Delft University of Technology
Software Engineering Research Group
Technical Report Series

A Genetic Programming Approach to
Automated Test Generation for Object
Oriented Software

Hans-Gerhard Gross, Arjan Seesing

Report TUD-SERG-2006-017

%
TUDelft SE

TUD-SERG-2006-017

Published, produced and distributed by:

Software Engineering Research Group

Department of Software Technology

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Mekelweg 4

2628 CD Delft

The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

(© copyright 2006, Software Engineering Research Group, Department of Software Technology, Faculty
of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology. All rights
reserved. No part of this series may be reproduced in any form or by any means without prior written
permission of the publisher.

SE

TUD-SERG-2006-017

Gross, Seesing — Genetic Programming for OO Software Testing

A Genetic Programming Approach to
Automated Test Generation
for Object-Oriented Software

Arjan Seesing and Hans-Gerhard Gross

Delft University of Technology
EWTI — Software Engineering Laboratory
Mekelweg 4, 2628 CD Delft, The Netherlands
a.c.seesing@gmail.com; h.g.gross@tudelft.nl

Abstract. In this article we propose a new method for creating test
software for object-oriented systems using a genetic programming ap-
proach. We believe this approach is advantageous over the more estab-
lished search-based test-case generation approaches because the test soft-
ware is represented and altered as a fully functional computer program.
Genetic programming (GP) uses a tree-shaped data structure which is
more directly comparable and suitable for being mapped instantly to ab-
stract syntax trees commonly used in computer languages and compilers.
These structures can be manipulated and executed directly, bypassing
intricate and error prone conversion procedures between different repre-
sentations. In addition, tree structures make more operations possible,
which keep the structure and semantics of the evolving test software bet-
ter intact during program evolution, compared to linear structures. This
speeds up the evolutionary program generation process because the loss
of evolved structures due to mutations and crossover is prevented more
effectively.

Keywords: Search-based Testing, Test Automation, Object-Oriented
Programming

1 Introduction

Testing is the most widely used and accepted technique for verification and val-
idation of software systems. It is applied to measure to which extent a software
system is conforming to its original requirements specifaction and to demon-
strate its correct operation [11]. Testing is a search problem that involves the
identification of a limited number of good tests out of a shear, nearly unlimited
number of possible test scenarios. “Good tests” are those runtime scenarios that
are likely to uncover failures, or demonstrate correctness of the system under
test (SUT). Identifiying good test cases typically follows predefined testing cri-
teria, such as code coverage criteria [3]. This is based on the assumption that
only the execution of a distinct feature, or its coverage, can reveal failures that
are associated with this feature.

Gross, Seesing — Genetic Programming for OO Software Testing SE

Because the primary activities of testing, test case identification and design,
are typical search problems, they can be tackled by typical search heuristics.
One of the most important search heuristics for software testing is known to be
random testing. This is also one of the most commonly used testing strategies in
industry today. Recently, also more advanced heuristic search techniques have
been applied to software testing. These are based on evolutionary algorithms, and
they are also slowly making their ways into industry [1, 2] since their performance
in finding test cases was found to be at least as good as random testing, but
usually much better [8,22] The group of these testing techniques is referred
to as evolutionary testing (ET) according to Wegener and Grochtmann [26].
ET is an automatic test case generation technique based on the application of
evolution strategies [17], genetic algorithms [5,10], genetic programming [13], or
simmulated annealing [24]. ET searches for optimal test parameter combinations
that satisfy a predefined test criterion. This test criterion is represented through
a “cost function” that measures how well each of the automatically generated
optimization parameters satisfies the given test criterion. For a test, various test
criteria a perceivable, according to the goal of the test, such as how well a test
case covers a piece of code, in the case of structural testing [12, 16], or how well
a test case violates a (safety) requirement [23], for example.

Evolutionary testing has inititially only been applied to traditional procedu-
ral software. Here, ET is used to generate input parameter combinations for test
cases automatically that achieve, i.e., high coverage, if the test target relates to
some code coverage criterion. However, recently, also object-oriented software
testing based on evolutionary testing has been tackled by researchers [6,7,21].
The two main differences are

— that object technology is inherently based on states which are not readily
visible outside of an object’s encapsulating hull,

— and that an object test, as the basic unit of testing, can incorporate an
arbitrary number of operation invocations.

