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STELLINGEN

De in dit proefschrift gegeven berekening van het snelheidsprofiel van
een brandingsstroom, aangedreven door onregelmatige golven, is uit te
breiden met de turbulente horizontale uitwisseling van hoeveelheid
beweging. Er mag echter verwacht worden dat het effect hiervan gering
zal zijn.

II

De door Longuet-Higgins en Stewart gegeven definitie van de "radi-
ation stress" in staande golven bevat de over de diepte.gelntegreerde
drukverhoging overeenkomend met de door de golven teweeggebrachte
verandering van de over de tijd gemiddelde waterstand. Dit is
niet logisch, en ook niet consistent met de door deze schrijvers gege-
ven definitie en toepassingen van de "radiation stress" in lopende
golven.
(M.S. Longuet-Higgins en R.W. Stewart, Deep-Sea Research, |_~1, |964,
p. 529-562).

III

In Nederland moeten betere mogelijkheden worden gerealiseerd voor het
verrichten van metingen in de natuur ten behoeve van fundamenteel
onderzoek van de beweging van water en zand bij stranden.

IV

Voor een wetenschappelijk verantwoorde vaststelling van ontwerp-
criteria voor zeedijken is destructief onderzoek van prototypen
onontbeerlijk.

V

Publicaties van resultaten van waterloopkundige proeven op schaal
dienen in ieder geval de model-waarden te bevatten, en niet slechts
de tot het prototype omgerekende waarden.



Vl

De modelwetten die door Yalin en Russell zijn afgeleid voor het op
verkleinde schaal nabootsen van sediment transport door golven zijn
niet geschikt voor praktische toepassing, in tegenstelling tot wat
door deze auteurs wordt gesuggereerd.
(S. Yalin en R.C.H. Russell, Proc. 8th Conf. Coastal Eng., Mexico,
|962, p. |5|-|67).

Vll

Volgens de conventionele opvatting vindt de energie overdracht in
trocholdale zwaartekrachtsgolven uitsluitend plaats door advectie
van potenti~le energie. Er is echter een alternatieve benadering
mogelijk, waarin de energie overdracht geheel bestaat uit her ver-
mogen geleverd door de druk. Beide opvattingen hebben recht van
bestaan.

Vlll

Het feit dat de.groepssnelheid van zwaartekrachtsgolven op diep water
de helft is van de fasesnelheid wordt veelal "uitgelegd" door gebruik
te maken van het feit dat de potenti~le energie de helft is van de
totale, en door te stellen dat de potenti~le energie met de golfvorm
zou mee bewegen. Deze uitleg geeft een fundamenteel verkeerd beeld
van het mechanisme van de enemgie overdracht.in golven; het is slechts
bij toeval dat hij voor de genoemde categorie tot een numeriek
juist resultaat leidt.

IX

In beschouwingen over zandtransport door golven langs een kust wordt
veel gebruik gemaakt van een grootheid die men pleegt te noemen
"the longshore component of the energy flux per unit length of
shoreline"; dit is een onbestaanbaar begrip.

Her onderwijs in de mechanica van golven is bij uitstek geschikt om een
bijdrage te leveren tot de verwezenlijking van de derde doelstelling
van het wetenschappelijk onderwijs, n.l. het bevorderen van het
inzicht in de s~menhang der wetenschappen.
(Wet op her Wetenschappelijk Onderwijs, art. |).



Xl

Het is een misvatting te menen dat alle universitaire studenten lid
moeten kunnen zijn van een vakgroep volgens de Wet Universitaire
Bestuurshervorming |970.

Xll

Medische specialisten die hun beroep uitoefenen in ziekenhuizen doen
dit veelal als vrije ondernemers~ en niet in dienstverband. Aan
deze situatie, die meer in het persoonlijk belang is van de specia-
listen dan in dat van de pati~nten of van de Nederlandse gezondheids-
zorg in bet algemeen, dientzo spoedig mogelijk een einde te worden
gemaakt.

XIII

Het zou tot de gewone omgangsvormen moeten behoren dat men in een
gesloten ruimte niet rookt dan na zich ervan te hebben overtuigd
dat hiertegen bij eventueel overige aanwezigen geen bezwaar bestaat.

J.A. Battjes
maart |974
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INTRODUCTION

The impingement of wind-generated water waves on seashores

is a phenomenon which is of great interest, not only because of the

aesthetic, sportive and other pleasures which may be derived from it,

but also from the professional viewpoint of coastal enEineers,

often have reason to consider the power released by the waves on the

shores with some concern. The latter is particularly true if the sea

is bordered by a beach of sand or gravel, or by a man-made dike

or seawall.

Beaches can serve functions in the recreational sphere as well

as in the context of flood protection; both functions generally demand

that beach stability should satisfy certain minimum requirements.

Similarly, the structural integrity of dikes or seawalls should be

maintained if these structures are to perform satisfactorily.

The stability of beaches and dikes can be affected by a number

of factors. In many cases the effects of wind-generated waves are

relatively important or even predominant, and it is fitting that this

is reflected in the pertinent research which is carried out.

Past investigations have partly been aimed at the effects of

a given, stable beach or structure on an incident wave train. The

results obtained from such studies can serve as boundary conditions

for subsequent investigations of the response of beach or dike to the

waves, or they may be of interest in other contexts, regardless of

the effects on stabilit~ The subjects have included wave-induced

longshore currents and changes in mean water level ("set-up") on

beaches as well as run-up and overtopping on dikes. These are of

importance in various engineering applications.

The majority of the investigations up to the present have been

restricted to regular waves; this is a major drawback since the

results should be applied to wind-generated waves, which are essentially

irregular.

This thesis deals with the problems of calculating the effects

mentioned above, taking the random character of the waves into account.



The solutions to these problems are not trivial, since wave breaking

is almost invariably involved in the processes of wind-wave motion

on beaches or dikes. Wave breaking is a highly nonlinear phenomenon,

the details of which are not well understood. An approach based on the

details of the water motion in the breakers is therefore not (yet)

practicable. The approach used in the following utilizes empirical

knowledge of the gross characteristics of periodic breaking waves, and

represents an attempt to use this knowledge in a formulation in which

moreover those elements are incorporated which are deemed essential to

a description of irregular waves. Non-breaking waves are not considered

extensively since these are not nearly as com~non as are breaking

waves on beaches or on sea-dikes exposed to wind-generated waves.

The main body of this thesis has been divided into two parts.

Part I, "Phenomenological, hydrodynamic and probabilistic description

of waves", contains basic information which is necessary for the comput-

ational models outlined in Part II, "Computation of set-up, longshore

currents, run-up and overtopping".

Part I is made up as follows. In chapter 2 a description is given

of the characteristic features of waves incident on a plane slope, as

functions of the wave steepness and the slope angle. The primary

purpose of this chapter is to provide an integral view of the total

subject matter, so that the elements into which it can be divided can

be seen in a proper perspective. Chapter 3 summarizes the necessary

hydrodynamics; it includes a r~sum~ of the theory of sinusoidal pro-

gressive waves, as well as equations for the effects of waves on a mean

flow, with a summary of previous calculations of set-up and longshore

current velocities due to periodic waves. The stochastic aspects of

wind-generated waves are reviewed in chapter 4.

Part II consists of the chapters 5 through 9. In chapter 5 the

effects of the irregularity of the waves on the radiation stresses

are considered, both outside the surf zone, where the waves are

treated as a linear superposition of independent sinusoidal spectral

components, and inside the surf zone, where the nonlinearities of the



breaking process cannot be ignored. The results of chapter 5 are

applied in chapter 6 for the calculations of the set-up and longshore

currents induced by irregular waves. In these chapters the bottom

slope is assumed to be gentle. The run-up and overtopping of irregular

waves on relatively steep slopes is considered in the chapters 7 and 8.

A summary of the results is given in chapter 9.

Following part II, three appendices ~rovide auxiliary information.

In Appendix I, various properties of the bivariate Rayleigh probability

density function are given. Appendix 2 contains a list of symbols,

while the references are listed in Appendix 3.
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2 CHARACTERISTIC FEATURES OF REGULAR WAVES ON PLANE SLOPES

2.|     Introduction

The purpose of this chapter is to provide necessary general

background information as a preliminary to the more detailed analy-

ses in following chapters. To this end the major features of the

propagation of waves onto a slope will be mentioned in broad terms.

A situation will be considered with the simplest possible geometry

and boundary conditions aompatible with this end, i.e. a rigid,

plane~ impermeable slope extending to deep water or to water of con-

stant depth from which periodic, long-crested waves are approaching.

The wave crests are in general assumed to be parallel to the depth

contours. Oblique incidence is mentioned only briefly.

The motion will be assumed to be determined wholly by the slope

angle s (fig. 2.1), the still water depth d and the incident wave

height H at the toe of the slope~ the wave period T, the acceleration

of gravity g, the viscosity ~ and the mass density O of the water;

g, ~ and ~ are assumed to be constants. Effects of surface tension

and compressibility are ignored.

Fig. 2.1 - Definition sketck

Let X be any dimensionless dependent variable, then

H d
X = f(~, gT2 , gT2 , Re), (2.1 .I)
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in which Re is a typical Reynolds number. An equivalent formulation

is

in which

H d
x = f(a, LO , L0 , Re) (2.1.2)

L0 = 2nT~- , (2.1.3)

i.e. the deep-water wavelength of small-amplitude sinusoidal, long-

crested gravity surface waves with period T. The ratio H/L0 is a

wave steepness, if we define this parameter in a generalized sen-

se as the ratio of a wave height to a wave length. Various steep-

nesses will be used in the following; the precise definition will in

each case be given in the context.

2.2 Phenomenolo$ical description

In this section the major flow regimes which can be established

by regular waves incident on a plane slope will be considered as

functions of the independent parameters in the right-hand side of

(2.1.2). We shall be mainly concerned with the changes brought about

by variations in slope angle and wave steepness. The relative depth

d/L0 is of far smaller influence, particularly if the waves are

breaking on the slope [I-3], while the Reynolds number is assumed to

be larger than some minimum value above which variations in its ac-

tual value do not significantly affect the resultant motion. At

first only the variation of the flow with the slope angle ~ will be

considered. Thus, until further notice it is assumed that the inci-

dent wave parameters are kept constant.

For sufficiently large ~ the waves do not hreak and there is

almost complete reflection, unless the incident (progressive) waves

are only marginally stable. The resultant motion is highly orga-

nized and can be described by deterministic analytical theories ap-

propriate for standing waves. The amplitude of the vertical motion



of the waterline (intersection of water surface and slope facing) is

of the same order of magnitude as the incident wave height; it in-

creases with decreasing slope angle. Due to nonlinearities both the

mean position of the waterline and the position midway between the

maximum and minimum elevation are above the still water level

(S.W.L.).

For values of ~ decreasing below some critical limit, which is

dealt with in par. 2.3.1, the waves are no longer stable and breaking

sets in. This is accompanied by aeration of the water and the irre-

versible transformation of o~ganized wave energy into turbulent en-

ergy~ which greatly increases the total rate of energy dissipation.

The reflection diminishes as a result, and the motion approaches

that of a progressive wave.

The amplitude of the vertical motion of the waterline reaches

a maximum for slope angles for which the transition occurs from non-

breaking to breaking. It decreases with decreasing ~ below this tran-

sition value. The mean elevation of the waterline above still water

level also decreases, but at a lower rate, so that it increases rela-

tive to the variable part of the run-up.

The character of the breakers also varies with the slope angle.

The major distinction is between plunging and spilling breakers.

This is described in some detail in par. 2.3.2. In plunging breakers

the wave profile and the particle motions vary drastically within

relatively short distances and time intervals. These variations are

much more gradual in spilling breakers, which can occur on gentle

slopes only.

The flow in breaking waves is highly complex and does not lend

itself to a detailed deterministic treatment. However~ provided the

overall properties vary only gradually, the relationships between

various flow parameters can in a first approximation be assumed to

be the same as for stable waves in water of constant depth. This

approach is restricted to gentle slopes, and particularly to spilling

breakers; St cannot reasonably be applied in the area of rapid wave

deformation occurring in plunging breakers.
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Outside the breaker zone the dissipation of energy occurs main-

ly in the laminar or turbulent boundary layers at the bottom and at

the free surface, and to a smaller extent in the remaining parts of

the water. This consumes generally only a minor portion of the inci-

dent wave power, the bulk of which is dissipated in the surf zone.

However, for very low values of ~ all of the incident wave power is

dissipated gradually~ so that wave breaking does not occur.

So far the properties of the oscillatory flow have been empha-

sized. However, the mean flow is also of interest. This is affected

by the oscillatory motions, which give rise to a change in the time-

averaged flux of momentum. These additional fluxes have been called

radiation stresses [4], and appear as surface stresses in the equa-

tions of motion for the mean flow. One of their effects is a slight

depression of the mean water level in shoaling waves outside the

breaker zone and a set-up inside the breaker zone. Another effect

is the generation of a mean longshore current in the surf zone by

obliquely incident waves.

In the preceding description the slope angle was the only inde-

pendent variable which was varied. We shall next consider the

effects of varying H/LO. Low values of this parameter give rise to

non-breaking, almost sinusoidal standing waves. With increasing

values of H/L0 (at constant ~) a sequence of flow regimes is estab-

lished which in the main correspond to those described above for

decreasing values of ~ (at constant H/L0). An illustration of this

is afforded by the fact that for a considerable range of values of

~ and H/L0 a number’ of f!ow parameters appears to be a function of

the similarity parameter ~ only, defined by

IHILo

(2.2.1)

Thus, insofar as this is true, the slope angle and the wave steep-

ness need not be known separately for the determination of these

parameters. A paramount example is the breaking criterion given by
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Iribarren and Nogales [5], which is expressed in terms of ~ only.

In section 2.3 special attention will be paid to this criterion,

and to the r$le and interpretation of the parameter ~ in general,

because of its relevance to this study.

Several of the phenomena mentioned above are amenable to ap-

proximative calculations. This holds particularly for non-breaking

waves, which can be described by means of deterministic analytical

theories. Most of these imply an irrotational oscillatory main flow

with laminar Or t~rbulent boundary layers at the bottom and at the

free surface, with a superimposed weak rotational mean velocity

field. On gentle slopes the local effects of the bottom slope can

be neglected, so that locally constant-depth-solutions can be applied.

These are connected in such a manner that the wave frequency is con-

served and that the energy balance, integrated vertically and over

one wave period, is fulfilled. In this manner the main cumulative

effects of the bottom slope are accounted for.

2.3

The regimes mentioned above can be broadly divided into three

categories:

(a) non-breaking, standing waves;

(b) breaking, progressive waves;

(c) non-breaking, progressive waves (on very mild s!opes).

Not all of these are of equal relevance to this study, which is

aimed primarily at waves breaking on beaches or dikes, as has been

pointed out in the Introduction. Cases (a) and (c) are therefore

excluded from further consideration. Additional information con-

cerning case (b) is given in the following section.

Characteristics of surf

The purpose of this section is to provide some of the details

omitted from the rather general and mainly qualitative consider-

ations of section 2.2~ insofar as these details are related to waves
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breaking on a slope. Many characteristic properties of the surf ap-

pear to be governed by the parameter ~ defined by (2.2.|), which may

therefore be called the~surf-similarity parameter. Its r$1e will

receive special attention in the following pages. The importance of

~ has also been noted by Bowen et al [6], though with a more re-

stricted scope than is given here, and without an attempt at inter-

pretation.

2.3.1 Breaking criterion

We shall in this paragraph discuss three criteria for the oc-

currence of wave breaking on a slope.

Iribarren and Nogales [5] have given an expression for the

condition at which the transition occurs between non-breaking and

breaking of waves approaching a slope which is plane in the neigh-

bourhood of the still-water line. They use ahe shallow-water tro-

choidal theory for uniform, progressive waves. According to this

theory, progressive waves are at the limit of stability if their

amplitude (~H) equals the mean depth (d). Thus, denoting the con-

dition of incipient breaking by the index

The depth d at which this would occur is equated by Iribarren and
c

Nogales to the mean undisturbed depth in the one-quarter wavelength

adjacent to the still-water line (see fig. 2.2), or
dc = ~(~! | Lc     tan ec) = ~ Lc tan ~c.

(2.3.2)

The wavelength L
c

is calculated as Tc ~, so that
dc = ~ Tc

tan ~c (2.3.3)
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Fig. 2.2 - Breaking depth according to !ribarren

and Nogales.

Elimination of d between (2.3.1) and (2.3.3) gives
e

(T g~tan ~)c = 4/~

or, substituting (2.1.3) and rearranging,

(2.3.4)

(tan__a) = 4 ~ 2.3 . (2.3.5)$c = /V~0c    ~

Laboratory experiments by Iribarren and Nogales and others [I ,7]

have confirmed the validity of (2.3.5), with the proviso that

g ~ 2.3 corresponds to a regime about halfway between complete re-

flection and complete breaking. This quantitative agreement is con-

sidered to be fortuitous because one can raise valid objections

against the derivation on several scores. These pertain to the numer-

ical estimates used by Iribarren and Nogales, rather than to the ap-

proach as such. For instance, the limiting height for waves in shal-

!ow water is given by (2.3.1) as twice the depth, which is unrealis-

tic. A height-to-depth ratio of order one seems more reasonable. Also,



the wave height at incipient breaking is the height of a standing

wave, i.e. roughly twice the height of the incident wave, instead of

one times this height, as implied by Iribarren and Nogales. Thus,

instead of (2.3.|) it is preferred to write

2~ = d (2.3.6)
c     e

in which H is the height of the incident wave for conditions of in-
c

cipient breaking. Furthermore, the depth dc is equated by Iribarren

and Nogales to the depth at one-eighth wavelength from the still-wa-

ter line. It seems to be more logical to choose the depth at one-

half wavelength distance, since that location corresponds to the

first antinode seaward from the shore (see fig. 2.3). This gives,

instead of (2.3~.2),

dc = !2 Lc tend ac           "
(2.3.7)

Lastly, the length Lc/4 in (2.3.2) is calculated by Iribarren and

Nogales on the basis of the phase speed corresponding to the mean

Fig. 2.3 - Breaking depth at location of antinode.

depth (dc) in the interval considered, whereas it is more accurate

to base it on the harmonic mean of the phase speed in this interval.

This £ollows from the fact that it is the phase difference A~ across



the interval which is the determining factor. It is given by

i
I dx

(2.3.8)a~ =    k(x)dx = ~    o(x) ’

in which k is the wave number, m is the angular frequency (2z/T)

and x is a horizontal coordinate perpendicular to the still-water

line. Putting c = Rand x = d cot ~ integrating from d = 0 to

d = dc, and equating the result to ~ (in view of eq. 2.3.7) gives
cot ec dc~7~= ~ .

(2.3.9)

After some rearrangement this can be written as

(2.3.~o)tan ~c ~

which replaces (2.3,3). Elimination of d between (2.3.6) and
c

(2.3.10) gives (2.3.5). The fact that this result is exactly the

same as that originally giyen by Iribarren and Nogales is consider-

ed to be significant only insofar as the original result had been

confirmed empirically. The agreement between the calculated results

merely shows how certain variations in a set of numerical factors

can just compensate for each other in the end. This, together with

the fact that the factors used by Iribarren and Nogales are consid-

ered to be not quite realistic, seems to justify the statement that

it may have been accidental that the result they obtained is as

good as it is now known to be.

The preceding derivations suggest a physical interpretation of

the parameter ~, at least if wave breaking occurs (~ < $c). Consider

the local steepness of the breaking waves. Their celerity is pro-

portional to (gd)~, their wavelength to T(gd)~, and their steepness

to H/(T(gd)}), or to (H/gT2)~, since H/d i’s of order one for waves

breaking in shallow water. Thus, the parameter ~, given by



- 13-

tan ~     1    tan ~ (2.3.11)

is roughly proportional to the ratio of the tangent of the slope

angle (the slope "steepness") to he local steepness of the break-

ing wave. The criterion for breaking given by Iribarren and Nogales

can therefore be said to imply that incipient brewing corresponds

to a critical value of this ratio.

Munk and Wimbush [8] give a different derivation of a breaking

criterion than Iribarren and Nogales, though the result is very

similar. They argue that the downslope component of the particle

acceleration cannot exceed g sin ~, and that breaking sets in if

this limit value is attained. An expression for the critical condi-

tion is obtained by equating the maximum do~nslope acceleration in

harmonic motion with frequency ~= 2~/T, and with vertical 8/nplitude

A (at the slope), to g sin a:

(~2A ) = (2.3.12)sin ~ c g sin ec

In their discussion of this equation, Munk and Wim~ush implicitly

equate A to the amplitude of the incident (progressive) wave. How-

ever~ it seems to be more logical to set it approximately equal to

the height H of the incident wave, since we are dealing with the

limiting conditions for the ~xistence of a stand~ing wave. On this

understanding, and wlth substitution of (2.1.3), eq. (2.3.12) can be

transformed into

(sin ~) = 2�~n 2.5 (2.3.13)

It can be seen that the criteria (2.3.5) and (2.3.13) are roughly

equal, except on very steep slopes. It may be wondered to which ex-

tent the derivations have a cow,non base, although they are quite

different when considered superficially. It has already been remark-
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ed that the criterion given by Iribarren and Nogales corresponds to

a critical value of the ratio of the slope angle to a local wave

steepness. This is closely related to the criterion adopted by Munk

and Wimbush, for the occurrence of a maximum downslope acceleration

equal to g sin ~ implies a zero pressure gradient parallel to the

slope facing, which means that the maximum water surface slope equals

the structure slope (or, that the angle B indicated in fig. 2.3 is

zero). Thus, whereas Iribarren and Nogal~s implicitly relate the

structure slope to a wave steepness (height-length ratio), Munk and

Wimbush relate it to a local surface slope. The correspondence be-

tween the two is obvious.

The kinematical criterion B = 0 has been used previously by

Miche [9], who applies it to his linear, potential-flow solution for

periodic, standing waves on a plane slope extending to deep water.

The resulting breaking criterion is

H0 . 2 ~

in which H0 is the height of the incident waves at deep water. This

equation contains an’additional factor proportional to ~, compared

to (2.3.13). This is due to. the fact that Miche takes account of the

calculated ratio between amplitude at the slope and incident wave

height:

A = ~ (2.3.15)

Empirical data indicate that Miche’s equation (2.3.14) is valid

as a criterion for the onset of breaking [7]. It differs in this

respect from (2.3.5) and (2.3.|3), which more nearly correspond to

conditions halfway between just-not-breaking and "complete" breaking.

It has been noted above that the basis for Miche’s criterion

(B = 0) is equivalent to the one used by Munk and Wimbush (maximum

downslope acceleration cannot exceed g sin ~). Interestingly enough,
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if the critical incident wave steepness given by (2.3.]4) is substi-

tuted in Miche’s equations for the wave motion, then it appears that

the maximum downslope acceleration would be 2g sin e. The discrepan-

cy is due to the approximations in the linear theory~ which is in-

adequate for a good description of waves at the limit of stability.

The preceding criteria for the incipient breaking of standing

waves on a slope are to be distinguished from criteria for the limit

of stability of waves propagating without change of shape in water

of constant depth. This limit is generally supposed to be attained

if the particle speed at the crest equals the phase speed. Miche [7]

has given the following result for periodic waves:

H~ = __ (2.3.16)

which in shal!ow water reduces to

H
(~)max = 0.]4 x 2~ ~ 0.88 , (2,3.]7)

while the limiting height of a solitary wave is given by McCowan

[10] as

(~)max = 0.78 . (2.3.18)

Theoretically, these equations cannot be expected to indicate whether

waves advancing and deforming on a slope will break, but it turns out

that they are in fair agreement with measured H/d-values at the

breakpoint of periodic, spilling breakers (see paragraph 2.3.3). The

fact that this is true even for the theoretical solitary-wave result

is fortuitous~ since it has been shown that solitary waves breaking

on slopes have a H/d-ratio at breaking considerably in excess of

0.78, even on slopes as gentle as 1 : 50 [II].
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2.3.2 Breaker types

So far the parameter ~ has been considered only in the context

of a breaking criterion, that is, as an aid in answering the ques-

tion whether wave breaking will occur. However, it also gives an

indication of how the waves break. The main types are surging, col-

lapsing, plunging and spilling breakers []2 - 14]. These occur in the

order of increasing wave steepness and/or decreasing slope angle.

They are illustrated in fig. 2.4.

A wave which surges up and down the slope with minor air en-

trainment, at the base only, is said to be a surging breaker [14].

With increasing steepness of the incident waves the front face of

a surging wave advancing on the slope gradually steepens. It may be-

come vertical and lose its stability over the lower portion, after

which the wave collapses. The so-called collapsing breaker was in-

troduced as a separate type by Galvin []4]. In previous breaker clas-

sifications []2, ]3~ it was included in the category of surging

Breakers, which were then more broadly defined. However, in the more

restricted definition proposed by Galvin, as well as in a photo-

graph presented by him [15], the surging breakers are so much like

standing waves that it seems hardly justified to call them ’%reakers’~

In plunging breakers the crest becomes strongly asymmetric; it

curls over, enclosing an air pocket~ a£ter which it impinges on the

trough water ahead. It imparts s~me forward momentum to this trough

water, entraining air and generating turbulence in the process. The

water motion in the impact area is not at all wave-like in appearance.

However, some distance shoreward from this area a travelling bore is

formed, carrying the relatively small wave momentum and energy which

is left after the plunge. With increasing wave steepness and for

decreasing slope angle the crest of a plunging breaker becomes less

asymmetric, and the forward-projected jet of water from the crest

becomes less and less pronounced. Its point of impact moves closer

to the point of detachment, i.e. it moves from the trough to the

sloping fa~e of the breaker; the violence of the impact thereby
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spiHing

Fig, 2,4 - Breaker types a8 a function of ~.
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decreases. The enclosed air pocket diminishes in size, and for suf-

fiently steep waves and gentle slopes the air pocket and the jet of

water emanating from the crest are no longer identifiable. One then

speaks of spilling breakers. The wave form as a whole in these

breakers is fairly stable, since the zone of instability is confined

to the crest region. The wave-energy dissipation takes place much more

gradually than in plunging breakers.

It is clear from the preceding description that there is a grad-

ual transition from one breaker type to another. It would therefore

be meaningless to try to pinpoint precise combinations of H/L0 and ~

delineating regions in which one or another of the breaker types oc-

curs. The values mentioned in what follows should be considered as

indicating the order of magnitude only of the values in the transi-

tion ranges.

Galvin [14] has presented criteria regarding breaker types in

terms of an "offshore parameter" H0/(L0 tan2~), in which H0 is a

deep-water wave height calculated from the motion of the generator

bulkhead and the water depth, and an "inshore parameter"

Hb/(gT2 tan ~). The index "b" refers to values at the break point,

which generally is taken to be the most seaward location where some

point of the wave front is vertical, or, if this does not occur, the

location where foam first appears at the crest.

Galvin’s offshore parameter can be written as ~g2, in which

the index "0" refers to deep water (wave height). Converting the

critical values of the ~ffshore parameter given by Galvin to values

of ~0 gives

surging or collapsing if ~0 > 3.3

plunging if 0.5 < ~0 < 3.3

spilling if
~0 < 0.5

(2.3.19)

These results are based on experiments on slopes of I :

and I : 20.

The inshore parameter used by Galvin, Hb/(gT2 tan ~), is not

equivalent to the parameter ~b used here. However, a re-analysis of

data in terms of-D ~- = (}L/L0)-~ tan ~ showed that the class-Galvin’ s



-

ification of breakers as plulging or spilling could be performed
equally well with ~b as with Galvin’s inshore parameter. The results

are given in fig. 2.5. The following approximate transition values

may be noted:

surging or collapsing if ~b > 2.0

plunging if 0.4 < ~b < 2.0

spilling if ~b < 0.4

(2.3.20)

Fig. 2.5 - Breaker type classification bassd on Galvin’s

data [14].

The possibility of using a parameter equivalent to ~b as a breaker

type discriminator has also been noted by Galvin in a recent review

of breaker characteristics [|5].

Fig. 2.4 gives some fairly typical profiles across the surf

zone for a number of values of ~. The incident wave steepness has

been chosen fairly large in all eases for better legibility of

the figure. The variation of ~ has been obtained mainly by varying

the slope angle. Inspection of the figure shows that not only the

form of a breaking wave varies with ~, but the distance of the

break point from the mean water line as well. This distance, ex-

pressed in wavelengths, is estimated at roughly (db cot~/(~T ~)

~ 0.8 $~I, where we have put Hb ~ dh. Observations by the author on

slopes between I : 3 and | : 25, with t-values from 0.15 to 1.9,

have indicated that this estimate is qualitatively correct, but

that it is roughly 20% too high. With spilling breakers there are
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at least two breaking or broken waves in the surf zone simulta~

neously. This number ranges from zero to two for plunging breakers.

Collapsing breakers occur almost at the instantaneous water’s edge,

so that there is at most one of these present at any one time. Ref-

erence should be made in this connection to Kemp [16], who points

out that the total phase difference across the surf zone is indic-

ative of the type of wave motion, and of the corresponding equilib-

rium profile of sand or shingle beaches.

2.3.3 Breaker height-to-depth ratio

The ratio of wave height to water depth at breaking is an im-

portant parameter of the surf zone; it is here denoted by the s~mbol

(2.3.21)

The depth db is here defined as the still-water depth at the break

point.

Values of Yb generally range between 0.7 and 1.2. Bowen et al

[6] suggest that Yb may be a function of ~0 only. The data presented

by them are given in fig. 2.6. In addition, data have been p!otted

from Iversen [|2], frem Goda [~7], and from unpublished results

gathered for this study. It can be observed that the results from

Bowen et al [6] form a separate group, outside the range of the

others. The reason for this is not knowm. The other points in fig.

2.6 show a weak trend with ~0" For values of ~0 less than about 0.2,

in the range of spilling breakers, they are scattered about a value

of Yb ~ 0.8, while there is a slow increase with ~0 for higher

values. According to Galvin [14], depth-to-height ratios at break-

ing (y~) of ~.2, 0.9 and 0.8 are typical for spilling, plunging and

collapsing breakers. The first two of these values are consistent

with the results presented in fig. 2.6.

The scatter in the results may partly be due to the fact that

for this purpose the independent variables H/L0 and ~ cannot ade-
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O5
0O5

Fig. 2.6 - Breaker height-to-depth ratio.

quately be combined in the single parameter ~. However, even values

presented by various authors for the same values of ~ and H/L0 show

considerable scatter. This is undoubtedly to some extent due to the

difficulties and ambiguities inherent in defining (experimentally)

and measuring breaker characteristics. Another factor contributing

to the scatter may be the occurrence of parasitic higher-harmonic

free waves which are often inadvertently generated along with the

intended wave train. The secondary waves affect the breaking process

in a manner depending on the phase difference with the primary wave,

which in turn depends (among others) on the distance from the wave

generator. This distance is not commonly introduced as an independent

variable, so that any effects which it may have on the results can

appear as unexplained scatter.

2.3.4 Set-up, run-up and run-down

The subjects of set-up and run-up will receive extensive treat-

ment in the chapters 3, 6 and 7. For this reason they will only

briefly be mentioned here.

The set-up is defined as the wave-induced height of the mean

level of the water surface above the undisturbed water level. The-

oretical and experimental results [6, ]8] indicate that the gradient
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2.3.5

of the set-up in the surf zone on gently sloping beaches is propor-

tional to the beach slope; the coefficient of proportionality is a

function of y, the average height-depth ratio of the waves in the

surf zone. The maximum set-up is calculated from this in par. 3.4.1.

It is roughly equal to 0.3 ¥

The run-up height R is defined as the maximum elevation of the

waterline above the undisturbed water level. It is generally deter-

mined empirically. A simple and reliable empirical formula for the

run-up height of waves breaking on a smooth slope has been given by

Hunt [I]. It can be written as

R
~-- $ for 0.[ < ~ < 2.3 . (2.3.22)

An investigation by Battjes and Roos [19] of some details of the

run-up of breaking waves on dike slopes (I : 3, I : 5, ! : 7), such as

the mean velocity of advance, particle velocities, layer thickness

and so on, has shown that many of the~e parameters are functions of

~ only if normalized in terms of the incident wave characteristics.

Measurements of the run-down height (minimum elevation of the

waterline above the undisturbed water level) are very scarce, and, if

available, not very accurate since run-down is rather il!-defined

experimentally. An analysis of the measurements by Battjes and Roos

[~9], supplemented with unpublished data gathered for this study,

i~dicates that in the experimental range (cot ~ = 3,5,7,10;

0.02 < H/L0 < 0.09; 0.3 < ~ < ~.9) the ratio of run-down height to

run-up height is roughly equal to (! - 0.4 ~). In other words, the

ratio of the variable part of the vertical motion of the waterline

to the maximum elevation (above S.W.L.) is approximately 0.4 ~. It

has a maximum value of about ! for waves in the transition from non-

breaking to breaking, and decreases with decreasing $. For very small

~ the set-up constitutes the greater part of the run-up height.

Reflection. and absorption

The relative amount of wave energy that can be reflected off a
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slope is intimately dependent on the breaking processes and the

attendant energy dissipation. Because of this, and in view of the

fact that these processes appear to be governed to such a large ex-

tent by the parameter $, it is natural to try to relate the reflec-

tion coefficient to $. The reflection coefficient r is defined as

the ratio of the amplitude of the reflected wave to the amplitude of

the incident wave. The estimation of r on a slope generally takes

place according to a procedure given by Miche [7]. The theoretical

reflection coefficient is set equal to ! for non-breaking waves.

For breaking waves Miche assumes that the reflected wave height

equals the maximum height possible for a non-breaking wave of the

given period on the given slope; in other words, only the energy

corresponding to the height in excess of the critical height is

assumed to be dissipated. This gives

(H0/Lo)c
rth = ~ if this is less than

(2.3.23)

otherwise,
in which (H0/L0)c is the critical steepness for the onset of break-

ing, according to Miche’s formula (2.3.14). The index "th" refers

to "theoretica!". The actual reflection coefficient will be smaller

than rth due to effects of viscosity, roughness, and permeability.

Miche recommends a multiplication factor of 0.8 for smooth slopes.

Miche’s assumption regarding the reflection coefficient can be

expressed in terms of ~ and Iribarren and Nogales’ breaking criteri-

on. Substitution of (2.2.1) into (2.3.23) gives

rth
= (~i~)2

= I

if this is less than

otherwise~

(2.3.24)

in which $c is the critical value of ~ for the onset of breaking,

as distinguished from ~c’ the value given by Iribarren and Nogales
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for the condition halfwaz between the onset of breaking and com-

plete breaking (~e ~ 2.3). According to Hunt [|], the reflection

coefficient corresponding to ~ = 2.3 is about 0.5, so that (2.3.24)

becomes

r ~ 0.! ~2 if this is less than

= I otherwise.

(2.3.25)

An extensive series of measurements of the reflection coefficient of

plane slopes has recently been presented by Moraes [20]. His results

for slopes with tan e = 0.|0, 0.|5, 0.20 and 0.30 are given in fig.

2.7.

Fig. ~.? - Reflection coefficient vs wave steepness, for various

slope angles.

Also shown.are the curves according to (2.3.25), and to (2.3.23)

combined with (2.3.!4). These equations give almost identical re-
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sults for the three smallest values of tan ~. Only for tan ~ = 0.3

do they differ significantly. Eq. (2.3.25) gives the best agreement

with the experimental data. Applying the reduction of 20% to Miche’s

theoretical refleetion coefficients would improve the agreement of

his formula with the data for the 0.3 slope, but would worsen it for

the others.

A replotting of M~=aes’ data |) in terms of r vs ~ is presented

in fig. 2.8. The experimental points for the four slopes more or less

0.75

050

15 20 25 30 35

Fig. 2,8 - Reflection coefficient vs ~.

coincide with each other and with the curve representing eq.

(2.3°25) for ~ < 2.5, i.e. as long as the waves break. For ~ ~ 2.5

they diverge, gentler slopes giving less reflection than steeper

slopes (at the same value of ~).

I) The author is indebted to Dr. Moraes for providing the original

data in tabulated form.
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2.3.6 General comments re~ardin~ the parameter

In the preceding paragraphs examples have been given of a

number of characteristic surf parameters for the determination of

which it is not necessary to specify both = and H/LO, but only the

combination tan ~/(H/L0)2. It may be useful to summarize them

here: a breaking criterion, the breaker type, the breaker height-

to-depth ratio~ the number of waves in the surf zone, the reflection

coefficient (therefore also the discrimination between progressive

waves and standing waves)~ and the relative importance of set-up

and run-up. They have been collected in Table 2.]. Characteristic

values of ~ are given in the upper row of the table. Each of the

following rows indicates how one of the parameters just mentioned

varies with ~.

The recognition of the possibility that several properties can

roughly be expressed as functions of $ alone contributes to a more

unified understanding of the phenomena involved. Such understanding

would be deepened by further insight in the nature of the parameter

~ itself. One interpretation has already been mentioned in para-

graph 2.3.1, page ]3, where it was observed that g is approximately

proportional to the ratio of the tangent of the slope angle to the

sha!low-water wave steepness. In paragraph 2.3.2, $-] was seen to

be approximately proportional to the number of wavelengths within

the surf zone. This is in essence equivalent to saying that ~ is

approximately proportional to the relative depth change across one

wavelength in the surf zone. This interpretation is obviously rele-

vant to the dynamics of the breaking waves, particularly with re-

gard to their rate of deformation. It makes it plausible that ~ is

of importance, but it does not prove that ~ serves as the sole de-

termining factor for the (suitably normalized) parameters of the

surf. Indeed, there are valid arguments which throw doubt on this

possibility of full similarity. In this regard it is useful to con-

sider two situations of different slope angle and wave steepness as

a prototype and a distorted scale model thereof. It is well known

[2]] that Froudian model-prototype similarity can be obtained even



Hb/db

Nx)

0.5

breaking

spilling

~0.8 1.0

6-7 2-3 I-2

i0-3 10-2

absorption

progressive wave

set-up predominant

x) number of waves in surf zone

I .0 2,0 3.0 4.0 5.0

no breaking

plunging collapsing/surging

0-1 0-I

1 0-] 4xi0-| 8xl 0-I

run-up predominant

reflection

standing wave

Table 2.!
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in distorted models, provided the assumption of hydrostatic pressure

distribution is valid both in the prototype and in the model. Per-

tinent scale ratios (%) are given in Table 2.2, expressed in terms

of the horizontal and vertical geometrical scales and the scale of

the gravitational acceleration (unity).

