. 8.3 (open circles). It can be seen that
the normalization which has been adopted does serve to bring the data

in a common range for all the wave steepnesses used in the study and
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for both slope angles (! : 3'and 1 : 6). However, it also shows that
there is considerable scatter. This is a common fact in measurements
of overtopping, which are very sensitive to variations in the input
parameters, particularly for relatively small rates of overtopping.
The mean value of the normalized overtopped volume is roughly given

by the following equatiom,

2
Al - nc) for n, <1

o
]

(8.2.12)

=0 for n. > 1 s

in which A is a coefficient which is of order 10-1.

Inspection of fig. 8.3 shows that the curve indicating the aver-
age $m—values is more or less a lower bound for b in the upper range,
while it represents more nearly a mean value in the lower range. How-
ever, the relation between by and n will not be used in the calcula-
tions to be given in the following section, which are based on (8.2.12)
with A = 0.1. This equatioﬁ is represented in fig. 8.3 by the dashed

line.
Overtopping due to random waves breaking on a slope

Distribution of overtopped volume

In this paragraph we shall consider the probability distribu-
tion of the amount of water passing the crest of a2 dike due to over-
topping by random waves. We denote the instantaneous discharge per
unit width as q(t). This is a stochastic process which is defined for
continuous time. However, for most cases of practical interest the
dike crest is of such height that q(t) = 0 most of the time, even in
storm conditions, so that it is possible to define the occurrences
of uninterrupted flow over the crest {q > 0} as individual overtopping
events. These can usually be ascribed to single waves running up the
slope. In each of the overtopping events a certain total volume of

water is discharged per unit width, written as B. The probability
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distribution of B will be dealt with in the following. It is assumed
that this distribution can be found by aésigning to each wave of the
random wave train an overtopped volume as if it were part of a periodic
wave train. This procedure has been applied by Tsuruta and Geda [120]
for the calculation of the mean rate of overtopping over vertical sea
walls, taking wave height variability into account. It has previously
been discussed by Paape [121], who rejects it on the grounds that it

was observed that not just the highest waves in a randem wave train
cause overtopping. But, as noted in a similar context in the intro—
duction to chapter 7, such a condition is not necessary for the validi-
ty of the hypothesis, which refers to the distribution of the over-—
topping quantities, rather than to individual values. Needless to say,
the validity of the hypothesis must be checked empirically. A prelimi-
nary attempt at such verification is given in paragraph 8.3.3.

It has been shown in the precediﬁg section that for periodie waves,
and for a given slope angle and crest height, there is a relation be-
tween the volume of water overtopping per wave period, and the height
to which the wave would have run up if the slope would have extended
to higher elevations. This relation will be used in the calculation of
the p.d.f. of B. However, equation (8.2.12) as it stands is not suitable
for this purpose, inasmuch as its variables have been normalized with
factors containing the product HLO, which is a2 random variable in random
waves. For this reason (8.2.12) is first put into dimensional form,

using (8.2.2), (8.2.6) and (8.2.9):

B = 0.1'cot3/23 <RH - zc)2 for RH >z,
(8.3.1)
=0 for RH g_zc .

On the basis of (8.3.1) and the above-mentioned hypothesis, the follow-

ing relation is stated for the overtopped volume in random waves:

B = 0.1 cotalza <§H - zc)2 for._gH >z,
(8.3.2
=0 for BH <z, -
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The variables in this equation will now be normalized using non-random

parameters:

B
gz _ = . (8.3.3)
o.1 H LO Ytan o
r= §H R (B.3.4)
YH LO tan a
and
Ze
. S ———————— . (8.3.5)
Vﬁ_fo tan o
This gives
8= x-z) forr >,
(8.3.06)
=0 for r < ¢ .

4]

The probability distribution of § can therefore be expressed in terms

of the probability distribution of the normalized run-up r:

Pr {E_i g} = Pr {.];-..i CC + v’rﬁ_} for B 10
(8.3.7)
=90 for 8 <0 .

This relationship permits the caleulation of F(B) frem F(z) by simply
substituting ¢ = g, * ¥B. The distribution function of the normalized

maximum overtopped volume in a series of N waves ( )} can be obtained

Emax
from that of r in the same manner:
“max

Pr (B SBt=Prir <t +/B) for 820

(8.3.8)
=0 for B < 0.,
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The preceding derivations are based on the assigmment of a certain value
to B for each value of the run-up r. This implies that the cumulative
probability of § must be thought of as the expected ratio of the number
of run-ups resulting in an overtopped volume not exceeding B, to the
total number of run-ups. An alternative would have been to consider the
expected ratio between the number of overtopping events for which the
overtopped volume does mot exceed a certain value, to the total number
of overtopping events. The probability of exceedance of the overtopped
volume in thisrcase could be obtained by dividing the probability of
exceedance of B8, as defined above, by the fraction of the run-up heights
exceeding the crest height, This operation will not be carried out because
the formulation given is more convenient in the applications envisaged,
such as the calculation of the mean discharge and of the expected maxi-

mum overtopped volume per wave during a given time interval.

Mean discharge

The mean discharge over a dike due to overtopping by random waves

will be considered in this paragraph. It 1s defined as
t

£ J 2 ‘q<t) de

-5
g = e, (8.3.9)
ty 7 b

in which (t}, tz) is a time interval which 1s long compared with a
characteristic pericd of the waves, but sufficiently short for the
flow to be quasi-stationary. The denominator inm the right-hand side of
(8.3.9) can be written as NT;, in which ¥ is the number of Tun-ups in
the total time interval (tl’ t2) and Tr is the average time interval
between run—ups. The overtopped volume which results from the ith
run—up (i = 1,2,......8) is denoted as B,. (Most of the Bi-values will
be zero inm practical cases,) We then obtain the following expression

for the mean discharge from (8.3.9):

N
I B _
- =1
=i (8.3.10)
T
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in which B is the average overtopped volume per run—up. {(Note that E-is
not equal to the average of the time-mean discharge per run—up, which
would be equal to ﬁ?@;.) The average value of B will next be calculated
in normalized form as E{gf}.

It follows from (8.3.6) or (8.3.7) that

o

E{g} = J (r - :c)z dF(z) (8.3.11)
L
c
or
2
E{gl =My(z) -2 ¢ M)+ " M(z) , (8.3.12)
in which
M (5) = f ™ dF(r) . (8.3.13)
CC.

In order to obtain quantitative estimates for E{8} we will use the
run—up distributions derived in chapter 7. The general expression for
F{r) based on the bivariate Rayleigh distribution for H and LO is

given by (7.5.21). Substitution of this equation into (8.3.11) and
numerical integration has given the results shown in fig. 8.4 for

k = 0,kx= 0,5 andx= 1. These appear to be very sensitive to variations
in x, particularly for low values of the overtopped volume. This state~
ment can probably be generalized in the sense that the expected quan-—
tity of overtopping is sensitive to the statistical properties of the
incident waves. It also varies strongly with small changes in the rela-
tive crest height, Cc'

It is possible to obtain approximate analytical expressions for
E{E}. Small values of f, are mot of practical interest, as far as over-
topping of earth dikes is conecerned, because for small Z, the dike
would be overtopped quite frequently (with the given NWI, and sea state),
a situation for which dikes are not (yet) designed. This means that

we can usSe the approximations to F(r;x) given by (7.5.26) and (7.5.32),
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eqgs. 8.1
[ identical
and  7.5.2%
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Fig. 8.4 - Calculated mean volume of overtopping per run—up.

provided x is not nearly zero. Substitution of (7.5.26) into (8.3.13)

and integration by parts gives

2
= -5z
. a 21 +x
Mn(gc) v j r de
2/5:
¢ (8.3.14)
_'nccz T 1’2
- n TT * & ® TIEIT ¥ e
= {;Ce +Je ar } -
2vk r
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For n = § the last integral in (8.3.14) need not be evaluated; for
n = 2 it can be evaluated in closed form; for n = 1 it can be trans-
formed to the complementary error function defined by

-

2 -u
erfe(x) = — J e du ' (8.3.15)

)
X

which is extensively tabulated [90]. Substitution of the results in

(8.3.12) gives 2
- ‘e
3/2 2 i + ¥
i N AT I
- Ve 2
for 0 < x, <k <1 , (8.3.16)

inwhich K5 is a limit value of ¥ below which the result no longer
holds with sufficient accuracy (the value of £y depends of course on
the error permitted as well as Oﬂ-CC)- Fork= | the "approximation"
(7.5.26) is identical with the exact expression (7.5.21). It follows
that in this case (8.3.16) is identical with the result obtained by
substituting the original expression (7.5.21) into (8.3.11).

