
Solving the Frobenius Problem in Z3:
Exploring Quantifier Elimination

Paul Anton1

Supervisor(s): Soham Chakraborty1, Dennis Sprokholt1
1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Paul Anton
Final project course: CSE3000 Research Project
Thesis committee: Soham Chakraborty, Dennis Sprokholt, Andy Zaidman

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Quantified formulas over linear integer arithmetic (LIA) are common in formal
verification, yet they present significant challenges for satisfiability modulo theories
(SMT) solvers such as Z3. In this paper, we explore whether quantifier elimination can
improve solver performance on the 2-coin Frobenius Coin Problem, a benchmark in-
volving quantified LIA formulas with structural simplicity. While Z3’s default strategy
relies on solving satisfiability of a quantified formula directly, we evaluate an alterna-
tive tactic-based approach using the qe_rec tactic to eliminate quantifiers first and
produce a quantifier-free formula, which is then solved by the general purpose SMT
solver. We conduct benchmarking across 54 satisfiable instances involving pairs of
prime coin denominations. Our results indicate that quantifier elimination achieves
better performance in both runtime and memory usage, solving more instances and
offering consistent speed-ups of up to 10× compared to the default strategy.

1 Introduction
Satisfiability Modulo Theories (SMT) solving is more important than ever for formal ver-
ification and automated reasoning. For example, Amazon reported to generating over a
billion SMT queries per day in 2022 [1]. SMT generalizes the Boolean satisfiability problem
(SAT) [2] by having the ability to reason over more complex theories such as linear integer
arithmetic, arrays, bit-vectors, and others. Z3 [3] is an efficient SMT solver developed by
Microsoft Research and has become an integral part in numerous tools and frameworks used
in both academia and industry. In software verification, Z3 is used in tools like Boogie [4],
Viper [5], and Dafny [6], which prove the correctness of programs against formal specifica-
tions. Below there are 2 figures, the one on the left depicting the main components of Z3
and the one on the right depicting the architecture of the SMT solver.

(a) Overall system architecture of Z3 (b) Architecture of Z3’s SMT Core solver

Figure 1: Z3 solver architecture diagrams [7]

Figure 1a presents an overview of the Z3 architecture. Z3 offers language bindings for
several front-end interfaces, including C++, Python, .NET, Java, and OCaml. These APIs
communicate with Z3’s internal formula representation. Moreover, Z3 also accepts input
in the standardized SMTLIB2 format for compatibility and benchmarking purposes [8]. The
input is processed through a combination of tactics and solvers. Tactics in Z3 are strategies
that transform or reduce logical goals, typically sets of formulas, into simpler subgoals,
optionally solving them. They form the basis for flexible proof and solving pipelines. For
example, the tactic simplify applies algebraic simplifications to logical formulas, while smt

1

applies a SAT-based SMT solver to attempt to solve the formula directly. These tactics
can be chained or combined using tacticals, which are higher-order operators that combine
tactics in various ways. Notable tacticals include then (which composes tactics sequentially),
or_else (which tries the first tactic and falls back to the second on failure), and par-or
(which applies tactics in parallel and returns the result of the first to succeed). Once
preprocessed, the problem is handed off to specialized solvers, including SMT, SAT, NLSat,
Fixedpoint and QSAT for quantifiers. Z3 also provides support for optimization objectives,
allowing cost-aware reasoning in satisfiability queries.

Figure 1b depicts the architecture of Z3’s SMT core. At its center is a combination of
a propositional SAT solver with EUF (Equality over Uninterpreted Functions), which forms
the basis of logical reasoning in Z3. This core communicates with various theory solvers
including arithmetic, arrays, bit-vectors, datatypes, and strings/sequences allowing Z3 to
support a wide range of theories. For handling quantifiers (∃ and ∀), Z3’s SMT solver
employs both E-matching-based and model-based quantifier instantiation techniques. Al-
though both techniques are part of the SMT Core solver, Z3 primarily relies on the QSAT
solver for handling quantified formulas.

When given a satisfiability query, Z3 returns one of three possible outcomes: sat, unsat,
or unknown. The result sat indicates that there exists a model, which is an assignment of
values to variables that satisfy all the constraints in the formula. In contrast, unsat means
that no such assignment exists. The result unknown signifies that the solver was unable to
determine the satisfiability status, which typically occurs due to timeouts being set.

Below are two small SMT-LIB examples. The first example is sat, as the integer assign-
ment x = 1, y = 1 satisfies the equation 2x + 3y = 5. The second is unsat, as no positive
integers x and y satisfy 2x+ 3y = 1.

Listing 1: A satisfiable query
(s e t− l o g i c QF_LIA)

(dec lare−const x Int)
(dec lare−const y Int)

(assert (> x 0))
(assert (> y 0))
(assert (= (+ (∗ 2 x) (∗ 3 y)) 5))

(check−sat)

Listing 2: An unsatisfiable query
(s e t− l o g i c QF_LIA)

(dec lare−const x Int)
(dec lare−const y Int)

(assert (> x 0))
(assert (> y 0))
(assert (= (+ (∗ 2 x) (∗ 3 y)) 1))

(check−sat)

In both examples, the logic specified is QF_LIA, which stands for Quantifier-Free Linear
Integer Arithmetic. Linear Integer Arithmetic (LIA), also known as Presburger Arithmetic
(PA) [9], is a restricted fragment of arithmetic. It reasons over integers, but disallows
multiplication between variables, with multiplication by constants being allowed. In other
words, expressions like 2x + 3y = 5 are valid, but expressions like x · y = 5 or x2 = 4 are
not.