Variable S~bol Scale ratio

horizontal length

depth

gravity acceleration

bottom slope tan ~
%tan ~= %d%£-I

wave height H %H = Xd

wave length L %L = %£

wave celerity
=~(gd)~ ~e = ~

wave period T = L/= ~T = %%%d2

Table 2.2 - Scale ratios for a distorted long-wave model.

Since ~ is defined as

(2.3.26)

its scale ratio is

(2.3.27)

whioh becomes, using the values given in Table 2.2,

t~ = (hZX~)(l~)(ldl~|) = ! . (2.3.28)



- 29 -

In other words, a distorted long-wave model which is dynamically

similar to its prototype necessarily has the same ~ as this proto-

type. Conversely, a distorted wave-model with the same value of ~

as its prototype is similar to this prototype if the pressure dis-

tribution in both is hydrostatic. This is not the case in breaking

or near-breaking waves in shallow water, where some effects of the

vertical accelerations must be taken into account due to the fact

that the surface curvature is locally strong. Thus, the existence

of similarity of the surf in distorted models is not proved, and

must be doubted to the extent that deviations from the long-wave

approximations have a significant effect. Such effects are certain

to be of importance for the details of the local flow patterns, but

this is not necessarily the case for overall properties of the surf.

(One example of this is the tota! phase change across the surf zone;

the phase speed in shal!ow water is only weakly affected by curva-

ture of the streamlines.) The final check on this must of course be

obtained empirically. In this regard it appears justified to draw

the conclusion fram the data presented in the preceding paragraphs

that the factor ~ is a good indicator of many overall properties of

tha su=f zone, and may indeed be given the name of "surf-similarity

parameter".

It should be noted that in the arguments presented above two

situations were compared with different slope and different wave

steepness, but with the same ~. Thus, the similarity referred to

above pertains to two different surf zones as a whole. It might also

be wondered whether similarity would exist within a surf zone. Thus,

considering the lowermost sketch in fig. 2.4, is the surf in sector

OA dynamically similar to the surf in OB? Such similarity would re-

quire equality of the parameters ~ for the two sectors. But ~A > ~B’

since the two sectors have the parameters a and L0 in common, whi-

le HA < HB. In other words, the surf zone possesses no self-similar-

ity. This has recently also been noted by Longuet-Higglns [22].
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2.4 Implications for further work

We shall conclude this chapter with a few remarks concerning

the calculations of properties of waves breaking on a slope. Ideal-

ly, a unified approach would be developed which is valid for all

values of ~ in the range of breaking waves. However~ the differences

in the flow regimes associated with small and moderate values of ~

have so far rendered this impossible.

Various local properties of waves propagating on a slope can in

a first approximation be mutually related by applying results de-

rived for waves which propagate without change of shape. This ap-

proach is evidently valid only if the wave characteristics vary

gradually, i.e. for small values of ~, which implies a gentle slope

and spilling breakers. For small ~ the variable part of the ele-

vation of the waterline above S.W.L. (the difference between run-up

and run-down) is insignificant compared with the steady part (the

set-up). The latter is approximately proportional to YHb; the wave

period influences this only through its effect on y and on Hb/H.

If ~ is not. small, but of order unity, then the situation is

quite different: we have plunging breakers, in which the flow var-

ies rapidly; a steady-wave approximation is inapplicable, The var-

iable part of the elevation of the waterline above S,W.L. is pre-

dominant compared to the set-up~ and is strongly influenced by the

wave period (R is proportional to T in Hunt’s formula).

In view of the differences mentioned above it is natural to

give separate treatment in the calculation of irregular-wave pro-

perties to cases of small ~ and to cases in which ~ is of order

unity ~ >> ! implies non-breaking waves; these are not considered

here). The chapters 5 and 6 deal with the first of these, giving

calculations of the radiation stresses and of the set-up and long-

shore currents due to irregular waves on gently sloping beaches,

respectively. The cases in which ~ is of order one are considered

in the chapters 7 and 8, which deal with run-up and overtopping of

irregular waves on dikes. The calculations therein are based on



- 3! -

empirical results for regular waves. The values of ~ corresponding

to the limits of validity of the respective approaches cannot be gi-

ven beforehand; they should be determined empirically.

A final remark regarding the relation between ~ and ~ seems in

order. Small values of ~ imply small values of ~, since H/L0 cannot

exceed an upper limit which is of order 10-I. Thus, spilling break-

ers (~ < 0.4 approximately) can occur only on slopes less than about

! : !0, such as are typical for sand beaches. They cannot occur on

slopes which are typical for sea dikes, which are generally steeper

than I : !0. On the other hand~ the lower bound of H/L0 is form~lly

zero, so that moderate or large values of ~ do not necessarily imply

moderate or large values of tan ~. However, if we restrict ourselves

to wave steepnesses greater than one percent, say (common values in

exposed locations)~ then the slope should be steeper than about

I : 15 for plunging to occur.
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3 EQUATIONS OF MOTION

3.!     Introduction

The purpose of this chapter is to summarize some results from

analytical theories for periodic progressive gravity surface waves,

and to formulate conservation equations for a steady flow acted upon

by gradually varying waves.

We consider gravity waves on the surface of water, which is

assumed to be a Newtonian fluid with constant viscosity and constant

mass density, subject to gravity as the only volume force. The air-

water interface is assumed to be subjected to a constant normal stress

only, the atmospheric pressure. The value of this constant pressure

plays no part in the problems to be considered here, and is set equal

to zero. The scale of the waves is considered to be small enough to

permit effects of the rotation and curvature of the earth to be ne-

glected, while on the other hand we assume that the Reynolds number

of the flow is large and that the effects of surface tension are

negligible. The fact that the Reynolds number is large does not justi-

fy the conclusion that all viscous effects can be neglected, if only

because energy dissipation should be possible. It does imply, however,

that throughout most of the flow region the viscosity te-~ms in the

equations of motion are quite small relative to the other terms.

It can be shown [23,24] that under the conditions mentioned above

vorticity cannot be generated in the interior of the water but at the

boundaries only, frum where it spreads to the interior. However, in

wave motions the vorticity generated at the boundaries is mainly

oscillatory in nature; the steady component is relatively weak. If

the wave Reynolds number is large the oscillatory vorticity remains

restricted to thin regions adjacent to the boundaries, while only

the steady cumponent can penetrate the whole fluid, given enough time.

But~ since the steady vorticity is relatively weak it can be neglected

in a first approximation of the wave dynamics. Thus, outside the

boundary layers the oscillatory flow can be considered to be irrota-
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tional. At first only this part of the flow will be dealt with; par-

ticular emphasis will thereby be placed on periodic progressive waves.

The effects of gradually varying waves on a weak mean flow will be

considered in the sections 3.3 and 3.4.

3.2 Irrotational wave motion

3.2.1 Basic equations

A r~sum~ of the governing equations is given below. The follow-

ing notation is used: t is time; ~ = (x,y~z) is the coordinate vec-

tor; the x- and y-axes are horizontal, while z is measured positive

upwards from the undisturbed water level; the equation of the free

surface is z = ~(x,y,t); the undisturbed depth is d; the particle

velocity is ~ = (u,v,w); the velocity potential is ~, and p is the

fluid pressure.

The velocity u, given by

u = V~ , (3.2.1)

must have zero divergence because of the assumed incompressibility

of the fluid, so

v2i = 0 (3.2.2)

This is the Laplace equation. Since this is of the elliptic type we

must specify boundary conditions on ~ and/or its normal derivative at

the whole surface enclosing the domain in which a solution of (3.2.2)

is sought. The normal component of the particle velocity relative to

a fixed or moving boundary should vanish. This gives

and

3� = 0 at z = -d (3.2.3)

~t    ~x ~x 3y ~y ~z
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The kinematic boundary conditions at the bottom (3.2.3) and at

the free surface (3.2.4) hold rather generally. They[east be supple-

mented with boundary conditions at surfaces enclosing the solution

domain laterally. These depend on the applications being considered.

In some cases only conditions of spatial periodicity and sy~netry

need be given. Initial conditions will in general have to be specified

as well. This is not necessary when a solution is sought which is

periodic in time.

The momentum equation for irrotational flow can be integrated

once with respect to the space variables, yielding the Bernoulli

equation for unsteady flow:

The function of time appearing in the right-hand side can be chosen

arbitrarily, and will be set equal to zero for convenience. The con-

dition of zero pressure at the free surface can then be written as

~t

The problem of finding a solution to the preceding equations is

greatly complicated by the fact that the boundary conditions at the

free surface contain nonlinear terms, and that they are specified

at a surface which itself is an unknown function of space and time.

Stokes [25] gave a formal procedure to arrive at approximate solu-

tions. His method involves a Taylor series expansion about the mean

water level for the free surface conditions, while all of the depen-

dent variables are expressed as a series in powers of a small para-

meter, say o, which is of the order of the wave slope. For instance,

the velocity potential is written as

~ = $0 + ~l + ~252 + .......... ~n~n + o(~n+l) (3.2,7)
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The convergence of the series is rapid, provided the wave slope is

sufficiently small. A method of successive approximations can then be

applied,
k

Terms in series such as (3.2.7) which are proportional to o are

said to be kth-order terms. We refer to an mth-order quantity if the
th

first non-zero term in its power series is of m    order. An approximate

solution which is am~ivedat by retaining only the terms of order n or

less is called an nth-order solution or an nth-order approximation.

The first-order approximations to (3,2.4), (3.2.5) and (3.2.6) are

~t ~z          at z = 0                 (3.2.8)

~ + P + gz = 0 (3,2.9)~t p

and

~__i+ g~ = 0 at z = 0 (3.2,10)

Up to the first order the equations appear to be linear; they possess

solutions which are harmonic in time. Linear superposition of such

elementary solutions permits the analysis of more complicated motions.

3.2.2 Prosressive waves in water of constant depth

In this paragraph we shall su~arize the linear solution for a

long-crested sinusoidal progressive wave in water of constant depth.

The wave amplitude is denoted as a; the angular frequency is m. The

wave number is ~ = (kx, ky, 0), with absolute magnitude l~I = k; ~
÷

is a unit vector in the direction of propagation: e = ~/k. Other sym-

bols will be defined where they first appear. Expressions are given

for a number of zero- and first-order quantities as well as for the

mean value of some second-order quantities; the latter can readily

be found from the first-order results.



36

Phase: X = k.x - mt (3.2.11)

Surface profile: ~ = a cos X

Velocity potential: ~ = m__a cosh k(d + z)
k    sinh kd

2Dispersion equation: m = gk tanh kd

m = ~ tanh kdPhase speed: c = ~ m

Horizontal particle velocity:

cosh k(d + z)
sinh kd

Vertical particle velocity:

sinh k(d + z)
w = ~a

sinh kd

Pressure fluctuation:

~p = p + pgz = pga

Mean potential energy per unit area:

Ep = ~ 0ga

Mean kinetic energy per unit area:

! 2
Ek = ~ oga

Mean total energy per unit area:

I 2
E = ~ pga

sin X

cosh k(d + z)
cosh kd

sin X

cos x(ex, ey)

(3.2.12)

. (3.2.13)

(3.2.14)

(3.2.15)

(3.2.16)

(3.2.17)

cos X.(3.2.18)

(3.2.19)

(3.2.20)

(3.2.21)
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Mean energy transfer per unit time per unit length:

P = Ence = P e (3.2.22)

in which

kd
n = ~ + sinh 2 kd (3.2.23)

length:

(3.2.24)

The preceding equations give the first non-zero terms in the power

series assumed for the respective parmneters. Additional terms can be

found by carrying the solution to higher orders of approximation. These

wil! give only relatively small corrections if the wave steepness is

small and the wavelength/depth ratio is not very large. The Stokes

series becomes divergent if the latter condition is not fulfilled.

However, even if this ocours it does not necessarily imply that all

of the results from the lowest approximation, summarized in the equa-

tions (3.2.|I) through (3.2.24), are unrealistic. It only means that

higher-order approximations of some or all of the dependent variables

are poorer than those of lower order. The use of low-order Stokes

approximations has in fact proved quite seccessful in the applications

to be considered here, even in very shallow water [6], particularly

regarding predictions depending an the waves only through their mean

second-order properties such as energy, energy flux, momentum flux etc.

For this reason these approximations will also be employed here. An

alternative might have been to use a cnoidal wave theory, which is a

nonlinear shallow-water theory for periodic, progressive waves. This

alternative has not been adopted because the cnoidal theory has the

practical disadvantage of yielding equations which are far less tract-

able than those resulting from the Stokes theory.
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3.2.3 Progressive waves in water of variable depth

Consider temporally periodi~ long-crested, progressive waves

in water of variable depth. There are a number of factors contributing

to a modification of these waves as they propagate. A change in depth

causes changes in phase speed and wavelength and in the velocity of

energy transfer (i.e., the ratio of energy transfer per unit time to

energy density), which in turn give rise to variations in smplitude.

Refraction occurs if the phase velocity varies along the wave crests.

This causes a variation of the separation between orthogonals to the

wave crests, which leads to additional changes in wave smplitude,

since the average energy fl~x is directed along the orthogonals. The

variability of the mnplitude in turn affects the phase speed and the

energy transfer [26,27]. However, these effects are very weak in

gradual refraction. ~hey are important only if there are other fac-

tors involved, such as the occurrence of caustics, or the presence

of obstacles about which the waves diffract. Since such circumstances

will not be considered hare, we shall neglect the effects of the

amplitude variations on the wave propagation. This is tantamount to

considering the waves to be locally homogeneous. In other words, the

local wave parameters are assumed to be interrelated by the equations

(3.2.|I) through (3.2.24). The problem is hereby reduced to the geo-

metrical-optics problem of determining the ray paths in an inhomoge-

neous medium in which the velocity of propagation is known, and to

the calculation of the amplitudes from a simple energy balance. We

will in the following give a brief summary of this approach.

The water surface elevation is written as

~(x,y,t) = a(x,y) cos{~t - i(x,y)} (3.2.25)

The local wave-number vector is Vi. On the basis of the above mentio-

ned assumptions we have

IV!(x,y) l = k(x,y) (3.2.26)
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where k(x,y) is the positive real root of

2m = gk(x,y) tanh{k(x,y)d(x,y)} (3.2.27)

Eq. (3.2.26) is the two-dimensional eiconal equation of geometrical op-

tics. It is a nonlinear first-order partial differential equation. If

i and Vi are given at some point (x,y) then there is a uniquely deter-

mined curve (a characteristic) in the x-y-~ space passing through the

point (x,y,i), along which the values of V~ are determined in accord-

ance with (3.2.26). The projection of the characteristic on the x-y

plane is a wave ray or orthogonal. The differential equations for the

ray, the characteristic curve and for V~ are

...... ~ , (3.2.28)

~x ’ etc., and s is a coordinate along the ray [28].

The family of characteristics passing through the points on a curve

along which ~ and V~ are given generates a solution surface, provided

the given curve is not itself a characteristic.

Once a solution of i has been determined in a given problem, the

amplitudes can be calculated from the time-averaged energy balance

V.P + Et = 0    , (3.2.29)

in which ~t is the mean dissipation of energy per unit area per unit

time. It depends on the local values of the wave amplitude, water depth,

bottom roughness etc., as well as on some constant parameters such as

the wave frequency and the viscosity.

By applying Gauss’divergence theorem, (3.2.29) can be transformed

into

~s st~b = 0 , (3.2.30)

in which P = [~I and ~b(s) is the perpendicular distance between two ad-
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jacent wave rays. This equation can be solved for P by finite difference

methods if the dependence of et on the local wave properties is speci-

fied. If a turbulent boundary layer develops at the bottom then it can

be assumed that the rate of energy dissipation in this layer, denoted

by ~f, can be written as

(3.2.31)

in which Cf is a coefficient which is of order lO-2 [29], and the index

B refers to the value of the indexed variable at the bottom. Outside

the surf zone we can usually neglect the other contributions to the

energy dissipation, in which case £t ~ £f"

If the energy dissipation can be totally neglected then (3.2.30)

reduces to

~(P~b) = 0 (3.2.32)~s

which gives

a|    ~n2c2~b2
(3.2.33)

where the indices ~ and 2 refer to the values of the variables at two

different positions along the ray. The parameter (n|c|/n2c2)~ is a

so-called shoaling coefficient; it expresses the effects on the ampli-

tude brought about by changes in depth. Similarly, the parameter

(~b|/~b2)~ is referred to as a refraction coefficient.

The preceding equations are simplified if the depth contours are

straight and parallel, say in the y-direction, and if the time-mean

properties of the incident waves are independent of y. In that case the

time-independent and the time-mean wave properties everywhere are

independent of y. In particular,

~k ~k
--= 0 and = 0 (3.2.34)
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But

~k ~k
~ = __.Z (3.2.35)
~y     ~x

since k = V~. Thus k is a constant. Introducing the direc[ion of
Y

propagation with respect to the x-axis, 8~ we have

k = k sin 0 = constant (3.2.36)
Y

sin 8 = sin 8
c

= constant    , (3.2.37)

which is Snell’s law.

The energy balance (3.2.29) reduces to

dP
__~x+ ~t = 0 (3.2.38)
dx ’

which for negligible energy dissipation becomes

dP
--x= ~r__ (Enc cos 8) = 0
dx

(3.2.39)

or H2 a__2= n|c____! cos 81)~

H~= aI (n2c2 cos ~2
(3.2.40)

The ratio cos el/COS 82 is equa! to ~bl/~b2 in the situation considered

here, i.e. straight, parallel depth contours. It therefore equals the

square of the refraction coefficient from point l to point 2.
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3.3

3.3.1

Equations of motion for a weak current in the presence of waves

Introduction

In this section we hall be dealing with situations in which the

bottom slope is small, and where gradually varying progressive waves

are superimposed on a weak, nearly horizontal mean flow. Most of

what follows in the paragraphs 3.3.1 through 3.3.4 has been adapted from

Phi!lips [30].

Both the waves and the mean flow are permitted to vary horizon-

tally and in time on a length-scale and a time-scale which are large

compared with a typical wavelength and wave period. The local con-

servation equations can then be averaged over a time interval which is

large compared with a typical wave period, but which is short in rela-

tion to the time scale of the gradual variations. Averages to be used

in the following will be so defined, and be indicated by an overbar.

Fluctuations about these averages will be denoted by a prime. The slow

variation horizontally permits us to consider the waves locally as if

they were horizontally homogeneous. The restriction to weak, nearly

horizontal mean flows allows us to deal with these flows only in a

vertically-averaged sense, and to ignore their effects on the waves.

We shal! continually have to distinguish the horizontal motion

from the vertical one. It is therefore convenient to introduce separate

notations for the horizontal coordinates, the horizontal velocities,

and so on. We will use the Cartesian tensor notation for these variables,

with xi representing the horizontal coordinates and qi the horizontal

velocities (i=1,2). The total velocity vector is therefore u = (q,w).

The mean elevation of the free surface above the plane z = 0, ~, was

constant and equal to zero in the preceding section. It must now be

permitted to vary because of the variation of all the mean flow pro-

perties. The equation of the bottom is z = -d(xl,x2). The instantaneous

depth therefore is d + ~; its mean value d + [ is written as D.

In the following paragraphs conservation equations will be given

for a fixed control volume. The instantaneous equations will in general

be presented first, after which time-mean values will be taken. These
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should be separated into the contributions of the mean current and

those of the unsteady flow, since the calculations are aimed at the

effects of the waves on the mean current. Before such separation can

be carried out the terms of both categories should be properly defined.

For fixed points which are always submerged the velocity of the mean

current is simply defined as ~i. However, this definition is not suit-

able for points which are submerged only part of the time, i.e. for

points at an elevation between the wave troughs and the wave crests.

This can be most easily seen for waves propagating in one direction,

say the xl-direction, and for which qi = 0 in all points below the

wave troughs. It is justified to say that in this situation there is

no mean horizontal current. Yet the time-mean horizontal velocity in

fixed points between the troughs and the crests is then not zero, for,

considering a point above the mean water level, q~ is either positive

(if the point is submerged) or zero (if the water level drops be!ow it).

These non-zero mean velocities should in this case be wholly ascribed

to the wave motion. They can be seen to arise as a consequence of the

positive correlation between ~’ and q~. The result is a net wave-

induced mass transport, which, in the Eulerian frame which has been

adopted, is wholly confined to the region between the wave crests and

the wave troughs. The situation is slightly more complex if ~i ~ 0

below the troughs, for in that case the mean current also contributes

to ~i above the troughs. The mean current velocity in this region can

then by definition be determined from an extrapolation from below.

It is assumed in the following that only the organized wave motions

contribute significantly to the unsteady ve!ocity field, which can

then be expressed in terms of the external wave parmneters. This is in

contrast to cases in which turbulence is relatively important. Such

cases are not considered here.

3.3.2 Conservation of mass

Consider a control volume of unit horizontal area, extending

vertically from the bottom to a height above the free surface. The
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equation expressing the balance of mass for this control volume reads

(3.3.2)

in which Mi is the time-mean mass flux per unit width:

Mi = I Pql dz

-d

(3.3,3)

Mi consists of a part due to the mean current, designated by a super-

script "c" and defined by

0 dz coD Ui ,                (3.3.4)

-d

in which ~i is th~ vertically-averaged mean current velocity, and a

part due to the waves, designated by a superscript "w" and defined

by

(3.3.5)

3.3.3 Conservation of vertical momentum

Consider a control volume with unit horizontal area, extending

vertically from an arbitrary level between the bottom and the free

surface to a level above this surface. The balance of vertical momentum

for this control volume is, neglecting stresses due to molecular vis-

cosity,

~w dzx + ~

Z

I ~qiw dzx - O,w(z)2 - p(z) + og(~ - z) = 0

z
(3.3.6)
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Taking the time-mean value gives

w dz~ - 0~(z~~- p(z) + 0g(~- z) = 0

(3.3.7)

We have restricted ourselves to nearly horizontal, slowly varying

mean flows. This implies that the first term of (3.3.7) can be ne-

glected. The second term vanishes identically in a wave field which

is horizontally homogeneous; the restriction to gradually varying

progressive waves permits this term to be neglected. Reference is

made to Dorrestein [31], who shows that in typical cases of waves on

beaches the errors involved in these approximations are quite small.

Eq. (3.3.7) then reduces to

p(z) = pg(~- z) - pw(z)2, (3.3.8)

which shows that the mean pressure is less than the hydrostatic value

by an amount pw(z)2 [3|]. At a rigid horizontal bottom the vertical

velocity vanishes, in which case

~B = pg(~ + d) = pgD (3.3.9)

The index B refers to the value of the indexed variable at z = -d.

At gently s!oping bottoms w2 is quite small, being only of the order

of the bottom slope squared times a second-order quantity, and any

effects which it may have on~ will be neglected.

3.3.4 Conservation of horizontal momentum

Consider a control volume of unit horizontal area, extending

vertically from the bottom to a height above the free surface. The

balance of horizontal momentum for this control volume is, neglecting

lateral shear stresses,
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It
I ~pqiqj p ~ij)dz

~d 0

-d 3 -d
(3.3,10)

in which ~.. is the Kronecker delta, defined by

=0if i# j

(3.3.11)

and T. is the horizontal component of the shear force per unit hori-

zontal area exerted by the water on the bottom, which for gently sloping

bottoms is very nearly equal to the tangential stress at the bottom.

Taking the average of (3.3.]0) and substituting (3.3.3) and (3.3.9)

gives

(3.3.~2)

This equation wili be transformed into a momentum balance for a mean

flow with depth D and mass flux Mi; these quantities define a mean

velocity Ui as

M. M?+M~         M~
(3.3.13)

This parameter should be distinguished from Ui, which is the vertically-

averaged mean current velocity, and also from the time-meanvalue of

the instantaneous vertically-averaged horizontal velocity.

The contributions of the mean value and of the fluctuations of

the horizontal velocity to the integral in (3.3.12) are separated

as follows:

0qiqj dz =     0(     + qiqj + qiqj qiqj) dz

-d -d
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-d

(3.3.14)

The last term in (3.3.!2) can be re~itten as

~ (3.3.15)

Substitution of (3.3.14) and (3.3.15) into (3.3.12) gives the momentum

balance for the mean flow in the form

---!~+-- + + ri + = 0~t    ~x. (UjMi $ij) pgD 8~. (3.3.16)

in which the quantity Sij, defined by

’’
-d

(3.3.17)

represents the contribution of the unsteady flow to the mean horizontal

flux of horizontal momentum. It appears as a stress (force per unit

length) in the vertically integrated equation of motion of the mean

flow. It has already been pointed out that the contribution of the

turbulence to S.. will be neglected. The contribution of the waves to
,J

S.. has been called "radiation stress" by Longuet-Higgins and Stewart
iJ

who developed the concept and gave many of its applications [4,18,32-35].

It has been introduced independently by Dorrestein [36] and Ludgren [37];

these authors deal with two-dimensional motion only.

An expression for the radiation stresses in progressive waves to

the second order of approximation can be given as follows [34]. The

wave momentum M~ is of second order, so that M~M~/(0D) need not be taken

into account. The integral in (3.3.|~) can be divided into four parts:
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f ¯ ’ ’ dz + ~.. dz + ~.. dz’ ’ dz + 0qiqj 13Pqiqj ~3
-d ~- -d ~

The second and fourth integral in (3.3.18) have an interval of integra-

tion equal to ~ - ~ = ~’, which is of first order in the wave amplitude.

The second integral can therefore be neglected, since the integrand is

of second order, while the fourth can be evaluated to second order by

using a hydrostatic pressure distribution on the interval of integra-

tion. Eq. (3.3.8) for the mean pressure is substituted in the third

integral in (3.3.18). (The validity of the result is thereby restricted

to quasi-steady and quasi-homogeneous waves, for which (3.3.8) is applic-

able.) Eq. (3.3.17) then becomes

Sij = f P(q~q~ - ~ ~ij)dz + ½ Pg~ ~ij 3.3.19)

-d

The quantities q~, w and ~’, which are of first order, appear zn

(3.3.19) in product form only. It is therefore sufficient to use the

respective first-order approximations for these variables for the eva-

luation of S,. to the second order of approximation. We shall give the

result for a long-crested, progressive sinusoidal wave, to which the

equations (3.2.1|) through (3.2.24) are applicable, provided the still-

water depth d used in these equations is replaced by the mean water

depth D = d + ~ . Substitution of (3,2.12), (3.2.16) and (3.2.17) into

(3.3.19) and integration gives

S.o13 = { ne,e.z O + (n - ½)gij }E        ,
(3.3.20)

in which n is given by (3.2.23). If the direction of propagation with

respect to the xl-axls is 8 then

SII = (n cos26 + n - ~)E (3.3.21)

S12 = $21 = (n sin 8 cos 8)E
(3.3,22)
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and

$22 = (n sin28 + n - (3.3.23)

The largest principal stress, which has a magnitude of (2n - ~)E, acts

across a plane perpendicular to the direction of propagation. The

smallest principal stress has a magnitude of (n - ~)E and acts across

a plane perpendicular to the wave crests.

3.3.5 Steady, irrotational mean flow

If the flow is irrotational and steady (after averaging over the

waves, as described in paragraph 3.3.|)then (3.3.2) and (3.3.16) reduce

to

(3.3.24)

and

(3.3.25)

For the waves to drive a mean current, there should be an imbalance

between the divergence of the radiation stresses on the one hand, and

the horizontal pressure gradient associated with the wave-induced

changes in mean water level (wave set-up) on the other hand. However,

such imbalance is impossible in steady irrotational flows, as has

been pointed out by Bowen [38], who notes that a second-order inter-

action of two sets of waves in a conservative field produces an effect

equivalent to a fluctuating pressure field at the surface [33], and

that the radiation stress in periodic waves is the steady component

of the second-order self-interaction of the waves. Thus, a steady

distribution of radiation stress in irrotational waves is equivalent

to a steady distribution of normal pressures at the water surface,

and should give rise to (spatial) variations in the surface elevation

only, without driving a mean current. The smme conclusion is given by
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Longuet-Higgins [22], who states "if there were no dissipation at all,

there would be no current. This is as we might expect, since without

dissipation it is impossible to generate vorticity in a fluid initially

irrotational; and without vorticity we expect no current , since the

fluid at infinity is at rest ...... Thus, even if the wave amplitude we-

re to vary in an arbitrary manner along the coastline, due perhaps to

refraction by uneven bottom contours, still no currents would be gener-

ated unless there were some dissipation by breaking; the stress gradients

would simply be balanced by a wave set-up or set-do~n. A special case of

this general result was discovered by Bowen (1969), but it is possible

also to give a general proof." Longuet-Higgins refers for this proof

to some of his unpublished lecture notes. From a logical point of view

it is of course not necessary to give a proof in addition to the argu-

ments just quoted. But it may nevertheless be instructive to give a

proof expressed explicitly in terms of the equations of motion. This

will be done in the fol!owing, based on the geometrical-optics approx-

imation of irrotational waves in water of gradually varying depth° It

is not known to the author whether this is of the same generality as

the unpublised proof referred to by Longuet-Higgins. However, before

presenting our proof we should first complete the quotation given

above. At the point marked the following footnote is added [22]:

"This expectation derives from a neglect of the Stokes velocit_~, which

however is negligible for all but extremely small beach slopes (see

Longuet-Higgins |970b, Appendix 2)." The reference given in this foot-

note is Lon~uet-Higgins’ paper on longshore currents [39], in which

it is shown that the ratio of the longshore component of the wave-

induced Lagrangian mass transport velocity to the velocity of the wave-

driven longshore current in the surf zone is negligible for ordinary

beach slopes. Although this is true it does not, in the author’s opinion,

warrant the neglect of the Stokes velocity (i.e., the wave-induced

Lagrangian mean velocity) in the present context, for it concerns a

ratio of two velocities in a situation in which dissipation occurs,

and in which the waves drive a rotational mean current. The magnitude

of this ratio does not appear to be relevant to the question of the
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negligibility of the Stokes ve!ocity in the framework of non-dissipa-

tive, irrotational flows. And within this framework it would be incon-

sistent to neglect the Stokes velocity in relation to the wave-driven

mean current velocity, since the latter is expected to be zero. It is

therefore preferred to say only that in steady, irrotational flow the

waves do not drive a mean current as defined in paragraph 3.3.1, i.e.

a mean Eulerian velocity field which is non-zero below the wave troughs.

We shall now present a proof of the following equality:

S.. + 0gD ~ = 0 (3.3.26)

This proof will not be given for completely arbitrary irrotational

gravity waves, but only for the kind of waves considered in this

thesis, i.e. progressive waves of gradually varying amplitude and

wavelength in water of gradually varying depth, in which horizontal

inhomogeneities of the average properties have a negligible influence

on the local wave dynamics. In other words, the geometrica!-optics

approximations are used. Let the water surface elevation above its

mean value be given, to first order, by

~’(Xl,X2,t) = ~(xl,x2) cos {mt - ~(x|,x2) } . (3.3.27)

Locally the equations (3.2.||) through (3.2.24) hold, provided d is

replaced by D, while

(see eq. 3.2.26), so that

(3.3.29)

The local radiation stresses are given by (3.3.20), i.e. by
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Sij = n E eiej + (n - ½)E ~ij (3.3.30)

The elevation of the mean water level above the undisturbed value, ?~

still needs to be defined independently of (3.3.26). It can be ex-

pressed directly in terms of local flow parameters by means of the

Bernoulli equation for unsteady flow, eq. (3.2.5). Longuet-Higgins

and Stewart [35] take the average of this equation at the elevation

z = 0, and supplement this with the time-averaged balance of vertical

momentum between z = 0 and z = ~ to arrive at the result

? = const - ~---{ (q2 - W2)z = 0    ’ (3.3.31)

in which q is the magnitude of the horizontal velocity vector. This

result follows also from Bernoulli’s equation by taking its average

value at z ~, taking account of the fact that the mean value of ~--~
=                                                                      ~t

at the variable elevation z = ~(t) is not zero, even in periodic

waves, but is given, to second order, by

z =~ +~’ --~ z =~

=--St (g’ St ° "-~-) = "~t ° ~ - w2 z                                                             = ~ ~ - w2                z = 0

(3.3.32)

Substitution of (3.2.]6), (3.2.17) and (3.2.14) into (3.3.3]) g£ves

ka2 (3.3.33)
~ = - 2 sinh 2kD    ’

where ~ has been chosen to be zero in deep water. Eq. (3.3.33) is

due to Longuet-Higgins and Stewart [34] and Lundgren [37].

From (3.3.29) and (3.~.30) we have
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= k-2 ~ ~ ~x~.) 3
~x~ { ~ (n k-2         E ~x. )} + n     E ~x.                     --~x. (     .     + 3~. { (n - ½)E}.

(3.3.34)

Utilizing (3.2.15), (3.2,22), (3.2.29) and (3.3.29), the first term in

the right-hand side of (3.3.34) can be written as

-| ~ m            ei ~Pj _ st
ej) ..... e. (3.3.35)~ ~ei { ~--~ (n ~ E

}= c ~xj c    i

in which ~t is the power dissipated per unit area, which is zero on

the present assumptions. The second term of the right-hand side of

(3.3.34) can be written as

k-2 3k2    k-1 E 3k
= ~ n     E ~-~. = n        ~X’~. ’ (3.3.36)

where use has been made of (3.3.28). Substitution of the dispersion

equation (3.2.27) and of the definition of n given by (3.2.23) gives

after some manipulations

Finally, the factor (n - ½) in the third term of the right-hand side

of (3.3.34) equals kD/sinh 2kD, as can be seen from (3.2.23), so that

Dxj 13 sinh 2kD ~xi    3xi sinh 2kD 3xi sinh 2kD

(3.3.38)
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2Substitution of E = ½ 0ga and of (3.3.33) gives

2

which proves (3.3.26).

(3.3.39)

If the waves being considered approach a shore from deep water

which is otherwise at rest, and if they break on a beach, then the flow

is approximately irrotational and non-dissipative outside the surf-

zone, and highly rotational and dissipative inside this zone. The wave-

driven current is then confined to a relatively narrow region along

the shore. The surf zone can be considered as a boundary layer bordering

on the flow in deeper water. This similarity is more than superficial,

for the mechanism generating a longshore current in the surf zone is

in various respects similar to the mechanism generating a mass trans-

port current in the bottom boundary layer under a progressive wave. In

the latter case a boundary layer develops because of the no-slip con-

dition at the bottom; in our situation the analogous condition is the

vanishing of the wave height (thus, also the momentum flux) at the

shore due to breaking. The mass transport current in the bottom boun-

dary layer under a progressive wave arises as a consequence of an in-

phase relationship between velocity components parallel and normal to

the bottom, causing a net do~nward flux of horizontal momentum, equi-

valent to a net shear stress exerted by the waves on the bottom. The

in-phase normal velocity components in turn are due to phase differ-

ences within the boundary layer in the longitudinal direction, which

are a consequence of the progressive character of the waves. The ana-

logy in our situation is given by the phase differences in the long-

shore direction, which exist if the waves come in obliquely. Associa-

ted herewith are velocity fluctuations in the direction parallel to

the shore. These are in phase with the velocity fluctuations perpen-

dicular to the shore, so that there is a net shoreward flux of long-

shore momentum: the radiation shear stress.
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3.3.6 Steady, uniform mean flow

Consider the quasi-two-dimensional situation of an impermeable

beach with straight depth contours, parallel to the x2-axis (see

fig. 3.1), and obliquely incident waves which are uniform in the

Fig. 3.1 - Plan view of beach (definition sketch)

x2-direction, apart from phase differences. All time-independent or

time-mean quantities are assumed to be independent of x2. The mean

mass balance (3.3.24) then reduces to

dMI

dxI
(3.3.40)

or

constant = 0    , (3.3.41)
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So that, in view of (3.3.|3),

W

(3.3.42)

The momentum balance for the steady and uniform mean flow is ob-

tained from (3.3.16) by equating the acceleration terms to zero. The

bottom shear stress Ti is retained, and (3.3.26) is not used, since

the flow is not assumed to be everywhere irrotational. It follows that

7 gij ÷ Ti + 0gD (3.3.43)

This expresses a static balance between the driving force due to the

divergence of the radiation stresses, the bottom friction, and the

vertically integrated pressure gradient due to the mean tilt of the

free surface. Writing the two components of (3.3.43) explicitly, and

utilizing the fact that mean properties are independent of x2, gives

dSll d~

dxI + T1 + pgD d~l = 0

(3.3.44)

for the momentum balance in the x|-direction, and

dS2|

dx~-- + 72 = 0
<3.3.45)

in the x2-direction. According to (3.3.42) the mean current in the

direction perpendicular to the shore only compensates for the wave-

induced onshore mass flux. This means that it is weak relative to the

oscillatory particle velocities. For this reason T| will he neglected

in (3.3.44), which then reduces to

3.4 Set-up and lonsshore currents due to resular waves

(3.3.46)

The preceding equations have been used by various authors for
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calculations of the set-up of the mean water level and the longshore

current velocities induced by regular waves. Some results will be

summarized here for future reference. The sane situation is considered

as in the previous paragraph, viz. a quasi-steady and quasi-two-dimen-

sional flow, uniform in x2 (see fig. 3.|). The waves are assumed to be

periodic. The bottom slope is supposed to be small, so that the waves

break on the beach with negligible reflection.

3.4.1

Outside the surf zone the flow is considered to be irrot,ational;

the wave-induced change in mean water level is then given by (3.3.33).