In a similar way we obtain from (7.5.32) and (8.3.12)

1]
<

E{R} %-—i erfc{J‘% Ec} for « (8.3.17)

V2
The approximations (8.3.16) and (8.3.17) can, in fig. 8.4, be com-—
pared with the numerical results based on the exact expression for

F(r;k).

Comparison with empirical data

The derivations in the preceding paragraphs were based on the
application of the expression (8.2.12), for the overtopping volume
in periodic waves, to individual waves in a random wave train; they
were evaluated on the assumption of a bivariate Rayleigh distribu-—

tion of H and Ly The only empirical data known ¢o the author with
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which the results can be compared are those given by Paape [121}, who
presents the results of an extensive laboratory investigation of the
overtopping of dikes with plane slopes by irregular waves. The waves
were generated entirely by wind, over a fetch of 50m. The mean wind
velocity and the mean depth were 8m/s and 0,3m in most runs. The wave
height distribution in the upper ramge deviated somewhat from the
Rayleigh distribution in the sense that relatively high waves occurred
less frequently. No results are given regarding the period distribu-
tions. Thus, just as in the chapter on run-up distributions, the valid-
ity of the hypothesis of equivalency cannot be checked with these
data; the calculated results will be compared to the measurements only
to obtain an indication whether they are somewhat realistic. Such a

comparison is given in fig. 8.5. The experimental data are for dike
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slopes from ! : 3 to 1 ¢ 8 and for wave steepnesses H5O/E0 from G.034

to 0.062. The calculated curves are based on eqs. (8.3.16) and (8.,3.17).
They show the same trend as the experimental data. The curve forwx= 0.5
corresponds approximately to the mid-range of measurements, while that for
k = 0 serves more or less as a lower bound. It is concluded that the
approach which has been developed has the potential of yielding real-

istic results.
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SUMMARY AND CONCLUSIONS

The main problem dealt with in this thesis is the calculation of
certain effects caused by random waves breaking on a slope.

The solution to this problem is greatly complicated by the fact
that wave breaking is a highly nonlinear process. The flow field is
further complicated by far stronger inhomogeneities than those occurring
outside the breaker zone, by air entrainment and by generation of
turbulence. No realistic deductive treatment of it has been developed
so far., Even for the simpler case of periodic waves, empirical knowl-
edge of certain macroscopic properties of the breakers is still an
integral part of calculations relating to the surf zone. An attempt has
been made in this thesis to apply this knowledge in a formulatiom
incorporating the stochastic nature of wind-generated waves.

The computationms are of two distinct categories, those relating
te comparatively gentle slopes and thoserelating to comparatively

steep slopas. A summary of the results will be given in the following.

The computations of the first category, pertaining to gentle
slopes on which the waves break by spilling, are aimed at the estimation
of the variation of the energy of the waves as they propagate towards
the shore, of the radiation stresses, and of the resultant longshore
current velocities and change in mean water level.

The energy variation is caleculated in chapter 5 by clipping a
fictitious wave height distribution, which theoretically would be
present if breaking did not oeeur, at an upper limit which is deter-
mined from an adapted bresking criterion for periodic waves, The
computed results are in fair agreement with measurements carried out
on a plane slope.

Knowledge of the emergy variation permits the radiation stresses
to be evaluated, which in turn are necessary for the calculation of
the set-up and the longshore current velocity profiles. In chapter 6,
examples are given for incident waves with a narrow spectrum and with

a2 wide spectrum (wide in fredquency and direction). If turms out that




- 210 -

the longshore current velocity is semsitive to the width of the direc-
tional energy distribution in deep water. A spreading proportional

to cos2 8, typical for wind-driven waves, gives a reduction of 50%,
compared to a unidirectional wave train with the same mean direction
of propagation and the same frequency spectrum.

A comparison of the calculated set-up profiles with empirical
data has not given conclusive results. Good agreement has been found
with field data, but not with labeoratory data, which locally showed
a systematically smaller rise towards the shore than would be expected
on the basis of the measured or calculated wave height variations.
However, there is some uncertainty with respect to the system used for
measuring the set—up in the laboratory, so that is not known to which

extent the differences are real or apparent,

The second category of computations pertains to plunging breakers,
which occur on relatively steep slopes or for relatively small wave
steepnesses, compared to spilling breakers, Furthermore, breaking by
plunging takes place relatively close to the water line (in terms of
wavelengths), which results in a pronounced up-and-down motion of the
water along the slope.

The largest height above still water level reached by each wave
which runs up the slope is the so~called run-up height. Its distribution
function is caleculated in chapter 7 by assigning to each wave of the
random wave train a run-up according to Hunt's formula for periodic
waves breaking on the slope. This formula contains the slope gradient
and the height H a2nd the period T of the incident waves in a product
of powers, so that the run-up can be normalized in such a manmer that
its distribution function depends on the shape of the joint distribution
of H and T only. The run-up distribution is derived as a functional
of this joint distribution. The potential validity of this approach
is demonstrated by a comparison with laboratory data, which showed
a very good agreement. However, the wave height variability in this
case was less than for natural wind waves, while the wave beridd was

practically constant, Calculations have also been made for the case where
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K and E? are jointly Rayleigh-distributed, which is a better approx-—
imation for wind-driven waves. The available experimental data do not
permit an exact comparison with the theoretical results, but they do
at least jpdicate that the results are realistic.

A similar statement can be made with respect to the mean rate of
overtopping of a dike by random waves, which is determined in chapter 8
from the calculated distribution function of the volume overtopped per
wave. These calculations are based on a relationship between overtopping

and run-up derived from measurements with periodic waves.

On the whole, the comparison of the calculated Tesults with empir-
ical data has not been conclusive in every respect, although generally
speaking the results appear to be promising. The ideas proposed and
elaborated in this thesis can be a.useful guide in interpreting new
experimental data or in setting up new experiments.

Viewing the subject of this thesis in a long-term perspective,
the folloﬁing remark can be made. Methods of dealing with breaking
waves on a macroscopic level, such as have been used here, should
ultimately be replaced by more fundamental descriptions of the bhreak-
ing process, including the aspects of flow separation at the crest,
the entraimment of air and water by the re-entrant flow, and the gener-
ation, transport and dissipation of turbulence. These problems have been
totally neglected up to very recently [122, 123]. The establishment
of knowledge in this area should be one of the long-range goals in the

research pertaining to the problems of waves on beaches or dikes.




- 212 =

ACKNOWLEDGEMENTS

This thesis was prepared while the author was employed at the
Civil Engineering Department of the Delft University of Techmnology.
The encouragement received through the years from the late
Prof.ir. W.C. Bischoff van Heemskerck is gratefully acknowledged.
Mr. XK. Popp of the Fluid Mechanics group wrote the programs for the
numerical computations; his accurate and speedy work is very much
appreciated. Thanks are also due to Mr. R. wan der Klis and to
Mr. H. Remeyn for making the drawings, and to Mrs. J.L. van 't Hof

and to Miss D.H. van Riel for typing the manuscript.




- 213 -

APPENDIX | - THE BIVARIATE RAYLEIGH DISTRIBUTION

The purpose of this Appendix is to give some details concerning
the bivariate Rayleigh distribution, which has been mentioned in
paragraph 4.5 and which has been used in the chapters 7 and 8. It
should be noted that we deal here solely with properties of a theo-
retical distribution without regard to the question of its applica-

bility to wind waves.