An object’s internal state depends on any previously performed operation in-
vocations, the so-called invocation history [9,7], including input parameter set-
tings. Hence, object testing involves not only the generation of suitable input
parameter combinations for a single procedure under test, but, additionally, the
generation of suitable test invocation sequences of various operations of an ob-
ject, plus the generation of their respective input parameter combinations. As
a consequernice, in object testing, we have to deal with a number of test arti-
facts, such as the sequence or combination of operation invocations, the input
parameter combinations for the tested operations, the sequence or combination
of operation invocations that bring the object into an “interesting” initial testing
state, including constructor invocation, and the input parameter combinations
for the previously mentioned state setting operations. When applied to objects,
ET must therefore generate optimization paramter values that correspond to a
constructor, with input parameters, a number of operations, including input pa-
rameters, that bring the object into a distinct state, and a number of operations,
including input parameter values, for the actual tested functionality.

2 TUD-SERG-2006-017

SE Gross, Seesing — Genetic Programming for OO Software Testing

Object-oriented evolutionary testing can actually be regarded as search-based
test software programming. In other words, the problem is suitable to be solved
through genetic programming techniques. Genetic programming can be seen as
a specialization of a genetic algorithm, and it is particularly aimed at evolving
software programs according to the rules of simulated natural evolution. Ge-
netic programming is well suited for test program generation for testing object-
oriented code because the symbols used by GP are restricted only to operation
invocations and input parameter types that are required and used by the SUT.
This is quite in contrast to the generation of arbitrary functional code which is
based on the full alphabet of the programming language under consideration.
So, test code generation through genetic programming is much less complex.

In this paper, we introduce and explore an evolutionary testing approach
for object oriented code that is based on the application of genetic program-
ming. In the next section, Section 2, we will introduce evolutionary testing and
explain briefly how it is typically applied under the procedural programming
paradigm. Section 3 looks at related work, and it introduces two different ap-
proaches to apply genetic algorithms to the testing of object-oriented code. In
Section 4 we will introduce our approach that applies genetic programming to
the generation of test software for object oriented code. Here, we explain the
details of the algorithm used and show a few very small examples of how to use
genetic programming for the purpose under consideration. Section 5 shows some
resutls from experiments that we have carried out, and Section 6 presents out
conclusions and gives an outlook on future research.

2 Automated Software Testing and Evolutionary
Algorithms

Traditionally, a human tester develops the test scenarios and writes the test
code for an SUT manually. Ideally, a testing tool should generate the entire test
code automatically, but this is very difficult to achieve, so that only parts of
the testing process can be automated. The process of test automation can be
subdivided into three main activities:

— Generation of test scenarios according to testing criteria, also referred to as
software test data generation.

— Generation of a test oracle out of the SUT’s specification.

— Combination of both, test secnarios and oracle, into executable test cases.

The first activity can be automated with relative ease, and this is also what most
commercial testing tools are capable to do, although, usually, existing tools apply
crude heuristics to find test scenarios. The automation of the second activity is
usually much more daunting in practice, due to poor quality, or low formality,
of the SUT’s requirements specification available. Without formalization of the
specification, it is nearly impossible to automate the generation of the oracle. The
last step simply involves the creation of an arbiter that compares the observation
from the SUT’s execution with the expected observation from the oracle, and

TUD-SERG-2006-017 3

Gross, Seesing — Genetic Programming for OO Software Testing SE

decides whether the test passes or fails. This poses no particular difficulty on
automation, once the oracle problem has been solved.

The work outlined in this paper and the related work presented, concentrate
on the first testing activity, the automated generation of the test scenarios. An
efficient way to do this is with a random generator. Random testing can be used
to create a volume of test scenarios, but it is not specifically obeying any test
coverage critiera. Test tools based on random testing, generate test scenarios and
simply measure and illustrate the coverage of the SUT. They cannot generate
test scenarios that are “guided” by the coverage.

