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Abstract
In this paper a methodology for identifying and delineating spatial technology clusters 
based on patenting concentration is developed. The methodology involves the automated 
geocoding of patent inventor addresses, the application of a home bias correction factor 
and a sensitivity analysis to determine the optimal parameters of the kernel density estima-
tion interpolation distance and the minimum concentration threshold to identify clusters. 
The methodology’s performance is compared to a number of other cluster identification 
methods and it is validated across 18 individual sectors, including mature broad-based 
high-technology sectors and emerging niche sustainable energy technology sectors. The 
results suggest that the performance of the methodology exceed that of alternative clus-
ter identification methods, although there is some variation in performance between dif-
ferent sectors. This demonstrates that the methodology provides researchers, practitioners 
and policy makers with a useful tool to gain insight into the spatial distribution of sectoral 
innovation activity at a global scale and sub-national regional level and to monitor changes 
over time, thereby supplementing more readily available global statistical data which is 
available at the national level.

Keywords Clusters · Patents · R&D · Spatial · Invention · Heat map

Introduction

The innovation literature attaches significant importance to the sub-national regional scale, 
as well as global connections and competition between clusters (Fujita et al. 2001; Gertler 
and Wolfe 2006; Porter 2000; Simmie 2004). However global data sets at the sub-national 
level such as clusters are typically lacking. Even if sub-national administrative divisions 
are available, these may show a poor overlap with actual inventive activity (Alcácer and 
Zhao 2016; Van Egeraat et al. 2018). Furthermore, the spatial scale of sub-divisions can 
vary greatly from country to country, making international sub-national comparisons diffi-
cult. This creates a significant knowledge gap for researchers aiming to study cluster-based 
phenomena on a global scale.
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The concept of a cluster is well defined in the literature (Marshall 1920; Nooteboom 
2006; Porter 1998). Marshall (1920) defined industrial districts (clusters) as “concentration 
of specialized industries in particular localities”, which offer a number of specialization 
advantages to firms located there. Porter (1998) defines industry clusters as “geographic 
concentrations of interconnected companies and institutions in a particular field”. Other 
authors all emphasize spatial concentration as the key characteristic of technology clus-
ters (Feldman and Kogler 2010; Malecki 2014; Malmberg and Maskell 2002; Nooteboom 
2006; Spencer et al. 2010).

Patenting plays an important role in the innovation process because patents grant 
monopoly rights to inventors over a particular idea or design for a fixed period of time. 
Patent output is closely correlated to other measures of innovation activity such as R&D 
expenditure or the number of active researchers (Hagedoorn and Cloodt 2003; Lanjouw 
and Schankerman 2004; Squicciarini et al. 2013). Alcácer and Zhao (2016) therefore sug-
gest that the spatial concentration of patenting is a clear indicator of a technology cluster’s 
existence.

This paper describes a new ‘organic’ (Alcácer and Zhao 2016) cluster identification 
methodology that uses heat maps (kernel density estimation) to identify ‘hot spots’ of inno-
vation activity which are detected as cluster once they exceed a particular threshold. Heat 
maps are widely used in spatial analysis in fields as diverse as epidemiology, archaeol-
ogy and transportation safety (Anderson 2009; Baxter et al. 1997; Bithell 1990), but they 
appear to be absent from scientific studies of innovation activity. This paper demonstrates 
that using heat maps is an effective way of identifying technology clusters and that the 
methodology’s performance exceeds that of alternative approaches.

The paper begins with a review of earlier studies in which patent data is used to iden-
tify technology clusters (“Cluster identification from patent data” section). This is fol-
lowed by a detailed description of the methodology, including the process of geocoding 
patents (“Data and methodology” section). Thereafter a sensitivity analysis is carried out 
to discover suitable parameter values (“Calibration and sensitivity analysis” section). The 
methodology is then applied to eight emerging sustainable energy sectors and ten mature 
high-technology sectors to compare its effectiveness across different sector types (“Valida-
tion with multiple sectors” section). The paper ends with a discussion of the key findings, 
including sectoral differences in the methodology’s effectiveness (“Discussion and conclu-
sion” section).

Cluster identification from patent data

Researchers of technology and innovation seeking to understand the spatial dynamics of 
innovation activity at a global scale on the sub-national regional level face significant chal-
lenges. While there is significant sub-national regional statistical data available for Organi-
sation of Economic Cooperation and Development (OECD) member countries, this data 
typically excludes emerging sectors such as renewable energy technologies and fast-devel-
oping non-OECD countries in Asia and elsewhere. Furthermore, detailed statistics on tech-
nology and innovation for OECD countries tend to only be available at the national level 
and not at the sub-national regional level.

Databases from the World Bank and United Nations Education, Scientific and Cultural 
Organisation (UNESCO) tend to cover a greater number of countries, but do not provide 
sub-national data and often have more limited statistics on technology and innovation. This 
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data deficit makes it difficult, if not impossible, to explore a sector’s true global spatial 
distribution.

