
Factorizing
sum-of-squares
polynomials

by

Quirine Langeveld
to obtain the degree of Bachelor of Science

at the Delft University of Technology,
to be defended publicly on Thursday July 3, 2025 at 10:45 AM.

Student number: 560 7779
Project duration: April 1, 2025 – July 3, 2025
Thesis committee: Dr. D. de Laat, TU Delft, supervisor

Dr. V. Dwarka, TU Delft

This thesis is confidential and cannot be made public until July 3, 2025.

Layman’s summary

This thesis looks at how to tell whether or not a polynomial (a mathematical expression with powers such
as x2 + 2x + 1) is nonnegative, i.e., at least equal to 0. One common way to check this, is by writing it as a
sum-of-squared polynomials, since squares are never negative (less than 0). This is illustrated by the previ-
ous example: x2 +2x +1 = (x +1)2 ≥ 0. Traditionally, finding this decomposition is done with semidefinite
programming; however, this can be slow for large problems.

In this thesis we looked at different methods for finding such a decomposition, namely a neural network
and the Burer-Monteiro approach. Our results showed that Burer-Monteiro seemed to be faster overall. We
also found that automatic differentiation (letting the computer do more of the work), was faster than manual
differentiation.

ii

Abstract

Determining whether or not a polynomial is nonnegative is a fundamental problem with applications in var-
ious fields of mathematics and optimization. A popular relaxation technique is to write the polynomial as a
sum-of-squares polynomial, since squared polynomials are automatically nonnegative. Finding such a de-
composition can be reformulated as a semidefinite program, which can then be solved using interior point
methods. However, due to the scalability for large semidefinite programs, we explored different methods to
find a sum-of-squares decomposition, specifically a neural network and the Burer-Monteiro approach for
quartics (homogeneous polynomials of degree 4).

The neural network outputs a sum-of-squares polynomial by construction, and the Burer-Monteiro ap-
proach rewrites the semidefinite program by a low-rank decomposition. A special case of univariate polyno-
mials was studied as well for Burer-Monteiro. For both approaches, the gradient was also calculated manually.

The experiments showed that the univariate polynomials followed the theory and converged for a very
low rank. After multiple tests, Burer-Monteiro seemed to converge faster in both the number of iterations
and in time. Automatic differentiation outperformed manual differentiation, and overparameterization led
to faster convergence. However, all tests were performed for polynomials with at most ten variables, and
the only method used without parameter optimization was LBFGS, which influences the results. For future
research, one can look at different optimizers and higher-degree polynomials in more variables.

iii

Preface

This thesis marks the end of a journey through the fascinating world of polynomials, specifically sum-of-
squares polynomials, that has taught me to never underestimate them again! It initially seemed like such a
simple mathematical problem, but it turned out to be filled with theory and complexity.

I am grateful for the opportunity to work on this project, which has introduced me to a range of different
topics, including semidefinite programming and even a bit of Julia programming. It has been sometimes
challenging but mostly a rewarding experience.

First, I would like to thank my advisor, David de Laat, for his guidance and support throughout this
project. He provided me with insightful feedback and gave me a very small insight into the world of aca-
demic research.

I would also like to thank Vandana Dwarka for taking the time to read my thesis and asses my work.
Next, I would like to thank my friends and family for their encouragement and support during my studies. In
particular, I would like to thank my friend Inez for our study sessions and shared motivation, which made a
real difference. Lastly, I would like to thank my parents for encouraging my curiosity and believing in me.

Quirine Langeveld
Delft, July 2025

iv

Contents

1 Introduction 1

2 Semidefinite programming 2
2.1 Homogenizing a polynomial . 2
2.2 Semidefinite programming to find a sum-of-squares factorization 3
2.3 Solving the SDP problem . 5

3 Neural network 6
3.1 Neural network to find a sum-of-squares decomposition . 7
3.2 Manual differentiation . 8

3.2.1 Gradient with respect to A . 9
3.2.2 Gradient with respect to B . 9

3.3 Alternative methods for differentiation . 10
3.3.1 Numerical differentiation . 10
3.3.2 Symbolic differentiation . 12
3.3.3 Automatic Differentiation . 12

3.4 Implementing the loss function . 15
3.5 Bounds on k. 16

4 Burer Monteiro Approach 17
4.1 The program for Burer-Monteiro . 17
4.2 Rank of P . 17
4.3 Univariate polynomials . 18
4.4 Deriving the gradient . 19

5 Computational results 21
5.1 Univariate polynomials . 21
5.2 Burer-Monteiro for quartics. 22

5.2.1 Different ranks of P . 22
5.2.2 Runtime for automatic and manual differentiation . 23

5.3 Neural network . 23
5.3.1 Different values for k and m . 23
5.3.2 The time of the neural network . 24

6 Discussion and Conclusion 25

A Code for Burer-Monteiro for univariate Polynomials 27
A.1 Code for testing . 27
A.2 Code for gradient and objective . 29

B Code for Burer-Monteiro for quartics 31
B.1 Normal code . 31
B.2 Code for testing . 33

C Code for neural network using manual differentiation 37
C.1 Normal code . 37

D Code for neural network using automatic differentiation 39
D.1 Normal code . 39
D.2 Tests . 40

v

1
Introduction

Factorizing polynomials as a sum-of-squares is a powerful technique for several applications in mathematics
and engineering. It appears in various fields of mathematics, such as graph theory, combinatorics, and fluid
dynamics. In [6], sum-of-squares optimization is used for a new analytical method to determine if fluid flow
is globally stable.

But what does it mean to factorize a polynomial into a sum-of-squares? In essence, it is a method to
verify whether a polynomial is nonnegative everywhere. If a polynomial p can be factorized into a sum-of-
squares of other polynomials, then p is guaranteed to be nonnegative for all inputs. Formally, this results in
the following definition.

Definition 1.0.1. A polynomial p ∈R[x1, x2, . . . , xn] is a sum-of-squares (SOS) if ∃k∈N such that ∃q1, q2, . . . , qk ∈
R[x1, x2, . . . , xn] such that: p =∑k

i=1 q2
i

Here, R[x1, x2, . . . , xn] denotes the set of real polynomials in n variables. Although k can be any natural
number, finding the minimal k for which such polynomials exist can be desirable.

It is also important to note that every polynomial that is a sum-of-squares polynomial is nonnegative,
but the converse is not true. There do exist polynomials that are nonnegative everywhere, which are not
sum-of-squares polynomials. Hilbert showed that every nonnegative polynomial is guaranteed to be a sum-
of-squares polynomial only in the following 3 cases: univariate polynomials, quadratic polynomials, and bi-
variate polynomials of degree 4. In all other cases Hilbert showed the existence of nonnegative polynomials
that are not sums-of-squares [2] but he did not provide them explicitly. Motzkin found the first nonnegative
polynomial that cannot be expressed as a sum-of-squares [10], given by the following equation:

p(x, y) = x4 y2 +x2 y4 −3x2 y2 +1 (1.1)

This may raise the question of why it would even be worthwhile to study sum-of-squares polynomials when
there still exist polynomials that are nonnegative but can’t be expressed as a sum of squares expression. The
answer lies in computational utility. In many practical cases, SOS approximations are sufficient.

However, determining whether or not a polynomial p is a sum-of-squares polynomial is still computa-
tionally challenging. As a result, researchers have been working on developing efficient methods for SOS
decompositions. Traditional methods include semidefinite programming (SDP) and the Burer-Monteiro ap-
proach. In a recent preprint, [7], neural networks showed promising results. In this thesis, we will first reflect
on those previous methods, and then we will explore which method works best in terms of runtime, conver-
gence rate, and avoiding spurious local minima.

1

2
Semidefinite programming

As mentioned in the introduction, one of the methods to find a sum-of-squares factorization is semidefi-
nite programming (SDP). It is a subfield of mathematical programming, where a linear objective function is
optimized over a cone of positive semidefinite matrices in an affine space.

Semidefinite programming is a relatively new field in mathematics. It gained attention in the 90s due to
multiple discoveries. First, interior-point methods, originally developed for linear programs (LPs), were ex-
tended to convex programs, including SDPs, making them computationally tractable and thus more widely
applicable to use. Secondly, in 1995, an algorithm with an approximation ratio of 0.878 was found to approx-
imate the Max-Cut problem [5], which was much better than the bounds found by LP, which were around
0.5.

In this chapter, we will rewrite the general form of an SDP program to an SDP program that finds the
sum-of-squares factorization for a target polynomial p. For this, we want to make the assumption that the
target polynomial p is homogeneous, meaning that all terms of p have the same degree. The proof of why this
assumption can be made, will be given in the next section. Following that, we will look at what the general
form of an SDP program looks like and how it can be reformulated to find the sum-of-squares factorization.

2.1. Homogenizing a polynomial
As mentioned earlier, there exist different kinds of polynomials: univariate (with only one variable), sparse
(almost all coefficients are 0), but also homogeneous polynomials (polynomials where every term has the
same degree). It is easier to work with a smaller, more structured class of polynomials. While it is generally
impossible to transform an arbitrary polynomial into a sparse or univariate one, it is possible to convert any
polynomial into a homogeneous polynomial. This process is called homogenizing.

In this section, we examine what homogenizing a polynomial exactly means and we will prove that stating
that a polynomial is a sum-of-squares polynomial is equivalent to stating that the homogenized form is a
sum-of-squares polynomial. This justifies the assumption that the target polynomial p is homogeneous. We
can now state the theorem we aim to prove:

Theorem 2.1.1. A polynomial p is a sum-of-squares ⇔ the homogenized form of p is a sum-of-squares.

In order to prove Theorem 2.1.1, we first need to formally define what it means to homogenize a polyno-
mial. Let us consider a polynomial p with n variables and a maximum degree of 2d .

We assume that the the maximum degree of the polynomial is even, this assumption is justified since
polynomials with an odd maximum degree can never be sum-of-squares polynomials in the first place since
they are not nonnegative (just set xi = α for all variables and take the limit of α to −∞). Furthermore, the
(maximum) degree of the homogenized polynomial stays the same as the starting polynomial p. This means
that 2.1.1 holds for the odd case since both p and the homogenized version of p are not sum-of-squares in
that case.

Now we consider the case where the maximum degree is even, 2d , with variables x1, . . . , xn . We can ho-
mogenize p by introducing a new variable z. We do this by multiplying every term of p by an appropriate
power of z such that every term in the resulting polynomial p ′ has degree 2d For clarification, we consider

2

2.2. Semidefinite programming to find a sum-of-squares factorization 3

the following non-homogeneous polynomial:

p(x1, x2) = x2
1 +x2 (2.1)

This polynomial is not homogeneous, since the terms have different degrees:

• x2
1 has degree 2,

• x2 has degree 1.

To homogenize it, we introduce a new variable z, and rewrite the polynomial so that all terms have total
degree 2:

phom(x1, x2, z) = x2
1 +x2z (2.2)

Here phom is the homogenized version of p, and now phom is a homogeneous polynomial of degree 2.
Now that we have gathered all the necessary background information, we are ready to prove Theorem

2.1.1:

Proof. (Theorem 2.1.1) Suppose phom is the homogenized form of a polynomial p and suppose we know that
phom is a sum-of-squares polynomial. Then we know we can write:

phom(x1, . . . , xn , z) =
k∑

i=1
qi (x1, . . . , xn , z)2.

For some k∈N and qi ∈R[x1, . . . xn , z]. By setting z = 1, this results to

p(x1, . . . , xn) = phom(x1, . . . , xn ,1) =
k∑

i=1
qi (x1, . . . , xn ,1)2,

which shows that p is a sum-of-squares polynomial.
Conversely, suppose p is a sum-of-squares polynomial with maximum degree 2d , then by definition there

exist some k∈N and qi ∈R[x1, . . . xn] such that:

p(x1, . . . , xn) =
k∑

i=1
qi (x1, . . . , xn)2.

Then, by definition of homogenization,

phom(x1, . . . , xn , z) = z2d p
(x1

z
, . . . ,

xn

z

)
=

k∑
i=1

(
zd qi

(x1

z
, . . . ,

xn

z

))2
,

which shows that phom is also a sum of squares polynomial.

A homogeneous polynomial of n variables with degree 2d will be denoted as p ∈R[x1, x2, . . . , xn]2d . Using
this theorem, we can now examine the general form of an SDP and how it can be used to find a sum-of-squares
factorization.