Evolutionary Testing for Procedural Code

More advanced search heuristics such as evolutionary algorithms (EA) can be
used to specifically look for test scenarios that cover certain branches of a pro-
gram. This class of algorithms is loosely related to the mechanisms of natural
evolution, and they are based on reproduction, evaluation and selection. The
following pseudo code represents a standard genetic algorithm that can be used
for testing; P, P1, P2, and P3 represent populations of feasible test scenarios:

initialize_random (P);
fitness_function (P);
while not stopping_criterion do begin
P1 = selection (P);
P2 = recombination (P1);
P3 = mutation (P2);
fitness_function (P3);
P = merge_populations (P3,P);
end-while

Each set of parameters, the so-called individual, is represented by a different
binary string, the so-called chromosome, within a population. Each chromosome
represents the input parameter values for the execution of the SUT. The GA
starts with a random initial population of chromosomes. Selection chooses the
chromosomes to be recombined and mutated out of this initial population. Re-
combination reproduces the selected individuals and exchanges their information
(pair-wise) in order to produce new individuals. This information exchange is
called crossover. Mutation introduces a small change to each newly created in-
dividual. The resulting individuals (P3 in the pseudo-code) are then evaluated
through the fitness function. This transfers the information encoded in the chro-
mosome, the so-called genotype, into an execution of the SUT, the so-called
phenotype. The fitness function measures how well the chromosome satisfies
the test criterion. In our case this is the coverage of a program branch. The
implementation of the fitness function follows earlier standards in evolutionary
testing, described in other articles, i.e., [12,14, 15]. For the next generation, the
old and the new populations are merged, thereby retaining the best individuals.
The process of selection, reproduction and evaluation is referred to as one gener-
ation, and these steps are repeated until the stopping criterion is satisfied, e.g., a

4 TUD-SERG-2006-017

SE Gross, Seesing — Genetic Programming for OO Software Testing

predefined number of generations, or the satisfaction of the test criterion. Fitter
individuals, represented by their chromosomes, that come closer to covering the
current target are favored in the recombination and selection process, so that
in subsequent generations, the population will comprise fitter individuals that
are more likely to satisfy the test criterion. In order for such a search process
to obtain full branch coverage, every branch must be successively selected as
target and solved through an individual search process. The application of evo-
lutionary algorithms to such structural testing problems has been demonstrated
in practice, i.e. [1,12,15,16].

The previously described simple representation of input parameter values in
a chromosome, is not sufficient in object-oriented software testing. Here, in addi-
tion to the input parameter values, the search process also needs to include any
arbitrary number and sequence of operation invocations on the object, and any
internal state settings, as described earlier. This turns the fixed-length, simple
chromosome of the procedural paradigm into an arbitrary-length, complex chro-
mosome for the object-oriented paradigm. Especially, the fact that initial state
settings of an object are part of a test scenario [9], makes the implementation of
the automatic test generation process more difficult.

Recent publications on evolutionary testing of object-oriented systems have
proposed encodings to deal with this additional dimension. The first alternative
is to encode the operation invocation sequences as chromosome and come up with
new recombination and mutation strategies [21]. The second alternative is to use
a standard binary encoding of the chromosome, so that standard GA tools can be
used, and devise a specialized so-called “genotype—phenotype transfer function”
that maps the chromosome representation to a test scenario [25]. These are
briefly laid out in the following section, before we go on to propose a third way
of organizing the chromosome as a tree structure, in Section 4, so that we can
apply a standard genetic programming technique.

3 Evolutionary Testing for Objects

3.1 Object-Specific Chromosome Encoding

One way to deal with the enhanced complexity of objects in evolutionary testing
is to enrich the chromosome with representations that are capable to deal with
these more complex entities (Tonella, [21]). This method adds structure to the
chromosome during evolution, that can be mapped directly to an executing
program. Tonella proposes the following grammar:

<chromosome> ::= <actions> @ <values>
<actions> ::= <action> {: <actioms>}?
<action> ::= $id = comstructor ({<parameters>}?)

| $id = CLASS # NULL

| $id . method ({<parameters>}?)
<parameters> ::= <parameter> {, <paraemters>}?
<parameter> ::= builtin-type {<generator>}?

TUD-SERG-2006-017 5

Gross, Seesing — Genetic Programming for OO Software Testing SE

| $id
<generator> ::= [low ; up]

| [genclass]
<values> ::= <yvalue> {, <value>}?
<value> ::= integer

| real

| boolean

| string

The “@” separates the chromosome into two parts. The first part contains the
sequence of operation invocations, including constructor and method invoca-
tions, each separated by *“”, and the second part represents the input values
that these operations take, each separated by “,”. Such a sequence of operation
invocations plus parameter values represents a test scenario. An <action> can
represent either a new object (indicated as $id), or a call to a method on an
object identified by $id. Parameters of operation invocations (<parameters>)
can represent built-in types such as int, real, boolean, and string, or chro-
mosome variables ($id). The generation operator (<generator>) produces the
values for the input parameters. It can generate random numbers in the range
between low and up, or it can use an external class to have a value produced.
The grammar proposed permits invalid chromosomes, so additional rules must
be imposed for “well-formedness”:

— chromosome variables cannot be used before they are assigned.