Patents are frequently used as a proxy for innovation output, including at the sub-
national level of regions or cities (Bergquist et al. 2017; Crescenzi and Jaax 2017). Patent 
data offers an opportunity to overcome the limitations of statistical data because patent 
data is global in scale and patents often contain geographical information such as an inven-
tor address, which allows for the identification of a city or other sub-national spatial unit 
(Alcácer and Zhao 2016; Bergquist et al. 2017). Patents are the ‘paper trail’ of innovation 
activity (Jaffe et al. 1993) and patent data has been widely used in spatial studies of innova-
tion since the 1990s, whereby patent counts typically serve as a proxy for innovation activ-
ity in a particular area or region (Acs et al. 2002; Crescenzi and Jaax 2017; De Rassenfosse 
and van de la Potterie 2009, p. @charlot2014; Ó hUallacháin and Leslie 2007). This makes 
patents a highly suitable data source to map global innovation activity at a sub-national 
scale.

One concern with the use of patent count data are the differences in patenting propen-
sity between industry sectors (Arundel and Kabla 1998; Hall et al. 2005; Kleinknecht et al. 
2002). Another concern is that there are also significant differences in patenting propen-
sity between countries due to economic and governance factors (Bacchiocchi and Montob-
bio 2010; De Rassenfosse and van de la Potterie 2009; Yang and Kuo 2008). However 
these concerns have not stopped the wide use of patent data in technology and innovation 
research, including for the identification of spatial concentrations of innovation activity,

In the economic geography literature there are essentially two approaches to identify-
ing the spatial concentration of innovation activity: (i) by measuring relative concentra-
tion within predefined spatial boundaries, and (ii) using the actual spatial concentration of 
specific points within a data set (e.g. plant locations, inventor locations, etc.) to define new 
boundaries of high spatial concentration (Clark and Wójcik 2018). This last methodology 
is also described as ‘organic’ cluster identification (Alcácer and Zhao 2016).

The first approach is to identify clusters using pre-existing statistical boundaries such 
as: states, Metropolitan Statistical Areas (MSA, United States), Nomenclature of Territo-
rial Units for Statistics (NUTS, European Union), statistical divisions and subdivisions 
(Australia), prefectures (Japan), departments (France), etc. The use of pre-existing bounda-
ries has advantages and disadvantages. The advantage of pre-existing boundaries is that 
scientometric data can be coupled to other statistical data such as R&D expenditure, labor 
market information, income levels, etc. For that reason Ó hUallacháin and Leslie (2007), 
Spencer et al. (2010) and Charlot et al. (2014) all utilize pre-existing regional boundaries to 
identify concentrations of industry or innovation activity.

The disadvantage of using pre-existing boundaries is that the scales of the statistical 
boundaries can vary significantly, especially when international comparisons are attempted 
(a ‘province’ in China is many times larger than a ‘province’ in the Netherlands or South 
Korea). Furthermore, a concentration of R&D activity may spill over into multiple pre-
existing boundaries, or occupy just a small part of a pre-existing boundary, which can dilute 
the concentration of innovation activity for the area(s) within the pre-existing boundary.

An alternative to using pre-existing statistical or administrative boundaries is to use 
an organic cluster identification methodology that delineates cluster boundaries based on 
the actual concentration of patenting. The organic approach is especially advantageous 
in international research because it overcomes the challenge of using differing statistical 
boundary sizes for different countries. The approach also avoids potential dilution or dis-
tortions due to the use of inappropriate boundaries (Alcácer and Zhao 2016; Van Egeraat 
et al. 2018).
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Assuming the organic clustering approach is based on patent data, the use of patent data 
in a global cluster identification exercise suffers from its own set of complications: (i) pat-
ent data carries a home bias effect, whereby patents and patent citations of patents invented 
in the home country are inflated in the home country patent database (Bacchiocchi and 
Montobbio 2010; van de la Potterie and De Rassenfosse 2008). Thus patents by Ameri-
can inventors occur more frequently and are cited more highly on average in the United 
States Patent and Trademark Office (USPTO) database than patents from foreign inven-
tors. Second, R&D activity tends to follow patterns of urbanization which can yield very 
large urban corridors, such as from Boston to Philadelphia via New York (United States), 
Tokyo-Nagoya (Japan) and even Cologne-Frankfurt-Zurich (Europe) (Stek 2019), which 
stretch the definition of ‘spatial proximity’ and thus what constitutes a cluster.

To test the performance of their organic clustering algorithm, Alcácer and Zhao (2016) 
propose a useful benchmark. They observe which percentage of co-inventors who are 
located within 10–20  mi (16–32  km) from each other are classified as being within the 
same cluster and which percentage of co-inventors located more than 20 mi (32 km) apart, 
are classified as being in different clusters. While the 16 and 32 km distances are some-
what arbitrary, it does provide a common benchmark for comparing the performance of 
different clustering methodologies, including both pre-existing boundaries and organic 
cluster boundaries. Therefore this cluster performance benchmark is used in the sensitivity 
analysis (“Calibration and sensitivity analysis” section) and in evaluating the performance 
of the clustering methodology across different sectors (“Validation with multiple sectors” 
section).

Data and methodology

In this study patent data is obtained from the PatentsView database which is published by 
the Office of Chief Economist in the United States Patent and Trademark Office (USPTO) 
and contains data on 6,647,699 patent grants from the USPTO (May 2018 edition).1 
Because of the delay between patent application and grant, the most recent year for which 
full patent grant data is available is 2011 (as at time of writing). As the United States is 
a large and open economy, many foreign entities also apply for patent protection at the 
USPTO, and therefore the PatentsView database provides the most extensive global cover-
age of patents among national (incl. European) patent databases (Kim and Lee 2015). The 
choice of a single patent database means that some form of home bias adjustment needs to 
be made. On the other hand, the advantage of using a single source of patents means that 
all patents are granted in accordance to a single standard, improving the validity of making 
international comparisons (Toivanen and Suominen 2015).