The probability density function. The bivariate Rayleigh p.d.f. seems
to have been derived independently by Uhlenbeck [103] and Rice [55]
in studies of the statistical properties of the envelope of a narrow-
band Gaussian process. Consider the complex process

1{w.t = Y.
oyt = )

a. . (Al,1)

1 4

W~

z(t) =
]
The random phases are distributed as usual in the Rice representatiom,
The spectral demsity of z{t) in the limit for n + = and max imj+1 -
wj| + 0 will be denoted by S(w). Rice considers the case in which S{w)
is narrow, with a represeatative midband frequency W e Eq. Al.] can
then be rewritten as

ig t
(e (A1.2)

z(t)

in which

i{(mj = h.)m)t = Eﬂj}

a.e (A1.3)

1

]
Il o134

Z(E) ; 5
is a slowly varying function which modulates the much more rapidly
varying carrier wave eiwmt. |E(t)§ represents the envelope of the
process Re z(t). The values of this emvelope at times (t) and (t + T)

are considered, denoted for brevity by El = |§jt)| and EQ‘= Ig(t + 1)
Their joint p.d.f. can be found from the joint distribution of Re Z(t),

Im z(t), Re Z(t + 1) and ImZ(t + ¢), which is Gaussian in four dimen-
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sions with a covariance matrix which is known in terms of S(w) and

t. The result is

Z}Z Z? + Zg KZEZ2
£(2,,2,) = —~————5 exp {- ————"r] I [~}
P20 20 2% m (1~ k%) O m (1= kD)
1} 0 0
: (Al,5)
for Z} =0
Zy 20
=9 otherwise ,
in which the parameter Kz is determined from
- 2 - 2
mie? = | | S(w) cos (wmu )t du| + | | S(w) sin (w-w )t d
o< = w) cos (w-w )t dw (w) sin {w w2 T dw .
0 0 (A1.5)

Although Rice in his derivation assumes the spectrum to be narrow,
50 that the realizations of the process Re z(t) have a well-defined
envelope, it should be peointed out that this assumption is not actually

needed in the derivation of (Al.4), This can be seen immediately from

the fact that |E(t)| = lgﬂt) . If the spectrum is not narrow then
neither w, mor the envelope of the process Re z(t) is defined, so that
fE(t)[ loses its meaning, but (Al.4) still represents the joint p.d.f.
of |E(t)l and ii(t + 1)}, The fact that w ~appears in the definition
of the parameter x is more apparent than real, since (Al.5) can be

rewritten as

mgxz = J S(m})S(mz)cos(mE-mm)'rcos(mz—mm)'rdwidwz +
0 0
+ J S(wl)S(mz)sin(ml-mm)'{sin(mz—wm)'rdwldw2
0 0
= J J S(wE)S(wz)cos(m]—mz)'rdmldw2 s {Al.6)

g 0
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which does not depend on w + These broader definitions are given here
because they widen the field of potential applications, One can go even
further away from the model of a narrow~band stationary Gaussian process
and consider the joint p.d.f, of X= (Ef + Eg)% and Y = (Xf + Z;)%, in
which X EQ, Y, and 12 are jointly Gaussian in four dimensions, each
with zero expectation, while E{_}_(_I'}_{_z} = 0, E{XI-Y-Z} = 0, E[-}Sf} = E{_)gg},
and E{Xﬁ} = E{K§}~ The variables X and Y taken separately then have a
one-dimensional Rayleigh distribution, while their joint p.d.f. defines

the general two—dimensional Rayleigh p.d., given by

2 2
v - 912_ X (Xfug ™ + (Y/wy)
’ L 77, 3. ®XPTT Y 2
uXuY(.I-m 3 ==
(A1.7)
XY
I (L. XY g
02 1—K2 UY
for X > 0 and ¥ > 0, and £(X,Y) = 0 otherwise, in which
by = E{X} s uy = B{Y} . {A1.8)

. 2 2 .
K2 is the coefficient of linear correlation of X~ and ¥, as will

be shownj therefore, 0 < Kz < 1. We can without loss of generality

assume that
0<wc<l {A1,9)

since (A1,7) is even in X,

Transformation to the normalized variables

x = §jux and y= X/HY (A1.10)
gives
2 2 2
£(x,y) = = by exp £ 7L} T AZESE Y for x>0
P 1= i=x v >0
Tarin

=0 otherwise,
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which is symmetric in x and y. We shall in the following deal exclu-
sively with (Al.11), The explicit expression of the fact that f(x,y) =0

for x < 0 andfor y < 0 will be omitted.

The marginal p,d., functions should of course be given by the one-

dimensional Rayleigh p.d.f.:

£(x) = x exp (- F x%) (A1.12)
and
f(y) = -g- v exp (- {- Yz) . (A1,13)

This can be proved from (Al,11) and the definition of a marginal

p.d.f. by using the series representation of IO(.) [90, eq. 9.6.10]:

P 1 2 j
() = ALEX (A1.14)
=0 (3"

and by integrating termwise.

The moments, defined by
k
Mk£ =E{x y1, (A1,15)

can be evaluated by substitution of (Al,14) and by termwise integratiom,

which gives [53]
k+@ k+2
L = 4
4 2 2 2
ng=(g) (I -x<7

! r(j+1+%) r(j+;+3§-)1<23

S .
(A1.,16)

18

i

Apart from a constant factor, the series in (A1,16) is the expression
for the Gauss hypergeometric series {90, eq., 15.1.1], so that (Al,16)

can be written as
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k+4 k+@
T = ¢!
_ b _ 2 k % k
Mo =& U -« T+ D+ DF G+ 1,
(A1,17)
2 2
T+ L),
or, using the transformation {90, eq. 15.3.3]
F (a,b; c3 z) = (1 - z)c -—a-b F (¢ -a, c = b; ¢; z) ,(Al.18)
21 21
as
k+2
2

r(§+ 1 r(%w DF (-%:—%—; 15 kD) . (AL19)

Expressions similar to {Al.17) and (Al.19) are presented by Middleton
{53], but his eq. 9.22, cotrresponding to (Al.17), contains a mis-
print in the exponent of (1 - Kz)-

The even moments can be expressed as a finite series by utilizing
the fact that the hypergeometric functioné% (a,b; c; z) reduces to a
polynomial of degree m when a or b is equal to ~m (m = 0, 1, 2, ...}

[90 5 eq. 153.4.1 101

m o (-m_ (b)_

(-~m, by c; 2) = ) t i (at,20)
2 Lo @ W
in which
(a)y =1
(a), = ala+ D(a+2) ... (a+n-1) (AL2])

It follows from the definitions and normalizations adopted that
the zero— and first-order meoments are equal te 1. The second-order

moments are given by

2

B(x’} = B{y'} = My, = M, = (A1.22)

ERF-
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and
E{x !} = M % ( iy — 2; 1; K ) (1\!-23)
1} 2 "

The even fourth~order moments are

Bz} = By = =g, = 22 (A1.24)
m
and
By’ = My, = D 0Dy (a1.25)

It can be verified with (A1.22), (Al.24) and (A1.25) that K2 is indeed

the coefficient of linear correlation of 32 and z?, as was stated above,

in view of the applications in the chapters 7 and 8, It is defined by

M - M M
11~ Yo You
LT B S A S (Al.26)
My = Mip) " (Mg — Myp)

which gives
A=t B (A1.27)

The hypergeometric function appearing in (Al,27) can be expressed in
terms of the complete elliptic integrals of the first and second kind,

which have been tabulated, and for which the following equalities hold:

R = FF s 45 15 D) (81.28)
and
BG) = T F (- 4 b 13 6D L (A1.29)

By using a recursive relation between contiguous hypergeometric functions

[90, eq. 15.2.15],
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(c—a—b)fl(a,b; c3 z)+a(I-z);](a+1,b; cy z) -
(A1.30)

-

~(c_—b);1(a,b~l;c;2)=0 s
it follows that
Lo =250 -2a-dHre , @i

so that

E(x) -~ i(1 -~ KZ) K{x) "'E
A m - . . (A1.32)

ki

1 = o

A
This equation seems to have been first given by Uhlenbeck [103}, quoted

in [53]. A plot of A{x) based on (Al,32) is given in fig. Al.1l.

an i
a8 a5 —= K w0

Fig. Al.1 - Coefficient of linear correlation of © and y, as a

Function of .
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Two special cases occur when k assumes its limiting values of

0 or 1, For ¥ = 0 we have E(0) = K(0) = %, so

A=0 1if k=20 . (A1.33)
For «k >~ | we have E{1) = | and lim {1 - Kz) K{k) = 0, so
x>1
Ao=1 if ko= 1 . (A1,34)

These limiting values could be expected from the interpretation of
f(x,y) as the joint p.d.f. of two values of the envelope of a narrow-
band random process, since k = 0 corresponds to 1 > @, and ¥ = I to
T =0 (see eq. Al.5), which implies that values of the envelope are
considered with an infinitely long time interval between them, or
with an interval of zero duration, respectively.

