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Abstract

Stress oscillations and inaccuracies are commonly reported in the material point method (MPM). This paper investigates the
causes and presents a method to reduce them. The oscillations are shown to result from, at least in part, two distinctly different
causes, both originating from the shape function approximations used. The first is due to the components of the stiffness matrix
(or other matrices) being derived by performing numerical integration using the material points, and the second is due to
calculating the strain from the nodal displacements of the elements, interpolated to the material points, via the shape function
spatial derivatives. In this paper, an improvement for the recovery of results from the nodes to the material points is presented,
where an increase of the Cn continuity along with an interpolation involving nodes from neighbouring elements is applied.
© 2016 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the organizing committee of the 1 st International Conference on the Material Point Method.
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1. Introduction

The material point method (MPM) has proven to be a useful numerical technique for solving problems involving
large deformations. Recently, several attempts have been made to demonstrate the effectiveness of MPM for
geotechnical applications. For example, Wang et al. [1-3] and Llano-Sema et al. [4] have successfully computed
landslide mechanisms using MPM, Beuth et al. [5] solved a retaining wall problem, and Andersen and Andersen [6]
modelled the collapse of a soil column. These previous numerical examples have computed typical soil behaviour,
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albeit using relatively simple constitutive models, in particular with respect to shear failure. However, stress
oscillations  have been observed [e.g. 4]. To utilize more complex constitutive behaviour typical of soils, e.g. stress
dependency, dilatancy, non-linearity and stress history dependency, a consistent and reliable stress determination is
imperative.

A number of approaches for smoothing the shape function discontinuities between elements have been proposed,
including the generalized interpolation material point method (GIMPM) by Bardenhagen and Kober [7] and
convected particle domain interpolation (CPDI) by Sadeghirad et al. [8].

This paper proposes another method, the composite material point method (CMPM), that reduces stress
oscillations by improving the stress recovery procedure based on the composite finite element method (CFEM) of
Sadeghirad and Astaneh [9]. CMPM increases the Cn (n 0) continuity to smooth the solution and reduce
discontinuities along inter-element boundaries, by considering linear and high-order quadrilateral elements. Initially,
a brief demonstration of the causes of the stress oscillations is made, followed by an overview of the proposed
CMPM formulation and a simple example to demonstrate its applicability.

2. Stress oscillations

An illustration of stress oscillations caused in MPM is presented in this section. This involves the analysis of a
thick-walled cylinder subjected to an internal pressure, as shown in Fig. 1. An internal radial displacement is applied
at the inner boundary (r = ri) and the outer boundary is fixed (r = re). An axisymmetric geometry is used, with either
4 or 8 noded quadrilateral elements.

Fig. 1. Thick-walled cylinder under internal pressure.

The displacement has been applied in a single step and the incremental stress change determined across the whole
domain. The material points are initially located at the Gauss point locations and, therefore, for the stiffness matrix
calculation, it is the same as for FEM.

 Fig. 2 shows that, depending on the element type and the value of the Poisson ratio, the stress distribution takes
on different shapes and magnitudes. For linear elements (Fig. 2a), the stress distribution within the element is almost
linear, while high order elements show a second order stress distribution (Fig. 2b). It is also evident that stress
oscillations for linear elements are greater than for high order elements, especially close to the external boundaries.
Different examples for stress oscillations and stress paths can be found in the literature, as in Yerro et al. [10], where
p-q stress paths are plotted for a slope stability problem.

In Fig. 2, the stress is observed to be continuous within each element and discontinuous across elements. It is also
noted that the stress solution is almost exact at the centres of the linear elements and at the reduced Gauss point
locations in the quadratic elements, as has been noted by others; most notably, by Naylor [11] and Mar and Hicks
[12], who analyzed a similar thick-walled cylinder problem to investigate stress oscillation and possible mitigation
mesures in FEM. In an MPM simulation with multiple load/displacement steps, stress oscillations will occur due to
both the shape function characteristics and material points crossing inter-element boundaries, where shape functions
are no longer continuous.
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a) b)

Fig. 2. Stress oscillation considering (a) 4 noded elements and (b) 8 noded elements.

3. CMPM theoretical aspects

The  basis  of  CMPM,  as  in  other  MPM  methods,  is  that  the  original  FEM  shape  functions  are  utilised  for  the
formation of the stiffness matrices. Hence, the CFEM method [9] has been integrated into an MPM code. A quasi-
static version of MPM [1] has been used here to demonstrate the behaviour, although this approach can also be
directly used in dynamic versions [e.g. 1-3].