2.2. Semidefinite programming to find a sum-of-squares factorization
The general form of a semidefinite program is of the following form:

minimize 〈C , X 〉
subject to X ⪰ 0,

〈Ai , X 〉 = bi , i = 1, . . . ,m

The notation X ⪰ 0 means that X is a positive semidefinite matrix, which distinguishes an SDP from a
regular linear program. But what does it mean for a matrix to be positive semidefinite? And how does this
program relate to finding a sum-of-squares decomposition? We will first look at the definition of a positive
semidefinite matrix:

4 2. Semidefinite programming

Definition 2.2.1. A symmetric matrix X ∈Rl is positive semidefinite (PSD) (denoted by X ⪰ 0) if vT X v ≥ 0 for
all v ∈Rl

This definition already hints at the connection to finding the sum-of-squares decomposition. When a
target polynomial p can be rewritten as p = vT X v where v is a vector of monomials and X ⪰ 0, then we know
p is nonnegative. While positivity of a polynomial is generally a weaker condition than having a sum-of-
squares factorization, as mentioned in the Introduction, the existence of such a positive semidefinite matrix
representation is actually equivalent to the existence to the definition of a sum-of-squares decomposition.

We can formalize this link by showing that p is a sum-of-squares if and only if there exists a PSD matrix X
such that:

p = md X mT
d (2.3)

Here, md denotes the vector of all monomials of degree d in the variables of the polynomial p. The goal of
the next part of this section is to prove this statement. In order to do so, we first formalize the definition of
the vector md

Definition 2.2.2. md is the column vector of length

l =
(

n +d −1

d

)

containing all monomials of degree d with coefficient 1 in n variables.

Using this definition, we can now formally state the theorem that establishes the link between the positive
semidefinite matrices and sum-of-squares polynomials.

Theorem 2.2.1. p ∈R[x1, . . . , xn]2d is a sum-of-squares polynomial ⇔ there exist a PSD matrix X ⪰ 0 such that
p = md X mT

d

In order to prove this theorem, we need an additional theorem known as the Cholesky decomposition.
This theorem allows us to decompose the positive semidefinite matrix:

Theorem 2.2.2. Let X ⪰ 0, then there exists a lower triangular matrix L∈ Rl×l such that X = LLt

Unfortunately, in order to prove theorem 2.2.2 an additional lemma is needed, also known as the spectral
theorem. This lemma reads as follows:

Lemma 1 (Spectral Theorem). Let X ∈ Sn and r = rank(X), then

X =
r∑

i=1
λi ui uT

i ,

where λi > 0 are the nonzero eigenvalues and ui are the corresponding set of orthonormal eigenvectors.

Proof. This lemma follows from the spectral theorem for symmetric matrices.

Using lemma 1, we can first prove the theorem 2.2.2, which can then be used for 2.2.1.

Proof. (Theorem 2.2.2) Let X ⪰ 0 and r = rank(X), then using the spectral theorem:

X =
r∑

i=1
λi ui uT

i .

Where λi > 0 are the nonzero eigenvalues and ui are the corresponding orthonormal eigenvectors. Now,
since all eigenvalues are positive let:

L =
(√

λ1u1,
√
λ2u2, . . . ,

√
λr ur

)
A,

where A ∈Rr×r is an orthogonal matrix chosen such that L is lower triangular. Then,

LLT = (
√
λ1u1, . . . ,

√
λr ur)A AT (

√
λ1u1, . . . ,

√
λr ur)T = X .

We know that X must be of full rank, since the eigenvectors are orthonormal.

2.3. Solving the SDP problem 5

Finally, using the Cholesky theorem, we can prove theorem 2.2.1:

Proof. (Theorem 2.2.1) (⇒) Suppose p is a sum of squares polynomial, then:

p(x) =
k∑

i=1
qi (x)2,

where each qi is a homogeneous polynomial of degree d . Then each qi can be written as

qi = vT
i md ,

where vi is a row vector of coefficients. Then, substituting vT
i md for qi this results to:

p =
k∑

i=1
(vT

i md)2 =
k∑

i=1
mT

d vi vT
i md = mT

d

(
k∑

i=1
vi vT

i

)
md .

By definition, X =∑k
i=1 vi vT

i ⪰ 0, since it md X mT
d ≥ 0 for all md since p is a sum of squares polynomial.

(⇐) Conversely, if there exists X ⪰ 0 such that

p = mT
d X md ,

then by Theorem 2.2.2, write X = LLT . Then,

p = mT
d LLT md = ∥LT md∥2 =

r∑
i=1

(LT
i md)2,

where Li is the i -th column of L. Thus, p is a sum of squares polynomial.

Now theorem 2.2.1 is proven, we can use it to write the sum-of-squares decomposition in to the general
form of an SDP program 2.2. This results in the following feasibility program:

p = mT
d X md (2.4)

s.t .X ⪰ 0 (2.5)

(2.6)

The first constraint means that the coefficients of p must match those of md X mT
d . Since both sides are

polynomials, this requires us to match the coefficients for all monomials of degree 2d .
Therefore, we can rewrite the equality constraint of the target polynomial into linear constraints on the

entries of X . Doing so, we rewrite the problem in the general form:

〈Ai , X 〉 = bi , i = 1, . . . ,m, (2.7)

X ⪰ 0. (2.8)

Here, m is the number of possible monomials. Since p has degree 2d and n variables, this means that m =(n+2d−1
2d

)
. Note that since this is a feasibility problem, there is no objective that needs to be optimized.

2.3. Solving the SDP problem
As mentioned earlier, we can solve SDPs using interior point methods. Their convexity ensures that during
the optimization, we won’t get stuck at spurious local minima. However, there are some notable challenges
when using SDPs when applied to sum-of-squares (SOS) problems. They are known for their poor scalability
in both time and memory. The complexity of the SOS also grows really fast as the dimensions and the degree
increase, so there is a very informal upper bound on the size of the problem that can be feasibly solved on
a standard machine. That is why, in the next two chapters, we will explore two different methods: a neural
network and Burer-Monteiro. We will start with the neural network

3
Neural network

Another approach to finding a sum-of-squares decomposition is by using a neural network. A neural network
combines biological principles with advanced statistics to solve problems in domains such as pattern recog-
nition and game-play (for example, Alpha Go; the first program that beat a professional Go player without
handicap at a 19x19 board).

Neural networks are considered to be black boxes; they take an input, which is then taken to multiple
layers of neurons and produces an output. They are mainly used in machine learning and have the strength
of being able to model complex relationships without requiring explicit knowledge of the inner structure of
the system, but relying on large training sets with inputs and outputs.

In this chapter, we investigate how a neural network works and how we can use it to find a sum-of-squares
decomposition. But before diving into the neural network for the sum-of-squares decomposition, we begin
by taking a look at a simple form of a neural network to gain a basic understanding of a neural network. We
consider the following simple example of a feedforward neural network:

Definition 3.0.1. Let M :Rn0 →RnL be a feedforward neural network defined by

M(x) = (f L ◦σ◦ f L−1 ◦σ◦ · · · ◦σ◦ f 1)(x),

where for each layer i = 1, . . . ,L,
f i (z) =W i z +bi ,

with weight matrices W i , bias vectors bi , and
σ :R→R

is a nonlinear activation function applied element-wise.

This definition may still appear a bit abstract, but we can gain a better understanding by looking at an
example.

A common example of a neural network is the one defined in the book by Michael Nielsen [9]. In this
book, he describes how a neural network is used to enable a computer to recognize handwritten digits. The
network is trained to predict which number is written on paper by a human. It is illustrated in the following
picture:

6

3.1. Neural network to find a sum-of-squares decomposition 7

Figure 3.1: The network used to predict the handwritten numbers. The first layer is the input layer with 28x28 pixels, followed by an inner
layer and the 10 output layers predicting the written number [9]

The input layer consisted of 28x28= 784 pixels, which contained the average brightness of the pixels (varying
between 0 and 1). The weights of the network were trained as follows: there were 60,000 pictures taken into
the network, with numbers varying from 0 to 9. Of those 60,000 pictures, 50,000 were used to train the net-
work, and 10,000 were used to determine the accuracy of the network. The prediction was determined by the
output layer, which consisted of 10 neurons. Those neurons represented the numbers 0 to 9, and if the output
of a neuron was above some threshold, then that number was the predicted number. This simple network
resulted in an accuracy of over 98 percent!

However, here we do not address the role of the activation functions. Those are typically chosen before
training the network, and there exist various types. One of the simplest forms is called the perceptron. The
output of a perceptron is defined by the following equation:

output =
{

0, if
∑

j w j x j ≤ threshold

1, if
∑

j w j x j > threshold

Here, w j denotes the weight corresponding to input x j . Since
∑

j w j x j is also denoted as z j , the output of
layer j can also be denoted with σ(z j). However, this function is not differentiable, which makes training the
neural network harder with gradient descent, for example. To address this, we introduce alternative neurons,
starting with the sigmoid neuron:

σ(z j) = 1

1+exp(−z j)
(3.1)

Which can be illustrated in the following picture:

Figure 3.2: The sigmoid neuron, plotted between -10 and 10.

This function is indeed differentiable. Now, the output from the sigmoid neuron is approximately 1 when the
weighted input of the other neurons is large and approximately 0 when the weighted input is small, just as it
would have been for a perceptron. Other activation functions are, for example, the tanh:

σ(z j) =
ez

j −e−z j

ez
j +e−z j

(3.2)

or the RelU:
σ(z j) = max(0, z j) (3.3)

Now that we know how a neural network works in general, we can look at the neural network we will use to
find a sum-of-squares factorization.

3.1. Neural network to find a sum-of-squares decomposition
In this section, we dive into how a neural network can be reformulated as an optimization problem that
finds a sum-of-squares decomposition. In the previous chapter we assumed that the target polynomial p ∈
R[x1, x2, . . . , xn]2d where d was taken arbitrary. For the neural network, we will assume that d = 2, also called
quartics. We follow the work of Keren, Osadchy, and Poranne [7].

For this, we use a neural network starting with a linear layer, then an augmentation operation (non-linear
layer), followed by a second linear layer.

8 3. Neural network

• A linear Layer (A): A matrix A ∈Rm×n applied the vector x ∈Rn containing the variables x1, . . . , xn

• Augmentation Layer/Non-linear Layer: Computes the tensor product x ⊗ Ax

• Second Linear Layer (B): A matrix B ∈Rk×mn applied to the tensor product

The output of the network is defined as the norm squared of the result. Since the result is a column vector of
length k containing a homogeneous polynomial of degree 2, this results in a sum-of-squares polynomial of
degree 4 with k squares. A sketch of the neural network is illustrated in the following picture:

Figure 3.3: The network used to generate the SOS polynomials [7]

This leads us to the following optimization program, which we can solve using first-order optimization meth-
ods.

minimize
∑

α∈Nn s.t .∥α∥=4
(p(x)α−∥B x ⊗ Ax∥2

α)2 (3.4)

s.t .A ∈Rm×n ,B ∈Rk×mn (3.5)

(3.6)

In order to use first-order methods to solve the optimization problem, we need to provide the gradient.
This can be done both manually (computing the gradient by hand) and with alternative differentiation meth-
ods (such as numerical differentiation, symbolic differentiation, or automatic differentiation). In the follow-
ing section, we will derive the gradient manually.

3.2. Manual differentiation
In order to train the neural network, we need to compute the gradient with respect to its weights. These
weights are the matrices A and B. Since we compute the gradient of the loss function with respect to A and B,
we need to clearly state what the loss function is:

L(A,B) = ∑
α∈Nn

(pα−∥B(x ⊗ Ax)∥2
α)2 (3.7)

Here α denotes the coefficient before the monomial. So it can be seen as a vector of length n, where the
number at every index determines how much the variable occurs in the monomial. Since the polynomial has
degree 4, we know that ∥α∥ = 4. We can interpret this loss function as the l2 norm squared for polynomials.
Now we can compute the gradients. In the following section, we start with the gradient with respect to layer
A, denoted by ∇AL(A,B).

3.2. Manual differentiation 9

3.2.1. Gradient with respect to A
As we mentioned earlier, the gradient will be denoted by ∇AL(A,B). To simplify calculations, even though A
is a matrix, we will write the gradient as a column vector:

∇AL(A,B) =
[
∂L(A,B)
∂A11

. . . ∂L(A,B)
∂A1n

. . . ∂L(A,B)
∂Amn

]T
(3.8)

We can now proceed to calculate ∇AL(A,B);

∇AL(A,B) =∇A
∑
α∈Nn

(pα−∥B(x ⊗ Ax)∥2
α)2 (3.9)

We can simplify the gradient by applying the chain rule to eliminate the outer square. This yields;

∇AL(A,B) =−2
∑
α∈Nn

(pα−∥B(x ⊗ Ax)∥2
α)∇A(∥B(x ⊗ Ax)∥2

α) (3.10)

We can also get rid of the square in the norm by applying the chain rule once more;

∇AL(A,B) =−4
∑
α∈Nn

(pα−∥B(x ⊗ Ax)∥2
α)(D A(B(x ⊗ Ax))T (B(x ⊗ Ax)))α (3.11)

We took the extra "2" to the front here. We also shifted α and the ∇A operator here; now we first take the ∇A

and then take the α coefficient of the polynomial. This can be done due to linearity.
The remaining term to compute is the derivative of the tensor product, B(x ⊗ Ax), with respect to A. We

can first simplify this term by taking B out, due to linearity. Then we can write the remaining column vector
out, this yields;

D A(B(x ⊗ Ax)) = BD A(x ⊗ Ax) = BD A(



x1
∑n

i=1 A1i xi
...

x1
∑n

i=1 Ami xi
...

xn
∑n

i=1 Ami xi

) (3.12)

If we expand BD A(x ⊗ Ax) even further, then we see that it follows a specific pattern;

BD A(



x1
∑n

i=1 A1i xi
...

x1
∑n

i=1 Ami xi
...

xn
∑n

i=1 Ami xi

) = B



x1xT 0T · · · · · · · · · · · · 0T

0T x1xT 0T · · · · · · · · · 0T

...
. . .