Inside the breaker zone the energy dissipation must be taken into

account. A semi-empirical similarity approach to this problem was given

by Longuet-Higgins and Stewart [34], who postulated that after breaking

the wave height H would decay in constant proportion to the undisturbed

depth. This was modified by Bowen et al [6] who assumed that H would be

proportional to the mean total depth, including the effect of the set-

up. They put

H -- y (d + ~) = yD (3.4.])

in the breaker zone, This assumption is reasonable for spilling breakers,

which propagate with relatively minor changes in shape. It is further-

more assumed that within the surf zone the shallow-water approximations

to the wave equations apply. In particular, it is assumed that n = ]

(eq. 3.2.23), so that, for perpendicular incidence,

3    3
S|| = -~ E -- ]-~ 0gH2, (3,4.2)

as follows from (3.3.2]), or

=3    2S]] ]-~ pg ¥ (d + ~)2 (3.4.3)
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Substitution of this expression in (3.3.46) gives

3 2

(3.4,4)

[6]. It can be seen that there is a set-up in the surf zone, with a

gradient proportional to the local bottom slope. Experiments by

Bowen et al [6] have confirmed the validity of (3,3.33) and (3.4.4).

The total rise of the mean water level in the surf zone can

be calculated by integrating (3.4.4) from the breakpoint to the point

of maximum set-up. This gives

3 2

max - ~b =3 2    (~max + db)
(3.4.5)

I +~

or

~max = ~b + --~ y2 Db , (3.4.6)

in which ~-b is the set-up at the breaker line, which is estimated

from (3.3.33) as

2
1 ab       1

~b ~ 4 Db 16 Db
(3.4.7)

With the substitution of Hb = yDb we find

5       0.3V b                   (3.4.S)
~max = I-’~Y Hb ~

3.4.2 Longshore currents

A review of longshore current theories was given by Galvin in

|967 [40]. He correctly concluded that the theories then available

were not in satisfactory agreement with experimental data. All of the

theories developed until |967 involve averaging over the width of the

surfzone i~ a very early stage of the development. This not only

leads to a loss of information regarding the velocity variation with
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distance offshore~ but it may also give erroneous results for the

average velocity. Furthermore, some of the earlier theories include

unknown coefficients introduced ad hoc. The theories involving a

momentum balance generally assume a bottom friction proportional to

the square of the longshore current velocity~ independent of the os-

cillatory ve!ocities due to the waves. More recent theories [39,4|-43]

have given improvements on these points. We shall deal with these

theories only. Their purpose is the prediction of the vertically-

averaged mean current velocity in the longshore direction~ U2. This

will for brevity be called the longshore current velocity~ denoted

as V. The term "longshore current profile" shall refer to the varia-

tion of V with the distance offshore.

The driving force for the longshore current is supplied by the

gradient of the radiation shear stress. This is given by

dS|2    d sin 8 dP|
sin 00

dx! = dx! (E n sin ~ cos @ = c dxI cO ~t , (3°4.9)

where use has been made of Snell’s law and of the energy balance
~P2

(3.2.29) with x~ = 0 [39]° Et is the mean rate of energy dissipation

per unit area, which will be set equal to zero outside the surfzone.

If follows that in this approximation the longshore thrust exerted by

the incident waves across vertical planes parallel to the depth con-

tours is independent of the distance offshore, and therefore equal

to the value which it has in deep water. This result was first proved

by Bowen [4|], in the manner just described. (It follows also direct-

ly from (3.3.26), equating the x2-derivatives to zero.)

Inside the surf zone the approximation (3.4.|) for the wave

height is assumed to hold. Furthermore, breaking generally takes place

in shallow water, so that c ~ (gD)~, n ~ | and cos ~ ~. With these

approximations, (3.4.9) becomes

dS|2 sin 00 d | 5 2    ~(gD)3/2 sin 80
-- =dx!      co dxI (~ 0gy2D2 g~) = -                             ]-~    Y mD c0                      ’

(3.4.10)
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in which mD is the mean-depth gradient,

dD     d(d= _7 = _ (3.4.11)

which can be expressed in terms of the bottom slope by means of (3.4.4).

The longshore current was assumed to be unaccelerated. Thus, there

should be a balance between driving forces and resistive forces. In the

simplest form of the theory the shear stress at the bottom is the only

resistance, as in (3.3.45). More refined models take lateral shear

stresses into account, due to turbulent exchange of horizontal momentum,

which is generally assumed to be expressible as a gradient-type diffus-

ion. These two types of resistive forces play very different r$1es in

the dynamics of the littoral zone. This can be seen most easily from

the momentum balance of the whole nearshore water mass between the water-

line and a point seaward of the surf zone, where the turbulent momentum

exchange is negligible. The longshore thrust exerted by the incident

waves on this mass must in the steady, uniform flow regime be balanced

by the integrated longshore bottom shear stress / T2 dxI. The internal

shear stresses do not appear in this overall balance. The order of

magnitude of the longshore current velocity is therefore mainly deter-

mined by the longshore bottom shear stress, while the lateral stresses

only redistribute this velocity in the direction normal to the shore.

Their effects will at first be neglected. The mean bottom stress can

then be determined from (3.3.45). It should next be expressed in terms

of V.

Bowen [41] assumes ~2 to be proportional to V, with a coefficient

of proportionalitywhich is constant in the surf zone; This mssumption

does not seem to be justifiable inasmuch as the flow in the bottom

boundary layer is ordinarily turbulent, due to the relatively strong

wave-induced oscillatory velocities. This has been taken into account

by Thornton [42], and shortly after him, though apparently indepen-

dently, by Longuet-Higgins [39] and Bakker [43]. These authors use a

quadratic relationship between the instantaneous shear stress and the

instantaneous velocity outside the bottom boundary layer. The time-
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mean value of the longshore shear stress can then be written as

(3.4.;2)

The longshore current velocity is generally small compared with the

msximum oscillatory particle velocity, and is directed roughly per-

pendicular to it. This means that the absolute magnitude of the re-

sultant ve!ocity in a first approximation can be equated to the

oscillatory particle velocity. Assuming a sinusoidal variation of

this velocity in time, with an amplitude q’, gives

in which, in shallow water,

q, =     ~a ma H
(3.4.14)

as follows from (3.2.16)o Thornton and Longuet-Higgins implicitly in-

clude the coefficient of proportionality between ~2 and the vertically-

averaged mean velocity V in the coefficient Cf, which gives

T2 = ~- Cf pq’ V (3.4.15)

Thornton uses a semi-empirical expression for Cf in terms of bottom

roughness and total particle excursion, obtained by Jonsson [44] for

a wave boundary layer with zero mean flow, in the presence of artifi-

cial roughness. Thornton’s procedure can be seen to imply that Jonsson’s

results still hold even in the case of a superimposed mean flow, and

that the value of ~2 just outside the (relatively thin) wave boundary

layer is equal to the vertically-averaged mean flow velocity V. Longuet-

Higgins bases his estimate of Cf on empirical data for steady, unidirect-

ional flow past a flat plate of finite length. The finite length of the

plate limits the boundary layer growth, just as the finite duration of

flow-in-one-direction does under oscillatory waves. The plate length can
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then be compared to the total particle excursion just outside the

boundary layer. Bakker arrives at (3.4.15), and at an expression for

Cf, on the basis of Bijker’s results concerning the mean bottom shear

stress due to a combination of waves and current [45], by considering

the limiting case of a relatively weak current perpendicular to the

direction of wave propagation. This limiting case is in itself appro-

priate in the present problem, but it is not consistent with the

assumptions originally made by Bijker in his derivations, which in

effect imply a relatively strong current. This is reflected in Bakker’s

result, according to which Cf would be determined by the ratio of bot-

tom roughness to mean water depth. The latter is not a relevant para-

meter for the boundary layer flow if this is mainly governed by the

oscillatory wave motion. However, in a more recent publication [46]

Bakker calculates the turbulent shear stress in the wave boundary

layer and arrives at results comparable to Jonsson’s.

Because of the uncertainties in the values predicted by either

~f the methods described, it is preferred not to assign a priori

values to Cf, but to deal with it as a coefficient to be determined

empirically. An ~nalysis of available data by Longuet-Higgins [39]

indicates that its order of magnitude should be 0.Of. This agrees

with empirical results obtained by Bretschneider and Reid [29] from

measurements involving wave energy dissipation, referred to in par.

3.2.3.

It may be of interest to point out that a formula similar to

(3.4.15) has already been given in ]927 by Mazure [47] in an analysis

of tidal motion in the presence of a net (river) discharge. In this

case the current is directed against the direction of wave propaga-

tion, rather than perpendicular to it. The change in absolute mag-

nitude of the instantaneous total velocity is then of first order in

the mean velocity, which gives a factor 4/~ instead of 2/~ in the

right-hand side of (3.4.~5). The same result has been given by Bowden

[48]. The equation for the mean bottom shear stress so obtained is

used in the prediction of storm surges at sea [49].

Substitution of (3.4.~0), (3.4.~4) and (3.4.15) into (3.3.45)
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gives the following result for the longshore current velocity inside

the surfzone:

5~ YmD sin 80
V = |6 Cf    Co gD (3°4.|6)’

or, equivalently,

V = ]~--~f sin ~b     D (3.4.17)

This equation has been given, in essentially the form shown here, by

Thornton, Longuet-Higgins and Bakker. Outside the surf zone the long-

shore current velocity is zero, to the present approximation. The total

longshore current profile is Shown graphically in fig. 3.2, for a

beach with a constant bottom slope. The velocity at the theoretical

V

Fig. 3.2 - Calculated longshore @urrent profiles due

to periodic waves on a plane beach [39, 41 - 43].

breaker line ~s discontinuous, due to the fact that the wave energy

dissipation was implicitly assumed to be discontinuous, and that

lateral mixing was neglected. As noted previously, some form of

lateral mixing can be taken into account [39, 41 - 42]. This will

of cours~ smoothen the calculated profile, particularly near the

breaker line. However, it need not have much effect on the calculated

values away from the breaker line, especially on beaches of gentle
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slope, where the longshore current varies only slowly with distance

offshore. It should also be remembered that the theoretical results

mentioned here are for periodic waves only, and that the calculated

discontinuity is ultimately due to the fact that all the waves are

assumed to break at the ssme distance from the shore. This is obvious-

ly not the case for random waves, to be dealt with in the following

chapters. The variability in breaker position of these waves gives

rise to a smooth longshore current profile, quite apart from the

effects of lateral friction due to turbulence. These effects should

therefore be much less in random waves than in periodic waves.
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4 PROBABILISTIC DESCRIPTION OF WIND WAVES

4.1     Introduction

Randomness is one of the characteristic properties of wind-

generated water waves. Realistic descriptions of these waves should

therefore be not just hydrodyn~mical in nature but probabilistic as

well. In this chapter a summary will be given of methods and results

which will be used for this purpose in the remaining chapters.

In section 4.2 elementary concepts from the theory of stochas-

tic processes in one dimension will be introduced. Following this,

the sea surface in the presence of wind waves will in section 4.3 be

described as a Gaussian process in space and time. The statistical

properties of wind waves at a fixed point are dealt with in section

4°4. Empirical data pertaining specifically to wind-driven waves are

presented in section 4.5.

It may be noted that a distinction is made between wind-driven

waves ("sea") and wind waves in general. The first term refers to

those waves which are still acted upon by the wind field generating

them. Their properties depend on the local wind field. The term wind

waves refers to waves gensrated by wind, regardless of whether they

are still wind-driven or have already to some extent transformed into

swell, or whether they consist of a mixture of wind-driven waves and

swell.

4.2

4.2.1

Stochastic ~rocesses i~ ~ne dimension

General concepts

The purpose of this section is to introduce some concepts re-

lated to stochastic processes. Such processes can be considered at

an abstract level~ in which one deals with non-physical entities

using deductive formalisms based on the ~xioms of probability theory

[50,5|], or from a more applied point of view, when one has to deal

with physical realities having certain observable frequencies of
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occurrence which are assumed to converge to limit values if the number

of observations would be increased indefinitely [52, 53]. The supposed

limits are equated to probabilities of the events being considered.

Once the probabilities have been so assigned they can be used for

deductive reasoning~ using the methods of probability theory. We

shall introduce various concepts which are of use for the description

of stochastic processes from this applied point of view.

Consider a series of experiments in which a certain dependent

(real) variable z varies with one independent variable, which for

convenience will be taken to be the time. We shall assume that the

values of z are affected by a large number of uncontrollable small

factors which cannot be described in detail and which vary on repe-

tition of the experiment. We thus obtain a series of different time

functions k~(t), k = I, 2, ..... , which can be regarded as realiza-

tions of a stochastic process [52,53]. The infinite collection of

time functions which are actually obtained, or which could conceivably

have been obtained from repetitions of the experiment, is called the

ensemble.

A description of the process should aim at the properties which

are common to the various realizations, rather than at the erratic

differences between them. These common properties can be found from

ensemble-averages. For an arbitrary function h of the values of z at

times ti (i = 1,2, ..... ,n) the ensemble average is defined as

N

< h > = lim ~ ~ih {kz(tl) ............ kz(tn)} (4.2.1)

Of fundamental importance for the description of the process is the

function defined by

~U = |    if    {kz(t|) ! zI’ .......... ’ kz(tn) ! zn} (4.2.2)

= 0 otherwise

The ensemble average of this function equals the fraction of the total

number of realizations in which the event described by the expression
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in the brackets occurs. It represents the joint probability function

of the stochastic variables ~t,’ i = I, 2, ..., n. (Stochastic variables

are underscored.) Regarded as alfunctlon of the zi this is called the

distribution function F:

< U > = Pr {~i~ Zl, .....
’ ~tn ~ zn} = F(Zl’’’’’Zn;tI’’’’’tn)

(4.2.3)

The explicit expression of the dependence of F on the parameters

(tl,..., tn) will be omitted in the follow~ng.

The mathematical expectation of a function h(~tl, .... ~tn ) is
defined in terms of the distribution function as

(4.2.4)

It follows from the definitions given that the mathematical expectation

of a quantity is equal to its ensemble average. Furthermore, since the

stochastic process is described in terms of ensemble averages, it is

specified if the joint distribution function of the variables ~t,’

i = I, 2, ..., n, is known for an arbitrary number n of arbltrary in-

stants ti~ within the interval of definition of the process.

The n-th partial derivative of F with respect to the zi is

~nF(zI ....... zn)

~z! .........

~zn = f(z1’ .....

’ Zn)
(4.2.5)

It is the joint probability density function (abbreviated as p.d.f.)of the stochastic variables (~tI

"’’’~t )
It is allowed to contain

Dirac delta functions~)[54]. The
n

expectation of h given by (4.2.4) can

The term "function" is used here instead of the more correct designa-

tion "distribution" in order to avoid confusion with probability dis-

tributions and distribution functions.
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be expressed in terms of the p.d.f, as

E{h(~tI, .....

, ~n) }

(4.2.6)

The first-order moments of the joint p.d.f, are equal to the mean

or expected values of the zt. :

(4.2.7)

in which

..... dzi_I dzi+I ..... dzn

(4.2.8)

is the marginal p.d.f, of

The second-order moment~ of the joint p.d.f, about the mean values

{~(t|), ..... ~(tn)}, denoted by C(ti,tj), are defined by

C(ti,tj) = E{(!t" - D(ti))(!t" - ~(tj))} (4.2.9)

They are of major importance as quantitative measures of the variability

of ~ at certain times ti, and of the degree to which the variability of

~ at time ti is related to the variability of ~ at time tj. They are

called the eovariances of the stochastic variables (~t.,~t.). For i = j

they are called the variances of the variables ~t.’ fo~ brevity written
2

oi(~ 0).ias oi . The standard deviation of ~t. is

A stochastic process {~t} is said to be stationary if

Pr{Ztl_    -- ¯
_            zn} = Pr{~tl+~ ~!zn}< Zl ....... ~tn < ! zl, .....

,~tn+
(4.2.10)
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for arbitrary x, n and ti(i = 1,2, ..... ~n). It follows from this defini-

tion that in stationary processes the mathematical expectation of an

arbitrary function h of ~t.(i = },2, ..... ,n) does not depend on the n

values of the times t. butlonly on their (n - I) differences. Thus,

the expected value and the variance of ~t are constant:

and

~(ti) = E{zt}_ . = eonst = U (4.2.11)

oi2 = E{(~t. - ~(ti)~}= const = o2 , (4.2.12)

while the covariances C(ti,tj) depend on the time difference t.-t.

only:

C(ti,tj) = E{(zti u)(zt. ~)} C(ti
tj) , (4.2.13)

3

or, writing ti - tj = T,

E{(~t - ~)(~t+T- ~)} = C(~)
(4.2.~4)

C(~) is the auto-covariance function of the stationary stochastic

process {~t}. Its Fourier transform, which may include delta functions,

is a non-negative function called the spectral density ~(m) of the

process {~t}, often referred to as the power spectrum or the energy

spectrum:

~ I     I
e-i~s(~) =-//~ c(~)

The inverse relation is

C(r) = (4.2.16)
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The variance of {~t} is given by

~ = C(O) = ~) d~ , (4.2.17)

which suggests that ~(m) should be interpreted as the contribution

to the variance of {~t} per unit of frequency.

The process {~t} was assumed to be real and stationary. It follows

that the auto-covariance function C(~) is even and real, so that (4.2.15)

can be written as

~) = ~     C(T) cos ~ d~    ~ , (4.2o18)

so that S(m) is also even and real. Eq. (4.2.16) can therefore be writ-

--oo 0

(4.2.|9)

Since ~(~) is even, we can restrict its interval of definition to non-

negative frequencies, and define

This gives the so-called Wiener-Khinchine relations:

0

= I S(~) cos m~ d~
(4.2.22)C(~)

0

The spectral density function is a particularly useful tool if

linear transformations are applied to a stochastic process [52, 53].

Consider a linear, time-invariant system, not necessarily a physical

system. It may, for example, also represent a mathematica! operator.

Let the response of this system to an input ~{e~t} be given by
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R~(H(~)el~t} ; H(~) is the frequency response function. If a stochastic

process (~t}, with spectral density Suu(~), acts as an input to this

system~ then the spectral density of the output process (~t} is given

by

Sw(~) = IH(~)I2 Suu(~) (4.2.23)

In particular, if the system acts as an ideal band-pass filter, spe-

cified by

for ~I < m < ~2

otherwise, (4.2.24)

then the variance of the filtered process is

~2
2     I Suu(~)d~                       (4.2.25)

as compared to

Ou =     Suu(m)dm (4.2.26)

0

for the unfiltered process. This permits the interpretation of the

spectral density as the contribution to the variance per unit of

frequency of spectral components.

In stationary processes {~} it is often useful to consider avera-

ges of functions of kz(t) with respect to time in individual realiza-

tions. For an arbitrary function this time average is defined as

T
¯

!    I h{kz(t), kz(t+T!),

k
llm ~-~ ...... , z(t+rn_!)} dt
T~

-T

Time averages can in general depend on the particular realization in

which they have been determined. Stationary processes for which this

is not the case are called ergodic. Time-averaging of arbitrary func-
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tions of kz(t) in such processes yields the same results as ensemble-

averaging.

4.2.2 Gaussian processes

An important class of stochastic processes are those which can

be regarded as the result of a superposition of a large number of

stochastically independent components. In many such cases the central

limit theorem can be applied. This theorem states that under certain

not very restrictive conditions the sum of a large number of stochas-

tically independent variables is approximately Gaussian distributed

[5~].

Consider n stochastic variables z, (i = |, ..... n) with mean values

~i = E { ~i} and eovariances Cij = E{(~i - ~i)(~j - ~j)}. They are said
to be jointly Gaussian distributed if their p.d.f, is given by

i=l j=l

ICijI (zi - ~i)(zj - ~j)} , (4.2.27)

[51], in which [cijI is the cofactor of Cij in the determinant

of the covariance matrix (Cij)o For n = ! (4.2.27) reduces to

f(zl) = (2~)-½ ~1-1 exp {_~(z| - ~I)2} , (4.2.28)
°1

in which
2

o| = CII    , (4.2.29)

the variance of ~1"

A stochastic process {~# is said to be Gaussian if the joint

p.d.f, of the variables ~t. is of the form (4.2.27) for an arbitrary

number n of arbitrary instants ti (i = I, .... , n). Rice [55] shows

that the (weak) conditions which are sufficient for the applicability
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of the central limit theorem are fulfilled in processes which have

a finite spectral density and which result from the superposition

of independent components. In other words~ such processes are Gaussian.

They are completely specified by the mean values ~(ti) and the auto-

covariances C(ti,ti). Stationary Gaussian processes are therefore tom-

pletely specified by the mean value ~ and the auto-covariance function

C(T), or, in view of (4.2.22), by ~ and the spectral density function

S(~). The value of the mean, ~, is generally of no importance for the

description of the process. It will assumed to be zero in the follow-

ing.

It can be shown that stationary Gaussian processes are ergodic if

and only if the spectral density is finite for every frequency [50].

This condition~ which means that there shall be no finite contribution

to the variance at discrete frequencies, is fulfilled in the applica-

tions to be considered in the following chapters. A consequence of the

ergodicity is that the probability of an "event", interpreted as the

relative frequency of occurrence in the ensemble~ is equal in value

to the fraction of time during which the event occurs in any one rea-

lization. The two interpretations will be used interchangeably in what

follows.

An important property of Gaussian processes is that they remain

Gaussian under a linear transformation. This follows from the follow-

i~g theorem [56]. If the stochastic variables ~i (i = I, ..... ,n) are

jointly Gaussian in n dimensions~ then the variables Z. obtained as

linear combinations of the z. according to

n

Z. = ~ Aij z. , j = 1,2 ....... m ,    4.2.30)

--~    i= !
--i

for arbitrary constants Aij, are jointly Gaussian in m dimensions. The

output of a linear system can be regarded as (the limit of) a weighted

sum of values of the input at different times [52,53]. Thus, the res-

ponse of a linear system to a Gaussian process is again a Gaussian

process. It is fully specified by its spectrum, which for stationary

processes can be found simply by application of (4.2.23).
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Although we only need to know the spectral density function of

a stationary Gaussian process in order to determine its statistical

properties, it may be advantageous to have an explicit representa-

tion of the process as a random function of time. Many representations

are possible, in view of the wide range of applicability of the central

limit theorem. A model which has found many applications is the ran-

dom phase model due to Rice [55]:

(4.2.31)

The phases~j are independent random variables, each with a uniform p.d.

of (2~)-I on the interval (-~,~). This makes the process (4.2.31) a

stationary one, because the addition of a constant time lag ~ to t

merely changes the point of zero phase. This is of no consequence for

the ensemble averages, since the integrations over the phases are still

carried out over an interval of length 2~, with equal weight being given

to al! the phases on that interval. A similar argument applies to time

averages, provided that there is no zero-frequency term, as indicated in

(4.2.31). The process given by (4.2.31) is therefore also ergodic.

The expected value of ~t is zero. The auto-covariance function is

n

C(T) = ~ { aj2cos ~j~ , (4.2.32)

the variance is

n

C(O) = ~ ~ ½ aj , (4.2.33)

and the spectrum is

n

S(~) = ~ ~ aj2 ~(~ - ~oj)
j;l

(4.2.34)

in which 6 is the Dirac delta function. The spectrum is discrete

since the variance consists of finite contributions at discrete fre-

quencies. In order to obtain a continuous spectrum we should take
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the limit of the preceding expressions for n ÷ ~, such that each in-

finitesimally narrow frequency interval (m, ~ + d~) contains an un-

countably infinite number of spectral components which together con-

tribute to the total variance of {~t} in proportion to dm:

~+dm

lim ~ ~aj2 = S(~)d~ (4.2.35)

max (~j+1 - ~j) ÷ 0

In this case the central limit theorem is applicable, so that the pro-

cess given by (4.2.31) is Gaussian after passage to the limit.

In the representation mentioned above the process {~t} is express-

ed as the sum of an uncountably infinite number of spectral components

of different frequencies. This results in an oscillatory but nonperiodie

appearance of the realizations z(t). The structure of these realiza-

tions is wholly governed by the shape of the variance density spectrum.

If this is narrow, which means that the spectral density is significant

only in a relatively narrow frequency band, then the realizations re-

semble amplitude-modulated sine curves. The realizations of broad-

spectrum processes are less regular because of the superposition of

sinusoids of widely different frequencies but of appreciable variance

content.

The statistical properties of ergodic Gaussian processes have been

the subject of extensive studies [55, 57 - 59], which have yielded

numerous useful results. Some of these will be mentioned in section

4.4, together with empirical data for wind waves. However, before

turning to these details we shall first consider the quantitative

description of wind waves from a more general point of view in the

following section.
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4.3 Wind waves considered as a ~uasi-stationary Gaussian process

4.3.! General considerations

The sea surface in the presence of wind waves is a random, mo-

ving surface; it is a stochastic process in three dimensions: two

space dimensions in addition to time. If we are interested not only

in the surface itself but also in sub-surface phenomena associated

with the wind waves, then we have to consider three independent space

variables and time. Although the preceding section dealt with random

processes in one dimension only, many of the concepts mentioned there

are quite general~ and apply directly to multidimensional processes.

The elevation of the sea surface above a horizontal datum plane

is denoted as ~, which is a function of location ~ = (x,y) and time

t. The stochastic process {~(x,t)} can be described through the joint

distribution functions of the variables ~(xi,ti), i = l, 2, ..... ,n,

for arbitrary n and arbitrary values of ~. and t.. As before, the

process is stationary if these distribution functions are invariant

under the addition of an arbitrary constant time lag to the instants

ti. If these distribution functions are invariant under the addition
÷

of an arbitrary constant (horizontal) vector to the xi~ then the wave

field is said to be horizontally homogeneous.

For a consideration of local properties, sea waves can often be

described as quasi-stationary and quasi-homogeneous~ since variations

of mean wave properties in time and space generally take place on

scales which are large compared to typical wave periods and wave-
÷

lengths. If {~(x,t)} is a stationary and homogeneous process then

its mean value is a constant~ which will be assumed to be zero, while

its auto-covariance function is a function of time- and space-differ-

ences only:

E{~(x,t) !(x + r, t + r)} = C(r,T) (4.3.1)

The three-dimensional Fourier transform of C(~,~) gives the spectral

density in wavenumber-frequency spave [30]. Reduced forms of this
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three-dimensional spectral density function are obtained by integrating

it either over the frequencies, which gives the two-dimensional wave-

number spectrum, or over the wavenumbers, which gives the one-dimension-

al frequency spectrum. The first of these resolves the variance of
÷

!(x; t = constant) into the contributions of a continuum of long-crested

sinusoidal spectral components in space. The latter resolves the vari-
÷

ance of ~(t; x = constant) into the contributions of a continuum of

sinusoidal spectral components in time.

The variance of ~ is, apart from a constant factor ~pg, equal to

the average gravitational potential energy of the waves per unit hori-

zontal area. For this reason the various variance density spectra are

frequently referred to as energy density spectra, or simply as energy

spectra.

Important simplifications are obtained by assuming that the waves

behave linearly. This implies that the spectra! components are hydro-

dynamically independent of each other. The linear dispersion equation

(3.2.14) then applies to individual spectral components, making the

absolute value of the wavenomber a known function of the wave frequen-

cy, so that the number of independent dimensions of the spectral den-

sity function in effect is reduced to two. Instead of having to deal

with a three-dimensional wavenumber-frequency spectrum it is suffi-

cient to deal with the spectrum as a function of two wavenumber-com-

ponents (kx,ky)~ or as a function of the absolute value of the wave-

number and the direction of propagation (k,~), or as a function of

the frequency and direction (~). We shall use the latter form,

written as G(m,O).

A consequence of the assumed hydrodynamical independence of the

spectral components is that they can be also stochastically independent.

This is commonly the case for wind waves, even for those generated in a

single wind field, because such fields are usually so large that they

can be sub-divided into many areas in which the processes of wave

generation are mutually independent.

The assumption that the sea surface can be regarded as the result

of a superposition of an uncountably infinite number of spectral com-

ponents which are stochastically independent is sufficient for the
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the wave field can be considered to be Gaussian~ and completely des-

cribed by its two-dimensional spectral density function. Needless to

say~ this is only approximately the case for real waves, which are

not exactly linear. It turns out however that for many applications

the a~roximat~on i$ quite gQod (~ee section 4,4).

4.3.2 An explicit representation

A representation of the sea surfacg as a stationary Gaussian process

in space and time can be obtained by a straightforward generalization

of the one-dimensional Rice representation [60]:

n m

_ = ~ a.~cos(~.t - k.x cos 0~~ (x,y,t) j~! ~=! J
J     J - kjy sin 0% - ~j~)

(4.3.2)

The phases are independent random variables, each with a uniform p.d.

of (2w)-! on the interval (-~). The wave frequency and wavenumber

are related according to the dispersion relation

2
~j = gkj tanh kjd (4.3.3)

The spectrum of the process described by (4.3.2) is discrete, which

is not realistic for wind waves. In order to obtain a continuous spec-

trum we should consider the limit of (4.3.2) for n~, maxI~j+! - mjl ÷ 0,

m~ and max l8£+! - @~I ÷ 0, such that the spectral components with an-

gular frequencies in the infinitesimal interval (~, ~ + d~) and with

directions of propagation in the infinitesimal interval (0, ~ + dO) con-

tribute to the total variance of ~ in proportion to d~dS:

~+d~ ~+d0        2
~    % ~ aj£ ÷ G(~,0)d~d~ (4.3.4)

The total variance of ~ is then given by
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If the surface elevation is considered as a function of time~ at

+ sin ~£) ina fixed point (x,y), then the phase term (kjx cos 0£ kjy

(4.3.2) is a constant, say ~j~, for each pair (j,£):

(4.3.6)

This expression can be put into in a form similar to the representa-

tion (4.2.31) for a one-dimensional process as follows. Eq. (4.3.6)

can be written as

n i~.t m -i(~j£ + ~_j~)_ n imjt

j=l %=I J£ j=1

(4.3.7)

in which

m -i(~j~ + i_j~)

bj = ~ a.~e~=I ~
(4.3.8)

Define

B. = I~jl , ~j = arg (b~) , (4.3.9)

then (4.3.7) becomes

n

--~t = j~l Bj cos(mjt + B_j)

It follows from (4.3.8) and from the given p.d.f, of ~j~ that the pha-

ses ~j are mutually independent, each with a uniform p.d. of (2~)-I

on the interval (-~,~)~while the random amplitudes B. (which in the

limit for m+~ are Rayleigh-distrihuted [61]) have mean-square values

m

E(B_j2} = ~ aj£
(4.3.11)

£= 1
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With this information the auto-covariance function and the spectral

density function of {~t} can be derived in a straightforward manner

from (4.3.10), with the result

(4.3.12)

and

s(~) =
n n m

2
~ E{~ B~2} ~(m -5) = I ( ~ ~ aj~)~(m - mj)

j=1 j=1 ~=l

(4.3.13)

m     2
Thus, the contribution to the variance of --~t at ~ = mj equals [ ½ ajz, £=!
which is the sum~ over all thedirections of propagation, of the vari-

ances of the components with ~ = m.. It follows that in the limit when
1

the frequencies mj and the directions of propagation ~£ are densely

distributed in (0,~) and (-~,~), respectively, the spectral density

S(~) can be obtained from the two-dimensional spectrum G(m,%) by inte-

gration over

S(~) = I G(~,8)d8 (4.3.14)

The two-dimensional spectrum G(m,8) can therefore conveniently be

factorized into the one-dimensional frequency spectrum S(m), the inte-

gral of which yields the variance of ~, and a directional spectrum

D(8;~) which has unit area; or

G(m,e) = S(~) D(e;m)    ,

in which

I D(e;~)dO

for all m.
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The representation of the sea surface as a quasi-stationary and

quasi-homogeneous Gaussian process has many realistic features [62,63].

The superposition of spectral components of different frequencies and

wavelengths results in an oscillatory but non-periodic behaviour of

the surface in time and in space~ while the fact that these components

have different directions of propagation causes short-crestedness.

Both properties are clearly present in wind waves. A quantitative test

of the agreement between the Gaussian model and real waves can obvious-

ly be made only on those items for which quantitative theoretical and

empirical results are available or obtainable. Many theoretical results

concerning the statistica! properties of the waves considered as a

random moving surface have been derived by Longuet-Higginso However,

no empirical data are available for most of these. The situation is

quite different in the simpler case of the variation of the elevation

of the water surface with time at a fixed point, of which many measure-

ments have been made, analysed and compared with theoretical predic-

tions. A number of these will be presented in section 4.4. We shall pay

no attention to the statistical geometry of the sea surface, since the

equations presented in chapter 3, which are to be used in the chapters

5 and 6, are based exclusively on mass- and momentum balances for a

fixed control volume of infinitesimal horizontal extent. The waves

appear in these equations only in their time-averaged properties at

fixed points. These properties can in a first approximation be calcula-

ted from the two-dimensional energy spectrum, without having to go into

the details of the surface geometry.

4.3.3 Transformation of the spectrum due to shoalin$~ refraction and dissi-

It has been observed in the introduction of this section that

statistical wave properties generally vary relatively slowly in time

and space~ so that for a description of the local properties the field

can be considered to be stationary and homogeneous. However, it may be

necessary to take account of the variations of the local properties if

the waves are considered on a larger scale. This is in fact the case
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in the problems to be dealt with in following chapters, in which

predictions have to be made concerning the wave motion in the nearshore

region, for a given topography and given wave properties offshore.

In such cases the spectral density is considered as a slowly varying

function of space and time. Its transformation can be calculated from

an energy balance, assuming the geometrical-optics approximation to

be applicable. The formulation is simplest in terms of the two-dimen-

sional wave-number spectrum G’(~), which is related to G(~,~) according

to

G’(~) ~ G’(kx,ky)

-I
cc G(~,~)g

(4.3.17)

in which

Longuet-Higgins [64] has shown that in the statistically steady sta-

te the spectral density G’(~) is constant along wave rays, if there

is no generation or dissipation. This can also be written as

-~{ CCg G(m,O)}= 0 , (4.3.19)

in which s is a coordinate along the wave ray traced by the spectral

component (~,8). More generally, it can be shown [30] that

-- G’(k;x,t)dt ~ (’~ + Cg . V) G’(k;x,t) = Q(k;x,t) , (4.3.20)

in which Q is a source function, which may contain terms representing

energy transfer between wind and waves, wave-wave interactions, ener-

gy dissipation, etc. Collins [65] describes procedures for the in-

tegration of (4.3.20) in which several of these possible source terms

are taken into account. If Q = 0 then the spectral density in wave-
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number space is constant, following a wave group.

4.4 Statistical properties of wind waves at a fixed point

4.4.! Introduction

In this section we shall stm~narize theoretical and empirical

results concerning a number of statistical properties of wind waves

at a fixed point which will be used in subsequent chapters. Particular

attention will be paid to the distributions of crest heights and wave

heights.

The theoretical results to be mentioned in the following have been

derived from the assumed model of a stationary Gaussian process with

zero mean~ except where otherwise stated. These results will simply

be referred to as "theoretical" in order to avoid repeated use of the

more complete description. Similarly, the term "empirical" will be

used to refer to results based on the analyses of wind wave records.

The theoretical results are conveniently expressed in terms of

the moments of the spectrum of ~t about m = O:

mj = f ~J S(~)d~ (4.4.1)

0

The moments are assumed to exist up to all orders required. The zeroth

moment equals the variance of ~:

2     I mo
~ =     S(~)d~ = (4.4.2)

0

4.4.2 Distribution of instantaneous values

The theoretically predicted Gaussian distribution of instantaneous

values of the water surface elevation, or of variables which linearly

depend thereon, has been reasonably verified empirically, both in the

univariate case [66] and in the multivariate case [67]. Needless to

say, the assumption that the elevations at various times are jointly

Gaussian distributed is also checked indirectly through the theoretical
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results to be mentioned in the following paragraphs, which are with-

out exception based on this assumption.

Though the Gaussian function is a good first approximation to the

measured surface elevation distribution~ it is no more than that. De-

tailed analyses of wave records by Kinsman [68] brought small but

systematic differences to light~ in the sense that high positive ele-

vations had a greater p.d. than the best-fit Gaussian curve, while the

opposite was true for negative elevations of large absolute value, re-

suiting in a positive skewness. Similar deviations from the Gaussian

distribution were found by Koel~ and de Bruyn [69] and by Collins [70].

These deviations are due to the nonlinear character of the waves, which

causes the crests to be narrower than the troughs, and at a greater

distance from the mean water level. Longuet-Higgins [7|,72] has con-

sidered theoretically the perturbations on the Gaussian p.d.f, due to

the nonlinear coupling between the spectral components. His results are

in very close agreement with Kinsman’s and Collins’ data.

4.4.3 Averase interval between level crossinss

Consider the time intervals ¯ between successive crossings of

a level ~ by a realization ~(t). Rice [55] has derived the following

theoretical result for their average value:

m , 2

E{~} = ~ (~20)~ exP(2--~m0)
(4.4.3)

4.4.4 Distribution of zero-crossin$ intervals

An important special case of (4.4.3) is obtained by putting ~ = 0,

resulting in an expression for the average interval between successive

zero-crossings:

(4.4.4)

In later applications the time interval between successive zero-
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upcrossings will be considered, denoted by ~ (see fig. 4.1). This

quantity will for brevity be referred to as "zero-crossing period",

Fig. 4.1 - Definition sketch

or simply as "period". Its theoretical mean value is

~ = E(~} = 2 E{.~O} = 2~ (m0)~
m2

(4.4.5)

Empirical data are in general in agreement with this relationship

[70,73].

The calculation of the p.d.f, of ~0 or of ~ poses a formidable

theoretical problem. A first approximation was given by Rice [55].

Further contributions are due to McFadden [74,75] and Ehrenfeld et

al [76] and in particular to Longuet-Higgins [77-79]. The p.d.f.

depends in a complicated manner on the spectrum. It has to be cal-

culated numerically. Some results obtained from numerical simulation

of Gaussian processes with various spectral shapes have been given

by Goda [80].
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4.4.5 Distribution of intervals between maxima

A maximum of ~(t) corresponds to a do~nward zero-crossing

of ~’(t) = d~(t) The distribution of the time intervals between
dt    "

maxima of !(t), denoted as T_m, can therefore be calculated using

the theoretical results pertaining to the distribution of zero-cross-

ing intervals, referred to in the preceding paragraph. These results

should then be applied to the process {!’(t)}, of which the spectral

density is m2S(~). It follows in particular that the average time in-

terval between maxima can theoretically be calculated from (4.4.5),

provided the zeroth and second moment of {!’(t)} are used. This gives

4
(4.4.6)

a result which is due to Rice [55].

