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Stable Motion Primitives via Imitation and
Contrastive Learning

Rodrigo Pérez-Dattari , Member, IEEE, and Jens Kober , Senior Member, IEEE

Abstract—Learning from humans allows nonexperts to program
robots with ease, lowering the resources required to build complex
robotic solutions. Nevertheless, such data-driven approaches often
lack the ability to provide guarantees regarding their learned
behaviors, which is critical for avoiding failures and/or accidents.
In this work, we focus on reaching/point-to-point motions, where
robots must always reach their goal, independently of their initial
state. This can be achieved by modeling motions as dynamical
systems and ensuring that they are globally asymptotically stable.
Hence, we introduce a novel Contrastive Learning loss for training
deep neural networks (DNN) that, when used together with an
Imitation Learning loss, enforces the aforementioned stability in the
learned motions. Differently from previous work, our method does
not restrict the structure of its function approximator, enabling its
use with arbitrary DNNs and allowing it to learn complex motions
with high accuracy. We validate it using datasets and a real robot. In
the former case, motions are two- and four-dimensional, modeled
as first- and second-order dynamical systems. In the latter, motions
are three, four, and six-dimensional, of first and second order, and
are used to control a 7-DoF robot manipulator in its end effector
space and joint space.

Index Terms—Contrastive learning, deep neural networks
(DNNs), dynamical systems, imitation learning (IL), motion
primitives.

I. INTRODUCTION

IMITATION learning (IL) provides a framework that is in-
tuitive for humans to use, without requiring them to be

robotics experts. It allows robots to be programmed by em-
ploying methods similar to the ones humans use to learn from
each other, such as demonstrations, corrections, and evaluations.
This significantly reduces the resources needed for building
robotic systems, making it particularly appealing for real-world
applications (e.g., Fig. 1).

Nevertheless, due to their data-driven nature, IL methods
often lack guarantees, such as ensuring that a robot’s motion
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Fig. 1. Overview of a motion model learned using the proposed framework.
The blue trajectory in the task space T , shows the movement of the robot’s end
effector when starting from its current state xt. The evolution of this trajectory is
defined by the dynamical system ẋdt = φθ(ψθ(xt)), which is represented with
a vector field of red arrows in the rest of the space. Using Contrastive Learning,
this system is coupled with a well-understood and stable dynamical system in
the latent space L that ensures its stability.

always reaches its target, independently of its initial state (e.g.,
Fig. 2). This can be a major limitation for implementing methods
in the real world since it can lead to failures and/or accidents.
To tackle these challenges, we can model motions as dynamical
systems whose evolution describes a set of human demonstra-
tions [1], [2], [3]. This is advantageous because 1) the model
depends on the robot’s state and it is learned offline, enabling
the robot to adapt to changes in the environment during task
execution, and 2) dynamical systems theory can be employed to
analyze the behavior of the motion and provide guarantees.

In this work, we focus on learning dynamical systems from
demonstrations to model reaching motions, as a wide range
of tasks requires robots to reach goals, e.g., hanging objects,
pick-and-place of products, crop harvesting, and button pressing.
Furthermore, these motions can be sequenced to model cyclical
behaviors, extending their use for such problems as well [4].

A reaching motion modeled as a dynamical system is con-
sidered to be globally asymptotically stable if the robot always
reaches its goal, independently of its initial state. In this work,
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Fig. 2. Example of a motion learned using behavioral cloning (BC). White
curves represent demonstrations. Red curves represent learned motions when
starting from the same initial positions as the demonstrations. The arrows
indicate the vector field of the learned dynamical system. The yellow dotted
line shows a region with a spurious attractor. The magenta lines show regions
where the trajectories diverge away from the goal.

we will refer to such systems as stable for short. Notably,
by employing dynamical systems theory, stability in reaching
motions can be enforced when learning from demonstrations,
providing guarantees to these learning frameworks.

In the literature, there is a family of works that use this
approach to learn stable motions from demonstrations [2], [3],
[5]. However, these often constrain the structure of their learn-
ing models to meet certain conditions needed to guarantee the
stability of their motions, e.g., by enforcing the learning func-
tions to be invertible [3], [6], [7] or positive/negative defi-
nite [2], [8], [9]. Although these constraints ensure stability,
they limit the applicability of the methods to a narrow range of
models. For example, if a novel promising deep neural network
(DNN) architecture is introduced in the literature, it would
not be straightforward/possible to use it in such frameworks,
since, commonly, DNN architectures do not have this type of
constraints. Furthermore, the learning flexibility of a function
approximator is limited if its structure is restricted, which can
hurt its accuracy performance when learning motions.

Hence, in the context of DNNs,1 we propose a novel method
for learning stable motions without constraining the structure of
the function approximator. To achieve this, we introduce a con-
trastive loss [11], [12] to enforce stability in dynamical systems
modeled with arbitrary DNN architectures. This is achieved by
transferring the stability properties of a simple, stable dynamical
system to the more complex system that models the demonstra-
tions (see Fig. 1). To the best of authors’ knowledge, this is the
first approach that learns to generate stable motions with DNNs
without relying on a specific architecture type.

1We understand DNNs as a collection of machine learning algorithms that
learn in a hierarchical manner, i.e., the function approximator consists of a
composition of multiple functions, and are optimized by means of backpropa-
gation [10].

We validate our method using both simulated and real-world
experiments, demonstrating its ability to successfully scale in
terms of the order and dimensionality of the dynamical system.
Furthermore, we showcase its capabilities for controlling a
7-DoF robotic manipulator in both joint and end-effector space.
Lastly, we explore potential extensions for the method, such as
combining motions by learning multiple systems within a single
DNN architecture.

The rest of this article is organized as follows. Related works
are presented in Section II. Section III describes the background
and problem formulation of our method. Section IV develops the
theory required to introduce the contrastive loss, introduces it,
and explains how we employ it in the context of IL. Experiments
and results are divided into Sections V, VI, and VII. Section V
validates our method using datasets of motions modeled as first-
order and second-order dynamical systems. These motions are
learned from real data, but they are evaluated without employing
a real system. Section VI validates the method in a real robot,
and Section VII studies possible ways of extending it. Finally,
Section VIII concludes this article.

II. RELATED WORKS

Several works have approached the problem of learning mo-
tions modeled as dynamical systems from demonstrations while
ensuring their stability. By observing if these works employ
either time-varying or time-invariant dynamical systems, we
can divide them into two groups. In time-varying dynamical
systems, the evolution of the system explicitly depends on time
(or a phase). In contrast, time-invariant dynamical systems do not
depend on time directly, but only through its time-varying input
(i.e., the state of the system). The property of a system being
either time-invariant or not, conditions the type of strategies that
can be employed to enforce its stability. Hence, for this work, it
makes sense to make a distinction between these systems.

One seminal work of IL that addresses stability for time-
varying dynamical systems introduces dynamical movement
primitives [1]. This method takes advantage of the time-
dependency (via the phase of the canonical system) of the
dynamical system to enforce its nonlinear part, which captures
the behavior of the demonstration, to vanish as time goes to
infinity. Then, they build the remainder of the system to be
a function that is well-understood and stable by construction.
Hence, since the nonlinear part of the motion will eventually
vanish, its stability can be guaranteed. In the literature, some
works extend this idea with probabilistic formulations [13], [14],
and others have extended its use to the context of DNNs [15],
[16], [17].

These time-varying dynamical system approaches are well-
suited for when the target motions have clear temporal de-
pendencies. However, they can generate undesired behaviors
when encountering perturbations (assuming the time/phase is
not explicitly modulated), and they lack the ability to model
different behaviors for different regions of the robot’s state
space. In contrast, time-invariant dynamical systems can easily
address these shortcomings, but they can be more challenging
to employ when motions contain strong temporal dependencies.
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Therefore, IL formulations with such systems are considered
to be complementary to the ones that employ time-varying
systems [18], [19]. In this work, we focus on time-invariant
dynamical systems.

An important family of works has addressed the problem of
modeling stable motions as time-invariant dynamical systems.
These approaches often constrain the structure of the dynamical
systems to ensure Lyapunov stability by design. In this context,
one seminal work introduces the stable estimator of dynamical
systems (SEDS) [2]. This approach imposes constraints on
the structure of Gaussian mixture regressions (GMR), ensuring
stability in the generated motions.

Later, this idea inspired other works to explicitly learn Lya-
punov functions that are consistent with the demonstrations
and correct the transitions of the learned dynamical system
such that they are stable according to the learned Lyapunov
function [8], [9], [20]. Furthermore, several extensions of SEDS
have been proposed, for instance, by using physically consistent
priors [21], contraction theory [22], or diffeomorphisms [23].

Moreover, some of these ideas, such as the use of contraction
theory or diffeomorphisms have also been used outside the scope
of SEDS. Contraction theory ensures stability by enforcing the
distance between the trajectories of a system to reduce, accord-
ing to a given metric, as the system evolves. Hence, it has been
employed to learn stable motions from demonstrations [24],
[25]. In contrast, diffeomorphisms can be employed to transfer
the stability properties of a stable and well-understood system,
to a complex nonlinear system that models the behavior of the
demonstrations. Hence, this strategy has also been employed
to learn stable motions from demonstrations [3], [6], [7]. As
we explain in Section IV-B1, our method is closely related
to these approaches. It is worth noting that of the mentioned
strategies, only [7] models stable stochastic dynamics. However,
this concept could also be explored with other encoder–decoder
stochastic models, e.g., [13].