. . .
. . .

. . .
. . .

...
0T · · · 0T x1xT 0T · · · 0T

...
. . .

. . .
. . . x2xT · · · ...

...
. . .

. . .
. . .

. . .
. . . 0T

0T · · · · · · 0T · · · · · · xn xT


= B x ⊗ Im ⊗xT (3.13)

Now we can finally substitute B(x ⊗ Im ⊗ xT) for D A(B(x ⊗ Ax)) in the equation for ∇AL(A,B) while at the
same time substituting (xT ⊗xT AT)B T B(x ⊗ Ax) for ∥B(x ⊗ Ax)∥2 , which then results to:

∇AL(A,B) =−4
∑
α∈Nn

(pα− ((xT ⊗xT AT)B T B(x ⊗ Ax))α)((xT ⊗ Im ⊗x)B T B(x ⊗ Ax))α (3.14)

This is a form that we can implement in Julia later. Now we have determined the gradient with respect to A, it
is time to determine the gradient with respect to B in the next section.

3.2.2. Gradient with respect to B
The computation of the gradient of the loss function with respect to B, denoted as ∇B L(A,B), is very similar
to that of A. Again, B is written as a column vector, with its entries indexed as follows:

∇B L(A,B) =
[
∂L(A,B)
∂B1,11

. . . ∂L(A,B)
∂B1,1n

. . . ∂L(A,B)
∂B1,mn

. . . ∂L(A,B)
∂Bk,mn

]T
(3.15)

10 3. Neural network

With a similar computation as for A, we get the following form for ∇B L(A,B):

∇B L(A,B) =−4
∑
α∈Nn

(pα−∥B(x ⊗ Ax)∥2
α)(DB (B(x ⊗ Ax))T (B(x ⊗ Ax)))α (3.16)

Since all components are known except for DB (B(x⊗Ax)), we focus on this term by writing out its full expres-
sion:

DB (B x ⊗ Ax) = DB (B



x1
∑n

i=1 A1i xi
...

x1
∑n

i=1 Ami xi
...

xn
∑n

i=1 Ami xi

) =


(x ⊗ Ax)T 0 · · · 0

0 (x ⊗ Ax)T . . . 0
...

. . .
. . .

. . .

0 0 · · · (x ⊗ Ax)T

 (3.17)

We can rewrite the last matrix into a tensor product, as follows:

DB (B(x ⊗ Ax)) = Ik ⊗ (x ⊗ Ax)T (3.18)

We can now substitute Ik ⊗ (x ⊗ Ax)T for DB (B(x ⊗ Ax)) and again substitute (xT ⊗xT AT)B T B(x ⊗ Ax) for
∥B(x ⊗ Ax)∥2 to get to:

∇B L(A,B) =−4
∑
α∈Nn

(pα− ((xT ⊗xT AT)B T B(x ⊗ Ax))α)(Ik ⊗ (x ⊗ Ax)B(x ⊗ Ax))α (3.19)

Again, this can be implemented in Julia. But one may wonder, is computation by hand even the fastest im-
plementation? In the next section, we will explore this question by taking a closer look at alternative differen-
tiation methods.

3.3. Alternative methods for differentiation
In order to apply first-order optimization methods, such as gradient descent or stochastic gradient descent,
it is necessary to compute the gradient of the objective function. While it was manageable for the neural net-
work to find the sum-of-squares decomposition to manually derive the gradient, it can be either not possible
or tedious and impractical for other, more complex models. Moreover, it is not always optimal in terms of
efficiency.

In this section, we explore alternative differentiation methods for computing gradients, such as sym-
bolic differentiation, numerical differentiation (finite differences), and automatic differentiation. We discuss
which of these methods is, in theory, the most suitable for our neural network. We begin with numerical
differentiation.

3.3.1. Numerical differentiation
Numerical differentiation provides an estimate of a function’s derivative by using its function values, rather
than computing the derivative analytically. In this subsection, we discuss the three most common methods
for numerical differentiation. The first one we introduce is called the forward difference method.

To introduce this idea, we consider a function of a single variable, f : R→ R, then the forward difference
(denoted by Q f (h)) is given by:

Q f (h) = f (x +h)− f (x)

h
,h > 0 (3.20)

Here we assume h is small. The derivative of f is approximated by the slope between x and x +h. This
is the reason why it is called "forward" difference. However, in the case of the sum-of-squares factorization,
there is not a single variable input variable but multiple variables. Let g :Rs →R (s = (k +1)mn for the neural
network). In the case of multiple variables, forward difference can be used component-wise. Specifically, the
approximation using the forward difference of the derivative of g with respect to the i -th is given by:

Q f (h)i = g (x+hei)− g (x)

h
, h > 0, i ∈ 1. . . s (3.21)

where x ∈ Rn and ei is the i -th standard basis vector. Since Q f (h) is only an approximation, the question
might rise how accurate this even is? To be more specific, can we quantify the error between the true gradient
and the Q f (h) in terms of h? Fortunately, the answer is yes. There exist an upperbound, as stated in the
following theorem.

3.3. Alternative methods for differentiation 11

Theorem 3.3.1. Let g :R→Rs and h > 0, if g ∈C 2[x,x+hei] then there exist an ξ ∈ (x,x+hei) such that:∣∣∣∣Q f (h)i − ∂g

∂xi
(x)

∣∣∣∣≤ h

2

∂2g

∂x2
i

(ξ).

Proof. By Taylor’s theorem with remainder, there exists some ξ between x and x+hei such that

g (x+hei) = g (x)+h
∂g

∂xi
(x)+ h2

2

∂2g

∂x2
i

(ξ).

Dividing both sides by h;
g (x+hei)− g (x)

h
= ∂g

∂xi
(x)+ h

2

∂2g

∂x2
i

(ξ).

Taking the absolute value of the error, ∣∣∣∣Q f (h)i − ∂g

∂xi
(x)

∣∣∣∣=
∣∣∣∣∣h

2

∂2g

∂x2
i

(ξ)

∣∣∣∣∣
In this theorem, we make the assumption that g is continuous and twice differentiable. In that case, we

know that ∂2g
∂x2

i
(ξ) is bounded by some value L, and thus for small h, the error converges to 0, in O(h).

However, as stated earlier, forward difference is not the only numerical differentiation method. Two other
methods are the backward difference and the central difference, which we will introduce next. The backward
difference is defined as follows:

Qb(h)i = g (x)− g (x−hei)

h
, h > 0, i ∈ 1. . . s (3.22)

The backward difference uses the slope between x −h and x, which is why we call it the backward difference.
An upper bound for the error of the backward difference is given by the following theorem. The proof is
similar to that of the forward difference.

Theorem 3.3.2. Let g :R→Rs and h > 0, if g ∈C 2[x−hei ,x] then there exist an ξ ∈ (x−hei,x) such that:∣∣∣∣Qb(h)i − ∂g

∂xi
(x)

∣∣∣∣≤ h

2

∂2g

∂x2
i

(ξ).

Which means that the error of the backward difference is also scaled with O(h) Finally, the central finite
difference is defined as follows:

Qc (h)i = g (x+hei)− g (x−hei)

2h
, h > 0, i ∈ 1. . . s (3.23)

This is called the central finite difference, since it uses both the x−h and x+h. We can bound the error of the
finite difference as follows:

Theorem 3.3.3. Let g :R→Rs and h > 0, if g ∈C 3[x−hei ,x+hei] then there exist an ξ ∈ (x−hei,x+hei) such
that: ∣∣∣∣Qc (h)i − ∂g

∂xi
(x)

∣∣∣∣≤ h2

6

∂3g

∂x3
i

(ξ).

Note that for the finite difference, the function must be three times continuously differentiable, but the
error scales better, namely with O(h2). Still, the backward difference and the forward difference are used
in practice, for example, for boundary points. Besides that, the finite difference is twice as expensive when
there are many values. Since for the forward difference and the backward difference, you can reuse half of the
evaluations.

But why use numerical differentiation methods like the forward difference or the backward difference in
the first place? If the function is differentiable, why not just compute the gradient exact?

12 3. Neural network

As explained at the beginning of this chapter, this can be tedious and time-consuming, especially for
complex models like neural networks. Secondly, in many practical applications, the function itself is not
explicitly known! In such cases, manual differentiation is not an option.

However, numerical differentiation also has some drawbacks. Even though the "truncation error" scales
with O(h) for the forward difference and the backward difference, and O(h2) for the central finite difference,
the total error can be larger in practice. This is due to the floating-point precision of the computer. If h is
taken to be really small this might reduce the "truncation error", but the "rounding error" starts to increase
from a certain point. This happens since for small h almost all terms in g (x+hei)−g (x) cancel, which reduces
precision, before dividing by h.

Given this trade-off, is numerical differentiation a good idea for computing gradients in a neural network?
Probably not. We already computed the gradients by hand, so using numerical differentiation is unnecessary.
Moreover, finite difference requires evaluating the full network once for each variable in the neural network,
which is time-consuming (O(s)). Therefore, it makes sense to consider alternative methods, one of these
methods is symbolic differentiation, which we will discuss in the next subsection.

3.3.2. Symbolic differentiation
Symbolic differentiation is an automated version of manual differentiation. Most of the time, it uses a tree to
compute the gradient. Every node contains an elementary function here. These nodes relate to basic func-
tions whose derivatives could be derived from elementary derivative operations like trigonometric functions,
the derivative of powers, and scalar products. The derivative is then computed, using compound derivative
functions like sum, product, quotient, and chain rules. This might seem much better than manual comput-
ing, or at least less error-prone than humans, and hopefully also faster. There is however a common problem
with symbolic differentiation, called expression swell, which can be illustrated with the following function:

c(x) = a(x)b(x) (3.24)

c ′(x) = a′(x)b(x)+a(x)b′(x) (3.25)

(3.26)

suppose a(x) also consists of two functions: f (x), g (x), a(x) = f (x)g (x). Then the whole expression becomes:

c ′(x) = c
(

f ′(x)g (x)+ f (x)g ′(x)
)

b(x)+ f (x)g (x)b′(x) (3.27)

Now if we use symbolic differentiation careless, the computation time will increase a lot. Since f(x) and
g(x) will be computed multiple times, this makes the differentiation very slow. When computing the gradient
manually, this can also happen to a certain extend. However humans are capable of simplifying the gradient.

Even though this method may be a good method when used with care, since there is no previous knowl-
edge about symbolic differentiation, it might be better not to use it for now.

A drawback of symbolic differentiation in general is that it cannot handle open-formed expressions.. An
advantage compared to finite difference is that it is exact, so it is less dependent on floating-point accuracy.

Still, it can be concluded that this might not be the best method, but what about automatic differentiation?

3.3.3. Automatic Differentiation
Automatic Differentiation (AD) computes derivatives with the same accuracy as symbolic derivatives. It is
an extension of symbolic differentiation. Note that with automatic differentiation, we can also differentiate
open-form expressions with loops, recursions (which symbolic differentiation can’t). We have two kinds
of automatic differentiation methods, namely forward mode and backward mode. Both of them use a DAG
(Directed Acyclic Graph). The nodes contain small elementary functions, and the edges contain the variables.
These methods are mainly used for Neural Networks.

Forward mode
For automatic differentiation, the forward mode is the simplest one. We can explain it with an example;

f (x, y) = ln x1 +x1x2 − sin x2 (3.28)

following the example of [1]. This function can be illustrated in the following picture:

3.3. Alternative methods for differentiation 13

Figure 3.4: The function is illustrated as a graph, each vertex represents an operation. For example, v2 means the product of the two
incoming vertices (x1x2), and v1 represents the ln. operation [1]

The idea of forward mode is quite simple. Suppose we want the partial derivative with respect to x1. Then we
first define with each intermediate value a derivative:

v̇i = ∂vi

∂x1
(3.29)

Then we can apply the chain rule to each elementary operation. If we evaluate for every step the tangent v̇i

and the value (vi), we get the required derivative. The process can be seen in the following table:

Figure 3.5: computing the partial derivative with respect to x1 at x = (2,5), on the left hand side we see the process of evaluating at the
different values and at the right hand side their tangent. [1]

This function was from f : R2 → R and we need to go twice trough the graph, once for x1 and once for x2.
But how does this work for a general function, f :Rn →Rm with input variables, x1 . . . xn and output y1 . . . ym .