An approximate expression for A(k) which is more easily handled
than (Al.32) can be obtained by using the series representatiomns for

E(k) and K{x) {90, egs. 17.3.11-12]:

o v 130500000 (25=1) 42 2]
R(x) == [ 1+ jX=1 {2_4.6___‘-.-..(2‘%) e (A1.35)
r @ . 2j
E(K) =% I - z {1-73.5.....(2& 1) }2 E‘ﬁfl-_} . (Al.36)
=1 2.0606.....(2) 3 J

This gives after some manipulations

n 2,07 (1352 y2 28 oy

1o = dn 322 4.6.8.....(2§)
It can be seen that A is a non-negative function of k, Thus, two
stochastic variables with a joint Rayleigh distribution caanot be ne-
gatively correlated.

The series in (A1.37) is rapidly converging for K2 < 1, Truncating

it after two terms gives




\ n, T { 2 . Ké + Kﬁ} 1.38
v e~ r K« 1% " el (A1.38)

In order to obtain an explicit expression for « as a function of A, the

series (Al.38) has been inverted, with the result

2 3
x x
2 % A
RN T TTm (41.39)
in which
oo 16 - 4w (A1.40)

The truncation errors involved in the approximations (A!.38) and
{A1,39) are less than 0.1Z for 0 < k < 0.7 and less than 1% for
0 £« < 0,95,

Case of zero correlation, For A = 0, which implies « = 0, (Al.11) re—

duces to

ﬁz T 2 2
£(x,y) = 7~ XV exp {- T &+ ¥y, (A1,41)

which is the product of the marginal p.d. functions £(x) and f(y) gi-
ven by (Al.,12-13). Thus, two stochastic variables with a joint Ray-

leigh p.d, are stochastically independent if they are uncorrelated.

Case of 100%Z correlation. If 100% correlation occurs then the two

variables X and y are linearly dependent. Moreover, x and y are iden-
tically distributed. Therefore, x = y with probability 1 if A = 1, The
two-dimensional p.d, must then be zero for all x # y and be infinite
for x = y, This may be shown formally by investigating the behaviour
of £(x,y) as x + I, To this end, the following asymptotic expression
for ID(.) is substituted in (Al.11) [90, eq. 9.7.1]:

et

-1
() = T {1 +0(t )}, (A1,42)
0 (27t)

After some algebraic manipulations, the result can be written as




2;,,,2
E(,9) » 3 (3;1)% exp (= 5 wri=) {SXP{— '(Xl—y) L )}J as « =+ 1
(ZW)EG *
(A1,43)

in which
2

o = -f; a -3 . (AT.44)

The expression in brackets is formally equal to a Gaussian p.d.f,
with independent variable (x-y), zero mean and variance ¢ - In the
limit for « + 1, which implies ¢ - 0, the Gaussian function defines

Dirac's unit impulse function §(x - y) [54]. Thus,

£(x,y) =5 G9)? exp(- 7 xy) 8(x - y) forx=1 ,  (Al.45)
which is equivalent to
flx,y) = £(x) §{x - y) for ek =1 (Al.46)
and to
f(x,y) = £(y) 8{x - y) for =1 . (A1,47)
Regression lines. The regression of x on y is given by
OIX f(x,y)dx
x_ = Eix = §} = eerr———— {Al,48)
y " Elxly )

The integral which results upon substitution of (Al.11) can be ex-

pressed in known functions by means of [90, eq. 11.4.28]

o b v
—aZe? e r () () 2
J e @ bl 3 (bt)dt = 2 @ e, - 2 (al49)
23" T(w 1) 4a
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in which,JV(.)is the Bessel function of the first kind of order v,
and M(.) is the confluent hypergecmetric function. For v = 0 and

t
b=1i= (~1)% we have

30(1t) = Io(t) . (A1.50)
whereupon (Al1.48) becomes
2 2 2.2
2.4 - 5 3
x, = (1 - 52 exp(*%g-—i) M=, 1, %_5_.3.7._..5) .
I =« I -«
(A1.51)

This expression can be slightly further reduced by applying the follow—

ing Kummer transformation [90, eq. 13.1.27}:

M(a, b, z) = e M(b - a, b, - z) , (A1.52)
which gives
) .22
xg = (1= &) M- 4, 1, - Z"E"ALT? ) (A1.53)
1 -«

The regression of X on y appears to be nonlinear in general. Thus, the
assumptions made by Bretschneider [83] that % and y would have a
bivariate Rayleigh distribution ard that their mutual regressionms would
be linear, are incompatible. An exception must be made for the trivial
cases of stochastic independence and linear dependence of x and y. The
values of Xy should in these cases be ! and y, respectively., They will
be calculated from (Al.53) in order to provide a check on the calcu-
lations.

In the case of stochastic independence we have A = 0, « = 0, which

gives, after substitution in (Al,53),
x. =1 for =0 (A1.54)

as expected., In the case of linear dependence, A = 1, ¢k = 1, Using the
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following asymptotic expression for the confluent hypergeométric

function {90, eqg, 13,5.1]

iTa

M(a, b, z) %'%%%lgmzy z 0 {1+ Oiz}_l)} for |z| + «, z real,
(A1,55)

we find

i K2 2
M= 4, 1, -7 bA 5) - T for k> 1 , (A1.56)
I = ¢ {1 k)

so that

X, =y if o= | s (A1.57)

as expected.
The regression of y on X is obtained by interchanging x and y in
the preceding expressions, because the joint p.d.f. (Al,11) is symmetric

in x and v.
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APPENDIYX 2 - LIST OF SYMBOLS

The most important symbols used in the text are listed below. Vari-
ables which have been used only locally are not listed, nor are those
used in Appendix 1. Some symbols have more than one meaning; it should
be clear from the context which meaning is intended. Vector quantities
have in the text either been indicated by an arrow, or they have been
written in the Cartesian tensor index notation, whichever was most
convenient, In the following list, the atrow symbol is used exclusively

for vectors.

Ai coefficients in the SWOP spectrum (eq. 4.5.10)

a amplitude of z'{t) in harmonic motion

B overtopped volume per unit width due to one wave

b normalized value of B in periodic waves (eq. 8.2.6)

c covariance

C in ch, 6: time-mean volume concentration of air in water

g in ch. 6: depth—-averaged value of C

Ce coefficient for bottom shear stress in turbulent boundary
layer

c, normalized value of R {eq. 7.7.1)

c phase velocity

<y group velocity

Er average velocity of rum-up front from SWL to point of
maximum rup-up

D mean depth

D(w3;8) normalized directional spectral density

g unit vector in the direction of propagation

E mean energy per unit area

EP mean potential energy per unit area

Ek mean kinetic energy per unit area

E{x} expected value of x

F(x) distribution function of x

%=

F (1) approximation to F(r)} given by eq. 7.5.51
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F in ch. 4: fetch

FH in ch. 4: dimensionless fetch (gF/WZ)

f{x) probability density funmection of x

G{w,0) spectral density in frequency-direction space

G'(ﬁ} spectral density in wave number space

g gravitational acceleration

B wave height (height of highest maximum of £'(t) above lowest

minimum between successive zZero-upcrossings)
H1/3 mean value of the highest one—third of the wave heights
Hmax for periodic waves: largest height possible for non—
~breaking, stable wave

Hmax for random waves: largest value of H in a sample
Hnom in ch. 7: nominal wave height of random wave train
HG rms wave height in deep water

! normalized wave height (H/H)

I(,) function defined by eq. 4.5.6

imaginary part of x

wave number vector

Im x

K

k X

K theoretical value of k for wave with period Ty in depth D
L wave length

L0 gTi/ZW

tO gEO/ZW

EO ng/Zn

4 normalized value of L, (£=L0/L0)

M mean horizontal mass flux per unit width
Ve contribution of mean current to M

™ contribution of waves to M

exponent of cos 0 in directional spectrum (eq. 4.5.4)

absolute value of mean-depth gradient (;VDE)

a? CF =1

bottom slope (1Vdf)

mj i=~th moment of S{w) about u=0

N number of zero-upcrossings of £'(t) in a given time interval
Nm number of maxima of r'(t) in a given time interval

n

c /e
8
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n normal unit vector

B mean horizontal energy flux per umnit width

P i

Pr probability

P pressure

Q(ﬁ) source function in spectral emergy balance (eq. 4.3.20)