Understandably, all of these methods constrain some part of
their learning framework to ensure stability. From one point of
view, this is advantageous, since they can guarantee stability.
However, in many cases, this comes with the cost of reducing
the flexibility of the learned motions (i.e., loss in accuracy).
Notably, some recent methods have managed to reduce this loss
in accuracy [3], [7]; however, they are still limited in terms of the
family of models that can be used with these frameworks, which
harms their scalability. Consequently, in this work, we address
these limitations by enforcing the stability of the learned motions
as a soft constraint and showing its effectiveness in obtaining
stable, accurate, and scalable motions.

III. PRELIMINARIES

A. Dynamical Systems as Movement Primitives

In this work, we model motions as nonlinear time-invariant
dynamical systems defined by the equation

ẋ = f(x)

where x ∈ R
n is the system’s state and f : Rn → R

n is a
nonlinear continuous and continuously differentiable function.

The evolution defined by this dynamical system is transferred to
the robot’s state by tracking it with a lower level controller.

B. Global Asymptotic Stability

We are interested in solving reaching tasks. From a dynamical
system perspective, this means that we want to construct a
system where the goal statexg ∈ R

n is a globally asymptotically
stable equilibrium. An equilibriumxg is globally asymptotically
stable if ∀x ∈ R

n

lim
t→∞

||x− xg|| = 0.

Note that for this condition to be true, the time derivative
of the dynamical system at the attractor must be zero, i.e.,
ẋ = f(xg) = 0.

For simplicity, we use the word stable to refer to these systems.

C. Problem Formulation

Consider the scenario where a robot aims to learn a reaching
motion, in a given space T ⊂ R

n and with respect to a given
goal xg ∈ T , based on a set of demonstrations D. The robot is
expected to imitate the behavior shown in the demonstrations
while always reaching xg, regardless of its initial state.

The dataset D contains N demonstrations in the form of
trajectories τi, such that D = (τ0, τ1, . . ., τN−1). Each one of
these trajectories contains the evolution of a dynamical system
with discrete-time states xt ∈ T when starting from an initial
state x0 and it transitions for T time steps t of size Δt. Hence,
τi = (xi0, x

i
1, . . ., x

i
T−1), where T does not have to be the same

for every demonstration, and here we added the superscript i to
the states to explicitly indicate that they belong to the trajectory
τi. Note, however, that the state superscript will not be used for
the rest of this article

We assume that these trajectories are drawn from the distri-
bution p∗(τ), where every transition belonging to a trajectory
sampled from this distribution follows the optimal (according
to the demonstrator’s judgment) dynamical system f ∗. On the
other hand, the robot’s motion is modeled as the parametrized
dynamical system fTθ , which induces the trajectory distribution
pθ(τ), where θ is the parameter vector.

Then, the objective is to find θ∗ such that the distance between
the trajectory distributions induced by the human and learned
dynamical system is minimized while ensuring the stability of
the motions generated with fTθ toward xg. This can be formu-
lated as the minimization of the (forward) Kullback–Leibler
divergence between these distributions [26], subject to a stability
constraint of the learned system

θ∗ = arg minθ DKL (p
∗(τ)||pθ(τ))

s.t. lim
t→∞

||xt − xg|| = 0,

∀xt ∈ T evolving with fTθ .

Authorized licensed use limited to: TU Delft Library. Downloaded on October 27,2023 at 12:24:56 UTC from IEEE Xplore.  Restrictions apply. 
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IV. METHODOLOGY

We aim to learn motions from demonstrations modeled as
nonlinear time-invariant dynamical systems. In this context, we
present the CONvergent Dynamics from demOnstRations (CON-
DOR) framework. This framework learns the parametrized
function fTθ using human demonstrations and ensures that this
dynamical system has a globally asymptotically stable equilib-
rium at xg while being accurate w.r.t. the demonstrations.

To achieve this, we extend the IL problem with a novel
loss �stable based on Contrastive Learning (CL) [11] that aims
to ensure the stability of the learned system. Hence, if the IL
problem minimizes the loss �IL, our framework minimizes

�CIL = �IL + λ�stable

where λ ∈ R is a weight. We refer to �CIL as the contrastive
imitation learning (CIL) loss.

A. Structure of CONDOR

The objective of �stable is to ensure that fTθ shares stability
properties with a simple and well-understood system. We will
refer to this system as fL, which is designed to be stable by
construction. Consequently, if fL is stable, then fTθ will also be
stable.

Since fTθ is parametrized by a DNN, we can define fL to
reside within the output of one of the hidden layers of fTθ . This
formulation might seem arbitrary; however, it will be shown
later that it enables us to introduce the stability conditions, which
serve as the foundation for designing �stable. Therefore, we define
the dynamical system fTθ as a composition of two functions, ψθ

and φθ

ẋt = fTθ (xt) = φθ(ψθ(xt)).

∀xt ∈ T . Note that fTθ is a standard DNN with L layers. ψθ de-
notes layers 1. . .l, and φθ layers l + 1. . .L. We define the output
of layer l as the latent space L ⊂ R

n. Moreover, for simplicity,
although we use the same θ notation for both ψθ and φθ, each
symbol actually refers to a different subset of parameters within
θ. These subsets together form the full parameter set in fTθ .

Then, the dynamical system fL is defined to evolve within
L.2 This system is constructed to be stable at the equilibrium
yg = ψ(xg), and can be described by

ẏLt = fL(yLt ).

∀yLt ∈ L. Here, yLt corresponds to the latent state variables that
evolve according to fL.

Lastly, it is necessary to introduce a third dynamical system.
This system represents the evolution in L of the states visited by
fTθ when mapped using ψθ, which yields the relationship

ẏTt = fT →L
θ (xt) =

∂ψθ(xt)

∂t
.

∀yTt ∈ L, where yTt corresponds to the latent variables that
evolve according to fT →L

θ .
Fig. 3 summarizes the introduced dynamical systems.

2Note that before training, this system will not completely reside in L, since
it is allowed us to evolve outside the image of ψθ .

Fig. 3. Structure of CONDOR. We show an example of discrete-time tra-
jectories generated with fTθ , fL and fT →L

θ before training the DNN. Starting
from an initial point x0, a trajectory is generated in T using fTθ (blue) and two
trajectories are generated in L. One of them follows fT →L

θ (red), and the other
follows fL (green).

B. Stability Conditions

The above-presented dynamical systems allow us to introduce
the stability conditions. These conditions state that if fT →L

θ

exhibits the same behavior as fL, and only xg maps to ψθ(xg),
then fTθ is stable. We formally introduce them as follows:

Theorem 1 (Stability conditions): Let fTθ , fT →L
θ and fL be

the dynamical systems introduced in Section IV-A. Then, xg is
a globally asymptotically stable equilibrium of fTθ if, ∀xt ∈ T :

1) fT →L
θ (xt) = fL(yTt );

2) ψθ(xt) = yg ⇒ xt = xg.
Proof: Since fL is globally asymptotically stable atyg , condi-

tion 1) indicates that as t→ ∞, yTt = yLt → yg. However, from
condition 2) we know that yTt = ψθ(xt) = yg is only possible
if xt = xg . Hence, as t→ ∞, xt → xg. Then, xg is globally
asymptotically stable in fTθ (xt). �

Consequently, we aim to design �stable such that it enforces
the stability conditions in the presented dynamical systems by
optimizing ψθ and φθ.

1) Connection With Diffeomorphism-Based Methods: It is
interesting to note that the stability conditions makeψθ converge
to a diffeomorphism between T and L (proof in Appendix A).
Consequently, our approach becomes tightly connected to meth-
ods that ensure stability using diffeomorphic function approxi-
mators [3], [6], [7]. However, differently from these methods, we
do not require to take into account the structure of the function
approximator and explicit relationships between fTθ and fT →L

θ .

C. Enforcing Stability

In this section, we introduce a method that enforces the
stability conditions in fTθ .

1) First Condition (fT →L
θ = fL): The first stability condi-

tion can be enforced by minimizing the distance between the
states visited by the dynamical systems fT →L

θ and fL when
starting from the same initial condition. Hence, ∀yTt , yLt ∈ L
a loss can be defined as �match = d(yTt , y

L
t ), where d(·, ·) is a

distance function.
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2) Second Condition (ψθ(xt) = yg ⇒ xt = xg): The sec-
ond stability condition, however, can be more challenging to
obtain, since we do not have a direct way of optimizing this in
a DNN. Therefore, to achieve this, we introduce the following
proposition.

Proposition 1 (Surrogate stability conditions): The second
stability condition of Theorem 1, i.e., ψθ(xt) = yg ⇒ xt = xg ,
∀xt ∈ T , is true if:

1) fT →L
θ (xt) = fL(yTt ), ∀xt ∈ T (stability condition 1);

2) yTt−1 	= yTt , ∀xt ∈ T \ {xg}.
Proof: If yTt−1 = ψ(xt−1) = yg the first condition implies

that yg = yTt−1 = yTt , since fL(yg) = 0. Consequently, given
the second condition yTt−1 	= yTt , ∀xt 	= xg , this is only possible
if xt−1 = xg .

In other words, Proposition 1 indicates that if the first stability
condition is true; then, we can obtain its second condition by
enforcing yTt−1 	= yTt , ∀xt 	= xg. Notably, by enforcing this, the
stability conditions are also enforced. Consequently, we refer
to the conditions of Proposition 1 as the surrogate stability
conditions.

Then, it only remains to define a loss �sep that enforces the
second surrogate stability condition in fTθ . However, before
doing so, note that the surrogate conditions aim to push some
points together (i.e., yTt and yLt ) and separate others (i.e., yTt−1

and yTt ). Hence, this problem overlaps with the CL and deep
metric learning literature [12].