Then the Jacobian looks as follows; J =


∂y1
∂x1

. . . ∂y1
∂xn

...
. . .

...

∂ym
∂x1

. . . ∂ym
∂xn

 With every iteration trough the graph, we get a new

column. Which means we need to go n times trough the network. This means that this approach is not ideal
for the neural network, since n ≫ m. But what about backpropagation then?

Backpropagation
Backpropagation is an algorithm used to compute gradients, primarily in neural networks. It calculates the
overall error by applying the chain rule of calculus. The algorithm consists of two phases: the forward pass
and the backward pass. To understand it better, we will revisit the neural network introduced at the beginning
of this chapter, which predicted numbers written by humans. Before diving into the algorithm, we first take a
look at the notation for the algorithm:

• al
j denotes the activation of neuron j in layer l . The vector of all activations in layer l is denoted by

al ∈Rnl , where nl is the number of neurons in that layer.

• w l
j k is the weight connecting neuron k in layer l −1 to neuron j in layer l . The full weight matrix for

layer l is Wl ∈Rnl×nl−1 .

• bl
j is the bias for neuron j in layer l , and bl ∈Rnl the bias vector for layer l .

• The input of neuron j in layer l is
z l

j =
∑
k

w l
j k al−1

k +bl
j .

In vector form:
zl = Wl al−1 +bl .

• The activation function σ(·) is applied elementwise:

al
j =σ(z l

j), or al =σ(zl).

14 3. Neural network

• The cost function is the mean-squared error:

C = 1

2
∥aL −y∥2,

where aL is the network’s output and y is the target output.

• The error term for neuron j in layer l is denoted by δl
j and is defined as:

δl
j =

∂C

∂z l
j

,

which represents how much the cost C changes with respect to the weighted input z l
j of neuron j in

layer l . In vector form:

δl = ∂C

∂zl
∈Rnl ,

The algorithm constructed is for a neural network with L layers. We will start with the forward pass. The
forward pass starts at the input layer and goes all the way up to layer L. For each layer l ∈ 1. . .L it computes:
z l

j and from that al = σ(z l
j) for j ∈ 1. . .nl . All these values are stored. Then, when layer L is reached, the

backward pass can start.
The backward pass starts from the loss at the output and applies the chain rule to compute the gradient of the
loss with respect to each weight. First, the error term δL

j for each neuron j in the output layer L is computed

by applying the chain rule to the cost function with respect to the activations aL
j . For this cost function, this

becomes:

δL
j =

∂C

∂zL
j

= ∂C

∂aL
j

·
∂aL

j

∂zL
j

= (aL
j − y j)σ′(zL

j),

where y j is the target output for neuron j . Note that since ∂C
∂aL

j
can be computed since the cost function is

known and
∂aL

j

∂zL
j

can be computed since zL
j is known. Also note that σ,σ′ are implemented. We can put this

into vector form to obtain:

δL = (aL −y)⊙σ′(zL),

Then for the resulting layers, l = L-1,L-2, .. 1, we get

δl
j =

(∑
k

w l+1
k j δl+1

k

)
·σ′(z l

j).

This comes from the fact that:

δl
j =

∂C

∂z l
j

= ∂C

∂al
j

·
∂al

j

∂z l
i

= ∂C

∂al
j

·σ′(z l
j)

and by applying the chain rule twice:

∂C

∂al
j

=∑
k

∂C

∂al+1
k

· ∂al+1
k

∂z l+1
k

∂z l+1
k

∂al
j

=∑
k
δl+1

k w l+1
k j

with k ∈ 1. . .nl+1 Which we can write in matrix-vector form to obtain:

δl =
(
(Wl+1)⊤δl+1

)
⊙σ′(zl).

Note that we know W l+1 from the forward phase, δl+1 from the previous iteration in the backward pass, zl

from the feedforward phase, and σ′ is stored since it is fixed.

3.4. Implementing the loss function 15

We can then finally compute ∂C
∂w l

i j

and ∂C
∂bl

j

by the chain rule:

∂C

∂w l
i j

= ∂C

∂al
i

· ∂al
i

∂z l
i

· ∂z l
i

∂w l
i j

= δl
i al−1

j

∂C

∂bl
j

= ∂C

∂al
j

·
∂al

j

∂z l
j

·
∂z l

j

∂bl
j

= δl
j 1 = δl

j (3.30)

Which can be computed easily since δl
j is known from backpropagation for every j ∈ 1. . .L and al−1

j is known

from the forward phase.
In matrix vector form, this becomes:

∂C

∂Wl
=δl (al−1)⊤, and

∂C

∂bl
=δl ,

Now it becomes clear that backpropagation earns its name, since the error is computed backwards, starting
at the output layer. It computes it for every input at once, which means it is faster for neural networks with
a lot of inputs but a small number of outputs. Even if we have a large number of outputs, we always have a
cost function, and thus the function for which we need gradients has only 1 output. This is why it is used for
neural networks, since we only have to run through the entire neural network once (forward and backward),
compared to the forward mode, which needs to run through the entire network for each input.

If we indeed work with automatic differentiation, we only need the loss function. This loss function can
be implemented more efficiently in this case, which we will discuss in the following section:

3.4. Implementing the loss function
If we take a look back at the beginning of this chapter, we see that the loss function was defined by the follow-
ing equation:

L(A,B) = ∑
α∈Nn

(pα− (xT ⊗xT AT B T B x ⊗ Ax)α)2 (3.31)

However, finding the right terms for xT AT B T B x ⊗ Ax for each α is very time-consuming. Fortunately, in [7],
they discovered a better way to do this. We will explore this method this section,

We can classify the degree 4 monomials, into the following 5 types:

• x4
i

• x3
i x j

• x2
i x2

j

• x2
i x j xk

• xi x j xk xl

If we let f = B x ⊗ Ax then the coefficient before the monomial x4
i can be rewritten as:

c(x4
i) = 1

24

∂4

∂x4
i

∥∥ f
∥∥2 (3.32)

Note that the 1
24 comes from the exponent of the monomial when taking the derivative. Now, we can

expand the right-hand side and apply the chain rule to the squared norm:

1

24

∂4

∂x4
i

∥ f ∥2 = 1

24

∂4

∂x3
i

(
2〈 f , fxi 〉

)
= 1

24

∂3

∂x2
i

(
2
(〈 fxi , fxi 〉+〈 f , fxi xi 〉

))
= 1

24

∂

∂xi

(
2
(
2〈 fxi xi , fxi 〉+〈 fxi , fxi xi 〉

))
= 6〈 fxi xi , fxi xi 〉

16 3. Neural network

Since f only contains monomials of degree 2, every 3rd or higher partial derivative of f cancels. We can do a
similar computation for the other monomials, this results to:

• c(x4
i) = 1

4
〈 fxi xi , fxi xi 〉

• c(x3
i x j) = 〈 fxi xi , fxi x j 〉

• c(x2
i x2

j) = 〈 fxi x j , fxi x j 〉+
1

2
〈 fxi xi , fx j x j 〉

• c(x2
i x j xk) = 〈 fxi xi , fx j xk 〉+2〈 fxi x j , fxi xk 〉

• c(xi x j xk xl) = 2
(〈 fxi x j , fxk xl 〉+〈 fxi xk , fx j xl 〉+〈 fxi xl , fx j xk 〉

)
Now it remains to compute fxi x j , remember that : f = B x ⊗ Ax which means:

∂2

∂xi x j
B x ⊗ Ax = B

∂2

∂xi x j
x ⊗ Ax = ∂

∂xi
(B xx j ⊗ Ax +B x ⊗ Axx j) = B xx j ⊗ Axxi +B xxi ⊗ Axx j) (3.33)

In this computation we applied the product-rule. We can write this as a multiplication of a sub-block of B
with a column of A, which reduces the computation time. We can use this for automatic differentiation. In
order to be able to use it, we have to provide some begin state of A and B. By doing this, we also give their sizes
(n,m,k), n must be equal to the number of variables but for k there exist some bounds on the minimal size it
must have. We will explore this in the following section.

3.5. Bounds on k
As discussed earlier, the number of columns of B, denoted by k, determines the number of squares. However,
if we choose k too small, then even though p is a sum-of-squares, it may not be representable by the neural
network, making the problem infeasible.

Fortunately, there is an upper bound on the number of squares needed to write a sum-of-squares poly-
nomial as a sum-of-squares, called the Pythagoras bound. Since we look at quartics for the Neural Network,
we consider the Pythagoras bound for quartics:

1

2
p

3(n2 +3n +1)
− 1

2
−o(1) (3.34)

Now we have all the theory to implement the neural network. But how does this approach compare to other
methods?

One of the main advantages is that we eliminate the PSD constraint, but a drawback is that it is possible
to get stuck at spurious local minima. In [7], they found that overparametrizing A, B avoids spurious local
minima. For the next chapter, we will look at the last method, called the Burer-Monteiro approach, which
offers an alternative way to find a sum-of-squares optimization.

4
Burer Monteiro Approach

Another method to find a sum-of-squares decomposition is called the Burer-Monteiro approach. It is a pow-
erful method for large semidefinite programs. It was first introduced by Samuel Burer and Renato Monteiro
in [4]. The goal of the Burer-Monteiro approach is to reduce computational complexity. Even though this
reformulation is non-convex, under certain conditions, local optima often correspond to global solutions.
But how does it work? In the following section, we will first look at how this method finds a sum-of-squares
factorization. Then we will take a look at some bounds for the rank of the program. After that, we will look at
the special case for univariate polynomials. And, finally, at the end of the chapter, we will look at the gradient
of this method. But first, what is the Burer-Monteiro approach?

4.1. The program for Burer-Monteiro
The Burer-Monteiro approach uses the Cholesky decomposition (see theorem 2.2.2). Instead of trying to find
a positive semidefinite matrix, it finds the matrix in the decomposition. We can formalize this in the following
theorem:

Theorem 4.1.1. p ∈∈R[x1, . . . , xn]2d is a SOS ⇔∃P ∈Rl xr such that p = md PP t mT
d .

This theorem is similar to theorem 2.2.2, only now P is not necessarily lower triangular.

Proof. (Theorem 4.1.1) If p is a sum of squares (SOS), then there exists a matrix P such that p = md PP⊤m⊤
d .

This follows directly from the Cholesky decomposition (theorem 2.2.2) Conversely, suppose p = md PP⊤m⊤
d

for some P ∈Rl×r . Let v = P⊤m⊤
d . Then:

p = v⊤v =
r∑

i=1
v2

i ,

where each vi is a polynomial in the variables x1, . . . , xn (since vi is a linear combination of the monomials in
md). Thus, it can be concluded that p is a sum of squares polynomial.

Using this decomposition, we get the following feasibility problem:

min
∑

α∈Nn s.t .∥α∥=4
(p(x)α− (md PP T mT

d)α)2

s.t .P ∈Rl×r
(4.1)

We used the norm error squared here, also called the l2 norm for polynomials squared. One of the main ad-
vantages of this formulation is that we got rid of the PSD constraint, but can we also reduce the computation
by minimizing the rank of P?

4.2. Rank of P
The computation can be reduced if the rank of P is minimized. The choice of this rank influences the exis-
tence of spurious local minima. This raises an important question: how large must we choose r , the rank of
P, to avoid spurious local minima?

17

18 4. Burer Monteiro Approach

To begin, the rank of B must be at least equal to the Pythagoras bound to ensure that the feasible region
contains the solution. We can give an upper bound by taking B to be a square matrix, which means that r = l
=

(n+d−1
d

)
. We also know that the total number of constraints is equal to the number of monomials, which for

homogeneous polynomials is equal to
(n+2d−1

2d

)
.

In order to avoid spurious local minima at second-order critical points for the general Burer-Monteiro
approach, this bound upper bound is strict. There do exist examples were for rank r = l −1 there are spurious
local minima.

This means that in order to use a lower rank, extra conditions are necessary. If an SDP has a compact
search space, it is known that the program admits a global optimum at rank at most

p
2m. [3]. With some ad-

ditional compactness and smoothness conditions, the Burer-Monteiro approach does not contain spurious
local minima for that rank for almost all cost matrices (the measure of the space that does have local minima
is 0).