4.4.6 Distribution of the heights of the max{m~

Rice [55] has derived the theoretical probability distribution of

the heights of the maxima. His result has been elaborated by Cartwright

and Longuet-Higgins [58].

It is convenient to normalize the process {~(t)} so that it wil!

have a standard deviation of unity. We therefore define

i(t)
i(t) =-- (4.4.7)

The value of ~(t) at a maximum is denoted by ~-m (see fig. 4.1). The

theoretical expressions for the p.d.f, and the probability of exceed-

ance of ~_~, written as f(D) and Q(N), are

2

-~n2-I ~ 1_~2
f(~) = (2~) ~ (1-~2)~ e + ~ne e -~v2 dvI

(4.4.8)
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and

n/(l-~ )

, 2 ~"~/(1-’~2)~    2

in which

m2
~    (m0 m4)~

(4.4.10)

The parameter ~ is related as follows to the widely used parameter

introduced by Cartwright and Longuet-Higgins [58]:

(4.4.11)

The reason for using v instead of £ is that the term (I - ~2)~, which

is v, occurs much more frequently in what follows than ~ itself.

Substitution of (4.4.5) and (4.4.6) in (4.4.10) gives

(4.4.12)

in which N and Nm are the number of upward zero-crossings and of

maxima in a long time interval. It follows that for continuous processes

~ < I. The lower bound on v is theoretically zero [58]. This case is of

no practical importance, however, as it would imply that there are in-

finitely more maxima that zero-crossings. It will be included here on-

ly for the sake of completeness. Thus we have

0 < ~ < 1    , (4.4.13)

which can also be inferred directly from the definition of ~ given in

(4.4.10). The value of ~ is wholly determined by the shape of the

spectral density function. A spectrum is said to be narrow if the mo-

ments about the mean frequency

~ = ml/m0
(4.4.14)
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are smal! compared with the moments about ~ = 0. In this case

mj ~ (~)J mo, so that v = I. The realizations then have the appearance

of a slowly-amplitude-modulated sine curve with a well-defined en-

velope. There are no positive minima or negative maxima, so v = N/Nm~ I.

For ~ = | the eqs. (4.4.8) and (4.4.9) reduce to

f(~) = 0           for N <_ 0
i 2

for ~ > 0
(4.4.15)

and

for n < 0

for ~ > 0 ¯
(4.4.~6)

These equations describe the Rayleigh-distribution [61]; Eq. (4.4.16)

follows also from (4.4.3) and from the fact that there are no posi-

tive minima if v = I, so that in this case the number of upcrossings

of a given positive level equals the number of maxima above that

level.

With increasing spectral width, v diminishes in value. The corres-

ponding realizations are less regular in appearance, having more ex-

tremes than zero-crossings. In other words, the proportion of nega-

tive maxima (and of positive minima) increases [58]. It is equal to

I-Q(O), which, from (4.4.9), equals ½(I - ~). In the extreme case
~ = 0 the distribution of ~_~n reduces to the Gaussian form.

The paraneter (- ~) can be shown to be equal to the coefficient

of linear correlation between ~(t) and its second derivative, or,

roughly speaking, between the elevation and the curvature. The impor-

tance of this correlation coefficient for the statistical properties

of a stationary random process was already pointed out in 1921 by

Taylor in his pioneering paper on the diffusion by continuous move-

ments [81], in which he also introduced the auto-covariancefunction.
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The expression (4.4.9) for the probability of exoeedance of $_m

with arbitrary v is somewhat unwieldy for analytica! work. However~

with increasing values of ~N/(|- ~2)½ the integrals occurring in

(4.4.9) converge rapidly to 0 and to (2~)~ respectively, in which case

Q(n) ~ u e-½~2 (4.4.17)

[55, 58], or, substituting (4.4.12),

Q(~) ~ NN--- e-~2

m

The errors in this approximation are small even for moderate values
2 i

of ~/(]- ~ )2. For example, for ~ = 0.7, which is a co~mnon value

for wind-driven waves, the relative error is less than 0.02 for ~ > ! ~

i.e. for all the maxima higher than (only) one standard deviation

above the mean level. The error diminishes rapidly with increasing

values of ~ and/or ~.

Eq. (4.4.18) can be interpreted as follows. Q(~)Nm/N, which is

the ratio of the expected number of maxima with a height in excess of

~] (>0)     to the expected number of zero-upcrossings, is nearly equal

to exp(-~N2), which is of the same form as the probability of excee-

dance of the Rayleigh distribution. This theoretical result is relevant

to the practice of considering not every maximum in a record but only

the highest ms~ximum in each interval between a zero-upcrossing and the

next zero-downcrossing. This subclass of all the maxima will for bre-

vity be referred to as crest height, denoted by ~-~n’ (see fig. 4.1)~

and by ~--m in normalized form. It follows from the definition of the

crest heights that they are positive, and equal in number to the up-

ward zero-crossings. Their theoretical distribution is not known ex-

cept for the case of a narrow spectrum (~ = I), when it is of the

Rayleigh type. The following arguments show that the Rayleigh dis-

tribution applies approximately for other values of ~ as well, pro-
2 -~

vided 9~/(] - v )z is not small.

The probability of occurrence of more than one maximum above ~ on

an interval between a zero-upcrossing and the next zero-downcrossing

diminishes with increasing n. This implies that for moderate and large
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of ~ the expected number of occurrences of {~-~n > ~} is

mately equal to (but never larger than) the expected number of occur-

rences of (~--m > ~}" If we divide both by the expected number of zero-

crossings we obtain

N

Substitution of (4.4.18) gives

(4.4.20)

The errors in (4.4.|8) and (4.4.19) are of opposite sign, and they

diminish rapidly with increasing ~ and/or 9. Thus, the conclusion is

that theoretically, for sufficiently large values of ~n/(| - v2)~, the

crest heights are approximately Rayleigh distributed. This is in

agreement with data presented by Koel~ and de Bruyn [69]. The equi-

valent of the crest height based on the trough depth was also found

to be Rayleigh distributed, though it was systematically smaller. This

is to be expected if nonlinear effects play a measurable r$1e. The same

trend is shown by data given by Collins [70]. In this case there was

good agreement with the Rayleigh distribution only in the upper 80%

(Q > 0.2). The effects of nonlinearities on the p.d.f, of the heights

of all the maxima (not just the highest maxima between successive zero-

crossings) is dealt with by Longuet-Higgins [72].

4.4.7 Distribution of zero-crossing wave heights

Consider $(t) on a time interval between two successive zero-upcross-

ings. The height of the highest maximum on this interval above the

height of the lowest minimum on the s~ne interval is called a zero-

crossing wave height~ or simply wave height, denoted by H (see fig.

4.1). The zero-crossing wave height is used extensively in the analysis

of wind wave records, particularly in civil engineering applications.

The distribution of H is kno~n theoretically only in the case

of a narrow spectrum~ ~ = ]~ when it is of the Rayleigh type. The
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applicability of the Rayleigh distribution to the heights of sea waves

seems to have been first suggested by Barber [82]. Longuet-Higgins

[57] gave an outline of the arguments underlying the assumption of a

Gaussian model for the wave motion, and the conditions for the spec-

trum to be narrow, as well as numerous relationships between charac-

teristic parameters of the Rayleigh distribution and of the distri-

bution of the largest wave height in a finite sample.

The Rayleigh distribution for ~ can be written as

F(H) = 0                    for H < 0
-~(H/~)2                 (4.4.21)

= I - e for H > 0

in which ~ = E{~} (4.4.22)

The root-mean-square wave height (Hrms) is related to the standard

deviation of ~(t) and to ~ as follows:

Hrms def= (E{H2})~_ = 2/~m~= 2~
(4.4.23)

The so-called significant wave height, which is defined as the mean

value of the highest one-third fraction of the heights, is given by

Hi/3 ~ 1.41 Hrms ~ 4 /~0

(4.4.24)

Empirical data on wave height distributions have been collected

and analysed by a score of investigators. The earliest systematic

efforts in this direction preceded the theoretical developments.

Based on the data available at the timer most of which had been ob-

tained with pressure recorders, Lo~guet-Higgins [57] concludes "In

examples quoted above, the discrepancy between theory and observa-

tion is in all cases less than 8%, and in some cases it is smaller

still. In view of the somewhat strict assumptions made in deriving

the theoretical probability-distribution, this agreement is surpris-

ingly close; and it may indicate that the probability-distribution

does not depend very critically upon the narrowness of the wave
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spectrum." The wealth of data gathered since then, both with pressure

meters and with surface sensors, in swell as wel! as in wind-driven

waves~ gives strong support to Longuet-Higgins’last-mentioned state-

ment, and confirms the applicability of the Rayleigh distribution

for wave heights in general [69, 83-87]. This is particularly note-

worthy because in many of the measurements the spectrum was far from

narrow, and probably much wider than the spectra of the pressure re-

cords on which Longuet-Higgins’conclusions were based. For example,

in most of the cases analysed by Koel~ and de Bruyn [69] the value of

~2(also of s2) was between 0.4 and 0.6. Even so these authors could

"we have seen that the distributions of ~ and~_m are independentstate

of the width of the energy spectrum (expressed in terms of ~). The

distributions f(H) and f(N) correspond to a great extent with the

formula of the Rayleigh distribution". Similarly, Goodknight and

Russell [84]~ after analysing wave records taken in the Gulf of Mexico

during hurricanes, conclude "The agreement of the theoretica! and

experimental values suggest that~ for practical purposes, the parti-

cular statistics studied for waves generated by a distant hurricane

may be approximated by a Rayleigh distribution. The results of these

tests are in agreement with other work in this field. It should be

emphasized that these data were collected during severe oceanogra-

phic conditions (maximum wave heights to 20 ft in a 33-ft water depth),

and the data were measured with a surface sensing instrument."

The goodness-of-fit of the Rayleigh distribution to deep-water

wave height data can be judged from Table 4.1, adapted from Titov

[87], in which average values derived from "a large number of wave

recordings taken in different seas and oceans under a large variety

of meteorological conditions" are compared to values obtained from

(4.4.2|).

100 F (H/~) |     10    20    30    40    50    60    70    80

H/~, measured 0.|0 0.37 0.54 0.69 0.81 0.93 1.05 1.2] 1.38

H/F, eq.(4.4.21) 0.11 0.37 0.53 0.67 0.81 0.94 1.08 ].24 1.43
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100 F(H/~) 90 95 97 98 99

H/F, measured |.69 }.9! 2.]0 2.28 2.52

H/H, eq.(4.4.2|) |.71 1.95 2.|| 2.23 2.42

Table 4. |

The table illustrates the fact that the Rayleigh distribution gives

an excellent description of the short-term wave height variability.

This is in strong contrast with the dictum "The basic law of the

seaway is the apparent lack of any law"~ which, interestingly enough,

is due to Rayleigh himself [30]. (Rayleigh derived the distribution

named after him for the intensity of sound consisting of a large

number of components of the same frequency in random phases [6|]. It

took almost 70 years before it was realized that under certain cir-

cumstances a similar model applied to wind waves.)

The empirical fact that the zero-crossing wave heights are to a

good approximation Rayleigh distributed, even if the waves are defi-

nitely nonlinear and do not possess a narrow spectrum, calls for an

explanation. The nonlinearity of the waves gives rise to higher crests,

but also to higher troughs. The wave height is only slightly affected

by this since it is measured from crest to trough. The fact that the

spectral width appears to have no measurable influence on the dis-

tribution of H can probably be explained with reference to the crest

heights, which were shown theoretically an~ empirically to be approxi-

mately Rayleigh distributed. The only additional assumption required

is that the crest height, defined as the largest maximum between

successive zero-crossings, is strongly correlated with the immediately

following largest trough depth between successive zero-crossings. This

assumption is rejected by Jahns and Wheeler [88], who point out that

for a wide spectrum a relatively high crest is on the average follow-

ed by a not-so-deep trough. This would be the case for a purely

Gaussian process, quite apart from hydrodynsmical nonlinearities. The

use of a Rayleigh distribution for H would therefore, according to these

authors, result in an overestimation of the probability of exceedance

for the relatively high waves, if the spectrum is not narrow.
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It is difficult to establish empirically whether the effect men-

tioned above is real in wind waves, because to do so would require

long-lasting records in stationary conditions in order to obtain sta-

tistically significant results at the low levels of probability under

consideration. This applies also to the effects of wave breaking.

This phenomenon occurs so infrequently in deep water that it does

not have an appreciable influence on the measured distributions for

the short sample lengths which are con~only used (typically |00 to

200 waves). 8vasek [86] reports that "The wave recordings of limited

duration, e.g. 30 min., at some stations in the shallow part of the

North Sea show only small deviations of the extreme values of wave

heights from the Rayleigh distribution." The wave heights at the

exceedance probability level of 0.5% were found to be "almost never"

more than 15% greater or ;0% smaller than ~he corresponding heights

obtained from the Rayleigh distribution. In this regard it is also

pertinent to note that theoretical predictions concerning the lar-

gest crest height in a finite sample have been well verified empi-

rically, as shown by Cartwright [59], who states "one may justifiably

suspect that non-linearities might become important for the largest

waves considered in a theory of extreme values. But the satisfactory

results of measurements sho~ ... confirm that the assumed represen-

tation stil! holds good well into the tail of the probability dis-

tribution." The data on which this conclusion is based were obtained

with a shipborne wave recorder. The data derived from surface sensors

at a fixed point should under the s~ne conditions have a wider spec-

trum as well as stronger nonlinearities. Yet also for such measure-

ments there is agreement with predictions concerning the largest wave

height~ based on an assumed Rayleigh distribution for the individual

wave heights [73, 84]. This was the case even in hurricane waves,

where the theory is put to a severe test. The inevitable conclusion

is that the short-term probability distribution of wave heights is

not significantly affected by wave breaking, at least in deep water.

The situation in this regard is of course quite different in shallow

water where the larger wave heights may be of the same order of mag-

nitude as the water depth. This case wi!l be considered in chapter 5.
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4.4.8 Distribution of the largest wave heisht in a record

The distribution function of the largest wave height in a finite

sample has been derived by Longuet-Higgins [57]. Consider an ensemble

of records, each containing N wave heights. If the records contain

at least a few wave groups~ then the N realizations of the wave height

H in each record can be considered as N independent random samples from

a universe of wave heights. The probability that the height ~ shall

not exceed a value H is given by F(H). The probability that all of

the N heights in a record shal! not exceed H is then given by {F(H)}N.

It is equal to the probability that the msximum wave height in the

record, denoted by H_~n~x, shall not exceed H:

FN(H) ~ Pr {H_max i H} = {F(H)}N (4.4.25)

Expressed in terms of the probability of exeeedance of ~,

Q(H) = I - F(H) , (4.4.26)

(4.4.25) becomes

FN(H) = {I - Q(H)}N (4.4.27)

For large N, FN(H) is vanishingly small unless Q(H) is of order N-I.

Therefore only relatively large values of H are of interest. Eq.

(4.4.27) then approximates to

FN(H) = e-NQ(H) (4.4.28)

Substitution of the Rayleigh distribution for ~ gives

- ~(H/~)2

FN(H) = e-Ne (4.4.29)
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The expected value of H     has been calculated from this distribution
--max

function by Longuet-Higgins [57], with the result

2__~ {(%n N)½ + 0.29(~n N) ~}E{H--max} ~ ~                            ’ (4.4.30)

which is valid for N > 20 approximately. Empirical data are in good

agreement with this theory [57, 73, 84].

The distribution of the largest maximum ($--m    ) has been considered

by Cartwright [59], who uses the approximate formm~ the probability of

exceedance of ~_m given by (4.4.18), which, apart from the constant fac-

tor N/Nm, equals the probability of exceedance according to the Rayleigh

distribution. The resulting distribution function of ~_m     is therefore

equal to the one derived by Longuet-Higgins for ~-max’ provlded the

number of maxima (Nm) is replaced by the number of upward zero-crossings

(N).

4.5 Empirical data for wind-driven waves

It will be assumed in the applications to be given in the following

chapters that the incident waves at some point offshore are known in

terms of parameters such as the two-dimensional spectrum and the joint

distribution of zero-crossing wave heights and -periods. No specific

functions will be postulated ~ priori for these parameters, with the ex-

ception of the marginal distribution of the wave heights, which can be

assumed to be of the Rayleigh type without great loss of generality.

Both the two-dimensiona! spectrum and the distribution of the wave

periods can vary between wide limits so that no generally applicable

functions can be given. They could almost be chosen at will if quan-

titative evaluations would be required. However, it is preferred to

choose somewhat realistic conditions for the cases to be worked out

analytically or numerically. These conditions will be chosen to corres-

pond to wind-drivenwaves in a more or less stationary and homogeneous

wind field. It is for this purpose that some empirical data concerning

wind-driven waves are presented in this section.
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4.5.1 Directional s~ectra

Directional spectra are difficult to measure, and detailed data

are correspondingly scarce. We shall present some of the results..

The directional spectrum D(0;~) is defined by the eqs. (4.3.14)

and (4.3.15)o The angle 8 will be measured from the mean direction

of propagation. The parameters appearing in the analytical expressions

for D(0;m) to be presented do not depend on e; they may depend on ~.

The coefficients are determined so as to agree with

ID(e;~)dB = I (4.5.1)

for all m.

St.Denis and Pierson [89] propose the equation

DI(0;~) = DI(8) = ~ cos2~ for !~ (4.5.2)

= 0          otherwise.

This result seems to have been inferred from observed angular spreading

of swell.

Titov [87] presents a result which in appearance is very similar

to (4.5.2), but it applies to a differently defined quantity. He

considers what could properly be described as a marginal directional

(4.5.B)
0

as opposed to the conditional density defined by (4.3.14-15).

Titov states that in the open sea D’(~) varies as cos2~. This is

based on stereophotographs of the sea surface. The resul[ given by

Titov is of course implied by (4.5.2), but the reverse is not neces-

sarily true. However, it does give indirect support to the validity

of (4.5.2), at least in the frequency band which contributes most to

the variance.

spectral density,
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Various authors have proposed an equation similar to (4.5.2) but

with different exponents:

D2(8;m) = B2(cos O)m for 181 !

= 0 otherwise.
(4.5.4)

In view of (4.5.1), the coefficient B2 is given by

B2 = {l(m)}-I , (4.5.5)

in which

l(m) =

where F(.) is the gamma function [90], defined by

F(x) = I tx-1 e-t dt

0

for x > 0

, (m> -I)     ,

(4.5.6)

(4.5.7)

F(x+1) = xF (x)    for x # 0,-I,-2, ....

Two usefu! particular cases of (4.5.7) are

(4.5.8)

and

F(~) = ~ (4.5.9)

¯ he International Ship Structures Congress Committee on Environmental

Conditions [91] recommends (4.5.4) with m = 4, but some of its data

represented swell, which of course has a narrower angular distribution

of the energy than wind-driven waves. Moreover, its choice for the

exponent m was deliberately on the high side because this was consi-

dered to be the safe side for the applications envisaged. The distri-

bution measured by Barber [92] is approximately proportional to
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cos48 [93], but "it is not expected that (this result) will apply

to open water", where the distribution can be expected to be broader,

"because the fetch in the wind direction was much greater than else-

where". It appears then that if (4.5.4) is used as a representation

of the directional spectrum of wind-driven waves, the exponent m

should be nearer to 2 than to 4.

The data available at the time when (4.5.2) was proposed (1953)

did not permit to formulate a variation of D with ~. Later investiga-

tions have shown that the width of the angular energy distribution

increases with increasing frequency. The first clear evidence of this

came from the analysis of stereophotographs of the sea surface in a

project named SWOP [93], which provided the basis for the equation

D3(O;~) -- ~ (A0 + A2 cos28 + A4 cos40)

= 0

for 181
otherwise,

in which

where

A
0 = ~ (I -C)

A
2 = I - 0.92 C

A
4 = 2.56 C    ,

imW4
C = exp{-~(-~) }

(4.5.11)

(4.5.12)

and W is the mean wind speed at anemometer height (15 ft above sea level).

The peak of the frequency spectrum was at ~ = ~ ~ 0.85 g/W. The dis-

tribution (4.5.10-12) is wider than (4.5.2) at high frequencies, and

narrower at low frequencies. Cote et al [93] state that this "would

appear to give more realistic swell forecasts than previously used

formulas" (i.e., than eq. 4.5.2).

Longuet-Higgins et al [94] have fitted the following function to

their data, which had been obtained with a pitch and-roll buoy:
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D4(0;~) = B4 (cos ~8)2s, (4.5.13)

with

B4 = {21(2s))-I = 1 F(s + I)
2/~ r(s + ~

(4.5.14)

The exponent s is in general a decreasing function of m; this is

qualitatively in agreement with (4.5.10-12).

Krylov et al [95] have proposed a directional spectrum as in

(4,5.4), with

m ~ 25/~ (4.5.15)

This distribution broadens with increasing frequency; it agrees

with (4.5.2) at the peak of the frequency spectrum. The fact that

(4.5.4) would apply with m inversely proportional to ~ has also been

noted by St.Denis [96], based on the data of Longuet-Higgins et al

[94].

4.5.2 Frequency s_pectra

The first empirical formula for a one-dimensional spectrum of

fully developed wind waves on deep water has been given by Neumann

[97]. It can be written as

S(~) = 0.025 g2 -6
~)-2}

~    exp {-2( , (4.5.16)

in which W is the average wind velocity at 7.5m above sea level.

The coefficient 0.025 has the dimension [s’l]. The Neumann spectrum

is mainly based on visual wave observations. Strekalov [98] proposes

a spectrum similar to Neumann’s, that is to say, with the same ex-

ponents of ~.

Pierson and Moskowitz [99] have given the following spectrum for

fully developed waves in deep water:
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~W -4
S(to) = B1 g2 ~o-5 exp {- ~2(~-) }

(4.5.17)

with

8.10-3 , B2 = 0.74 (4.5.18)

W is the mean wind velocity at 19.5m above sea level. The Pierson-

Moskowitz spectrum is based on measurements made in the North Atlantic

Ocean with a ship-borne wave recorder. A spectrum similar to (4.5.17)

has been given by Davidan [100], based on measurements in the Barents

Sea and in the Atlantic.
It may be seen that for high frequencies the spectral density

2 -5
in the Pierson-Moskowitz spectrum is proportional to g m , with a

dimensionless coefficient of proportionality. That this should be

so had been inferred on dimensiona! grounds by Phillips [101]. He

argued that breaking limits the wave growth, and that consequently

there should be a range of frequencies in the spectrum of wind-driven

waves in which the spectral density has reached a saturation value.

This range is called the equilibrium range. The equilibrium spectral

density, denoted as Se(~)) should be independent of the wind velocity,

duration, fetch, etc., and be wholly determined by the frequency

and the gravitational acceleration g. (Effects of finite depth and

of surface tension and viscosity are not considered.) On dimensional

grounds the equilibrium spectrum should then be given by

2 -5               (4.5.19)
Se(~) = 8 g m      ,

in which B is a dimensionless constant. However, it has been found

that the coefficient ~ is not actually a constant but that it decreases

with increasing values of the dimensionless fetch F, defined by

F~ = W~2    , (4.5.20)
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in which F is the (dimensional) fetch and W is the mean wind velocity.

Strekalov et al [102] report measured B-values from approximately

1.4 x 10-2 at F~ =.I02, to 0.6 x IO-2 at F~ = 4 x 104. _

In the examples to be given later we shall mainly use the Pierson-

Moskowitz spectrum, because this is dimensionally homogeneous. While this

spectrum was determined from fully developed waves, it turns out [73,9]]

that for many practical purposes the spectra of developing waves in

simple wind fields can be considered similar to it. One then writes

= m    exp {- ~(    } , (4,5.21)

in which B and ~ vary with the stage of th~ wave growth ($ is the

frequency at which S(~) attains its maximum). The significant wave

height HI/3 and the mean zero-crossing period ~ can be expressed in terms

of 8 and g(or vica versa) by means of (4.4.24) and (4.4.5), which gives

~1/3 = 4 m’~O = 4~g$-2 (4.5.22)

and

~= 27 ~m0/m2 = 2~(~-~)4                   (4.5.23)

If we define a wave steepness ~ by

in which L0 is

~ = HI/3/L0 ,
(4.5.24)

a wavelength defined by

LO    2~r     ) (4.5,25)

then

~= 2 m2
(4.5.26)



Corresponding to the above-mentioned range of ~ from 1.4 x 10-2 to

0.6 x 10-2 we find ~ in the range from 0.067 to 0.044; the wave

steepness is a decreasing function of the dimensionless fetch F~.

4.5.3 Distribution of wave periods

I~ has been noted in paragraph 4.4.4 that the shape of the p.d.f.

of the wave period ~ (the time interval between successive zero-up-

crossings) varies with the shape of the energy spectrum. Energy spectra

of wind-driven waves are to a fair degree similar. It is therefore not

unreasonable to expect the same of the corresponding p.d.f, of T. Bret-

schneider [83] finds that T2 is approximately Rayleigh-distributed.

The distribution function of T can then be w~itten as

- r4(~)(T/~)4     -0.675(T/~)4

F(T) = I - e = I - e (4.5.27)

This distribution is also given by Titov [87], who presents results

obtained by Vilenskii and Glukhovskii from the same data as were used

for Table 4.]. A comparison of average values of these data wi~h values

obtained from (4.5.27) is given in Table 4.2. It can be seen that

100 E(TI~)

T/~, measured

T/~, eq. 4.5.27

]      ] 0    20    30    40    50    60    70    80    90

0.44 0.66 0.76 0.85 0.93    1.00 1.07    1.15    ].23    1.37

0.35 0.62 0.76 0.85 0.93    ].00 1.07    1.15    1.24    1.35

95    97    98    99

1.47 1.52 ].57 ].65

1.45 ].52 1~55 ].61/

Table 4.2

(4.5.27) gives a very good fit indeed to the averaged data points.

Goda [80] made numer~ cal simulations of stationary Gaussian

processes with various spectra, including a Pierson-Moskowitz spec-

trum, as wel! as spectra which were much narrower or broader. The
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width of F(T) was found to vary qualitatively in the same way as the

width of S(~). It is interesting to note that the calculated distri-

bution corresponds to (4.5.27) only for the process with a Pierson-

Moskowitz type spectrum.

4.5.4 Joint distribution of wave heishts and periods

An empirical expression for the joint p.d. of H and T for fully

developed waves has been given by Bretschneider [83]° He considered

the coefficient of linear correlation of ~ and ~2, defined by

cov(~,~2)

% = ~H °T2 ’
(4.5.28)

T2in which the numerator represents the covariance of H and _ ~ while

oH and OT2 are the standard deviations of ~ and ~2. Bretschneider found

that k varied in a systematic manner with the wave "age" (ratio of phase

speed to wind speed), therefore also with the dimensionless fetch or

duration of the wind, in the sense that k tended to high values in a

young sea and to zero in a fully developed sea. The joint p.d.f, of

H and T2 in the latter case is given by Bretschneider as the product

of the margina! p.d. functions. Thus~ he implicitly assumes that f(H,T)

is such that zero correlation implies stochastic independence. For

cases of nonzero correlation Bretschneider does not give an explicit

expression for f(H,T). He states "The joint distribution of wave heights

and lengths (or wave heights and periods) in general is difficult to

describe completely for all conditions of correlation .... The fact that

both marginal distributions are of the same type is of some help. The

bivariate asymptotic problem of joint distribution for the Rayleigh

type (or a modified Rayleigh type) distribution has yet to be solved."

Lacking an explicit expression for f(H,T) for arbitrary k, Bretschnei-

der assumed that the mutual regressions of H and T2 on each other would

be linear, in order to be able to proceed. However~ the bivariate

Rayleigh distribution had already been defined as the joint distribu-

tion of the values (say ~ and ~) of the envelope of a narrow-band

Gaussian process at two different times. It has been derived by Uhlenbeck
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[I03] and again by Rice [55]. The p.d.f, is

f(x,y) =

i0{ 7 <    xy }
f°r x--> O, Y--> 0

2(I-~2) ~ u
xY

otherwise , (4.5.29)

in which ~x = E{x} and ~ = E{~}, and ~2 is the coefficient of linear

correlation o~ ~ an~ ~ . Further details related to the bivariate

Rayleigh distribution are given in Appendix |. We shall here only

remark that without supporting data it cannot be regarded as established

that the joint p.d. of H and T2 in wind-driven waves would be of the

form (4.5.29), even if both marginal distributions would be perfectly

of the Rayleigh type, because an infinite number of bivariate dis-

tributions can exist for a given pair of marginal distributions [104].

Thus, any use which we make of (4.5.29) as the joint p.d. of H and T2

is of a tentative nature.
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5 RADIATION STRESSES

5.!     Introduction

The calculation of wave-induced longshore current velocities

and changes in mean water level requires the specification of the

radiation stresses as a function of location in the nearshore region,

in terms of the wave properties offshore. The problem of obtaining

such specifications for wind-generated waves will be dealt with in

this chapter. We shall seek only approximations of lowest order. For

the radiation stresses these are the second-order approximations,

which can be found from a first-order wave solution. The radiation

stresses can then be expressed in terms of the two-dimensional energy

spectrum of the surface elevation. Outside the surf zone this spec-

trum can be evaluated from the given deep-water waves and the topo-

graphy, using available methods of refraction computations, l"nese

methods are based on linear potential flow theory, possibly corrected

for a relatively weak energy dissipation in the boundary layers. They

are not applicable within the surf zone because of strong non-lineari-

ties and because of the rapid transformation of organized wave motion

into turbulent motion. The estimation of the radiation stresses in the

offshore region and in the surf Zone will therefore be considered se-

parately, in the sections 5,2 and 5.3 respectively.

The radiation stresses are defined as the momentum fluxes induced

by the waves, averaged over a certain time interva!. For a definition

of this interval it is necessary to distinguish various time scales.

The incident waves themselves have a characteristic period, while their

overall properties may vary on a much longer time scale. The latter

is supposed to be so large that the corresponding rate of change has

no significant dynamic effect on the water mass in the surf zone. In

other words, it is assumed that the incident waves can be considered

to be statistically stationary, as far as the dynamics of the surf zone

are concerned. However, there is still another time scale; nonlinear

self-interactions of the incident waves give rise to motions with

characteristic periods corresponding to the difference-frequencies
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existing in the incident wave spectrum. These relatively slow and

weak motions are appreciable only, if at all, in the surf zone ("surf

beat"). Our aim is to calculate the steady part (zero-frequency com-

ponent) of these motions. The fluctuating part will be averaged out.

This is considered permissible because the surf beat is far weaker

than the incident waves (ratio of energies per unit area is of order

10-2), so that its effect on the steady part of the surf "beat" is

negligible compared with that of the breaking waves. The time-averages

to be used throughout the following will therefore be based on an

averaging interval which is long compared with the characteristic

period of the surf beat, while it should be short compared with the

time scale of the variations of the statistical parsmeters of the

incident waves.

5.2 Radiation.. stresses expressed in terms of the two-dimensional energy

s_~ectrum

5.2.1 General formulation

The radiation stresses in a statistically stationary and homo-

geneous wave field are given, to second order, by (3.3.19). Since we

are at first dealing with waves in a fixed point, without a mean flow,

we can temporarily omit the primes on the fluctuating quantities, and

choose ~ = O~ in which case

0

I -- --S.. = p(~ - w2~ij)dz + ~ pg~2 ~ij~j (5.2.~)

-d

We shall represent the wave field as in paragraph 4.3.2:

with

!(xl,x2,t) = ~ ~ arm cos ~m (5.2.2)
£m

~m = ~£t - k~ xI cos 8m - k£ x2 sin 0m - ~m" (5.2.3)
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The notation has been changed slightly by using xi(i = 1,2) instead

of (x,y). As in paragraph 4.3.2, the limit of (5.2.2) should be con-

sidered in which the frequencies and the directions of propagation of

the spectral components are continuously distributed~ and in which the

spectral density G(m,8) is everywhere finite.

The restriction to horizontal homogeneity precludes standing

waves from the considerations. The spectral density function should

therefore satisfy the relation

(5.2.4)

for all (m,O). A sufficient condition for (5.2.4), though not a neces-

sary one, is that the directional spectral density is zero in a con-

tinuous interval of ~ radians. The empirical spectra (4.5.2), (4.5.4)

and (4.5.10) satisfy this condition.

The mean products of the velocity components appearing in (5.2.1)

can be expressed in terms of the two-dimensional spectrum of ~ by

applying the results from the linear theory of long-crested sinusoidal

progressive waves (eqs. 3.2.16-17) to individua! spectral components.

This gives

qiqj =

in which

(5.2.5)

(el, e2) = (cos ~, sin ~) , (5.2.6)

and

{~     sinh kd
0

I {~ sinh k(d +sinh kd z)}2 S(~)d~

0

(5.2.7)
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It can be seen from (5,2.7) that the mean square vertical velocity

depends on G(m,0) only through the frequency spectrum S(m); it is

independent of the directional energy spectrum. The same holds for

the mean square modulus of the horizontal velocity vector:

2

I
I {mc°sh k(d +q = qiqi = j sinh~d z)]2 (cos20 + sin20) G(~,0) dm dO

cosh k(d + z)}2
= j {m    Sinh kd S(~)dm

0

(5.2.8)

Substitution of (5.2.5) and (5.2.7) into (5.2.~) gives

iJ
sinh2kd

i j

sinh2k(d + z) ~ij} G(~,8)dz dm dO +

sinh2kd

+ ~ pg~2 ~ij (5.2.9)

Performing the integration with respect to z, and substituting

(5.2.10)

gives

Sij = ~g I I {n eiej + (n - ½)~ij} G(~,0)d~ dO , (5.2.11)

where n is given by (3.2.23). Eq. (5.2.]|) could have been written

down at once, in view of (3.3.20) and the definition of G(~,0). It

was preferred to give a more detailed derivation because some of the

intermediate results will be needed in what follows. Eq. 5.2.]] will

be written in abbreviated form as
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J

in which the double overbar denotes an average over frequency and

direction of propa~gation, weighted With the spectral density:

f ,O)d~ dO

~ def 0 -~ (5.2.13)

For later reference, the components of S.. are written explicity:

Sll = E(n cos2e + ~ - ½) , (5.2.14)

$22 = E(n sin2e + ~ - ~) , (5.2.15)

and

S12 = S21 = E(n sin ~ cos 8)

5.2.2 Effects of short-crestedness on the radiation stresses

Prior to the development of suitable statistical theories for the

description of wlnd-generated waves it was customary to deal with these

waves on the basis of a periodic, unidirectional wave train which was,

or was assumed to be, equivalent to the irregular ones with respect

to a few mean properties, such as the mean energy, period and direction

of propagation. Needless to say~ the elementary substitute-waves dif-

fer from the more complicated ones in other respects. The errors in-

curred by the use of a so-called equivalent wave may be acceptable

for ¢ertain purposes. However, usually no explicit justification is

given for applying this approximation. The fact that this method in

one form or another has persisted up to the present time is reason

to inquire into the errors which may arise from its use for the cal-

culation of Sij. Particular attention will thereby be given to the
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effects of short-crestedness, for the following reason [105]. The ra-

diation stresses are proportional to the mean wave energy per unit area,

E. In unidirectional waves, the coefficients of proportionality depend

on~ only, which in deep water and in shallow water is the same for

periodic waves as it is for waves with a continuous frequency spectrum.

Lumping the energy in one frequency therefore does not affect the radia-

tion stresses in these cases. The situation is quite different with

respect to the directional spectrum, which we will therefore consider

in more detail.

We shall initially deal with the principal values of the radiation

stress tensor Sij. The xI- and x2-axes can without loss of generality

be chosen to be the principal axes of Sij, in which case SII and $22,
given by (5.2.14) and (5.2.15), are the principal stresses. If the

directional spectrum is s3m~etric about a mean direction which is

cow,non to all the frequencies then this direction defines one of the

principal axes of Sij, say the xl-axis. SII will then be the largest

principal stress~ for typical forms of the energy spectrum.

The effect of the short-crestedness of the waves on the magnitudes

of the radiation stresses will be examined by comparing the values of

SI1 and $22 in the given~ short-crested wave system~ with energy spec-

trum G(m,0) = S(~)D(8;~), to the values in a unidirectional wave

system with the same frequency spectrum S(~) and with a direction of

propagation perpendicular to the plane across which the largest prin-

cipal radiation stress acts in the short-crested waves. The energy

spectrum of this second system, written as ~(~,0), is therefore given

by

G*(~,0) = s(~)~(o) (5.2.17)

Since the two wave systems considered differ only in the directional

distribution of the energy, they have the same value of the mean

square modulus of the horizontal particle velocity at each depth.

The mean square horizontal velocity c~_~onents in the direction of

the xI- and x2-axes are (q~, q~) and (q2,0) for the short-crested and
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q2the long-crested waves, respectively, in which = q~ + q~. Thus,

the principal radiation stresses in the substitute wave system are

given by

0

~= P(7 - ~)dz + 2Pg~ = E(2~ - ½)
Sll

-d

(5.2.18)

and
0

$22       0(- w2)dz + ½pg~’~ E(~- ½),      (5.2.19)

-d

as compared to

SII         o(q~ - w2)dz + 20g~

-d

= E(n cos20 + ~ - ½)     (5.2.20)

and

0

in the short-crested waves. The absolute value of the differences is

o

~ Sl ~     I "-2
A = SII - I = $22 - $22 = Pq2 dz -- E(n sin2~) . (5.2.22)

-d

The relative error in the horizontal velocity-square term in $1! in
0

q2 dz

(5.2.23)

f0 ~12 dz n cos20

-d

which in deep water reduces to

sin2~ sin2~

2 n2O
cos ~ 1 - si

(5.2.24)
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The relative error in SII itself is

61 SII Sll    n cos2~ + ~ - ~

, (5.2.25)

’ = 6’ The relative error in thewhich in deep water reduces to

smallest principal stress is

$22 - $22 A n sin2~

62 S22 $22
n sin28 + ~ - ½

(5.2.26)

which in deep water reduces to

’ = - I (5.2.27)

The radiation shear stress across a vertical plane inclined at

an angle ~ to the xl-axis is given by

re = ~(Sll - $22) sin 2~ , (5.2.28)

which is proportional to the difference between the largest and the

smallest principal stres~s. It follows that an overestimation of S11

and an underestimation of $22 will give rise to relatively large errors

in the calculated value of ¯ . The shear stress in the substitute waves

is

¯ = ~(Sll - S22) sin 2a (5.2.29)

which has a relative error

2 n sin

~- 2 n sln20

in deep water this reduces to

’ 2 sin2~ 26’
(5.2.31)
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Numerical evaluation. - It appears from the preceding equations

that the relative effects of the short-crestedness o__~n the radiation

stresses in deep water are wholly determined by sin20. We shall cal-

culate this value for a fe____w typical spectra of wind-driven waves.