An alternative to using a single-country database like the USPTO is to use ‘triadic 
patents’. Triadic patents appear in all three major patent databases and have been granted 
by the USPTO, European Patent Office (EPO) and the Japan Patent Office (JPO). This 
approach appears to eliminate any home-bias effect, but the number of patents that are tri-
adic is very small, as only the most valuable patents are filed at all three patent offices 
(Criscuolo 2006). Therefore significant patenting activity can go undetected, especially 

1 The PatentsView database tables can be downloaded at: http://www.paten tsvie w.org/downl oad/ (accessed 
24 March 2019).

http://www.patentsview.org/download/
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innovation activity from emerging countries where patent quality is often lower (Frietsch 
and Schmoch 2009). As an example, an emerging economy such as India had 2669 patent 
grants at the USPTO (2016) but only 359 triadic patents (13%) in the same year (source: 
OECD).

Other multi-country patent databases such as the Patent Cooperation Treaty (PCT) data-
base also carry a degree of bias, notably the higher presence of South Korean, Japanese 
and Chinese patents due to different rules for patent approval in those countries (Boeing 
et al. 2016; Laurens et al. 2015). This is problematic for the purposes of identifying and 
quantifying technology clusters because it overstates the cluster size in some countries. 
The PCT database also appears to exclude Taiwan, which is not a signatory to the PCT 
(Bergquist et al. 2017).

For the purposes of identifying clusters worldwide, the increased coverage of the 
USPTO database makes it the preferred choice.

The USPTO PatentsView database contains basic bibliographic information of patent 
documents such as patent identification numbers, application dates, inventors and assign-
ees, the city, state and country of inventors and assignees, and patent citations, along with 
technological classifications. The patent inventor and assignee addresses and technological 
classifications are essential for the cluster identification process. The technological clas-
sifications link a patent to a particular industry based on a concordance table (discussed 
in “Sectoral delineation” section). The address enables the identification of a geographic 
location of where the inventive activity took place that led to the patent application.

All data processing, calculations and spatial analysis are performed using a combination 
of R statistical software (R Core Team 2019), MySQL database software (Widenius et al. 
2002) and QGIS spatial analysis software (QGIS Development Team 2019).

Patent geocoding

In deciding which address to use to identify clusters, the choice of inventors (individuals 
who carried out the R&D) rather than assignees (typically firms that financed the R&D) 
is not trivial. Inventors’ location provides information about where the R&D took place 
whereas the assignee location provides information about who owns the inventions. Given 
the globalization of R&D activity, assignees and inventors are frequently found in different 
countries. Assignees may be based in tax havens such as the British Virgin Islands or Cay-
man Islands, which have very small economic and R&D activity (Sung et al. 2014). Inven-
tor locations are commonly used to locate innovation activity (Acs et al. 2002; Crescenzi 
and Jaax 2017; De Rassenfosse and van de la Potterie 2009, p. @charlot2014).

To identify areas of high R&D activity, inventor address information is converted into 
coordinates through a geocoding process. For example, the address ‘Delft, The Nether-
lands’ is converted into the coordinates 51.9995142, 4.2938295.

Although the PatentsView database does provide coordinates for patent addresses, upon 
closer examination a number of these appear to be inaccurate because the coordinates are 
located in a different country than the address or the coordinates are only geolocated at the 
country or state level, and not at that of a town or city. This is a problem in larger coun-
tries where the state or country can cover a very large area. For this reason approximately 
6.5% of PatentsView addresses are geocoded again, a process carried out in three steps, 
described in Table 1.

The combination of geocoding techniques described in Table  2 raises the number of 
addresses that can be accurately located from 93 to 96%.
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As an added screening, clusters identified in areas with no significant population 
center are subject to additional scrutiny and often lead to the identification of miscoded 
locations (false positives). This problem seems to occur primarily in South Korea and 
Japan where 11 miscoded locations are identified, including Daejeon, Yokkaichi, Kura-
shiki, Nara, Sendai, Kanagawa and Tochigi. These miscoded locations are manually 
corrected in the geolocation database.

After geolocating inventors, each identified location i receives a weighting ( PTWi ) 
based on the number of inventors with an address in a location ( INVij ) divided by the 
number of inventors of the patent ( INVTj ), which is then summed for all patents k at 
location i . Thus:

An example of the calculation: a patent with 3 inventors, 2 of whom have an address in 
‘Delft, The Netherlands’ would therefore add a weighting of 2∕3 = 0.67 to the location of 
‘Delft, Netherlands’ (51.9995142, 4.2938295).