— built-in types in the first part require a corresponding input value in the
second part of the chromosome.

— methods used in the chromosome must be visible for the used classes.

Because the genetic algorithm performs on chromosomes with this partic-
ular organization, the standard binary crossover and mutation operators may
not be applied. Tonella proposes specific operators that lend their ideas from
genetic programming. Mutation can change values or operations (constructors
and methods). A value can be mutated through change to a randomly generated
value of the same type. A constructor can be mutated through random change
to another constructor. Redundant input values are then dropped, missing ones
generated. A new method may be inserted by a mutation including the respective
input paramter values for the method. A method may also be removed through
a mutation including all its input values.

Crossover between two chromosomes works in a similar way, although it
usually involves various of the previously described measures at the same time.
Two chromosomes are cut at a randomly determined location (at an <action>-
delimiter), in the case of a simple one-point crossover, and their respective tails
are swapped and rejoined. Redundant constructors must be removed, as well as
needless input values, and, finally, conflicting variable names must be changed.

6 TUD-SERG-2006-017

SE Gross, Seesing — Genetic Programming for OO Software Testing

3.2 Object-Specific Genotype—Phenotype Transfer

An alternative way to apply evolutionary testing to the more complicated re-
quirements of object technology, is to maintain a binary or numerical chromo-
some that can be handled by any standard genetic algorithm, and then provide
rules, or a grammar, to map the binary representation into a test scenario.
Each test program may be represented as a sequence of statements, and each
statement consists of an object, an operation, constructor or method, and some
parameters (Wappler and Lammermann, [25]). The mapping of the chromosome
to test scenarios can be determined by sequentially reading the chromosome and
turning it into operation invocations according to rules. Two genes can be as-
signed for operation invocations, one for the target object, and one that denotes
the operation to be invoked on that object. Because operation invocations take
varying numbers of input parameters, input values must be accomodated by a
variable number of genes. The genes are then mapped into a real test scenario,
a phenotype, according to the production rules of a grammar:

test_program ::= {statement;}+

statement ::= [return_value]{constr_call|method_call}
return_value ::= class_name instance_name =

constr_call ::= new class_name (parameters)

method_call ::= {class_name|instance_name}.method_name(parameters)
paramters ::= [parameter {, parameter}x]

parameter ::= basic_type_value|instance_name|NULL

In this system [] represents an option, {1} alternatives, {}+ at least one rep-
etition, and {}* arbitrary repetitions. Because these rules allow the generation
of erroneous test scenarios, the fitness function assigns a degree of failure to
the decoding This failure is part of the fitness, so that such “defective genetic
material” is eventually evading from the population.

The decoding from the chromosome into a real test scenario is performed
through specific functions, fully described in [25]. Methods are numbered in
a series, and each number of one gene in the chromosome corresponds to a
specific number of a method. Input parameters are represented by one gene in
the chromosome, and they can map to concrete values and objects.

4 Proposed Genetic Programming Approach

Genetic programming (GP) is a specicalization of a genetic algorithm that is
particularly aimed at evolving computer programs based on the principles of
natural evolution [13]. The chromosomes in genetic programming represent hi-
erarchically structured computer programs made up of arithmetic operations
mathematical functions, boolean and conditional operations, and terminal sym-
bols, such as types, numbers, and strings. The genotype-phenotype mapping of
GP is much more natural for the domain of test program generation compared
with a standard genetic algorithm. The fact that GP is based on hierarchically

TUD-SERG-2006-017 7

Gross, Seesing — Genetic Programming for OO Software Testing SE

organized trees requires specialized genetic operators for recombination and mu-
tation [13].

Recombination takes sub-trees from previously selected parent individuals
and swaps them in order to reorganize them into new individuals (trees). The
chromosomes are always cut and reassembled at nodes, and not wihtin nodes of
the tree representing the computer program. The mutation operator introduces
random changes in the tree by selecting a node of the tree randomly, deleting
everyting beyond that node, or adding a randomly generated subtree, or chang-
ing leaves of the tree randomly. These are all standard GP operators according
to [13].

4.1 GP Chromosome

Table 1 lists the basic classes of representations that are used in our proposed
genetic programming approach.