3.1. Shape functions for 2D linear (4-noded) quadrilateral base elements

The objective of CMPM is to increase the stress recovery precision, by increasing the solution domain for each
element through considering values of neighbouring nodes in the grid. Due to the increase in size of the solution
domain, higher order shape functions are used, since more nodes are included in the shape function interpolations,
with the new order being directly related to the order of the continuity Cn and the relative position of the element.
Fig. 3 demonstrates the nature of the shape functions for element J, with C1 continuity, for a boundary element and a
middle element. In the case of a boundary element (Fig. 3a), C1 continuity  can  be  applied  to  only  one  side  of  the
element,  since  only  on  this  side  are  there  nodes  to  interpolate  the  solution,  and this  leads   to  the  use  of  quadratic
shape functions. In contrast, in the case of a middle element (Fig. 3b), C1 continuity is applied to both sides of the
element, increasing the order of the shape functions to three.

a) b)

Fig. 3. 1D element shape functions considering (a) one neighbouring node and (b) two neighbouring nodes.
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     In Fig. 3, N are the shape functions,   is the local coordinate, i, j, k and l are the node numbering, I, J and K  are
the elements, and the subscripts and superscripts are related with the node and element for which the shape functions
are computed, respectively. With reference to Fig. 3a, for the boundary element J, with only one neighbouring node
i in element I, the shape functions are computed as:
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     In the case of 2D elements (Fig. 4), the same rules are applied for the development of the shape functions, with
the new shape functions being formed by the multiplication of the previous 1D shape functions. Hence, the shape
functions for the boundary element E4 (Fig. 4a), and for the middle element E5 (Fig. 4b), are as follows:
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Fig. 4. Solution domain for C1 continuity for (a) boundary element E4 and (b) middle element E5.
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A detailed explanation on how to create 1D and 2D element shape functions with Cn (n 1) continuity, along with
Kronecker-delta and partition of unity properties, can be found in [7].

3.2. Shape functions for 2D quadratic (8-noded) quadrilateral base elements

For 2D 8-noded quadrilateral elements, the domain is increased by considering only 3 neighbour elements. In this
case, the shape functions for domain , where  =  E1+  E2+  E3+  E4 (Fig. 5), can be computed by taking the
equations for quadratic serendipity elements from Oñate [13] as follows:
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where i and i correspond to the local coordinates of the nodes in .

Fig. 5. Solution domain for stress recovery with high-order square elements with CMPM.

4. CMPM implementation

4.1. Stress recovery

To increase the accuracy of the stress recovery procedure by using CMPM, a loop over each material point can
be performed over each sub-region (Fig. 6), where, for 8 node elements, each sub-region is the union of 1 element
containing materials points with 3 neighbouring elements (as mentioned above). However, note that in the case of
C1 continuity for a 4 node middle element (as in Fig. 4b), sub-regions are not necessary. Next, the strain
interpolation in the case of C1 continuity can be computed as:
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where is the strain increment vector, S is the number of sub-regions, B is the strain-displacement matrix, a is
the vector of incremental displacements for each sub-region and xp is the position of the material point. Finally, the
stresses  which are a function of the material point position xp can be computed using the material stiffness
matrix De as:

)()( p
e

p xDx  (7)

Fig. 6. Sub-regions for stress recovery at a middle material point.

4.2. Numerical example of an internally displaced cylinder

To demonstrate the accuracy of CMPM compared with regular MPM, the radial stress distribution through the
wall  of  a  cylinder  fixed  at  the  outer  boundary  and  subjected  to  a  prescribed  radial  displacement  at  the  inner
boundary is investigated, considering both constant (labelled “kconst”) and non-constant (labelled “knon”) element
stiffness matrices. An axisymmetric analysis is carried out, with the 2D elements representing a cross-section
through the cylinder wall. The domain is discretized by 9 elements from, ri = 0.5 m to re = 1.1 m, with 4 material
points per element initially located at the Gauss points position (Fig. 7). The cylinder is assumed to be linear elastic,
with E = 2500 kN and  = 0.35 or  = 0.49. The pressure at the internal boundary is applied by prescribing 2 cm
increments of radial displacement.

Two versions of the code are used, to separate the impact of the stiffness matrix determination and the stress
recovery. The first version of the code uses a constant (i.e. fixed) stiffness matrix per finite element, which is
determined only once at the start of the analysis. The second uses a constant stiffness per material point, with the
nodal values in the stiffness matrix changing based on the numerical integration.

