
An Effective Strategy for Porting C++ Applications on Cell

Ana Lucia Varbanescu, Henk Sips
Delft University of Technology

{A.L.Varbanescu,H.J.Sips}@tudelft.nl

Kenneth A. Ross
Columbia University, NY
kar@cs.columbia.edu

Qiang Liu
IBM CRL, Beijing

qiangliu@cn.ibm.com

Lurng-Kuo Liu, Apostol (Paul) Natsev, John R. Smith
IBM T.J. Watson Research Center, NY
{lkliu,jsmith,natsev}@us.ibm.com

Abstract

In this paper we present a solution for efficient porting
of sequential C++ applications on the Cell B.E. processor.
We present our step-by-step approach, focusing on its gen-
erality, we provide a set of code templates and optimization
guidelines to support the porting, and we include a set of
equations to estimate the performance gain of the new ap-
plication. As a case-study, we show the use of our solution
on a multimedia content analysis application, named MAR-
VEL. The results of our experiments with MARVEL prove
the significant performance increase in favor of the appli-
cation running on Cell when compared with the reference
implementation.

Keywords: Cell BE processor, multi-core, MPSoC, paral-

lelization, porting technique, C++ applications

1. Introduction

Within the last five years, the notion of multiprocessor-

system-on-chip (MPSoC) has transformed from paper-

based block diagrams to prototypes, and, for very few cases,

even to real hardware. This evolution is spectacular not only

in its very fast pace, but also in the mindset changes that

it involves. Processor architects have shifted their focus

from increasing processor frequency to increasing proces-

sor functionality. As a result, processors are no longer based

on a single very fast, very complex core, but rather built-up

from multiple, simpler cores, that can achieve higher pro-

cessing power by working in parallel. While single-core

processors aim to exploit instruction level parallelism in an

user-transparent fashion, multi-core processors allow (also)

user-assisted parallelization at higher levels.

While the hardware community grasped the MPSoC

ideas quite quickly, the software community is somewhat

more skeptical. The complexity of these platforms, together

with the increased responsibility that has moved from hard-

ware into software still raises eyebrows and questions about

the efficient use of such architectures. Simply put, it is not

yet clear how can these machines be programmed so that

they gain performance without wasting (too much) effort,

and it is also not yet clear what applications can really ben-

efit from the increased on-chip functionality. It is fair to say

that the software community is still going through the learn-

ing phase, exploring applications and architectures combi-

nations in order to gather enough expertise to infer disci-

plined programming models and automated programming

tools.

One of the most complex existing multi-core processors

is the Cell Broadband Engine (Cell B.E.), a heterogeneous

architecture developed by a consortium of three industrial

partners: Sony, Toshiba, and IBM. The architecture fea-

tures nine cores: one Power Processing Element (PPE) and

eight Synergistic Processing Elements (SPEs), connected

by a fast high-bandwidth bus. Typically, the PPE runs as

a main processor, while the SPEs act as application-specific

accelerators. All cores share the same main memory, but

the SPEs have direct access only to their Local Storage (LS)

and can access the main memory only via DMA. Currently,

programming the Cell B.E. is considered difficult, but worth

the effort, as various applications have seen spectacular per-

formance gains when ported on this machine.

In this context, this paper presents an application inde-

pendent strategy to port large, cycle-hungry applications on

the Cell B.E. Using this strategy, one can quickly enable an

application to run on Cell, following a simple partitioning

scheme to enable task-level parallelism. The tasks are to

be removed from the main application, ported for the SPEs,

and plugged-in while preserving the overall flow of the ap-

plication. The code templates to enable the plug-in mech-

anism are presented in the paper. Due to this modular so-

lution, SPE tasks can be independently enhanced towards

near-optimal performance. While the strategy itself cannot

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

guarantee performance gain, we include a simple sanity-

check equation that, given the tasks performance gains and

scheduling, allows a quick estimate of the overall applica-

tion speed-up. Because the effective level of achieved per-

formance is highly application dependent, we acknowledge

that our generic scheme can limit the potential of specific

applications, but we argue that, due to its simplicity and

effectiveness, it provides a good starting point for more so-

phisticated techniques.

As a proof-of-concept, we have chosen to apply our strat-

egy on a multimedia content analysis and retrieval applica-

tion, named MARVEL. In a nutshell, the application ana-

lyzes a series of images and classifies them by comparison

against precomputed models. MARVEL is a good candidate

for a case-study, because it is a large sequential C++ ap-

plication (more than 50 classes, over 20.000 lines of code)

and it performs computation intensive operations, like im-

age features extraction and image classification. The exper-

iments we have conducted by running MARVEL on Cell

show that our strategy works for large applications, and it

leads to good overall speed-up, gained with a moderate pro-

gramming effort.

The remainder of the paper is organized as follows. Sec-

tion 2 introduces the Cell B.E. processor, explaining its

main features. Section 3 presents our porting approach, and

Section 4 looks at overall application performance. Section

5 describes MARVEL, our porting experiments and their

results. In Section 6 we have included several references

to related work, while Section 7 concludes the paper and

presents our future work directions.