3) Contrastive Learning: The problem of pushing some
points together (�match) and separating others (�sep), is equivalent
to the problem that the pairwise contrastive loss, from the CL
literature, optimizes [11]. This loss computes a cost that depends
on positive and negative samples. Its objective is to reduce
the distance between positive samples and separate negative
samples beyond some margin value m ∈ R

+.
In our problem, positive samples are defined as yLt and yTt , and

negative samples are defined as yTt−1 and yTt . The loss for positive
samples is the same as �match. Differently, for negative samples,
this method separates points by minimizing �sep = max(0,m−
d(yTt−1, y

T
t )), ∀yTt−1, y

T
t ∈ L. If their distance is smaller thanm,

m− d(yTt−1, y
T
t ) > 0, which is minimized until their distance is

larger than m and m− d(yTt−1, y
T
t ) < 0.

Commonly, the squared l2-norm is used as the distance metric.
Moreover, this loss is optimized along a trajectory starting at
t = 1, which is a state sampled randomly from the task space
T . Then, we define a contrastive loss for motion stability as

Bs−1∑
b=0

Hs∑
t=1

||yLt,b − yTt,b||22︸ ︷︷ ︸
�match

+max(0,m− ||yTt,b − yTt−1,b||2)2︸ ︷︷ ︸
�sep︸ ︷︷ ︸

�stable

(1)
where Bs, Hs ∈ N

+ are the batch size corresponding to the
number of samples used at each training iteration of the DNN
and Hs is the trajectory length used for training, respectively.

Note that (1) does not take into account the fact that �sep should
not be applied at yg . However, in practice, it is very unlikely to
sample xg , so we do not deem it necessary to explicitly consider

this case. Furthermore, the loss �match enforces fT (yg) = 0,
which also helps to keep yTt−1 and yTt together when yTt−1 = yg.

4) Relaxing the Problem: We can make use of the CL litera-
ture to use other losses to solve this problem. More specifically,
we study the triplet loss [27] as an alternative to the pairwise
loss. We call this version CONDOR (relaxed), since, in this
case, the positive samples yTt and yLt are pushed closer, but it
is not a requirement for them to be the same. Hence, we aim
to observe if learning a specific structure in L is enough to
enforce stability in fTθ , even though (1) is not solved exactly.
This allows us to compare different features between losses,
such as generalization capabilities.

D. Boundaries of the Dynamical System

We enforce the stability of a motion in the region T by
randomly sampling points from it and minimizing (1). Since
this property is learned by a DNN, stability cannot be ensured
in regions of the state space where this loss is not minimized,
i.e., outside of T . Therefore, it is crucial to ensure that if a point
belongs to T , its evolution will not leave T . In other words, T
must be a positively invariant set w.r.t. fTθ [9], [28].

To address this, we design the dynamical system such that,
by construction, is not allowed us to leave T . This can be easily
achieved by projecting the transitions that leave T back to its
boundary, i.e., if a point xt ∈ T transitions to a point xt+1 /∈ T ;
then, it is projected to the boundary of T . In this work, T is a
hypercube; consequently, we apply an orthogonal projection by
saturating/clipping the points that leave T .

Note that this saturation is always applied, i.e., during the
training and evaluation of the dynamical system. Hence, the
stability conditions of Theorem 1 are imposed on a system that
evolves in the positively invariant set T .

E. Designing fL

So far, we presented a method for coupling two dynamical
systems such that they share stability properties; however, we
assumed that fL existed. In reality, we must design this function
such that it is stable by construction. Although several options
are possible, in this work, we define fL as

ẏt = α
 (yg − yt) (2)

where α ∈ R
n corresponds to the gains vector and 
 to the

element-wise/hadamard product. If αi > 0,3 this system mono-
tonically converges to yg [29], where αi corresponds to the ith
element of α.

1) Adaptive Gains: In the simplest case, α is a fixed, prede-
fined, value; however, the performance of the learned mappings
ψ and φ is susceptible to the selected value of α. Alternatively,
to provide more flexibility to the framework, we propose to
defineα as a trainable function that depends on the current latent

3This holds for the continuous-time case. However, we approximate the
evolution of this system via the forward Euler integration method. Then,
the system can be written for the discrete-time case as yt+1 = Ayt, where
A = I + diag(−α)Δt, assuming yg = 0 without loss of generality. To ensure
stability, the absolute value of the eigenvalues ofA must be less than one; then,
0 < αi < 2/Δt.
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state yt, i.e., α(yt). Then, the parameters of α can be optimized
using the same losses employed to train ψ and φ, since it is
connected to the rest of the network and the training error can
be propagated through it. Note that this system is stable under
the same condition for α as before, as shown in Appendix B.

F. BC of Dynamical Systems

Finally, we need to optimize an IL loss �IL such that the learned
dynamical system fTθ follows the demonstrations of the desired
motion. For simplicity, we opt to solve a behavioral cloning
(BC) problem; however, in principle, any other IL approach can
be used. As described in Section III, this can be achieved by
minimizing the (forward) Kullback–Leibler divergence between
the demonstration’s trajectory distribution and the trajectory
distribution induced by the learned dynamical system. Note that
this problem formulation is equivalent to applying maximum
likelihood estimation (MLE) between these distributions [26].
Hence, we can rewrite it as

fTθ = arg max
fT
θ ∈F

Eτ∼p∗(τ) [ln pθ(τ)] . (3)

If we note that pθ(τ) is a product of conditional transi-
tion distributions pθ(xt+1|xt), we can rewrite it as pθ(τ) =
ΠT−1

t=0 pθ(xt+1|xt)p(x0), where p(x0) is the initial state proba-
bility distribution. Replacing this in (3) and ignoring constants,
we obtain

fTθ = arg max
fT
θ ∈F

Ext+1∼p∗(xt+1|xt),
xt∼pt∗(xt)

[
T−1∑
t=0

ln pθ(xt+1|xt)
]

where pt∗(xt) is the probability distribution of states at time
step t, and p∗(xt+1|xt) is the distribution of transitioning to
state xt+1 given that the system is in some state xt. Both of
these distributions are induced by the dynamical system f ∗.

In practice, however, we do not have an analytical representa-
tion of the distributions pt∗(xt) and p∗(xt+1|xt). Therefore, the
problem has to be estimated through empirical evaluations of this
objective, which is achieved using the demonstrations present in
the dataset D. Then, we can solve this problem iteratively [30]
by randomly sampling batches ofBi trajectories from D at each
iteration and maximizing

fTθ = arg max
fT
θ ∈F

Bi−1∑
b=0

T−1∑
t=0

ln pθ(x
∗
t+1,b|xt,b) (4)

where the subscript b has been added to the states indicating
their correspondence to the different trajectories of B.

To solve this problem, we can assume the transition dis-
tribution of the learning system to be a Gaussian with fixed
covariance, and a mean corresponding to the forward Euler
integration [31] of fTθ for the given state xt,b, i.e., xt+1,b =
xt,b + fTθ (xt,b)Δt, where Δt corresponds to the time step size.
Furthermore, the same Gaussian assumption is made for the
demonstration’s distribution p∗(xt+1|xt); however, since its
transitions are obtained directly from the demonstrations, it is
not necessary to integrate in this case. Then, (4) reduces to the
mean squared error (MSE) minimization between the mean of

Fig. 4. Multistep IL loss for one sample when using backpropagation through
time, where h = Hi.

the demonstration’s distribution p∗(xt+1|xt), and the mean of
the learning distribution pθ(xt+1|xt) [32], i.e.,

fTθ = arg min
fT
θ ∈F

Bi−1∑
b=0

T−1∑
t=0

||x∗t+1,b −
(
xt,b + fTθ (xt,b)Δt

)
||22.

In practice, however, if the trajectories of the demonstrations
are too long, due to computation or complexity limitations,
it might not be convenient to optimize this objective for the
complete trajectories. Therefore, this problem can be simplified
by allowing the initial conditions of the demonstration batches
to be at any time step t′ ∈ {0, . . ., T − 1}, and optimizing the
problem for some time horizon Hi ≤ T . Consequently, we get
the loss �IL that we employ to solve the BC problem in this work:

fTθ = arg min
fT
θ ∈F

Bi−1∑
b=0

Hi−1∑
t=t′

||x∗t+1,b − xt,b − fTθ (xt,b)Δt||22︸ ︷︷ ︸
�IL

.

(5)

G. Compounding Errors and Multistep Learning

Commonly, (5) is solved as a single-step prediction problem
(i.e.,Hi = 1) by computing only one transition from xt′,b using
fTθ and comparing it against x∗t′+1,b. Nevertheless, in practice,
the learned dynamical system is applied recursively, i.e., assum-
ing perfect tracking, every prediction is computed as a function
of a previously computed output using the following equation:

xh = xh−1 + fTθ (. . .x1 + fTθ (x0 + fTθ (x0)Δt)Δt. . .)Δt
(6)

where h is the evolution horizon. Therefore, the prediction error
of fTθ compounds and grows multiplicatively by every new
prediction [33], [34]. This makes the dynamical system diverge
away from the states present in the demonstration’s trajectories,
requiring the system to make predictions in states that are not
supported by the training data, which is known as the covariate
shift problem [32]. Consequently, the prediction error grows
even larger.