Fig. 7. Internal radial displacement of a cylinder fixed at the outer boundary.
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4.3. Results

The results  obtained from the  analysis  with  4  noded elements  are  shown in  Fig.  8.  As  can  be  seen,  in  Fig.  8a,
considering  = 0.35, the stresses oscillate around the analytical solution due to the sub-optimal positions at which
stresses are being evaluated (Gauss quadrature rule not satisfied), this causing a lack of accuracy in the stress
recovery. Also, the results for the material points in boundary elements are less accurate than those for the middle
element, due to the boundary elements having less information from neighbouring elements than the middle
element. Fig. 8b shows similar findings for , although the oscillations are now larger due to the near
incompressibility of the cylinder wall. After step 4, the stress computed for material point MP-A using regular MPM
suffers an abrupt change after crossing an element boundary (Fig. 9), due to the lack of continuity in the shape
functions. In contrast, the computed stresses using CMPM are smoother before, during and after element crossing. It
is also important to note that, due to CMPM gathering information from neighbouring elements, if the nodal values
of these elements are carrying wrong values, this will contribute to a wrong evaluation of the strains and stresses at
the material points.

a) b)

Fig. 8. Comparison of radial stress distributions with 4-noded elements and (a)  = 0.35, and (b)  = 0.49.

Fig. 9. Incremental radial stresses at material point MP-A for each step considering  = 0.35.

Finally, Fig. 10 shows the radial stress r after  steps  1,  3  and 5,  when using  8-noded square  elements  and  =
0.35. By comparing the results for regular MPM with constant stiffness (i.e. MPM-kconst) and CMPM-kconst, it
can be seen that the stress oscillation is small and almost the same in both cases (Fig. 10a), and that the change in
stress after element crossing (Fig. 10b) is not as big as in the 4-node analysis. This shows that, for 8 node elements,
the stress recovery procedure can be accurate even for regular MPM. The main problem is related with the stiffness
matrix, as can be seen from both the MPM-knon and CMPM-knon results, where the increase in oscillation comes
from an inaccurate stiffness matrix evaluation.
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a) b)

Fig. 10. (a) Comparison of radial stress distributions with 8-noded elements after steps 1, 3 and 5, and (b) incremental radial stresses at material
point MP-A for each step.

5. Conclusion

This paper has shown that the classical MPM stress recovery procedure can be improved with CMPM, which
increases the accuracy of the results by increasing the size of the interpolation domain. By comparing the results for
4 noded elements with those for 8 noded elements, CMPM shows an improved performance for 4 noded elements,
whereas  the  stress  behaviour  for  8  noded elements  can  be  drastically  improved,  for  both  MPM and CMPM, with
only the correct evaluation of the stiffness matrix (kconst) for every time step. This is because the rate of oscillation
is always higher for 4 noded elements, independent of the material properties. It is also evident that the CMPM
solutions for both element types are still close to the analytical solution after crossing element boundaries. This
allows for an accurate stress history to be maintained, which is crucial for history-dependent materials. Finally,
special attention has to be paid to 8 noded elements during stiffness matrix evaluation, since poor evaluation of the
stiffness matrix can cause severe changes to the calculated nodal displacement values.

References

[1] Wang B, Vardon PJ, Hicks MA, Chen Z. Development of an implicit material point method for geotechnical applications. Comput Geotech
2016;71:159-67.

[2] Wang B, Vardon PJ, Hicks MA. Investigation of retrogressive and progressive slope failure mechanisms using the material point method.
Comput Geotech 2016;78:88-98.

[3] Wang B, Hicks MA, Vardon PJ. Slope failure analysis using the random material point method. Géotechnique Letters 2016;6(2):113-18.
[4] Llano-Sema MA, Farias MM, Pedroso DM. An assessment of the material point method for modelling large scale run-out processes in

landslides. Landslides 2015. http://dx.doi.org/10.1007/s10346-015-0664-4
[5] Beuth L, Wi ckowski Z, Vermeer PA. Solution of quasi-static large-strain problems by material point method. Int J Numer Anal Meth

Geomech 2010;35:1451-65.
[6] Andersen S, Andersen L. Analysis of stress updates in the material-point method. The Nordic Seminar on Computational Mechanics

2009;11:129-34.
[7] Bardenhagen SG, Kober EM. The generalized interpolation material point method. Comput Model Eng Sci 2004;5(6):477-96.
[8] Sadeghirad A, Brannon RM, Burghardt J. A convected particle domain interpolation technique to extend applicability of the material point

method for problems involving massive deformations. Int J Numer Meth Eng 2011;86:1435-56.
[9] Sadeghirad A, Astaneh AV. A finite element method with composite shape functions. Engineering Computations: International journal of

computer-aided engineering and software 2011;28:389-422.
[10] Yerro A, Alonso EE, Pinyol NM. The material point method for unsaturated soils. Géotechnique 2015;65(3):201-217.
[11] Naylor DJ. Stresses in nearly incompressible materials by finite elements with application to the calculation of excess pore pressure. Int J

Numer Meth Eng 1974;8:443-60.
[12] Mar A, Hicks MA. A benchmark computational study of finite element error estimation. Int J Numer Meth Eng 1996;39:3969-83.
[13] Oñate E. Structural analysis with the finite element method. Barcelona, Spain. Artes Gráficas Torres S.L.; 2009.