There is also a well-known result, the Barvinok–Pataki bound, which states that any semi definite program
(SDP) often has an optimal solution of rank at most O(

p
m), where m is the number of affine constraints. [8]

Burer and Monteiro showed that if a linear objective is added to the SDP and its low-rank version the
Burer-Monteiro approach, then as long as the rank r ≳

p
m, any local minimum of the Burer-Monteiro ap-

proachis also a local minimum of the original SDP with an additional rank-r constraint. They further proved
that such a local minimum is either an optimal extreme point, or lies in the relative interior of a face of the
SDP feasible region where the objective is constant.

Later work showed that if the cost matrix C is generic, then all local minima of the Burer-Monteiro ap-
proach are global minima of the full SDP. These results generally require generic constraints and either the
smoothness of the feasible set or a smoothed analysis framework.

However, if the rank r is smaller than
p

m, then local minima of the Burer-Monteiro approach are not
guaranteed to be globally optimal.

Now we know all the bounds for the rank of P, but how do they all compare to each other in size? That can
be illustrated in the following figure:

Figure 4.1: Figure: the rank r against the number of variables for the Pythagoras bound,
p

2m,
p

m and a square matrix (l). It should be
noted that

p
2m is equal to the Pythagoras bound here.

For this case, if there are no constraints on the SDP problem, the rank of r grows quickly. However, there
exists a special case where there are no extra constraints needed in order to avoid spurious local minima for
the Pythagoras bound. These are the univariate polynomials and we will discuss them in the next section.

4.3. Univariate polynomials
In this section, we will take a look at the proof of the article [8], where they show that for univariate polynomi-
als of r = 2, you are guaranteed that every second-order point (SOCP) is a global minimum. In order to have
this statement, the objective must be equal to the norm squared error.

Before we can start with the proof, we must first formally define what an SOCP is and define which objec-
tive we want to minimize:

Definition 4.3.1. u ∈R[x]r
d is a second order critical point (SOCP) of fp (u) if ∇ fp (u) = 0 and ∇2 fp (u) ⪰ 0

We define the objective function as follows:

Definition 4.3.2. The objective function is denoted by fp (u) and given by: fp (u) = ∥∥∑r
i=1(u2

i −p)
∥∥2

, where
u ∈R[x]r

d

4.4. Deriving the gradient 19

Now we can finally state the theorem we want to prove

Theorem 4.3.1. For all nonnegative univariate polynomials p(x) ∈ R[x]2d and any r ≥ 2 if u ∈ R[x]r
d is a SOCP

then fp (u) = 0

We will prove the case for when u1 and u2 are co-prime, which they will be generically. In this case, it is
enough for u to be a first-order critical point.

Suppose u1 and u2 are c-orpime and the gradient is equal to 0, then we know that this is equal to saying
that∇p (u)(v) = 0 for all v = (v1, v2) ∈ R[x]2. If we compute the directional derivative using the Chain rule we
get:

∇ fp (u)(v) = 4
〈

u1v1 +u2v2, u2
1 +u2

2 −p
〉= 0 (4.2)

But now something interesting happens, since u1,u2 are co-prime Bezouts identity for polynomials states
that there exist v ′

1 and v ′
2 such that:

u1v ′
1 +u2v ′

2 = u2
1 +u2

2 −p (4.3)

Since there exist other v ′′
1 and v ′′

2 ’ such that the right-hand side is equal to 1. If we fill this right-hand side in
for u1v ′

1 +u2v ′
2 in the directional derivative, then we end up with:

∇ fp (u)(v′) = 4
〈

u2
1 +u2

2 −p, u2
1 +u2

2 −p
〉= 4 fp (u) = 0 (4.4)

Which finishes the proof. Note that in this case, we only need u to be an FOCP. However, in order to prove
that there are non-spurious local minima for all cases, you will need u to be a second-order critical point.

Now we know the bounds for the rank of P for univariate polynomials and quartics using the Burer-
Monteiro approach, so it is time to compute the gradient. Which we will do in the next section.

4.4. Deriving the gradient
For Burer-Monteiro, we only have to compute the gradient with respect to P. We will do the computation for
the quartics. The computation for the gradient of univariate polynomials is similar. We will follow a similar
method as for the neural network and write the gradient as a column vector:

∇P L(P) =
[
∂L(P)
∂P11

. . . ∂L(P)
∂Pl1

. . . ∂L(P)
Pl r

]T
(4.5)

Since we know the loss function, we can now compute the gradient. Which is given by the following equation:

∇P L(P) =∇P
∑
α

(pα− (md PP T mT
d)α)2 (4.6)

We will first get rid of the outer square by applying the chain rule:

∇P L(P) =−2
∑
α

(pα− (md PP T mT
d)α)∇P ((md PP T mT

d)α) (4.7)

We write md PP T mT
d back to

∥∥P T mT
d

∥∥, in order to be able to apply the chain rule later:

∇P L(P) =−2
∑
α

(pα− (md PP T mT
d)α)∇P (

∥∥P T mT
d

∥∥2
α

) (4.8)

Since we know that ∇P L(P) = (DP L(P))T , we can rewrite it to:

∇P L(P) =−2
∑
α

(pα− (md PP T mT
d)α)(DP (

∥∥P T mT
d

∥∥2
α

))T (4.9)

Then, after this we can use the Chain Rule to get:

∇P L(P) =−4
∑
α

(pα− (md PP T mT
d)α)(DP (P T mT

d)T (P T mT
d))α (4.10)

The only unknown in this equation is DP (P T mT
d). So this will be determined first. This can be done by

writing this out:

DP (P T mT
d) =

P11 . . . Pl1
...

. . .
...

P1p · · · Pl p


md [1]

...
md [l]

= md ⊗ Ip (4.11)

20 4. Burer Monteiro Approach

If we put this formula DP (P T mT
d) in the formula of ∇P L(P). This results to:

∇P L(P) =−4
∑
α

(pα− (md PP T mT
d)α)((md ⊗ Ip)T (P T mT

d))α (4.12)

Working out the transpose results to:

∇P L(P) =−4
∑
α

(pα− (md PP T mT
d)α)((mT

d ⊗ Ip)P T mT
d)α (4.13)

The goal is to write this into a better form:

((md ⊗ Ip)T (P T mT
d)) = (md P (md ⊗ Ip))T = [

md Pe1md . . . md Pep md
]T

(4.14)

Here ei is just a column vector of only 0’s accept for the i th entry. Taking the transpose, this results in, where
we write it in matrix form again:

((md ⊗ Ip)T (P T mT
d)) = [

(md Pe1md)T . . . (md Pep md)T]= mT
d ⊗ [

(eT
1 P T mT

d) . . . (eT
p P T mT

d)
]

(4.15)

Since these are scalars, the tranpose can be taken out, which results in:

mT
d ⊗ [

(eT
1 P T mT

d) . . . (eT
p P T mT

d)
]= ((md ⊗ Ip)T (P T mT

d)) = mT
d ⊗ [

(md Pe1) . . . (md Pep)
]

(4.16)

This results to:

((md ⊗ Ip)T (P T mT
d)) = mT

d ⊗ [
md Pe1 . . . md Pep

]= mT
d ⊗md P (4.17)

Putting everything together, this becomes:

∇P L(P) =−4
∑
α

(pα− (md PP T mT
d)α)(mT

d ⊗md)αP (4.18)

The first part of this equation, md PP T mT
d , can be rewritten again, changing it to an inner product with

only one part with only monomials and the other with coefficients. When implementing, this will save com-
putations:

(md PP T mT
d) = Tr (md PP T mT

d) = Tr (mT
d md PP T) = 〈mT

d md ,PP T 〉 (4.19)

The first is a calculation rule, and then the second part is due to the fact that traces are invariant to cycles.

∇P L(P) =−4
∑
α

(pα− (〈mT
d md ,PP T 〉)α)(mT

d ⊗md)αP (4.20)

This is the final form for the gradient for Burer-Monteiro for quartics. For the univariate polynomials the
gradient is similar with the only change that md gets replaced with [1, x, . . . xd].

We are now ready to implement the different methods in Julia. However, it may also be beneficial to use
some form of automatic differentiation for Burer-Monteiro. Since we again have a lot of input variables and
only one output variable, backpropagation is likely the most efficient choice.

5
Computational results

After some early testing, we found that the L-BFGS optimizer in Julia outperformed Adam, achieving faster
convergence in runtime and number of iterations for target polynomials up to 10 variables. Therefore, all
experiments use the L-BFGS optimizer. All the target polynomials were generated via the equation:

md BB T mT
d ,

where B is a square matrix with entries sampled uniformly from the interval [−1,1]. We considered the
convergence successful when the objective was less than 1e−7. During the early testing, some different
kinds of automatic differentiation were tested, which showed that the autodifferentiation mode, autodiff;
Autozygote, outperformed the others in time. Therefore, all experiments with automatic differentiation
used this autodifferentiation method. We begin by presenting the results for univariate polynomials.

5.1. Univariate polynomials
The univariate polynomials were tested for d ∈ [2, ·20], considering only the even degrees (since odd-degree
polynomials can never be sum-of-squares polynomials). The tests were performed using different ranks for
the matrix B , specifically for r = 1,2,4. For each rank and d , we performed 20 runs, resulting in a total of 200
runs for each rank. This set of tests was performed with a maximum of 50 iterations as well as with a maximum
of 1000 iterations. This experiment was performed with both automatic and non-automatic differentiation,
but there was no notable difference in the number of iterations or in time. The results showed that the rank
played a significant role in the number of times that the target polynomial was successfully found and the
speed of convergence. These results are summarized in the following table.

r 50 iteraties 1000 iteraties
1 0 % 0 %
2 89.5 % 100 %
4 100 % 100 %

Table 5.1: Percentage of successful runs for r = 1,2,4 over 20 runs for d = 2, . . . ,20 for both 50 and 1000 iterations, using automatic
differentiation.

As shown in the table, the convergence is fastest for r = 4, but for r = 2, all target polynomials are eventu-
ally found. However, r = 1 is not guaranteed to converge. The times it converged were all for d = 2,4. It might
seem like the number of iterations is too low for r = 1; however, when the target polynomial was not found,
the objective function was plotted. An example of such a plot is shown below:

21

22 5. Computational results

Figure 5.1: The objective for a univariate polynomial with d = 10 with the maximum number of iterations equal to 50, using automatic
differentiation

As shown in the figure, the objective barely decreases after 10 iterarions. The plot stops early since the
optimizer stops when the objective does not decrease anymore. The other plots for r = 1 showed a similar
pattern.

The code for the univariate polynomials, followed by its tests, is provided in the appendix A. We proceed
with the quartic case using the Burer–Monteiro method.

5.2. Burer-Monteiro for quartics
There were two tests performed for the quartics for Burer-Montero. The first evaluated the convergence in
iterations using different ranks for P . The second one consisted of comparing automatic and manual differ-
entiation in runtime. We begin by presenting the results for the rank comparison test.

5.2.1. Different ranks of P
The quartics were tested using both automatic and non-automatic differentiation for n = 2. . .10 with steps of
2. To evaluate convergence, each n was tested 20 times. We used different ranks r, specifically: full rank (l),p

2m,
p

m, 3
4

p
m, 1

2

p
m and n, resulting in 100 runs for each rank. There was no significant difference in the

number of iterations required for convergence between automatic and non-automatic differentiation. This
test was performed using different limits for the number of iterations: 25,50,75,100, and 1000. Both r = 1

2

p
m

and r = n were too low to converge; both of them converged only for n = 2 but never converged for larger n,
which can be illustrated in the following figures:

Figure 5.2: The objective for n = 10, using r = 10, with non-
automatic differentiation over 1000 iterations.

Figure 5.3: The objective for n = 10 with r = 1
2
p

m, over 1000 iter-
ations.

We can see that r = n gives up earlier and reaches a higher objective value compared to r = 1
2

p
m. For

r = n it is hard to say whether or not it is a spurious local minimum because it can also be that the global

5.3. Neural network 23

optimum of the SDP is not in the feasible region, since the rank is below the Pythagoras number itself. The
same holds for r = 1

2

p
m. Since for r = 1

2

p
m the objective was still decreasing after 1000 iterations, we also

tested for a higher number of iterations (2000), but this did not change the objective much.

The other ranks of r ; l ,
p

2m,
p

m and 3
4

p
m, all convergenced for every run within 100 iterations. How-

ever, larger values of r generally led to faster convergence. There was no notable difference in convergence
for automatic vs manual differentiation. In the next section, we will explore whether the same can be said
about the runtime between the two.

5.2.2. Runtime for automatic and manual differentiation

The second test compared the runtime of automatic and manual differentiation for n = 10, for r = (l),
p

2m,p
m, 3

4

p
m, 1

2

p
m and n. There was a notable difference in runtime, for example, for full rank it took 7 seconds

for automatic differentiation and 31 for non-automatic differentiation, for example. Also, for the other ranks,
automatic differentiation was almost 3x as fast. The code, including its test, is in Appendix B. Now we can
take a look at the second approach, namely the neural network.

