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S U M M A R Y
An effective poroelastic model is proposed that describes seismic attenuation and dispersion in
periodically layered media. In this model, the layers represent mesoscopic-scale heterogeneities
(larger than the grain and pore sizes but smaller than the wavelength) that can occur both in
fluid and solid properties. The proposed effective medium is poroelastic, contrary to previously
introduced models that lead to effective viscoelastic media. The novelty lies in the application
of the pressure continuity boundary conditions instead of no-flow conditions at the outer edges
of the elementary cell. The approach results in effective Biot elastic moduli and effective
porosity that can be used to obtain responses of heterogeneous media in a computationally fast
manner. The model is validated by the exact solution obtained with the use of Floquet’s theory.
Predictions of the new effective poroelastic model are more accurate than the predictions of
the corresponding effective viscoelastic model when the Biot critical frequency is of the same
order as the frequency of excitation, and for materials with weak frame. This is the case for
media such as weak sandstones, weakly consolidated and unconsolidated sandy sediments.
The reason for the improved accuracy for materials with low Biot critical frequency is the
inclusion of the Biot global flow mechanism which is not accounted for in the effective
viscoelastic media. At frequencies significantly below the Biot critical frequency and for well-
consolidated porous rocks, the predictions of the new model are in agreement with previous
solutions.
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1 I N T RO D U C T I O N

A lot of attention has been paid to the proper description of seismic
wave attenuation in porous media over the last decades. Currently,
it is widely accepted that attenuation in porous materials is associ-
ated with the presence of pore fluids and caused by a mechanism
often referred to as wave-induced fluid flow. Flow of the pore fluid
can occur at different spatial scales, that is, on the microscopic,
mesoscopic and macroscopic scales. Generally, flow is caused by
pressure gradients created by passing waves. The flow dissipates
energy of the passing wave as it implies a motion of the viscous
fluid relative to the solid frame of the porous material.

Wave-induced fluid flow resulting from wavelength-scale pres-
sure gradients between peaks and troughs of a passing seismic wave
is often called macroscopic or global flow as the flow takes place on
the length scale of the seismic wave. In many practical situations,
this mechanism is not the dominant attenuation mechanism of a
seismic wave, though it is not always negligible since it depends
on parameters such as permeability and porosity. For a medium
containing inhomogeneities smaller than the wavelength but much

larger than the typical pore size, a passing wave induces a pres-
sure gradient on the subwavelength scale that drives a so-called
mesoscopic flow. It is widely believed that it is this mechanism, the
wave-induced fluid flow between mesoscopic inhomogeneities, that
is the main cause of wave attenuation in the seismic frequency band
(e.g. Müller & Gurevich 2005; Müller et al. 2010). Inhomogeneities
can also be present on the scale of the pore size. In that case, passing
waves induce local or microscopic flow, but its effect is often rather
small for seismic waves as the mechanism becomes active only at
relatively high frequencies (Pride et al. 2004).

In this paper, we consider media that have mesoscopic inho-
mogeneities. In such media the inhomogeneities can occur both
in fluid (partial or patchy saturation) and in frame (e.g. double
porosity) properties. The direct method to account for the pres-
ence of such inhomogeneities and its effect on attenuation is to solve
the equations of poroelasticity (Biot 1956; Schanz 2009; Carcione
et al. 2010) with spatially varying coefficients. However, this can be
computationally cumbersome and time consuming, thus motivating
the development of effective-medium approaches where frequency-
dependent coefficients are derived and used as input for the
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equations of a homogeneous effective medium. The simplest exam-
ple of this approach is the homogenization of a periodically layered
medium in which each layer is homogeneous and waves propagate
normal to the layering. White et al. (1975) derived a low-frequency
approximation of an effective compressional (P) wave modulus for
such a medium by applying an oscillatory compressional test to the
representative element that consists of half of the periodic cell and
has undrained boundaries (i.e. no-flow conditions). This analysis
showed that attenuation is quite significant when the fluid content
in each of the layers is considerably different, like for the combi-
nation of water and much more compressible gas. White’s result
has been confirmed by other authors who came to the same effec-
tive modulus in a slightly different way. Norris (1993) derived the
asymptotic approximation of the fast P-wave Floquet wavenumber
in the context of quasi-static Biot’s theory and defined the effective
modulus based on that. Brajanovski et al. (2005) also based the
effective modulus on a wavenumber but used a low-frequency ap-
proximation of the matrix propagator method. The low-frequency
approximations were overcome by Vogelaar & Smeulders (2007),
who solved the White’s model in the context of full Biot’s equations.

Dutta & Seriff (1979) showed that the geometry of heterogeneities
plays a minor role on the behaviour of the media as long as the het-
erogeneities are much smaller than the wavelength. This justifies
studies with periodic stratification, the great advantage of which is
the availability of analytical expressions for the effective moduli
that provide insight and that are easy to apply. Based on White’s
periodic model, Carcione & Picotti (2006) focused on the analy-
sis of different heterogeneities in rock properties that led to high
attenuation. They found that changes in porosity and fluid prop-
erties cause the most attenuation compared to inhomogeneities in
the grain and frame moduli. Wave propagation in fractured porous
media is studied by taking a limit case of White’s model in which
the thickness of one of the layers goes to zero and its porosity goes
to one (Brajanovski et al. 2005; Deng et al. 2012). Krzikalla &
Müller (2011) made an extension of the periodic model to arbitrary
angles of incidence, thus accounting for shear wave attenuation as
well. Carcione et al. (2011) used this analytical extension to vali-
date their numerical oscillatory tests on a stack of layers from which
they determined the complex stiffnesses of an effective transversely
isotropic medium. They refer to this extension as Backus–White
model, because it is based on White’s result and the extension of
the O’Doherty–Anstey formalism, and on Backus averaging ap-
plied to poroelasticity by Gelinsky & Shapiro (1997). Apparently,
the periodic model of White is the starting point of many other stud-
ies on partially saturated media. Rubino et al. (2009) proposed an
equivalent medium for a more realistic geometry of heterogeneities
than in White’s model, also using oscillatory compressibility (and
shear) tests in the space-frequency domain. This approach is used,
in particular, in studies on CO2 monitoring (Rubino et al. 2011;
Picotti et al. 2012).