Quantified linear integer arithmetic (LIA) is relevant for many verification and reasoning
tasks. A notable example is SQLSolver [10], a solver designed to verify the equivalence
of SQL queries, a central challenge in database research. Reasoning over SQL requires
additional expressiveness, which SQLSolver captures through LIA∗, an extension of LIA.
The solver translates LIA∗ formulas into standard LIA, which are then handled by Z3 to
prove query equivalence. As noted by Reynolds et al., “SMT-based applications increasingly

2

rely on SMT solvers being able to deal with quantified formulas” [11], emphasizing the
importance of advancing solver capabilities in this domain.

While more expressive, quantified formulas introduce significantly more complexity for
SMT solvers, as the search space becomes effectively unbounded and solver heuristics must
balance correctness, efficiency, and termination. For example, Z3’s QSAT algorithm is only
partially correct, that is, it may fail to terminate or return unknown even when the formula
is satisfiable or unsatisfiable, but when it terminates, it does so with the correct result [12].

1.1 Frobenius Coin Problem
This added difficulty is reflected in solver performance. In [13], an alternative approach to
solving LIA problems using finite automata is proposed, and the Frobenius coin problem
[14] is used as a benchmark to compare the proposed method with solvers like Z3. In
their evaluation, the automata-based approach outperforms Z3’s implementation: out of 55
satisfiable instances of the Frobenius coin problem using 2 coins, Z3 times out on 51 of them,
while their implementation times out on only 5. Princess [15], an SMT solver for Presburger
Arithmetic, also outperformed Z3, timing out on just 13 instances.

The Frobenius Coin Problem is a classical problem in number theory. It asks: given coin
denominations c1, c2, . . . , cn and an infinite supply of coins with these denominations, what
is the largest monetary sum that cannot be formed by any nonnegative linear combination of
these coins? The problem can be encoded in SMTLIB2 format for the 2 coin case by defining
an integer P for which the following holds:

P ≥ 0 (P is non-negative)

∧ ∀x0, x1. (x0 ≥ 0 ∧ x1 ≥ 0) ⇒ P ̸= c1x0 + c2x1 (P is not representable)

∧ ∀R. (∀x0, x1. (x0 ≥ 0 ∧ x1 ≥ 0) ⇒ R ̸= c1x0 + c2x1) ⇒ R ≤ P (P is maximal)

(1)

Here, an unsatisfiable instance indicates that there is no largest non-representable amount,
implying that the Frobenius number is infinite. Conversely, a satisfiable instance yields a
value of P , which is the Frobenius number for the given coin pair. Throughout the remain-
der of this paper, we use the notation c⃗ = (c1, c2) to refer to such instances, where c1 and
c2 represent the coin denominations.

While attempting to solve the Frobenius benchmark, Z3 invokes the QSAT solver [12],
which models the satisfiability check as a two-player game between existential and universal
variables. For instance, in a formula of the form ∃x∀y.F , the existential player seeks to
make F true, while the universal player attempts to falsify it by choosing a counter as-
signment. In its default configuration, QSAT does not eliminate the quantifiers first, but
instead checks satisfiability directly through this game-based reasoning. However, QSAT
also supports quantifier elimination (qelim) for theories such as Linear Integer Arithmetic
(LIA), which admits quantifier elimination, that is, for every formula F , there exists an
equivalent quantifier-free formula F ′ over the same theory.

Support for quantifier elimination in Z3 is available through tactics such as qe_rec, which
modifies the behavior of QSAT to produce quantifier-free equivalents. While Z3 provides
ohter tactics for quantifier elimination, namely qe and qe2, our focus is on qe_rec due to
its compatibility with the Frobenius benchmark and its reliable behavior across all tested
instances. Other tactics were excluded from this study, as the solver using them occasion-
ally returned unsat. Understanding these differences is left to future work. Nevertheless,

3

Z3 avoids full quantifier elimination by default, as it is often prohibitively expensive in prac-
tice [16]. In the case of the Frobenius Coin Problem, however, the formula is restricted
to the two coin case, leading to bounded quantifier alternation and a limited number of
variables per quantifier block. This structural simplicity, in theory, weakens the conven-
tional justification for avoiding quantifier elimination and makes it a promising candidate
for tactic-based solving.

Interestingly, prior empirical evidence suggests that QSAT performs well on large quanti-
fied LIA formulas. As shown in [12], QSAT solves 64 benchmark formulas from [17] ranging
between 69 to 768 quantifiers with SMT-LIB file sizes between 50KB and 500KB in under
0.08 seconds. In contrast, on the Frobenius benchmark, which is structurally much simpler,
QSAT times out on the majority of instances. This unexpected underperformance suggests
that Z3’s heuristics may be poorly tuned for the Frobenius problem’s logical structure. By
comparing Z3’s default QSAT configuration with a quantifier elimination-based configura-
tion, we aim to uncover whether alternative heuristics, enabled through tactic customization,
can better exploit the problem’s structure and yield performance improvements.