The definition of sln20 can be written as

sin20 S(~)d~

sin20 = (5.2.32)

The factor in the brackets is the average of sin20 over the direc-

tions of propagation at a fixed frequency; if the directional dis-

tribution of en__ergy is independent of the frequency then it also

represents sin20 . It will be calculated first~ for the directiona!

spectra described by (4.5.2), (4.5.4) and 4.5.10).

For the spectra given by (4.5.4) we have

fJ sin20 D2(~;~)d0 = {l(m)}-I 1 (I - co~ cosm0 dO =

- ~ (5.2.33)

= 1    l(m + 2)     (m + 2)-I
I (my

in which l(m) is defined by (4.5.6). If m is independent of ~ then

sin2~ = (m + 2)-I (5.2.34)

Putting m = 2, as in (4.5.2), we find sin28 = 0.25. If m is variable,

as in (4.5.15), then the average value of {m(~) + 2}-I has to be de-

termined, weighted with S(~). This average has been calculated numeri-

cally for a s~trum of the Pierson-Moskowitz type (eq. 4.5.21), with

the result sin20 = 0.30. Using the SWOP spectrum (4.5.10) gives

_5sin2~ D3(0;~)d0 = I - ½A0 - ~ A2 I~A4 ,    (5.2.35)
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which becomes, upon substitution of (4.5.11) and (4.5.12),

I sin2O = 0.375 - 0.205 (_~(~)4} (5.2.36)exp

The average of this quantity over the frequencies, using the Pierson-

Moskowitz spectrum (4.5.17) as a weighting function, equals

sin2O = 0.375 - 0.205 2/~2 KI(2/~2) ~ 0.27 (5.2.37)

in which K1 is the modified Bessel function of the third kind of order

zero,

The three values of sin2O calculated from the above-mentioned

spectra for wind-drivenwaves are in fair agreement. Substituting the

lowest and the highest calculated values, 0.25 and 0.30, in (5.2.24)

’ = 1.0 to 1.5 ,and (5.2.31), we find 6’ = 61 ~ 0.33 to 0.43 and 6’
which means that the radiation shear stress in wind-driven deep-water

waves can be overestimated by 100% to 150% if the waves are assumed

to be long-crested. This is noteworthy    particularly in view of the

importance of this shear stress to the generation of longshore currents

in the surfzone.

The preceding equations for the radiation stresses in deep-water

are illustra~ted by means of Mohr circles in fig. 5.1 for an assumed

value of sin2O = 0.25 (61 = I/3, ~’ = I).

Comparison with measurements. - The preceding calculations were based

on theoretical relations between the fluctuating velocity field and the

surface motion, applied to idealised empirical spectra. It would be

interesting to have a direct check on the order of magnitude of the

results. To this end measurements of horizontal particle velocities

at various depths in wind-driven deep-water waves would be required)

from which the vertically-integrated horizontal convection of horizontal

momentum could be calculated. Such measurements are not known to the

author. The situation is slightly better if we relax the conditions on

the empirical data and are satisfied with measurements at one or two
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Fig. 5.1 - Mohr circles for the radiation stresses in long-

crested andshort-crested waves, for a~ assv~ed

sin2~value = 0.25 ($11/~Iz = 0.75).

points in a vertical, not necessarily in deep water. Nagata [106] has

presented some results obtained near the bottom in fairly shallow

water subject to incident waves from deep water. Ve!ocity data were

collected successively at various points, with mean depths ranging

from only 2m to approximately tOm. The mean period was about 7s

while the mean wave height varied from 0.4m to 0.Sm. The effects of

refraction were considerable. These generally tend to narrow the

angular distribution of energy as the waves move into shal!ower water

with more or less parallel depth contours. However~ because of the

somewhat irregular topography the angular width of the spectrum was

found to increase shoreward in a number of areas. These wil! not be

considered further. Three of the measuring locations were in an area

with nearly straight and parallel depth contours. It is useful to

consider the results in these points in more detai! since they should

give a lower bound to the deep-water values of the short-crestedness
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which occurred.

Simultaneous values of horizontal particle velocities in two mutu-

ally perpendicular directions were obtained by Nagata; these will be

denoted by u|(t) and u2(t). The principal values of the tensor uiuj

(i.e., u-~Jmax and u~!JNin, considering u-~ as a function of its azimuth)

can be calculated from these data according to

-- I --~ 4 u-~22]~ Jm=’ U2]min= ~[~7+ u2] +- 2[(u!-u2) +

The par~neter P defined by

F2 = ~
~Jmin

(5.2.38)

(5.2.39)

is a quantitative measure of the short-crestedness. It can range

from 0 in a unidirectional wave train to ; in waves which are horizon-

tally isotropic.

The value of F2 is closely related to the relative error (~) in

the velocity contributions to the largest principal stress, which

would result from assuming the waves to be unidirectional. This error

has been defined in (5.2.23). The velocity components ql and q2

appearing in this equation were referred to the principal axes of

S.. which implies that (5.2.23) can be written as

1
-d max

(5.2.40)

The resemblance of F2 and ~ is evident from the eqs. (5.2.39) and

(5.2.40)~ but so is their difference. The parameter ~ is defined in

terms of a vertically integrated quantity, whereas F2 is defined as
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a function of the vertical coordinate z. They are equal only, for arbi-

trary values of z, if F is independent of z. This cannot be expected

to be the case~ for the rate of attenuation of the wave motion with dis-

tance be!ow the surface increases with increasing frequency, and

higher-frequency Spectral components have a broader angular distribu-

tion of energy than lower-frequency components. The net effect is that

the directional spectrum narrows with depth below the surface. It is

therefore expected that F2 will be larger than ~ near the surface and

less than 6 near the bottom.

The preceding arguments are based on an assumed velocity field

which is fully coherent with the surface motion. In measurements at

sea, turbulence can also contribute to the variances of the velo__city.
general decrease the relative differences between U2|max’aThis in

and U2Jmin , because the turbulence is more nearly isotropic than the

waves.

With the above-mentioned reservations in mind we can compare the

measured values of F2 with the calculated values of 6. The measurements

reported by Nagata were performed in waves wich had been generated in

deep water by a local storm~ but the observations were made "after

the storm had almost subsided". On the day following the storm, values

of F of 0.58 and 0.4! were measured at two points with depths of

|O.l m and 5.7 m respectively. The next day a value of 0.34 was

measured at the 5.2 m contour. The decrease of the angular width of

the energy spectrum is ascribed by Nagata to the greater distance

of the storm from the measuring site. The three values of F2, 0.34,

0.17 and 0.~2, can be compared with the calculated values of 6’, which

ranged from 0.33 to 0.43. It is to be remembered that the measurements

should give a lower bound on 8’, because the calculations were done

for wind-driven waves in deep water, while the measurements were made

in waves which had at least partly transformed into swell, and which

moreover had refracted considerably. It would therefore appear that

the calculated value of 6’ of 0.33 is not unrealistically high. A

similar conclusion can be derived from more recent measurements by

Yefimov and Khristoforov [I07] in deep water in the Black Sea. The
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results presented by them which are of use for our preseat purpose

are-~Iglven in the first six columns of Table 5.1. Values of Ul|m~x¯~

and U~Jmin were calculated from these data using eq. (5.2.38). The
results as well as their ratios are given in the last three columns

of the Table. With the same reservations as mentioned above , the

--- i
Z ,    ~2    U|2 U|U2    UV ~Immx ?Imin F2

(m) (rad s-|) (cm2) (cm2s-2) (cm2s-2) (cm2s-2) (cmls-2) (cm2s-2)

-I.25 1,5I 515 340 39 150 / 348 I42 0.41

-1.25 1.92 315 290 39 200

/

285 205 0.72

-2.50 1.92 315 160 17 70 162 68 0.42

Table 5.1

measured values of F2 can be compared with the calculated values of 6’.

The second of the measured values is quite high. It cannot be explained

on the basis of known directional properties of single wind-driven wave

systems, The paper by Yefimov and Khristoforov suggests that such waves

in fact prevailed during the measurements. The first and the third

value of F2 are in the upper calculated range of ~’. On the whole the

data indicate that the computed values of u min     max are not too

high. This in turn means that the relative errors in the radiation

stresses in wind-driven deep-water waves, due to the use of "equi-

valent" unidirectional waves, would be at least as large as indicated

by the calculations.

5.3 Radiation stresses in the surf zone

5.3.1 Introduction

The aim of this section is to establish a procedure with which

the radiation stresses can be calculated in the surf zone of wind-
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generated waves. The approximations which will have to be made for

this purpose are necessarily cruder than those employed in the pre-

ceding section, which dealt with the waves outside the surf zone.

Needless to say, the approximations should be such that those features

of the physical phenomena are incorporated in the computational model

which are deemed essential for the purpose at hand. In making such

approximations we are guided by a general, qualitative knowledge of

the problem, by a theoretical and empirical quantitative knowledge

of statistical properties of non-breaking waves, by some empirical

knowledge concerning the breaking of periodic waves, and by the know-

ledge fhat the breaking of an individual wave in a random wave field

is qualitatively similar to the breaking of individual waves in a

periodic-wave train. This similarity pertains both to the mode of

breaking (plunging, spilling) and to the order of magnitude of the

height-depth ratio. However, there is an essential difference between

the surf zones of random waves and of periodic waves as a whole. In

the latter case there is a reasonably well defined seaward limit, the

breaker line, at which there is an abrupt change in flow regime and a

discontinuity in the computational model. In random waves no point can

be defined inshore of which all the waves are breaking while offshore

from it no waves would break. Instead, at each point only a certain

percentage of the waves passing it is breaking or broken, while this

percentage in general varies gradually with the distance offshore.

Associated herewith is a gradual variation of average values of other

wave parameters, such as energy density, energy flux, momentum flux,

etc. It is considered essential to represent this gradual variation

in the computational model. This precludes the possibility of re-

placing the given, irregular wave train by an "equivalent" periodic

wave train, on quite different grounds than those mentioned in the

preceding paragraph, which dealt with the effects of short-crestedness.

The problem then centres on a suitable description of the waves in the

surf zone~ one which does justice both to the random character of the

waves and t~ the effects of wave breaking, in particular the dissipa-

tion of wave energy and the attendant decrease in radiation stress.
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Regarding the applicability of the spectral approach there are

two distinct problems: prediction of the spectrum as a function of

location in the surf zone~ and calculation of the local radiation

stresses from the given (computed or measured) local energy spec-

trum. Concerning the latter of these problems, we derive a clue

from the analogous situation with periodic waves, for which Bowen et

al [6] found empirical confirmation of theoretica! predictions based

on the assumption that the principal radiation stress S|| could be

expressed in terms of the local wave height by the second-order

equation (3.4.2), despite the fact that the wave profile is far from

sinusoidal. On this basis it seems reasonable to assume that (5.2.||)

is adequate for the calculation of the radiation stresses from the

loca! spectrum in irregular waves, even in the surf zone. If this is

accepted, at least as a first approximation~ then "only" the problem

of spectrum prediction remains. Ideally, the effects of wave breaking

should be expressed as a contribution to the spectral source function

Q{k;x,t), defined in paragraph 4.3.3. However, present knowledge is

insufficient for this purpose. In numerical spectral schemes for the

prediction of wind-driven deep-water waves, it is usually assumed that

the effects of wave breaking can be accounted for by using Phillips’

equilibrium spectral density (eq. 4.5.|9) as a ceiling, and by making

some assumption regarding the rate of approach to this ceiling. Collins

[65] applies this method even in shallow water, although Phillips’

equilibrium spectrum was not derived for such conditions. A calculation

of an equilibrium spectral density in water of arbitrary depth is given

by ljima et al [|08]. This will be considered in paragraph 5.3.2, where

it is concluded that the assumptions used by ljima et al are too arbi-

trary~ and that the result is not as generally valid as is suggested.

An alternative approach to the problem of calculating energies and

radiation stresses in the surf zone of random waves will be given in

paragraph 5.3.3.
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5.3.2 ~ne equilibrium range of shallow-water wave spectra proposed by

l~ima, Matsuo and Koga

We shall first summarize the derivation given by ljima et al,

and make some comments afterwards.

The authors consider the maximum height of a wave as a function of

its period, the local mean depth and the local bottom slope. They use

the following empirical adaptation of Miche’s theoretical breaking

criterion (2.3.16):

Hmax CI L tanh {f(a)

} , (5.3.1)

in which

f(e) = cosh (3.5a2/3) (5.3.2)

C! is a coefficient of proportionality which is left undetermined by

the authors, and L is a wavelength calculated from T and D using the

classical dispersion relation for linear gravity waves. The factor
f(~) expresses the tendency for Hmax to increase with slope angle ~,

at least in shallow water.

In order to establish the equilibrium spectrum Se(~), the authors

consider an arbitrary frequency band extending from m-½A~ to ~+½A~,

and assume that there are N discrete spectral components in this band.

These components are assumed to have a common wave height, HT~

proportional to H    . The reason for this proportionality is that
max

"the limiting wave height Hmax is interpreted as the result that all

the phases of component waves whose periods are within narrow range of

period band between T-½AT and T+½AT centered at period T happened to

coincide and their spectral wave heights were summed up to attain the

limiting height H    ." The total energy in the band can then be written
max

as

2    C3 N H~
(5.3.3)Se(~)A~ = C2 N HT = ax’
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The number of spectral components in the band "is considered to become

large when the period band AT becomes wide~ but to become small when

the period T b~comes large for limited length of wave record". On

this basis the authors assume that N is proportional to AT/T. or to

A~/~, so that

or

-I H2
(5.3.4)Se(m) = C4 m    max

Se(~) = C5 ~-I L2 tanh2 {f(~)~}. (5.3.5)

in deep water this reduces to

Se(~) = C5 ~-]L02 C5 4~2 g2                  ~-5, (5.3.6)

which is identical in form to Phillips’ equilibrium range (eq. 4.5o19)o

Equating the coefficients gives

C5 = B/4~2. (5.3.7)

In sha!low water (5.3.5) reduces to

or

Se(~) -- C5 m-I (f(a) 2~D}2 (5.3.8)

Se(e)    Bf2(~) D2 -I= ~ (5.3.9)

In order to estimate the actual shallow-water spectrum from a g~ven

deep-water spectrum SO(m), Ijima et al simply equate the local spectral

density to SO(~) or to Se(~), whichever is smaller. Effects of shoaling

and refraction are not considered. Examples are given for a wind-driven

wave spectrum and a (narrow) swell spectrum.

This concludes our summary of the approach and the results

given by Ijima et al. The following remarks can be made,
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The authors use a discrete spectrum in order to derive a

result concerning a continuous spectrum. This procedure is used

more often. It gives valid results if it can be sho~n, that the partic-

ular discretization adopted has no effect on the final result regarding

the continuous spectrum. It is on this point that the arguments

presented by ljima et al are believed to be inadequate. In fact,

they do not even mention it.

The number of components in the period band (T-½AT, T+½&T) is

assumed by the authors to be proportional to &T/T. The inverse

proportionality of N with T is argued with reference to the limited

length of the record. This does not seem to be a particularly

relevant parameter in the present context~ since the value of a

possible equilibrium range is quite independent of sampling

procedures which are used.

The preceding objections were raised against the derivation

given by the authors; we shall in the following consider the result

itself~ apart from its derivation.

An important point in the discussion of the result given by

Ijima et al is the interpretation of the "equilibrium" spectral

density, represented in eq. 5.3.5. It appears from the authors’

statements and examples that they consider Se(~) as a saturation

value which cannot be exceeded, regardless of the fact whether one

deals with wind-driven waves (as Phillips does) or with swell, or,

emphasizing an important difference between these categories,

regardless of the width of the energy spectrum. If this were

indeed correct then the maximum energy (per unit area) which can

be present in water of a given mean depth D would have an upper

limit which diminishes with the width of the spectrum. The

calculated maximum possible r.m.s, wave height would then be only

a minute fraction of the depth or the wavelength if the spectrum

were narrow, so that virtually no waves would break. This is not

consistent with the assumption of saturation. It is believed

that a more realistic estimate of the saturation conditions can

be obtained by relating the actually occurring wave heights to the
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maximum value possible without breaking, rather than the so-called

spectral wave heights. The actual wave heights are representative of

the total energy per unit area of the wave system. In this manner we

are led to an upper limit of the total energy in shallow water~ deter-

mined by the depth D, independent of the width of the spectrum. (In

deep water such limit would be determined by the wavelengths which

are present in the spectrum.) In order words, according to this view,

it is the integral of the spectrum which has an upper bound in shallow

water, rather than the spectral density itself. This alternative

approach wil! be elaborated in the following paragraph.

5.3.3 Radiation stresses in irresular~ breakin___ $ waves

In the preceding discussion an approach was suggested for the

determination of the saturation conditions in shallow water. By a

slight extension the s~me method can be used for the estimation of

the local energy in water of intermediate depth, where the saturation

conditions are not yet attained. The basic assumption is that at

each depth a limiting wave height Hb can be defined (which may also

depend on the wave period), which cannot be exceeded by the

individual waves of the random wave field, and that those wave

heights which in the absence of breaking would exceed Hb are

reduced by breaking to the value ~b. In other words, the energy

corresponding to the height in excess of the local breaker height is

assumed to be dissipated. The breaker height decreases gradually

with decreasing depth. Thus, the calculated percentage of broken or

breaking waves passing each point gradually increases with decreasing

depth (excluding waves on very gentle slopes, on which the energy

is dissipated without breaking>. In this manner the calculated

energy varies gradually from deep water to shallow water, partly

because of the effects of shoaling, refraction and bottom friction,

partly because of the increasing number of breaking waves. There

is no well-defined seaward boundary of the surf zone in this approach.

The calculations can proceed without change from deep water to shallow
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water. For this reason shallow-water relations such as n=l, c=(gD)~

etc. are not assumed a priori, although it is realized that it is

only in the shallow-water zone that the effects being calculated~

i.e. the spatial variations of the radiation stresses and the resul-

tant set-up and longshore currents, become pronounced. The shallow-

water conditions should therefore receive relatively much weight when

approximations have to be introduced which are not uniformly valid

in water of arbitrary depth.

Collins [109] has previously considered the probabilities

of breaking-wave characteristics in order to arrive at estimates of

the energy, energy flux~ etc. There is an essential difference

between his approach and the one just described. Collins treats

the irregular-wave situation entirely as an ensemble of periodic-

wave situations, each with a constant wave height (H0), length (L0)
and direction of propagation (00) in deep water. Dependent variables

such as energy, energy flux and longshore current velocities are

expressed, or are assumed to be expressible, in terms of (Ho,L0,O0)

using periodic-wave relations. The mathematical expectations of the

dependent variables can then be calculated, assuming that the joint

p.d.f, of ~O, ~0 and ~0 is known. Our approach is based on the two-

dimensional random phase model, or another spectral model similar

to this, according to which in any one realization the incident waves

consist of a large number of independent spectral components of

different amplitudes, frequencies, directions of propagation, and

phases. A realimtion in this model has the properties of irregularity

which are characteristic of wind waves. This is in contrast with

Collins’ model, in which individual realizations represent periodic,

unidirectional waves. This model is of course not intended to be a

realistic simulation of wind waves. It is used only as a means to

and end, apparently on the implied assumption that ensemble averages

determined from it give results equivalent to those obtainable from

models in which the different waves are present more or less simulta-

neously. But there are various nonlinearities in the equations governing

the mean motion.which invalidate this assumption. We can cite as
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examples the nonlinear interactions between the waves and the mean

motion (e.g., the waves give rise to a set-up which in turn affects

the waves), the inclusion of the set-up in the mean depth in the

differential equation for the set-up (eq. 3.3.49), and a nonlinear

relation between the bottom shear stress and the !ongshore current

velocity. In consequence of each of these causes the contribution

of a wave of certain characteristics to the set-up and the longshore

current velocity is affected by the presence of waves of different

characteristics. In other words~ with regard to the mean motion it is

not indifferent whether a wave is part of a periodic, long-crested

wave train or whether it is part of a random wave field. Thus,

instead of calculating expected values (ensemble averages) of time-

-mean responses to periodic waves, it is preferred to calculate the

responses to the (time-mean) radiation stresses in the random waves,

taking the afore-mentioned interactions into account.

The approach outlined above will be worked out in the following.

For clarity of presentation we shall at first restrict ourselves to a

narrow frequency spectrum and a narrow directional spectrum, so that

only the variability of the wave heights need be taken into account.

The effects of variable period and direction of propagation will be

considered afterwards.

The breaking criterion which has been adopted for use is based

on Miche’s formula for the limiting steepness of stable periodic

waves in water of constant depth, eq. (2.3.16):

2~D           tanh kD} D,        (5.3.10)
Hb = 0.14 L tanh--~ = (0.88 kD

which in shallow water approximates to

Hb = 0.88 D. (5.3.11)

Since we are here dealing with deforming waves in water of variable

depth~ Miche’s formula cannot be expected to apply exactly, even if
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the waves were periodic. The data presented in fig. 2.6 illustrate

that the breaker height-to-depth ratio (¥) in shallow water varies

mildly with the beach slope and the wave steepness. Thus, instead

of (5.3.10), which a priori assigns the constant value of 0°88 to ~,

we prefer a form which in shallow water reduces to

H~ = y D. (5.3.12)

The coefficient ¥ is in principle a variable, though its actual

value is expected to deviate but little from 0.8 in the case of

spilling breakers, with which alone we are concerned.

It was noted above that we want to use expressions which are

not restricted to shallow water. For this reason we should include the

effect of the depth-length ratio on the wave breaking in the formula-

tion. We are guided in this by Miche’s formula. A simple choice would

be

tanh kD~ D = Y-- L tanh2~D
H~ = {y kD °     2~ L

(5.3.13)

However, this would imply that the bottom slope could affect the

wave breaking even in deep water. The following expression is therefore

preferred:

H~ = 0.14 L t anh (0--~) (5.3.14)

Actually, whether we use (5.3.13) or (5.3.14) is of little influence

on the results of the final calculations since the two expressions

can differ significantly in deep water only, where ordinarily the

waves break very infrequently. Even the use of (5.3.12) throughout the

region from deep water to shallow water may give a good approximation,

particularly for waves of low initial steepness, for which the depth-

-length ratio is very small where they begin to break in significant

numbers. Steeper waves begin to break in water of greater relative

depth. The use of (5.3.12) for such waves would therefore underestimate

the width of the surf zone.
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Equation (5.3.14) will he applied as a breaking criterion for

individual waves in an irregular wave train. The wavelength L

will be calculated from the depth D and the zero-crossing period T,

using (3.2.14); it can at first be treated as a constant in view of

the restriction to a narrow spectrum.

Having adopted a breaking criterion, we now need to estimate

the fraction of the waves which would actually be hreaking, and the

mean energy which would remain. Even if breaking did not occur then

the energy per unit area would vary as the waves enter shallow water,

because of shoaling, refraction and bottom friction. These effects

can be calculated by conventional means referred to in paragraph 4.3.3.

(As long as the frequency spectrum and the directional spectrum

are assumed to be narrow we can even use the methods derived for

monochromatic, unidirectional waves described in chapter 3.) This

results in a local energy per unit area, denoted as Ef, which is a

fictitious quantity because wave breaking is not yet accounted for.

Corresponding to Ef we define fictitious wave heights~f. Their mean

square value H-~f is by definition related to Ef according to

The fictitious wave heights are assumed to be Rayleigh-distributed;

their distribution function can be written as

Ff(H) = Pr {H_f ~ H} = 0 for H<0

= ! - exp(- H2/H~) for H>0_

(5.3.16)

In accordance with the assumption that the height of a breaking wave

equals the local breaker height Hb, we shall clip the fictitious wave

height distribution at H=H~ in order to obtain an approximation to

the actual wave height distribution:
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F(H) -- Pr (H <_ H} = 0~                      for H<O
2 2

= ! - exp(- H /Hf) for 0_<H<Hb (5.3.!7)

= 1                 for H>_Hb.

This distribution function is discontinuous at H=Hb. This is a result

of the assumption that a finite fraction of all the wave heights

would be equal to Hb.
The mean energy per unit area at a fixed point~ taking account

of breaking, is calculated from

in which

E =~pg    ,

~ = E{H_2} = H2 dF(H)

Substitution of (5.3.!7) and integration gives

o

= -H2 exp(- H2/H-~f)     +      exp(-H2/    dH2 +

0

= {l - exp(-H / } Hf (5.3,20)

or

H~= Ff(Hb) Hf                               (5.3,21)

If we introduce the probability of exceedance for the fictitious

wave heights,

_        exp(-H /Hf) for H~0,Qf(H) ~ er {H~H} =      2 2 (5.3.22)
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then (5,3.21) can be written as

7= {I - Of(Hb)} Hf (5.3.23)

or as

Qf (Hb) ,

Hf

(5.3.24)

which may be stated in words as follows: clipping the upper fraction

Qf(Hb) of the fictitious wave height distribution reduces the mean

squ~re wave height by a relative amount equal to Qf(Hb)o (It may be sho~m

that only the Rayleigh distribution has this property.) Stated more

briefly, the relative reduction in energy due to breaking equals the

fraction of the waves that break.

So far we have only dealt with the case of a narrow frequency

spectrum and a narrow directional spectrum. We shall now consider

how the preceding calculations should be modified in order to include

the effects of variability in period and direction. The fictitious

two-dimensional spectrum Gf(~,O) and, therefore, the fictitious energy

Ef can be calculated in a straightforward manner using the transfor-

mation rules for the spectrum, referred to in par. 4.3.3. The next

step is to estimate the effects of the variability of wave period and

direction on the breaker heights. The lattereffect is very weak,

particularly in shallow water~ where the waves are propagating nearly

perpendicular to the shore as a result of refraction. As noted

previously, the conditions in the shallow-water zone should be empha-

sized in formulating our assumptions, since it is there that most of

the waves begin to break. This is an additional reason for neglecting

the effects of the variability of wave direction on the breaking

process. The effects of the period variability could be taken into

account by calculating for each depth a range of breaker heights

corresponding to the range of periods. However, it does not seem
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worthwhile to do this inasmuch as it is (again) precisely in the

important shallow-water zone that the period vanishes from the Breaking

criterion, which there reduces to a constant height-to-depth ratio.

And in order to estimate the period-effect on the breaker heights

in deeper water, it is considered sufficient to use only the mean

period and to neglect the effects of the period variability, since

the wave breaking in deeper water is of minor importance anyhow.

The preceding approximations refer to the calculated breaker

heights only. They should not be interpreted to imply that in the

proposed approach the variability of wave period and direction would

have no effect on the wave breaking at all. For the complete two-

-dimensiona! spectrum is used in the calculations of the fictitious

wave heights, and so the differences in shoaling and refraction of

different component-waves are taken into account.

The following remarks can be made regarding the computational

model outlined above.
2-~

I) It can happen that in very shallow water Hb/Hf<<|. In that case

eq. (5.3.20) reduces to

(5.3.25)

It may be seen that H2 in this limiting case equals the value

which it would have for periodic waves with height ~b" This is

to be expected because the approximation involved in effect consists

of considering almost all the wave heists to be equal to H~,

while neglecting the contributions to H from wave heights less

than H~. It follows that (5.3.25) ~epresents the saturation

condition already referred to in qnalitative terms at the end of

the previous paragraph. It should be noted that this condition

does not necessarily occur whenever the waves travel into very

shallow water, for on very gentle slopes the dissipation in the

bottom boundar~__layer may become of such importance that the
2 2

ineqn~lity H~/Hf<<I does not hold anywhere. These cases are

rather exceptional, however.
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2) The condition ~/H~<<I usually implies in which case

(5.3.12) is a valid approximation of (5.3.14)o With this sub-

stitution (5.3.25) becomes

~ = ~2 D2, (5.3.26)

so that the energy in irregular waves according to this model

approaches that which is usually assumed for regular waves, as the

relative depth decreases. It follows that under these circumstances

the calculated local set-up gradient is equal to the value given

in section 3.4 for regular waves.

3) The wave height distribution is assumed to be discontinuous at H

=Hb. The actual distribution is naturally smoother, because of

various causes which have not been taken into account, such as the

effects of preceding larger or smaller waves, the variability of the

wave period, and the changes in depth (averaged over a time interval

of the order of a few wave periods) due to surf beat. Some waves

with a height larger than the calculated Hb will therefore pass a

point unbroken, while others with a smaller height do break. However,

this does not necessarily mean that the mean square wave height

calculated from (5.3.17) would be seriously in error. And it is

only this result which is used in subsequent calculations of the

radiation stresses and their effects.

4) The calculation of the fictitious wave heights may include

dissipation of wave energy due to the generation of turbulence in

the bottom boundary layer, which is a nonlinear damping process.

If wave breaking decreases the wave heights then the rate of

damping due to bottom friction is less than it would be in the

absence of breaking. In such cases the calculation of the resultant

wave energy at each point cannot be carried out by going only

once through the two-step process in which Ef is calculated first

(with shoaling, refraction and bottom friction), and in which

breaking is taken into account afterwards by putting E=(I-Qb)Ef.
It becomes necessary to go through this loop repeatedly~ and so to

find E by iteration.
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5) In the computational model given above, the wave heights are

related to the local breaker height in such a manner that they

not only decrease with decreasing breaker height, which occurs in

shoaling water, but they also increase with increasing breaker

height, which occurs after passage of an offshore bar. In other

words, the process of "dissipation" of energy in breaking, which

consists mainly of the transformation of organized wave motion

into disorganized turbulent motion, would be reversible in the

computational model. This violation of the second law of thermo-

dynamics must be excluded, which can be achieved by giving the

calculated losses due to breaking a lower limit equal to zero.

This limit is not quite realistic, since the random nature of the

waves gives rise to occasional breaking, even if the depth is

constant or increasing in the propagation direction.The corresponding

energy losses have in effect been neglected in comparison with

those occurring in shoaling water.

We have so far in this paragraph considered the wave energy

only, while our actual aim was to calculate radiation stresses.

As stated in the introduction to this section (par. 5o3.1), the

radiation stresses can be calculated to second order, as weighted

integrals of the two-dimensional spectral density G(~,O). Now the

procedure described above leads to a fictitious spectral densityGf(m,0) -from which fictitious radiation stresses Sijf can be

determined according to eq. 5.2.;|, to its integral Ef and to

the reduction of this integral due to breaking, but it does not

lead directly to the reduced spectrum G(~,0). Breaking does not

necessarily affect the spectral components equally~ so that it may

not be correct to reduce the spectral density in the same proportion

(E/Ef) for all (~,8). In particular the shape of the frequency

spectrum may be altered by the breaking process. But the only

frequency-dependent weight factor in the calculation of S.. from

G(~,O) is n, which in shallow water is in effect independent

of m~ and approximately equal to one. It seems reasonable therefore
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to assume that the radiation stresses are reduced by breaking in

the same proportion as the total energy:

Sij = ~f S..~jf = {I - exp(- /H
(5.3.27)

Needless to say, the validity of this approximation increases

with decreasing width of the frequency spectrum and of the

directional spectrum.



- 136 -

6 SET-UP AND LONGSHORE CURRENTS

6.1     Introduction

6.2

6.2.1

In the preceding chapter an outline has been given of a method to

calculate radiation stresses in random waves. This method will now be

applied in the computation of the set-up and the longshore current veloc-

ity profile in a few typical cases. To this end~ supplementary equa-

tions will be given in section 6.2. Results of numerical computations

are presented and discussed in section 6.3, while a comparison with

experimental data on wave height decay and set-up in the surf zone

is given in section 6.4.

The same situation is considered as in paragraph 3.3.6, fig. 3.1,

viz. an infinitely long beach with straight and parallel depth con-

tours, and incident waves which are statistically stationary~ and

homogeneous in the x2-direction. This implies that time-averaged flow

parameters vary with xI at most. The waterdepth is assumed to

decrease monotonically in the shoreward direction.

Supplementar[ equations

Shoalin~ and refraction

The transformation of the incident waves propagating towards

the shore will be calculated with neglect of local generation, and of

dissipation other than through wave breaking, in which case the

fictitious spectral density obeys the differential equation (4.3.19).

In the situation of no x2-dependence, this becomes simply

~x-~ {c Cg Gf(~,@)} -- 0 , (6.2.1)

provided the auxiliary relations

~= 0 (6.2.2)
~x1



- 137 -

and

a ~sin ~
~ ~----~-) = 0 or ~ (k sin ~) = 0 (6.2.3)

hold. The boundary condition to be used in conjunction with (6.2.1)

is a spectral density function at some point offshore. In subsequent

calculations we use a deep-water spectrum for this purpose, written

as Go(m,O0). Corresponding to this spectrum we have a r.mos, wave

height

I~0 = (8 m0)~ (6.2,4)

and a characteristic (angular) frequency

~ = (m2/m0)~ = 2~/T0 ,
(6.2.5)

in which TO is the mean zero-crossing period in deep water, and m0

and m2 are the zeroth- and second-order moment of the deep water

frequency spectrum defined by

S0(e) = G0(~,e0) dO0
(6.2.6)

The local fictitious spectral density can be expressed in terms of

GO(~,~0) by means of (6.2.1) through (6.2.3), which gives

CO Cg0
Gf(m,O) (6.2.7)

e c     G0(~’~0)g

The fictitious mean square wave height can then be found from

(6.2.8)
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Substitution of (6.2.7) into (6.2.8) and changing the angular vari-

able of integration from 8 to e0 gives

d~ d00

or, using (6.2.3),

I 2 (6.2.10)

The factor in the brackets is the square of the product of the

shoaling coefficient and the refraction coefficient, referred to in

paragraph 3.2.3.
2 in general requires

It can be seen that the determination of Hf

a double integration over the spectrum. However, the calculations

are reduced considerably if the spectrum is narrow, with mean frequen-

cy m and mean direction of propagation      say. Eq. (6.2.10) then

approximates to

1 2                                      G0(m,80) dm dO0

~o= ~o
which is equivalent to

-~    go H2
Hf ~ cos 0 (6.2.12)

in which the designation ...... indicates the value of the term

for m =-~ and ~0 = ~0" Eq. (6.2.12) is here given as a special
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case of the more genera! eq. (6.2.8); it could as well have been

written down at once, from the known results for monochromatic waves

(eq. 3.2.40).

The radiation stresses Sij are calculated from Gf(~,8) according

to

Sij = (I - Qb) S.. , (6.2.13)

in which

S..x3f = 0g
{nelej 

+ (n-½) ~ij} Gf(~,O) d~ dO ,

(6.2.14)

and
Qb equals Qf(HB), the fraction of breaking waves, calculated from
and ~b using (5.3.22). In principle, the radiation shear stress

S12f need not be calculated at each step (i.e., each value of x!)~

because it is independent of x!. It was nevertheless determined at

each step from the !ocal values of Gf, in order to obtain a check on
the nt~nerical integration procedures. It varied by less than by

0.5% in all of the calculations.

If the spectrum is narrow then the radiation stresses can be

expressed directly in terms of

(612.|5)

6.2.2 ~

The differential equation for the set-up reads

!----!| + og(d+$)     = 0
dx1              ~

(6.2.~6)
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This equation is integrated numerically with the boundary condition

~ = 0 in deep water. The radiation stress Sll depends on the mean depth

D = d + ~, and therefore on ~. Eq. (6.2.16) must therefore in general

be integrated iteratively, in which S~l has to be re-calculated in each

iteration. This requires two double integrations over the spectrum

in each iteration: one for ~lf and one for H~ff (to be used for the
dD

calculation of Qf(Hb)). However, if d~. ~ 0 for all x~, which is the

case if the depth decreases monotonically towards the shore, then

(6.2.16) can be rewritten as

dSll d~
--+ 0g D 0 (6.2.17)

£his equation can be integrated with D as the independent variable,

without having to iterate with respect to SI! at each step. The result

is ~ as a function of D, from which ~ can be found as a function of

d (= D - 3) simply by subtraction.

A partial check on the results is provided by the known behav-

~urof ~ in shallow water. If D ÷ 0 we have cos ~ ÷ ! and n ÷ ! for
3

all of the spectral components, so that S~! ÷~E. Furthermore,
Hrms ÷ Hb ÷ y D (eqs. 5.3.25 and 5.3.26), so that E ÷                                                      ~l 0g T2 D2.      It

follows that

3 2
~ y

÷ 3 ~
dd     l +~¥

for D + 0 (6.2.18)

(compare with eq. 3.4.4).
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6.2.3 Longshore current vel~o>.i>y

Two equations for the longshore current velocity which are not

affected by the randomness of the waves are

and

dS 12

dxI     ~2    0
(6.2.19)

72 = Cfp q21~I
(6.2.20)

In (6.2.20), the value of $ near the bottom should be used. The aver-

age longshore bottom shear stress $2 will be expressed in terms of the

local velocity field by the same approximation as is generally used

for periodic waves, referred to in chapter 3. That is to say~ the mean

current velocity is supposed to be small compared with the wave-

-induced fluctuations, and to be directed approximately perpendicular

to them. Eq. (6.2.20) then becomes

(6.2.21)

For the calculation of [~ I we consider first a random wave train with

a narrow spectrum, with mean frequency ~ = ~ = 2w/T0. For these waves

we have, to first order~

[~’1 = ~ x [~ I = ~’--~’---- (6.2.22)

.
sigh ~D ~

(see eq. 3.2.16), in which ~ is ~ wavenumber calculated from

~2 = g~ tanh k~D. Eq. (6.2.22) will in what follows be used for

an arbitrary spectrum, even if this is not narrow. This implies a
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neglect of the effects of the period variability. This is considered

permissible because the effects of the wave period on "~vanish in

the important shallow-water region:

The mean wave height ~ appearing in (6.2.22) and (6.2.23) can be

expressed in terms of the local breaker height Hb and the local fic-

titious wave heights by means of the clipped Rayleigh distribution

given by (5.3.17):

0

= 2 Hfrms    erf(Hb/Hfrms) , (6.2.24)

in which

Hf = (Hf) (6.2.25)

and erf is the error function defined by

x 2

erf (x) = 2-- I e-U du

0

(6.2.26)

It follows from the behaviour of err(x) for small or large values ofx

that

for Hb/Hf ÷ 0 , (6.2.27)
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which occurs in very shallow water, where the clipped Rayleigh proba-

bility density becomes narrowly concentrated near H = Hb~ and

~ ÷~ Hf for Hb/Hf ÷ ~ (6.2.28)

rms rms

which is the deep-water result for the (unclipped) Rayleigh p.d.f.