5.3. Neural network

The neural network followed a similar test to Burer-Monteiro. However, the code for automatic differentia-
tion was too slow (it took over a minute to run the optimizer for n = 5 once). Even optimizing the code did
not seem to work; the code can be seen in C. Which means the tests are only performed using automatic
differentiation. Since we only use automatic differentiation, firstly, a test was performed to control whether
or not the loss function was corrected. Following that test we performed two additional experiments; the
first compared different values of k and m to check the convergence. The second experiment examined the
runtime for automatic differentiation. We will first examine the test that compared the number of iterations.

5.3.1. Different values for k and m

We tested the convergence for different values of k (the Pythagoras number and l), and different values of
m (m = n or m = 2n). Initially, the idea was to test it with the same number of iterations as with Burer-
Monteiro (that is 25,50,75,100 and 1000). However, it turned out that the convergence for the neural network
was slower; after 400 iterations, around 70-90 percent had converged; larger values for k and m led to higher
percentages. At 1000 iterations, almost all values have converged, which can be illustrated in the following
table:

r succesvolle runs
m = n, k = Pythagoras getal 98 %

m = n, k = l 99 %
m = 2n, k = Pythagoras getal 100 %

m = 2n, k = l 100 %

Table 5.2: Percentage of successful runs after 1000 iterations, for automatic differentiation for the neural network

As shown in the table, only three runs failed to converge successfully. To determine whether these runs
got stuck at local minima, we examine their corresponding objective value plots. One of these plots is given
below:

24 5. Computational results

Figure 5.4: The objective for n = 10, m = n, k = Pythagoras number, for automatic differentiation of the neural network

It is interesting to see that the convergence stays for a large number of iterations, and then suddenly it
starts dropping again. The other two cases had a similar pattern in their convergence plot. Which denotes
that they might have been in a flat region, but in the end, it seems to converge to a global minimum.

5.3.2. The time of the neural network
The second experiment measured the runtime for automatic differentiation for k = l /Pythagoras number and
m = 2n/n for n = 10. This led to a runtime between 17 and 30 seconds (larger values of m/k led to a longer
runtime). The code, including its tests, is in the appendix D (for iter = 1000). This is significantly slower than
for the Burer-Monteiro approach with automatic differentiation.

6
Discussion and Conclusion

The experimental results support the theoretical expectations regarding the Burer-Monteiro approach for
univariate polynomials, as convergence occurs when the rank of r is at least 2. We also saw that this bound
was tight. Although r = 2 was sufficient, larger r led to faster convergence, suggesting a mild advantage of
overparameterization.

In the theory for quartics, the rank
p

m seems to be large enough for n up to 10, even 0.75
p

m is sufficient
for n up to 10, which is lower than the bound we saw in theory. However, for lower values such as 0.5

p
m

or r = n, convergence consistently fails. Overall, Burer-Monterio converged within 100 iterations, but again,
overparameterization seemed to have a slight advantage. Automatic differentiation outperformed manual
differentiation.

For the neural network, similar trends were observed; both parameterizing k and m led to faster conver-
gence. Furthermore, using automatic differentiation outperformed manual gradient computations by far in
speed. The number of iterations in order to converge was significantly larger than for Burer-Monteiro; some
even seemed to get temporarily stuck at flat regions. Non-automatic differentiation failed completely for the
neural network.

Overall, Burer-Monteiro seemed to outperform the neural network in both runtime as well as number of
iterations. Automatic differentiation also outperformed manual differentiation. However, it is worth noting
that LBFGS was used exclusively, and no parameter optimization was performed. This leaves open the pos-
sibility that alternative first or second-order methods might lead to different results. Additionally, tests for
larger n were limited due to the time of the computations, which could affect the relative performance of the
methods. For future work there could be looked at the following things:

• Investigate scalability by looking at larger values of n

• Apply the methods to higher-degree polynomials (creating a neural network for higher-degree polyno-
mials or Burer-Monteiro for higher-degree polynomials).

• Compare against traditional semidefinite programming (SDP) using interior point methods

• Tune the hyperparameters

• Investigate different first-order and second-order methods

25

Bibliography

[1] Atilim Gunes Baydin et al. “Automatic differentiation in machine learning: a survey”. In: Journal of
machine learning research 18.153 (2018), pp. 1–43.

[2] Grigoriy Blekherman. “Nonnegative polynomials and sums of squares”. In: Journal of the American
Mathematical Society 25.3 (2012), pp. 617–635.

[3] Nicolas Boumal, Vlad Voroninski, and Afonso Bandeira. “The non-convex Burer-Monteiro approach
works on smooth semidefinite programs”. In: Advances in Neural Information Processing Systems 29
(2016).

[4] Samuel Burer and Renato DC Monteiro. “A nonlinear programming algorithm for solving semidefinite
programs via low-rank factorization”. In: Mathematical Programming 95.2 (2003), pp. 329–357.

[5] Michel X Goemans and David P Williamson. “Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming”. In: Journal of the ACM (JACM) 42.6 (1995),
pp. 1115–1145.

[6] Paul J Goulart and Sergei Chernyshenko. “Global stability analysis of fluid flows using sum-of-squares”.
In: Physica D: Nonlinear Phenomena 241.6 (2012), pp. 692–704.

[7] Daniel Keren, Margarita Osadchy, and Roi Poranne. “A practical, fast method for solving sum-of-squares
problems for very large polynomials”. In: arXiv preprint arXiv:2410.19844 (2024).

[8] Benoıt Legat, Chenyang Yuan, and Pablo Parrilo. “Low-rank univariate sum of squares has no spurious
local minima”. In: SIAM Journal on Optimization 33.3 (2023), pp. 2041–2061.

[9] Michael A. Nielsen. Neural Networks and Deep Learning. Online; accessed on July 3, 2025. Determina-
tion Press, 2015. URL: http://neuralnetworksanddeeplearning.com/.

[10] Victoria Powers. “Positive polynomials and sums of squares: a beginner’s guide”. In: preprint ().

26

http://neuralnetworksanddeeplearning.com/

A
Code for Burer-Monteiro for univariate

Polynomials

A.1. Code for testing
1 using Optim , AbstractAlgebra , LinearAlgebra , SparseArrays , Zygote ,

DifferentiationInterface , Plots
2 include("Burer_Monteiro_univariate.jl") #include the code
3

4 #chapter 3: TESTS
5 #chapter 0: just some help for the tests
6 #create the d dictionaires
7 all_A_dicts = Dict{Int , Dict }()
8 for d in 1:10
9 all_A_dicts[d] = dict_A(d)

10 end
11

12 # a helper function: it makes the plot if the err is too large (to check if it
is indeed

13 # a local minimum or just too slow convergence compared to the number of
iterations :))

14 # can also be used to make a convergence plot by setting err_bound to 0 :)
15 function helper(d,l,r, automatic ::Bool , opts , err_bound)
16 initial_x = rand(l*r)
17 p = creating_p(d)
18 p_map = creating_p_map(p,d)
19 f_wrapped = x -> f(x, d, l, r, p_map ,all_A_dicts[d])
20 if automatic
21 found = Optim.optimize(f_wrapped , initial_x ,LBFGS (),opts; autodiff=

AutoZygote ())
22 if Optim.minimum(found)>err_bound
23 obj_vals = [obj.value for obj in found.trace]
24 display(plot (1: length(obj_vals), obj_vals;xlabel = "Iterations"

,ylabel = "Objective",title = "d = $d, r = $r, automatic =
$automatic",yscale = :log10 ,

25 label = "Objective"))
26 return 1
27 end
28 return 0
29 end
30 #non -automatic part
31 g_wrapped = (G,x) -> g!(G,x,d,l,r,p_map , all_A_dicts[d])
32 found = Optim.optimize(f_wrapped ,g_wrapped , initial_x ,LBFGS(),opts)
33 if Optim.minimum(found)>err_bound

27

28 A. Code for Burer-Monteiro for univariate Polynomials

34 obj_vals = [obj.value for obj in found.trace]
35 display(plot (1: length(obj_vals), obj_vals;xlabel = "Iterations",ylabel

= "Objective",title = "d = $d, r = $r, automatic = $automatic",
yscale = :log10 ,

36 label = "Objective"))
37 return 1
38 end
39 return 0
40 end
41

42 #chapter 1 tests
43 #1.1 TEST: how often does it convergece over x amount of runs ?
44 #1.1 TEST: automatic case
45 function test_convergence_auto ()
46 err_bound = 1e-7
47 iter = 50
48 opts = Optim.Options(iterations = iter ,store_trace=true) #it runs at most

30 000
49

50 #a too low rank
51 non_convergence = 0
52 for d in 1:10
53 l = d+1
54 r = 1
55 for times in 1:20
56 non_convergence += helper(d,l,r, true , opts , err_bound)
57 end
58 end
59 println("The convergence failed ", non_convergence , " out of 200 times , for

r = 1")
60

61 #for the minimum rank to have no spurious local minima
62 non_convergence = 0
63 for d in 1:10
64 l = d+1
65 r = 2
66 for times in 1:20
67 non_convergence += helper(d,l,r, true , opts , err_bound)
68 end
69 end
70 println("The convergence failed ", non_convergence , " out of 200 times , for

r = 2")
71

72 non_convergence = 0
73 #a larger rank then necessary
74 for d in 1:10
75 l = d+1
76 r = 4
77 for times in 1:20
78 non_convergence += helper(d,l,r, true , opts , err_bound)
79 end
80 end
81 println("The convergence failed ", non_convergence , " out of 200 times , for

r = 4")
82 end
83

84

85

86 #1.1 TEST: non -automatic case
87 function test_convergence_non_auto ()
88 err_bound = 1e-7

A.2. Code for gradient and objective 29

89 iter = 1000
90 opts = Optim.Options(iterations = iter ,store_trace=true) #it runs at most

30 000
91

92 #first full rank convergence
93 non_convergence = 0
94 for d in 1:10
95 l = d+1
96 r = 1
97 for times in 1:20
98 non_convergence += helper(d,l,r, false , opts , err_bound)
99 end

100 end
101 println("The convergence failed ", non_convergence , " out of 200 times , for

r = 1")
102

103 #for the minimum rank to have no spurious local minima
104 non_convergence = 0
105 for d in 1:10
106 l = d+1
107 r = 2
108 for times in 1:20
109 non_convergence += helper(d,l,r, false , opts , err_bound)
110 end
111 end
112 println("The convergence failed ", non_convergence , " out of 200 times , for

r = 2")
113

114 #a larger rank then necessary
115 non_convergence = 0
116 for d in 1:10
117 l = d+1
118 r = 4
119 for times in 1:20
120 non_convergence += helper(d,l,r, false , opts , err_bound)
121 end
122 end
123 println("The convergence failed ", non_convergence , " out of 200 times , for

r = 4")
124 end
125

126

127

128

129 println("automatic")
130 test_convergence_auto ()
131 println("non automatic")
132 test_convergence_non_auto ()

A.2. Code for gradient and objective

1 using AbstractAlgebra , LinearAlgebra , Optim
2

3 #creates for an n all matrices A, for correct alpha in a dictionary
4 function dict_A(d)
5 #create the dictionary
6 A_dict = Dict{Int , Matrix{Float64 }}()
7 l_dim = d+1
8

9 for i=1:2*d+1

30 A. Code for Burer-Monteiro for univariate Polynomials

10 #building M
11 M = zeros(l_dim , l_dim)
12 row = col = 1
13 for row= 1:d+1, col = 1:d+1
14 if row + col -1 == i
15 M[row , col] = 1
16 end
17 end
18 A_dict[i] = M
19 end
20 return A_dict
21 end
22

23

24 #creates a "random" polynomial
25 function creating_p(d)
26 R, x_p = polynomial_ring(RDF , 1)
27 md = [x_p [1]^i for i in 0:d]
28 md_t = reshape(md ,1,:)
29 B = 2*rand(length(md), length(md)).-1
30 p = md_t*B*transpose(B)*md
31 return p[1,1]
32 end
33

34 #creating the p_map of the polynomial
35 function creating_p_map(p,d)
36 p_map = Dict{Int , Float64 }()
37 for i in 1:2*d+1
38 p_map[i] = coeff(p, i)
39 end
40 return p_map
41 end
42

43 #notes:
44 # in p_map correspondeert 1 met getal 1, en 2 met coeffcient voor x
45 # in A_dict correspondeert 1 met getal 1 matrix A en 2 met de coefficent voor x
46

47

48 #creates the loss function
49 function f(x,d,l,r,p_map , A_dict)
50 result = 0.0
51 P = reshape(x,l,r)
52 PPT = P*P’
53 for i=1:2*d+1
54 result += (p_map[i] - dot(A_dict[i], PPT))^2
55 end
56 return result
57 end
58