1.2 Research Question
Motivated by the structural simplicity of the Frobenius Coin problem and the possibility
of performance improvement of qelim through the use of tactics, we investigate whether
Z3’s qelim procedures can improve solver performance compared to its default quantifier
handling.

Thus, we formulate the central research question as follows:

Does quantifier elimination improve Z3’s performance on two-coin Frobenius
Coin Problem instances over LIA, compared to its default quantifier handling
strategy?

We evaluate performance on 54 satisfiable Frobenius Coin instances based on consecutive
prime pairs, following the setup in [13]. Each instance is encoded via Z3’s Python API and
tested under two configurations: the baseline, using QSAT in default mode, and a qelim-
based approach using qe_rec followed by the smt solver. We assess runtime, memory usage,
model correctness, and robustness to increasing instance complexity.

We further decompose the research question into the following subquestions:

1. Correctness: Do both configurations return satisfiable results with the correct Frobe-
nius number as the model?

2. Runtime Performance: How does runtime compare between the default and QE-
based approaches as the instance difficulty increases?

3. Memory Usage: How does memory consumption vary between configurations under
increasing problem size?

4. Scalability: At what instance size does the default strategy begin to degrade in
comparison to the QE-based approach?

In the remainder of this paper, we first provide essential background on Z3’s tactic
system and the complexity of Presburger Arithmetic in Section 2. We then describe our
methodology for benchmarking Z3 on Frobenius instances in Section 3, followed by the
experimental setup in Section 4. Section 5 presents and analyzes the results, and Section 6

4

offers our conclusions. Finally, we discuss limitations and future work in Section 7 and
reflect on the responsible research aspects in Section 8.

2 Background and Motivation

2.1 Tactic Customization and Solver Adaptability
Although Z3 provides a powerful default configuration for solving quantified formulas, its
performance can vary significantly across problem domains. This is due to the reliance on
solver-internal heuristics, which, while highly optimized for common benchmarks, may fail
to generalize to structurally distinct problems [18]. Rather than modifying solver internals,
one promising alternative is to customize the tactic pipeline, enabling us to control Z3’s
strategy.

A good example of this approach is Z3-Alpha [19], a solver based on Z3, which employs
reinforcement learning to adaptively compose tactics based on the structure of the problem.
Z3-Alpha dynamically selects and schedules tactic applications, achieving state-of-the-art
results int SMT-COMP 2024 [20], particularly the Single Query Track for QF_LIA, where it
outperformed solvers such as CVC5 [21], Yices2 [22], and SMTInterpol [23] in most satisfiable
instances solved.

2.2 Complexity of Presburger Arithmetic and Frobenius Structure
Quantifier elimination (qelim) refers to transforming a quantified formula F into an equiv-
alent quantifier-free formula F ′ in the same theory. LIA admits quantifier elimination, but
exact procedures are known to have high computational cost. Weispfenning established a

tight worst-case complexity bound: 2O
(
|Φ|(4j)

k
)
, where |Φ| is the formula size, j is the maxi-

mum number of variables per quantifier block, and k is the number of such blocks [24]. For
the Frobenius formula (Equation 1), we have k = 3, j = 3, and we could assume |Φ| ≈ 80.

Substituting into the bound yields: 2
O
(
80(4·3)

3
)
= 2O(801728), which is astronomically large

and would make qelim impractical.
However, this worst-case analysis overlooks structural properties that significantly impact

practical complexity when reasoning about Presburger Arithmetic. If taken as a whole, PA is
decidable in 22

nO(1)

time by a nondeterministic alternating Turing machine with unbounded
space [25].However when restricting the number of quantifier alternations and the number
of variables per quantifier block, new bounds for complexity can be established. These are
captured more precisely in the Σk/Πk hierarchy. A formula is in the Σk class if it has the
form:

∃x̄1∀x̄2 · · ·Qkx̄k. φqf,

where Qk ∈ {∃,∀} and quantifiers alternate k times, and φqf is a quantifier-free formula. A
dual form starting with a universal quantifier belongs to Πk. The subclass PA(i, j) contains
formulas in Σi where each quantifier block binds at most j variables.

For example, a formula like ∃x. ∀y. φ(x, y), where φ is quantifier-free, belongs to PA(2, 2).
Importantly, for any fixed j, the class PA(1, j) with a single existential quantifier and
bounded variable belongs to the P complexity class, meaning it can be decided in polynomial
time by a deterministic Turing machine [25]. This difference in complexity highlights that
quantifier elimination may be feasible in fragments of PA. More generally, its feasibility is
closely tied to the logic’s decidability [26].

5

While the Frobenius problem is generally classified in the Π2 fragment due to its in-
herent quantifier structure [27], our focus on the two-coin case imposes bounded quantifier
alternation and a restricted number of variables per quantifier block. These structural con-
straints mitigate the conditions that typically lead to the worst-case behavior of quantifier
elimination [24], making a tactic-based approach such as qe_rec a good candidate for the
Frobenius instances with 2 coins.