Q(x) probability of exceedance (Q{x) = I - F(x))

Q calculated fraction of breaking waves at a fixed point

a horizontal particle velocity

q la

R run~up height (maximum height above SWL reached by a wave
which runs up a slope)

RH value of R according to Hunt (eq, 7.2.3): #ﬁfaltan o

Bax largest value of R in a sample

Rgg  normalized median run-up (eq. 7.3.1)

Re Reynolds number

Re % real part of x

b normaltized value of R {eq. 7.4.4)

r in ch, 2: reflection coefficient

r horizontal displacement 7

s in ch. 7: wave steepness (H/LO)

g(m) two—sided spectral density of z'(t)

S{w) one~sided spectral demsity of 7'(t)

Se(w) equilibrium value of S{w)

So{w) value of S(w) in deep water

8ij contribution of unsteady motion to mean flux in xi—direction
of xj-momentum (i=1,2; 3=1,2)

S?j value of Sij in random, long-crested wave train with same
S(w) as given random, short—crested wave system

s coordinate along a wave ray

] in ch. 7: normalized wave steepness (h/%)}

T wave period (time interval between successive zero-upcross-—
ings of rf{t)

T mean value of T in deep water
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Zﬁ/;

time interval between successive maxima of z'(t)

time

travel time of run-up fromt along dike slope, from SWL to
point of maximum run-up

ﬁ/pD

vertically—-averaged mean current velocity (ﬁC/QD)
particle veloelty

x—component of a

component of % parallel to the shore {longshore current
velocity)

normalized value of V (eq. 6.2.34)

y—component of u

mean wind velocity at a £ixed point

g -component of u

coordinate vector

horizontal coordinate

in c¢h, 8: coordinate along dike slope, measured positive
upward from SWL

in ch, 8: RH/sin &, OL: Vﬁfg/cos o

in ch. 8: zc/sin o

horizontal coordinate f(parallel to the shore, if applicable)
vertical coordinate, measured positive upward frem SWL

in ch. 8: height of dike crest above SWL

slope angle with respect to the horizontal

in ch. 4 and 5: proportionality coeff. in equilibrium spectrum
in ch. 8: normalized value of B in random waves (eq. 8.3.3)
coefficients in Pierson-Moskowitz spectrum (eq. 4.5.17)
measure of short-crestedmess of waves (eq. 5.2.39)
height-depth ratio of breaking wave in shallow water

absolute error

relative error

v
Hy /5375




§(+)

é

it

g

max

Ta iRl

~ @ o 3
L]

P

Q © gm@m 9w o <
2 R

-4 Q

~

- 229 -

Dirac distribution

Kronecker delta (eg. 3.3.11)

(iﬂmglmoma)%

total rate of energy dissipation per unit area

rate of energy dissipation per unit area in turbulent
boundary layer at the bottom

elevation of free surface above SWL

value of z'(t) at a maximum

largest value of L, on an interval between a zero-upcrossing
of £'(t) and the next zero-downcrossing

maximum value of L on a beach

height of MWL in stilling well above SWL

in ch, 8: normalized height of dike crest sbove SWL (eq. 8.3.5)
in ch, 8: x/xH

direction of wave propagation with respect to x—axis
value of 8 in deep water

parameter of bivariate Rayleigh distribution (eq. Al.5)
coefficient of linear correlation of H and EO

in e¢h, 2: scale ratio

dyramic viscosity of water

my /igm,

tan a//ﬁ?fg

£ (8)/ /g

tal g

Lo/ /iy

mass density of water

standard deviation

in ch. 3: small parameter, of the order of the wave slope
bottom shear stress

time lag

time interval between successive crossings of a level

n by £t (1)

scalar velocity potentrial

phase
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¥ in ch, 8: volume per unit width stored above a certain
point on the dike slope, during run-up of periodic waves

Y maximum value of ¥ at a figed point

Boy normalized value of ¥ (eq. 8.2,5)

Y in ch. 4: random phase

H /T

2 2w/ 0

s angular frequency

3] value of w for which S(w) reaches its maximum

Abbreviations

MWL mean water level

SWL still water level

p.d.£f. probability density function

TR, 8. or rms: root-mean—square

SubscriEts

refers to bottom

refers to breakpoint

refers to condition of incipient breaking

refers to crest of dike {in ch. 8)

refers to fictitious quantity, calculated without
taking account of wave breaking

refers to value exceeded with probability of nZ

O;hg;_gymbgys

Ml

x{w,0)

-y

x(15,8)

<>

average value of x, in most cases a time average or an
arithmetic average

’average of x(w,8) with respect to (w,8), weighted with
G(w,8)

value of x(w,8) for w=e and B=8

ensemble average of x
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%' () fluctuation of x about its mean value

X stochastic variable




i0.

3.~

12.

- 232 -

APPENDIX 3 - REFERENCES

Hunt, IL.A., Design of seawalls and breakwaters, Proc. ASCE, 85, WW3,
Sept., 1959, p. 123~152,

LeMéhaut&, B., Koh, R.C.Y, and Hwang, Li-San, A synthesis on wave run-up,

Proc. ASCE, 394, WWl, Feb. 1968, p. 77-92,

Technical Advisory Committee on Sea Defences, Golfoploop en golfover-
slag (Wave rum~up and wave overtopping), The Hague, 1972, 184 pages.

(English translation in press).

Longuet-Higgins, M,5. and Stewart, R.W,, Changes in the form of short
gravity waves on long waves and tidal currents, J. Fluid Mech., 8,
pt. 4, 1960, p. 565-583,

Iribarren, C.R, and Wogales, C., Protection des Ports, Section II,

Comm. 4, XVIIth Int. Nav. Congress, Lisbon, 1949, p. 31-80.

Bowen, A,J., Imman, D,L., and Simmons, V.P., Wave "set-down" and set-up,

J. Geoph. Res., 73, 8, 1968, p. 2569-2577.

Miche, R., Le pouvoir r&fl&chissant des ouvrages maritimes exposfs
d l'action de la houle, Ann. des Ponts et Chaussdes, 1213 Annde, 1951,

p. 285-319,

Munk, W.H. and Wimbush, M., A rule of thumb for wave breaking, Ocean-
ology, 9, 1969, p. 56-69,

Miche, R., Mouvements ondulatoires de la mer en profondeur constante
ou décroissante, Ann. des Ponts et ChaussBes, [I4E Annde, 1044,
McCowan, J., On the solitary wave, London, Edinburgh, Dublin Phil,
Mag. J. Sei., 32, 5, 1891, p. 45-~538.

Ippens A.T. and Kulin, G., The shoaling and breaking of the solitary

wave, Proc. 5th Conf. Coastal Eng., Berkeley, Calif., 1955, p. 27-49,

Iversen, H.W., Laboratory Study of Breakers, Nat. Bur. of Standards,

Circular 521, Washington, D.C., 1952, p. 9-32.




13'

14,

16.

17.

18.

19.

20,

21.

22,

23.

24,

25,

26.

- 233 -

Patrick, P.A. and Wiegel, R.L., Amphibian tractors in the surf, Comnf,
Ships and Waves, 1, 1934, p. 397.

Galvin, C.J. Jr., Breaker Type (lassification on Three Laboratory

Beaches, J, Geoph., Res,, 73, 12, June 1968, p, 3651-3659.

Galvin, C.J. Jr., Wave Breaking in Shallow Water, in Waves on Beaches,

Ed. R.E. Meyer, Academic Press, New York, 1972, p. 413-456.

Kemp, P.H., The relationship between wave action and beach profile
characteristics, Proc. 7th Conf. Coastal Eng., The Hague, 1960,
Vol, I, p. 262-277.

Goda, Y., A synthesis of breaker indices, Trans. Jap. Soc. Civ. Eng.,

2, 2, 1970, p. 227-230.

Longuet~Higging, M.S. and Stewart, R.W., A note on wave set-up, J.
Mar, Res,., 21, 1963, p. 4-10.

Battjes, J,A. and Roos, A,, Characteristics of flow in periodic wave
run-up, in press, 1974.

Moraes, Carlos de Campos, Experiments of Wave Reflexion on Impermeable
slopes, Proc. 12th Conf. Coastal Eng., Washington, p.c,, 1970, Vol. I,
p. 509-521.