An important reason for this issue to occur is that the learned
system is expected to act over multiple steps when it is only being
trained for predicting single steps. To alleviate this problem,
the dynamical system must be trained for predicting multiple
steps, by setting Hi > 1 and computing xt,b in (5) recursively,
as shown in Fig. 4. In practice, however, the single-step loss is
commonly employed, as the multistep loss has been regarded
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Fig. 5. Control strategies that can be used with CONDOR. (a) Online control.
At every time step, fTθ receives xt from the sensors of the robot, and its output
is fed to a low-level controller that tracks it. (b) Offline control. fTθ is applied
recursively N times to create, offline, a trajectory that is stored in a buffer.
Afterward, the complete trajectory is tracked with a low-level controller.

as being challenging to optimize, even for short prediction
horizons [35]. Nevertheless, these challenges can be addressed
with current DNN optimization techniques.

Consequently, we optimize the multistep loss by noting that
this can be achieved using backpropagation through time [36],
[37], which has become popular and improved given its use
in recurrent neural networks [38]. Hence, its limitations such
as exploding/vanishing gradients or ill-conditioning [39] have
been alleviated. Furthermore, specifically for this case, we can
observe that every forward integration step in (6) can be inter-
preted as one group of layers inside a larger DNN that computes
xh. Then, each one of these groups has the same structure
as the residual blocks in ResNet [40], which have also shown
to be beneficial for alleviating vanishing/exploding gradients
issues [41].

V. SIMULATED EXPERIMENTS

In this section, we employ datasets of human handwriting
motions to validate our method. Although these datasets contain
human demonstrations, our evaluation of the learned motions
is simulated, since no real system is involved in this process.
This can be better understood with Fig. 5, where we show two
different control strategies that can be employed with CONDOR.
More specifically, Fig. 5(b) presents an offline control strategy
where a trajectory is computed and stored in a buffer by applying
CONDOR recursively. Afterwards, this trajectory is tracked by
a low-level controller. In our evaluation, however, we ignore
the low-level controller part and evaluate CONDOR using only
the trajectory provided by the buffer, i.e., we assume that the
trajectory is tracked perfectly. Despite this assumption, this
methodology with this dataset has been extensively used in
the literature, since it allows us to test if the learning method
generates adequate state transition requests [2], [3], [7].

The DNN architecture and hyperparameter optimization pro-
cess of the models used in this section are described in Appen-
dices C and D, respectively.

A. LASA Dataset Validation: First-Order Two-Dimensional
Motions

We validate our method using the LASA dataset,4 which
comprises 30 human handwriting motions. Each motion, cap-
tured with a tablet PC, includes 7 demonstrations of a desired
trajectory from different initial positions. The state is represented
as two-dimensional positions, and the learned systems are of
first order, i.e., the output of fTθ is a desired velocity. Although
the demonstrations may have local intersections due to human
inaccuracies, the shapes contained in this dataset can be well
represented using first-order dynamical systems, which cannot
represent intersections. Consequently, we employ the LASA
dataset to evaluate motions modeled as first-order dynamical
systems, which is the same approach that was taken by this
article that introduced this dataset [2].

Fig. 6 shows three examples of dynamical systems learned
with CONDOR. These motions share the following three fea-
tures.

1) Adequate generalization: Motions generated in regions
with no demonstrations smoothly generalize the behavior
presented in the demonstrations.

2) Accuracy: The learned models accurately reproduce the
demonstrations.

3) Stability: The vector fields suggest that, independently of
the initial conditions, every motion reaches the goal.

In the following sections, we provide further details regarding
each one of these points. Moreover, we compare CONDOR5

with two other state-of-the-art methods for stable motion gener-
ation: 1) control lyapunov function-based dynamic movements
(CLF-DM) using Gaussian mixture regression (GMR)6 [8], and
2) stable dynamical system learning using Euclideanizing flows
(SDS-EF)7 [3]. CLF-DM (GMR) learns a dynamical system
using a GMR and corrects its behavior whenever it is not stable
according to a learned Lyapunov function. SDS-EF is a diffeo-
morphism shaping method, as introduced in Section IV-B1.

1) Generalization: Fig. 6 also depicts the performance of
CLF-DM and SDS-EF on three motions. Here, we observe that
even though the stability of these methods is guaranteed, unlike
CONDOR, the behavior that they present in regions without
demonstrations might not always be desired.

In the case of SDS-EF, unpredictable motions can be gen-
erated8 (e.g., bottom image, bottom-right quadrant), which,
furthermore, can reach very high speeds (e.g., 382 mm/s,
while the demonstrations exhibit maximum speeds of around

4[Online]. Available: https://cs.stanford.edu/people/khansari/download.html
5CONDOR code repository: https://github.com/rperezdattari/Stable-

Motion-Primitives-via-Imitation-and-Contrastive-Learning
6CLF-DM code repository: https://github.com/rperezdattari/Learning-

Stable-Motions-with-Lyapunov-Functions
7SDS-EF code repository: https://github.com/mrana6/euclideanizing_flows
8These results are not completely consistent with the ones reported in [3],

since we removed additional preprocessing (smoothing and subsampling) to
compare every method under the same conditions.
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Fig. 6. Examples of LASA dataset motions learned using CONDOR, SDS-ES, and CLF-DS (GMR). White curves represent the demonstrations. Red curves
represent the executed motions by the learned model when starting from the same initial positions as the demonstrations. The arrows indicate the vector field of
the learned dynamical system (velocity outputs for every position). In SDS-ES, every speed greater than 50 mm/s is saturated to this value.

40 mm/s). Note, however, that this issue can be alleviated by
optimizing SDS-EF for a shorter period of time, but this also
makes it less accurate. Such unpredictability and high speeds
can be a limitation in real-world scenarios. For instance, when
humans interact with robots and must feel safe around them,
or due to practical limitations, e.g., it is unfeasible to track the
requested motions with a low-level controller.

Differently, in the case of CLF-DM, nonsmooth transitions are
present in some regions of the state space due to the corrections
applied by the Lyapunov function. This can also be a limitation,
since robotic systems commonly avoid nonsmooth trajectories
to minimize the risk of damage [19].

Lastly, Fig. 6 evidences that, in real-world scenarios, CLF-
DM and SDS-EF are susceptible to making robots leave their
workspaces. These methods do not constrain their trajectories
to reside inside a specific space, they only guarantee that, even-
tually, these will converge to the goal. In practice, however, the
learned trajectories might need to leave a robot’s workspace to
reach the goal. Then, in Fig. 6, if we assume that the observed
regions are a robot’s workspace, the vector fields of CLF-DM
and SDS-EF indicate that some motions depart from it. In
contrast, in CONDOR, the workspace is a positively invariant
set w.r.t. the learned dynamical system (see Section IV-D);
consequently, motions stay inside it.
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Fig. 7. Accuracy comparison of CONDOR against state-of-the-art methods.
Each box plot summarizes performance over the 30 motions of the LASA dataset.

2) Accuracy: Fig. 6 indicates that every method is able to
accurately reproduce the demonstrations. However, CLF-DM is
clearly less accurate than CONDOR and SDS-EF. For instance,
in the bottom-left image, the inner red trajectory drifts away
from the demonstrations, coming back to them at the end of the
motion due to its stability properties.

Quantitatively speaking, we can employ different metrics to
evaluate the accuracy of the learned trajectories (see Fig. 7).
Commonly, a distance between two trajectories is minimized;
one trajectory corresponds to a demonstration, and the other cor-
responds to the one generated by the learned dynamical system
when starting from the same initial condition as the demonstra-
tion. However, different distances between trajectories can be
computed depending on the features that we aim to evaluate
from the trajectories. To have a more complete view of the
accuracy performance of our method, we compare CONDOR,
CLF-DM (GMR),9 and SDS-EF10 under the following three
distance metrics:

1) root mean squared error (RMSE);
2) dynamic time warping distance (DTWD) [42];
3) Frechet distance (FD) [43].
We can observe that CONDOR clearly achieves better results

against CLF-DM (GMR) under every metric, while a smaller
gap, yet superior, is achieved against SDS-EF.

3) Stability: Lastly, we quantitatively study the stability
properties of CONDOR. As mentioned in Section IV, the stabil-
ity of the motions it learns depends on the optimization problem
being properly minimized. Therefore, we need to empirically
test this after the optimization process finishes.

To achieve this, we integrate the dynamical system forL time
steps, starting from P initial states, and check if the system
converges to the goal (i.e., fixed-point iteration, where the fixed
point corresponds to the goal). The larger the P , the more
accurate the results we obtain. If L is large enough, the system
should converge to the goal after L steps. Hence, by computing
the distance between the last visited state and the goal, and

9Each GMR consisted of 10 Gaussians and each Lyapunov function was
estimated using three asymmetric quadratic functions.

10Results were extracted from [3].

checking that it is below some predefined threshold ε, it is
possible to evaluate if a trajectory is successful or not (i.e., if
it converges to the goal).

We evaluated CONDOR using all of the motions present
in the LASA dataset with L = 2000 and P = 1225 with
ε = 1 mm, and observed that 100% of the trajectories reached
the goal. Hence, CONDOR is able to successfully learn stable
motions.

B. Ablation Study

To better understand CONDOR and the relevance of its dif-
ferent parts, we perform an ablation study where we compare
the following four variations of this method.

1) CONDOR: The base method studied in Section V-A.
2) CONDOR (relaxed): The contrastive loss for stability is

replaced with the triplet loss. This variation is presented
to observe the importance of minimizing the exact loss
presented in (1) or whether it is enough to enforce this
type of structure in the latent space of the NN to obtain
stable motions.

3) CONDOR (fixed gains): As explained in Section IV-E1,
having adaptive gains in the latent dynamical system de-
scribed in (2) should help obtaining more flexible motions.
Therefore, this model, with fixed gains, is studied to
observe the relevance and effect of using adaptive gains.

4) BC: The stability loss is removed and only the BC loss is
employed to learn motions. This model is used to study
the effect that the stability loss can have on the accuracy
of the learned motions. To observe the behavior of BC, we
refer the reader to Fig. 2.