The above-discussed effective media that capture the mesoscopic
attenuation mechanism are in fact viscoelastic media. In all 1-D
models, only one frequency-dependent elastic modulus is obtained
for the considered representative element. This is a result of employ-
ing the no-flow boundary condition (undrained boundary), which
implies that there is no relative fluid-to-solid motion at the outer
edges of the representative element. Consequently, there is only
one degree of freedom in the effective medium, which is the dis-
placement of the frame; the effective medium thus allows for the
existence of only one P-wave mode. Although the derivation of
the effective modulus is based on the equations of poroelasticity, the
obtained effective models can therefore be referred to as viscoelas-

tic, as it was explicitly done for 2-D case by Rubino et al. (2009).
A viscoelastic model is after all characterized by a single complex-
valued frequency-dependent bulk modulus, being the counterpart
of a temporal convolution operator in the time-domain stress–strain
relation (e.g. Carcione 2007); a poroelastic model would require
more effective parameters. Reduction of parameters and degrees
of freedom in the effective medium facilitates its application and
increases efficiency of computations, thus making the application
of the equivalent viscoelastic media popular for studies of meso-
scopic loss in porous media. Dutta & Ode (1979) noted, however,
that the choice of boundary conditions at the outer edges of the
representative element, as originally made by White et al. (1975), is
not unique. Instead of the no-flow condition, the pressure continuity
condition may be applied, as commonly used at the interface of two
porous layers (Deresiewicz & Skalak 1963).

In this paper, we derive an effective model for the same peri-
odic configuration as considered by White, but using the pressure
continuity boundary condition that allows relative fluid-to-solid mo-
tion at the outer edges of the representative element (for which we
take the full periodic cell). We show that this leads to an effective
poroelastic model that has two degrees of freedom, the frame and
fluid displacements, and that allows the existence of both the fast
and the slow compressional waves. The choice of boundary con-
ditions implies that flow on the wavelength scale is permitted and
the effective poroelastic model thus also captures the macroscopic
attenuation mechanism (next to the mesoscopic mechanism). The
effect of both global and mesoscopic flow on wave propagation in
layered media normal to the layering was also captured by Gelinsky
et al. (1998), who proposed a statistical model for small fluctu-
ations of the medium parameters and introduced an approximate
solution for frequencies well below Biot critical frequency. We de-
rive frequency-dependent effective poroelastic parameters valid for
any contrast in medium parameters and for all frequencies where the
effective model approach is valid. We also derive low-frequency ap-
proximations of the effective parameters. The frequency-dependent
(fast) P-wave attenuation and transient point-source responses are
compared to those predicted by the full-frequency range version of
White’s model (Vogelaar & Smeulders 2007) and to the analytical
solution as obtained using Floquet’s theory (Floquet 1883). It ap-
pears that the effective poroelastic model yields the proper P-wave
attenuation even in situations where the macroscopic attenuation
mechanism plays a significant role.

The paper is structured as follows. First, the basic equations of
Biot’s theory are introduced in Section 2. Then, the derivation of the
effective porous medium is given (Section 3, supported by Appen-
dices A and B). Expressions for point-source responses are derived
in Section 4 (and Appendix C), and numerical results are presented
in Section 5. Limitations of the effective poroelastic model are dis-
cussed in Section 6 and conclusions are given in Section 7.

2 B I O T T H E O RY OV E RV I E W

In this section, the basic equations of Biot’s theory (Biot 1956) ex-
pressed for the displacement fields in porous media are introduced.
The 1-D form of the stress–strain relations reads

−φp = Qu′ + Rw′,

−σ − (1 − φ)p = Pu′ + Qw′. (1)

Here φ is the porosity, p is the pore fluid pressure, σ is the inter-
granular stress, u is the solid and w is the fluid displacements with
respect to an absolute frame of reference. The prime stands for the
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spatial derivative. The poroelastic coefficients P, Q, R are related
to the porosity, the bulk moduli of the grains (Ks), fluid phase (Kf )
and the drained matrix (Km), as well as to the shear modulus (μ),
via the following expressions:

P = φKm + (1 − φ)Kf (1 − φ − Km/Ks)

φ + Kf (1 − φ − Km/Ks) /Ks
+ 4

3
μ,

Q = φKf (1 − φ − Km/Ks)

φ + Kf (1 − φ − Km/Ks) /Ks
,

R = φ2 Kf

φ + Kf (1 − φ − Km/Ks) /Ks
. (2)

The momentum equations read

−σ ′ − (1 − φ)p′ = ρ11ü + ρ12ẅ + b ∗ (u̇ − ẇ),

−φp′ = ρ12ü + ρ22ẅ − b ∗ (u̇ − ẇ), (3)

where a dot stands for a time-derivative, ∗ for temporal convolution,
ρ11, ρ12 and ρ22 are the real-valued density terms related to the
porosity, the fluid density ρf , the solid density ρs and to the tortuosity
α∞:

ρ11 = (1 − φ)ρs − ρ12,

ρ12 = −(α∞ − 1)φρf ,

ρ22 = φρf − ρ12. (4)

In the original low-frequency Biot’s theory (Biot 1956) the damping
operator b = b(t) is a time-independent viscous factor b0 = ηφ2/k0,
where η is the viscosity of the fluid, and k0 is permeability. With
the adoption of the correction to this factor to account for dynamic
effects (Johnson et al. 1987) the viscodynamic operator b̂ in the
frequency domain reads:

b̂ = b0

√
1 + i

ω

2ωB
M, Re(b̂) > 0 for all ω. (5)

Here M is the parameter that depends on the geometry of the pores,
permeability and porosity. Following Johnson et al. (1987), we will
assume M = 1 throughout the paper. ωB = φη/(k0α∞ρf ) is the
Biot critical frequency. A hat above a quantity stands for frequency
dependence. The transition to the frequency domain is carried out
by a Fourier transform defined as

f̂ (ω) =
∫ ∞

−∞
exp(−iωt) f (t) dt. (6)

The transition back to the time domain is carried out by applying
the inverse Fourier transform

f (t) = 1

2π

∫ ∞

−∞
exp(iωt) f̂ (ω) dω. (7)

The combination of the stress–strain relations (1) and the equations
of motion (3) leads to a set of equations in terms of the fluid (u)
and solid (w) particle displacements. These equations are solved
in the frequency domain via seeking a solution in the form û =
Â exp(ikx), ŵ = B̂ exp(ikx). Substitution of these expressions leads
to a system of linear homogeneous equations for the amplitudes Â,
B̂, which has a non-trivial solution when the determinant of the
system is zero

(P R − Q2) − (Pρ̂22 + Rρ̂11 − 2Qρ̂12)
k2

ω2

+ (
ρ̂11ρ̂22 − ρ̂12

2) k4

ω4
= 0. (8)

Here frequency-dependent density terms are defined as

ρ̂11 = ρ11 − ib̂/ω,

ρ̂12 = ρ12 + ib̂/ω,

ρ̂22 = ρ22 − ib̂/ω. (9)

The dispersion eq. (8) has four roots ±kP1, ±kP2 that correspond to
the wavenumbers of the up- and downgoing fast and slow P-waves.
The fluid-to-solid amplitude ratios for both waves are

β̂ P1,P2 = − Pk2
P1,P2 − ρ̂11ω

2

Qk2
P1,P2 − ρ̂12ω2

. (10)

Thus, for arbitrary excitation the displacement fields read

û(x) = Â1eikP1x + Â2eikP2x + Â3e−ikP1x + Â4e−ikP2x ,

ŵ(x) = β̂ P1

(
Â1eikP1x + Â3e−ikP1x

) + β̂ P2

(
Â2eikP2x + Â4e−ikP2x

)
.