2. Cell B.E.

The Cell Broadband Engine is a heterogeneous multi-

core processor, mainly known as featuring the Playstation 3

game console. Nevertheless, its complex structure and im-

pressive estimated performance make it an interesting target

platform for multicore programming experiments.

A block diagram of the Cell processor is presented in

Figure 1. Cell has nine cores: the Power Processing Ele-

ment (PPE), acting as a main processor, and eight Syner-

gistic Processing Elements (SPEs), acting as co-processors.

These cores combine functionality to execute a large spec-

trum of applications, ranging from scientific kernels [20] to

image processing applications [3] and games [8].

The PPE contains the Power Processing Unit (PPU), a

64-bit PowerPC core with a VMX unit, separated L1 caches

(32KB for data and 32KB for instructions), and 512KB of

L2 Cache. Its main role is to run the operating system and

coordinate the SPEs. An SPE contains a RISC-core (the

SPU), a 256KB Local Storage (LS), used as local mem-

ory for both code and data and managed entirely by the ap-

plication/user, and a Memory Flow Controller (MFC). The

Figure 1. The Cell Broadband Engine

MFC contains separate modules for DMA, memory man-

agement, bus interfacing, and synchronization with other

cores. All SPU instructions are 128-bit SIMD instructions,

and all the 128 SPU registers are 128-bit wide. The sin-

gle precision operations (integers and single floating point)

are issued at a rate of 8, 16, or 32 operations per cy-

cle (dual-pipeline, multi-way SIMD) for 8-bit, 16-bit and

32-bit numbers respectively. The double precision oper-

ations (64-bit floating point) are issued at the lower rate

of two double-precision operations every seven SPU clock

cycles. All processing elements are connected by a high-

speed high-bandwidth Element Interconnection Bus (EIB),

together with the main system memory, and the external

I/O. The maximum data bandwidth of the EIB has a the-

oretical peak at 204.8 GB/s [12].

Cell programming is based on a simple multi-threading

model [6, 11]: the PPE spawns threads that execute asyn-

chronously on SPEs, until interaction and/or synchroniza-

tion is required. The SPEs can communicate with the

PPE with simple mechanisms like signals and mailboxes

for small amounts of data, or DMA transfers via the main

memory for larger data. The major source of performance

for Cell resides in exploiting its various parallelism lay-

ers: from task and data parallelism across multiple SPEs,

to SPE code SIMDization, and multi-buffering for DMA

transfers [9]. While applications written from scratch can

natively exploit all these features, ported (sequential) appli-

cations have to systematically enable them.

3. The Porting Strategy

In this section we present in more detail our technique

for allowing C++ applications to be ported on Cell. To keep

the process efficient, we need to balance the porting effort

and the performance gain. Thus, while we aim for the ap-

plication to be able to use all the available parallelism layers

provided by Cell, we make use of as much code as possible

from the initial application. Furthermore, to evaluate the

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

Figure 2. The porting strategy of a sequential
C++ application to Cell BE

gradual improvements of the application, we need a mecha-

nism that allows application partitioning and code replace-

ment while preserving the application functionality all the

way through the porting process (i.e., the porting does not

destroy the overall data and control flow of the entire appli-

cation).

The general strategy is presented in Figure 2. The appli-

cation is first ported on the PPE. Next, its most compute-

intensive kernels have to be identified, and further detached

from the main application as potential candidates for exe-

cution on the SPEs. Each kernel will become a new SPE

thread. In the main application, each kernel is replaced by

a stub that will invoke the SPE-code and gather its results

(step 2 in Figure 2). As a result of the separation, all former

shared data between the application and kernel has to be re-

placed by DMA transfers (step 3 in Figure 2). Finally, the

kernel code itself has to ported to C (to execute on the SPE)

and further optimized (step 4 in Figure 2).

3.1. The PPE Version

A sequential C++ application running on Linux is, in

most cases, directly compilable for execution on the PPE

processor. The problems that appear in this phase are rather

related to the application compile and build infrastructure

than to the code itself; notable exceptions are the architec-

ture specific optimizations (like, for example, i386 assem-

bly instructions) which may need to be ported to the Pow-

erPC architecture.

Once running on the PPE, the application performance

is not impressive, being two to three times slower than the

same application running on a current generation commod-

ity machine. This result is not a surprise, as the PPE pro-

cessing power is quite modest[12].

3.2. Kernels Identification

First level of parallelization requires an application par-

titioning such that the most time-consuming kernels are mi-

grated for execution on the SPEs (step 1 in Figure 2). To

make efficient use of the SPEs processing power, the kernels

have to be small enough to fit in the local store, but large

enough to provide some meaningful computation. Kernels

are not necessarily one single method in the initial C++ ap-

plication, but rather a cluster of methods that perform to-

gether one or more processing operations on the same data.

However, this grouping should not cross class boundaries,

due to potential data accessibility complications. Further-

more, kernels should avoid computation patterns that do not

balance computation and communication, thus accessing

the main memory (via the DMA engines) too often. Typ-

ically, SPEs use small compute kernels on large amounts of

data, allowing the compute code to be “fixed” in the SPE

memory, while the data is DMA-ed in and out.