Table 1. Function set for the GP to chose from

Node Name Description Can have Can be

Children Terminal
L-Variable Variable definition ves no
R-Variable Reference to an L-Variable no yes
Constant A primitive value (int, double, ...) no yes
Constructor Creates an object yes yes
Method Calls an object’s method yes no
Field Assignment State change of an object ves no
SUT Subject under test yes no
Array Creates an array of objects yes no
NULL Keyword, implemented in the con- no yes

structor

The types to be used by GP are arbitrary, because every single object that
is created, represents a type. Every operation refers to an object, and thus a
type, plus some input parameters, including their individual types. These must
be created by the GP process and added as leaves to the node in the tree that
represents the operation. Each operation maps to a subtree of the entire GP
hierarchy, including constructors and input values for the required (sub-)objects.
Apart from arbitrary object types, we also have to allow basic or primitive types,
such as boolean, integer, real, and the like. These are primarily used in order to
denote input and return values.

Because of the late binding principle in object technolgy, not all types are
known to the GP system a-priori. The SUT is used as the starting point of the
GP system. It indexes all its operations, that it has to test and which it can use
to change its state. All the classes it references in the signatures of its operations
are also indexed, plus all subsequent classes used by these. This indexing is

8 TUD-SERG-2006-017

SE Gross, Seesing — Genetic Programming for OO Software Testing

performed recursively until all classes needed for the test case are loaded and
known to the GP system. Abstract parameter types, or interfaces, and classes
that extend or implement these must be added manually to the index of the GP
system. That is, only if they are not referenced by some other already existing
and indexed class. Figure 1 shows an example tree-shaped representation of

Il 1
[L-var "var1”][L-Var "var2"”][Method "set”] [Method "set”) [Method "test”]

P &

[Constr "Test"][Constr "Foo"]

[R-Var "vart" J [R-Var "var1" J [R-Var "vart"”]
[Constant “1"] [Constant "G"]

[R-Var "var2"] (R-Var "var2"] [Constant 4]

Fig. 1. Example tree-shaped representation of a GP-chromosome; the anchor symbol
indicates containment

a GP-chromosome that translates into the following Java testing code snippet
(moving from left to right).

varl = new Test(1,6);
new Foo();
varl.set(var2);
varl.set(var2);
varl.test();

var?2

There are two types of variables in programming languages, L(eft)-type and
R(ight)-type variables. L-type variables define and initialize variables, and R-
type variables reference them. The compiler will issue an error, when a variable
is used as an R-type, before it has been used (initialized) as an L-type. R-types
are terminal, and the L-types require one “child-node”.

4.2 Object Reflection

In order for GP to work properly and generate valid testing code, it needs rules,
on the basis of which it can recombine existing nodes and generate new nodes. In
traditional genetic programming, the grammar usually comprises all constructs
of the programming language used [13].

Test code is usually straight-forward, and all it needs to do is to invoke a
certain sequence of operation invocations with parameter values, including the
creation and initialization of the variables used. The rules are restricted to the
operations of the SUT plus the objects and return types that it uses in these

TUD-SERG-2006-017 9

Gross, Seesing — Genetic Programming for OO Software Testing SE

operations. In Java, these can even be generated at runtime through Java’s built-
in reflection mechanism [4]. This information is then stored in a repository of
basic symbols which represents the rules that the genetic programming algorithm
can use to generate test programs. Earlier, we referred to this repository as the
GP index.

The hierarchical structure of testing code is typcially flat, like the one dis-
played in Fig. 1. This flat hierarchy is due to the fact that testing has a more
sequential nature, by calling one operation after another, leading to a single path
through the test program. This is different from “normal functional code” that is
usually made up of conditional executions, leading to various paths through the
program. Every operation invoked is attached as subtree close to the root node
of the entire chromosome tree. Extensive hierarchical structure is only exhibited
if operation invocations require objects as input parameters, although this can
be circumvented by imposing flat hierarchies. This is described below.

4.3 Detailed Genetic Operators

Initial Population. Two different methods are used in order to create the
first population: random population, or a population based on execution traces.
The first method selects initial operation invocations including their input val-
ues randomly. The second method applies existing knowledge from executing
the SUT. Here, we can form an initial population from already known typical
usage scenarios of the SUT. This leads to an initial population that can already
cover many of the SUT’s runtime paths for typical usage profiles. This method
improves the performance of the test generation considerably.