(11)

The amplitudes Â1 to Â4 are determined by the excitation and
boundary conditions. These expressions will be used in further
derivations.

3 E F F E C T I V E P O RO E L A S T I C M O D E L
F O R P E R I O D I C L AY E R I N G

In this section, effective frequency-dependent poroelastic parame-
ters are derived to describe wave propagation in periodically strat-
ified media normal to the stratification. The periodic medium and
its elementary cell are depicted in Fig. 1. The thicknesses of the
layers are denoted by lI and lII, and L = lI + lII is the period of the
system. Each of the layers I and II is homogeneous and is described
by Biot’s equations introduced in the previous section, and has its
own set of material properties contained in the coefficients (2), (4)
and (5).

Since we consider the period L much smaller than the wavelength,
it is reasonable to regard some elementary cell as a representative
volume of the homogeneous effective medium. Then the elastic
moduli can be determined from oscillatory compressional-stress
tests. A similar approach has been used by White et al. (1975),
but with a different choice of boundary conditions; they chose a
representative elementary cell that consists of the halves of the
layers and applied the total stress continuity and no-flow conditions
at the outer edges of the elementary cell. Here, the full periodic cell
is chosen and an oscillatory pressure p is applied together with an
oscillatory intergranular stress σ at the outer edges of the elementary
cell, as depicted in Fig. 1 (right-hand panel). We emphasize that,
with this choice (suggested by Dutta & Ode 1979), no kinematic
condition restricting the flow across the outer edges of the cell is
applied; two phases, solid and fluid displacements, remain in the
effective medium, while the no-flow condition allows for only one
phase in the effective medium.

The solutions of Biot’s equations in each of the layers consist of
up- and downgoing plane waves (as in eq. 11)

ûI,II =
4∑

i=1

ÂI,II
i exp

(
ikI,II

i x
)
,

ŵI,II =
4∑

i=1

β̂
I,II
i ÂI,II

i exp
(
ikI,II

i x
)
. (12)
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Figure 1. Left-hand panel: periodically layered medium; right-hand panel: its elementary cell.

Throughout the paper the indices and superscripts I and II refer to
the properties of the layers I and II, respectively. The wavenumbers
kI,II

i for each of the layers are found as the roots of the corresponding
dispersion eqs (8) and the fluid-to-solid amplitude ratios β̂

I,II
i are

found according to relations (10). In order to find the unknown
amplitudes ÂI,II

i a system of eight linear algebraic equations has to
be solved that follow from the eight boundary conditions

{ûI, ζ̂ I, σ̂ I, p̂I}|x=0 = {ûII, ζ̂ II, σ̂ II, p̂II}|x=0,

p̂I(−lI) = p̂, p̂II(lII) = p̂,

σ̂ I(lI) = σ̂ , σ̂ II(lII) = σ̂ . (13)

Here, the first four boundary conditions assume the continuity of
intergranular stress, pore pressure, solid particle displacement and
fluid displacement relative to the matrix ζ̂ = φ(ŵ − û) at the inter-
face between the layers I and II (following Deresiewicz & Skalak
1963). The latter four conditions express the excitation at the outer
edges; they are thus different from those applied by White et al.
(1975) and Vogelaar & Smeulders (2007). The coefficients of the
linear system of equations are written out explicitly in Appendix A.

As mentioned before, the elementary cell is regarded as a repre-
sentative volume of the homogenized effective medium. Thus, the
strains of the elementary cell

û′ = ûII(lII) − ûI(lI)

L
, ŵ′ = ŵII(lII) − ŵI(lI)

L
(14)

can be regarded as the strains of the effective medium. They are
related to the intergranular stress and pore pressure according to
Biot’s stress–strain relations (1)[

û′
e

ŵ′
e

]
= E−1

e

[
σ̂

p̂

]
,

Ee = 1

φe

[
Q̂e(1 − φ̂e) − φ̂e P̂e R̂e − φ̂e(Q̂e + R̂e)

−Q̂e −R̂e

]
. (15)

Substitution of the amplitudes ÂI,II
i , which are found after solving

the system of equations from Appendix A, into eqs (12), and then
substitution of the result into (14), provides the following relations:

û′ = α1σ̂ + α2 p̂,

ŵ′ = α3σ̂ + α4 p̂. (16)

Here α1 to α4 are frequency-dependent complex-valued coefficients.
In order to derive the effective Biot coefficients, eqs (15) and (16)
should be compared. This leads to a system of four non-linear

algebraic equations, the solution of which is

P̂e = − −α3α2 − α4α3 + α4α1 + α3
2

α3
2α2 − α3α1α2 − α4α1α3 + α4α1

2
,

Q̂e = α3(α1 − α2)

α3
2α2 − α3α1α2 − α4α1α3 + α4α1

2
,

R̂e = − α1(α1 − α2)

α3
2α2 − α3α1α2 − α4α1α3 + α4α1

2
,

φ̂e = α1 − α2

α1 − α3
. (17)

These coefficients are the effective complex-valued frequency-
dependent elastic moduli and porosity of the effective poroelastic
medium.

In the low-frequency regime, all effective models that capture
the mesoscopic attenuation mechanism predict similar behaviour of
the inverse quality factor Q−1 of the fast compressional wave (Pride
et al. 2003). In order to validate the effective coefficients (that are
combined in Q−1) in the current effective poroelastic model, we
derive low-frequency analytical expressions using a perturbation
method described in Appendix C. The terms of the expansion

�̂e = �0 + ω�1 + ω2�2 + O(ω3) (18)

can be found for each of the effective coefficients (17). The matrix E
(eq. 15) containing the zeroth-order terms turns out to be a harmonic
average of the matrices for each of the layers, exactly like a single
Young’s modulus for an elastic solid (also known as Wood’s law):

E−1
0 = lI

L
E−1

I + lII

L
E−1

II . (19)

The analytical expressions for the first-order terms are quite big;
they depend on the properties of both layers, including the viscous
terms. Rather simple expressions can be obtained in the specific
case of small inclusions, that is, when lII � lI, using Taylor series in
lII. An expansion of the Gassmann modulus Ĥ e = P̂e + 2Q̂e + R̂e

around ω = 0 reads:

Ĥ e = H0 + iχbI
0lIIω. (20)

Here, H0 = P0 + 2Q0 + R0, bI
0 = (ηφ2/k0)I is the Biot damping

factor of the first layer, and the coefficient χ depends on elastic mod-
uli and porosities of the layers and is not presented here explicitly
because of its size.

The theory of Biot predicts the low-frequency attenuation of
the fast compressional wave Q−1 to be proportional to permeabil-
ity k0 (Berryman 1986). However, in media with mesoscopic het-
erogeneities the situation is different: the attenuation is inversely
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proportional to the permeability (Pride et al. 2003); this is con-
firmed for the current effective poroelastic model

Q−1 = 2

∣∣∣∣∣ Im(Ĥ e)

Re(Ĥ e)

∣∣∣∣∣ = 2χωηφ2lII

H0k0
. (21)

Here, for reasons of comparison Q−1 is defined as in Pride et al.
(2004) for their patchy saturation model; in the remainder of this
paper, a slightly different definition of Q−1 is adopted.