Fig. 8 showcases examples of motions learned with both
CONDOR (relaxed) and CONDOR (fixed gains). In both cases,
the motions display accuracy and stability. However, these
models differ in their generalization. CONDOR (relaxed) has a
generalization behavior similar to the one of CONDOR shown
in Fig. 6. In these cases, the regions of the state space without
demonstrations exhibit a trend that resembles the one observed in
the demonstrations. In contrast, the generalization of CONDOR
(fixed gains) does not follow this trend as closely. For example,
within certain regions, the velocity of the motions decreases, and
as they approach the demonstrations, their direction becomes
nearly orthogonal, indicating a discrepancy between the gener-
alized behavior and the pattern presented in the demonstrations.

1) Accuracy: In this section, we compare the accuracy of the
different variations of CONDOR (see Fig. 9). Intuitively, BC
should perform better than any variation of CONDOR, since
it only optimizes the BC loss. In contrast, the other variations
also optimize the stability loss, which could harm/limit the
minimization of the BC loss. Consequently, BC is the lower
bound for the accuracy performance, i.e., best case scenario, a
variation of CONDOR performs as well as BC does.

In Fig. 9, we observe that the accuracy performance of all
of the variations of CONDOR is very similar, including the BC
case. This result shows that CONDOR, and its variations, is able
to effectively minimize the BC and stability loss together without
harming the accuracy performance of the learned motions.
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Fig. 8. Examples of LASA dataset motions learned using two variations of
CONDOR: 1) relaxed and 2) fixed gains.

Fig. 9. Accuracy comparison of different variations of CONDOR. Each box
plot summarizes performance over the 30 motions of the LASA dataset.

TABLE I
PERCENTAGE OF UNSUCCESSFUL TRAJECTORIES OVER THE LASA DATASET

(L = 2000, P = 1225, ε = 1 mm)

2) Stability: Table I shows the results of stability tests on the
presented methods. We can observe that when stability is not
enforced (i.e., BC), the percentage of unsuccessful trajectories
is significant, being larger than one-third of the total amount
of trajectories. In contrast, when stability is enforced using
adaptive gains, the system achieves perfect performance (i.e.,
every trajectory reaches the goal), as it is observed with the

results of CONDOR and CONDOR (relaxed). Interestingly, this
result also shows that the relaxed variation of CONDOR can be
employed for achieving stable motions without having a loss
in performance. In contrast, when fixed gains are employed,
although the percentage of unsuccessful trajectories is very low
(< 0.01%), the performance degrades. This result suggests that
the stability loss is not being as effectively minimized as when
the gains are adaptive.

3) Dynamical Systems Mismatch: So far, we observed that
every variation of CONDOR that minimizes the stabilization
loss is able to learn accurate and stable motions. The case of
CONDOR (fixed gains) showed a slightly worse stability per-
formance and poorer generalization capabilities than CONDOR
and CONDOR (relaxed). However, CONDOR has not shown to
be clearly superior to its variations, especially in the CONDOR
(relaxed) case.

Since CONDOR (relaxed) approximates the loss that mini-
mizes the distance between yLt and yTt , the trajectories that it
obtains with fL and fTθ in the latent space should diverge faster
than the ones generated with CONDOR. To investigate this idea,
we evaluate the optimization of this loss by separately simulating
fTθ and fL when starting from the same initial conditions. If
the stabilization loss is perfectly minimized, these simulations
should yield the same trajectories when mapping the evolution
of fL to task space;11 otherwise, they should diverge from each
other.

Fig. 10 presents motions learned using the different variations
of CONDOR and shows motions generated in task space when
following fTθ and fL. We can observe that CONDOR performs
well in the complete state space, where, for most trajectories, it
is not possible to detect a difference between the results obtained
using fL and fTθ . In contrast, we can observe that, for the other
cases, trajectories diverge more pronouncedly. Interestingly, the
divergent trajectories seem to overlap with the regions where
demonstrations are provided. This suggests the stabilization loss
is not properly minimized in this region, indicating that these
variations of CONDOR struggle to find good solutions in the
regions of the state space where the imitation and stabilization
losses are optimized together, i.e., in the demonstrations. Finally,
it is also possible to observe that CONDOR (relaxed) obtains
trajectories that are slightly more similar to the ones obtained
with CONDOR (fixed gains), although it is not conclusive.

Quantitatively, we can analyze this trajectory difference by
computing the accumulated error between the trajectories gen-
erated using both dynamical systems. Fig. 11 shows this error
as a function of the trajectory length. As expected, this error
grows for the dynamical systems as a function of their length.
However, CONDOR obtains a significantly lower error than its
variations. Furthermore, Fig. 11 clearly shows that CONDOR
(relaxed) outperforms CONDOR (fixed gains). Finally, since
this accumulated error is a consequence of how well the stability
loss is minimized, these results might explain why the stability
performance of CONDOR (fixed gains) is not perfect, i.e., this

11Trajectories from fL with known initial conditions in T (hence, yL0 =

ψθ(x0)), can be mapped toT by recursively applyingxt+1 = xt + φθ(y
L
t )Δt.
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Fig. 10. Dynamical systems mismatch comparison. Blue curves represent the
demonstrations, black curves represent trajectories generated using fTθ of the
dynamical system, and red curves represent trajectories generated using fL of
the dynamical system. The black and red trajectories were obtained by integrat-
ing the dynamical system through 80 time steps.

Fig. 11. Trajectory mismatch error. Results are presented as a function of the
length of a trajectory with respect to the complete length of the demonstrated
trajectories, corresponding to 1000 transitions. 100 trajectories in the task
and latent spaces were simulated, whose initial positions were uniformly dis-
tributed in the motion’s state space. The results show the mean and half of the
standard deviation of the error computed with these simulations.

variation is not able to successfully minimize the stability loss
in the complete state space.

As a final remark, we can note that generating trajectories in
the latent space and then mapping them to task space can have
other applications, such as predicting future states efficiently
and employing them, for instance, in model predictive control
frameworks. It is considerably faster to generate trajectories in
the latent space than using the complete DNN architecture to
compute them in task space, since the number of parameters
and layers required to do so is smaller. Then, once the trajectory
is generated in the latent space, it can be mapped to task space
as one batch in one forward pass.

C. LAIR Dataset Validation: Second-Order 2-D Motions

In this section, we introduce the LAIR handwriting dataset.
The objective is to test the accuracy and stability performance of
the proposed method for second-order motions, where the state
comprises both position and velocity. This dataset contains ten
human handwriting motions collected using a mouse interface
on a PC. The state here is four-dimensional, encompassing a
two-dimensional position and velocity, and the output of fTθ
is the desired acceleration. The dataset’s shapes present several
position intersections that have been designed to require, at least,
second-order systems to model them. This dataset is employed
to test the scalability of the proposed method in terms of the
order of the motion.

Unlike the LASA dataset, the LAIR dataset contains raw
demonstrations without any type of postprocessing. Hence,
the ending points of the demonstrated trajectories might not
always coincide exactly. To account for this, the goal of a
motion is computed by taking the mean between these ending
points.

1) Accuracy: Fig. 12 shows three examples of motions of
the LAIR dataset. These motions can only be modeled using
a dynamical system of, at least, second order. First-order sys-
tems only employ position information to generate a trajectory;
hence, visiting the same position two times will generate an
ambiguity for the learning algorithm. This makes the learned
system collapse to a solution that lies in between the multiple
demonstrated options. Therefore, we observe that first-order
systems with CONDOR are not able to appropriately model the
shown motions.

In contrast, we observe that second-order systems are able to
appropriately capture the dynamics of the demonstrated motions
and execute them as they were intended. However, some trajec-
tories (especially those coming from the tail of the initial-state
sampling distribution) do not go through the first intersection,
since they start from a position that, given its distance from
the initial states of the demonstrations, directly follows the
trend of the motion after this intersection. If this is a limitation
for a specific application, providing demonstrations in those
regions would make the system behave as expected. Finally,
another interesting feature of these motions, is that the different
trajectories, eventually, seem to collapse to the same position,
overlapping with each other. This comes as an artifact when
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Fig. 12. Motions modeled using CONDOR with first-order and second-order
systems. The shapes in grey correspond to the demonstrations. The colored
curves correspond to different instances of trajectories generated when starting
from different initial states. Every trajectory was initialized with zero velocity
and the initial positions were obtained by sampling from a Gaussian distribution
around the initial positions observed in the demonstrations. 36 trajectories were
sampled per plot.

Fig. 13. Accuracy comparison of CONDOR when modeling motions using
first-order and second-order systems. Each box plot summarizes performance
over the 10 motions of the LAIR dataset.

incorporating the stability loss, where the systems find these
solutions to ensure stability.

Quantitatively, the same conclusions can be drawn when
observing Fig. 13. This figure presents the results of the accuracy
of both CONDOR variations under the same metrics employed
in Section V-A2. As expected, the second-order systems outper-
form the first-order systems by a large margin.

2) Stability: Finally, we study the stability of the motions
generated with CONDOR over the LAIR dataset when using
first-order and second-order systems. Table II shows that when
using first-order systems, CONDOR struggles to generate stable
motions with second-order demonstrations. For instance, when
a demonstration has a loop, the optimization of the DNN might
not find a proper solution, since trajectories inside the loop do not
have a way of reaching a region outside the loop without ignoring

TABLE II
PERCENTAGE OF SUCCESSFUL TRAJECTORIES OVER THE LAIR DATASET

(L = 2000, P = 1225, ε = 10 px)

TABLE III
CHARACTERISTICS OF THE REAL-WORLD EXPERIMENTS

the demonstrations. In contrast, CONDOR with second-order
systems is always able to learn stable motions.