To identify the kernels, the PPE application running is

profiled (using standard tools like gprof or more advanced

solutions like Xprofiler1), and the most “expensive” meth-

ods are extracted as candidate kernels. Based on the ex-

ecution coverage numbers, we find the computation core

of each kernel. Based on the the application call graph,

each kernel may be enriched with additional methods that

should be clustered around its computation core for rea-

sons of convenient data communication and easy porting.

Performance-wise, we state that the bigger the kernel is, the

more significant the performance gain should be, but also

the more difficult the porting becomes.

3.3. The SPEInterface stub

In order to preserve application functionality at all times,

we have opted to implement the stub interface as an new

class, named SPEInterface. The class manages the in-

terface between the code running on the SPE and the main

application running on the PPE, as presented in Figure 3.

Basically, for each kernel, we instantiate an object of type

SPEInterface and configure its parameters according to

the kernel-specific requirements. Every such object will

manage the communication between the application and

one SPE kernel. Thus, the changes required on the main

application side are:

• Instantiate the SPEInterface class to a new object,

say Kernel1Interface.

• Wrap all the required member data of the original class

into a common data structure, and preserve/enforce data

alignment for future DMA operations[7].

• Allocate the output buffers for kernel results; typically,

for simplicity, these buffers are also included in the data

wrapper structure

• Communicate the address of this data structure to the ker-

nel, which will fetch its required data via DMA.

1http://domino.research.ibm.com/comm/research
projects.nsf/pages/actc.xprofiler.html

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

Figure 3. The SPEInterface. From the regular
C++ code, the shaded data and methods are
replaced by calls to an SPEInterface object

• Replace the call to the code implemented by the ker-

nel with a call to either Kernel1Interface->Send
or Kernel1Interface->SendAndWait methods,

thus invoking the SPE code and waiting for the results.

• Use the results put by the kernel in the output buffers to

fill in the corresponding class member structure

In order to avoid the high penalty of thread creation

and destruction at every kernel invocation, our ap-

proach statically schedules the kernels to SPEs. Thus,

once the PPE application instantiates the kernel in-

terfaces, the SPEs are activated and kept in an idle

state. When calling Kernel1Interface->Send or

Kernel1Interface->SendAndWait, the application

sends a command to the kernel, which starts execution.

When execution is completed, the kernel resumes its wait-

ing state for a new command.

3.4. Kernel migration

The algorithm to migrate the kernels on the SPEs is:

• Define data interfaces - the data required by the kernel

from the main application must be identified and pre-

pared for the DMA transfer, which may require (minor)

data allocation changes in the main allocation, to enforce

alignment.

• Establish a protocol and medium for short message com-

munication between the kernel and the application - typ-

ically, this channel is based on the use of mailboxes or

signals.

• Program the DMA transfers - the SPE local data struc-

tures must be “filled” with the data from the main appli-

cation. Data is fetched by DMA transfers, programmed

inside the kernel. For data structures larger than the SPE

available memory (256KB for both data and code), itera-

tive DMA transfers have to be interleaved with process-

ing

• Port the code - the C++ code has to be transformed in

C code; all the class member data references have to be

replaced by local data structures.

• For large data structures, the kernel code must be adapted

to run correctly in an incremental manner, i.e., being pro-

vided with on slices of data instead of the complete struc-

tures.

• Implement the function dispatcher (i.e., the kernel idle

mode) in the main function of each kernel, allowing

the kernel component functions to be executed indepen-

dently, as dictated by the main application commands

For example (more to come in Section 5), consider an image

filter running on an 1600x1200 RGB image, which does not

fit in the SPE memory, so the DMA transfer must be done

in slices. This means that the filter itself only has access to a

slice of data, not to the entire image. For a color conversion

filter, when the new pixel is a function of the old pixel only,

the processing requires no changes. However, for a convo-

lution filter2, the data slices or the processing must take care

of the new border conditions at the data slice edges.

3.5. The PPE-SPE Communication

After performing the correct changes in the main appli-

cation and in the SPEkernel, the communication protocol

between the two has to be implemented. The steps to be

performed, indicated by the numbers in Figure 3, are:

1. The Kernel1Interface writes a command to the

mailbox of the target SPE. The main() function of the

SPE kernel processes the command by choosing the ker-

nel function to execute

2. The Kernel1Interface writes the address of the

data structure required by the kernel to the mailbox. The

kernel reads this address from the mailbox, and it uses it

to transfer the wrapper structure via DMA.

3. The kernel code uses DMA transfers to get the “real” data

in its LS.

4. Once the kernel gets the data via DMA, it performs the

operation.

5. The kernel programs the DMA transfer to put results in

the designated output buffer

6. The kernel signals its termination, putting a message in

its output mailbox. The Kernel1Interface object

gets the signal, either by polling or by an interrupt, and

copies the results from the buffer back to the class data.

4. Overall Application Performance

In this Section we briefly discuss the SPE-specific opti-

mizations and their potential influence in the overall appli-

cation performance gain.