Yalin, M.S5., Theory of Hydraulic Models, MacMillan Press, 1971,

Longuet~Higgins, M.S,, Recent Progress in the Study of Longshore
Currents, in Waves on Beaches, Ed. R.E, Meyer, Academic Press, New

York, 1972, p. 203-248.

Longuet-Higgins, M.8., Mass transport in water waves, Phil. Tramns. Roy.

Soc. London, A, 245, 903, 1953, p. 535-581.

Batchelor, G.K., An introduction to fluid dynamies, Cambridge University

Press, 1967,

Stokes, G.G., On the theory of oscillatory waves, Mathematical and

Physical Papers, I, Cambridge University Press, 1880.

Biesel, F,, Equations approchBes de la refraction de la houle, Proc.

i1ith Conf. Coastal Eng., Lisbon, 1964, p. 55-69,




27,

28.

29,

30,

31

32.

33.

34,

35.

36,

37.

38.

- 234 -

Battjes, J.A., Refraction of water waves, Proc, ASCE, 94, WW 4, 1968,
p. 437-451.

Webster, A.G., Partial differential equations of mathematical

physics, Dover Inc., New York, 1966.

Bretschneider, C.L. and Reid, R.0., Changes in wave height due to
hottom friction, percolation and refractiom, U.5. Army Corps of

Engineers, B.E.B., Tech, Mem. 45, 1954.

Phillips, 0.M., The Dynamics of the Upper Ocean, Cambridge Univ,
Press, 1966,

Dorrestein, R., On the deviation of the average pressure at a fixed
point in a moving fluid from its 'hydrostatic’ value, Appl. Sci.

Res., A, 10, 1961, p. 384-392,

“onguet-Eiggins, M.S. and Stewart, R,W., The changes in ampliitude
of short gravity waves on steady non-uniform currents, J. Fluid. Mech.,

10, 1961, p. 529-549,

Longuet-Higgins, M.S. and Stewart, R.W., Radiation stress and mass
transport in gravity waves, with applications to "surf-beats”,

J. Fluid Mech., 13, 1962, p. 481-504,

Longuet-Higgins, M.S. and Stewart, K.W., Radiaticn stresses in water
waves} a physical discussion, with applications, Deep—Sea Res., 11,

1964, p. 529-562.

Longuet-Higgins, ¥,5., On the Wave-induced Difference in Mean Sea
Level Between the Two Sides of a Submerged Breakwater, J. Mar.

Res., 25, 2, 1967, p. 148-153,

Dorrestein, R., Wave set-up on z beach, Proc, Second Techn. Conf.
on Hurricanes, June 1961, Miami Beach; Washington, D.C., 1962,

o, 230-241,

Lundgren, H. Wave thrust and wave energy level, Proc, IAHR Congress,-

London, (963, p. 147-151,

Bowen, A,J,, Rip Currents, l. Theoretical Investigations, J.

Geoph, Res., 74, 23, 1969, p. 5467-3478.




39.

40,

41,

42,

43,

44,

45,

46,

47.

48,

49,

50,

- 235 -

Longuet-Higgins, M.S$., Longshore currents generated by obliquely

incident sea waves, J. Geoph. Res., 75, 1970, p. 6778-6801.

Galvin, C.J., Longshore current velocity: A review of theory and

data, Rev, Geoph,, 5,3, 1967, p, 287-304,

Bowen, 4,J., The generation of longshore currents on a plane beach,

J. Mar. Res., 27, 1969, p. 206-215,

Thornton, E.B., Longshore current and sediment transport, Tech. Rep. 3,
Dept., of Coastal and Ocean. Eng,, Un., of Florida, Gainesville,

Florida, [969 (see also Préc. {2th, Coaf. Coastal Eng., Washington
D.C,, 1970, vol, I, p. 291-308),

Bakker, W.T., Littoral drift in the surf zome, Report WWK 70-16,
Rijkswaterstaat, Directorate for lydraulic Research, Department for

Coastal Research, 1970.

Jonsson, 1.G., Wave boundary layers and friction factors, Proc. I0th

Conf. Coastal Eng., Tokyo, 1966, p. 127-148.

Bijker, E.W., Some considerations about scales for coastal models

with movable bed, Delft Hyéraulics Lab, Publ. 50, 1967,

Bakker, W.T., Bottom friction and velocity distributien in an
oscillatory flow, Memo 72-23b, Rijkswaterstaat, Directorate for water
management and hydraulic research, Dept. for coastal research,

The Hague, Jan. 1973,

Mazure, J,P., De berekening van getijden en stormvloeden op beneden-
rivieren {(Computation of tides and storm surges in estuaries),

The Hague, 1937,

Bowden, K.F., Note on wind drift in a channel in the presence of

tidal currents, Proc. Roy. Soc., A, 219, 1953, p, 426-446,

Weenink, M.P,H., A theory and method of calculation of wind effects
on sea levels in a partly-enclosed sea, with spacial application to

the southern coast of the North Sea, K,N,M.I., Med. en Verh., 73, 19538,

Doob, J.L., Stochastic Processes, John Wiley & Sons, Inc., New York,

1853,




51.

52,

53.

54,

35.

56.

57.

58,

59.

60,

61.

62.

63.

64.

- 236 -

Cramér, H., Random variables and probability distributioms, Cambridge

Univ, Press, 3d ed., 1970.

Bendat, J.S5., Principles and Applications of Random Noise Theory, John

Wiley & Sons, Inc,, New York, 1958,

Middleton, D,, An Introduction to Statistical Communication Theory,

McGraw~Hill Book Comp. Ine,, N.Y., 1960.

Lighthill, M.J., Fourier Analysis and Generalised Functioms, Cambridge

Univ. Press, 1959,

Rice, $.0., Mathematical Analysis of Random Noise, Bell System Tech.
Journ., 23, 1944, p, 282-332 and 24, 1945, p. 46-156.

Cramér, H,, Mathematical Methods of Statistics, Princeton Univ. Press,

1946,

Longuet-Higgins, M.5., On the statistical distribution of the heights of
sea. waves, J. Mar., Res. XI, 3, 1952, p. 245-266,

Cartwright, D.E. and Longuet-Higgins, M.S,, The statistical distribution
of the maxima of a random function, Proc. Roy. Soc. London, A, 237, 1956,
p. 212-232,

Cartwright, D.E,, On estimating the mean energy of sea waves from the

highest waves in a record, Proe. Roy. Soc. London, A, 247, 1958, p. 22-48,

Longuet-Higgins, M.S,, The statistical analysis of a random, moving

surface, Phil, Trans. Roy. Soc. London, A, 249, 966, Feb. 1957, p. 321-387.

Rayleigh, Lord, On the resultant of a large number of vibrations of the
same pitch and of arbitrary phase, Phil, Mag., X, 1880, p. 73-78,(also
in: Scientific Papers, Vol, I, p. 491-496),

Pierson, W.J., Wind-generated gravity waves, in Advances in Geophysics,

2, 1955, p. 93-178,

Cartwright, D.E., Analysis and Statisties, in The Sea, Ed, M.N. Hill,
Vol. I, 1962, Interscience Publishers, p. 567-589,

Longuet-Higgins, M.5., On the transformation of a contimuous spectrum

by refraction, Proc., Cambridge Phil. Soc., 53, 1957, p. 226~229,




B5.

66.

67.

68.

69.

70.

71.

72,

73.

T,

75,

76,

- 237 -

Cotlins, J.I., Prediction of shaliow-water spectra, J. Geoph. Res., 77,

11, 1972, p. 2693-2707,

Putz, R.R., Statistical analysis of wave records, Proc. 4th Conf. Coastal

Eng., Berkeley, Calif., 1954, p. 13-24,

MacKay, J.H., On the Gaussian nature of ocean waves, Eng. Exp. Sta.,
Georgia Inst. Tech., Atlanta, Ga., Internal Tech. Note 8, 1959 (quoted

in Kinsman, [681).

Kinsman, B., Wind Waves, their Generation and Propagation on the Ocean

Surface,Prentice~Hall, Inc., Englewood Cliffs, WN.J., 1963,

Koel#é, L.A. and de Bruyn, P,A,, Statistical Distribution of Wave Heights
in Correlation with Energy Spectrum and Water Depth,Proe. llth Conf,
Coastal Eng., Lisbon, 1964, p. 123-139,

Collins, J., Wave statistics from hurricane Dora at Panama City, Florida
Proc. Specialty Conf, on Coastal Eng., Santa Barbara, Calif., 1965, p.
461-485,

Longuet-Higgins, M.S5., The effect of non-linearities on statistical
distributions in the theory of sea waves, J, Fluid Mech., 17, 3, Nov.