3 Methodology

3.1 Instance Generation and Solver Configuration
Each benchmark instance corresponds to a pair of prime coin denominations c1 and c2, which
define a specific Frobenius problem. We construct the logical encoding in Z3’s Python API
using the following routine:

def build_formula(c1, c2):
x0, x1, R, P = Ints("x0 x1 R P")
return And(

P >= 0,
ForAll([x0, x1], Implies(And(x0 >= 0, x1 >= 0), P != c1 * x0 + c2 * x1)),
ForAll([R], Implies(

ForAll([x0, x1], Implies(And(x0 >= 0, x1 >= 0), R != c1 * x0 + c2 * x1))
,

R <= P
))

)

Listing 3: Formula construction for a given coin pair (c1, c2)

Depending on the configuration being tested, we apply different solver construction
strategies. For the baseline approach, we instantiate Z3 with its default configuration:

solver = Solver()

Listing 4: Z3 default (baseline) solver instantiation

For the tactic-based approach using quantifier elimination, we construct a composite
tactic pipeline using Then and pass in tactic-specific parameters, as shown below:

p = ParamsRef()
p.set("elim_and", True)
solver = Then(WithParams("simplify", p), "qe_rec", "smt").solver()

Listing 5: Quantifier elimination solver using qe_rec

We apply the selected approach to the formula produced by build_formula, and solving
proceeds with a timeout of 60 seconds per run.

6

3.2 Z3’s Approach
Z3’s default solving pipeline for c⃗ = (2, 3) follows a sequence of tactic applications and
solver invocations, visualized step-by-step in Figure 2. The process consists of three stages:
simplifier, qe-lite, and qsat.

Both simplifier and qe-lite serve as preprocessing steps that aim to expose the for-
mula’s logical structure. As noted by de Moura and Bjørner [28], Z3 begins by applying
a repository of simplification rules, followed by a phase known as internalization, where
formulas are converted into a normalized form suitable for efficient proof search. While the
formula resulting from simplifier and qe-lite is not in a normal form, these transforma-
tions still serve to expose its logical structure and facilitate more effective reasoning during
solving.

The pipeline begins with the simplifier step, which rewrites the initial formula into a
logically equivalent, but structurally simplified form. Implications are rewritten as disjunc-
tions using the equivalence A ⇒ B ⇝ ¬A∨B, and disequalities such as a ̸= b are normalized
as ¬(a = b). This transformation is illustrated in the transition from the "Input Formula to
the "After simplifier" node in Figure 2.

Following simplification, Z3 applies qe-lite, a pre-processing tactic that attempts to
eliminate quantifiers cheaply. However, as noted in Figure 2, qe-lite performs no quantifier
reduction in this specific case, instead just normalizing logical structures, namely pushing
negations inward.

Finally, the formula is passed to qsat, Z3’s default solver for quantified SMT formulas
in LIA. Rather than eliminating quantifiers upfront, qsat models satisfiability as a symbolic
two-player game between existential and universal variables. This game-based reasoning
enables qsat to handle quantified formulas directly. In our example, qsat concludes that
the formula is satisfiable and returns the model P = 1, indicating a solution to the Frobenius
instance. This output is shown at the bottom of Figure 2.

3.3 Our Approach
Our alternative tactic sequence, shown in Figure 3, is designed to replicate the pre-processing
behavior of Z3’s default pipeline before introducing quantifier elimination.

We apply the composite tactic Then(simplify, qe_rec, smt), beginning with the
simplify tactic using the parameter elim_and=true to flatten conjunctions. This ensures
that the formula undergoes the same initial structural normalization as in the default con-
figuration, where the combination of simplifier and qe-lite prepares it for solving. The
resulting formula structure matches that produced by Z3 prior to invoking qsat, allowing
for a fair comparison between default and tactic-based quantifier elimination.

Next, we pass the formula to the qe_rec tactic, which tells Z3’s internal QSAT solver
to perform quantifier elimination, constructing a quantifier-free equivalent of the formula.
As illustrated in Figure 3, this transformation introduces explicit arithmetic conditions such
as bounds and modular constraints that preserve the semantics of the original quantified
formula.

We then pass the quantifier-free formula produced by qe_rec to the smt tactic, which
invokes Z3’s core SMT solver. The solver evaluates the arithmetic constraints and returns
a satisfiable assignment. In this case, the model returned is again P = 1, as shown in the
final block of Figure 3.