VI. REAL-WORLD EXPERIMENTS

To validate the proposed framework in more realistic scenar-
ios, we design the following three real-world experiments using
a 7-DoF KUKA iiwa manipulator:

1) hammer hanging;
2) writing the number two;
3) cleaning a table (see Fig. 14).
Throughout these experiments, the following four important

characteristics of the learning problem are changed:
1) dimensionality of the motion;
2) order of the motion;
3) control strategy;
4) data collection method.
These characteristics define different IL scenarios that can

be found in real-world robotic problems. Hence, by testing
CONDOR in these scenarios, we aim to show the applicabil-
ity, flexibility, and robustness of our method. Furthermore, if
we compare these scenarios with the simulated ones studied
in the previous sections, we can observe that our method is
not restricted to two-dimensional motions only and that it can
also work in higher dimensional problems. Table III shows a
summary of the real-world experiments, which are explained in
detail in the following sections.

Similarly to the LAIR dataset, the demonstrations are not
postprocessed in these experiments. Hence, in this section, the
goal of the motions is also computed by taking the mean between
the ending points of each demonstration.

A. Hammer Hanging: First-Order 3-D Motions

This experiment consists of learning to control the end-
effector’s position of a robot such that it hangs a hammer [see
Fig. 14(a)], allowing us to test the behavior of CONDOR for
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Fig. 14. Setup of real-world experiments. (a) Hammer hanging. (b) Writing number two. (c) Table cleaning.

first-order 3-D motions. This problem is interesting since it
shows that implicit knowledge that otherwise requires modeling,
can be transferred to the robot via human demonstrations. In this
case, this knowledge includes information about the geometry of
the hammer and the hanger that is required to hang the hammer.

1) Control: We employ the online control strategy depicted
in Fig. 5(a), which allows the robot to be reactive to perturbations
and adjust its motion on the fly if the environment changes.
Hence, at every time step, the robot obtains its position with
respect to the goal (i.e., the hanger) and sends an end effector’s
velocity request to a low-level controller. For details regarding
the low-level controller, the reader is referred to Appendix E-B.

2) Demonstrations: We used a motion capture system to
collect demonstrations. The demonstrator had to wear a glove
whose position was tracked by the tracking system. We recorded
10 demonstrations and used them to train CONDOR.

This approach has the advantage of it being comfortable for
the human, since it does not require the human to adjust to any
specific interface nor interact with the robot, which can require
training. Nevertheless, since the robot embodiment is not being
employed to collect the demonstrations, there is no guarantee
that the collected motions will feasible for the robot to execute.
Therefore, it is necessary to record motions that can be executed
by the robot, which, depending on the problem, might require
knowledge about the robotic platform.

3) Moving Goal: To test the reactive capabilities of this ap-
proach, and the generalization properties of motions modeled as
dynamical systems, we made this problem more challenging by
making the hanger movable. To achieve this, we added tracking
markers to the top of the hanger and fed the hanger’s position
to CONDOR in real time. Consequently, while the robot was
executing the hanging motion, the hanger could be displaced
and the robot had to react to these changes in the environment.

Notably, no extra data is required to achieve this, since the
motion of CONDOR is computed as a function of the relative
position of the robot w.r.t. the goal. Hence, by displacing the
goal, the position of the end effector with respect to the hanger
changes, making CONDOR provide a velocity request according
to this new position.

Fig. 15. Blue trajectories represent the learned model’s evolution of the robot
end effector’s position when starting from different initial conditions. The larger
and darker trajectories correspond to demonstrations. Some demonstrations are
occluded and others were removed for visualization purposes. The red point
corresponds to the goal.

4) Results: Fig. 15 shows a 3-D plot with 1250 simulated tra-
jectories generated with CONDOR when starting from different
initial positions. We can observe that all of the trajectories reach
the goal while following the shape in the demonstrations. The
performance of this model on the real robot can be observed in
the attached video.

B. Writing: Second-Order 2-D Motions

We also tested CONDOR in a writing scenario [see
Fig. 14(b)]. The objective is to control the robot’s end effector to
write the number two on a whiteboard. To write the number two,
it is necessary to use second-order motions, since this character
has one intersection. Therefore, in this experiment, we aim to
validate the ability of CONDOR for modeling second-order
motions. Finally, note that for writing it is only necessary for
the robot to move in a two-dimensional plane; however, since
the motion is of second order, the state space of the robot is
four-dimensional (the same as the motions in the LAIR dataset).
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1) Control: We employ the offline control strategy, as de-
picted in Fig. 5(b). This approach is suitable for writing since
in this task it is important that the trajectory that the robot
executes is consistent with the one that CONDOR predicts from
the initial state. For instance, if the robot, while executing the
motion is perturbed by its interaction with the whiteboard in
some direction, it would transition to a state that is not consistent
anymore with the character that has been written so far. In
an offline control approach this is not very critical, because,
given that the reference of the motion is precomputed, it would
make the robot move back to a state that is consistent with the
motion that is being written. For details regarding the low-level
controller, the reader is referred to Appendix E-C.

2) Demonstrations: The same PC mouse interface developed
to collect the LAIR dataset is employed here. Six demonstrations
were collected and used to train CONDOR.

3) Results: The simulated results of this experiment follow
the same behavior as the ones presented in Section V-C. To
observe its behavior on the real robot, the reader is referred to
the attached video.

C. Table Cleaning: First-Order 6-D Motions

Finally, we test CONDOR in a cleaning task. The objective is
to use the robot’s arm to push garbage, which is on top of a table,
to a trash bin. Differently from the other scenarios, in this case,
the robot’s joint space is directly controlled with CONDOR.
Hence, we learn a 6-D motion. Note that the robot has 7 degrees
of freedom, but we keep the last joint fixed as it has no influence
on the task.

Since the motions learned by CONDOR can be used as
primitives of a more complex motion, in this experiment, we
highlight this capability by learning two motions that are se-
quenced together to generate the complete cleaning behavior.
Each motion is trained with only one demonstration.

This scenario allows us to test two features of our method:
1) its behavior in a higher dimensional space (6-D), and 2) its
capability to learn motions from only one demonstration.

1) Control: Similarly to the hanging hammer experiment,
we use the online control strategy [see Fig. 5(a)]. Differently
than before, in this case, the joint space of the robot is directly
controlled with CONDOR, i.e., a reference velocity for the joints
is provided to the low-level controller. Joint-space control is
suitable for this task because the configuration of the robot is
important for completing the task successfully since its body
is used to push the trash. For details regarding the low-level
controller, the reader is referred to Appendix E1.

2) Demonstrations: For this experiment, kinesthetic teach-
ing was used to collect demonstrations. This approach consists
of collecting demonstrations by physically interacting with the
robot and guiding it along the desired trajectory. To make this
task easier, the gravitational forces of the robot were compen-
sated such that it would not move unless the human interacted
with it.

3) Results: Fig. 16 presents simulated results of the second
cleaning primitive learned in this experiment. Since the motion
is six-dimensional and, hence, it is very challenging to visualize

Fig. 16. Simulated trajectories, as a function of time, of the second motion
of the cleaning task. Blue trajectories correspond to evaluations of the model
under different initial conditions and the black trajectory corresponds to the
demonstration. The red point is the goal.

Fig. 17. t-SNE projection of the motion manifolds present in the latent space
of the DNN.

in one plot, we use six different plots to separately show the
evolution of each state dimension as a function of time.

In this case, we simulate 100 trajectories using CONDOR,
since more make the plots difficult to analyze. From them,
we observe that as time increases, every trajectory eventually
reaches the goal. Note that, given that their initial states are
random, they can start further away or closer to the goal than
the demonstration; therefore, it might take them a longer/shorter
time to reach the goal. Lastly, we can observe that the demon-
strated trajectory and some simulations, either overlap or have
the same shape with a phase shift, which showcases that the
demonstrated behavior is captured by CONDOR.

The reader is referred to the attached video to observe the
behavior of the cleaning primitives on the real robot.

VII. EXTENDING CONDOR

One of the advantages of our proposed framework is that we
can extend it to address more complex problems. Therefore,
there are interesting areas of research that can be studied with
CONDOR. In this section, we aim to show the steps that we have
taken in this direction, which we plan to study deeper in future
work. More specifically, we tested the following two extensions.
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Fig. 18. Different motions learned in one DNN. Blue curves correspond to
demonstrations, the darker their color, the more they influence each motion.
Arrows represent the vector field of the motion, and red curves correspond to
simulations of trajectories executed by the model. The figures highlighted in
green correspond to the cases where the BC loss is minimized. The remaining
figures correspond to interpolated motions. In the title of each plot, we can
observe the code provided to the network to generate each motion.

1) Obstacle avoidance: Multiple obstacle avoidance meth-
ods have been proposed for motions modeled as dynamical
systems, and it is an active field of research [44], [45],
[46], [47]. We test CONDOR with one of these exten-
sions [44] and observe that it works properly. However,
apart from this validation, we do not provide a contribution
to this problem. Hence, the reader is referred to Appendix
F for more details regarding obstacle avoidance in this
research.

2) Multimotion learning and interpolating: Another interest-
ing field of research is learning multiple motions together
in one neural network model. This allows interpolating
between these motions, generating novel behaviors that
are not present in the demonstrations. This can, for in-
stance, reduce the number of human demonstrations re-
quired to learn and generalize a problem to a different
situation.

In the following section, we study the interpolation capabili-
ties of motions learned with CONDOR.