2http://www.ph.tn.tudelft.nl/Courses/FIP/
noframes/fip-Convolut-2.html

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

4.1. The Kernel Optimizations

After the initial porting, based as much as possible on

reusing the C++ code, the kernels have to be further opti-

mized. Among the optimizations that can be performed [5]

we quote:

• optimize the data transfer - either by DMA multi-

buffering, or by using DMA lists

• vectorize the code - to make use of the SIMD abilities of

the SPEs; use the data type that minimally suffices the

required precision, to increase the SIMDization ways.

• use local SPE data structures that are contiguous (i.e., use

arrays rather then linked lists).

• remove/replace branches or, if not possible, use explicit

branch hints (using the __builtin_expect function)

to provide the compiler with branch prediction informa-

tion

• change the algorithm for better vectorization - inter-

change loops, replace multiplications and divisions by

shift operations, etc.

All these optimizations are highly dependent on the kernel

processing itself, so there are no precise rules or guidelines

to be followed for guaranteed success. Even though a large

part of the overall application performance gain is obtained

by these optimizations, they are not the subject of this pa-

per, so we do not explain them further, but refer the reader

to [4, 17]. Still, we note that due to the inherent modular-

ity of our strategy, which allows subsequent optimizations

to be performed iteratively, as different kernel versions that

adhere to the same interface can be easily plugged in via the

SPEInterface stub.

4.2. Overall application performance

In the case of large C++ applications, the overall per-

formance gain is highly dependent on the application struc-

ture, in terms of (1) how representative the kernels are in the

overall computation, and (2) how can they be scheduled to

compute in parallel. Thus, although one can assume that the

speed-up obtained from an optimized kernel running on one

SPE can be between one and two orders of magnitude (of

course, depending on the kernel) compared to its PPE ver-

sion, the overall application speed-up may be much lower

if all these kernels are only covering a small part of the en-

tire application. In terms of scheduling, if the application

preserves the initial execution style, the PPE stalls during

the SPE execution, which actually translates to a sequential

execution on multiple cores, as see Figure 4(b). If the struc-

ture of the application allows it, the execution model should

increase concurrency by using several SPEs and the PPE

in parallel, as seen in Figure 4(c). We shall analyze both

Figure 4. Application scheduling on the Cell
cores

these scheduling solutions in the following paragraphs, and

present results for both scenarios.

To estimate the performance gain of kernel optimiza-

tions, we use Amdhal’s law as a first order approximation.

Given Kfr as the fraction of the execution time represented

by a kernel, and Kspeed−up as the speed-up of the kernel

over the PPE, the resulting application speed-up, Sapp is:

Sapp =
1

(1 − Kfr) + Kfr

Kspeed−up

(1)

For example, for a kernel with Kfr=10% of an ap-

plication, a speed-up Kspeed−up = 10 gives an over-

all speed-up Sapp = 1.0989, while the same kernel op-

timized to Kspeed−up = 100 gives an overall speed-up

Sapp = 1.1098. Thus, the effort of kernel optimization

from Kspeed−up = 10 to Kspeed−up = 100 is not worth

in this case.

Considering that n SPE kernels (Ki, i = 1..n) run by

the main application sequentially, like in Figure 4 (b), the

overall performance can be estimated by:

Sapp =
1

(1 − ∑n
i=1 Ki

fr) +
∑n

i=1

Ki
fr

Ki
speed−up

(2)

Application performance can be improved in case the

PPE application can schedule groups of SPE kernels in par-

allel, like in Figure 4 (c). Consider the n kernels split in

G groups, each group having its kernels running in parallel.

Note that the groups (due to data dependencies, for exam-

ple) are still executed sequentially. If each group has gj

items, such that n =
∑G

j=1 gj , the speed-up can be esti-

mated by:

Sapp =
1

(1 − ∑n
i=1 Ki

fr) +
∑g

j=1 maxpj

k=1(
Kl

fr

Kl
speed−up

)

(3)

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

By evaluating equations 2 and/or 3, one can determine

(1) what is the weight of kernel optimizations in the overall

application speed-up, and (2) what can be the gain of run-

ning the SPEs in parallel. Comparing these numbers (exam-

ples will follow in Section 5) with the estimated effort for

the required changes for these different scenarios, we can

evaluate the efficiency of the porting process.

5. The Case-Study - experiments and results

In this section we present a case study for our strategy.

Besides briefly presenting the application itself, we focus

on the porting roadmap and the experiments we have per-

formed on the Cell. The experimental results show very

promising results: the Cell application has one order of

magnitude speed-up over the application running on Pen-

tium machines.

5.1. Marvel

Because multimedia applications are considered very

suitable case studies for the performance potential of multi-

core processors, we have chosen a multimedia content anal-

ysis and retrieval system as a case study for our applica-

tion. Briefly, multimedia content analysis [19] refers to the

ability of a system to detect the semantic meanings of a

multimedia document, be it a picture, a video and/or au-

dio sequence. Given the fast-paced increase in available

multimedia content - from personal photo collections to

news archives, automated mechanisms for multimedia con-

tent analysis and retrieval must be developed. For such sys-

tems, execution speed and accuracy are the most important

performance metrics. MARVEL3, developed by IBM Re-

search, uses multi-modal machine learning techniques for

bridging the semantic gap for multimedia content analysis

and retrieval. After a short training phase, MARVEL is able

to automatically annotate multimedia content, thus allow-

ing further searching for and retrieval of content of interest.