For general values of Hb/Hf    , a rationa! approximation to the error

function can be employed in numerical computations [90].

It can be seen from the preceding equations that, strictly

speaking, ~ should be calculated at each point where V is to be deter-

mined, in addition to Hrms, which is needed for the radiation stresses.
However, only relatively small errors are made if Hrms is used in

(6.2.22) instead of ~, because the ratio between them varies theoret-

ically (i.e., based on the clipped Rayleigh distribution) from

- -
H/Hrms =     ~ 0.89 in deep water, to H/Hrms = 1 in shallow water.

Substitution of (6.2.21) and (6.2.22) into (6.2.|9) and solving

for V gives

TO dSl2

20 Cf ~ dxI

(6.2.29)

Using the preceding equations, V can be calculated as a funct.ion of

Xl, the distance offshore. However, it is considered more meaningful

to determine a dimensionless velocity as a function of the dimension-

less mean depth D/H0. We have

dS|2 dS12 dD dSl2

dxI dD " dxI
dD ~0 (6.2.30)
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The mean-depth gradient (mD) is not known a priori from the bottom

profile since it also depends on the set-up. It can however be expressed

in terms of the bottom slope md (= -dd/dxI) by means of (6.2.16),

which gives

dD d 1 dSll 1 dSll
mD = dxl

dxl(d+~) = md +

(6.2.31)
pgD dxI

md pgD dD mD

so that

mD = md(1 +0gD "~ ’)                                 (6.2.32)

Eq. (6.2.29) then becomes

A normalized current velocity Vx will now be defined as

Cf TO

Substitution of (6.2.33) yields

(6.2.33)

(6.2.34)

21 T dSl2
1 dSll)_1

Vx = 0    sinh ~D-- (1 + - ,     (6.2.35)

which can also be written as

Vx L0 D dS12 + d S l l)_1

H0 ~
dD dD

(6.2.36)

This is the equation which will be used in numerical calculations. A

partial check on the results is provided by the known behaviour of

V (or V~) in shal!ow water. The following approximations hold for

D ÷ O, in addition to those mentioned in the previous paragraph:
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and, if the incident wave spectrum is narrow,

$12 ÷ nE sin ~ cos ~ ÷ E sin ~ ~ E sin ~0 ~ (6.2.38)

in which cO = g/~. Substitution of these approximations and of those

presented in paragraph 6.2.2 gives

57 md 3 2,-I gD D
V ÷ ~f y(l + ~ ¥ , sin ~0 ~0

f°r ~0 ÷ 0 , (6.2.39)

which agrees with eq. 3.4.16 (if the difference between mD and md is

taken into account), and

V~ 5n 3 D D
÷-~ y(l + ~ y2)~l(sin ~0) ~0 for ~0 ÷ 0     (6.2.40)

Thus, a plot of Vx vs. D/H0 should approach a straight line through

the origin for small values of D/H0, with a gradient which is indepen-
dent of the incident wave steepness, and proportional to sin ~0" If

the directional spectrum of the incident waves is not narrow then V

is expected to be less than the value indicated by (6.2.39), as

has been pointed out in chapter 5.

6.3 Numerical evaluation

6.3.| Boundary conditions

In this paragraph the boundary conditions will be stated which

have been chosen for some sample calculations based on the equa-

tions presented in section 6.2 and in chapter 5.
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The two-dimensional spectral density function in deep water is

factorized as follows:

G0(m,80) = S0(e)D0(00;m)
(6.3.1)

If it is narrow then only the total energy (E), the mean frequency

(~) and the mean direction of propagation (~0) need be given, or, in

terms of dimensionless quantities, only the wave steepness (H0/~0)
and ~0" Two series of calculations were made with a narrow spectrum.

In series I the wave steepness was kept constant (H0/t0 = 0.02) and

~0 was varied: ~0 = 0°’ 15°’ 30o, 450, 60o, 75o and 85°. In series II,

~0 was kept constant at 15°, and the wave steepness was varied:

H0/~0 = 0.005, 0.0l, 0.02, 0.03 and 0.04. A third calculation (III)

was performed with H0/L0 = 0.04 and ~0 = 15°’ but with a wide spec-

trum, more representative of wind-driven waves. S0(u) was chosen

similar to a Pierson-Moskowitz spectrum. Expressed in terms of H0
and ~, which have been defined in (6.2.4) and (6.2.5), it can be

written as

I    2 D4 -5 (Dim)4
S0(~) = ~-~ H0     ~ exp(-n        } (6.3.2)

2The directional spectrum was chosen to be of the cos -type:

eos2(O0 ~0) -
’D0(00) = 7 - 00]

= 0 otherwise.

(6.3.3)

~0 is the mean angle of incidence of the wave system in deep water

with respect to the xl-direction. For ~0 ~ 0 the directiona! spectrum

(6.3.3) includes non-zero components for which 1001 > ~, and which

therefore propagate offshore. These were excluded in the calculations.
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6.3.2 Presentation and discussion of results

The equations summarized in section 6.2, supplemented with the

above-mentioned boundary conditions, have been progran~ed in Fortran IV

for computation on an IBM 360-65. The results are shown in the figures

6.| through 6.4, in which ~/H0 has been plotted vs. d/Ho, and Vm

vs. D/H0. A value ¥ = 0.8 has been used.

The set-up curves display the characteristic slowly-varying neg-

ative values in deep water and a fairly steep rise in shallow water,

with a gradual transition. In very shallow water the set-up gradient

approaches a constant value; it can be verified that the value of this

constant agrees with (6.2.18). The points of maximum set-up

correspond to D = O, or, in other words, to d + ~ = O. The locus of

these points is therefore given by a straight line through the

origin in the (~,d) plane (the dashed line in the figures 6.1 and

6.3), corresponding to the beach elevation. It appears from fig. 6.!

that the value of ~max/H0 decreases with increasing ~0" This can

be expected in view of the increasing effect of refractlon~ which

tends to reduce the wave heights occurring at a certain depth (for

a given deep-water wave steepness), thereby narrowing the surf zone.

Fig. 6.3 shows that ~m~x/Ho decreases with increasing wave steepness,

although not nearly as fast as in inverse proportion. Thus, in-

creasing the wave height at constant wave length results in an almost

proportionate increase in maximum set-up. Conversely, an increase

in wave length at constant wave height gives rise to a moderate

The longshore current profiles in the figures 6.2 and 6.4 show

a smooth variation from a zero value in deep water to a maximum in

an intermediate depth, from where it falls off gradually to zero

in the point of maximum set-up (D = 0). It should be noted that

the profiles for series II, sho~n in fig. 6.4, have a co~on tangent

at the point D = 0, which agrees with (6.2.40). Those in fig. 6.2

have a gradient at D = 0 proportional to sin ~0" Furthermore, fig. 6.2
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Fig. 6.1. Calculated set-up curves for vo~ious mean angles of incidence.

Fig. 6.2~. Calculated longshore current velocity profiles for varicus

mean angles of incidence.
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Fig. 6.3. Calculated set-up cu~)es for various wave steepnesses.

Fig. 6.4. Calculated longshore current velocity profiles for

various wave    steepnesses.
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shows clearly how the angle of incidence affects not only the value

of the maximum longshore current velocity in a profile (which is
--%0

greatest for 00~60 ), but ~he whole profile as wall, which narrows

with increasing Obliqueness of the waves. This is due to refraction,

which nauses the waves to break nearer to the shore. Although the

location of the maximum of the calculated profiles varies considerably,

go
~

depending on the values of the parameters     and Ho/Lo, it was found from

inspection of the original calculated data that in all cases this

maximum occurs very near to the point where dQb/dXI reaches its

maximum. This can be expected in view of the fact that at the latter

point the driving foreeldSl2/dxi[ obtains its maximum value (because

$12=(l-Qb)Sl2f and dSl2f/dXl=0), while V~ is proportional to this

driving rome, a~art from the r~latively slowly varying factor

~. The value of Qb at the point of maxi~am V~ was found to vary

xithin rather narrow limits, from 0.55 to 0.58 approximately. An

illustration of the preceding observations is given in fig. 6.5,

Figur~ 6.5.
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in which Qb and V~ are plotted vs. D/H0 for one of the calculations of

series I. The values of Hfrms/H0 and Hrms/H0 are also shown.

It is of interest to compare the ve!ocity profile in calculation

III (broad spectrum) with the result in series II (narrow spectrum) at

the seane values of ~0 (15°) and H0/~0 (0.04). Both profiles are given

in fig. 6.4. The longshore current velocities were calculated as

~2/{PCfl~’[}. It has been pointed out in paragraph 5.2.2 that the total

longshore thrust exerted on the surf zone is reduced by a factor ½ if

the waves are short-crested, with a directional spectrum proportional

to cos2(O0-~0), instead of being long-crested. This is equivalent

to saying that the laterally integrated longshore bottom shear stress

(f~2 dxl) is reduced by a factor ½, but it does not imply that the

!ocal shear stresses ~2(Xl) are reduced in the same proportion,

because the lateral distribution of these stresses may be different

in the two cases of a broad spectrum and a narrow spectrum. The same

applies to [q [, and, therefore, also to the velocity V itself. Thus,

although it may be expected that in calculation III the velocities

are less than those in series II by a factor which is of the order of

~0    HO/~0)
one half (for the same     and , there is no a priori reason to

expect the profiles in the two cases to be exactly similar. In order

to check whether such similarity did nevertheless exist~ VII and 2VIII

(in an obvious notation) were plotted vs. D/H0 in a single graph.

The result is not sho~n here because the differences between the two

curves would not even be visible in a graph of the size which is used

here. It would appear, then, that for the purpose of !ongshore current

calculations based on the method presented in this thesis, and in cases

such as considered above, the wave energy can be lumped into a very

narrow frequency-and-direction interval, thereby obviating the need

to carry out a number of numerical integrations over the two-

dimensional spectrum at each step~ provided the velocities so

obtained are afterwards reduced by a factor equa! to the ratio of the

deep-water radiation shear stresses corresponding to the actual

spectrum and the lumped, narrow spectrum. In terms of the notation used

in paragraph 5.2.2, this ratio can be written as Sl2/Sl2, or as

2 sln 80.



6.4 Comparison with empirical data

6.4.1 Purpose and scope

The computational model put forward in chapter 5 and section 6.2

needs empirical verification. This requires measurements in the field

and/or in the laboratory. Dorrestein [36] has made measurements of set-

-up on a natural beach; his results will be dealt with in paragraph

6.4.2. For the purpose of the present study, measurements have been

made of the set-up due to random waves in a laboratory flume. The aim

of these experiments was restricted to the verification of those as-

pects of the theory which relate to the two-dimensiona! situation of

a unidirectional wave train of perpendicular incidence, in particular

the prediction of the wave height decay in the shoreward direction and

the associated set-up.

6.4.2 Field data

Dorrestein [36] has made field measurements of the set-up induced

by wind-generated waves; he compared the results to the set-up

calculated from an equation equivalent to (3.3.46), and arrived at the

conclusion "... it can be stated that the theory presented to relate

the wave set-up on a beach to the wave properties in relatively deep

water is in fair agreement with the observations but that the accura-

cy of both the theory and the observations can be improved." Actually~

this conclusion is not quite warranted, since the theory presented by

Dorrestein deals with the relation between set-up and !ocal wave

properties~ which in the calculations of the set-up were known from

direct measurements. The relation between the wave properties in

the surf zone and the wave properties in relatively deep water

are not considered in [36]. This is precisely the relation considered

in this thesis, particularly in chapter 5, the results of which

were used in the computations presented in the preceding paragraph.

For this reason it is of interest to compare these computations

wi~h Dorrestein’s measurements. Five such measurements
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are presented in [36], with different combinations of water level (tide)

and incident waves. In three cases~ a considerable fraction of the

waves was breaking on an offshore bar, so that the calculated

relationships between set-up on the beach and the deep-water wave prop-

erties, presented in section 6.3, are not applicable. The data

pertaining to the other two cases are presented in Table 6.1m~ The

first column gives the characteristics of the incident waves. The

period ~ equals 2~/~, in which ~ is the frequency at which S(m)

reaches its maximum. The second and third column give the depths at

the locat$ons of the measurements~ and the values of ~. Due to inaccu-

racies in leveling and reading the various gauges, the measured values

of $ have a probable unsystematic error of about 0.5 cm to 0.8

and a possible constant error of about 0.5 cm. In addition, there is

a sampling error of at least l cm to 2 cm, due to the rather short

averaging interval which was used (72 s), so that the given values may

be in error by at least + 2 cm~ as indicated in the table.

In the calculations of ~, no refraction effects were taken into

account because the waves were of almost perpendicular incidence.

The mean zero-crossing period in deep water was taken to be equal

to ~ at the most seaward measurement !ocation; this is considered

permissible because the set-up is not very sensitive to variations

in TO. The values of ¥ which have been used are indicated in the

table. The results are given in the fourth column. (Those for

¥=0.75 can be obtained approximately from the curves in fig. 6.3°)

The difference ~meas - ~calc is listed in the last column of

Table 6.|. Its average value is - 0.5 cm for the first case, and

- 0.7 cm for the second case. The maximum deviation from this aver-

age is about I. 6 cm. These values are of the same order as the possible

constant and unsystematic errors in ~meas~ which are mentioned above.

It is concluded that these field measurements lend support to the

computational model used for the calculation of ~ from the incident

wave properties.

The author is indebted to Dr. Dorrestein for providing the original
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inc. waves d (ca) ~-meas (ca) ~calc (cm) - --
~meas ~calc

(_+ 2 ca) (ca)

m~o=21 254 0.5 0.0 + 0.5

~=6.6 s 35.0 6.5 6.9 - 0.4

at d=4.55 m. 22.7 7.0 9o! - 2.1

H0/~0=0.009 |2.5 8.8 |0.7 - |.9

Assumed: 3.7 | | .7 | 2.3 - 0.6

y=0.75 - 2.9 ~3.8 13.4 + 0.4

- 7.3 14.7 14.2 + 0.5

m~@=|5 ca,         27.6 0.7 2.5 - |.8

~=2.8 s 22.5 2.1 2.9 - 0.8

at d=6.00 m. 16.2 3.7 3.6 + 0. |

NO/ 0=0.035. 7.0 4.4 4.6 - 0.2

As sumed :

y=O. 65

Table 6. I

6.4.3 Laboratory measurements

Measurements of wave set-up were carried out in a random-wave

flume of the Delft Hydraulics Laboratory. The flume which was used

is 100 m long and 2 m wide; the water in the constant-depth por-

tion of the flume was about 0.55 m deep. A hydraulically driven wave

board capable of generating irregular waves is located at one end

of the flume. At the other end a 1:20 plywood slope was installed. For

measurements of the change in mean water level~ particularly the set-

-up in the surfzone, 7 pressure taps (inner diameter 4 n~n) were pro-

vided~ flush with the slope. The taps were connected by plastic

tubes (inner diameter 16 mm) to |5 cm inner diameter stilling wells,

where a vibrating-point gauge sensed the water surface elevation

to an accuracy of approximately 0.| mm.
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Four resistance type, temperature-corrected surface elevation sen-

sors were installed. The gauges in a mean depth less than 20 cm were

inserted through the pl~wood slope in order to maintain the minimum

submergence necessary for a linear gauge response. As a consequence

of this arrangement, these gauges could not easily be moved. The

signal from each gauge was fed into analog equipment for the on-line

determination of wave height histograms (based on lO00 wave heights

between zero crossings) and energy spectra. The signals could also be

recorded.

A r.m.s, incident wave height H0 of 7 cm to 8 cm was used in all

runs. It was kept more or less constant so that the pressure taps

and the shallow-water wave gauges would be in the zone of breaking

waves without being moved between runs. The mean period TO was approx-

imately |.2 s or 2.0 s. Each combination of H0 and TO was used in con-

junction with three different spectral widths. It appeared from the

measurements that the applied variation of the width of the energy

spectrum hardly affected the wave energy decay and the set-up. Its

influence will not be further discussed.

A comparison of measured and calculated r.m.s, wave heights is

given in table 6.2. The calculations are based on a value y=0.8 for
TO=~.2 s and y=0.9 for TO=2.0 s. The value of Hrms in the constant-

-depth portion of the flume (d=55 cm) was taken as a boundary condi-

tion. This is indicated by arrows in the table.

It appears that the calculated value of Hrms at d=36 cm is consis-

tently approximately 20% too high. This value is not affected by

the choice of y (within reasonable limits) because at the depth of

36 cm virtually no waves were breaking. At the remaining measurement

points with smal~er depths~ where breaking did occur, the differences

between computed and measured values are generally considerably

smaller; the average absolute value of the deviation in these points

is 4%. This is considered to be satisfactory.

Two examples of measured and computed set-up are given in fig. 6.6,

one for T0=|.2 s and one for TO=2.0 s.



TO=I. 2 s TO=2.0 s

d
(cm)

H     (cm)
rms

H     (cm)

meas calo meas calo meas calc meas    calc meas    calc meas    calc

7.85 8.22      8.11 7.70 8.48 7.95

55.0 7.25÷7.25 7.60÷7.60 7.50~7.50 7.26÷7.26 7.99÷7.99 7.4947.49

36.0 7.15 6.75 7.50 6.81 7.40 7.70 7.66 8.48 7.17 7.95

15.9 6.88 7.21 6.50 7.45 6.90 7.42 8.41 8.46 8.81 9.05 9.29 8.67

8.8 5.71 5.70 5.64 5.85 6.02 5.82 6.53 6.70 6.98 6.95 6.87 6.84

4.1 3.54 3.43 3.58 - 3.54 4.50 4.15 - 4~49 4.45

Table 6.2

The data which are not shown are in essence similar to those in fig. 6.6.

The above-mentioned values of y (0.8 and 0.9 respectively) were used

in the calculations, while the value of ~ at the toe of the slope was

taken to be zero.

Inspection of fig. 6.6 shows that the set-down at the most seaward

measuring point is fairly well predicted by the theory; this point is

located outside the surf zone. Shoreward from this point, from d ~ 15 cm

to d ~ 8 cm~ the computed values show a much stronger rise towards the

shore than the measurements. In smaller depths the computed values

have very nearly the s~me trend as the data points.

The disagreement between theory and experiment was systematically

present in al! the laboratory data. It is therefore necessary to inquire

into its possible causes. The theory was found to describe the r.m.s.

wave height variation fairly well, particularly in the region

d < 16 om, which contains the area where the calculated set-up differs

essentially from the measured set-up. In order to eliminate any uncer-

tainties which nevertheless might be present in the theoretically

calculated wave heights~ the set-up between the wave gauges was computed

using measured rather than calculated wave heights. As expected, the

disagreement hardly diminished.
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Fig. 6.6. Comparison of com~ted and measured set-up.
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There is a region in which the mean square wave heights decrease

considerably in the shoreward direction~ which leads one to expect a

proportionate decrease in the radiation stress Sll and a corresponding

rise of the mean water level, while the measurements show a much smaller

rise. The conclusion is that the measurements are in error, and/or that

the theory used in relating wave characteristics and set-up is in error.

The following remarks can be made regarding the measurements.

The wave height gauges are considered reliable. Calibrations were

carried out frequently; they showed good linearity and no measurable

drift.

The measurements of the mean water level were made indirectly,

by means of bottom-mounted pressure taps. It has been shown by

Dorrestein [3]] and Longuet-Higgins and Stewart [33] that the mean

pressure head at the bottom equals the mean depth, if the waves are

statistically stationary in time and homogeneous in the horizontal

coordinates (see eq. 3.3.9). The latter condition is not exactly met

in the present tests but an analysis such as given by Dorresteln shows

that errors arising from the horizontal inhomogeneities which occurred

in the experiments cannot account for the observed discrepancy. In an

interim report dealing with these measurements[]lO] the author conjec-

tured that air entrainment in the water, due to breaking waves~ might

give a systematic error which could possibly explain the discrepancy.

The reasoning behind this was as follows.

If wave breaking causes air entrainment then this occurs in the

water of the ~lume only, not in the stilling well. It follows that the

wave-induced rise in mean water level in the flume (~) is greater than

the rise measured in the stilling well (denoted by ~s). The difference

can be found by equating the mean bottom pressures:

I p g dz = I     pg dz,
(6.4.1)
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in which 7 is the mean density of the air-water mixture in the flume,

which is roughly equal to p(1-C), if C denotes the time-averaged

volume concentration of air in water. It follows from (6.3.1) that the

mean water level in the flume is underestimated by an amount equal to

~ - ~s ~
dz = C(d+~) = CD, (6.4.2)

-d

in which C is the air concentration averaged with respect to time and

depth. The difference (~-~s) vanishes outside the surf zone, where

C÷0, and in very shallow water, where D÷0. For small values of C, the

absolute error is small compared with the total depth D, but not

necessarily with respect to the set-up ~. In order to check whether

the air entrainment which does occur is sufficient to cause the

observed differences, additional measurements were made with periodic

waves (the experimental arrangement in the random-wave flume had

already been dismantled). In these tests the change in mean water

level was measured with a bottom-mounted pressure-gauge and with a

surface elevation sensor; the measurement errors were of the order

of 0.2 mm. No significant differences were found; if they occurred then

they were totally inadequate to explain the discrepancy between

measured and ¢~mputed set-up in the random-wave experiments, which

amounted to several m~ (see fig. 6.6).

In sun~ary, it can be said that for the conditions in these

experiments, the mean pressure head at the bottom may be equated with

the local mean depth. The problem then centres on the measurement of

the mean bottom pressure, which was done by means of pressure taps

connected by tubes to stilling wells. In an evaluation of this proce-

dure~ distinction should be made between the hydrodynamic and the

electronic aspects of the system, i.e. between the water in the

connection tubes and the stilling well, and its response to the

varying pressure at the bottom of the flume on the one hand, and the

electronic measurement of this response on the other hand.
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The electronic part was frequently calibrated and is not suspect.

Therefore, only the hydrodynamic aspects of the system are considered

further. If this system were linear, as had been assumed initially,

then the mean water level inside the stilling well would correspond

to the mean bottom pressure in the flume. However, the connection tubes

had several sudden profile contractions and enlargements; same of

these were brought about by clamps on the plastic tubes. Such profile

changes give rise to a quadratic flow resistance, which implies that

the mean water level in the well is not necessarily the sm~e as that

in the flume. The difference varies with the asy~netry in the back-

-and-forth motions. For steep waves in shallow water, with narrow

crests and elongated troughs, the mean level in the stilling well

would be lower than that in the flume. Unfortunately, the geometrical

characteristics of the profile changes are not known sufficiently

for a quantitative analysis, so that it remains uncertain whether

this effect can account for the observed discrepancies between theory

and experiments. The measurements should be repeated with a better

system for measuring the bottom pressure, e.g. with electronic

pressure gauges mounted in the bottom.

Apart from the possibility of errors in the measurements, one

should consider the question at which points the theory is most likely

to be in error. The differential equation for the set-up (eq. 3.3.46)

is obtained from eq. 3.3.44, which is exact in the problem under con-

sideration, by neglecting the mean bottom shear stress in the onshore

direction (~i). Although good estimates of this term are not available,

it is difficult to see how it could account for the effects being in-

vestigated. It is therefore considered very unlikely that (3.3.46)

would be seriously in error. Needless to say, in this statement it is

assumed that Sll represents the total contribution of the unsteady

motion to the mean horizontal flow of horizontal mamentum; its def-

inition involves an integral over the depth of terms involving the

pressure and the horizontal velocity fluctuations. These have not

been measured; trey have instead been expressed in terms of the wave
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heights. This is achieved by neglecting the contributions of the

turbulence~ and by using two essentially different approximations

relating to the wave motion. The first of these is the neglect of the

influence of inhomogeneities of average wave properties on the magni-

tude of the local radiation stress; the second is the use of a linear

theory. It has been assumed so far that these approximations would

give reasonable results. It is however quite conceivable that

application to breaking waves gives erroneous results. For instance,

in shallow water the fol!owing approximation is used for S||:

-d

(6.4.3)

It can be seen that this implies that the kinetic energy of the waves

equals the potential energy. However~ in higher-order approximations,

such as Stokes’ third order, the kinetic energy exceeds the potential

energy [111]. Furthermore, the ratio of kinetic energy to potentia!

energy may depend on the rate of deformation of the waves. If these

effects are significant at all then this is expected to he the case

for relatively high waves in shallow water, particularly where many

waves start breaking. A decrease in potential energy (wave heights) in

such an area would then be accompanied by a less than proportionate

decrease in kinetic energy. In addition to this~ the intensity of the

turbulence is relatively high in this r~gion. As a result of these

effects~ SII will decrease not as fast as calculated on the basis of

the decrease in wave heights~ and the set-up gradient is therefore

overestimated in the area where the waves begin breaking in significant

numbers.

It should be emphasized that the preceding arguments are of a

hypothetical nature, in the sense that the effects which are mentioned

are not known quantitatively. Additional measurements are needed to

investigate this matter. The internal velocity field should be consid-

ered explicitly therein.
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A question which arises in the present context is whether the

hypothesis which has been advanced with respect to the magnitude of S11

is compatible with the conclusions arrived at by Bowen et al [6],.

whose experimental results are generally considered as confirmation

of the "set-up theory". It is believed that such compatibility does

exist. Bowen et al~ using periodic waves~ found agreement between

theory and experiment with respect to the set-down (eq. 3.3.33)

"in the region well outside the breakpoint"~ which is not significantly

affected by the hypothesis given above~ and with respect to the

~radient of the set-up (eq. 3.4.4) "further inshore, where the bore

was well formed" (thus~ inshore of the area of most rapid wave

deformation). The absolute value of the set-up in the surf zone

is not considered in the comparison of theory and experiment given

by Bowen et al~ because they omitted the area near the breakpoint

of the waves from the calculations. Because of this~ no boundary

condition was available for the integration of the set-up gradient

shoreward of the b~eakpoint. The measured mean water level was found

to be practically constant in the area from the breakpoint (where

the crest of the wave begins to curl over) to the point where the

wave form collapses~ although the measured wave heights there

decreased considerably. This is the s~me phenomenon as was observed

in the experiments reported here.

Let us summarize the comparison of the theory with field data

and laboratory data. The field data give support to the theory.

The laboratory data give support to the theoretical prediction of

the wave height decay in the surf zone, while systematic differ-

ences appeared to exist between measured and calculate~ set-up.

However~ the system which was used for the set-up measurements

represents to some degree an uncertain element due to nonlinearities

which are unknown in a quantitative sense. In conclusion, it must be

said that the comparison of the theory with the field data and the

laboratory data has been promising~ but ultimately inconclusive.

Additional investigations are required for more definitive answers

to the questions Which have been raised.



7     RUN-UP

7.1     Introduction

The preceding chapters dealt with waves on beaches, for which the

similarity parameter $ was sufficiently small for the occurrence of

spilling breakers. In this and the following chapter we shall be con-

cerned with waves breaking on steeper slopes, typical of sea dikes.

The similarity parameter ~ is supposed to be of order one, which implies

plunging breakers and a significant ~p-and-down motion of the water

along the slope. We shall in particular consider the run-up height

~, i.e. the maximum height above S.W.L. reached by a wave rushing up

the slope~ This is a frequently used parameter in considerations of

the required height of a dike. It will for brevity be called the

run-up if no confusion is possible with the process of run-up. The

run-up ~ associated with random waves is a random variable. Its dis-

tribution function will be considered extensively.

Most studies of run-up which have been made in the past were

based on periodic waves. The approach has been predominantly empiri-

cal, particularly for the conditions of breakimg waves envisaged in

this chapter. The run-up for such waves varies non-linearly with the

incident wave height, so that it is not possible to simulate the

stochastic run-up process by linear superposition of periodic-wave

solutions. In this respect we face the same situation as in the cal-

culation of the set-up and the longshore current due to irregular,

spilling breakers on a beach. There is an important difference, how-

ever. In the latter case the calculations were aimed at the time-mean

value of a continuous variable to which all of the different waves in

a random wave field contribute. In the case of the run-up height ~

we deal with discrete occurrences which can be attributed to indivi-

dual waves breaking on the slope. For this reason run-up relation-

ships for individual waves will play a key role in the computations.

Distribution functions of the run-up ~were first =alculated by

Saville ~|~, who assigned to each individual wave of a random wave

train the run-up value of a periodic wave train of co~responding height
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and period. The hypothesis that this gives valid results will be re-

ferred to as the hypothesis of equivalency. A similar hypothesis has

been widely and successfully used to compute distributions of non-

linea~ wave forces on piles [113].

It should be noted that the hypothesis of equivalency does not

necessarily imply that each individual wave causes a run-up equal

to the run-up of the corresponding uniform wave train. The assumption

is weaker, as it pertains to the distribution of wave height and period

on the one hand, and of run-up on the other hand. In other words, it

pertains to averages of many values, rather than to individual values.

Empirical evidence supporting the hypothesis of equivalency has been

given by van Oorschot and d’Angremond ~l~.

The run-up R of periodic waves of perpendicular incidence on a

plane slope is determined mainly by the height H and the period T

of the incident waves, by the gravitational acceleration g, and by

the slope angle ~: R = R(H,T,g,~). Therefore, in order to calculate

the distribution function of the run-up ~ of random waves of perpen-

dicular incidence on a plane slope by means of the hypothesis of

equivalency, the function R(H,T,g,~) should be known, as well as the

joint distribution function of H and T. Saville uses the empirical

run-up data published previously by him ~I~, and the joint distri-

bution of ~ and ~ proposed by Bretschneider [83] for the case where

these are stochastically independent, referred to in paragraph 4.5.4.

The resulting distributions of the normalized run-up ~/Hl/3 have to

be calculated numerically for each combination of structure slope

and wave steepness.

The approach used herein is similar to the one used by Saville,

as far as the hypothesis of equivalency is concerned. However, this

hypothesis is elaborated differently in various respects, By con-

sidering only waves which break on the slope, Hunt’s formula (eq.

2.3.22) can be used for the run-up of periodic waves. An analysis

is made of existing laboratory data in order to check the validity

of this approach. The use of Hunt’s analytical expression enables us

to normalize the run-up in such a way that it becomes independent

of the slope angle and the wave steepness, obviating the need to
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compute the run-up distribution anew for each combination of these

parameters. It also permits the transformation of the joint distri-

bution of H and T into the distribution of ~ to be carried out graph-

ically or analytically. The analytical transformation is carried out

first for an arbitrary joint distribution of ~ and ~, and subsequently

for waves with a bivariate Rayleigh distribution of ~ and T__2 and arbi-

trary degree of correlation. Results are given in closed form. They are

compared to empirical data.

7.2 Run-up of periodic waves breaking on a slope

Hunt [I] has given the following empirical equation for the run-

up of periodic waves of perpendicular incidence breaking on a plane

slope:

R = 2.3T~ tan a (7,2.1)

Eq. (7.2.1) is stated in the ft-sec system. Restoring dimensional

homogeneity by substitution of g = 32.2 ft/s2, (7.2.1) may be written

as

R = 0.4T g~-~ tan e , (7.2.2)

or, in view of (2.1.3), as

R = ~0 tan ~ , (7.2.3)

which is equivalent to (2.3.22).

Eq. 7.2.1 is based on measurements made at the Waterways

Experiment Station in Vicksburg, Mississippi, and at the Beach

Erosion Board in Washington, D.C. According to Hunt, the breaking

criterion of Iribarren and Nogales (eq. 2.3.5) is adequate to describe

the transition from breaking to no breaking.

The author has previously given the following physical inter-

pretation of Hunt’s empirical equation ~I~ ¯ The formula applies to
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waves breaking on the slope. The initial horizontal velocity of the

water particles in the mass of water which runs up the slope must be

of the same order of magnitude as the particle velocities in the

breaking wave, i.e., 0 (g¢~). The motion is periodic, with period T,

and the run-up time is 0 (T). If it is assumed that the shape of the

velocity-time curve of the advancing wave front does not signifi-

cantly depend on the slope angle and the wave steepness, then the

displacements along the slope are expected to be O (T~), and the

vertical displacements, includin~ the run-up height, are expected

to be of order T~tan a. This agrees with (7.2.2).

The interpretation given suggests certain similarities in the

run-up process. In order to investigate this a series of experiments

was carried out in which the details of the run-up and run-down above

S.W.L. were considered [19]. Slopes of 1:3, 1:5 and 1:7 were used,

with wave steepnesses H/L0 from 0.02 to 0.09. The parameter ~ ranged

from 0.5 to 1.9. It was found that the interpretation given above

needs some adjustment. The time of run-up from S.W.L. to the maximum

height (tr), and the mean velocity of the run-up front above S.W.L.

(~r), normalized with T and /g--~respectively, were not in fact

independent of ~ and H/L0. They were found to vary with ~:

tr = 0.7 ~-~ (7.2.4)
T

and

(7.2,5)

The run-up height R which can be calculated from these equations

deviates less than 4% from the value according to Hunt’s formula.

The empirical data referred to above were obtained with waves

of perpendicular incidence. The run-up of waves of oblique incidence

is usually assumed to be proportional to the cosine of the angle of

incidence [3I . This proportionality has been argued by noting that
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7.3

the run-up of breaking waves of perpendicular incidence is propor-

tional to tan ~, i.e. to the component of the slope in the direction

of propagation. This component reduces to (cos 0)(tan ~) if 0 is the

angle of incidence. Empirical data presented by Hosoi and Shuto ~|~

are in reasonable agreement with this reduction, at least for breaking

waves and l~I < 50°. (For non-breaking waves the reduction is less

than it is for breaking waves.)

A check of the applicability of Hunt’s formula to irregular waves

It has been mentioned in the introduction to this chapter that

run-up distributions will be calculated by applying Hunt’s for~la

to individual waves. Before proceeding to elaborate deductions which

can be made from this premiss we will in this paragraph present some

laboratory data which can be used for a partial check of the validity

of the approach. The check can be no more than partial because of

the restricted variation in the available data. These data were ob-

tained in the Delft Hydraulics Laboratory in a study of run-up carried

out on behalf of the Department of Zuiderzee Works [ 3]. The results

have partly been published by Wassing [11~. Additional information has

been gathered by the author from the original, unpublished data.

In the experiments the run-ups of irregular waves on various

plane slopes were measured. The waves were generated by a combination

of wind and a bulkhead with a periodic motion. As a result, the model

waves were not natural wind waves on a small scale. The measured wave

height distribution was much narrower than the Rayleigh distribution.

The deviation from natural Conditions was even greater for the wave

periods, which in the model varied but very little. They will be

considered to be constant.

Two series of measurements were made, with a nominal wave height

of 0.10 m and 0.07 m, respectively. It is not clear from the original

report how the wave heights had been defined. For this reason they

are called the nominal wave heights, H    . The waterdepth (0.35 m),

the mean wave period (Is), and the mean wavelength (|.40 m) were the

same in both series.
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We have to check to what extent the application of Hunt’s formula

(R = 0.4 T g/~ tan ~) to individual waves yields a run-up distribution

in agreement with the measured distribution. The proportionality of

the run-up with T cannot be investigated because T was not varied.

Only the proportionality with ¢~tan ~ can be checked. This will be

done in two stages. First, the magnitude of the median run~ap (R50)

is considered, and after that the shape of the run-up distribution,

as given by Rn/Rso, in which n is the probability of exceedance,

expressed as a percentage [n = 100 (I - F)].

The raw experimental data regarding R50 are given in the first

three columns of Table 7.1. The last two columns represent the experi-

± defined by
mental values of the dimensionless parameter RS0

RS0
(7.3.1)

which should be a constant according to the hypothesis to be tested.

The value of the constant cannot be predicted because of the uncertain-
±

ty with respect to Hnom. The agreement between RS0 values for the same

RSO R50

H = I0 cm H     = 7 cm H = 10 cmnom H    = 7 cm
nom

0.1 4.7 3.7 1.17 1.11

0.15 6.9 5.7 1.1"5 1.14

0.2 9.3 8.1 1.16 1.21

0.25 11.8 9.3 1.18 1.12

O. 286 15.4 13.4 1.35 1.40

0.333 15.8 t3.2 1.t9 1.19

0.4 17.5 15,4 1.09 1.15

Table ?.1

value of tan ~ is good within 5%, and confirms the proportionality

of R and ¢~. The agreement between RS0 values within one column is
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fairly good; this confirms the proportionality of R and tan e. Only

the two points for tan s = 0,286 (] : 3~) deviate considerably from

the others, for unknown reasons. Apart from these two, all measured

values of R50 are grouped closely around the mean value of 1.15~
with a maximum deviation of approximately 5% only. This means that

for these experiments the variation of the median run-up with wave

height and slope angle is adequately expressed by Hunt’s equation.

Whether or not this is also the case for run-up values with a dif-

ferent probability of exceedance can be investigated by comparing

Rn/Rb0 to (Hn/HSO){. According to the hypothesis to be tested, these

parameters should be equal to each other for all n, beoause T was

assumed to be constant. Such a comparison has been given in Table

7.2 for values of n from 50 to 2. The values of__Rn/Rb0 and Hn/Hbo

have been obtained by averaging over the different slope angles

n(%) Rn/R50 Hn/Hb0     (Rn/R50)/~

(a) H     -- 7 am
nom

50 1.00 1.00 1.00

40 I .04 1.09 I .00

30 l .08 1.18 I .00

20 ] .13 I .30 0.99

IO 1.20 1.46 0.99

5 1.27 1.60 I .00

2 1,33 1.71 I .02

(b) H    = 10 cmnom

50 l .00 1.00 1.00

40 1.06 1.11 1,O1

30 I . 22 1.26 I .00

20 I .19 1.41 I .00

10 I .29 1.58 1.03

5 1.37 I .77 1.03

2 1.46 1.96 1.04

Table 7.2
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in each of the two series. It can be seen that the ratio between

Rn/Rbo and (Hn/HbO)~ deviates at most a few percent from one. This

lends strong support to the approach which has been adopted, and

which will be elaborated in the foliowing sections of this chapter.