A. Multimotion Learning and Interpolation

We aim to provide preliminary results regarding the multi-
motion learning capabilities of CONDOR, and its behavior in
terms of interpolation and stability. To learn multiple motions in
one neural network, we extend its input with a one-hot code

that indicates, which motion is selected. For instance, if we
learn three motions, we have three codes [1, 0, 0], [0, 1, 0], and
[0, 0, 1]. Then, each code is used together with a different set
of demonstrations to optimize �bc. To interpolate between these
motions, we select an input code of the DNN that has an interme-
diate value between the ones of the motions, e.g., [0.5, 0.5, 0.0].
To ensure stability for all of the interpolated motions, we can
minimize �stable for each motion and also for the ones in the
interpolation space, which should create a bijective mapping
between the complete input of the DNN (state and code) and its
latent space. Part of this can be observed in Fig. 17, which shows
a t-SNE [48] projection of three manifolds corresponding to the
mapping of the state space of three motions to the DNN’s latent
space. Since each motion is mapped to a different region of the
latent space, it is possible to move in between these regions to
create interpolated motions.

Fig. 18 shows these motions and some examples of their
interpolation. We can note that the interpolation works properly,
where features of different motions are combined to create
novel behaviors. Furthermore, we observe that, as expected,
the closer to a motion we interpolate, the more features of
this motion the interpolated one showcase. Finally, regarding
stability, every motion has zero unsuccessful trajectories with
L = 2000, P = 1225, and ε = 10 px.

VIII. CONCLUSION

In the context of robotic reaching motions modeled as dynam-
ical systems, we introduce a novel contrastive loss that extends
current IL frameworks to achieve globally asymptotically stable
behaviors. We optimize this loss together with a BC loss, which,
despite its practical limitations due to the covariate shift problem,
can achieve state-of-the-art results by minimizing the multistep
loss instead of the single-step loss, as observed in our experi-
ments. Importantly, our stability loss can also be employed with
other IL approaches, though its effectiveness with other losses
remains untested.

Further experiments demonstrate that our framework, CON-
DOR, can effectively learn stable and accurate motions across
various scenarios. These experiments were conducted in both
simulated settings and with a real robot. We observed that
CONDOR learns successful behaviors in the following:

1) two-dimensional first-order motions (LASA dataset);
2) three-dimensional first-order motions (hammer hanging);
3) four-dimensional second-order motions (LAIR dataset

and writing two);
4) six-dimensional motions (cleaning table).
Lastly, we observe that CONDOR can be extended to learn

multiple motions and interpolate between them, allowing it to
generate more stable behaviors without requiring more demon-
strations. This interesting area of research will be explored
further in future work.

While this paper’s findings are promising, they also reveal
limitations that inspire other future research directions. First,
our method has only been tested on relatively low-dimensional

Authorized licensed use limited to: TU Delft Library. Downloaded on October 27,2023 at 12:24:56 UTC from IEEE Xplore.  Restrictions apply. 



3924 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 5, OCTOBER 2023

state spaces; its applicability in higher dimensional spaces re-
mains unexplored. Additionally, we assume that the employed
state representations used are minimal, a condition not always
met in robotics. For instance, orientation representations of-
ten employ non-Euclidean manifolds (e.g., unit quaternions or
rotation matrices) that introduce constraints, making the state
representations nonminimal [49]. A further assumption is the
existence of a low-level controller capable of generating the state
transitions requested by CONDOR. While this is reasonable for
manipulators, it can be a limiting factor in highly underactuated
robots. Finally, CONDOR assumes that a proper state estimation
(e.g., robot pose, goal location, or obstacles) is achieved by other
modules.

APPENDIX A
APPROXIMATING A DIFFEOMORPHISM

For achieving stable motions, CONDOR optimizes �stable.
This loss is designed to enforce the conditions of Theorem 1 in
the NN employed to represent the dynamical system fTθ . In this
section, we show that as a consequence of this, ψθ approximates
a diffeomorphism when T is a Euclidean space.

Definition 1 (Diffeomorphism): A mapping between two
manifolds ψθ : T → L is called a diffeomorphism if it is dif-
ferentiable and bijective.

In general, we can consider neural networks to be differ-
entiable, since most of the employed activation functions are
differentiable. However, there are some exceptions to this, as it
is for the case of the ReLU activation [50]. In practice, these
exceptions are nondifferentiable at a small number of points
and they have right and left derivatives, so they do not present
many issues when computing their gradients. However, strictly
speaking, for such cases, our method would make ψθ converge
to a homeomorphism instead. Differently to a diffeomorphism,
a homeomorphism only requires the mapping to be continuous,
but not differentiable. Nevertheless, for simplicity, we will as-
sume that ψθ is differentiable.

Then, we need to study if ψθ converges to a bijective function
to conclude that it approximates a diffeomorphism.

Definition 2 (Bijective function): A function is bijective if it
is injective and surjective.

Definition 3 (Injective function): A function is injective if
every distinct element of its domain maps to a distinct element,
i.e., ψθ is injective if ψθ(xa) = ψθ(xb) ⇒ xa = xb, ∀x ∈ T .

Definition 4 (Surjective function): A function is surjective if
every element of the function’s codomain is the image of at least
one element of its domain, i.e., ∀y ∈ L, ∃x ∈ T such that y =
ψθ(x).

From these definitions, it is clear that the surjectivity of ψθ is
straightforward to show, since it depends on how its codomain
is defined. In this work, we define the codomain of ψθ as L,
which is the manifold resulting from the image of ψθ. In other
words, the codomain L is a set that only contains the outputs
of ψθ produced from T . In such cases, a function is surjective,
since its codomain and image are equal, which ensures that ∀y ∈
L, ∃x ∈ T such that y = ψθ(x) (Definition 4).

Consequently, it only remains to prove that if the conditions
of Theorem 1 are met, thenψθ is injective when T is a Euclidean
space.

Proposition 2: If the conditions of Theorem 1 are met and
the domain of ψθ is T ; then, ψθ is injective.

Proof: By contradiction, let us assume that these conditions
are met and ψθ is not injective. Then, let us take two elements
of T , xa0

and xb0 , where xa0
	= xb0 . If ψθ is not injective, there

∃xa0
and ∃xb0 , such that ψθ(xa0

) = ψθ(xb0). In such cases,
from Condition 1) of Theorem 1, we know that as t→ ∞, the
mappings of these elements will generate the same trajectory in
L following the dynamical system fL, which converges to yg.

Since the evolution of the variables xa0
and xb0 is com-

pletely defined by the evolution of their mappings in L (i.e.,
ẋ = φ(y)), both variables will present the same time deriva-
tive in T . Consequently, given that the trajectories obtained
when starting from xa0

and xb0 , at time t, are described by
xi(t) = xi0 +

∫ t

τ=0 f(x(τ))dτ ,12 where i ∈ {a, b}, their inte-
gral part will be the same ∀t. Then, ∀t the distance between both
trajectories is d(xa0

, xb0) = ||xa(t)− xb(t)|| = ||xa0
− xb0 ||,

where d(·, ·) is a distance function.
Thus, as t→ ∞, xa and xb will converge to two differ-

ent points xag
and xbg , respectively. However, we also stated

that their respective mappings converge to yg , i.e., ψθ(xag
) =

ψθ(xbg ) = yg. In this case, Condition 2) of Theorem 1 implies
that xag

= xbg = xg. This contradicts the fact that xag 	= xbg.
Consequently, ψθ is injective. �

Finally, from Proposition 2, we can conclude that if the condi-
tions of Theorem 1 are enforced in fTθ ; then,ψθ will approximate
a diffeomorphism.

APPENDIX B
STABILITY OF fL WITH ADAPTIVE GAINS

In this section, we show that yg is globally asymptotically
stable in the system introduced in (2) when the adaptive gain
α(yt) is greater than zero. Note that the derivation introduced
here is analogous to the one of the discrete-time case when the
system is simulated using the forward Euler integration method.
However, in the latter, the condition for global asymptotic sta-
bility is 0 < α(yt) < 2/Δt.

To show global asymptotic stability, we introduce the
Lyapunov candidate V (yt) = y�t yt and study if the condi-
tion V̇ (yt) < 0 holds for all yt ∈ R

n. By introducing A =
diag(−α(yt)) and, without loss of generality, setting yg = 0,
we write (2) as ẏt = Ayt. Then

V̇ (yt) = (Ayt)
�yt + y�t (Ayt)

= y�t (A+A�)yt

= 2y�t Ayt (since A diagonal).

Therefore, it follows that this function is negative when the
eigenvalues of A are negative. Since A is a diagonal matrix, the
eigenvalues correspond to its diagonal−α(yt). Consequently,yg
is globally asymptotically stable in system (2) when α(yt) > 0.

12In discrete time, the integral transforms into a summation.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 27,2023 at 12:24:56 UTC from IEEE Xplore.  Restrictions apply. 



PÉREZ-DATTARI AND KOBER: STABLE MOTION PRIMITIVES VIA IMITATION AND CONTRASTIVE LEARNING 3925

APPENDIX C
NEURAL NETWORK ARCHITECTURE

In this appendix, we provide details regarding the neural
network’s architecture. The criteria employed to design the
architecture were to build a network: 1) large enough for it to
be very flexible in terms of the motions that it can represent,
and 2) with a reasonable size such that it can do inference in
real time. Consequently, we observed that three feedforward
fully connected layers, with 300 neurons each, for ψθ and φθ,
i.e., 6 layers in total, were enough for obtaining accurate results
and low inference times. The employed activation function was
GELU [51] for every layer except for the last layer of the
network, which had a linear activation, and for the last layer
of α, which had a sigmoid function. In our case, the network
inferred at 677 ± 57 Hz (confidence interval with one standard
deviation) using a laptop PC with an Intel i7-8750H (12) @
4.100 GHz CPU and an NVIDIA GeForce RTX 2070 Mobile
GPU. PyTorch had the GPU enabled at inference time.