4 C O N F I G U R AT I O N A N D DY NA M I C
R E S P O N S E S

The dynamic response predicted by the current effective poroe-
lastic model is validated by an exact solution (Floquet’s theory,
Appendix C) and compared with the response predicted by the
effective viscoelastic model proposed by Vogelaar & Smeulders
(2007); see next section. In this section, the specific configuration
and excitation are given, as well as the derivation of the dynamic
responses for different models.

4.1 Configuration

The configuration chosen for the simulations of wave propagation
in different models is the typical case of partial saturation; it has
been used in numerous studies, starting from White et al. (1975).
Two different fluids fully saturate the poroelastic solid with the pe-
riodic zones in x-direction, as depicted in Fig. 2(a). Fig. 2(b) depicts
the effective homogenized medium that is described either with one
single viscoelastic equation, or with the single set of Biot’s poroe-
lastic equations, both with the effective coefficients. The saturations
of the fluids are sI = lI/L , sII = lII/L . The dry rock properties are
the same for both layers, and they do not depend on depth x. This
simple configuration allows to account for the effects of fluid flow
specifically.

At the top interface x = 0 a stress as a function of time is applied.
The pore pressure is assumed to be zero at x = 0 (free surface).
Then, the boundary conditions at the top interface for the exact
solution and for the effective poroelastic model read

− σ |x=0 = f (t), p|x=0 = 0. (22)

For the viscoelastic model, there is only one boundary condi-
tion at the top interface, namely, the continuity of the solid
stress τ

τ |x=0 = f (t). (23)

As source function, the Ricker wavelet is chosen

f (t) = f0

[
1 − 2π 2 f 2

R (t − t0)2
]

exp
[−π 2 f 2

R (t − t0)2
]
. (24)

Here, f0 is a constant scaling coefficient with the dimension of stress
(Pa), fR is the central frequency of the wavelet and t0 is an arbitrary
time-shift chosen such that the non-zero part of the wavelet lies
within the positive domain t > 0; only the components that are
infinitely small are left in the domain t < 0. The dynamic responses
of the media are compared far away from the source (in terms of
wavelengths) in order to capture the attenuation effects, at a distance
xr below the source.

4.2 Exact solution

The exact solution for the periodically layered half-space is obtained
with the use of Floquet’s theory (Floquet 1883). For elastic com-
posites, the procedure has been implemented by Braga & Hermann
(1992). For periodic poroelastic layering, Floquet’s theory has been
applied by Norris (1993), but the full solution is not present in that
paper, as the author worked with low frequencies and only with
the fast P-wave mode. In most cases of interest, the low-frequency
solution suffices within the seismic frequency band. However, this
is not always the case. In particular, when the Biot critical frequency
is relatively small so that the assumption ω � ωB is violated in the
seismic frequency band, the full solution is required. Examples are
shown in the next section. The procedure of obtaining the exact
solution, which contains two modes, in the frequency domain is
given in Appendix C. In the examples provided in the next section,
this solution is used for validating the effective media at frequencies
well below the stop and pass bands typical for periodic structures,
because the effective media cannot be applied at higher frequencies
where the assumption of the wavelength being much larger than the
period is violated. Nevertheless, the exact solution is valid for any
frequency.

Figure 2. Geometry of a periodically stratified poroelastic solid (a) and its homogenized analogue (b).
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6 A. M. Kudarova, K. N. van Dalen and G. G. Drijkoningen

Table 1. Sets of material properties chosen for simulations.

Parameter Notation Units Rock Sand 1 Sand 2 Sand 3 Sand 4

Density of solid grains ρs kg m−3 2650 2650 2650 2690 2650
Bulk modulus of solid grains Ks GPa 40 36 36 32 40
Bulk modulus of frame Km GPa 12.7 0.22 0.044 0.044 0.2
Porosity φ – 0.15 0.35 0.4 0.38 0.38
Permeability k0 m2 10−13 10−10 10−10 2.5 × 10−11 6.49 × 10−12

Shear modulus μ GPa 20.3 0.1 0.026 0.03 0.12
Tortuosity α∞ – 1 1.25 1.25 1.35 1.25
Biot critical frequency

(100 per cent water saturation)
ωB

2π
Hz 2.4 × 105 446 509 1792 7514

4.3 Effective poroelastic model solution

The system of linear equations from Appendix A is solved numeri-
cally (with the application of the standard function of International
Mathematics and Statistics Library for Fortran) for each frequency.
Then, the effective coefficients (17) are obtained. In order to find
the response of the effective poroelastic model Biot’s equations of
motion are solved first in the frequency domain using the derived
effective coefficients. Then the response in time domain is found by
applying the inverse Fourier transform (7). The effective density of
the fluid is taken as an arithmetic average: ρe

f = sIρ
I
f + sIIρ

II
f . The

effective frequency-dependent density terms (9) are also determined
from arithmetic averages

ρ̂i j = sIρ̂
I
i j + sIIρ̂

II
i j . (25)

This is consistent with taking (η/k̂0)e = sI(η/k̂0)I + sII(η/k̂0)II as
the effective inverse fluid mobility that can be derived from Darcy’s
law applied to the elementary cell in Fig. 1 (cf. Schoemaker 2011).
Here, for the individual layers, the dynamic permeability k̂0 is de-
fined as (Johnson et al. 1987)

k̂0 = k0

(√
1 + i

ω

2ωB
M + i

ω

ωB

)−1

. (26)

We note that, in the limiting case of a homogeneous medium, this
dynamic permeability results in the frequency-dependent damping
term b̂ given in (5), and thus in the density terms ρ̂i j specified
in (9).

The solution of Biot’s equations with the effective coefficients
is thus found in the form (11). The amplitudes of the upgoing
waves are zero due to the fact that there are no sources at infinity,
and all the field variables should go to zero at infinity for a sys-
tem with viscous damping (on account of the radiation condition).
Thus, only two amplitudes of the exponential terms exp(−ike

P1x)
and exp(−ike

P2x), where ke
P1,P2 are the effective fast and slow com-

pressional wavenumbers, respectively, and Im(ke
P1,P2) < 0, are to

be found. The two boundary conditions (22) determine the system
of linear equations with the unknown amplitudes Â3 and Â4(
Q̂e + R̂eβ̂

e
P1

)
ke

P1 Â3 + (
Q̂e + R̂eβ̂

e
P2

)
ke

P2 Â4 = 0,

i
(
P̂e + Q̂eβ̂

e
P1

)
ke

P1 Â3 + i
(
P̂e + Q̂eβ̂

e
P2

)
ke

P2 Â4 = f̂ (ω), (27)

where f̂ (ω) is the Fourier transform of the wavelet (24). Â3 and Â4

are easily found from this system of equations:

Â3 = i
(
Q̂e + R̂eβ̂

e
P2

)
f̂

ke
P1

(
P̂e R̂e − Q̂2

e

)(
β̂e

P1 − β̂e
P2

)
Â4 = − i

(
Q̂e + R̂eβ̂

e
P1

)
f̂

ke
P2

(
P̂e R̂e − Q̂2

e

)(
β̂e

P1 − β̂e
P2

) . (28)

4.4 Effective viscoelastic model solution

Following Vogelaar & Smeulders (2007), the effective viscoelastic
model defines the effective frequency-dependent bulk modulus Ĥ .
The wave propagation in the effective medium is described with the
viscoelastic wave equation

− ρω2û − Ĥ û′′ = 0, (29)

where the effective density ρ is an arithmetic average of the fluid
and solid densities ρ

I,II
f and ρI,II

s in each of the layers, defined as

ρ = sI

[
(1 − φ)ρI

s + φρI
f

] + sII

[
(1 − φ)ρII

s + φρII
f

]
. (30)

The solution of the eq. (29) in the frequency domain can be found
in the same way as for the poroelastic model. Only a downgoing
wave is allowed due to the same radiation condition

û = Â exp(−ikx), k = ω

√
ρ/Ĥ , Im(k) < 0. (31)

The excitation is the same as in the poroelastic model. The ampli-
tude Â is found from the boundary condition (23) in the frequency
domain

τ̂ |x=0 = f̂ (ω) = Ĥ û′|x=0 = −Ĥ Âik ⇒ Â = i f̂ (ω)

Ĥk
. (32)

5 R E S U LT S

In this section, the results of simulations and comparison of the
dynamic responses are presented. The sets of chosen material prop-
erties for the solid phase are given in Table 1. They represent a
typical porous rock with stiff frame and high Biot critical frequency
(Rock), and a number of sands ranging from unconsolidated to
weakly consolidated with much lower Biot critical frequency for
which we expect different behaviour of the effective poroelastic and
viscoelastic models. The references for each of the sets are given
in the text below. Pore fluid and gas properties are listed in Table 2.
They are taken from Gelinsky & Shapiro (1997). The following
parameters are chosen for the Ricker wavelet (eq. 24): t0 = 0.022 s,
fR = 50 Hz, f0 = 1 GPa. The position of the receiver is chosen at a
distance xr = 103 · L below the source.

The first set of material properties from Table 1 (Rock) is taken
from Gelinsky & Shapiro (1997). It is a porous rock with high

Table 2. Mechanical properties of the sample pore fluids:
water and gas.

Parameter Notation Units Water Gas

Density ρf kg m−3 1000 140
Bulk modulus Kf GPa 2.25 0.056
Viscosity η Pa s 0.001 0.00022
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Poroelastic model for periodic layering 7

Figure 3. Inverse quality factor Q−1 (a) and frequency spectrum (b). Rock, L = 0.1 m, gas saturation 10 per cent. On both plots all three lines coincide.

Figure 4. Inverse quality factor Q−1 (a) and frequency spectrum (b). Sand 1, L = 0.1 m, gas saturation 10 per cent.

Biot critical frequency (well outside the seismic range) and well
consolidated. For a gas saturation of 10 per cent, the inverse qual-
ity factor Q−1 = 2|Im(ke

P1)/Re(ke
P1)| (where ke

P1 is the fast P-wave
wavenumber) versus frequency f = ω/(2π ) is depicted in Fig. 3(a).
As one can see from the plot, the responses of the effective poro-
and viscoelastic models (grey solid line and black dotted line, re-
spectively) and the exact solution (black circles) almost coincide.
In agreement with this prediction, we find that the magnitudes of
the responses in the frequency domain (the absolute values of the
solid particle displacement) of all three models coincide (Fig. 3b).

Sand 1 from Table 1 is an example of coarse sand. It has much
higher permeability than Rock and, as a consequence, much lower
value of the Biot critical frequency that is of the same order as
the frequency of excitation. The set of physical properties is taken
from Turgut & Yamamoto (1990). Because of the lack of data of
tortuosity for this sand, it is assumed to be the same as for Sand 2.
As one can see in Fig. 4, the agreement between the attenuations
and responses predicted by the models is violated for Sand 1. There
is a large difference between the models in the predicted attenua-
tions (Fig. 4a). The poroelastic model predicts practically the same
attenuation as the exact solution over a broad frequency range; devi-
ations occur with increasing frequency, but that is expected because
the associated wavelengths get smaller so that the effective model

becomes inappropriate. However, the viscoelastic model signifi-
cantly underestimates the attenuation at all frequencies where the
effective-model approach is supposed to be valid. As a result, the
magnitude of the response of the viscoelastic model differs from
that of the exact solution and the poroelastic model (Fig. 4b), while
the latter two coincide. The low value of Biot critical frequency
in case of Sand 1 implies that the frequency dependence of the
viscodynamic operator b̂ that is contained in the effective densi-
ties (eq. 25) (cf. eq. 9 for a homogeneous medium) starts to play a
role, and that the macroscopic attenuation mechanism gives a non-
negligible contribution to the damping of the propagating wave,
which is not captured by the effective viscoelastic model. The lat-
ter model only captures the mesoscopic mechanism and does not
allow fluid flow on the macroscopic scale due to the no-flow bound-
ary conditions at the outer edges of the representative elementary
cell.

One can note that different frequency ranges are shown in the
plots of the attenuations and responses. The frequency range in
the plots of the responses corresponds to the width of the fre-
quency spectrum of the excitation wavelet. Relatively low frequen-
cies have been chosen for the excitation wavelet to demonstrate re-
alistic responses of the different models at a certain depth (100 m).
In principle, the difference between the predictions of the models
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8 A. M. Kudarova, K. N. van Dalen and G. G. Drijkoningen

Figure 5. Inverse quality factor Q−1 (a) and frequency spectrum (b). Sand 2, L = 0.1 m, gas saturation 10 per cent.

varies with frequency, ratio of inhomogeneities (gas saturation) and
distance from the source. The attenuation plots show the difference
between the models at a broader frequency range and provide an
insight into possible deviations in the magnitudes of the responses at
higher frequencies. In most of the plots (Figs 4a, 5a, 7a, 8a and 9b)
the predictions of attenuations by the effective poroelastic model
start to deviate from the predictions of the exact solution at higher
frequencies. This is due to the violation of the effective medium
approach: the wavelength of a propagating wave becomes shorter
(compared to the period of the system).