59 #computes the gradient
60 function g!(G,x,d,l,r,p_map , A_dict)
61 P = reshape(x,l,r)
62 PPT = P*P’
63 result = zeros(size(P)...)
64 for i=1:2*d+1
65 result += (p_map[i] - dot(A_dict[i], PPT)) * A_dict[i] * P
66 end
67 G[1:l*r] = -4 * reshape(result ,:)
68 end

B
Code for Burer-Monteiro for quartics

B.1. Normal code
1 sing AbstractAlgebra , LinearAlgebra , Optim
2

3 #creates for an n all matrices A, for correct alpha in a dictionary
4 function dict_A(n)
5 #create the dictionary
6 A_dict = Dict{NTuple{4, Int}, Matrix{Float64 }}()
7 l_dim = binomial(n+1, 2)
8

9 for i=1:n, j=i:n, k=j:n, l=k:n
10 alpha = zeros(Int , n)
11 alpha[i] += 1
12 alpha[j] += 1
13 alpha[k] += 1
14 alpha[l] += 1
15

16 #building M
17 M = zeros(l_dim , l_dim)
18 row = col = 1
19 for r1 = 1:n, r2 = r1:n
20 beta = zeros(Int , n)
21 beta[r1] += 1
22 beta[r2] += 1
23 col = 1
24 for c1 = 1:n, c2 = c1:n
25 gamma = zeros(Int , n)
26 gamma[c1] += 1
27 gamma[c2] += 1
28

29 if beta + gamma == alpha
30 M[row , col] = 1
31 end
32

33 col += 1
34 end
35 row += 1
36

37 #set it to the dict
38 end
39 #we don ’t want alpha but i,j,k,l
40 A_dict [(i,j,k,l)] = M
41 end

31

32 B. Code for Burer-Monteiro for quartics

42 return A_dict
43 end
44

45 #creates a "random" polynomial
46 function creating_p(n)
47 R, x_p = polynomial_ring(RDF , n)
48 md = Vector{typeof(x_p [1])}(undef , Int(length(x_p)*(length(x_p)+1) 2))

#column vector
49 idx = 1
50 for i in 1: length(x_p)
51 for j in i:length(x_p)
52 md[idx] = x_p[i]*x_p[j]
53 idx += 1
54 end
55 end
56 md_t = reshape(md ,1,:)
57 B = 2*rand(length(md), length(md)).-1
58 p = md_t*B*transpose(B)*md
59 return p[1,1]
60 end
61

62 #creating the p_map of the polynomial
63 function creating_p_map(p,n)
64 p_map = Dict{NTuple{4, Int}, Float64 }()
65 alpha = zeros(Int , n)
66 for i in 1:n, j in i:n, k in j:n, l in k:n
67 fill!(alpha , 0) #it said this for less allocations
68 alpha[i] += 1
69 alpha[j] += 1
70 alpha[k] += 1
71 alpha[l] += 1
72 p_map[(i, j, k, l)] = coeff(p, alpha)
73 end
74 return p_map
75 end
76

77

78 #creates the loss function
79 function f(x,n,l,r,p_map , A_dict)
80 result = 0.0
81 P = reshape(x,l,r)
82 PPT = P*P’
83 for i=1:n, j=i:n, k=j:n, l=k:n
84 result += (p_map[i,j,k,l] - dot(A_dict[i,j,k,l], PPT))^2
85 end
86 return result
87 end
88

89 #computes the gradient
90

91 function g!(G,x,n,l,r,p_map , A_dict)
92 P = reshape(x,l,r)
93 PPT = P*P’
94 result = zeros(size(P)...)
95 for i=1:n, j=i:n, k=j:n, l=k:n
96 result += (p_map[i,j,k,l] - dot(A_dict[i,j,k,l], PPT)) * A_dict[i,j

,k,l] * P
97 end
98 G[1:l*r] = -4 * reshape(result ,:)
99 end

B.2. Code for testing 33

B.2. Code for testing

1 using Optim , AbstractAlgebra , LinearAlgebra , SparseArrays , Zygote ,
DifferentiationInterface , Plots

2 include("Burer_Monteiro.jl") #include the code
3

4

5 #chapter 0: just some help for the tests
6 #create the alpha dictionaires
7 all_A_dicts = Dict{Int , Dict }()
8 for n in 1:10
9 all_A_dicts[n] = dict_A(n)

10 end
11

12 # a helper function: it makes the plot if the err is too large (to check if it
is indeed

13 # a local minimum or just too slow convergence compared to the number of
iterations :))

14 # can also be used to make a convergence plot by setting err_bound to 0 :)
15 function helper(n,l,r, automatic ::Bool , opts , err_bound)
16 initial_x = rand(l*r)
17 p = creating_p(n)
18 p_map = creating_p_map(p,n)
19 f_wrapped = x -> f(x, n, l, r, p_map ,all_A_dicts[n])
20 if automatic
21 found = Optim.optimize(f_wrapped , initial_x ,LBFGS (),opts; autodiff=

AutoZygote ())
22 if Optim.minimum(found)>err_bound
23 obj_vals = [obj.value for obj in found.trace]
24 display(plot (1: length(obj_vals), obj_vals;xlabel = "Iterations"

,ylabel = "Objective Value",title = "n = $n , r = $r,
automatic = $automatic",yscale = :log10 , label = "Objective
"))

25 return 1
26 end
27 return 0
28 end
29 #hier for non automatic , cechk daarna de functie en daarna aanpssen in

cdoe
30 g_wrapped = (G,x) -> g!(G,x,n,l,r,p_map , all_A_dicts[n])
31 found = Optim.optimize(f_wrapped ,g_wrapped , initial_x ,LBFGS(),opts)
32 if Optim.minimum(found)>err_bound
33 obj_vals = [obj.value for obj in found.trace]
34 display(plot (1: length(obj_vals), obj_vals;xlabel = "Iterations",ylabel

= "Objective Value",title = "n = $n , r = $r, automatic = $automatic
",yscale = :log10 , label = "Objective"))

35 return 1
36 end
37 return 0
38 end
39

40

41 #chapter 1 tests
42 #1.1 TEST: how often does it convergece over x amount of runs ?
43 #1.1 TEST: automatic case
44 function test_convergence_auto ()
45 err_bound = 1e-7
46 iter = 1000
47 opts = Optim.Options(iterations = iter ,store_trace=true) #it runs at most

30 000
48

34 B. Code for Burer-Monteiro for quartics

49 #first full rank convergence
50 non_convergence = 0
51 for n in 2:2:10
52 l = Int(n*(n+1)/2)
53 r = l
54 for times in 1:20
55 non_convergence += helper(n,l,r, true , opts , err_bound)
56 end
57 end
58 println("The convergence failed ", non_convergence , " out of 100 times")
59

60 #for the minimum rank to have generic cases convergence (sqrt(2m)/k)
61 non_convergence = 0
62 for n in 2:2:10
63 l = Int(n*(n+1)/2)
64 m = binomial(n+3, 4)
65 r = Int(ceil(sqrt (2*m)))
66 for times in 1:20
67 non_convergence += helper(n,l,r, true , opts , err_bound)
68 end
69 end
70 println("The convergence failed ", non_convergence , " out of 100 times")
71

72 #(sqrt(m))
73 non_convergence = 0
74 for n in 2:2:10
75 l = Int(n*(n+1)/2)
76 m = binomial(n+3, 4)
77 r = Int(ceil(sqrt(m)))
78 non_convergence = 0
79 for times in 1:20
80 non_convergence += helper(n,l,r, true , opts , err_bound)
81 end
82 end
83 println("The convergence failed ", non_convergence , " out of 100 times")
84

85 #3/4(sqrt(m))
86 non_convergence = 0
87 for n in 2:2:10
88 l = Int(n*(n+1)/2)
89 m = binomial(n+3, 4)
90 r = Int(ceil(0.75*sqrt(m)))
91 for times in 1:20
92 non_convergence += helper(n,l,r, true , opts , err_bound)
93 end
94 end
95 println("The convergence failed ", non_convergence , " out of 100 times")
96

97 #far below the minimum rank to have generic cases convergence namely r = n
98 non_convergence = 0
99 for n in 2:2:10

100 l = Int(n*(n+1)/2)
101 r = n
102 for times in 1:20
103 non_convergence += helper(n,l,r, true , opts , err_bound)
104 end
105 end
106 println("The convergence failed ", non_convergence , " out of 100 times")
107 end
108

109

B.2. Code for testing 35

110

111

112 #1.1 TEST: non -automatic case
113 function test_convergence_non_auto ()
114 err_bound = 1e-7
115 iter = 1000
116 opts = Optim.Options(iterations = iter ,store_trace=true) #it runs at most

30 000
117

118 #first full rank convergence
119 non_convergence = 0
120 for n in 2:2:10
121 l = Int(n*(n+1)/2)
122 r = l
123 for times in 1:20
124 non_convergence += helper(n,l,r, false , opts , err_bound)
125 end
126 end
127 println("The convergence failed ", non_convergence , " out of 100 times")
128

129 #(sqrt(2m))
130 non_convergence = 0
131 for n in 2:2:10
132 l = Int(n*(n+1)/2)
133 m = binomial(n+3, 4)
134 r = Int(ceil(sqrt (2*m)))
135 for times in 1:20
136 non_convergence += helper(n,l,r, false , opts , err_bound)
137 end
138 end
139 println("The convergence failed ", non_convergence , " out of 100 times")
140

141 #(sqrt(m))
142 non_convergence = 0
143 for n in 2:2:10
144 l = Int(n*(n+1)/2)
145 m = binomial(n+3, 4)
146 r = Int(ceil(sqrt(m)))
147 for times in 1:20
148 non_convergence += helper(n,l,r, false , opts , err_bound)
149 end
150 end
151 println("The convergence failed ", non_convergence , " out of 100 times")
152

153 #3/4(sqrt(m))
154 non_convergence = 0
155 for n in 2:2:10
156 l = Int(n*(n+1)/2)
157 m = binomial(n+3, 4)
158 r = Int(ceil(0.75*sqrt(m)))
159 for times in 1:20
160 non_convergence += helper(n,l,r, false , opts , err_bound)
161 end
162 end
163 println("The convergence failed ", non_convergence , " out of 100 times")
164

165 #far below the minimum rank to have generic cases convergence , r = n
166 non_convergence = 0
167 for n in 2:2:10
168 l = Int(n*(n+1)/2)
169 r = n

36 B. Code for Burer-Monteiro for quartics

170 for times in 1:20
171 non_convergence += helper(n,l,r, false , opts , err_bound)
172 end
173 end
174 println("The convergence failed ", non_convergence , " out of 100 times")
175 end
176

177

178 # a test for time for both automatic and non -automatic , but first we see if
there is a difference in

179 #convergence. we test until n= 10 that is easier in terms of time consuming
180 #we take this m (do we still see convergence everywhere? then we take a larger

one)
181 function test_time ()
182 n = 10
183 m = binomial(n+3, 4)
184 l = Int(n*(n+1)/2)
185 err_bound = 1e-7
186 iter = 1000
187 opts = Optim.Options(iterations = iter ,store_trace=true) #it runs at most

30 000
188 p = creating_p(n)
189 p_map = creating_p_map(p,n)
190 for r in [l, k, Int(ceil(sqrt (2*m))), Int(ceil(sqrt(m))),k = Int (3/4* sqrt(m

)),n]
191 initial_x = rand(l*r)
192 f_wrapped = x -> f(x, n, l, r, p_map ,all_A_dicts[n])
193 g_wrapped = (G,x) -> g!(G,x,n,l,r,p_map , all_A_dicts[n])
194 println("time of non -automatic is with rank: ", r)
195 @time found = Optim.optimize(f_wrapped ,g_wrapped , initial_x ,LBFGS (),

opts)
196 println("time of automatic is with rank: ", r)
197 @time found2 = Optim.optimize(f_wrapped , initial_x ,LBFGS(),opts;

autodiff=AutoZygote ())
198 end
199 end

C
Code for neural network using manual

differentiation

C.1. Normal code
1 using Optim , AbstractAlgebra , LinearAlgebra , SparseArrays , LineSearches
2

3

4 #create p
5 function creating_p(n)
6 R, x_p = polynomial_ring(RDF , n)
7 md = Vector{typeof(x_p [1])}(undef , Int(length(x_p)*(length(x_p)+1) 2))

#column vector
8 idx = 1
9 for i in 1: length(x_p)

10 for j in i:length(x_p)
11 md[idx] = x_p[i]*x_p[j]
12 idx += 1
13 end
14 end
15 md_t = reshape(md ,1,:)
16 B = 2*rand(length(md), length(md)).-1
17 p = md_t*B*transpose(B)*md
18 return p[1,1]
19 end
20