7

Input Formula:
P ≥ 0
∧ ∀x0, x1. (x0 ≥ 0 ∧ x1 ≥ 0) ⇒ P ̸= 2x0 + 3x1

∧ ∀R. (∀x0, x1. (x0 ≥ 0 ∧ x1 ≥ 0) ⇒ R ̸= 2x0 + 3x1) ⇒ R ≤ P

simplifier

After simplifier:
P ≥ 0
∧ ∀x0, x1. ¬(x0 ≥ 0 ∧ x1 ≥ 0) ∨ ¬(P = 2x0 + 3x1)
∧ ∀R. ¬ (∀x0, x1. ¬(x0 ≥ 0 ∧ x1 ≥ 0) ∨ ¬(R = 2x0 + 3x1)) ∨R ≤ P

simplifier:

• Applies logical rewriting:
A ⇒ B ⇝ ¬A ∨B

• Predicate normalization:
a ̸= b⇝ ¬(a = b)

qe-lite

After qe-lite:
P ≥ 0
∧ ∀x0, x1. ¬(x0 ≥ 0) ∨ ¬(x1 ≥ 0) ∨ ¬(P = 2x0 + 3x1)
∧ ∀R. ¬(∀x0, x1. ¬(x0 ≥ 0) ∨ ¬(x1 ≥ 0) ∨ ¬(R = 2x0 + 3x1)) ∨R ≤ P

qe-lite:

• tries to eliminate quantifiers that are
cheap to reduce, but can’t reduce in
this case

• Normalizes logical structures

qsat

QSAT Output:
SAT
Model: P = 1

qsat:

• invokes QSAT solver

• Combines quantifier handling with
SMT

• Produces satisfying assignment

Figure 2: Z3’s default solving pipeline for Frobenius instance c⃗ = (2, 3) using internal mod-
ules: simplifier, qe-lite, and qsat. Transformations are shown step-by-step with intermediate
formulas and descriptive annotations.

8

Input Formula:
P ≥ 0
∧ ∀x0, x1. (x0 ≥ 0 ∧ x1 ≥ 0) ⇒ P ̸= 2x0 + 3x1

∧ ∀R. (∀x0, x1. (x0 ≥ 0 ∧ x1 ≥ 0) ⇒ R ̸= 2x0 + 3x1) ⇒ R ≤ P

simplify

After simplify:
P ≥ 0
∧ ∀x0, x1. ¬(x0 ≥ 0) ∨ ¬(x1 ≥ 0) ∨ ¬(P = 2x0 + 3x1)
∧ ∀R. ¬(∀x0, x1. ¬(x0 ≥ 0) ∨ ¬(x1 ≥ 0) ∨ ¬(R = 2x0 + 3x1)) ∨R ≤ P

simplify:

• Applies logical rewriting:
A ⇒ B ⇝ ¬A ∨B

• Predicate normalization:
a ̸= b⇝ ¬(a = b)

• With elim_and=true, ensures that
input to qe_rec is identical to input
for qsat in the default approach

qe_rec

After qe_rec:
P ≥ 0
∧ ¬(P ≤ 0)
∧ (¬(P ≥ 0) ∨ (P ≤ 2 ∧ (P + 1) mod 2 = 0))

qe_rec:

• Recursive QSAT-based quantifier
elimination

• Projection into quantifier-free
Presburger Arithmetic

smt

SMT Output:
SAT
Model: P = 1

smt:

• Solves the quantifier-free formula

• Returns satisfying assignment:
Frobenius number for c⃗ = (2, 3)

Figure 3: Step-by-step transformation of the Frobenius instance with coin set c⃗ = (2, 3)
using Then(simplify, "qe_rec", "smt"), where simplify is the simplify tactic applied
with the parameter elim_and = true. The diagram shows logically equivalent formula
transformations and tactic-level annotations.

9

4 Experimental Setup
All experiments were implemented using Z3’s Python API, with each solver run executed in
a separate subprocess to ensure clean state and accurate resource measurement. Formulas
were generated using a dedicated function (Listing 3) that encodes the Frobenius problem
as a quantified LIA formula. To test each configuration, we instantiated a new solver per
run and applied a 60-second timeout.

We compared two configurations: the default Z3 strategy using qsat, and a quantifier
elimination approach using Then(simplify, "qe_rec", "smt") with the elim_and=true
parameter. Each was evaluated on 54 satisfiable Frobenius instances, each defined by a
distinct pair of consecutive prime coin denominations (e.g., (3, 5), (5, 7), etc.), with 30
independent runs per instance.

For each run, we recorded the coin pair, solver result (sat, unsat, or unknown), the
satisfying model (if available), total execution time, and peak memory usage. The latter
two metrics were extracted from the solver.statistics() object. These were used to
evaluate correctness, runtime performance, memory efficiency, and scalability as problem
size increased.

The full codebase and configuration files are available at: https://github.com/PaulAnton03/
z3-research-project.git.

5 Results
Both approaches returned the Frobenius number on solved instances, with no unsat returned
by any of them. Our approach was able to consistently solve one more instance of the
Frobenius coin problem. Below is a table summarizing the results for number of instances
solved and runtime performance on solved instances.

Coin 1 #solved QSAT #solved QE_rec Mean QSAT (s) RSE QSAT (%) Mean QE_rec (s) RSE QE_rec (%)

2 30 30 0.02 0.0% 0.02 0.0%
3 30 30 0.04 0.0% 0.03 0.0%
5 30 30 0.12 8.3% 0.06 0.0%
7 30 30 0.68 10.3% 0.13 0.0%
11 30 30 1.98 5.1% 0.68 4.4%
13 30 30 15.37 8.5% 1.44 4.9%
17 20 30 28.28 14.8% 6.37 4.9%
19 26 30 36.87 7.1% 10.13 3.7%
23 0 30 - - 20.85 4.1%

> 23 0 0 - - - -

Table 1: Comparison of QSAT and QE_rec on the first 9 Frobenius instances. RSE is the
relative standard error, computed as SE

mean × 100.