PTWi =
∑

k=0

INVij∕INVTj

Table 1  Patent address geocoding process

For details about TwoFishes, see: https ://githu b.com/fours quare /fsqio  and https ://hub.docke r.com/r/zmyle /
twofi shes/ (accessed 24 March 2019)

Step Geocoding process

1 Addresses in countries or territories which are less than 20,000 km2 in size are automatically 
assigned a single coordinate location. The largest entity among this group is New Caledonia 
(18,575 km2), also included are entities such as Kuwait, Montenegro, Qatar, Cyprus, Puerto Rico, 
Luxembourg, Hong Kong and Singapore

2 Coordinates are checked based on (i) whether they are located in the same country as the country 
stated in the original address and (ii) whether they are based on a country-level or state-level loca-
tion, rather than a city-level location. Any mis-coded or uncoded addresses (lacking coordinates) 
are then subject to (re)geocoding in step 3

3 Addresses are geocoded using the open-source TwoFishes geocoding application (using index files 
updated on 2015-03-05). TwoFishes is a course spatial geocoder and is used and maintained by 
FourSquare Labs Inc., a company that operates a popular local search-and-discovery service 
mobile application. An important advantage of TwoFishes is that it is open source and therefore 
its geocoding results are reproducible. A disadvantage is that it can code at the level of towns and 
cities, but not at the level of individual streets. Twofishes has scientific credibility and has been 
used in published and peer-reviewed scientific papers (Hamstead et al. 2018; Sessions et al. 2016) 
and it is listed in The SAGE Handbook of Social Media Research Methods (Sloan and Quan-
Haase 2017)

Table 2  Patent correction factor Period CORPAT

1996–1999 1.93
2000–2003 1.60
2004–2007 1.45
2008–2011 1.29

https://github.com/foursquare/fsqio
https://hub.docker.com/r/zmyle/twofishes/
https://hub.docker.com/r/zmyle/twofishes/
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Home bias correction

When calculating location-based weightings, it is important to address the home bias 
inherent in the USPTO patent data. The home bias of the USPTO data means patents with 
inventors located in the United States are over represented in terms of the number appear-
ing in the database and the number of citations per patent (Bacchiocchi and Montobbio 
2010; van de la Potterie and De Rassenfosse 2008).

The home bias is addressed by correcting the patenting frequency of non-United States 
invented patents which appear underrepresented in the USPTO database. Therefore a pat-
ent output correction factor is applied, CORPAT.

The correction factor is calculated by comparing United States-invented patents to 
Japan-invented patents in the USPTO database. Japan is chosen because its qualitative pat-
enting profile is the most similar to the United States compared to all other countries (Man-
cusi 2008; Toivanen and Suominen 2015). Therefore differences between Japan and United 
States-invented patents can be attributed primarily to the home bias effect, rather than to 
other technological or economic factors. If another country were used in the comparison 
with the United States, differences in patenting behavior because of technological or eco-
nomic factors could be wrongly attributed to home bias, thus reducing the accuracy of the 
correction factor.

The correction factor is calculated based on national averages to increase robustness and 
avoid potential sectoral distortions. Although Japan and the United States have a relatively 
similar national technological profile, basing the correction factor on a single sector can 
potentially distort the correction factor if a significant innovation gap exists between the 
two countries in that particular sector.

The patent output correction factor ( CORPAT ) is based on a comparison of the ratio of 
researchers to patent output for Japan and the United States. If there is no home bias effect, 
advanced economies with a comparable qualitative patenting profile should have a very 
similar ratio of patent output to researchers because the same inputs (researchers) should 
lead to similar outputs (patents). CORPAT is calculated as follows:

whereby PATUS is total number of United States-invented patents, RESUS is the total num-
ber of researchers in the United States, PATJapan is the total number of Japan-invented pat-
ents and RESJapan is the total number of researchers in Japan. The number of research-
ers and USPTO patent count data (by inventor residence) are obtained from the UNESCO 
Institute of Statistics2 and the USPTO PatentView database, respectively.

Calculated values of the correction factor are given for four periods, as shown in 
Table 2. The values show a discernible trend of falling home bias in the patent output cor-
rection factor ( CORPAT ). This trend is also visible when the coefficients are calculated on 
an annual basis, or when using data for other countries (Germany, South Korea, Taiwan) 
and therefore these changes appears to be systematic, although the causes are unknown.

CORPAT =
(

PATUS∕RESUS
)

∕
(

PATJapan∕RESJapan
)

2 Database titled ‘Science, technology and innovation: Gross domestic expenditure on R&D (GERD), 
GERD as a percentage of GDP, GERD per capita and GERD per researcher’ is available from: http://data.
uis.unesc o.org/ (last accessed 1 October 2019).

http://data.uis.unesco.org/
http://data.uis.unesco.org/
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Because of this trend, different correction factor values should be used for different peri-
ods. The correction is made by multiplying non-United States patent counts by the correc-
tion factor.

Sectoral delineation

The ability to spatially identify and delineate technology clusters from patent data can be 
combined with a sectoral delineation, providing insight into where technology clusters are 
located. Industry sectors typically incorporate multiple technologies (Pavitt 1984), and 
therefore industry inventive activity can be mapped based on a selection of patents cover-
ing a particular set of technological fields. There are a number of different ways in which 
sector patents can be delineated.

First, it is possible to identify sectors based on a patent technological classifications. For 
example the OECD has identified biotechnology and nanotechnology as important emerg-
ing technologies whose development it monitors using patent data with a specific Interna-
tional Patent Classification (IPC) code (OECD 2013).

Second, in some cases it is possible to use special sectoral-technological patent classi-
fications. The PatentsView database contains various technological classifications, includ-
ing the IPC and the relatively new Collaborative Patent Classification (CPC, Leydesdorff 
et al. 2014). The CPC is a joint initiative of the USPTO and EPO and includes additional 
technology classes for renewable energy technologies and other green house gas reducing 
inventions (Y-classes) that are not included in the IPC. Technological classes are assigned 
by patent examiners at the respective patent office at which the patent is filed.