21

22 #loss functie
23 function f(x, p,m,n,k)
24 R, x_p = polynomial_ring(RDF , n)
25 result = 0.0
26 A = transpose(reshape(x[1:m*n], n, m))
27 B = transpose(reshape(x[m*n+1:(k+1)*m*n], m*n, k))
28

29

30 v = kron(x_p , A*x_p)
31 g = sum((B * v).^2)
32 difference = p-g
33 for c in coefficients(difference)
34 result += c^2
35 end
36 return result
37 end
38

37

38 C. Code for neural network using manual differentiation

39

40

41

42

43 #gradient
44 function g!(G, x,p,m,n,k)
45 #we alter the G and we eveluate G at x
46 R, x_p = polynomial_ring(RDF , n)
47 iden = Matrix{Float64 }(I, m, m)
48 A = transpose(reshape(x[1:m*n], n, m))
49 B = transpose(reshape(x[m*n+1:(k+1)*m*n], m*n, k))
50

51 Axp = A*x_p
52

53 q = kron(transpose(x_p), iden , x_p) * B’ * B * kron(x_p , Axp)
54 r = kron(transpose(x_p), transpose(x_p)*transpose(A)) * B’ * B * kron(x_p ,

Axp)
55

56 for i = 1:n*m
57 G[i] = 0.0 #first make it empty to add again
58 for alpha in exponent_vectors(q[i])
59 G[i] += -4*(coeff(p, alpha) - coeff(r, alpha)) * coeff(q[i], alpha)
60 end
61 end
62

63 # q = kron(iden , x_p , A*x_p) * B * kron(x_p , A*x_p)
64 xpAxp = kron(x_p , Axp)
65 c = B * xpAxp
66 for i = 1:k*m*n
67 G[i+m*n] = 0.0 #first make it empty to add again
68 ik , imn = divrem(i-1, m*n)
69 ik += 1
70 imn += 1
71 qi = xpAxp[imn] * c[ik]
72 for alpha in exponent_vectors(qi)
73 G[i+m*n] += -4*(coeff(p, alpha) - coeff(r, alpha)) * coeff(qi,

alpha)
74 end
75 end
76 end

D
Code for neural network using automatic

differentiation

D.1. Normal code
1 using Optim , AbstractAlgebra , LinearAlgebra , SparseArrays , Zygote ,

DifferentiationInterface
2

3 #deze functie maakt het polynoom aan
4 function creating_p(n)
5 R, x_p = polynomial_ring(RDF , n)
6 md = Vector{typeof(x_p [1])}(undef , Int(length(x_p)*(length(x_p)+1) 2))

#column vector
7 idx = 1
8 for i in 1: length(x_p)
9 for j in i:length(x_p)

10 md[idx] = x_p[i]*x_p[j]
11 idx += 1
12 end
13 end
14 md_t = reshape(md ,1,:)
15 B = 2*rand(length(md), length(md)).-1
16 p = md_t*B*transpose(B)*md
17 return p[1,1]
18 end
19

20 #deze functie zet de functies in een map
21 function creating_p_map(p,n)
22 p_map = Dict{NTuple{4, Int}, Float64 }()
23 alpha = zeros(Int , n)
24 for i in 1:n, j in i:n, k in j:n, l in k:n
25 fill!(alpha , 0) #it said this for less allocations
26 alpha[i] += 1
27 alpha[j] += 1
28 alpha[k] += 1
29 alpha[l] += 1
30 p_map[(i, j, k, l)] = coeff(p, alpha)
31 end
32 return p_map
33 end
34

35 #dit is gewoon de loss functie
36 function f(x, p_map , m,n,k)
37 # dit maakt een A,B lijst aan , voor straks voor de f’jes

39

40 D. Code for neural network using automatic differentiation

38 result = zero(typeof(first(x)))
39 A = transpose(reshape(x[1:m*n], n, m))
40 B = transpose(reshape(x[m*n+1:(k+1)*m*n], m*n, k))
41 A_list = [A[:, i] for i in 1:n]
42 B_list = [B[:, (i-1)*m+1:i*m] for i in 1:n]
43

44 #dit maakt een map aan met alle f’jes , in de hoop dat dit sneller was
45 f_map = Dict{Tuple{Int , Int}, Vector{typeof(first(x))}}()
46 for i in 1:n, j in i:n
47 f_map[(i, j)] = B_list[i]* A_list[j]+ B_list[j]* A_list[i]
48 end
49

50 #deze laat alle coefficienten voor de monomials uitrekenen (case splitten)
51 for i in 1:n, j in i:n, k in j:n, l in k:n
52 if i== l #4 case (note l>=k>=j>=i)
53 result += (p_map[(i, j, k, l)] -1/4*dot(f_map[(i,i)], f_map[(i,i)])

)^2
54 elseif i == j && k == l #2,2 case (i 2x, k 2x)
55 result += (p_map[(i, j, k, l)] -dot(f_map[(i,k)],f_map [(i,k)]) -0.5*

dot(f_map [(i,i)],f_map[(k,k)]))^2
56 elseif i ==k #3,1 case (i 3x, l 1x)
57 result += (p_map[(i, j, k, l)] -dot(f_map[(i,i)],f_map [(i,l)]))^2
58 elseif j == l #3,1 case (i 1x, j 3x)
59 result += (p_map[(i, j, k, l)] -dot(f_map[(j,j)], f_map [(i,j)]))^2
60 elseif i ==j #2,1,1 case (i 2x, k 1x, l 1x)
61 result += (p_map[(i, j, k, l)] -dot(f_map[(i,i)],f_map [(k,l)]) -2*

dot(f_map [(i,l)],f_map[(i,k)]))^2
62 elseif j == k #2,1,1 case (i 1x, j 2x, l 1x)
63 result += (p_map[(i, j, k, l)]-dot(f_map [(j,j)],f_map[(i,l)]) -2*dot

(f_map[(i,j)],f_map [(j,l)]))^2
64 elseif k == l #case 1,1,2 (i 1x, j 1x, k 2x)
65 result += (p_map[(i, j, k, l)]-dot(f_map [(k,k)],f_map[(i,j)]) -2*dot

(f_map[(j,k)],f_map [(i,k)]))^2
66 else #1,1,1,1 case (i 1x, j 1x, k 1x, l 1x)
67 result += (p_map[(i, j, k, l)]-2*(dot(f_map[(i,j)], f_map [(k,l)])+

dot(f_map [(i,k)], f_map[(j,l)])+dot(f_map[(i,l)],f_map[(j,k)]))
)^2

68 end
69 end
70 return result
71 end

D.2. Tests

1 using Optim , AbstractAlgebra , LinearAlgebra , SparseArrays , Zygote ,
DifferentiationInterface , Plots

2 include("Neural_Network_automatic.jl") #include the code
3

4 #TEST 0
5 #test die kijkt of je daadwerkelijk het goede polynoom terug krijgt
6 #de objective gevonden door de optmizer en de objective gevonden
7 # bij norm squared error uitrekenen uit de hand
8 function test_rightpolynomial ()
9 n = 2

10 m = n
11 k = Int(n*(n+1)/2)
12 initial_x = rand(m*n+k*m*n)
13 p = creating_p(n)
14 p_map = creating_p_map(p,n)
15

D.2. Tests 41

16 #de optimizer uitvoeren
17 found = Optim.optimize(x -> f(x, p_map , m, n,k), initial_x , Adam())
18 optimal_x = Optim.minimizer(found)
19 A = transpose(reshape(optimal_x [1:m*n], n, m))
20 B = transpose(reshape(optimal_x[m*n+1:(k+1)*m*n], m*n, k))
21 R, x_p = polynomial_ring(RDF , n)
22 p_found =transpose(B*kron(x_p ,A*x_p))*B*kron(x_p ,A*x_p)
23 #opzetten van de check
24 g = p-p_found
25 count = 0
26 for alpha in exponent_vectors(g)
27 count +=coeff(g, alpha)^2
28 end
29

30 #uitvoeren van de check
31 objective_value = f(optimal_x , p_map , m, n,k)
32 println("Final objective value: ", objective_value)
33 print("The final objective check = ", count)
34 end
35

36 # a helper function: it makes the plot if the err is too large (to check if it
is indeed

37 # a local minimum or just too slow convergence compared to the number of
iterations :))

38 # can also be used to make a convergence plot by setting err_bound to 0 :)
39 function helper(n,m,k,opts , err_bound)
40 initial_x = rand(m*n+k*m*n)
41 p = creating_p(n)
42 p_map = creating_p_map(p,n)
43 f_wrapped = x -> f(x, p_map , m,n,k)
44 found = Optim.optimize(f_wrapped , initial_x ,LBFGS (),opts; autodiff=

AutoZygote ())
45 if Optim.minimum(found)>err_bound
46 obj_vals = [obj.value for obj in found.trace]
47 display(plot (1: length(obj_vals), obj_vals;xlabel = "Iterations",

ylabel = "Objective Value",title = "n = $n ,m = $m, k= $k",
yscale = :log10))

48 return 1
49 end
50 return 0
51 end
52

53

54 #chapter 1 tests
55 #1.1 TEST: how often does it convergece over x amount of runs ?
56 #1.1 TEST: automatic case
57 function test_convergence_auto ()
58 err_bound = 1e-7
59 iter = 1000
60 opts = Optim.Options(iterations = iter ,store_trace=true) #it runs at most

30 000
61

62 #m =n, k pythagoras number
63 non_convergence = 0
64 for n in 2:2:10
65 m = n
66 k = Int(ceil (1/(2* sqrt (3))*(n^2+n+1) -0.5))
67 for times in 1:20
68 non_convergence += helper(n,m,k, opts , err_bound)
69 end
70 end

42 D. Code for neural network using automatic differentiation

71 println("The convergence failed ", non_convergence , " out of 100 times")
72

73

74 #m =n, k = l
75 non_convergence = 0
76 for n in 2:2:10
77 m = n
78 k = Int(n*(n+1)/2)
79 for times in 1:20
80 non_convergence += helper(n,m,k, opts , err_bound)
81 end
82 end
83 println("The convergence failed ", non_convergence , " out of 100 times")
84

85

86 #m = 2n, k = pythagoras number
87 non_convergence = 0
88 for n in 2:2:10
89 m = 2*n
90 k = Int(ceil (1/(2* sqrt (3))*(n^2+n+1) -0.5))
91 for times in 1:20
92 non_convergence += helper(n,m,k, opts , err_bound)
93 end
94 end
95 println("The convergence failed ", non_convergence , " out of 100 times")
96

97 #m = 2n, k = l
98 non_convergence = 0
99 for n in 2:2:10

100 m = 2*n
101 k = Int(n*(n+1)/2)
102 for times in 1:20
103 non_convergence += helper(n,m,k, opts , err_bound)
104 end
105 end
106 println("The convergence failed ", non_convergence , " out of 100 times")
107 end
108

109

110

111 function test_time ()
112 n = 10
113 l = Int(n*(n+1)/2)
114 err_bound = 1e-7
115 iter = 1000
116 opts = Optim.Options(iterations = iter ,store_trace=true) #it runs at most

30 000
117 p = creating_p(n)
118 p_map = creating_p_map(p,n)
119 for k in [Int(ceil (1/(2* sqrt (3))*(n^2 + 3*n + 1) - 0.5)), l]
120 for m in [n, 2*n]
121 initial_x = rand(m*n+k*m*n)
122 f_wrapped = x -> f(x, p_map , m,n,k)
123 println("time of automatic is with k = : ", " ", k, " and m is ","

", m)
124 @time found = Optim.optimize(f_wrapped , initial_x ,LBFGS(),opts;

autodiff=AutoZygote ())
125 end
126 end
127 end
128

D.2. Tests 43

129 test_time ()

	Introduction
	Semidefinite programming
	Homogenizing a polynomial
	Semidefinite programming to find a sum-of-squares factorization
	Solving the SDP problem

	Neural network
	Neural network to find a sum-of-squares decomposition
	Manual differentiation
	Gradient with respect to A
	Gradient with respect to B

	Alternative methods for differentiation
	Numerical differentiation
	Symbolic differentiation
	Automatic Differentiation

	Implementing the loss function
	Bounds on k

	Burer Monteiro Approach
	The program for Burer-Monteiro
	Rank of P
	Univariate polynomials
	Deriving the gradient

	Computational results
	Univariate polynomials
	Burer-Monteiro for quartics
	Different ranks of P
	Runtime for automatic and manual differentiation

	Neural network
	Different values for k and m
	The time of the neural network

	Discussion and Conclusion
	Code for Burer-Monteiro for univariate Polynomials
	Code for testing
	Code for gradient and objective

	Code for Burer-Monteiro for quartics
	Normal code
	Code for testing

	Code for neural network using manual differentiation
	Normal code

	Code for neural network using automatic differentiation
	Normal code
	Tests