The main goal of MARVEL is to help organizing large and

growing amounts of multimedia content much more effi-

ciently. MARVEL consists of two engines: (1) the multime-

dia analysis engine, which applies machine learning tech-

niques to model semantic concepts in video from automati-

cally extracted audio, speech, and visual content [1], and (2)

the multimedia retrieval engine, which integrates multime-

dia semantics-based searching with other search techniques

for image and/or video searching [15].

In the remainder of this paper, we focus on MARVEL’s

multimedia analysis engine as the computation intensive

part of the application. In particular, our goal is to increase

3MARVEL stands for Multimedia Analysis and Retrieval

Figure 5. The processing flow of Marvel. The
shaded part is ported to the SPEs

the execution speed of semantic concept detection in im-

ages. The processing flow of this simplified MARVEL ver-

sion is presented in Figure 5. The preprocessing step in-

cludes (1) image reading, decompressing and storing it in

the main memory as an RGB image, and (2) models read-

ing and storing in memory. From the RGB representation,

we extract some visual features of the image as vectors. The

extracted features go through the concept detection phase,

based on a collection of precomputed models and using

one of the several available statistical classification methods

like Support Vector Machines (SVMs), k-nearest neighbor

search (kNN), etc. For our case-study, we have chosen four

feature extraction techniques, for color (two), edge, and tex-

ture information, and we have opted for an SVM-based clas-

sification.

5.2. Porting MARVEL on Cell

It took roughly one day to compile and execute the Linux

version of Marvel on the PPE. Next, we have profiled its

execution for one 352x240 pixels color image, and for a

set of fifty such images. For one image, the feature extrac-

tion and concept detection represented 87% of the execu-

tion time (the rest being application preprocessing); for the

50-images set, feature extraction and concept detection in-

creased to 96% of the execution time (a large part of the

preprocessing is a one-time overhead). Further, based on

the profiling information, we have identified the core meth-

ods (in terms of execution time) for each of the feature ex-

traction algorithms, as well as for the concept detections.

Around these core methods we have clustered the additional

methods required for easy data wrapping, processing and

transfer, and we defined five major kernels, briefly listed be-

low together with their coverage from the per-image appli-

cation execution time (i.e., without the one-time overhead):

1. Color histogram extraction (CHExtract) - 8% from the

application execution time.

The color histogram of an image is computed by dis-

cretizing the colors within an image and counting the

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

number of colors that fall into each bin [18]. In MAR-

VEL, the color histogram is computed on the HSV image

representation, and quantized in 166 bins.

2. Color correlogram extraction (CCExtract) - 54% from the

application execution time.

The color correlogram feature in MARVEL quantifies,

over the whole image, the degree of clustering among

pixels with the same quantized color value. For each

pixel P, it counts how many pixels there are within a

square window of size 17x17 around P belonging to the

same histogram bin as P [10].

3. Texture extraction (TXExtract) - 6% from the application

execution time.

Texture refers to a visual pattern or spatial arrangement

of the pixels in an image. In MARVEL, texture features

are derived from the pattern of spatial-frequency energy

across image subbands [14].

4. Edge histogram extraction (EHExtract) - 28% from the

application execution time.

The edge histogram extraction is a sequence of filters ap-

plied in succession on the image: color conversion RGB

to Gray, image edge detection with the Sobel operators,

edge angle and magnitude computation per pixel, plus

the quantization and normalization operations specific to

histogram-like functions.

5. Concept Detection - 2% from the application execution

time for the classification of all four features: CHDetect,

CCDetect, TXDetect, EHDetect.

The remainder of the application execution time for one im-

age (2%) is the image reading, decoding and rescaling. In

our tests, we used all images of the same size, such that

rescaling (otherwise a costly operation) is not required.

To have a first idea of the application and kernels per-

formance, we have compared their execution times on the

PPE at 3.2GHz with the execution of the original Linux

application on two reference systems4: a desktop machine

with a Pentium D processor (dual-core, running at 3.4GHz),

from now on called “Desktop”, and a laptop with a Pentium

Centrino (running at 1.8GHz), from now on called “Lap-

top”. The results show an average kernel slow-down of

2.5 from the Laptop to the PPE, and about 3.2 from the

Desktop to the PPE. The exception is the image prepro-

cessing step (which is mainly I/O access), which was only

slowed down by a factor of 1.2 from the Laptop, and 1.4

from the Desktop; finally, the one-time overhead (i.e., the

application-wise I/O operations) are also about the same on

these three reference measurements, representing, for one

image, 60% of the total execution time on the PPE (indeed,

4Note that the reference machines have only been chosen as such for

convenience reasons; there are no architecture-specific optimizations per-

formed for any of the Pentium processors

larger than the image processing), and about 80% from the

total execution time on the other two reference machines.