Third, patents that belong to a particular industry can be identified using concordance 
tables that link industry classes to technological classes such as the CPC. Using a proba-
bilistic methodology based on text mining, Lybbert and Zolas (2014) have developed tech-
nology-industry concordance tables that incorporate multiple levels of industry and tech-
nological classifications, including for the CPC with the International Standard Industry 
Classification (ISIC). ISIC is a classification maintained by the United Nations Department 
of Economic and Social Affairs Statistics Division (UNSD) in New York and is used by 
countries to classify economic activity and collect economic statistics. The ISIC system 
consists of multiple industry groups and (sub)divisions, including a number of mature high 
technology sectors such as electronics, computers, chemicals, aerospace, etc. (Galindo-
Rueda and Verger 2016). The advantage of the ISIC classification is that it allows patents 
to be linked to economic statistics which also follow the ISIC classification.

The high-technology ISIC sectors, biotechnology, nanotechnology and emerging sus-
tainable energy technologies and their respective identification classes are listed in Table 3.

Calibration and sensitivity analysis

Once patent counts for specific locations are known (see “Patent geocoding” section), 
and the patent output correction factor has been applied (see “Home bias correction” 
section), clusters can be identified using the heatmap approach. Formally known as Ker-
nel Density Estimation (KDE) (Parzen 1962; Rosenblatt 1956), heat maps are a spatial 
interpolation technique that assigns areas with frequent and high occurrences of a phe-
nomenon (e.g. high prices, high temperatures, high crime rates, high occurrence of a 
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particular disease) with high values, so-called ‘hotspots’. In this study the heatmap KDE 
is carried out on a raster with squares of 5 km by 5 km covering the entire world.

The heatmap method appears to offer some important advantages over the clus-
ter identification method used by Alcácer and Zhao (2016). Firstly, Alcácer and Zhao 
(2016) appear to have gone through a process of assigning patent addresses to particular 
cities and then combining cities that are in close proximity (less than 40 mi or 64.4 km) 
into the same cluster. The KDE method skips the need to assign an address to a city 
as the weightings of nearby locations are combined, thus neighborhoods, neighboring 
cities, adjacent villages or a university campus are automatically interpolated into one 
‘hotspot’. The KDE method is also less rigid than a fixed 64.4 km boundary, using inter-
polations instead.

When applying the KDE method decisions must be made about two important vari-
ables: the interpolation range ( R ) and the concentration threshold ( T  ) for recognizing 
an area as being of ‘high concentration’ and thus part of a technology cluster. The inter-
polation range can be decided based on several criteria, for example Van Egeraat et al. 
(2018) uses commuting distance while Alcácer and Zhao (2016) uses 20 mi (32  km, 
without any justification given). Acs et al. (2002) notes that within a 50 mi (80.5 km) 
distance from the boundaries of a metropolitan statistical area, there is still some posi-
tive innovation effect. The distance cited by Acs et  al. (2002) is about four times the 
largest average daily commuting distance of a US city (Atlanta, GA, average commuting 

Table 3  Sector identification classes

Sector name Identification classes

Mature high-technology sectors
Aerospace ISIC group 303
Chemicals and chemical products ISIC division 20
Computer, electronic and optical products ISIC division 26
Defense ISIC group 252 and 304
Electrical equipment ISIC division 27
Machinery and equipment n.e.c. ISIC division 28
Motor vehicles ISIC division 29
Pharmaceuticals ISIC division 21
Emerging high-technology sectors
Biotechnology CPC class A01H1/00, A01H4/00, A61K38/00, 

A61K39/00, A61K48/00, C02F3/34, C07G11/00, 
13/00, 15/00, C07K4/00, 14/00, 16/00, 17/00, 
19/00, C12M, C12N, C12P, C12Q, C12S, 
G01N27/327, G01N33/53, 54, 55, 57, 68, 74, 76, 
78, 88 and 92

Nanotechnology CPC class B82B and B82Y
Electric vehicles CPC class Y02T 10/64, 70 and 72
Energy storage CPC class Y02E 60/10
Fuel cells CPC class Y02E 60/50
Hydrogen technology CPC class Y02E 60/30
Photovoltaics CPC class Y02E 10/50
Smart grids CPC class Y04S
Wind turbines CPC class Y02E 10/70
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distance of 20.6  km) (Kneebone and Holmes 2015). There is thus no clear guidance 
from the literature about the ‘correct’ interpolation range.

To classify an area as part of a cluster, the intensity of inventive activity must be 
within the upper percentiles of global R&D activity. However determining where to set 
this limit is subjective: should it be at the 90th, 95th or 97.5th or at an even higher per-
centile threshold? Once again, the literature offers no strong clues.

Therefore, to determine a suitable interpolation distance ( R ) and threshold value ( T  ) 
a sensitivity analysis is carried out. The cluster spatial distributions that come out of 
this sensitivity analysis are evaluated based on three criteria.

 (i) the maximum cluster size ( Amax ) should not exceed the size of a large urban area. 
Very large clusters suggest that the interpolation distance is too great or the threshold 
value is too low ‘sticking’ multiple urban areas together. This situation can occur 
in urbanized and R&D intensive parts of the world such as Western Europe, New 
England, South Korea and Japan where giant ‘clusters’ that encompass whole or even 
multiple countries can appear (Stek 2019). To gain an idea of a ‘reasonable’ urban 
area size, see the areas of selected large urban areas in Table 4.