The next example (Sand 2 from Table 1) is also a high-permeable
material with low Biot critical frequency which has weaker frame
than Sand 1. It is an unconsolidated sand sediment. This set of ma-
terial properties is taken from Williams (2001), keeping only real
parts of the bulk moduli. The inverse quality factor for gas satu-
ration 10 per cent is depicted in Fig. 5(a). The poroelastic model
predicts the same attenuation as the exact solution at all frequencies
of interest for the current configuration (where the effective medium
approach is valid). The magnitudes of the responses for different
saturations are depicted in Figs 5(b) and 6(a)–(d). As one can note,
the difference in the magnitudes of the responses increases with
the increase of gas saturation. Again, the viscoelastic model under-
estimates attenuation for all gas saturations, while the poroelastic
model is in agreement with the exact solution. The viscoelastic
model underestimates the attenuation by almost a factor two for
high gas saturation (Fig. 6d).

Sand 3 has been chosen as an example of a weakly consolidated
material with lower permeability and higher Biot critical frequency
than in the previous examples of sands. This set of material proper-
ties has been taken from Hefner & Jackson (2010). The parameters
of this sand are referred to as SAX99 in the mentioned paper; they
were obtained during the sediment acoustics experiment in 1999.
The predicted attenuations for gas saturations of 10 and 90 per cent
are depicted in Figs 7(a) and 8(a), respectively. As in the previous
examples, the poroelastic model predicts practically the same atten-
uation as the exact solution, and the viscoelastic model significantly
underestimates the attenuation. The difference in the magnitude of
the responses for gas saturation 10 per cent (Fig. 7b) is not as large
as for Sand 2 (Fig. 5b), but it also increases with the increase of gas
saturation (Fig. 8b).

As can be concluded based on the examples shown above, the dif-
ferences in predictions of the models become less pronounced with

the decrease of permeability (increase of Biot critical frequency; cf.
Sands 2 and 3) and increase of bulk and shear moduli of the frame
(for materials with equal permeability, cf. examples Sand 1 and Sand
2). This observation is confirmed by the results for Sand 4 (Fig. 9)
that has even lower permeability than Sand 3 and stiffer frame. This
set of material properties has been taken from Chotiros (1995),
where it is referred to as Ottawa sand. As in the previous examples,
the difference between the models is more pronounced for higher
gas saturations. The inverse quality factor for saturation 10 per cent
is depicted in Fig. 9(a). The poroelastic model and the exact solution
are in agreement; the viscoelastic model slightly underestimates the
attenuation with increasing frequency. However, this would hardly
affect the magnitude of the responses for the chosen configuration
(the corresponding plot is left out). The difference between all three
models is significant for a gas saturation of 90 per cent (Fig. 9b). At
low frequencies the poroelastic model still gives the same result as
the exact solution, while the viscoelastic model predicts less attenu-
ation. At higher frequencies, where the effective medium approach
is violated, all solutions give different results. Still, the prediction of
the poroelastic model is closer to the exact solution than that of the
viscoelastic model. The response in the frequency domain for a gas
saturation of 90 per cent is depicted in Fig. 9(c). A higher central
frequency (200 Hz) of the Ricker wavelet is taken for this example
in order to distinguish differences between the responses. As can
be expected based on the attenuation plot, the viscoelastic model
overestimates the magnitude of the response. The results for Sand 4
show that the viscoelastic model can still be less accurate for mate-
rials with Biot critical frequency much higher than the frequency of
excitation, but this inaccuracy has much less pronounced effect on
the magnitude of the responses in the frequency range of interest for
seismic applications. For materials with much higher Biot critical
frequency and stiffer frame, like Rock from the first example, both
effective viscoelastic and poroelastic models are in agreement with
each other and the exact solution.

6 D I S C U S S I O N

The use of an effective medium requires that the involved wave-
lengths are much larger than the period L of the medium. The weak
point of the current effective poroelastic model is that the wave-
length of the slow P-wave can be very small (i.e. of the order of the
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Poroelastic model for periodic layering 9

Figure 6. Frequency spectrum |û| for gas saturations (a) 30 per cent; (b) 50 per cent; (c) 70 per cent; (d) 90 per cent. Sand 2, L = 0.1 m.

Figure 7. Inverse quality factor Q−1 (a) and frequency spectrum (b). Sand 3, L = 0.1 m, gas saturation 10 per cent.

period of the system or even smaller), which thus violates the re-
quirement. However, this inconsistency hardly affects the response
of the effective poroelastic medium as the contribution of the slow
P-wave to the total response is generally very small at seismic fre-
quencies. Possibly superior approaches of homogenization that cir-
cumvent the inconsistency exist, but the present analysis shows that
the choice of the pressure continuity condition in (13) at the edge
of the representative elementary cell, rather than the no-flow condi-
tion, can be important for the behaviour of the effective model. The
no-flow boundary condition is in fact quite restrictive as it excludes

the macroscopic attenuation mechanism from the effective model
(see also Sections 1 and 5). This restriction is thus circumvented
by applying the pressure continuity condition suggested by Dutta
& Ode (1979), and this is particularly important when dealing with
high permeable materials such as weak sandstones, unconsolidated
and weakly consolidated sandy sediments. The effective poroelas-
tic model, or the exact solution, should be used when the signal
frequency is of the same order as the Biot critical frequency. The
predictions of the effective viscoelastic model are also less accurate
for materials with weak frame.
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Figure 8. Inverse quality factor Q−1 (a) and frequency spectrum (b). Sand 3, L = 0.1 m, gas saturation 90 per cent.

Figure 9. Inverse quality factor Q−1 for gas saturation 10 per cent (a) and for gas saturation 90 per cent (b); frequency spectrum for gas saturation 90 per cent
(c). Sand 4, L = 0.1 m.

7 C O N C LU S I O N S

The effective viscoelastic model of White which consists of a ho-
mogeneous porous frame saturated by gas and fluid layers that are
organized in a periodic way, has been the starting point of many
studies in the research on wave attenuation in partially saturated me-
dia (i.e. media having gas inclusions). The model describes wave
propagation in the direction normal to the layering and employs
the so-called no-flow boundary condition at the outer edges of the
representative elementary cell of the effective medium. In this pa-
per we derived an effective medium for the same configuration,
but employed the pressure continuity condition rather than the no-
flow condition, as suggested by Dutta & Ode (1979). This choice
leads to an effective poroelastic model that has two degrees of
freedom, the frame and fluid displacements, and that allows the
existence of both the fast and slow compressional waves. We de-
rived frequency-dependent effective poroelastic parameters as well
as their low-frequency approximations. The numerical results show
that the frequency-dependent attenuation of the fast compressional
wave and the transient point-source response are in agreement with
the exact solution obtained using Floquet’s theory, both for materials
with stiff and weak frames, and for materials with high and low Biot
critical frequency. For materials with weak frame, the predictions
of White’s model are less accurate. In the case of low Biot critical

frequency White’s effective viscoelastic model fails as it does not
incorporate Biot’s wavelength-scale attenuation mechanism. This
mechanism is, however, captured by the current effective poroelas-
tic model due to the application of the pressure continuity condition
that allows relative fluid-to-solid motion at the outer edges of the
representative element, and consequently on the wavelength scale.
We expect that the analysis in this paper has consequences for the
applicability of the other models that employ the no-flow bound-
ary conditions, particularly for wave propagation through relatively
high permeable (low Biot critical frequency) materials and mate-
rials with weak frame. For well-consolidated materials with stiff
frame and with Biot critical frequency much higher than the signal
frequency, the newly introduced model is in agreement with the
previously introduced viscoelastic model and the exact solution.
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A P P E N D I X A : M AT R I X O F C O E F F I C I E N T S