As shown in Table 1, both configurations solved the first six Frobenius instances con-
sistently. However, as the problem complexity increased, differences began to emerge. Our
approach using the tactic qe_rec successfully solved all nine of the selected instances, while
the default qsat strategy failed on the final instance c⃗ = (23, 29) and partially failed on two
others c⃗ = (17, 19), c⃗ = (19, 23). In total, across the full benchmark of 54 instances, qe_rec
was able to solve one more instance than the baseline approach.

We report runtimes as arithmetic means over 30 independent runs per instance. We
use the mean to estimate the expected runtime of each solver configuration, providing a
reliable basis for performance comparison across repeated trials. This metric captures the

10

central tendency of runtime behavior and supports statistical inference. For instances where
qsat failed to complete all 30 runs, we assigned the timeout threshold of 60 seconds to each
unresolved case. As a result, the reported mean runtimes for c⃗ = (17, 19) and c⃗ = (19, 23)
under qsat are likely underestimated.

To quantify the confidence in these sample means, we report the relative standard error
(RSE), defined as: RSE = SE

x̄ × 100%, where SE = s√
n
, s is the sample standard deviation,

x̄ is the sample mean, and n = 30 is the number of runs. RSE expresses the variability in
the sample mean as a percentage of the mean itself. A higher RSE indicates less reliability
in the reported mean.

In contrast to the qsat configuration, our approach using qe_rec not only solved all nine
instances but did so with greater consistency. The RSE values for qe_rec remained below
5% for most instances and did not exceed 9% in any case. This indicates that the observed
mean runtimes are likely close to the true expected performance of the tactic, even on more
difficult instances.

To better visualize the performance differences between the two configurations, we com-
pute the per-instance speed-up of qe_rec relative to the baseline. This speed-up is defined
as the ratio of the mean runtime of qsat to that of qe_rec, and quantifies how many times
faster our approach was, on average, for each instance.

Figure 4: Per-instance speed-up of qe_rec over the baseline qsat tactic, computed as the
ratio of mean runtimes.

Figure 4 illustrates the relative performance advantage of our approach. A value of x on
the vertical axis indicates that qe_rec was, on average, x times faster than the baseline on
that instance.

The plot shows that qe_rec consistently outperforms qsat, with the speed-up increasing
significantly as instance complexity grows. For instance, in the case of c⃗ = (13, 17), the
speed-up exceeds 10×, meaning that qe_rec completed in less than one-tenth the time
required by the baseline. Even for smaller instances, modest but consistent speed-ups are
observed, typically around 1.2× to 5×.

Figure 5 shows the memory usage trends for both solver configurations across all 54
Frobenius instances, plotted against the value of the first coin in each pair. Each curve
depicts the mean peak memory consumption in megabytes, which we computed over 30

11

Figure 5: Peak memory usage across 54 Frobenius instances for both qsat and qe_rec.
Each line shows the mean memory usage over 30 runs per instance. The shaded regions
represent the standard error of the mean (SE).

independent runs per instance. To illustrate variability, we shaded the regions around each
curve to represent the standard error of the mean (SE). We chose SE because it reflects the
precision of the sample mean as an estimate of the true population mean, allowing us to
assess the consistency of memory usage across runs. Although runtime performance remains
a key metric, solver efficiency also depends on memory usage, especially in more complex
instances where limited resources may lead to failure. To complement our runtime analysis,
we now compare peak memory consumption.

Overall, we observe that qe_rec exhibits lower and more stable memory usage than qsat.
This advantage becomes especially clear as instance complexity increases, where qsat starts
to show sharp spikes and greater variability, with memory usage consistently exceeding 30
MB. In contrast, qe_rec maintains memory usage within a narrow band, between 25 and
30 MB across nearly all instances, and SE remains consistently low. These results indicate
that qe_rec not only consumes less memory but does so more predictably.

6 Conclusion
In this work, we investigated whether applying quantifier elimination improves Z3’s per-
formance on the Frobenius Coin Problem, a benchmark of quantified formulas over linear
integer arithmetic (LIA). This was motivated by two key factors: first, Z3’s tactic pipeline
allows for customization to better accommodate structurally distinct problems, offering an
alternative to fixed heuristic strategies. Second, the two-coin Frobenius encoding involves
bounded quantifier alternation and a limited number of variables per block, which suggests
that quantifier elimination may be computationally feasible. To test this, we applied the
qe_rec tactic to eliminate quantifiers prior to solving.

We framed our central research question as follows: Does quantifier elimination improve
Z3’s performance on two-coin Frobenius Coin Problem instances over LIA, compared to its

12

default quantifier handling strategy? To explore this, we examined four subquestions:

1. Correctness: Do both configurations return satisfiable results with the correct Frobe-
nius number as the model?

2. Runtime Performance: How does runtime compare between the default and QE-
based approaches as the instance difficulty increases?