Mutation. GP requires a separate mutation operator for each individual basic
building block, each of which may be subject to mutation according to a prede-
fined mutation rate. We can distinguish three types of mutation operators, one
that creates a new building block, one that changes an existing one, and one
that deletes a building block. We have devised these three operators for each of
the functions in Table 1.

A counstructor can be created, deleted or changed to a different constructor.
Creation or deletion implies that their respective sub-trees, comprising input pa-
rameters, are created or deleted. The same principles that apply to constructors
apply also to other operations, the normal methods of an object. They can be
added or removed, or their input values can be changed. Constructors and nor-
mal methods are different only in the way that we need at least one constructor
in order to create the object, and the constructor must always be invoked before
any other operation.

Some methods take objects as arguments. These objects need to be created
through a constructor and, maybe, also their operations need to be invoked.
This principle may be applied recursively, depending on the operations required,
thus potentially leading to constructor compostions of arbitrary depth. We have
decided not to permit the generation of such hierarchies, and move the composite

10 TUD-SERG-2006-017

SE Gross, Seesing — Genetic Programming for OO Software Testing

constructor sub-tree up towards the root node. This is illustrated in Fig. 2.
The object constructor can then be moved to a position in the tree where it is
executed before the object reference is used as input value. It is important to
note that there is no reason for restricting the composition depth other than
controllability of the experiments. It makes it easier to understand what the
GP-algorithm is doing and to control and assess its behavior.

i
w7
| |
L-Var "var1" [Method "set”] [Meihnd "test”]

> g q

I |
[Cunstr"Test"J [R-Var "vari"] [R-Var "var1"]

!—EB—F

[Gnnstant 1) [Gnnstant "5"] [Constr "Foo" J [Constant 4"]

l—&B—!

[R-Var "var1"][Constant "7"]

]
AL :

[I 1

[L-Var "var1"][L-Var "var2"] [Method “set”] [Method "test™]
S4 L4 2
[Constr "Test"][Constr "Foo™]
[_] [_J R-Var "vari" l Constant "4" |
Constant "1™ Constant 6"
R-Var "var2" i

[R-\I'arl“vaﬁ"](cunm:lnl"T"]

Fig. 2. Tree flattening activity

Crossover. In GP, unlike genetic algorithms, the crossover is only applied at
nodes in the chromosome tree, and not at leaves. The nodes for crossover are
determined randomly for each of the two participating individuals, or through a
search for distinct nodes. If the two crossover nodes are compatible, the crossover
operator simply exchanges the entire subtrees. Two subtrees are compatible, if
the types of the two root nodes of the candidate sub-trees are the same, and a
search through the tree can actually determine feasible nodes of the same type.
Compatibility is always given at the root node level of the entire chromosome
trees. The simplest crossover is performed at the method level, thus exchanging
entire methods including input parameters. Input parameter nodes can also be
exchanged, given that they have the same types, and constant values can be
swapped between individuals. Figure 3 illustrates an exchange at the root level,
swapping entire sub-trees of methods.

TUD-SERG-2006-017 11

Gross, Seesing — Genetic Programming for OO Software Testing

12

Parent 1 Parent 2
1)
) NP

T [T]

[Method "set”] [Melhﬂ["aet”] [L-War “var1™] [Mellmd"seﬂ'] Method "set”
‘ P D r]

s> S5)
[coaan “Test”] [R-Var "vari™] [ReVar “varl”] l

[Constant =1~] [Constant "6] [Constant =¥~] [Constant 4"] [Constant "1" J [R-Var "var™ J [Constant 3"] [Constam "4"]
Sub-Tree
Child 1 Crossover Chila 2
I
1 1 [
[Mathod uﬁ"‘] [Mell‘éd “aat”] [L-War “varl™]
L/

Consir "Test”
AN

[R-Var “varl”] [Constant "3"] [Constant "47]

[Constant =1] [Constant "6"]

Fig. 3. Tree-based crossover of Genetic Programming

Crossover and mutation can generate chromosomes of arbitrary length over time,
simply by adding more and more sub-trees. This is not desirable, so overgrowth
of the chromosome must be regulated through the introduction of a penalty on
the overall fitness for larger individuals. This turns our approach into a multi-
objective evolutionary algorithm, although, here, size of the test case is the
second optimization objective, thus putting selective pressure on the generation
of short test scenarios.