In this appendix the coefficients of the system of linear algebraic equations AX = B that follow from the boundary conditions (13) are written
out. A is the 8 × 8 matrix of the coefficients, X is a vector of unknown amplitudes ÂI,II

i :

X = [
ÂI

1 ÂI
2 ÂI

3 ÂI
4 ÂII

1 ÂII
2 ÂII

3 ÂII
4

]T
. (A1)

The amplitudes ÂI,II
i are the amplitudes of the displacements ûI,II, ŵI,II

ûI,II = ÂI,II
1 eikI,II

P1 x + ÂI,II
2 e−ikI,II

P1 x + ÂI,II
3 eikI,II

P2 x + ÂI,II
4 e−ikI,II

P2 x ,

ŵI,II = β̂
I,II
P1 ÂI,II

1 eikI,II
P1 x + β̂

I,II
P1 ÂI,II

2 e−ikI,II
P1 x + β̂

I,II
P2 ÂI,II

3 eikI,II
P2 x + β̂

I,II
P2 ÂI,II

4 e−ikI,II
P2 x . (A2)

B is a vector containing the right-hand side of the system

B = [σ̂ p̂ σ̂ p̂ 0 0 0 0]T. (A3)

The coefficients Aij of the matrix A read

A11 = ikI
P1

{
QI − φI(PI + QI) + [RI − φI(QI + RI)] β̂ I

P1

}
exp

(−ikI
P1lI

) /
φI,

A12 = −ikI
P1

{
QI − φI(PI + QI) + [RI − φI(QI + RI)] β̂ I

P1

}
exp

(
ikI

P1lI

) /
φI,
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A13 = ikI
P2

{
QI − φI(PI + QI) + [RI − φI(QI + RI)]β̂

I
P2

}
exp

(−ikI
P2lI

) /
φI,

A14 = −ikI
P2

{
QI − φI(PI + QI) + [RI − φI(QI + RI)] β̂ I

P2

}
exp

(
ikI

P2lI

) /
φI,

A15 = A16 = A17 = A18 = 0. (A4)

A21 = −ikI
P1

(
QI + RIβ̂

I
P1

)
exp

(−ikI
P1lI

) /
φI,

A22 = ikI
P1

(
QI + RIβ̂

I
P1

)
exp

(
ikI

P1lI

) /
φI,

A23 = −ikI
P2

(
QI + RIβ̂

I
P2

)
exp

(−ikI
P2lI

) /
φI,

A24 = ikI
P2

(
QI + RIβ̂

I
P2

)
exp

(
ikI

P2lI

) /
φI,

A25 = A26 = A27 = A28 = 0. (A5)

A31 = A32 = A33 = A34 = 0,

A35 = ikII
P1

{
QII − φII(PII + QII) + [RII − φII(QII + RII)] β̂ II

P1

}
exp

(
ikII

P1lII

) /
φII,

A36 = −ikII
P1

{
QII − φII(PII + QII) + [RII − φII(QII + RII)] β̂ II

P1

}
exp

(−ikII
P1lII

) /
φII,

A37 = ikII
P2

{
QII − φII(PII + QII) + [RII − φII(QII + RII)] β̂ II

P2

}
exp

(
ikII

P2lII

) /
φII,

A38 = −ikII
P2

{
QII − φII(PII + QII) + [RII − φII(QII + RII)] β̂ II

P2

}
exp

(−ikII
P2lII

) /
φII. (A6)

A41 = A42 = A43 = A44 = 0,

A45 = −ikII
P1

(
QII + RIIβ̂

II
P1

)
exp

(
ikII

P1lII

) /
φII,

A46 = ikII
P1

(
QII + RIIβ̂

II
P1

)
exp

(−ikII
P1lII

) /
φII,

A47 = −ikII
P2

(
QII + RIIβ̂

II
P2

)
exp

(
ikII

P2lII

)/
φII,

A48 = ikII
P2

(
QII + RIIβ̂

II
P2

)
exp

( − ikII
P2lII

)/
φII. (A7)

A51 = A52 = φI

(
1 − β̂ I

P1

)
,

A53 = A54 = φI

(
1 − β̂ I

P2

)
,

A55 = A56 = −φII

(
1 − β̂ II

P1

)
,

A57 = A58 = −φII

(
1 − β̂ II

P2

)
. (A8)

A61 = A62 = A63 = A64 = 1,

A65 = A66 = A67 = A68 = −1. (A9)

A71 = −A72 = −ikI
P1

(
QI + RIβ̂

I
P1

)/
φI,

A73 = −A74 = −ikI
P2

(
QI + RIβ̂

I
P2

)/
φI,

A75 = −A76 = ikII
P1

(
QII + RIIβ̂

II
P1

)/
φII,

A77 = −A78 = ikII
P2

(
QII + RIIβ̂

II
P2

)/
φII. (A10)

A81 = −A82 = ikI
P1

{
QI − φI(PI + QI) + [RI − φI(QI + RI)]β̂

I
P1

}
,

A83 = −A84 = ikI
P2

{
QI − φI(PI + QI) + [RI − φI(QI + RI)]β̂

I
P2

}
,

A85 = −A86 = −ikII
P1

{
QII − φII(PII + QII) + [RII − φII(QII + RII)]β̂

II
P1

}
,

A87 = −A88 = −ikII
P2

{
QII − φII(PII + QII) + [RII − φII(QII + RII)]β̂

II
P2

}
. (A11)
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Poroelastic model for periodic layering 13

A P P E N D I X B : L OW- F R E Q U E N C Y A P P ROX I M AT I O N O F T H E E F F E C T I V E
C O E F F I C I E N T S

In this Appendix a perturbation approach is presented which is used to derive the low-frequency approximations (18) of the effective
coefficients (17). For this purpose, the displacement fields are expanded in the Taylor series

û = u0 + ωu1 + ω2u2 + O(ω3),

ŵ = w0 + ωw1 + ω2w2 + O(ω3). (B1)

The viscodynamic operator b̂ contained in the density terms ρ̂i j is also expanded in a series of ω

b̂ = b0

√
1 + i

ω

2ωB
= b0

[
1 + iω

4ωB
+ ω2

32ω2
B

+ O(ω3)

]
. (B2)

These expansions are substituted into Biot’s equations in the frequency domain. Then the equations are solved for each power of ω with the
boundary conditions (13). The strains of the elementary cell are found as linear combinations of σ̂ and p̂, as before (eq. 16), but now the
analytical expressions for the low-frequency terms of the coefficients α1 to α4 can be obtained

û(lII) − û(−lI)

L
= (a10 + ωa11 + ω2a12 + · · ·)σ̂ + (a20 + ωa21 + ω2a22 + · · ·) p̂,

ŵ(lII) − ŵ(−lI)

L
= (a20 + ωa21 + ω2a22 + · · ·)σ̂ + (a40 + ωa41 + ω2a42 + · · ·) p̂. (B3)

All the coefficients aij are independent of frequency, but do depend on the properties of both layers, and can be found analytically. Then the
terms of the expansions of the effective coefficients (eq. 18) can be obtained analytically as combinations of the coefficients aij. The explicit
expressions are not presented here for reasons of brevity. They can be derived with the use of any symbolic software.