 (ii) to measure the performance of the cluster identification methodology, patent co-
inventors close together should be identified as being in the same cluster whereas 
those located further apart should be identified as being in different clusters. In their 
paper on identifying clusters from patent data, Alcácer and Zhao (2016) calculate 
the share of patents with co-inventors located 16–32 km apart within the same clus-
ter ( Dsame ) and the share of patents with co-inventors located more than 32 km and 
located in different clusters ( Ddif  ). A high value for both indicators suggests the 
cluster spatial distribution in question is of high quality. The values for Dsame and Ddif  
calculated by Alcácer and Zhao (2016) are listed in Table 5. The best-performing 
cluster boundaries are those for Organic Clustering (world).

Table 4  Selected major urban 
areas

Country Urban area Main city Size  (km2)

France Île-de-France Paris 12,012
Japan Greater Tokyo Area Tokyo 14,034
UK South East England London 19,096
USA New York-Newark-Jer-

sey City, NY-NJ-PA
New York 37,303

China Pearl River Delta Guangzhou 39,380

Table 5  Performance measures of cluster identification methods, selected (Alcácer and Zhao 2016)

Boundaries Type Dsame (%) Ddif  (%)

US state Pre-determined 98 47
US economic area Pre-determined 100 48
US metropolitan statistical area Pre-determined 97 46
US county Pre-determined 74 90
Country (excl. US) Pre-determined 100 22
Organic clustering (world) Organic 100 59
Hierarchical clustering (world) Organic 100 50
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 (iii) the number of clusters ( n ) identified is an important criterion to evaluate the cluster 
spatial distribution because a method that identifies only a small number of clusters 
is likely blind to many smaller or emerging clusters, rendering the cluster identifica-
tion process incomplete.

The sensitivity analysis is carried out using patent data for all sectors for the 2008–2011 
period with the patent output correction factor ( CORPAT ) applied to all patent inventor 
locations outside the United States. The results of the sensitivity analysis are provided in 
Table 6.

Assessing the sensitivity analysis results based on the first criterion, the largest cluster 
area ( Amax ), shows that when T  = 90% or R = 50  km very large cluster areas are identi-
fied which exceed the size of typical large urban areas (Table 7). The smallest value for 
Amax = 45,413 km2 ( R = 50 km, T  = 99%) is larger than the urban areas centered on New 
York and Guangzhou. Other distance-threshold combinations also show Amax values that 
seem excessively large, including R = 25 km with T  = 95%, and R = 32 km and T  = 97.5%. 
At these combinations of interpolation distance and concentration thresholds unrealisti-
cally large technology clusters are identified.

Assessing the sensitivity analysis results based on the second criterion, the performance 
of the cluster identification algorithm, reveals an interesting trend: results where R = 25 or 
15 km have a less than 100% value for Dsame , suggesting that some of the identified clus-
ters are ‘too small’ as inventors located nearby fall outside of the cluster boundaries. The 
combinations with the highest cumulative cluster performance value ( Dsame + Ddif  ) and a 
Dsame value of at least 99% are R = 25 km and T  = 97.5% or 99%, with a cumulative cluster 
performance value of 165% and 166%, respectively.

When comparing the two aforementioned cluster distributions, T = 97.5% yields a signifi-
cantly larger number of clusters ( n = 355) than the T = 99% alternative ( n = 169). Therefore the 

Table 6  Cluster identification sensitivity analysis based on interpolation distance ( R ) and concentration 
threshold ( T)

Distance/threshold T  = 90% T  = 95% T  = 97.5% T  = 99%

R = 15 km Amax = 65,389 Amax = 33,953 Amax = 17,914 Amax = 6070
Dsame = 97% Dsame = 94% Dsame = 92% Dsame = 82%
Ddif  = 67% Ddif  = 70% Ddif  = 73% Ddif  = 77%
n = 1410 n = 841 n = 492 n = 252

R = 25 km Amax = 162,334 Amax = 59,408 Amax = 32,972 Amax = 9505
Dsame = 100% Dsame = 99% Dsame = 99% Dsame = 99%
Ddif  = 56% Ddif  = 62% Ddif  = 66% Ddif  = 67%
n = 949 n = 489 n = 355 n = 169

R = 32 km Amax = 451,689 Amax = 144,415 Amax = 51,345 Amax = 23,479
Dsame = 100% Dsame = 100% Dsame = 100% Dsame = 100%
Ddif  = 50% Ddif  = 54% Ddif  = 56% Ddif  = 59%
n = 508 n = 334 n = 206 n = 108

R = 50 km Amax = 623,172 Amax = 319,188 Amax = 100,697 Amax = 45,413
Dsame = 100% Dsame = 100% Dsame = 100% Dsame = 100%
Ddif  = 46% Ddif  = 48% Ddif  = 51% Ddif  = 49%
n = 371 n = 251 n = 157 n = 87
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former ( R = 25 km, T = 97.5%) is considered as the optimum heatmap cluster identification 
parameters.