4.4 Genotype/Phenotype Transfer and Program Execution.

We are using coverage metrics to indicate an individual’s fitness [12,16]. There
are to approaches to execute an individual and obtain coverage information.
The first one generates the test program code, for example as Java source or
byte code, after which it will compile and execute it. The second one uses the
reflection mechanism in Java. This allows us to skip the creation, compilation
and class loading steps present in the first approach. For example, the method
node has as its children a node which creates an object to call a method on (if
it is not a static method), and nodes to create the arguments it might need.
Although, reflection calls are much slower than the normal Java calls, using
reflection compensates for the additional overhead of creation, compilation, and
loading of a normal Java class.

5 Experiments

In order to demonstrate the applicability of our proposed test case generation
technique based on GP, we have applied it to b test programs, XMLElement, an

TUD-SERG-2006-017

SE

SE

TUD-SERG-2006-017

Gross, Seesing — Genetic Programming for OO Software Testing

XML parsing package including a number of classes, and from the Java collection
classes, HashMap, BitSet, TreeMap, and TreeTokenizer. All test were executed
on a 2.1 GHz Athlon XP under Java 1.6 [20]. Mutation was set to 70% method
introduction, 15% method removal, and 15% variable introduction. The results
displayed in Table 2 demonstrate the advantage of the GP approach over a
traditional random testing strategy. Only for the smallest SUT, StringTokenizer,
the random testing technique could generate the same high coverage (100%) as
our GP approach. For the other examples, the GP approach achieves much higher
test coverage. The columns time in seconds, Time(s), give an indication of how
much more processing time is required for the GP, which is a much more complex
algorithm, compared to the random generation. A more thorough discussion of
these experiments can be found in [19].

Table 2. Tested SUTs, comparison between GP-based testing and random testing.

sSuT GP testing Random testing
Name Branches|Coverage(%) Time(s)|Coverage(%) Time(s)
BitSet 124 100 495 86 133
XMLElement 121 90 369 80 101
HashMap 50 94 180 72 43
TreeMap 39 92 13 46 29
StringTokenizer 5 100 5 100 2

6 Conclusions and Future Work

The purpose of this paper is the proposition of an genetic programming approach
to generate test software for object-oriented systems automatically. We have not
applied the techniques presented to extended problems, so experiments that we
have performed may only be regarded as a proof of concept and an initial step
towards a more extensive application. The main improvement, or advantage, of
our proposed method over the other two described approaches [21, 25] is that the
test software is already represented and altered as a fully functional computer
program. This means that the experience gained in genetic programming can be
utilized to create these test cases. Genetic programming proposes many more
different types of mutations and more robust cross-over algorithms which are
designed to keep the structures they alter semantically correct, preventing loss
of evolved structures. Genetic programming uses tree structures which are more
similar to the abstract syntax trees used in computer programs. This leads to
more powerful programs, because certain tests are impossible to create in linear
programs, and to a simplification of the execution of generated test cases. Genetic
programming is specifically geared toward program generation, and this makes
its application to test software generation so straight-forward.

Test software generation for object-oriented Java code as it is introduced in
this article, through its very nature, is much easier to perform than the GP-

Gross, Seesing — Genetic Programming for OO Software Testing SE

based generation of abritrary functional software. This is because the alphabet
of the GP system is not the entire alphabet of the programming languge under
consideration, but merely the methods and input parameters of the object under
test. And these can even be retrieved automatically. At least, this is the case for
a modern object-oriented development environment like Java.

Although, the number of different operation types is quite limited, large
classes which contain many methods will lead to huge hierarchical trees. This
increases the search space drastically that the genetic programming algorithm
has to work its way through. Future work will be geared toward limitation of
size and complexity of the search space as much as possible. This can already be
done manually, by skipping methods which do not alter the state of their object,
so-called pure methods [19]. An extension to our automatic testing system may
detect such methods and remove them from the GP alphabet.

The performance of genetic algorithms is not only influenced by their inter-
nal data structures and their alleged operators, but even more so by an efficient
fitness function. The fitness function used for the experiments is only a very
crude implementation of the standard fitness function proposed for coverage-
based evolutionary testing. There is definitely still leeway for improvement. Also,
the various mutation parameters need to be adjusted to achieve optimal perfor-
mance. This work may be seen as an initial step towards object-oriented test
program generation based on genetic programming.

References

1. A. Baresel et al. Structural and Functional Sequence Test of Dynamic and State-
Based Software with Evolutionary Algorithms. In: Proc. of the Genetic and Evo-
lutionary Computation Conference, Chicago, Illinois, USA, July 2003.