For the case of the adaptive gains α(yTt ), two layers were
employed instead. Note that these layers only affect the train-
ing time of the network, given that they are not required for
inference.

Finally, layer normalization [52] was added after each layer
of the network except for the last layers of ψθ, φθ, and α. This
type of normalization has shown to be beneficial for reducing
training times and also for helping with vanishing gradients.

APPENDIX D
HYPERPARAMETER OPTIMIZATION

We introduce a hyperparameter optimization strategy for
CONDOR’s different variations on the LASA and LAIR
datasets. We define an accuracy metric, Lacc, calculated us-
ing the distance metrics from Section V-A2. We also evaluate
the stability of the system by minimizing the diffeomorphism
mismatch, i.e., the RMSE between yL1:N and yT1:N, defining the
stability term, Lstable. Lastly, we account for the precision of
the learned system’s goal versus the real goal by measuring the
average distance of all final trajectory points to the goal, creating
the term Lgoal. Then, we define the following objective:

Lhyper = Lacc + γstableLstable + γgoalLgoal

where γstable and γgoal are weighting factors. After initial tests,
we settled on γstable = 0.48 and γgoal = 3.5.

In practical applications, hyperparameter tuning has limita-
tions like time consumption and susceptibility to the curse of
dimensionality. To mitigate this, we focused on the follow-
ing five strategies: reducing the objective function’s overhead,
limiting the evaluation set, employing Bayesian optimization,
pruning, and selecting a subset of hyperparameters.

1) Reduced Objective Function’s Overhead: The objective
function minimized in the hyperparameter optimization process
is periodically computed throughout each learning process. Con-
sequently, if this function is expensive to compute, it will make
the optimization process slower. More specifically, we observe
that the computation of the accuracy using the DTWD and FD

metrics adds considerable overhead to the computation time of
the objective function. Furthermore, we also observe that the
values of the RMSE, DTWD, and FD are highly correlated.
Therefore, since computing the RMSE is much faster than
computing the other metrics, the hyperparameter optimization
loss that accounts for accuracy only consists of the RMSE, i.e.,
�IL with Hi = n and t′ = 0.

2) Reduced Evaluation Set: Optimizing hyperparameters
for the LASA/LAIR dataset using different motions simul-
taneously is challenging since the objective computed from
different motions is not comparable. Instead, we focused on
optimizing using a single, difficult motion, assuming robust
hyperparameters for it would perform well overall. We se-
lected the heee motion from the LASA dataset for first-order
motions and the capricorn motion from the LAIR dataset for
second-order motions. These motions, with complex features
like large curvatures or sharp edges, represented challenging test
cases.

3) Bayesian Optimization: During optimization, every evalu-
ation of a different set of hyperparameters is costly. Therefore,
instead of randomly selecting the hyperparameters to evaluate
at each run or following a grid search approach, we select the
most promising set given the ones evaluated so far. To achieve
this, we employ the Tree Parzen Estimator (TPE) [53], which
builds a probability model of the objective function and uses it to
select the next set of hyperparameters based on how promising
they are. We use the implementation available in the Optuna
API [54].

4) Pruning: Throughout the optimization process, it is possi-
ble to detect inauspicious runs after a few evaluations. Hence,
these trials can be pruned before the training process ends,
freeing the computational resources for a new run to be executed.
We also incorporate this feature in the optimization process using
the pruning method available in the Optuna API.

5) Select a Subset of Hyperparameters: Finally, before start-
ing the optimization process, by interacting with CONDOR,
we identified a subset of the hyperparameters that showed to
have the largest influence over its results. Therefore, to reduce
the dimensionality of the search problem, only this subset of
hyperparameters is optimized. The rest are manually tuned based
on our interactions with the framework.

A. Results

Table IV details the results of the hyperparameters optimiza-
tion process, including the optimized parameters, and their pre-
and postoptimization values. It is divided into two sections:
hyperparameters specific to CONDOR, and those general to
DNNs. Note that most optimized hyperparameters pertain to
the CONDOR method. For the LAIR dataset, we used LASA’s
optimized hyperparameters as a starting point, resulting in no
improved set found for the second-order CONDOR method.
Hyperparameters used in BC are excluded as those applicable
were identical to those of CONDOR.

Note that the hyperparameter αmax ∈ (0, 1] has not been in-
troduced yet. This hyperparameter limits the maximum value
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TABLE IV
HYPERPARAMETER OPTIMIZATION RESULTS OF CONDOR

of the adaptive gain α in fL (see Section IV-E1). Hence, if in
this work we define Δt = 1 for α in fL; then, even though its
maximum allowed value is 1, we limit it even further usingαmax.
This process improves CONDOR’s performance, as observed
in preliminary experiments. Hence, we define α = αmaxᾱ(y

T
t ),

with ᾱ as the DNN output using the sigmoid activation function,
ensuring α ∈ (0, αmax).

APPENDIX E
REAL-WORLD EXPERIMENTS: LOW-LEVEL CONTROL

Regarding the low-level control strategy employed in this
work, we focus on fully actuated rigid body dynamics systems,
which evolve according to the following equation of motion:

M(q)q̈ + C(q, q̇)q̇ +G(q) +D(q)q̇ = u

where q is the joint angle vector, M(q) is the inertia matrix,
C(q, q̇) is the Coriolis/centripetal vector, G(q) is the gravity
vector,D(q) is the viscous friction matrix, and u is the actuation
torque vector [55].

The objective of the low-level controller is to, at every time
step, map the desired statexd and state derivative ẋd provided by
CONDOR to u, such that the system is driven toward the desired
state. In our experiments, we learn motions in task space and in
joint space. Hence, we employ slightly different strategies for
each case.

The control frequency of the low-level controller is 500 Hz in
every experiment.

A. Joint Space Control

In this work, independently of the task that CONDOR con-
trols, every motion reference is eventually mapped to joint
space. Hence, this section explains our approach to track this
reference in joint space (qd, q̇d). We achieve this by means of
a proportional-derivative controller with gravity compensation,

i.e.,

u = α(qd − q) + β(q̇d − q̇) +G(q) (7)

where α and β are gain matrices. The higher the gains of this
controller, the smaller the tracking error [56], [57]. Moreover, an
interesting property of this approach is that as qd approaches qg ,
where qg corresponds to the mapping from xg to the configura-
tion space of the robot, CONDOR makes ẋd, and in consequence
q̇d, tend to 0. Then, (7) behaves similarly to

u = α(qd − q)− βq̇ +G(q).

This control law ensures global asymptotic stability at the
equilibrium qd for any choice of α and β as long as these are
positive definite matrices [55].

B. Task Space Control: Online

To control the robot when references ẋd are given online [see
Fig. 5(a)] in task space, we use the real-time inverse kinematics
(IK) library TRACK-IK [58]. To do so, we integrate the velocity
reference using the forward Euler integrator to obtain xd, and
we map this position to joint space using this library to obtain
qd. We apply exponential smoothing to these results to alleviate
vibrations and stuttering issues. Finally, we compute the desired
velocity q̇d using the forward difference of q, i.e., q̇d = (qd −
q)/Δt, where Δt is the time step length of CONDOR. Then, at
every time step, the values qd, q̇d are provided to the controller
described in Appendix E-A.

C. Task Space Control: Offline

In the offline case [see Fig. 5(b)], a trajectory in task space
(xd0, x

d
1, . . ., x

d
N ) is first computed with CONDOR. This trajec-

tory is fed to the low-level controller to execute it offline. To
achieve this, firstly, we map the trajectory to joint space using the
Levenberg–Marquadt IK solver of the Robotics Toolbox [59]. In
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Fig. 19. Obstacle avoidance in the LASA dataset.

this case, we employ this solver instead of TRACK-IK, because
it is robust around singularities and can avoid problems like
stuttering [60]. This is important for obtaining very smooth
solutions in scenarios where this is critical, such as in writing
tasks. Note that the solver does not run in real time; however, this
is not problematic, since the IK solutions are computed offline.

Afterward, the resulting joint space reference trajectory is
approximated with a spline [61] that evolves as a function of
time. Finally, when the motion starts, the time is incremented by
Δt at each time step and used to query the reference value that
is sent to the controller described in Appendix E-A.

APPENDIX F
OBSTACLE AVOIDANCE

Obstacle avoidance for motions modeled as dynamical sys-
tems is a problem that has been addressed in the literature [44],
[46], [62]. Any of these methods can be combined with our
proposed framework. In this work, we implemented the method
presented in [44] in PyTorch, and combined it with CONDOR.
We compute a modulation matrix M(x) that, when multiplied
with the learned dynamical system f(x), modifies the motion
such that a new dynamical system f̄(x) =M(x)f(x) is ob-
tained. f̄(x) avoids obstacles while maintaining the stability
properties of f(x). For more details please refer to [44] (obstacle
avoidance of multiple convex obstacles).

Fig. 19 shows motions from the LASA dataset where we
test this approach. We observe that the motions generated with
CONDOR remain stable after applying the modulation matrix.
Furthermore, the obstacles are successfully avoided, showing
that, as expected, the dynamical system motion formulation of
CONDOR can be effectively combined with methods designed
to work with dynamical systems.

Finally, this method was tested with 3-D obstacles in a real
7-DoF robot manipulator when controlling its end effector po-
sition. These results are provided in the attached video.
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