7.4 Run-up distributions of breaking waves with arbitrary joint dis-

tribution of ~ and ~0

7.4.] Analytical solution

In this section run-up distributions for waves of perpendicular

incidence will be determined by assigning to each wave a run-up height

according to Hunt’s formula. It is assumed that effects of oblique

incidence on the run-up can be accounted for by multiplying the cal-

culated run-ups for perpendicular incidence with a constant factor,

tentatively taken to be the cosine of the mean angle of incidence.

The fact that this factor is common to all the waves in a given wave

train implies that the influence of the variability of the direction

of propagation on the run-up is neglected.

It is convenient to use Hunt’s formula as given by (7.2.3),

rather than (7.2.2), since (7.2.3) is symmetric in H and L0. On the

basis of the hypothesis of equivalency a similar equation is assumed

to hold for random waves:

(7.4.])

The quantity ~ is defined as gT._2/2~, in which ~ is the zero-cross-

ing period. ~ will for brevity be called the deep-water wave-length

even though this interpretation is valid for periodic waves only.

It is to be noted that in (7.4.]) ~, ~0 and tan ~ appear in a

product of powers. This has the advantage that the run-up can be so

normalized as to make its distribution independent of slope angle and

mean wave steepness. The variables will be normalized as follows:
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and

~= ~/(V~ LO tan ~) . (7.4.4)

Substitution of (7.4.l), (7.4.2) and (7.4.3) into (7.4.4) givas

r = ~ (7.4.5)

Thus, the distribution of the normalized run-up equals the distribu-

tion of h/~. Denoting the distribution function of ! by F(r), we have

F(r) = l~{~!r} = Pr{V~--~ < r} . (7.4.6)

It should be determined from the joint p.d.f, of ~ and _£, which is

assumed to be known in the present context; it is written as f(h,~)

and defined by

Pr(h < ~! h + dh and £ < J ! £ + d£} ~ f(h,£)dh d£ ¯ (7.4.7)

The rlght-hand side of (7.4.7) is called a probability element. The

probability that ~ and ~ simultaneously assume values in a certain

interval of the (h,£) plane is determined by summing the corresponding

probability elements, i.e. by integrating f(h,£) over the area of the

(h,£) plane under consideration. Thus, F(r) is found by integration

of (h,£) with respect to~h and ~ for all values thereof which fulfil

the inequality h/~< r:

F(r) = f(h,z)dh dZ (7.4.8)

al! h,Z ~or

which h~i r
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Only positive values of h, ~ and r need be considered. The interval

of integration is indicated in fig. 7.1 by the hatched area of the
2

(h~Z) plane. It is bordered by the hyperbola h~ = r and by the

straight lines h -- 0 and ~ = 0. The integral can be written as

r2/h

F~r) -- Idh I f(h,~)d~ (7.4.9)

0 0

Fig. 7.1 - Area of integration in the (h,£) plane.

Differentiation of this expression with respect to r yields the

probability density o{ r:

f(r) = dF(r__)dr = 2r     f(h, ~-- ) dh
0

(7.4,10)

A more formal derivation of this result can be given by using the

rules for the transformation of one multi-dimensional p.d.f, into

another one of the same number of dimensions [51]. If (h,£) and (p,~)

are slngle-valued functions of each other then

f(p,q) = f(h,£) I=I ,

in which
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is the Jacobian of the transformation, which is assumed to be non-

zero. We choose one of the variables p and q to be equal to h~ (=r);

the other, say p, is a dummy variable which can be chosen for conve-

nience. The p.d.f, of r can then be found as a marginal p.d.f, of

f(p,r) by integration with respect to the dummy variable p. Choosing

p = h gives

(7.4.]3)

so that

f(h, h~) = 2~f(h,~) (7.4.]4)

or

2
2r f(h, r

f(h,r) = ~-     ~-) , (7.4.]5)

from which (7.4.]0) follows by integration with respect to h.

The equations 7.4.9 and 7.4.]0 represent the formal solution

to the problem of determining the run-up distribution from a known

joint distribution of wave height and period, if Hunt’s equation is

applied to individual waves. These expressions are valid for arbitrary

f(h,~), as long as the waves are breaking on the slope. Before substi-

tuting specific functions for f(h,%) a graphical method of estimating

F(r) from discrete data on wave heights and periods is presented.

7.4.2 Graphical solution for discrete data

In this paragraph it will be assumed that a scatter diagram is

available of wave height versus period, in which each realization of

(~,~) is represented by a dot. The problem is to compute an estimate of

the associated run-up distribution, if for individual waves the run-up

is given by Hunt’s equation.

A practical solution to this problem is suggested by the analyti-

cal derivation in the preceding paragra~. On a transparent sheet of
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7.5

paper a family of curves is drawn along each of which T~is constant.

(On double-log paper such curves will be straight lines). This sheet

is used as an overlay over the given scatter diagram. By simply

counting the number of dots of the scatter diagram between consecutive

pairs of curves T~= constant, the number of anticipated run-ups in

certain classes can be determined. The cumulative probability can

next be found by su~=nation.

Run-up distributions of waves with a bivariate Rayleigh distribution

of ~ and~q

7.5.! Probability density and distribution function

The expressions for the run-up distribution obtained in para-

graph 7.4.1 can be used for waves with an arbitrary joint p.d.f.

of ~ and ~O. In order to obtain more specific results we shall now

confine ourselves to winddriven waves for which ~ and~o are tenta-

tively assumed to be jointly Rayleigh-distributed. Referring to

Appendix l, the p.d.f, of the normalized wave height and length can

then be written as

f(h,£;K) =
2

(7.5.1)

in which

0 < ~ < | (7.5.2)

The dependence on the parameter ~ is indicated explicitly for later

reference.

Eq. 7.5.1 can be substituted into (7.4.~0) with the result

f(r;m) =
~    r        ~ <    r2)       exp(- 4         2 ~dh
2 ! - ~2 I0(~ I - ~2      0                  I - ~

(7.5.3)
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By substituting

~ h2
(7.5.4)

t=4 2

and

the integral in (7.5.3) can be written as

~ 2

I e-t 1
_x__

(~ e 4t )dr

0

(7.5.6)

It is equal to K0(x), the modified Bessel function of the third kind

of order zero [ 90, eq. 29.3.120]. Substitution into (7.5.3) gives

2 3 2
f(r;~)    ~

r ~ _~__~r2) ~    r
= 2 I0(-~ K0 (~ 1 ~2 )

(7.5.7)

This function is shown graphically in fig. 7.2 for six values of ~

which have been so selected as to give equal increments of ~, the

coefficient of linear correlation between ~ and ~ (see Appendix I).

The distribution function may be found by integration of f(r):

r

I f(r~) dr~ (7.5.8)F(r)

0

In order to carry out this integration, it is convenient to transform

to the variable x defined by (7.5.5). Because x is a single-valued

function of r, and vice versa (for r ~ 0), we have

dr (7.5.9)f(x) = f(r) ~x

Substitution of (7.5.5) and (7.5.7) into (7.5.9) gives



t
!I ii
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f(x;~) = (! - K2) x 10(mx) K0(x) (7.5.10)

The distribution function is

0

The following relations hold between I0, Il, K0 and K] and their

derivatives:

~(z) = ~(z) ,                  (~.~.~)

(z ll(z)}’ = z !0(z) , (7.5.13)

K~(z) = - Kl(z) ,

and

{z Kl(Z)}’ = - z K0(z) , (7.5.15)

in which a prime denotes a differentiation with respect to z [90].

With these relationships (7.5.11) can be evaluated by repeated inte-

gration by parts:

x 10(~x) K0(x) dx = ~ I 10(<x) d {x Kl(x)}

= - l~(~x) x Kl(x) + I

= - x I0(~x) Kl(x) + I

f
= - x 10(<x) Kl(X) - ] ~x ll(~X) d K0(x)

= - x 10(Kx) KI(X) - ~x ll(KX) K0(x) + j K0(x) d {Kx ll(Kx)}

x Kl(x) d 10(KX)

X KI(X) r I|(KX) dx
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= - x 10(~x) KI(X) - ~x II(KX) K0(x) + ~2 j K0(x) x 10(Kx) dx ,

(7.5.16)

so that

(1 - ~2) I x 10{~x) K0(x) dx -- - x 10(Kx) KI(X) - ~x ll(~X) K0(x)

(7.5.17)

The Bessel functions in (7.5.17) behave as follows for small values

of their argument:

10(z) ÷ I     ,

11 (z) ÷ ½z    ,

K0(z) ÷ - ~n z    ,

-I
KI(Z) ÷ z               for z ÷ 0    , (7.5.18)and

so that

lim x 10(~x) Kl(X) = ~ (7.5.19)

x÷0

and

lim ~x ll(~X) K0(x) = 0 (7.5.20)

x+0

It follows from (7.5.11), (7.5.17), (7.5.19) and (7.5.20) that

F(X;K) = 1 - x I0(Kx) Kl(X) - ~x Ii(Kx) K0(x) (7,5.21)

Substitution of .(7.5~5) in the right-hand side of (7.5.21) gives

F(r;<), which has been plotted in fig. 7.3 for selected values of <.
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7.5.2 Special values

Eq. 7.5.21 reduceg to simpler forms in the two special cases’of

zero correlation and 100% correlation between ~ and ~. In the first

case we have ~ = 0, so that

~ 2                      (7.5.22)

as follows from (7,5.5), and

~ 2    ~ r2)
F(r;0) = I - ~ r KI( (7.5.23)

In the second case, ~ = I, so that x is unbounded if r # 0. The

asymptotic.behaviour of the Bessel functions in (7.5.21) for large

values of their argument is given by

Z
e for z ÷ = (7.5.24)

Im(Z) ~

and

Km(Z)÷G e
~z     for z ÷ ~ (7.5.25)

for m = O, ], etc. Substitution of (7.5.5), (7.5.24) and (7.5.25)

into (7.5.21) gives after some manipulation

2

F(r;~) ÷ I
I + ~ exp(- ~    r ~)

for < + ! (7.5.26)

2/~<
21+

so that

F(r;l) = I - exp(- ~ r2) (7.5.27)

which is the (univariate) Rayleigh distribution function. This is to be

be expected, since < = i implies that h = £ with 100% probability

(see Appendix I). This in turn means that

r = h/~--~= h = £ , (7.5.28)
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so that the distribution function of r for ~ ÷ 1 converges to that of

h or £, i.e. to the Rayleigh distribution function. Indeed, the prece-

ding investigation of the behaviour of F(r;K) for ~ = I is given more

as a check on the general formula (7.5.21) than because of its prac-

tical importance~ for the case ~ = I is not expected to occur in

actual wind waves. However, it is interesting to note that (7.5.26)

represents not only the asymptotic behaviour of F(r;K) for ~ ÷ I but

also that of F(r;K) for r ÷ ~ at a constant value of ~ ~ 0, since in

both cases x ÷ ~ and <x ÷ ~, as follows from (7.5.5). This implies

that for large r and arbitrary < > 0 a p!ot of F(r;K) on Raylelgh -

probability-paper approaches a straight line through the origin, as

can indeed be seen in fig. 7.3. This may be shown by noting that in the

Rayleigh-probability-paper of fig. 7.3 the scale of r along the abscis-

sa is linear, while the scale of F is chosen so that the plot of

F(r;l) gives a straight line; this can be achieved by p!otting the

inverse function of F(r;l) linearly along the ordinate. This inverse

function is, from (7.5.27),

2__{ _ £n(! - F)}~ (7.5.29)

Substitution of (7.5.26) into (7.5.29) gives

2     ~ r2.... (7.5.30)

which approximates to

(     )~ r (7.5.31)

for sufficiently large r. If ~ = 0 then we must start from (7.5.23).

Using (7.5.25) it can be shown that

~ ~ r2)
F(r;O) ÷ I - ~ r exp(- ~ for r ÷ ~(7.5.32)

Substitution of this equation into (7.5.29) leads to the same result



181 -

~T 2       ~T       r 2
(7.5.31) for ~ = 0, since ~ r - £n(~ r) ~ ~ r for large r.

The mean of the normalized run-up can be found as a moment of the

jolnt p.d.f, of ~ and ~, a general expression for which has been given

in Appendix I. Substituting (At.19) gives

~ i
2 {F(~)}2 2Fl(- ¼, - ¼; l; K2).~ = E{N~z}__ = M~ = ~

(7.5.33)

This expression reduces to

~ = 2--- (r(¼)}2~ % 0.93

and to

if ~ = 0 (7.5134)

~ = 1 if m = 1 (7.5.35)

The associated cumulative probabilities are 0.535 and 0.544 res-

pectively, i.e. approximately 0.54 in both cases. From the monotonic

behaviour of the functions involved it m~y be inferred that this

value will also hold for other values of K.

The mean square normalized run-up can also be calculated as a

moment of f(h,~). Using (AI.23) and (AI.27) we find

--~ (- ~, - ½; l; m2) 4r = E{~!} =2Fl = (7- l)X + 1

(7.5.36)

It may be useful to revert briefly to non-normalized variables.

Using (2.1.3), eq. 7.4.4 can be written as

R = r ~0tan ~ = 0.4 ~ ~g~ tan ~ (~.5.37)

This equation can be expressed in terms of the co--only used para-

meters ~ and HI/3 by utilizing the following relationships, which
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hold if H and T2are Rayleigh-distributed:

(7.5.3S)

and

0.625 HI/3 (7.5.39)

This yields

0.33 ! T ~I/3 tan ~ , (7.5.40)

or, using the wave steepness ~ defined by (4.5.24),

~ = 0,83 i~-t HI/3 tan a (7.5.41)

As an example, the value exceeded by 2% of the run-ups will be con-

sidered for the limiting cases ~ = 0 and ~ = I. The 2%-value is chosen

in view of a comparison with empirical data in section 7.7. Entering

fig. 7.3 with the value F = 0.98 and rending the corresponding values

of r gives

r2 = 1.78 if K = 0 (7.5.42)

and

r2 = 2.23 if K = I (7.5.43)

in which the subscript refers to the exceedance percentage. Substi-

tuting these into (7.5.40) and (7.5.41) we find

R2 = 0.59 T ~I/3 tan a = 1.47 ~-~ HI/3 tan ~ if ~ = 0

(7.5,44)
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and

R2 -- 0.74 T ~I/3 tan e = 1.84 ~-~ HI/3 tan ~ if ~ !

(7.5.45)

These formulae are compared to empirical data in section 7.7.

7.5.3 Maximum run-up

Consider the maximum normalized run-up height (~max) in a series

of N run-ups. Its distribution function FN(r) can he derived by the

reasoning already referred to in paragraph 4.4.8 with respect to

H    . Thus,
--max

FN(r) = Pr {~max !r} = {F(r)}N (7.5.46)

As in paragraph 4.4.8, we consider large values of N (greater than

]00, say), in which case only large values of r are of interest.

Eq. (7.5.46) then approximates to

FN(r) = e-NQ(r) , (7.5.47)

in which

Q(r) = ! - F(r) (7.5.48)

The expected value of r     can be calculated from this distribution-max

function as

0 0 0    (7.5.49)

in which

QN(r) = ! - FN(r) (7.5.50)
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Substitution Of (7.5.21) and (7.5.5) and numerical integration has

given the result shown in fig. 7.4.

Fig. 7.4 - Expeated value of normalized maximum run-up.

An approximate expression in closed form for E{r_max} can be

found by using the approximation to F(r;K) given by (7.5.26), which

can be written as

2

2

and which is valid for large ~--~-~.. This gives

-Nl +~ e

-Nil - F~(r) } 2~-~
FN(r) ~ F~(r) = e = e

2

2 1 +~

(7.5.51)

(7.5.52)

It then follows from analogy with (4.4.29) and (4.4.30) that

E{~max} ~ {!~ (l + <)}~{(£n N)2 + 0.29 (£n N) ~}                                                                  ,        (7.5.53)
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in which

(7.5.54)

As noted previously~ the approximation (7.5.51) is not valid for

~ + 0. However, a =omparison of (7.5.53) with the result calculated

numerically from the exact distribution function F(r;~) has shown that

for N > I00 the relative error is less than I% for ~ > 0.1 and less

than 5% for ~ > 0.01, so that the lower limit of ~, for which (7.5.53)

is still a useful approximation, is quite small.

7.6 Steepness distribution

It has been pointed out that Hunt’s equation is not applicable

to waves for which the steepness S = H/L0 is less than the critical

value given by Iribarren and Nogales’ breaking criterion. Like ~

and~o, ~ is a stochastic variable. Its distribution function will

be determined in order to be able to estimate for a given random

wave train the fraction of the waves that will break on the slope.

The steepness will be normalized as follows:

(7.6.1)

or, using (7.4.1) and (7.4.2),

s = hlZ (7.6.2)

The distribution function and the probability density of ~ can be

obtained from f(h,£) by exactly the s~me procedures as were used in

paragraph 7.4.1 for r. The results are

F(s) = / d£ / f(h,£) dh

0 0

(7,6.3)
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and

f(s) = [ Z f(sz,~) d~

0

(7.6.4)

Only positive values of s need be considered.

Substitution of the bivariate Rayleigh probability density for

f(h,~) into (7.6.4) gives

2

I

s2 ~2)i0(~
K2)f(s;~) = ~

S exp(’ 4 I - K2
! - ~2

dZ
4 I - K2

g3 w 1 + Ks

0 (7.6.5)

By substituting

and

~ Ks    g2 (7.6.6)2

2
1 + s

P = 2~S ’ (7.6.7)

(7.6.5) becomes

f(s;~) = --1 - ~2
I’y e-py 10(Y) dy

2~2s
0

(7.6.8)

The integral in (7.6.8) converges if and only if p > I [I19]. This can

be seen from the asymptotic behaviour of lo(Y) for large y, given by

(7.5.24). The condition p > I can also be written as

~(s-1 ÷ s) > 1 (7.6.9)

The numerator is greater than 1 except for s = I, in which case it

equals I. The denominator is at most |. Thus, only if < = I ~nd s = l

does the integral fail to converge. This is to be expected inasmuch

as ~ = l implies that h = £ , or s = l, with a probability of 100%. The

corresponding probability density is zero for all s � I and it is un-

bounded for s = 1. It is described by Dirac’s unit impulse function:
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f(s;l) = ~(s - 1) (7.6.1o)

The distribution in this case is the unit step function centred at

If K < I~ which will always be the case for actual waves~ then

p > I for all s, and the integral in (7.6.8) is bounded. It has been

evaluated using section 13.2 from Watson [11~, with the result

I y e-Py = ~ (7.6.ll)Io(Y) dy
(p2 - 11~7~

0

Substitution of (7.6.7) and (7.6.11) into (7.6.8) gives for the p.d.f.

of s

s(l + s2)
(7.6.12)

f(s;K) = 2(I - <2)
I}3/2{s4 + (2 - 4 <2)s2 +

This equation has been plotted in fig. 7.5 for selected values of

<; for ~ = 0 it reduces to

f(s;O) =    2s (7.6.13)

(I + s2)2

The distribution function F(s;<) can be found by integration of

(7.6.12). It is convenient to transform to a variable q defined

by

2q = s                         (7.6,14)

The transformed p.d.f, is

f(q;~) = (1 - <2) 1 + q

{q2 + (2 - 4 ~2)q + 1}3/2 ’ (7.6.15)

which can readily be integrated. The result, transformed back in

terms of s, is
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1.0

Fig. 7.5 - Probability density of normalized steepness.

0¸6

O2

Fig. 7.6 - Distribution function of normalized steepness.

Fig. 7.7 - Mean normalized steep-

ness vs. correlation coefficient

o    02
~X
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2
F(s;~) = ~ +         s - 1

2{s4 + (2 - 4 ~2)s2 + 1}~
(7,6.16)

For ~ = 0 it reduces to

2
F(s;O) ffi "-~ffil +

1 + s-2
(~.6.17)

Graphs of F(s;<) are given in fig. 7.6.

It is evident from this figure as well as from (7.6.16) that the

median of the normalized steepness does not depend on ~; it is always

I.

The mean steepness has been evaluated as a moment of

s ffi E{s} = (h/£) f(h,£) dh d£ (7.6.18)

0 0
Substitution of (AI.19) and (AI.29) gives

[ = g(~) , (7.6.19)

the complete elliptic integral of the second kind of modulus ~.

Utilizing the relationship between ~ and ~. given in Appendix I, [ is

plotted as a function of ~ in fig. 7.7. Eq. (7.6.19) may be compared

to a result given b~ Bretschneider [83], who in his work on wave

variability referred to in paragraph 4.5.4 considered not only the

wave heights and periods bht the steepness as well. He did not de-

termine its distribution function but only the mean value, with the

result

~" ffi ~-- ~. (~- - 1) , (7.6.20)

which is shown in fig. 7.7. 0nly for I = 0 and ~ = I de (7.6.19) and

(7.6.20) give the same result, gretschneider’s derivation is based

on knowledge of the marginal distributions of hand ~ alone (Rayleigh),
and on the assumption that the mutual regressions of ~ and ~0 would
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be linear, while (7.6.19) is based on a bivariate Rayleigh distribu-

tion of ~ and ~. It has been shown in Appendix ! that the assumption

of linear regression is incompatible with the assumption of a bivariate

Rayleigh distribution, except in the limiting cases % = 0 and % = I.

Therefore, only in these limiting cases is exact agreement between

(7.6.19) and (7.6.20) to be expected. For intermediate values of ~ the

difference between the two is at most 5%.

The distribution function F(s;K) may be used to estimate the frac-

tion of the waves for which Hunt’s formula would (not) be applicable.

consider a case in which tan a = I : 5, ~/~0 = 0.03,As example,

and ~ and ~0 are uncorrelated. The critical steepness for the occur-

rence of breaking is given by Iribarren and Nogales’ criterion, eq.

2.3.5, as

tan ~2

Sc = (H/L0)c ~ (--~-, ~ 0.19 tan2 ~ ,     (7.6.21)

which gives S = 0.19 (0.2)2 = 0.0076. The corresponding normalizedcritical steepness is sc 
= 0.0076/0.03 ~ 0.25. From fig. 7.6 or from

(7.6.17) it can be seen that F(0.25;0) ~ 0.06. This means that, in

the example given, Hunt’s formula would be applicable to 94% of the

waves in the wave train.

7.7 Comparison with 9mpi~ical data

The derivations in section 7.5 were based on the following

premisses:

PI The distribution function of the run-up of waves of perpendicular

incidence on a plane slope can be determined by assigning to

each individual wave, characterized by a pair of values of height

and period, a run-up according to Hunt’s formula.

P2 ~ and ~0 have a bivariate Rayleigh distribution.

The first of these premisses has been partly verified in section

7.3, using laboratory data. The waves in the laboratory had been
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generated mainly with a wave board with a periodic motion, and modified

by wind. The statistical properties of the waves were not similar to

those in nature: the variability of the wave heights was much less than

for a Rayleigh-distributed variable, while the period was approximately

constant. It is therefore useful to make additional checks on the vali-

dity of P! for more natural wave conditions.

Van Oorschot and d’Angremond ~I~ have carried out run-up experi-

ments in the laboratory with irregular waves generated with a programmed

wave board. In addition, a wind with a mean velocity of up to 3m/s was

blown over the water surface. The resulting waves were a much more rea-

listic simulation of natural wind waves than the laboratory waves used

previously. This was checked with respect to the energy spectra, some

of which were in fact modelled on measured North Sea spectra, and with

respect to the wave height distributions. However, no data are given

with respect to the wave period distribution. While the experimental

results therefore cannot be used for a detailed check of the validity

of PI or P2, it is nevertheless deemed useful to use them for com-

parison with the deductions made from (PI + P2) in order to obtain an

indication of whether or not the calculated results are realistic.

The main object of the study by van Oorschot and d’Angremond was

the effect of the spectral shape on the wave run-up, in particular the

effect of the spectral width. The par~aneter ~ introduced by Cart~r~ight

and Longuet-Higgins (see eqs. 4.4.10 and 4.4.11) was used as a quan-

titative measure of the spectral width. (It can be show~ [63] that g,

if small, represents the relative root-mean-square width of the spec-

tral density function.) The values of g were computed after cutting

off the high-frequency tail of each spectrum at the frequency at which

the spectral density was 5% of the maximum value. As a result, the

actual E-values are considerably underestimated (by about 40% for a

Pierson-Moskowitz or a Neumann-spectrum). This is of no concern, how-

ever, as in this application there is no compelling reason to use

just ~ as a measure of the spectral width.

A spectrum which was roughly similar to that given by Pierson-

Moskowitz was used as a reference spectrum; its g-value was 0.45. This
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spectrum was considared to be of medium width. The values of ~ in the

other spectra ranged from 0.34 for a narrow spectrum to 0.59 for a

wide spectrum (excluding a case of s = 0.22 in one run in which the

waves were generated entirely by wind, and in which the wave height

distribution was quite different from the Rayleigh distribution, in

contrast to the other runs).

In addition to ~ , the following parameters were varied: ~, the

period of the spectral component with maximum energy density (0.71s

to 1.64s); HI/3, the significant wave height (3.7 cm to 13.6 cm);

H1/3/g~2 (4.0 x 10-3 to 12.2 x 10-3); d/g~2, a relative waterdepth

(1.7 x l0-2 to 8.1 x 10-2); and tan ~ (1 : 4 and 1 : 6).

The effects of wave height, wave period and slope angle on the

run-up were found to be adequately expressed by a Hunt-type formula

with a proportionality factor which is given as a function of n, the

exceedanee percentage, and of g:
Rn Cn(~) T

/3 tan a
(7.7.1)

This implies that the shape of the run-up distribution is signifi-

cantly affected by ~ only~ not by the wave steepness~ the relative

water depth or the slope angle. It is in agreement with PI if the

additional assumption is made that the shape of the distribution of

H and T is determined by the spectral shape, as is indeed the case

in the linear approximation.

For a comparison of (7.5.40) with (7.7.1), it is necessary that

both equations be expressed in terms of the same parameters. The

characteristic wave period in (7.5.40) is ~, while that in (7.7.1)

is ~. The ratio ~/~ in the laboratory experiments was roughly 1.05,

so that (7.7.1) can be ~ritten as
Rn ~ 1.05 Cn(£) T ~1/3 tan ~

(7.7.2)

(It is not known which of the equations (7.7.1) and (7.7.2) should be

preferred if ~/~#I.05.) However, the relationship between ~ and % is
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not known, so that (7.5.40) and (7.7.2) cannot be compared for speci-

fic values of these parameters. For an overall comparison~ the measured

range and the calculated range will be considered. Van Oorschot and

d’Angremond give the values of the coefficient Cn(~) for n = 2%. It

ranges from 0.57 to 0.73 for 0.34 < ~ < 0.39. This gives a range of

1.05 C2 from 0.60 to 0.77 approximately, as compared to the calculated

range of the coefficients in (7.5.44) and (7.5.45) from 0.59 to 0.74.

It appears that the calculated range is realistic.

In a discussion of empirical run-up data reference should be made

to the following formula~ which is well known and widely useH in the

Netherlands:

R2 = 8 Hi/3 tan ~ (7.7.3)

This equation is nominally valid for a steepness of 0.05 [I18]. It is

based partly on the laboratory data already referred to in section

7.3, and partly on unpublished visual observations during storms in

the Yssel Lake and the Wadden Sea [3]. Wassing [II~. gives the follo-

wing formulae, based on the laboratory data alone:

~2 = 7.5 H tan ~
for H/L = 0.05 (7.7.4)

and

R2 = 7 H tan = for H/L = 0.07 (7.7.5)

H is referred to by Wassing as "the average height of the .... waves

in the model which did not vary very much". Regarding the transforma-

tion of the latter equations into (7.7.3), Wassing observes:

"Since the waves in the model ~ere proportionally too steep

(resulting in too small values of R2) , the difficulty arose

how to transfer the model results to the prototype. After con-

sidering all the factors involved, it was decided to increase
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the factor 7.5 in the model to 8 in the prototype, for the 2%

run-up on a dike with a stone revetmont and waves of a steepness

of 0°05. The run-up is thereby expressed in the "significant

wave height" HI/3. In this way the following formula was obtained:

RzlHI/3 = 8 tan ~     (for HIL = 0.05)

This formula ..... proved to be in good agreement with the proto-

type observations carried out in the Netherlands for slopes not

steeper than 16 degrees".

The author has elsewhere [3] given a detailed re-analysis of the

laboratory data; it was concluded that these give more support to a

proportionality of the run-up with T/ff tan a than to a proportionality

with H tan ~. Reference is made to paragraph 7.3. Furthermore, the

laboratory results cannot unambiguously be transferred to prototype

conditions, even for the same wave steepness, because the statisti-

cal properties of the laboratory waves were very different from those

in nature. Also, the prototype data referred to by Wassing were only

few in number, and they were obtained visually, so that their quan-

titative value is doubtful. (Wave recorders did not yet exist at the

time of the observations.) In sum=nary, it appears that the factual

basis of (7.7.3) is rather weak. The formula is to be regarded as

giving an indication only. (It was not intended to be more when it

was first formulated [3]. But this fact is at present not as well

known as the formula itself.) For this reason it will not be used

as a standard of reference for checking the validity of the calculated

results. At most a rough comparison is appropriate. Eq. (7.7.3) is

nominally valid for a steepness of 0.05. Substituting this value for

~ into (7.5.44) and (7.5.45) we find

R2 = (6.6 to 8.2) HI/3 tan a for 0 < ~ < 1

(7.7.6)

It can be seen that (7.7.3) and (7.7.6) are not mutually exclusive.
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8 OVERTOPPING

8.1     Introduction

The considerations in the preceding chapter concerning the run-up

of waves were based on the tacit assumption that the crest of the dike

was of sufficient height to prevent o~ertopping. Situations in which

overtopping does occur can also be of major interest; they will be

dealt with in this chapter. The overtopping volumes of water will first

be related to the run-up heights of periodic waves. The result will be

applied in the calculation of the distribution function and the expected

value of the overtopping volumes in random waves.

8.2 Overtopping due to periodic waves breakin~ on a slope

8.2.1 Relation between run-up and overtopping

In chapter 7 reference has been made to a study by Battjes and

Roos [19] concerning certain details of the process of run-up of perio-

dic, breaking waves. Information was obtained about the variation of

the profile of the water in the uprush av~ in the downrush on the

slope above S.W.L. as a function of time. The results have been used

in relation to overtopping, although this phenomenon did not actually

occur in the experiments. A certain hypothetical relation has been

formulated. Before this is given here we need to define a number of

parameters,

Fig. 8. I - Definition sketah
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A coordinate axis (x) is chosen, directed upward along the slope,

with the origin at the still-water line (see fig. 8.1). Let ~(x,t) re-

present the instantaneaous volume of water on the slope above a point

at a distance x from the still-water line, as measured in the run-up

experiments (without overtopping). This function is periodic in t for

periodic waves; its local maximum value is denoted as ~m(X). Further-

more~ let B(xc) represent the volume of water which would overtop the

dike during one wave period if the crest were located at x = Xc, other

conditions being the same. In the fol!owing we use volumes per unit

width, so that ~ and B actually represent areas.

In order to express overtopping quantities (such as B) in terms

of run-up parameters (such as P) it was tentatively assumed that

B(Xc)     j (8.2.1)

The values of ~ should be expressed in terms of the incident wave
m

parameters. In this regard it is convenient to use the run-up height

according to Hunt’s formula as a scaling parameter. It is written

as R.a:

RH ~ ¢~0 tan ~ (8.2.2)

The corresponding run-up length along the slope is given by

(8.2.3)

which on gentle slopes is nearly equal to ¢~0" The layer thicknesses

on the slope were experimentally found to be proportional to ¢~0"

This led to the expectation that ~m would be proportional to HLO-

An analysis of the data confirmed this. However, the ratio ~m/HL0 was

found to increase with ~ approximately in proportion to t~n e~ at a

constant value of the fractional distance along the slope defined by

(8.2.4)
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Fig, 8.2 - Normalized volume of upr~sh.

s

Fig. 8.3 - Normalized volume of uprush c~d of overtopping.
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In other words, the normalized ~olume ~m’ defined by

’#m ~     m
(8.2.5)

HL0 ~an~

is approximately a function of ~ only. The experimental results are

shown in fig. 8.2. A smooth curve has been drawn through the data

points to indicate the trend more clearly. The data have been replotted

as ~m versus (I - ~) in fig. 8.3 on double-logarithmic paper (solid

circles). The parameter (! - n) has been chosen instead of ~ itself

because (I - ~) represents a relative excess of run-up length past the

location on the slope under consideration; it may be surmised that

the normalized volume above this location is more simply related to

(; - n) than to n itself. Inspection of fig. 8.3 shows that ~m is

roughly proportional to (I - ~)2.

The volume which is overtopped in one wave period will be normal-

ized as follows:

Bb ---
HL0 ~ ~

According to the hypothesis expressed by (8.2.|) we have

(8.2.6)

in which

(8.2.7)

X

n = ---!c (8.2.8)
If we denote the crest height of the dike above S.W.L. by zc (see

fig. 8.1b) then (8,2.8) is equivalent to

Z

(8.2.9)
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and (I - ~c) then represents a relative excess of run-up height above

crest height.

It should be pointed out that the parameter ~m in (8.2.4) depends

on the incident waves through the product ~LL0 only. This is signifi-

cant because the steepness H/L0 was varied considerably in the experi-

ments (from 0.02 to 0.09 approximately). In view of (8.2.2) it implies

that ~m can be expressed as a function of the run-up height RH, for a

given slope angle. The smme then holds for the volume which overtops

per wave (B), provided (8.2.1) is true. It should be said that B is

expected to be somewhat underestimated by (8.2.1)~ because the uprush

in each wave is to a certain extent impeded by the water which is still

on the slope due to the preceding wave, and this is less if overtopping

occurs than in the absence of overtopping. The effect of this has to be

checked empirically. Even if the hypothesis adopted would not lead

to quantitatively correct results, then it may still serve a purpose

in suggesting suitable normalization factors, i.e. by suggesting that

b = f(~c) (8.2.10)

in which f is an unspecified function to be determined empirically.

8.2.2 Empirical data

Experimental results concerning overtopping of periodic waves

breaking on sloping structures have been presented by Saville ~I~.

Only the tabulated values for plane slopes will be used here. The

results are given as a mean discharge per unit width, ~. It follows

from the definitions of E, ~ and T that

B = ~ T (8.2.11)

Values of the normalized volume b were calculated according to (8.2.6).

They have been plotted in fig. 8.3 (open circles). It can be seen that

the normalization which has been adopted does serve to bring the data

in a common range for all the wave steepnesses used in the study and
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for both slope angles (I : 3 and ! : 6). However, it also shows that

there is considerable scatter. This is a common fact in measurements

of overtopping, which are very sensitive to variations in the input

parameters~ particularly for relatively small rates of overtopping.

The mean value of the normalized overtopped volume is roughly given

by the following equation,

=                             < I

b A(I - nc)2       for nc _

(8.2.12)

= 0                   for ~c >-- I    ,

in which A is a coefficient which is of order I0-I.

Inspection of fig. 8.3 shows that the curve indicating the aver-

age @m-values is more or less a lower bound for b in the upper range,

while it represents more nearly a mean value in the lower range. How-

ever, the relation between @m and ~ will not be used in the calcula-

tions to be given in the following section, which are based on (8.2.12)

with A = 0.I. This equation is represented in fig. 8.3 by the dashed

line.

8.3

8.3.1

Overtopping due to random waves breaking on a slope

Distribution of overtopped volume

In this paragraph we shall consider the probability distribu-

tion of the amount of water passing the crest of a dike due to over-

topping by random waves. We denote the instantaneous discharge per

unit width as ~(t). This is a stochastic process which is defined for

continuous time. However, for most cases of practical interest the

dike crest is of such height that ~(t) = 0 most of the time, even in

storm conditions, so that it is possible to define the occurrences

of uninterrupted flow over the crest (~ > 0) as individual overtopping

events. These can usually be ascribed to single waves running up the

s~ope. In each of the overtopping events a certain total volume of

water ~s discharged per unit width, written as B. The probability
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distribution of B will be dealt with in the following. It is assumed

that this distribution can be found by assigning to each wave of the

random wave train an overtopped volume as if it were part of a periodio

wave train. This procedure has been applied by Tsuruta and Goda [120]

for the calculation of the mean rate of overtopping over vertical sea

walls, taking wave height variability into account. It has previously

been discussed by Paape [121~], who rajects it on the grounds that it

was observed that not just the highest waves in a random wave train

cause overtopping. But, as noted in a similar context in the intro-

duc~0n to chapter 7~ such a condition is not necessary for the validi-

ty of the hypothesis, which refers to the distribution of the over-

topping quantities, rather than to individual values. Needless to say,

the validity of the hypothesis must be checked empirically. A prelimi-

nary attempt at such verification is given in paragraph 8.3.3.