3. Memory Usage: How does memory consumption vary between configurations under
increasing problem size?

4. Scalability: At what instance size does the default strategy begin to degrade in
comparison to the QE-based approach?

Our evaluation produced the following results:

1. Correctness: Both configurations returned sat and valid models on all instances
they successfully solved.

2. Runtime Performance: The qe_rec tactic consistently achieved faster runtimes of
up to 10× faster than qsat with improvements becoming more pronounced as the
problem size increased.

3. Memory Usage: The qe_rec configuration consumed less memory and showed more
consistent usage patterns across instances, with narrow standard error margins.

4. Scalability: The qsat configuration began to fail on instances starting with c⃗ =
(17, 19) and failed completely on c⃗ = (23, 29). In contrast, qe_rec successfully solved
all 30 runs for c⃗ = (23, 29).

These results confirm that quantifier elimination using qe_rec improves both runtime
and memory efficiency over Z3’s default QSAT-based strategy on the Frobenius Coin Prob-
lem instances tested and also highlight how customizing Z3’s approach, which is based on
hand-crafted heuristics, can lead to overall better performance. Nevertheless, this does not
imply that our approach is superior in general, as performance may vary on larger instances,
an aspect which was not covered due to the limitations imposed by the 60 second timeout
and number of instances being included in the experiments.

7 Limitations and Future Work
This study focused solely on two-coin, satisfiable Frobenius instances, where the quantifier
structure is relatively simple. Future work could extend the analysis to instances involv-
ing three or more coins, as well as unsatisfiable cases, to evaluate how qe_rec scales with
increased quantifier complexity. While the improved performance of our quantifier elimi-
nation approach suggests a structural advantage, this work did not fully investigate how
Z3 internally processes these instances. Further analysis is needed to determine whether
the observed improvements are directly attributable to the simplified quantifier structure or
arise from other factors such as solver heuristics or internal optimizations.

Support for quantifier elimination in Z3 is available through multiple tactics, including
qe, qe2, and qe_rec. This study focused exclusively on qe_rec due to its consistent and
reliable behavior on the Frobenius benchmark. Other tactics were excluded because they

13

occasionally produced incorrect results, namely returning unsat for satisfiable instances.
Future work should investigate these tactic differences in greater depth to understand the
reasons behind the failures, and possibly address them.

Comparing Z3 with other SMT solvers that support quantifier elimination for LIA, such
as CVC5, could provide additional context. Finally, learning-based methods, such as rein-
forcement learning approaches used in Z3-Alpha, could be leveraged to enable automatic
and adaptive tactic scheduling based on formula structure.

8 Responsible Research
This section reflects on the integrity, transparency, and potential impact of our research. We
address reproducibility, data accessibility, and ethical considerations in line with established
scientific best practices.

8.1 Reproducibility
Our research complies with the Netherlands Code of Conduct for Research Integrity (2018)
and aligns with the FAIR principles for responsible data management [29]. To support
reproducibility, we make our entire codebase publicly available via a GitHub repository1,
including all scripts for generating benchmarks, configuring solver tactics, and collecting
results.

All tools used in our study are open source. In particular, we rely on Z3 version 4.14.1
(64-bit) and explicitly document all tactic parameters and timeout settings. Our benchmark
generator is deterministic and produces instances based on specified prime inputs, ensuring
that others can reconstruct the same test suite.

We log results in machine-readable formats (CSV) and provide summary statistics to
support analysis and replication. No specialized hardware is required. All experiments
were run on standard CPUs, and performance variability due to solver nondeterminism is
mitigated by repeated trials and averaged metrics.

8.2 Ethical Impact
This work does not involve personal data, automated decision-making, or human partici-
pants. Its contributions focus solely on solver configuration and performance evaluation for
quantified formulas in linear integer arithmetic.

Nevertheless, as SMT solvers are increasingly used in sensitive domains such as program
verification, cybersecurity, and decision systems, we advise caution when applying tactic-
based configurations in contexts requiring formal guarantees. It is essential to verify that
any simplifications or transformations introduced by tactics preserve correctness, especially
when used in critical applications.

References
[1] N. Rungta, “A billion smt queries a day,” 2022. [Online]. Available: https:

//www.amazon.science/publications/a-billion-smt-queries-a-day
1https://github.com/PaulAnton03/z3-research-project.git

14

[2] T. N. Alyahya, M. E. B. Menai, and H. Mathkour, “On the structure of the boolean
satisfiability problem: A survey,” ACM Comput. Surv., vol. 55, no. 3, Mar. 2022.
[Online]. Available: https://doi.org/10.1145/3491210

[3] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in Tools and Algorithms
for the Construction and Analysis of Systems, C. R. Ramakrishnan and J. Rehof, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 337–340.

[4] K. R. M. Leino, “This is boogie 2,” manuscript KRML, vol. 178, no. 131, p. 9, 2008.