2. O. Buehler and J. Wegener. Evolutionary Functional Testing of an Automated

Parking System. In: Intl Conf. on Computer, Communication and Control Tech-

nologies: CCCT 03 and the 9th. Intl Conf. on Information Systems Analysis and

Synthesis: ISAS ’03, Orlando, Florida, July 31, August 1-2, 2003.

B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, 1990.

I.R. Forman and N. Forman. Java Reflection in Action. Manning, October 2004.

5. D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Reading, 1989.

6. H.-G. Gross and N. Mayer. Evolutionary Testing in Component-Based Real-Time
System Construction. In: Proc. of the Genetic and Evolutionary Computation Con-
ference, New York, July 8-14, 2002.

7. H.-G. Gross and N. Mayer. Search-Based Execution Time Verification in Object-
Oriented and Component-Based Real-Time System Development. In: Proc. of the
8th TEEE Intl. Workshop on Object-Oriented Real-Time Dependable Systems,
Guadalajara, Mexico, January 15-17, 2003.

8. H.-G. Gross. An Evaluation of Dynamic, Optimisation-based Worst-case Execu-
tion Time Analysis. Proceedings of the International Conference on Information
Technology: Prospects and Challenges in the 21st Century, Kathmandu, Nepal,
May 2003.

9. H.-G. Gross. Component-Based Software Testing with UML. Springer, Heidelberg,
2005.

L

14 TUD-SERG-2006-017

SE

TUD-SERG-2006-017

10

11.

12,

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Gross, Seesing — Genetic Programming for OO Software Testing

J. Holland. Adaptation in Natural and Artificial Systems. MIT Press, Cabmridge,
MA, 1975.

TEEE. Standard Glossary of Software Engineering Terminology. Volume IEEE Std.
610.12-1990. IEEE, 1999.

B. Jones et al. Automatic Structural Testing Using Genetic Algorithms. Software
Engineering Journal, 11(5), 1996.

D. Koza. Genetic Programming, On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA, 1992.

P. McMinn. Search-Based Software Test Data Generation: A Survey. Software Test-
ing, Verification and Reliability, 14(2), pp. 105-156, 2004.

C. Michael, G. McGraw and M. Schatz. Generating Software Test Data by Evolu-
tion. IEEE Transaction on Software Engineering, 27(12), December 2001.

R. Pargas et al. Test data generation using genetic algorithms. Software Testing,
Verification & Reliability, 9(4), 1999.

H.P. Schwefel and R. Méanner. Parallel Problem Solving from Nature. Springer,
Berlin, 1990.

A. Seesing. An Overview of Automatic Object-Oriented Test Case Generation us-
ing Genetic Programming. Internal Report, Research Assignment, EWI — Delft
University of Technology, April 2005.

A. Seesing. EvoTest: Test Case Generation using Genetic Programming and Soft-
ware Analysis. Msc Thesis, Delft University of Technology, June, 2006.

Sun Microsystems. Mustang (Java 6.0 beta). https://mustang.dev.java.net.

P. Tonella. Evolutionary Testing of Classes. In: Proc. of the 2004 ACM SIGSOFT
Intl. Symposium on Software Testing and Analysis, pp. 119-128, Boston, July 11—
14, 2004.

N. Tracey, J. Clarke, and K. Mander. The way forward in unifying dynamic test
case generation: The optimisation-based approach. In Proc. of the IFTP Intl Work-
shop of Dependable Computing, South Africa, January 1998.

N. Tracey et al. Integrating Safety Analysis with Automatic Test-Data Genera-
tion for Software Safety Verification. In: Proc. of 17th International System Safety
Conference, August 1999.

P. von Laarhoven and E. Aarts. Simmulatd Annealing: Theory and Applications.
Mathematics and its Applications. Kluwer, Dordrecht, 1987.

S. Wappler and F. Lammermann. Using Evolutionary Algorithms for the Unit
Testing of Object-Oriented Software. In: Proc. of the Genetic and Evolutionary
Computation Conference, Washington D.C., June 25-29, 2005.

J. Wegener and M. Grochtmann. Verifying timing constraints by means of evolu-
tionary testing. Real-Time Systems, 3(15), 1998.

Gross, Seesing — Genetic Programming for OO Software Testing S E

16 TUD-SERG-2006-017

TUD-SERG-2006-017 S E(I
ISSN 1872-5392