Compared to the organic clustering method by Alcácer and Zhao (2016), the heatmap 
method with optimum parameters compares favorably in terms of Ddif  , where Ddif  = 66% for 
the heatmap method, compared to Ddif  = 59% for the organic method by Alcácer and Zhao 
(2016). However Dsame = 99% for the heatmap method, compared to Ddif  = 100% for the 
organic method. Although it is important to note that Alcácer and Zhao (2016) use semicon-
ductor patents for a different time period, whereas the heatmap cluster identification method-
ology is applied to patents from all sectors.

The smallest technology clusters identified using the optimum heatmap method ( R = 25 km, 
T = 97.5%) are 50  km2. The largest clusters are centered on New York City (32,972  km2), 
Tokyo (15,941 km2), Los Angeles (12,723 km2) and San Francisco (11,733 km2). Although 
this large range in sizes might challenge the traditional conception of how a cluster should be 
defined, when the cluster areas are placed on a logarithmic scale, they are normally distributed.

Some sample heatmaps with cluster boundaries are provided in the “Appendix”.

Validation with multiple sectors

Having calibrated the heatmap cluster identification method with the most promis-
ing interpolation distance and threshold parameters, the same methodology (with the 
same parameters) is now applied to 18 different sectors. Because the cluster identifica-
tion method is largely automated, producing data on the global distribution of sectoral 
clusters is relatively fast. An overview of the key cluster indicators for each sector are 

Table 7  Cluster indicators for multiple sectors

Sector Amax  (km2) Dsame (%) Ddif  (%) n Ptotal PScluster (%) CD (km)

Aerospace 8351 99 62 118 16,095 64 935
Chemicals and chemical 

products
26,539 100 61 168 140,255 75 1109

Computer, electronic and opti-
cal products

19,964 100 63 154 527,516 85 1195

Defense 3542 90 65 55 4790 34 651
Electrical equipment 16,074 99 63 143 92,310 73 1124
Machinery and equipment n.e.c. 28,189 100 59 167 102,793 67 1112
Motor vehicles 20,147 100 45 108 31,908 64 794
Pharmaceuticals 22,377 100 63 149 83,805 72 1243
Biotechnology 3542 89 90 57 26,981 25 1346
Nanotechnology 6193 100 71 57 10,022 61 1381
Electric vehicles 6204 100 57 35 5096 71 618
Energy storage 3917 99 51 17 2847 26 929
Fuel cells 5650 100 61 17 1716 50 1012
Hydrogen technology 2570 98 86 14 954 25 1272
Photovoltaics 5363 97 46 21 5521 44 1078
Smart grids 2771 95 40 21 357 39 984
Wind turbines 2014 96 98 24 2775 31 1732
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provided in Table 7. In addition to the maximum cluster area ( Amax ), share of co-inven-
tors located 16–32  km apart within the same cluster ( Dsame ) and the share of patents 
with co-inventors located more than 32 km and located in different clusters ( Ddif  ), the 
total number of patents from the sector ( Ptotal ), the share of patents located in clusters 
( PScluster ) and the average collaboration distance ( CD ) are also shown.

The cluster identification performance results show considerable variation between sec-
tors. While most sectors perform well in terms of Dsame , there is a group of sectors (Defense, 
Biotechnology, Hydrogen technology, Photovoltaics, Smart grids and Wind turbines) which 
have a value of Dsame < 98% and a clustering share of PScluster < 50%. However some of these 
sectors have high Ddif  values, typically above 80% (Biotechnology, Hydrogen Technology 
and Wind Turbines), while others do not (Defense, Photovoltaics and Smart Grids).

The mature high technology sectors typically have a high clustering share 
( PScluster > 60%), Dsame > 98% and Ddif  > 60%, with the exception of some of Machinery 
and equipment and Motor vehicles, which show a lower figure for Ddif .

A lower value for Dsame implies a greater number of false negatives, whereby a nearby 
inventor was excluded from a cluster. A lower value for Ddif  implies a greater number of 
false positives, whereby an inventor at more than 32 km away is nevertheless included 
in the cluster. In theory both indicators would have values of close to 100% if the col-
laboration distance between inventors is well below 32 km or many times greater than 
32  km so that false positives and false negatives are unlikely to occur (a high spatial 
concentration linked to long-distance networks). One would expect a higher value for 
Dsame if the sector is spatially concentrated (coinciding with a high PScluster value) and a 
high value for Ddif  if the average collaboration distance ( CD ) is high.

Based on the above considerations the sectors can be classified based on their spatial 
distribution and collaboration typologies and the performance of the cluster identifica-
tion method.

The first typology are sectors which have a high spatial concentration ( PScluster > 50%) 
and which collaborate over long distances ( CD > 900 km), thus yielding few false nega-
tives ( Dsame > 98%) and few false positives ( Ddif  > 60%). Type 1 sectors include mostly 
mature high-technology sectors including Aerospace, Chemicals, Computers, Electrical 
equipment and Pharmaceuticals, and the emerging Nanotechnology and Fuel cells sectors.

The second typology are sectors which have a high spatial concentration ( PScluster > 50%) 
but which collaborate over shorter distances ( CD < 1000 km), thus yielding few false nega-
tives ( Dsame > 98%) but relatively many false positives ( Ddif  < 60%). Type 2 sectors include 
Machinery, Motor vehicles and Electric vehicles.

The third typology are sectors which are spatially distributed ( PScluster < 50%) and which 
collaborate over very long distances ( CD > 1100  km). This spatial configuration yields an 
increase in false negatives ( Dsame < 99%) but a much lower than average rate of false positives 
( Ddif  > 85%). Type 3 sectors include Biotechnology, Hydrogen technology and Wind turbines.