1963, p. 459-480.

Longuet-Higgins, M.S., Modified Gaussian distributions for slightly
nonlinear variables, Radio Science, 68D, 9, Sept. 1964, p. 1049-1062,

vugts, J.H., Wave spectra: measered samples and their representation
for theoretical predictions, Report EP-42516, Shell Exploration and

production, May 1971, 22 p.

McFadden, J.A., The axis—crossing intervals of random functions, Trans.

Inst, Rad. Engrs., IT~2, 1956, p. 146-150,

Ly
McFadden, J.A., The axis-crossing intervals of random funections II,

Trans. Inst., Rad. Engrs., IT-4, 1958, p., 14-24.

Ehrenfeld, S. et al, Theoretical and observed results for the zero and
ordinate crossing problems of stationary Gaussian noise with applica-
tion to pressure records of sea waves, N.Y. Univ., Coll. Eng., Tech.

Rep. 1, Dec, 1958,




7.

78.

79.

80.

8t.

82.

83.

84,

85,

86.

87.

88.

89.

- 238 -

Longuet-Higgins, M.5,, On the intervals between successive zeros of a

random function, Proc. Roy. Soc. London, A, 246, 1958, p. 99-118,

Longuet—-Higgins, M.S.,, The distribution of intervals between zeros of
a stationmary random functiom, Phil. Trans. Roy, Soc. Lendon, 1047, 254,

May 1962, p. 557-599,

Longuet-Higgins, M.S., Bounding Approximations to the Distribution of
Intervals between Zeros of a Stationary Gaussian Process, in Time Series

Analysis, Wiley & Sons Inc., 1963, p. 63-88.

Goda, Y., Numerical Experiments on Wave Statistics with Spectral Simula-

tion, Rep. Port and Harbour Res. Inst. 9, 3, Sept. 1970, p. 3-57,

Taylor, G.I., Diffusion by continuocus movements, Proc, London Math.

Soc., Ser. 2, 20, 1921, p, 196-211,

darber, N.F., Ocean waves and swell, Lecture publised by the Inst. of

Civil Engrs., London, 1950,

Bretschneider, C.L,, Wave Variability and Wave Spectra for Wind Generated

Gravity Waves,U.S5, Army Corps of Engineers, B.E.B., Tech. Mem. 118, 1959,

Goodknight, R.C. and Russell, T.L., Investigation of the statistics of
wave heights, Proc, ASCE, 89, WW2, May 1963, p. 29-34.

Hess, G.D., Hidy, G.M. and Plate, E.J., Comparison Between Wind Waves

at Sea and in the Laboratory, J. Mar, Res,, 27, 2, 1969, p. 216-225.

Svasek, J.N., Statistical Evaluation of Wave Conditions in a Deltazic
Area, Symp. Res. on Wave Action, Delft Hydraulics Lab., 1949, Vol. I,
paper 1.

Titov, L.F., Wind~Driven Waves, Israel Program for Scientific Trans-—

lations, Jerusalem, 1971,

Jahns, H.0. and Wheeler, J.D., Long-Term Wave Probabilities Based on
Hindcasting of Severe Storms, Fourth Annual Offshore Techn. Conf.,

Houston, Texas, May 1972, paper 1590,

St. Denis, M, and Pierson, W.J,, Jr., On the motioms of ships in con-

fused seas, Trans. Soc. Naval Arch. and Mar. Eng,, 6!, 1953, p. 280-357.




90.

91.

92.

93.

- 94,

95.

96.

g7.

98.

99,

100.

- 239 -

Abramowitz, M, and Stegun, I.A,, Handbook of Mathematical Functions,

Dover Publications, Inc., N.Y., 1963,

4th Iat. Ship Structures Congress, Tokyo, 1970, Report Committee 1,

Environmental Conditions.

Barber, N.F., Finding the direction of travel of sea waves, Nature,

174, 1954, p. 1048-1050.

Cote, L.J. et al, The directional spectrum of a wind generated sea as
determined from data obtained by the Stereo Wave Observation Project,

New York, Univ., Coll. Eng., Meteor. Papers, 2, 6, June 1960.

Longuet-Higgins, M,S., Cartwright, D.E. and Smith, N,D., Observations
of the directional spectrum of sea waves using the motioms of a
floating buoy, in Ocean wave spectra, Proc, of a Conf., Prentice-Hall,

Inc., Englewcod Cliffs, W.J., 1963, p. 111-136,

Krylov, Yu, M,, Strekalov, 5.5. and Tsyplukhin, V.F., Investigation
of the two-dimensional energy spectrum and of the wavelength of wind-
induced waves, Izvestia, Atm, and Ocean Phys., &, 6, 1968, p. 660-670
(English transl. p. 376-381).

St, Denis, M., On wind generated waves, in Topics in Ocean Engineering,

Gulf Publ, Comp., Texas, 1969, p. 3~41,

Nemann, G., On occean wave spectra and a new method of forecasting wind-
generated sea, U,5. Army Corps of Engineers, B.E.B., Tech. Mem., 43,

1953,

Strekalov, S,S5.,, Determination of the analytic form of the energy
spectrum of a fully arisen sea, Okeanologiya, !, 3, 1961 {quoted in

Titov [87]).

Pierson, W.J., Jr. and Moskowitz, L., A Proposed Spectral Form for
Fully Developed Wind Seas Based on the Similarity Theory of S.A.
Kitaigorodskii, J. Geoph. Res., 69, 24, Dec, 1964, p. 5181-3190,

Davidan, I.N., The dependence of the probability characteristies of

waves on wind, in Sbornik "Teoreticheskie i prakticheskie voprosy




101.

102,

i03.

104,

105,

106,

107.

108.

109.

110,

i1t,

- 240 -

morekhodnosti sudov." Izdatel'stvo "Transport", 1967 (quoted in

Titov [87]).

Phillips, O.M., The equilibrium range in the spectrum of wind-generated

waves, J. Fluid Mech., 4 1958, p. 426-434.

Strekalov, 8.8., Tsyploukhin, V.Ph. and Massel, S5.T., Structure of sea
wave frequency spectrum, Proc. 13th Conf, Coastal Eng,, Vancouver,

B.C., 1972, p. 307-314.

Thlenbeck, G.E., Theory of random process, MIT Radiation Lab. Rep. 454,
1943 (quoted in Rice [53]).

Fréchet, M., Sur les tableaux de corrélation dont les marges sont données,

Comptes Rendus de 1'Acad, des Seiences, Tome 242, 1956, p, 2426-2428,

Battjes , J.A., Radiation stresses in short~crested waves, J. Mar. Res.

20, 1, 1972, p. 5664,

Nagata, Y., The Statistical properties of orbital wave motion and their
application for the measurement of directional wave spectra, J, Ocean

Soc. Japan, 19, 1964, p. 169-181,

Yefimov, V.V, and Khristoforov, G.N., Spectra and statistical relations
between the velocity fluctuations in the upper layer of the sea and
surface waves, Izv., Atmospheric and Oceanic Physies, 7, 12, 1971,

p. 1290-1310 (English translation p., 841-851),

Ijima, T., Matsuo, T. and Koga, K,, Equilibrium Range Spectra in
Shoaling Water, Proc. [2th Conf., Coastal Eng,, Washington, D.C., 1973,
Vol., I., p. 137-149.

Collins, J.I., Probabilities of Breaking Wave Characteristics, Proe,

12th Conf. Ccastal Eng., Washingtonm, D.C,, 1970, Vol, I, p. 399-414,

Batties, J.A., Set—up due to irregular waves, Proc. 13th. Conf. Coastal

Eng., Vancouver, B.C., 1972, Vol, ILL, p. 1993-2004.

Skjelbreia, L., Gravity waves—Stokes’third order approximation— Tables

_of functions, Council on Wave Research, California, 1959.




112,

113,

114,

i3,

i16.

117.

1i8.

1i9,

120.

121,

122,

123.

- 241 -

Saville, T., An approximation of the wave run-up frequency distribution,

Proc. 8th Conf. Coastal Eng., Mexieo, 1962, p, 48-59.