A P P E N D I X C : F L O Q U E T S O LU T I O N

In this appendix the exact solution for a periodically layered porous half-space with excitation at the top (Fig. 2a) is derived by the use of
Floquet’s theory (Floquet 1883). The derivation is similar to that given in Braga & Hermann (1992) for an elastic layered composite.

The equations of motion and stress–strain relations (1)–(3) can be rewritten in the space-frequency domain into a linear differential equation
of the first order in the following matrix form:

∂ f̂(x)

∂x
= iN̂(x)f̂(x), (C1)

where f̂ = [iωû, iωζ̂ , σ̂ , p̂] is a vector containing field variables, namely, solid particle velocity, relative velocity, intergranular stress and pore
pressure. All the elements of this vector are continuous at the interfaces between the layers (Deresiewicz & Skalak 1963). N̂ is a 4 × 4 matrix
of coefficients that describe the material properties

N̂ =
[

0 Na

N̂
b

0

]
,

Na = 1

P R − Q2

[
−R φ(R + Q) − R

φ(Q + R) φ(Q + R) − φ2(P + 2Q + R)

]
,

N̂b = ω2

φ

[
ρ̂12(1 − 2φ) + ρ̂22(1 − φ) − φρ̂11 (ρ̂22(1 − φ) − φρ̂12)

/
φ

−(ρ̂12 + ρ̂22) −ρ̂22

/
φ

]
. (C2)

The elements of the matrix N̂ are piecewise constant functions of the coordinate x, they are constant inside each layer and periodic with the
period L = lI + lII. Thus, eq. (C1) is a system of four linear differential equations with a periodic matrix of coefficients. Its solution can be
expressed via the fundamental matrix of solutions X̂

f̂(x) = X̂(x)c, (C3)

where c is a column of constants to be found from the boundary conditions. According to Floquet’s theory, the matrix X̂(x) can be found in
the form

X̂(x) = F̂(x) exp(iÂx), (C4)

where F̂(x + L) = F̂(x) is a yet unknown periodic matrix and matrix Â is constant (with respect to x).
First, the matrix Â has to be found. In each of the layers k = 1, 2 the solution of eq. (C1) is

f̂k(x) = M̂k(x)f̂k(0), (C5)
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where M̂k(x) = exp(iN̂k x) and M̂k(0) = I, where I is the identity matrix. By analogy, the solution of eq. (C1) for the stack of periodic layers
can be expressed in the same manner

f̂(x) = P̂(x)f̂(0). (C6)

It follows from (C6) that P̂(0) = I. The solution f̂(x) can be also expressed via the fundamental matrix (C4) as

f̂(x) = F̂(x) exp(iÂx)f̂(0). (C7)

Then, the periodic matrix F̂(L) = F̂(0) = I and P̂(L) = exp(iÂL). On the other hand, using (C5), the vector f̂(L) can be expressed as

f̂(L) = M̂2(lII)M̂1(lI)f̂(0). (C8)

Thus, the matrix Â can be found from the following exponential relations:

P̂(L) = exp(iÂL) = exp(iN̂2lII) exp(iN̂1lI). (C9)

The eigenvalues k F
i of the matrix Â are the so-called Floquet wavenumbers. They are exponentially related to the eigenvalues τ i of the matrix

exp(iÂL): τi = exp(ik F
i L).

Next, the periodic function F̂(x) is determined. First, the local coordinate xn is introduced

xn = x − (n − 1)L , 0 ≤ xn ≤ L , n = 1, 2, ... (C10)

The following equalities hold true (cf. C6 and C7):

P̂(x) = F̂(x) exp(iÂx) = F̂(xn) exp(iÂxn) exp[iÂL(n − 1)] = P̂(xn) exp[iÂL(n − 1)]. (C11)

After right-multiplying (C11) by exp (−iAx) one recognizes

F̂(x) = P̂(xn) exp(−iÂxn). (C12)

The matrix P̂(xn) is the propagator matrix at a distance xn from the interface between the unit cells (n − 1) and n. From (C5) and (C6) it can
be concluded that

P̂(xn) =
{

M̂1(xn), 0 ≤ xn ≤ lI ;

M̂2(xn − lI)M̂1(lI), lI ≤ xn ≤ L .
(C13)

Hence, the periodic matrix F̂(x) is determined.
Finally, the solution for a periodically layered system, with a unit cell consisting of two layers, is found in the space-frequency domain. By

combining (C7), (C10) and (C12) the solution f̂(x) is expressed in the following way:

f̂(x) = F̂(x) exp(iÂx)f̂(0) = P̂(xn) exp[iÂL(n − 1)]f̂(0). (C14)

The next step towards the calculation of the field variables contained in f̂ is to find the four unknowns f̂(0). The displacement field in the first
layer 0 ≤ x ≤ lI is simply a solution of Biot’s equations (11). Then the vector f̂(0) can be expressed as a product of a matrix of coefficients
and a column of unknown amplitudes Â1 to Â4

f̂(0) =

⎡
⎢⎢⎢⎢⎣

iω iω iω iω

iωφI

(
β̂ I

P1 − 1
)

iωφI

(
β̂ I

P2 − 1
)

iωφI

(
β̂ I

P1 − 1
)

iωφI

(
β̂ I

P2 − 1
)

gP1 gP2 −gP1 −gP2

h P1 h P2 −h P1 −h P2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Â1

Â2

Â3

Â4

⎤
⎥⎥⎥⎥⎦ , (C15)

where

gP1,P2 = −ikI
P1,P2

φI

[
φI PI − QI + φI QI + β̂ I

P1,P2(φI RI + φI QI − RI)
]
,

h P1,P2 = −ik I
P1,P2

φI

(
QI + β̂ I

P1,P2 RI

)
. (C16)

There are four equations to determine the four complex-valued amplitudes Âi . The first two equations come from the boundary conditions at
the top interface (22) that assign the values for the third and the fourth components of the vector f̂. The second two come from the elimination
of the upgoing Floquet waves in the solution (C14): as there are no sources of energy at any place below the top of the half-space x = 0, the
field variables (like displacements) should tend to zero when x → ∞ (not to some finite value due to the presence of viscous damping in
the system). Thus, the coefficients of the exponential terms in (C14) that correspond to the upgoing Floquet waves (there are two of them, the
slow and the fast P-waves) should be zeros, and these conditions provide another two equations to solve for the unknown amplitudes.
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