The fourth typology are sectors which are spatially distributed ( PScluster < 50%) and 
which collaborate over relatively shorter distances ( CD < 1100 km), a pattern that produces 
both high false negatives ( Dsame < 98%) and high false positives ( Ddif  < 98%). Type 4 sec-
tors include Defense, Energy storage, Photovoltaics and Smart grids.

The sector typologies are summarized in Table 8.
The sector typologies summarized in Table 8 show that there are different degrees of spa-

tial concentration and long-distance collaboration depending on the sector. This adds nuance 
to the observation that innovation activity, like other high value-added economic activities, 
has a high degree of spatial concentration and is globally inter-connected (Fujita et al. 2001; 
Malecki 2014). The results show that there is considerable variation between sectors.
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A second implication of the observed sectoral differences is that the parameters of 
the heatmap cluster identification methodology could be re-calibrated for different sector 
typologies to improve the performance of the methodology, which is especially low for 
type 4 sectors. On the other hand, the use of different heatmap cluster identification param-
eters may complicate cross-sectoral comparisons.

On a final note regarding the sectoral results, it is important to highlight that the work 
of Alcácer and Zhao (2016) is based on the semiconductor sector, which is a significant 
part of the Computer, electronic and optical products sector (Table 8). For this sector the 
heatmap methodology performs slightly better than the results for semiconductors from 
Alcácer and Zhao (2016), showing the same values for Dsame and a slightly higher value for 
Ddif  of 62% (compared to 59%, see Table 6). Based on this comparison the heatmap meth-
odology appears to slightly out-perform the organic clustering methodology.

Discussion and conclusion
Although the focus of this paper is primarily methodological, some theoretical questions 
concerning differences in sectoral spatial distribution and collaboration have inadvertently 
been raised. These sectoral differences can be attributed to differences in the innovation 
process, which in turn can be linked to underlying differences in a sector’s knowledge base, 
institutions and market structure (Asheim and Coenen 2005; Binz and Truffer 2017; Bre-
schi and Malerba 1997).

This demonstrates the value of the methodology, as it allows the spatial distribution of 
different sectors to be mapped and compared at the sub-national regional level and on a 
global scale. The richness of patent data also means that the identified clusters can be char-
acterized in terms of the actors involved in the innovation activity (Bhattacharya 2004), 
collaboration relations (Kwon et al. 2012; Zheng et al. 2014), their longitudinal develop-
ment (Dong et al. 2012), innovation capabilities (Wu 2014), etc. This creates a rich source 
of data for future research.

The main advantages of the methodology are that basing cluster delineation on real 
innovation activity offers a more accurate delineation of innovation activity as compared 
to using pre-defined boundaries and that the methodology can be applied across multi-
ple countries. Although the heatmap methodology shows slightly better results than the 
organic method of Alcácer and Zhao (2016), the studies use somewhat different data, and 
therefore the earlier result primarily serves as a useful benchmark, against which the results 
of this study compare quite favorably.

The method presented here is also highly automated. No adjustments are made for 
commuting distances in densely populated areas nor are significant manual interventions 
undertaken to locate patents. The geocoding process is automated, a single patent fre-
quency correction factor is calculated and the generation of heatmaps and calculation 
of concentration thresholds is all standardized. Nevertheless the methodology’s perfor-
mance seems to approach or even exceed that of Alcácer and Zhao (2016). While there 
may be some inaccuracies due to automation, the benefits of automation is that 18 sec-
tors (or many more) can be analysed quickly, and the method is therefore also very suit-
able for longitudinal studies. To illustrate the difference in scale between the two studies: 
Alcácer and Zhao (2016) used 23,675 unique patents, whereas in the present study for the 
Computer, electronics and optical products sector alone, 326,316 patents were included.

The relative ease with which technology clusters from different sectors can be identified 
allows the global monitoring of technology clusters over time. In fact patent applications 
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(instead of patent grants) could be used to monitor the most recent development of technol-
ogy clusters. Such monitoring could help practitioners and policy makers identify where 
innovation is taking place, compare different clusters, observe changes over time and use 
other patent indicators to identify key innovation actors and observe research collabora-
tions. This information could be used for benchmarking purposes, to identify potential 
markets for high technology products, to identify potential locations for R&D investment, 
to identify prospective research partners, etc.

Despite these possibilities some questions concerning cluster identification from patent 
data still remain. First, the heatmap interpolation range and cluster concentration threshold 
parameters can be re-calculated for each sector to account for differences in their spatial 
distribution and collaboration distances. Whether such sector-based calibrations are appro-
priate would depend on the research aims.

Second, there could be differences in outcomes if another patent database is used: the 
size of certain clusters might be estimated differently and the correction factor that is applied 
can be implemented based on the number of researchers, research expenditure, or another 
indicator. Stated differently: USPTO patenting may not tell a complete picture of innovation 
activity for all sectors and countries and a single correction factor may be too broad.

Third, different kinds of interpolation techniques could be explored in addition to the 
standard KDE applied in this research and the performance of the cluster identification 
methodology could be evaluated based on different parameters.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
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Appendix

See Figs. 1, 2 and 3.

Fig. 1  Heatmap and cluster boundaries, Eastern United States
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