5.3. Migrating the Kernels on SPEs

Once the five kernels have been identified, we have to

port them on the SPEs. Every kernel becomes an SPE

thread, structured as presented in the self-explaining List-

ing 1. Note that for each function, the main function en-

ables both blocking (i.e., PPE polling for a new message)

and non-blocking (i.e., PPE is interrupted by the new mes-

sage) behavior of the PPE-SPE messaging protocol.

Listing 1. An example of a main function of
an SPE kernel

// Kernel code :
int Function1(unsigned int address) { ... }
int Function2(unsigned int address) { ... }
//more functions ...
int main(unsigned long long spu_id, unsigned long long

argv) {
unsigned int addr_in, opcode;
int result;
while(1) {
opcode = (unsigned int) spu_read_in_mbox(); // read

operation code from the mailbox
switch (opcode) {
case SPU_EXIT: return 0;
case SPU_Run_1: {

addr_in = (unsigned int)spu_read_in_mbox();// read
the address from the mailbox

result = Function1(addr_in); // run function
if (POLLING)

spu_write_out_mbox(result); //write result in
the mailbox

if (INTERRUPT)
spu_write_out_intr_mbox(result); //write result

in the "interrupt" mailbox
break;

}
case SPU_Run_2: {...}

...
}

For three of the five chosen kernels, we have first

measured the behavior before SPE-specific optimizations.

Compared with the PPE version, the speed-ups of CHEx-

tract, CCExtract and EHExtract were 26.41, 0.43 and 3.85,

respectively. The significant difference in these results

are mainly due to the specific computation structure of

each kernel. Further on, we have proceeded with the SPE

code optimizations, tuning the “reference” algorithm to al-

low better opportunities for a broad range of manual opti-

mizations. like double and triple buffering of DMA trans-

fers, loop unrolling, 16-ways and/or 4 ways SIMD-ization,

branch removal etc. Table 1 shows the final speed-up of

each SPE kernel over its initial PPE version.

5.4 Building the SPEInterface

Once the kernels have been completely implemented,

they have to be reintegrated in the application itself. The

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

Table 1. SPE vs. PPE kernel speed-ups
Kernel Speed-up Coverage[%]

CH Extract 53.67 8%

CC Extract 52.23 54%

TX Extract 15.99 6%

EH Extract 65.94 28%

ConceptDet 10.80 2%

SPEInterface class is presented in code Listing 2. To im-

plement the SendAndWait method, we have used a simple

2-way communication protocol based on mailboxes, as seen

in Listing 3.

Listing 2. The SPEInterface class snippet
class SPEInterface {
private:
// more fields
spe_program_handle_t spe_module;
speid_t spuid;

public:
SPEInterface(spe_program_handle_t module);
˜SPEInterface();
int thread_open(spe_program_handle_t module);
int thread_close(int cmnd);
int SendAndWait(int functionCall, unsigned int value);
int Send(int functionCall, unsigned int value);
int Wait(int timeout);

// more code
};

Listing 3. The SendAndWait protocol
int SPEInterface::SendAndWait(int functionCall,unsigned

int value) {
int retVal;

// send command and address
spe_write_in_mbox(spuid,functionCall);
spe_write_in_mbox(spuid,value);

// wait for result (i.e., completion signal)
while(spe_stat_out_mbox(spuid)==0);

// read result to clean-up the mailbox
retVal=spe_read_out_mbox(spuid);
return retVal; }

The changes required in the main application to accom-

modate the dual execution - on SPE or PPE - are presented

in Listing 4.

5.5. Experiments and results

With the optimized version of the application, we have

performed experiments on sets of one, ten and fifty images.

For each image, we have performed the four feature extrac-

tions and the corresponding concept detection. The concept

detection was performed with a number of models summing

up 186 vectors for color histogram, 225 for color correlo-

gram, 210 for edge detection and 255 for texture. Figure 6

presents the speed-ups of the kernels execution times on the

two reference machines, on the PPE and on the SPE.

Next, we have calculated the application estimated per-

formance, using equations 1 and 2 in Section 4, and using

Listing 4. The main application modifications

// interface initialization
#ifdef RUN_ON_SPU
extern spe_program_handle_t SPE_Kernel1;
SPEInterface *Kernel1Interface = new CellInterface(

SPE_Kernel1);
#endif
// more code
#ifdef RUN_ON_SPU
Histogram& ColorHistogram::extract(const ColorImage& A)

{
// some code - preprocessing the image

FILL_MSG_FROM_COLORIMAGE(msg_color, A); // data
wrapping

int val=Kernel1Interface->SendAndWait(SPU_Run,(
unsigned int)&msg_color); // call SPE kernel

memset(histogram, (float *)msg_color.histogram,
HISTOGRAM_SIZE); // put data back

free_align((void *)msg_color.histogram); // free
buffer from wrapped data

return *this;
}
#else
Histogram& ColorHistogram::extract(const ColorImage& A)

{
// original code }
#endif

the measured speed-up numbers for each kernel. In all sce-

narios, we map at most one kernel per one SPE. We have

evaluated three scenarios:

1. All kernels execute sequentially (i.e., no task parallelism

between SPEs). This scenario is equivalent with the use

of a single SPE, but it avoids the dynamic code switching:

SSingleSPE
app (SPE:Desktop)=10.90

2. All feature extractions run in parallel; the con-

cept detection is still running on a single SPE,

thus all concept detection operations run sequentially:

SMulti−SPE
app (SPE:Desktop)=15.28

3. All feature extractions run in parallel; the con-

cept detection code is replicated on the other 4

SPEs, to allow parallel execution, and each extrac-

tion is immediately followed by its own detection:

SMulti−SPE2
app (SPE:Desktop)=15.64. The very small dif-

ference between the two parallelization solutions can be

explained by (1) the high impact of the color correlogram

extraction, which dominates the feature extraction opera-

tions, (2) the small impact of the concept detection (only

0.5%, on average), and (3) the image preprocessing part,

which runs on the PPE.

We have performed experiments for scenarios 1 (Single

SPE) and 2 (Parallel SPEs). We have compared the time

measurements with the application running on PPE, Desk-

top, and Laptop. The results, matching the estimates with

an error of less than 2%, are presented in the speed-up graph

from Figure 7.

Note that to obtain this fast execution of Marvel on the

Cell, we have performed aggressive optimization for each of

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

Figure 6. SPE kernel performance (execution
time, logarithmic scale)

Figure 7. Speed-up results for all the experi-
ments

the kernels and we have used several parallelism layers of

the processor. Thus, the comparison with the results on the

two reference processors, the Pentium D and the Pentium

Centrino, is only informative, as no architecture-specific op-

timizations were performed on the generic Linux code run-

ning on these machines.

6. Related Work

Most of the work done so far on the Cell BE proces-

sor has focused either on (1) application development and

performance evaluation, aiming to prove the level of per-

formance that the architecture can actually achieve, or on

(2) high level programming models, proving that the pro-

grammer can be abstracted away (to some degree) from the

low-level architectural details. In this respect, our approach

falls somewhat in between, as we present a generic strategy

for fast porting of sequential C++ applications on the Cell,

and we prove its applicability by developing and evaluating

a case-study application.

For example, the MPI microtask model, proposed in

[16], aims to infer the LS administration and DMA transfers

from the message passing communication between micro-

tasks that are defined by the user. Once this infrastructure is

defined, a preprocessor splits the microtasks in basic tasks,

free of internal communication, and schedules them dynam-

ically on the existing SPEs. While the notions of kernels

and microtasks/basic tasks are quite similar, we note that the

MPI microtasks work on C only. For using this model on

C++ applications, the programmer will have to first apply

our strategy: kernel identification, isolation, data wrapping.

While the clustering and scheduling of the microtask model

are quite efficient, it will also require more transformations

on the kernel side, thus decreasing the efficiency of a proof-

of-concept porting. CellSs, a programming model proposed

in [2], provides an user annotation scheme to allow the pro-

grammer to specify what parts of the code shall be migrated

on the SPE. A source-to-source compiler separates the an-

notated sequential code in two: a main program (that will be

running on the PPE) and a pool of functions to be run on the

SPEs. For any potential call to an SPE-function, a runtime

library generates a potential SPE task which can be exe-

cuted when all its data dependencies are satisfied, if there

is an SPE available. However, CellSs cannot directly deal

with C++ applications. On the applications side, among the

first applications that emphasized the performance poten-

tial of Cell BE have been presented by IBM in [13, 8]. In

[13], a complete implementation of a terrain rendering en-

gine is shown to perform 50 times faster on a 3.2GHz Cell

machine than on a 2.0GHz PowerPC G5 VMX. Besides

the impressive performance numbers, the authors present

a very interesting overview of the implementation process

and task scheduling. However, the entire implementation is

completely Cell oriented and tuned, allowing optimal task

separation and mapping, but too low a flexibility to be used

as a generic methodology for porting existing applications.

An interesting application porting experiment is presented

in [3], where the authors discuss a Cell-based ray tracing

algorithm. In particular, this work looks at more structural

changes of the application and evolves towards finding the

most suitable (i.e., different than, say, a reference C++ im-

plementation) algorithm to implement ray tracing on Cell.

Finally, the lessons learned from porting Sweep3D (a high-

performance scientific application) on the Cell processor,

presented in [17], were very useful for developing our strat-

egy, as they pointed out the key optimization points that an

application has to exploit for significant performance gains.

7. Conclusions

To the best of our knowledge, this work is the first to

tackle the systematic porting of large C++ application on

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

Cell BE. Our approach does not require an extensive port of

the C++ code on the Cell, but it is rather based on detecting

compute intensive kernels of the initial application, isolate

them from the C++ class structure and migrate them for ex-

ecution on the SPEs, while the rest of the C++ application

runs on the PPE. The method is generic in its approach, be-

ing applicable for any C++ application. The porting pro-

cess allows the application to be functional at all times,

thus permitting easy performance checkpoints of interme-

diate versions. The optimization of the SPE kernels code

is still the responsibility of the programmer, but given that

the resulting application is modular, it allows for iterative

improvements. Finally, to support effective optimization of

the SPEs, we provide a simple method to evaluate the per-

formance gain of a potential optimization in the overall per-

formance of the application.