[5] P. Müller, M. Schwerhoff, and A. J. Summers, “Viper: A verification infrastructure for
permission-based reasoning,” in Proceedings of the 17th International Conference on
Verification, Model Checking, and Abstract Interpretation - Volume 9583, ser. VMCAI
2016. Berlin, Heidelberg: Springer-Verlag, 2016, p. 41â62. [Online]. Available:
https://doi.org/10.1007/978-3-662-49122-5_2

[6] K. R. M. Leino, “Dafny: An automatic program verifier for functional correctness,” in
International conference on logic for programming artificial intelligence and reasoning.
Springer, 2010, pp. 348–370.

[7] L. de Moura and N. Bjørner, “Z3 internals,” https://z3prover.github.io/papers/
z3internals.html, 2024, accessed: 10th June 2025.

[8] C. Barrett, A. Stump, C. Tinelli et al., “The smt-lib standard: Version 2.0,” in Pro-
ceedings of the 8th international workshop on satisfiability modulo theories (Edinburgh,
UK), vol. 13, 2010, p. 14.

[9] C. Haase, “A survival guide to presburger arithmetic,” ACM SIGLOG News, vol. 5,
no. 3, p. 67â82, Jul. 2018. [Online]. Available: https://doi.org/10.1145/3242953.3242964

[10] H. Ding, Z. Wang, Y. Yang, D. Zhang, Z. Xu, H. Chen, R. Piskac, and J. Li, “Proving
query equivalence using linear integer arithmetic,” Proceedings of the ACM on Man-
agement of Data, vol. 1, no. 4, pp. 1–26, 2023.

[11] A. Reynolds, C. Tinelli, A. Goel, S. Krstić, M. Deters, and C. Barrett, “Quantifier
instantiation techniques for finite model finding in smt,” in Automated Deduction –
CADE-24, M. P. Bonacina, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 377–391.

[12] N. S. Bjørner and M. Janota, “Playing with quantified satisfaction.” LPAR (short pa-
pers), vol. 35, pp. 15–27, 2015.

[13] M. Hečko, “Rozhodování logiky pomocí automatŭ [online],” Master’s thesis, Brno
University of TechnologyBrno, 2024 [cit. 2025-05-23], sUPERVISOR:. [Online].
Available: https://theses.cz/id/yt82t6/

[14] J. L. Ramírez Alfonsín, The Diophantine Frobenius Problem. Oxford University Press,
12 2005. [Online]. Available: https://doi.org/10.1093/acprof:oso/9780198568209.001.
0001

[15] P. Rümmer, “A constraint sequent calculus for first-order logic with linear integer arith-
metic,” in International Conference on Logic for Programming Artificial Intelligence
and Reasoning. Springer, 2008, pp. 274–289.

15

[16] A. Reynolds, T. King, and V. Kuncak, “Solving quantified linear arithmetic by
counterexample-guided instantiation,” Formal Methods in System Design, vol. 51, pp.
500–532, 2017.

[17] A.-D. Phan, N. Bjørner, and D. Monniaux, “Anatomy of alternating quantifier satis-
fiability (work in progress),” in 10th International Workshop on Satisfiability Modulo
Theories, 2012, p. 6.

[18] L. De Moura and G. O. Passmore, “The strategy challenge in smt solving,” in Automated
Reasoning and Mathematics: Essays in Memory of William W. McCune. Springer,
2013, pp. 15–44.

[19] Z. Lu, S. Siemer, P. Jha, F. Manea, J. Day, and V. Ganesh, “Z3-alpha: a reinforcement
learning guided smt solver,” System Description: SMT-COMP, 2023.

[20] F. Bobot, C. List, M. Bromberger, and M. Jonáš, “19th international satisfiability
modulo theories competition (smt-comp 2024): Rules and procedures.”

[21] H. Barbosa, C. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann, A. Mohamed,
M. Mohamed, A. Niemetz, A. Nötzli et al., “cvc5: A versatile and industrial-strength
smt solver,” in International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2022, pp. 415–442.

[22] B. Dutertre, “Yices 2.2,” in Computer Aided Verification, A. Biere and R. Bloem, Eds.
Cham: Springer International Publishing, 2014, pp. 737–744.

[23] J. Christ, J. Hoenicke, and A. Nutz, “Smtinterpol: An interpolating smt solver,” in
International SPIN Workshop on Model Checking of Software. Springer, 2012, pp.
248–254.

[24] D. Chistikov and C. Haase, “On the complexity of quantified integer programming,”
in 44th International Colloquium on Automata, Languages, and Programming (ICALP
2017), vol. 80. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, p. 94.

[25] C. Haase, “Subclasses of presburger arithmetic and the weak exp hierarchy,” in Proceed-
ings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS), 2014, pp. 1–10.

[26] B. Schüpp, “Quantifier elimination,” 2021.

[27] D. Chistikov, “An introduction to the theory of linear integer arithmetic,” in 44th IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS 2024). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2024, pp.
1–1.

[28] L. M. de Moura and N. S. Bjørner, “Proofs and refutations, and z3.” in LPAR Work-
shops, vol. 418. Doha, Qatar, 2008, pp. 123–132.

[29] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak,
N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne et al., “The fair guiding
principles for scientific data management and stewardship,” Scientific data, vol. 3, no. 1,
pp. 1–9, 2016.

16