It has been shown in the preceding section that for periodic waves,

and for a given slope angle and crest height, there is a relation be-

tween the volume of water overtopping per wave period, and the height

to which the wave would have run up if the slope would have extended

to higher elevations. This relation will be used in the calculation of

the p.d.f, of ~. However, equation (8.2.12) as it stands is not suitable

for this purpose, inasmuch as its variables have been normalized with

factors containing the product HL0, which is a randumvarlable in random

waves. For this reason (8.2.|2) is first put into dimensional form,

using (8.2.2), (8.2.6) and (8.2.9):

0.1 c0t3/2~ (P~ - Zc)2 for P~ >_zc
(8.3.1)

0

for RH--< zc

On the basis of (8.3.1) and the above-mentioned hypothesis, the follow-

ing relation is stated for the overtopped volume in random waves:

~= 0.! cOt3/2~ (~H - Zc)2

for_~ ~zc

= 0 for ! ze

(8.3.2
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The variables in this equation will now be normalized using non-random

parameters :

and

This gives

B

Z
e

8 -- (r - ~c)2

-- 0

for r >

for r <

(8.3.3)

(8.3.4)

(8.3.5)

(8.3.6)

The probability distribution of ~ can therefore be expressed in terms

of the probability distribution of the normalized run-up [:

Pr {8_ <_ 8} = Pr {r <_ ~c + /~} for 8 >_ 0

-- 0 for 8 < 0

(8.3.7)

This relationship permits the calculation of F(8) from F(r) bysimply

substituting r = ~c + ~" The distribution function of the normalized

maximum overtopped volume in a series of N waves (8_~ax) can be obtained

from that of r     in the same manner :

Pr {8~max ! 8} = Pr {~max ! ~c + /~} for 8

(8.3.8)
= 0 for 8 < 0 ¯
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The preceding derivations are based on the assignment of a certain value

to 8 for each value of the run-up ~. This implies that the cumulative

probability of ~must be ~hougP~tof as the expected ratio of the number

of run-ups resulting in an overtopped volume not exceeding 8, to the

total number of run-ups. An alternative would have been to consider the

expected ratio between the number of overtopping events for which the

overtopped volume does not exceed a certain value, to the total number

of overtopping events. The probability of exceedance of the overtopped

volume in this case could be obtained by dividing the probability of

exceedance of ~, as defined above, by the fraction of the run-up heights

exceeding the crest height. This operation will not be carried out because

the formulation given is more convenient in the applications envisaged,

such as the calculation of the mean discharge and of the expected maxi-

mum overtopped volume per wave during a given time interval.

8.3.2 Mean discharge

The mean discharge over a dike due to overtopping by random waves

will be considered in this paragraph. It is defined as

t2
I q(t) at

t!

t2- t!
’ (8.3.9)

in which (t|, t2) is a time interval which is long compared with a

characteristic period of the waves, but sufficiently short for the

flow to be quasi-stationary. The denominator in the right-hand side of

(8.3.9) can be written as N~, in which N is the number of run-ups in

the total time interval (tl, t2) and Yr is the average time interval

between run-ups. The overtopped volume which results from the ith

run-up (i = !,2, ...... N) is denoted as Bi. (Most of the B.-valuesl will

be zero in practical cases,) We then obtain the following expression

for the mean discharge from (8.3.9):

N

= -- , (8.3.10)
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in which ~ is the average overtopped volume per run-up. (Note that ~ is

not equal to the average of the time-mean discharge per run-up, which

would be equal to B/Tr.) The average value of B will next be calculated

in normalized form as E{~}.

It follows from (8.3.6) or (8.3.7) that

E{_8} = I (r - ~c)2 dF(r)

C

(8.3.11)

or

E{~} = M2(~c) - 2 ~c MI(~c) + ~c2 M0(~c) , (8.3.12)

in which

Mn(~c) =    I rn dF(r)

~c

(8.3.13)

In order to obtain quantitative estimates for E{B_} we will use the

run-up distributions derived in chapter 7. The general expression for

F(r) based on the bivariate Rayleigh distribution for ~ and ~0 is

given by (7.5.21). Substitution of this equation into (8.3.11) and

numerical integration has given the results shown in fig. 8.4 for

K = O, ~ = 0.5 and ~ = I. These appear to be very sensitive to variations

in ~, particularly for low values of the overtopped volume. This state-

ment can probably be generalized in the sense that the expected quan-

tity of overtopping is sensitive to the statistical properties of the

incident waves. It also varies strongly with small changes in the rela-

tive crest height, ~c"

It is possible to obtain approximate analytical expressions for

E{8_}. Small values of ~c are not of practical interest, as far as over-

topping of earth dikes is concerned, because for small ~c the dike

would be overtopped quite frequently (with the given NWL and sea state),

a situation for which dikes are not (yet) designed. This means that

we can u~e the approximations to F(r;~) given by (7.5.26) and (7.5.32),
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3

Fig. 8.4 - Calculated mean volume of overtopping per r~n-up.

provided K is not nearly zero. Substitution of (7.5.26) into (8.3.]3)

and integration by parts gives

2
~

2 I +~
1 + K I rn de

Mn(~c)

(8.B. ! 4)

~ ~c2 w    r2

2 I +~             2 1 +K

= I + K { ~ e        + [ e         drn}
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For n = 0 the last integral in (8.3.14) need not be evaluated; for

n = 2 it can be evaluated in closed form; for n = ] it can be trans-

formed to the complementary error function defined by

= --2 I e du , (8.3.15)erfc(x)    /~

x

which is extensively tabulated [90]. Substitution of the results in

(8.3.]2) gives 2

~)3/2 2 I + <
E(B}~(I + /~ + ~ e - --~     erfc{

-- ~      /~ ~ /~ ~c 2 + 2-----~ ¢c}

for 0 < <] < < < ]    , (8.3.]6)

in which <] is a limit value of ~ below which the result no longer

holds with sufficient accuracy (the value of <] depends of course on
the error permitted as well as on ¢ c). For K = ] the "approximation"

(7.5.26) is identical with the exact expression (7.5.2]). It follows

that in this case (8.3.]6) is identical with the result obtained by

substituting the original expression (7.5.2]) into (8.3.]]).

In a similar way we obtain from (7.5.32) and (8.3.12)

for ~ = 0 (8.3.17)

The approximations(8.3.]6) and (8.3.]7) can, in fig. 8.4, be com-

pared with the numerical results based on the exact expression for

F(r;~).

8.3.3 Comparison with empirical data

The derivations in the preceding paragraphs were based on the

application of the expression (8.2.]2), for the overtopping volume

in periodic waves, to individual waves in a random wave train; they

were evaluated on the assumption of a bivariate Rayleigh distribu-

tion of ~ and ~0" The only empirical data known to the author with
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which the results can be compared are those given by Paape [12|], who

presents the results of an extensive laboratory investigation of the

overtopping of dikes with plane slopes by irregular waves. The waves

were generated entirely by wind, over a fetch of 80m. The mean wind

velocity and the mean depth were 8m/s and 0,3m in most runs. The wave

height distribution in the upper range deviated somewhat from the

Rayleigh distribution in the sense that relatively high waves occurred

less frequently. No results are given regarding the period distribu-

tions. Thus, just as in the chapter on run-up distributions, the valid-

ity of the hypothesis of equivalency cannot be checked with these

data; the calculated results will be compared to the measurements only

to obtain an indication whether they are somewhat realistic. Such a

comparison is given in fig. 8.5. The experimental data are for dike
i0~

Fig. 8.5 - Measured mean volume of overtopping per wave, compared

with eqe. 8.3.16 and 8.3.17.
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slopes from ! : 3 to ! : 8 and for wave steepnesses H50/L0 from 0.034

to 0.062, The calculated curves are based on eqs. (8,3.!6) and (8.3.!7).

They show the same trend as the experimental data. The curve for ~ = 0.5

corresponds approximately to the mid-range of measurements, while that for

K = 0 serves more or less as a lower bound. It is concluded that the

approach which has been developed has the potential of yielding real-

istic results.
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9 SUMMARY AND CONCLUSIONS

The main problem dealt with in this thesis is the calculation of

certain effects caused by random waves breaking on a slope.

The solution to this problem is greatly complicated by the fact

that wave breaking is a highly nonlinear process. The flow field is

further complicated by far stronger inhomogeneities than those occurring

outside the breaker zone, by air entrainment and by generation of

turbulence. No realistic deductive treatment of it has been developed

so far. Even for the simpler case of periodic waves, empirical knowl-

edge of certain macroscopic properties of the breakers is still an

integral part of calculations relating to the surf zone. An attempt has

been made in this thesis to apply this knowledge in a formulation

incorporating the stochastic nature of wind-generated waves.

The computations are of two distinct categories, those relating

to comparatively gentle slopes and thoserelating to comparatively

steep slopes. A summary of the results will be given in the following.

The computations of the first category, pertaining to gentle

s!opes on which the waves break by spilling, are aimed at the estimation

of the variation of the energy of the waves as they propagate towards

the shore, of the radiation stresses~ and of the resultant longshore

current velocities and change in mean water level.

The energy variation is calculated in chapter 5 by clipping a

fictitious wave height distribution, which theoretically would be

present if breaking did not occur, at an upper limit which is deter-

mined from an adapted breaking criterion for periodic waves. The

computed results are in fair agreement with measurements carried out

on a plane slope.

Knowledge of the energy variation permits the radiation stresses

to be evaluated, which in turn are necessary for the calculation of

the set-up and the longshore current velocity profiles. In chapter 6,

examples are given for incident waves with a narrow spectrum and with

a wide spectrum (wide in frequency and direction). If turns out that
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the longshore current velocity is sensitive to the width of the direc-

tional energy distribution in deep water. A spreading proportional

to cos2 0, typical for wind-driven waves, gives a reduction of 50%,

compared to a unidirectional wave train with the same mean direction

of propagation and the same frequency spectrum.

A comparison of the calculated set-up profiles with empirical

data has not given conclusive results. Good agreement has been found

with field data, but not with laboratory data, which !ocally showed

a systematically smaller rise towards the shore than would be expected

on the basis of the measured or calculated wave height variations.

However, there is some uncertainty with respect to the system used for

measuring the set-up in the laboratory, so that is not known to which

extent the differences are real or apparent.

The second category of computations pertains to plunging breakers,

which occur on relatively steep slopes or for relatively small wave

steepnesses~ compared to spilling breakers. Furthermore~ breaking by

plunging takes place relatively close to the water line (in terms of

wavelengths)~ which results in a pronounced up-and-down motion of the

water along the slope.

The largest height above still water leve! reached by each wave

which runs up the slope is the so-called run-up height. Its distribution

function is calculated in chapter 7 by assigning to each wave of the

random wave train a run-up according to Hunt’s formula for periodic

waves breaking on the slope. This formula contains the slope gradient

and the height H and the period T of the incident waves in a product

of powers, so that the run-up can be normalized in such a manner that

its distribution function depends on the shape of the joint distribution

of ~ and ~ only. The run-up distribution is derived as a functional

of this joint distribution. The potential validity of this approach

is demonstrated by a comparison with laboratory data, which showed

a very good agreement. However, the wave height variability in this

case was less than for natural wind waves, while the Wave ~eri~d was

practically constant. Calculations have also been made for the case where
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~ and T2 are jointly Rayleigh-distributed, which is a better approx-

imation for wind-driven waves. The available experimental data do not

permit an exact comparison with the theoretical results~ but they do

at least indicate that the results are realistic.

A similar statement can be made with respect to the mean rate of

overtopping of a dike by random waves, which is determined in chapter 8

from the calculated distribution function of the ~olume overtopped per

wave. These calculations are based on a relationship between overtopping

and run-up derived from measurements with periodic waves.

On the whole, the comparison of the calculated results with empir-

ical data has not been conclusive in every respect, although generally

speaking the results appear to be promising. The ideas proposed and

elaborated in this thesis can be a useful guide in interpreting new

experimental data or in setting up new experiments.

Viewing the subject of this thesis in a long-term perspective,

the following remark can be made. Methods of dealing with breaking

waves on a macroscopic level, such as have been used here~ should

ultimately be replaced by more fundamental descriptions of the break-

ing process, including the aspects of flow separation at the crest~

the entrainment of air and water by the re-entrant flow, and the gener-

ation, transport and dissipation of turbulence. These problems have been

totally neglected up to very recently [122, 123]. The establishment

of knowledge in this area should be one of the long-range goals in the

research pertaining to the problems of waves on beaches or dikes.
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APPENDIX I - THE BIVARIATE RAYLEIGH DISTRIBUTION

The purpose of this Appendix is to give some details concerning

the bivariate Rayleigh distribution, which has been mentioned in

paragraph 4.5 and which has been used in the chapters 7 and 8. It

should be noted that we deal here solely with properties of a theo-

retical distribution without regard to the question of its applica-

bility to wind waves.

The probability density function. The bivariate Rayleigh p.d.f, seems

to have been derived independently by Uhlenbeck [103] and Rice [55]

in studies of the statistical properties of the envelope of a narrow-

band Gaussian process. Consider the complex process

n     i(~jt - ~j)
z(t) = [ aj e

j=l
(A1.1)

The random phases are distributed as usual in the Rice representation.

The spectral density of ~(t) in the limit for n ÷ ~ and max l~j+I -

~jl ÷ 0 will be denoted by S(e). Nice considers the case in which S(~)
is narrow, with a representative midband frequency ~m" Eq. AI.I can

then be rewritten as

z(t) = Z(t)e m

in which

n i{(~o - ~m)t - ~j}
--Z(t) =     J1 3~ a.e    3 (AI.3)

is a slowly varying function which modulates the much more rapidly

varying carrier wave ei°~mt, l~(t) l represents the envelope of the

process Re ~(t). The values of this envelope at times (t) and (t +

are considered, denoted for brevity by ~I = !~(t)l and ~2 =

Their joint p.d.f, can be found from the joint distribution of Re ~(t),

Im ~(t), Re ~(t + r) and Im~(t + ~), which is Gausslan in four dimen-
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sions with a covariance matrix which is known in terms of S(m) and

The result is

~t~2

2     2             ~%1~2

f(ZI,Z2) = ~)exp {- ZI + Z2 } I0
2mo(I - ~2) m0(l - ~ )

=0

for Zl ~ 0

Z2 ! 0

otherwise ,

(AI.4)

in which the parameter K2 is determined from

2

moK = S(~) cos )T d     + S(~)

Although Rice in his derivation assumes the spectrum to be narrow,

so that the realizations of the process Re z(t) have a well-deflned

envelope, it should be pointed out that this assumption is not actually

needed in the derivation of (AI.4). This can be seen immediately from

the fact that IZ(t) l = Iz(t) l. If the spectrum is not narrow then

neither ~m nor the envelope of the process Re z(t) is defined, so that

IZ(t)I loses its meaning, but (AI.4) still represents the joint p.d.fo

of Iz(t) I and Iz(t + ~)I. The fact that ~m appears in the definition

of the parameter ~ is more apparent than real, since (Al .5) can be

rewritten as

0 0

+ I I S(ml)S(m2)sin(ml-~m) r sin(~2-~m) ~d~Id~2
0 0

0 0

(A~.6)
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which does not depend on ~m" These broader definitions are given here

because they widen the field of potential applications. One can go even

further away from the model of a narrow-band stationary Gaussian process

and consider the joint p.d.f, of X = .... (X~ + ~)½ and Y = (Y~ + ~2"Y2~’ in

which ~l’ ~2’ ~! and ~2 are jointly Gaussian in four dimensions, each

with zero expectation, while E{~l~2} = 0, E{XI~2}

and E[~?} = E{X~}. The variables ~ and X taken separately then have a

one-dimensional Rayleigh distribution~ while their joint p.d.f, defines

the general two-dimensional Rayleigh p.d.~ given by

2     XY n (X/Ux)2 + (y/Uy)2
2 2     2, 4 2

(AI.7)

for X ~ 0 and Y ~ O, and f(X,Y) = 0 otherwise, in which

UX = E{~} Uy = E{~} (A].8)

2
< is the coefficient of linear correlation of X_2 and y_2, as will

be shown; therefore, 0 < <2 < I. We can without loss of generality

assume that

0 < < < I (AI.9)

since (AI.7) is even in ~.

Transformation to the normalized variables

~ = ~/~N     and    ~ = ~/Uy (A|.10)

gives

2

= o

2 2

y ~ 0
otherwise, ~AI.II)



which is symmetric in x and y. We shall in the following deal exclu-

sively with (AI.II). The explicit expression of the fact that f(x,y) = 0

for x < 0 and/or y < 0 will be omitted.

The mar$inal p.d. functions should of course be given by the one-

dimensional Rayleigh p.d.f.:

~ x exp (- ~ x2) (AI.12)

and

f(y) = ~ y exp (- ~ y2)

This can be proved from (Al.11) and the definition of a marginal

p.d.f, by using the series representation of I0(.) [90, eq. 9.6.10]:

= ~ (¼ t2)j
I0(t) j~0 (j~)2 ’ (Al.14)

and by integrating termwise.

The moments, defined by

Mk~ = E{xk (AI.15)

can be evaluated by substitution of (At.14) and by termwise integration,

which gives [53]
k+~ k+~

Mk~ = (~) 2 ~          2
(1 - ~2~

k ~ 2j

j=0          (j:)2
(At. 16)

Apart from a constant factor, the series in (At.16) is the expression

for the Gauss hypergeometric series [90, eq. 15.1.1], so that (At.16)

can be written as
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k+~ k+£
2        2 k

~’+ 1; 1; ~2)    ,
(AI.17)

or, using the transformation [90, eq. 15.3.3]

F (a,b; c; z) = (I - z)c - a - b F (c - a, c - b; c; z) ,(AI.18)

as

k+~
2 k ~

Expressions similar to (AI.17) and (AI.19) are presented by Middleton

[53], but his eq. 9.22, corresponding to (AI.17), contains a mis-

print in the exponent of (I - m2).

The even moments can be expressed as a finite series by utilizing

the fact that the hypergeometric function F (a~b; c; z) reduces to a

polynomial of degree m when a or b is equal to -m (m = 0, I~ 2~ ...)

[90, eq. 15.4.1 ]:

m (- m)n (b)n zn

~ (- m, b; c; z) = ~ ".
(C)nn=0

(AI.20)

in which

(a)0 = 1
(a)n = a(a + l)(a + 2) ....

(a + n - t)    (A1.21)

It follows from the definitions and normalizations adopted that

the zero- and first-order moments are equal to I. The second-order

moments are given by

f
4

(AI.22)E{~2} = E{ } = M20 = M02 = ~
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and

E{~} = Mll =2~ (- ~’ - ~; I; <2) (A].23)

The even fourth-order moments are

and

E{x4}_ = E{~4} = M40 = M04 =                     -~32 (AI~24)

= (4.2E{~2~!2} = M22 ~) (l + <2) (AI.25)

It can be verified with (A;.22), (A;.24) and (A].25) that <2 is indeed

the coefficient of linear correlation of x2 and ~2 ~ as was stated above.

The correlation coefficient of ~ and ~ will be considered in some detail

in view of the applications in the chapters 7 and 8. It is defined by

Mtl - MIO M01

2 ½    - ~ ~[
(M20 MI0) (M02

(AI.26)

which gives

(AI.27)

The hypergeometric function appearing in (AI.27) can be expressed in

terms of the complete elliptic integrals of the first and second kind,

which have been tabulated~ and for which the following equalities hold:

K(<) = -~i (~, -~; I; ~2) (AI.28)

and

E(~) = ~ (- ~, ~; I; ~2) .                 (AI.29)

By using a recursive relation between contiguous hypergeSmetric functions

[90, eq.
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(c - a - b) ~I (a, b; c; z) + a(] - z) ~| (a + |, b; c; z) -

(A~.30)

it follows that

~
2 (I - <2) K(~)

(AI.31)~(_ ~, _ ~; ~; ~2) = E(~) -V ’

so that

(AI.32)

This equation seems t6 have been first glven by Uhlenbeck [103], quoted

in [53]. A plot of %(<) based on (A|.32) is given in fig. A;.I.

Fig. A1.1 - Coefficient of linear correlation of ~ ands_, as a

f~nction of ~.
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Two special cases occur when < assumes its limiting values of

0 or I. For ~ = 0 we have E(O) = K(0) = ~, so

I = 0 if < = 0 (AI.33)

For ~ + I we have E(1) = I and lim (I - <2) K(<) = 0, so

I = !    if ~ = I (AI.34)

These limiting values could be expected from the interpretation of

f(x,y) as the joint p.d.f, of two values of the envelope of a narrow-

band random process, since K = 0 corresponds to ~ ÷ ~, and m = ! to

~ = 0 (see eq. A!.5), which implies that values of the envelope are

considered with an infinitely long time interval between them, or

with an interval of zero duration, respectively.

An approximate expression for l(K) which is more easily handled

than (A!.32) can be obtained by using the series representations for

E(<) and K(<) [90, eqs. 17.3.11-12]:

~1.3.5 ..... (2j-])~2 2j]
K(~) = ~ I + ~ ~2.4.6~..(2~) ¯ <        (A!.35)

j--1

j=! 2.4.6 ..... (2j)

This gives after some manipulations

+ [ {1.3.5 ..... (25-3) }

j=2 4.6.8 ..... (2j)
. (A].37)

It can be seen that % is a non-negative function of <. Thus~ two

stochastic variables with a joint Rayleigh distribution cannot be ne-

gatively correlated.
2

The series in (A!.37) is rapidly converging for ~ ! I. Truncating

it after two terms gives



- 221 -

4 6
I ~ 16 - 4~ {~2 + ~’~ + ~_~}. (AI.38)

In order to obtain an explicit expression for < as a function of I~ the

series (AI.38) has been inverted, with the result

< ~ - I’--~--- 12----~ ’ (A1.39)

in which

(AI.40)

The truncation errors involved in the approximations (AI .38) and

(AI.39) are less than 0.1% for 0 < < < 0,7 and less than I% for

0 -< < < 0,95.

Case of zero correlation. For I = 0~ which implies < = 0, (AI.II) re-

duces to

2

f(x,y) = ~--xy exp {- ~ (x2 + y2)} , (AI.41)

which is the product of the marginal p.d. functions f(x) and f(y) gi-

ven by (AI.12-13). Thus, two stochastic variables with a joint Ray-

leigh p.d. are stochastically independent if they are uncorrelated.

Case of 100% correlation. If 100% correlation occurs then the two

variables ~ and ~ are linearly dependent. Moreover, ~ and ~ are iden-

tically distributed. Therefore, ~ = ~ with probability I if I = I. The

two-dimensional p.d. must then be zero for all x # y and be infinite

for x = y. This may be shown formally by investigating the hehaviour

of f(x,y) as ~ ÷ ]. To this end, the following asymptotic expression

for I0(.) is substituted in (A~.I~) [90, eq. 9.7.1]:

t
e

10(t) = (2~-~t) {I + O(t-l)}. (AI.42)

After some algebraic manipulations, the result can be written as
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(A| .43)

in which

2 2
o = _ (! _ ~2) (A!.44)

The expression in brackets is formally equal to a Gaussian p.dof.
2

with independent variable (x-y), zero mean and variance o ¯ In the

limit for m ÷ I, which implies o ÷ 0, the Gaussian function defines

Dirac’s unit impulse function ~(x - y) [54]. Thus,

f(x,y) = ~ (xy)~ exp(- ~ xy) ~(x - y) for ~ = I , (AI.45)

which is equivalent to

f(x,y) = f(x) ~(x - y) for ~ = ] (A|.46)

and to

f(x,y) = f(y) ~(x - y) for ~ = | (AI.47)

Resression lines. The regression of _x on_y is given by

0 x f(x,y)dx
Xy E{x y y}

f(Y)
(AI.48)

The integral which results upon substitution of (A|.~I) can be ex-

pressed in known functions by means of [90, eq. II.4.28]

f -a2t 2 ~, ~’~a~ b2
e tD-! J~(bt)dt2aD ~(~+ I)                M(~ , ~+ I, - --4a2) ,(AI.49)

0
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in which J (.) is the Bessel function of the first kind of order

and M(.) is the confluent hypergeometric function. For ~ = 0 and

b = i = (-I)~ we have

J0(it) = I0(t) , (A|.50)

whereupon (AI.48) becomes

X

22 22
~ ~ y

= (I - ~2)~ exp(- ~--4I~ Y--~) _ ~2 M(~--, I, ~ ~ _---~-~ )

(AI.51)

This expression can be slightly further reduced by applying the follow-

ing Ktur~er transformation [90, eq. 13.|.27]:

M(a, b, z) = ez M(b - a, b, - z)    , (AI.52)

which gives

2 2
(A|.53)

The regression of ~ on ~ appears to be nonlinear in general. Thus, the

assumptions made by Bretschneider [83] that ~ and ~would have a

bivariate Rayleigh distribution and that their mutual regressions would

be linear, are incompatible. An exception must be made for the trivial

cases of stochastic independence and linear dependence of ~ and ~. The

values of xy should in these cases be | and y, respectively. They will

be calculated from (AI.53) in order to provide a check on the calcu-

lations.

In the case of stochastic independenee we have % = 0, ~ = O~ which

gives, after substitution in (AIo53),

Xy    I     for % = 0    , (A|.54)

as expected. In the case of linear dependence, % = I, ~ = I. Using the
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following asymptotic expression for the confluent hypergeometric

function [90, eq. 13.5.1]

M(a, b, z) r(b)el~a z-a
÷ r(b - a) {! + OIzI-l)} for ]zI ÷ ~, z real,

(A~.55)

we find

2 2

(~-~)
for ~ ÷ ! , (A~.56)

so that

as expected.

The regression of ~ on ~ is obtained by interchanging x and y in

the preceding expressions, because the joint p.d.f. (A~.ll) is symmetric

in x and y.
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APPENDIX 2 - LIST OF SYMBOLS

The most important symbols used in the text are listed below. Vari-

ables which have been used only locally are not listed, nor are those

used in Appendix ]. Some symbols have more than one meaning; it should

be clear from the context which meaning is intended. Vector quantities

have in the text either been indicated by an arrow, or they have been

written in the Cartesian tensor index notation, whichever was most

convenient. In the following list, the arrow symbol is used exclusively

for vectors.

B

b

C

C

C

Cf

c

Cg

D

D(~;O)

e

E

E
P

Ek
E{~}

F(x)

FX(r)

coefficients in the SWOP spectrum (eq. 4.5.10)

amplitude of ~’(t) in harmonic motion

overtopped volume per unit width due to one wave

normalized value of B in periodic waves (eq. 8.2.6)

covarianee

in ch. 6: time-mean volume concentration of air in water

in ch. 6: depth-averaged value of C

coefficient for bottom shear stress in turbulent boundary

layer

normalized value of R (eq. 7.7.|)
n

phase velocity

group ve!ocity

average velocity of run-up front from SWL to point of

maximum run-up

mean depth

normalized directional spectral density

unit vector in the direction of propagation

mean energy per unit area

mean potential energy per unit area

mean kinetic energy per unit area

expected value of ~

distribution function of ~

approximation to F(r) given by eq. 7.5.5!
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f(x)

G(m,0)

H1/3
H

max

H

nom

$~x

k

L

in ch. 4: fetch

in ch. 4: dimensionless fetch (gF/W2)

probability density function of x

spectral density in frequency-direction space

spectral density in wave number space

gravitational acceleration

wave height (height of highest maximum of C’(t) above lowest

minimum between successive zero-upcrossings)

mean value of the highest one-third of the wave heights

for periodic waves: largest height possible for non-

-breaking, stable wave

for random waves: largest value of H in a sample

in ch. 7: nominal wave height of random wave train

rms wave height in deep water

normalized wave height (H/~)

function defined by eq. 4.5.6

imaginary part of x

wave number vector

theoretical value of k for wave with period TO in depth D

wave length

normalized value of L0 (~=L0/~0)

mean horizontal mass flux per unit width

contribution of mean current to M

contribution of waves to ~

exponent of cos 8 in directional spectrum (eq. 4.5.4)

absolute value of mean-depth gradient (]VDI)

bottom slope

j-th moment of S(~) about

number of zero-upcrossings of C’(t) in a given time interval

number of msxima of ~’(t) ina given time interval

eg/C
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P

Pr

P

Q(~)

Q(x)

Qb
q

q

R

r

~(~)
s(~)

Se(~)

SO(~)
Sij

S

s

TO

normal unit vector

mean horizontal energy flux per unit width

probability

pressure

source function in spectral energy balance (eq. 4.3.20)

probability of exceedance (Q(x) = ! - F(x))

calculated fraction of breaking waves at a fixed point

horizontal particle velocity

run-up height (maximum height above SWL reached by a wave

which runs up a slope)

value of R according to Hunt (eq. 7.2.3): ~ tan ~

Iargest value of R in a samp~

normalized median run-up (eq. 7.3.!)

Reynolds number

real part of x

normalized value of R (eq. 7.4.4)

in ch. 2: reflection coefficient

horizontal displacement

in ch. 7: wave steepness (H/L0)

two-sided spectral density of ~’(t)

one-sided spectral density of ~’(t)

equilibrium value of S(~)

value of S(~) in deep water

contribution of unsteady motion to mean flux in x.-direction

value of S.. in random, long-crested wave train with same

S(~) as given random, short-crested wave system

coordinate along a wave ray

in ch. 7: normalized wave steepness (h/~)

wave period (time interval between successive zero-upcross-

ings of ~’(t)

mean value of T in deep water
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V~

2~]~

time interval between successive maxima of ~’(t)

time

travel time of run-up front along dike slope, from SWT~ to

point of maximum run-up

~/~
vertically-averaged mean current velocity

particle velocity

x-component of u

component of ~ parallel to the shore (longshore current

velocity)

normalized value of V (eq. 6.2.34)
÷

y-component of u

mean wind velocity at a fixed point
÷

z-component of u

Coordinate vector

horizontal coordinate

in ch. 8: coordinate along dike slope, measured positive

upward from SWL

in ch. 8: R~/sin ~, or: H~0/cos ~

in ch. 8: Zc/Sin ~

horizontal coordinate (parallel to the shore, if applicable)

vertical coordinate, measured positive upward from SWL

in ch. 8: height of dike crest above SWL

slope angle with respect to the horizontal

in ch. 4 and 5: proportionality coeff, in equilibrium spectrum

in ch. 8: normalized value of B in random waves (eq. 8.3.3)

coefficients in Pierson-Moskowitz spectrum (eq. 4.5.17)

measure of short-crestedness of waves (eq. 5.2.39)

height-depth ratio of breaking wave in shallow water

absolute error

relative error
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~(.)

gt

~(t)

Dirac distribution

Kronecker delta (eq. 3.3.11)

(l-m2/m0m4)~

total rate of energy dissipation per unit area

rate of energy dissipation per unit area in turbulent

boundary layer at the bottom

elevation of free surface above SWL

value of ~’(t) at a maximum

largest value of ~m on an interval between a zero-upcrossing

of ~’(t) and the next zero-downcrossing

maximum value of ~ on a beach

height of MWL in stilling well above SWL

in ch. 8: normalized height of dike crest above SWL (eq. 8.3.5)

in ch. 8: x/xH
direction of wave propagation with respect to x-axis

value of 8 in deep water

parameter of bivariate Rayleigh distribution (eq. AI.5)

coefficient of linear correlation of ~ andS.0
in ch. 2: scale ratio

dynamic viscosity of water

m2/m0~m4

tan a/~00

C’(t)l m~0

Cmlm/~0

mass density of water

standard deviation

in ch. 3: small parameter~ of the order of the wave slope

bottom shear stress

time lag

time interval between successive crossings of a level

~ by ~’(t)

scalar velocity potential

phase
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in ch. 8: volume per unit width stored above a certain

point on the dike slope, during run-up of periodic waves

maximum value of ~ at a fixed ~oint

normalized value of ~m (eq. 8.2.5)

in ch. 4: random phase

2v/T0
angular frequency

value of ~ for which S(~) reaches its maximum

Abbreviations

MWL

SWL

mean water level

still water level

probability density function

or rms: root-mean-square

B

n

refers to bottom

refers to breakpoint

refers to condition of incipient breaking

rsfers to crest of dike (in ch. 8)

refers to fictitious quantity, calculated without

taking account of wave breaking

refers to value exceeded with probability of n%

Ot~er symbols

x(~,O)

x(~,0)
<X>

average value of x, in most cases a time average or an

arithmetic average

average of x(~8) with respect to (~,0), weighted with

G(~,@)

value of x(~,O) for ~=~ and @=~

ensemble average of x
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fluctuation of x about its mean value

stochastic variable
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SAMENVATTING

Het probleem dat in dit proefschrift wordt behandeld is de bere-

kening van een aantal effecten, teweeggebracht door windgolven die

hreken op een hellende oever. Tot deze effecten behoren de verhoging

van de gemiddelde waterstand (opstuwing) en de opwekking van een

brandingsstroom door golven bij stranden, en de oploop en overslag van

golven bij dijken.

Her proefschrift bestaat uit twee delen. Her eerste deel bevat

een samenvatting van basiskennis die nodig is voor de in het tweede

deel omschreven berekeningen.

Het eerste deel begint in hoofdstuk 2 met een overzicht van een

aantal kenmerkende eigenschappen van golven op hellingen, gezien als

functies van de golfsteilheid en de taludhelling. Het doel hiervan

is een ge~ntegreerde visie te geven op het onderwerp in zijn totaliteit,

zodat de delen ervan in ~n kader kunnen worden gezieno Vervolgens wordt

in de hoofdstukken 3 en 4 een r~sum~ gegeven van een aantal begrippen

en resultaten betreffende hydrodynamische en stochastische aspecten

van zeegolveno

Het tweede deel is gewijd aan de berekeningen van de in de aanhef

genoemde effecten. Her feit dat bet gaat om b~ker~e onregelmatige

golven bemoeilijkt de berekeningen in hoge mate. Het breken van golven

is een sterk niet-lineair proces, dat bovendien vergezeld gaat van

luchtopname en turbulentie. Een enigszins realistisch deductief model

is er tot op heden niet voor ontwikkeld. Zelfs in her geval van

periodieke golven zijn de berekeningen betreffende de brekerzSne

tot nu toe voor een belangrijk deel gebaseerd geweest op empirische

kennis van macroscopische eigenschappen van de brekers. In her proef-

schrift worden rekenmo~ellen gegeven waarin deze kennis is ge~ncorpo-

reerd, en waarin tevens recht wordt gedaan aan her stochastische

karakter van windgolven. De problemen aangaande golven op relatief

flauwe taluds (stranden) en op relatief s~eile taluds (dijken) worden

apart behandeld.
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In hoofdstuk 5 wordt ingegaan op de energie dissipatie in onre-

gelmatige golven die zich voortplanten in water van langzaam afnemende

diepte. In de berekeningen wordt een fictieve golfhoogteverdeling,

die theoretisch aanwezig zou zijn indien breken niet optrad, afgekapt

bij een bovengrens die is ontleend aan een brekingscriterium voor resel-

matige golven. Met afnemende diepte neemt deze bovengrens af, en

neemt her percentage brekende golven toe. Op deze wijze wordt een

continue variatie gevonden van de golfenergie met de diepte. De bere-

kende resultaten stemmen behoorlijk goed overeen met metingen die zijn

verricht op een flauw hellend, vlak talud.

Als de golfenergie eenmaal bekend is kan de hoeveelheid beweging

worden berekend die door het golfveld op de gemiddelde stroming wordt

overgedragen. Deze is op zijn beurt bepalend voor de opstuwing van

de gemiddelde waterstand en voor de aandrijving van de brandingsstroom.

In hoofdstuk 6 worden hiervoor rekenresultaten gegeven, blj inval-

lende golven met een smal energie spectrum en bij invallende golven met

een breed energie spectrum (in frekwentie en richting). De snelheid

van de brandingsstroom is gevoellg voor de verdeling van de golfenergie

over de richtingen. Bij een verdeling die kenmerkend is voor zeegang

op diep water is de brandingsstroomsnelheid ongeveer de helft van wet

hij zou zijn indien de energie in de gemlddelde richting was

geconcentreerd.

Een vergelijklng van de berekende opstuwlng met empirische

gegevens heeft niet tot een eenduidige conclusie geleid. Weliswaar

was er een goede overeenstennning met metingen in de natuur~ maar de

resultaten van metingen in her laboratorlum gaven plaatselijk een

systematisch kleinere opstuwing te zien dan zou mogen worden verwacht

op grond van de berekende of gemeten golfhoogten, Er is echter enige

onzekerheid aangaande het systeem waarmee in her laboratorium de

opstuwing is gemeten, zodat her niet bekend is in hoeverre de

afwljkingen re~el zijn.

De hoofdstukken 7 an 8 hebben betrekking op relatief steile taluds,

die kenmerkend zijn voor dijken. Op dergelijke taluds breken de
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golven dicht bij de gemiddelde waterlijn, hetgeen resulteert in een

aanzienlijke op- en neergaande beweging van her water langs de

De grootste hoogte boven her stil-water niveau, bereikt door een

golf die tegen her talud oploopt, heet de oploophoogte, of kortheids-

halve de oploop. De verdelingsfunctie ervan is in hoofdstuk 7 berekend

door aan elke golf van de onregelmatlge golftrein, gekeranerkt door

een combinatie van hoogte Hen periode T~ een oploop toe te kennen

overeenkomstig de formule van Hunt, die geldt voor periodieke

golven die breken op her talud. De oploop verdeling wordt gegeven als

een functionaal van de sim~Itane kansdichtheidsfunctie van Hen T. Dat

dit tot geldige resultaten kan leiden blijkt uit een vergelijking

met enige laboratorium metingen~ waarmee een zeer goede overeenstem-

ming werd gevonden. In de proeven vertoonden de golfhoogten echter

veel minder spreiding dan in de natuur, terwijl de periode vrijwel

constant was. Er zljn ook berekeningen gemaakt voor her geval dat ~ en

T2 een same~gestelde Rayleighrverdeling hebben, hetwelk voor zeegang

een 5etere benadering is. De beschikbare empirische gegevens zijn niet

geschikt voor een exacte vergelijking met de berekende resultaten,

maar zij geven wel een duldelijke indicatie dat deze resultaten

realistisch zijn.

In hoofdstuk 8 wordt de overslag van onregelmatige golven over

een dijk behandeld. Eerst wordt uit metingen met periodieke golven

een 5etrekking afgeleid tussen oploop en hoeveelheid overslag. Door

deze betrekking toe te passen op een onregelmatige golftrein kan

de verdelingsfunctie van her per golf overslaand volume worden uit-

gedrukt in die van de oploop. Hierult ka~ her gemiddelde overslag-

deblet worden bepaald. Voor her geval dat Hen T2 een samengestelde

Rayleigh-verdeling hebben worden expliciete resultaten gegeven. Een

vergelijkln~ hierva~ met meetge~evens is in beperkte mate mogelijk;

hieruit kan worden geconcludeerd dat de gevonden uitkomsten een

behoorlijk realiteitsgehalte hebben.