Pierson, W.,J., Jr, and Holmes, P., Irregular Wave Forces on a Pile,

Proc. ASCE, 91, WW4&, Nov. 1965, p. 1-10.

van Oorschot, J.H. and d'Angremond, K,, The effect of wave energy spectra
on wave rum~up, Proe, 11th Conf. Ccastal Eng,, London, 1968, Vol. II, p.
888-~900.

Saville, T.,, Laboratory data on wave run-up and overtopping on shore

structures, U,S, Army Corps of Engineers, B.E.B., Tech. Mem. 64, 1955,

Battjes, J.A,, Run-up distributions of waves breaking on slopes, Proc.

ASCE, 97, WWI, Feb. 1971, p. 91-114,

Hosoi, M. and Shuto, N., Run-up height on a single slope dike due to

waves coming obliquely, Coastal Eng. in Japan, 7, 1964, p. 95.

Wassing, F., Model investigations of wave run-up on dikes carried out
in the Wetherlands during the past twenty years, Proc. 6th Conf. Coastal
Eng., Galnesville 1957, p, 700-714.

Watson, G.N., A Treatise on the Theory of Bessel Functions, Cambridge

University Press, 1966,

Tsuruta, S. and Goda, Y., Expected overtopping discharge of irregular
waves over sea wall, Proc. !lth Conf. Coastal Eng., London, 1968, Vol.

1, p. 833-852,

Paape, A., Experimental data on the overtopping of seawalls by waves,

Proc, 7th. Conf. Coastal Eng., The Hague, 1960, vol., 2, p. 674-681.

Longuet-Higgins, M,S5., A model of flow separation at a free surface,

J, Fluid Mech., 57, 1973, p. 129.

Banner, M.L. and Phillips, 0.M., On small scale breaking waves,

Chesapeake Bay Institute, Tech. Rep. 82, July 1973.




- 242 -

SAMENVATTING

Het probleem dat in dit proefschrift wordt behandeld is de bere-
kening van een aantal effecten, teweeggebracht door windgolven die
breken op eem hellende ocever. Tot deze effecten behoren de verhoging
van de gemiddelde waterstand (opstuwing) en de opwekking van een
brandingsstroom door golven bii stranden, en de oploop en overslag van
golven bij dijken.

Het proefschrift bestaat uit twee delen. Het eerste deel bevat
sen samenvatting van basiskennis die nodig is voor de in het tweede

deel omschreven berekeningen.

Het eerste deel begint in hoofdstuk 2 met een overzicht van een
aantal kemmerkende eigenschappen van golven op hellingen, gezien als
functies van de golfsteilheid en de taludhelling. Het doel hiervan
is sen gelntegreerde visie te geven op het onderwerp in zijn totaliteit,
zodat de delen ervan in 8&n kader kunnen worden gezien. Vervolgens wordt
in de hoofdstukken 3 en 4 een résumd gegeven van een aantal begrippen
en resultaten betreffende hydrodynamische en stechastische aspecten

van zeegolven.

Het tweede deel is gewijd aan de berekeningen van de in de aanhef
genoemde effecten. Het feit dat het gaat om brekende onregelmatige
golven bemoeilijkt de berekeningen in hoge mate., Het hreken van golven
is een sterk niet—lineair proces, dat bovendien vergezeld gaat van
luchtopname en turbulentie. Een enigszins realistisch deductief model
is er tot op heden niet voor ontwikkeld. Zelfs in het geval van
periodieke golven zijn de berekeningen betreffende de brekerzdne
tot nu toe voor een belangrijk deel gebaseerd geweest op empirische
kennis van macroscopische eigenschappen van de brekers., In het proef-
schrift worden rekemmogdellen gegeven waarin deze kennis is geincorpo-
reerd, en waarin tevens recht wordt gadaan aan het stochastische
karakter van windgolven, De problemen aangaande golven op relatief
flauwe taluds (stranden) en op relatief steile taluds (dijken) worden

apart behandeld.
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In hoofdstuk 5 wordt ingegaan op de energie dissipatie in onre-
gelmatige golven die zich voortplanten in water van langzaam afnemende
diepte. In de berekeningen wordt sen fictieve golfhoogteverdeling,
die theoretisch aanwezig zou zijn indien breken niet optrad, afgekapt
bij een bovengrens die is ontleend aan een brekingseriterium voor regel-
matige golven. Met afnemende diepte neemt deze bovengrens af, en
neemt het percentage brekende golven toe, Op deze wijze wordt een
continue variatie gevonden van de golfenergie met de diepte. De bere-—
kende resultaten stemmen behoorlijk goed overeen met metingen die zijn
verricht op een flauw hellend, vlak talud.

Als de golfenergie eenmaal bekend is kan de hoeveelheid beweging
worden herekend die door het golfveld op de gemiddelde stroming wordt
overgedragen, Deze 1s op zijn beurt bepalend voor de opstuwing van
de gemiddelde waterstand en voor de aandrijving wvan de brandingsstroom.

In hoofdstuk 6 worden hiervoor rekenresultaten gegeven, bij inval-
lende golven met een smal energie spectrum en bij invallende golven met
een breed energie spectrum (in frekwentie en richting). De snelheid
van de brandingsstroom is gevoelig voor de verdeling van de golfenergie
over de richtingen. Bij een verdeling die kenmerkend is voor zeegang
op diep water is de brandingsstroomsnelheid ongevear de helft van wat
hij zou zijn indien de energie in de gemiddelde richting was
geconcentreerd,

Een vergelijking van de berekende opstuwing met empirische
gegevens heeft niet tot een eenduidige conclusie geleid., Weliswaar
was er een goede overeenstemming met metingen in de natuur, maar de
resultaten van metingen in het laboratorium gaven plaatselijk een
systematiéch kleinere opstuwing te zien dan zou mogen worden verwacht
op grond van de berekende of gemeten golfhoogten. Er is echter enige
onzekerheid aangasnde het systeem waarmee in het laboratorium de
opstuwing is gemeten, zocdat het niet bekend is in hoeverre de

afwijkingen reéel zijn.

De hoofdstukken 7 en 8 hebben betrekking op relatief steile taluds,

die kenmerkend zijm voor dijken. Op dergelijke taluds breken de
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golven dicht bij de gemiddelde waterlijn, hetgeen resulteert in een
aanzienlijke op- en neergaande beweging van het water langs de
Iheiling.

De grootste hoogte boven het stil-water nivesu, bereikt door een
golf die tegen het talud oploopt, heet de oploophoogte, of kortheids-—
halve de oploop. De verdelingsfunctie ervan is in hoofdstuk 7 berekend
door aan elke golf van de onregelmatige goiftrein, pgekemmerkt door
een combinatie van hoogte H en periede T, een oploop toe te kennen
overeenkomstig de formule van Hunt, die geldt voor periocdieke
golven die breken op het talud. De oploop verdeling wordt gegeven als
een functionaal van de simultane kansdichtheidsfunctie van H en T. Dat
dit tot geldige resultaten kan leiden blijkt uit een vergelijking
met enige laboratorium metingen, waarmee esen zeer goede overeenstem—
ming werd gevonden. In de proeven vertocanden de golfhoogten echter
veel minder spreiding dan in de natuur, terwijl de periode vrijwel
constant was, Er zijn ook bherekeningen gemaakt voor het geval dat H en

I? een samengestelde Rayleigh-verdeling hebben, hetwelk voor =zeegang

een betere benadering is. De beschikbare empirische gegevens zijn niet
geschikt voor een exacte vergelijking met de berekende resultaten,
maar zij geven wel een duidelijke iadicatie dat deze resultaten
realistisch zijn.

In hoofdstuk 8 wordt de overalag van onregelmatige golven over
een dijk behandeld. Eerst wordt uit metingen met periodieke golven
een betrekking afgeleid tussen oploop en hoeveelheid overslag. Door
deze betrekking toe te passen op een onregelmatige golftrein kan
de verdelingsfunctie van het per golf overslaand volume worden uit-
gedrukt in die van de oploop. Hieruit kan het gemiddelde overslag-
debiet worden bepaald. Voor het geval dat I en I? een samengestelde
Rayleigh-verdeling hebben worden expliciete resultaten gegeven. Een
vergelijking hiervan met meetgegevens 1s in beperkte mate mogelijk;
hieruit kan worden geconcludeerd dat de gevonden uitkomsten een

behoorlijk realiteitsgehalte hebben.