We have validated our methodology by presenting our

experience with porting a multimedia retrieval application

that comprises of more than 20000 lines of code and over

50 classes. The performance of the ported application -

namely, the overall application speed-up of the Cell-based

application - is one order of magnitude above the one of a

commodity machine, running the reference sequential code.

We conclude that our strategy is well-suited for a first at-

tempt of enabling an existing C++ code-base to run on Cell.

It is recommended for large applications, when rewriting

from scratch in a Cell-aware manner is not really an option.

Also, the results of our strategy can be used for proof-of-

concept approaches evaluating the performance potential of

Cell for given applications.

ACKNOWLEDGEMENTS. Most of this work has been

done at IBM TJ Watson Research Center, where all the

authors had the opportunity to meet and cooperate closely.

Furthermore, we would like to thank Michael Perrone, Gor-

don Braudaway, Karen Magerlein, and Bruce D’Amora,

from IBM TJ Watson, for their valuable support and ideas

provided during the development of this application.

References

[1] A. Amir, W. Hsu, G. Iyengar, C.-Y. Lin, M. Naphade, A. Nat-

sev, C. Neti, H. J. Nock, J. R. Smith, B. L. Tseng, Y. Wu, and

D. Zhang. IBM Research TRECVID-2003 system. In NIST
Text Retrieval (TREC), Gaithersburg, MD.

[2] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta. CellSs:

A programming model for the cell be architecture. volume

SC’06. IEEE Computer Society Press, November 2006.

[3] C. Benthin, I. Wald, M. Scherbaum, and H. Friedrich. Ray

tracing on the Cell processor. volume IEEE Symposium on

Interactive Ray Tracing 2006, pages 15–23, September 2006.

[4] N. Blachford. Cell architecture explained version 2 part

3: Programming the Cell. http://www.blachford.
info/computer/Cell/Cell3v2.html, 2006.

[5] N. Blachford. Programming the Cell processor-part 2: Pro-

gramming models. http://www.blachford.info/
computer/articles/CellProgramming2.html,

2006.
[6] N. Blachford. Programming the Cell processor-part 3: Pro-

gramming models. http://www.blachford.info/
computer/articles/CellProgramming3.html,

2006.
[7] D. A. Brokenshire. Maximizing the power of the

Cell Broadband Engine processor: 25 tips to opti-

mal application performance. http://www-128.
ibm.com/developerworks/power/library/
pa-celltips1/, 2006.

[8] B. D’Amora. Online Game Prototype (white pa-

per). http://www.research.ibm.com/cell/
whitepapers/cell online game.pdf, May 2005.

[9] M. Gschwind. Chip multiprocessing and the cell broadband

engine. In CF ’06: Proceedings of the 3rd conference on
Computing frontiers, pages 1–8, New York, NY, USA, 2006.

ACM Press.
[10] J. Huang, S. R. Kumar, M. Mitra, W.-J. Zhu, and R. Zabih.

Image indexing using color correlograms. In CVPR ’97, page

762, Washington, DC, USA, 1997. IEEE Computer Society.
[11] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R.

Maeurer, and D. Shippy. Introduction to the Cell multipro-

cessor. IBM Journal of Research and Development, 49(4/5),

2005.
[12] M. Kistler, M. Perrone, and F. Petrini. Cell multiproces-

sor communication network: Built for speed. IEEE Micro,

26(3):10–23, 2006.
[13] B. Minor, G. Fossum, and V. To. Terrain rendering engine

(white paper). http://www.research.ibm.com/
cell/whitepapers/TRE.pdf, May 2005.

[14] M. R. Naphade, C.-Y. Lin, and J. R. Smith. Video texture

indexing using spatio-temporal wavelets. In ICIP (2), pages

437–440, 2002.
[15] A. Natsev, M. Naphade, and J. R. Smith. Semantic space

processing of multimedia content. In ACM SIGKDD 2004,

Seattle, WA, August 2004.
[16] M. Ohara, H. Inoue, Y. Sohda, H. Komatsu, and T. Nakatani.

Mpi microtask for programming the Cell Broadband Engine

processor. IBM Systems Journal, 45(1), March 2006.
[17] F. Petrini, J. Fernàndez, M. Kistler, G. Fossum, A. L. Var-

banescu, and M. Perrone. Multicore surprises: Lessons

learned from optimizing sweep3d on the cell broadband en-

gine. In IPDPS 2007, Long Beach, CA. IEEE/ACM, March.
[18] J. R. Smith and S.-F. Chang. Tools and techniques for color

image retrieval. In SPIE ’96, volume 2670, 1996.
[19] Y. Wang, Z. Liu, and J.-C. Huang. Multimedia content anal-

ysis using both audio and visual clues. IEEE Signal Process-
ing Magazine, 17(6):12–36, November 2000.

[20] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and

K. Yelick. The potential of the Cell processor for scientic

computing. In ACM Computing Frontiers 06, pages 9–20.

ACM Press, 2006.

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

