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Abstract—Recent years have seen an increasing interest in
stablecoins from major corporate and governmental parties.
The European Central Bank is investigating the possibility of
introducing its own Central Bank Digital Currency. The desired
features of such a currency are under discussion. One such fea-
ture is offline spending: the ability to use the currency without an
internet connection, like cash. This thesis describes a token-based
transaction prototype and its implementation on the Kotlin-
IPv8 protocol stack. The prototype allows funds to be spent in
an offline setting and provides retroactive fraud detection. The
prototype is not intended for deployment but instead serves as a
trial for building digital currencies on Kotlin-IPv8. The included
performance analysis demonstrates that various facets of Kotlin-
IPv8 perform suboptimally, of which most notably its UDP data
throughput.

I. INTRODUCTION

In recent years, the European Central Bank (ECB) has
been exploring the possibility of realizing its own Central
Bank Digital Currency (CBDC), the ‘digital Euro’. The ECB
has published various reports and resources that outline the
need for such a project (i.e. [1]-[3]]). Calls for expression of
interest are being published and the ECB aims to complete
its investigation phase by October 2023 [4]], [5]. The main
reason for this development is the rise of digital payments
and corresponding decline of cash usage. According to reports
published by De Nederlandsche Bank (DNB), the national
bank of the Netherlands, the share of cash payments dropped
from 56% in 2010 to 21% in 2020 [6], [7]. The Swedish
Riksbank mentions similar trends for Sweden [8]].

Euro cash is the only public form of money that is directly
backed by the ECB [2]. Digital payments are not; they are
backed by private parties such as commercial banks. A critical
dependence on these parties can erode the sovereignty of
the Euro. They cannot safeguard reliability comparable to
that of ECB-backed cash. Nevertheless, there is demand for
reliability, especially in times of crisis [9]. In recent history,
there have been several financial crises that caused large-
scale bankruptcies which consequently impacted consumers’
savings (e.g. in 2008). CBDCs can provide reliability and safe-
guard consumers against the effects of large-scale bankruptcy
of commercial payment providers.

Foreign organisations, commercial parties, and cryptocur-
rencies are threatening the influence of central banks. A
report published by the ECB discusses the risk of currency
substitution. Substitution occurs when a new form of money,
unregulated by the ECB, gains major usage in the EU. The
new payment method would likely have to outperform its
competitors, for instance by being cheaper and/or more con-
venient. According to the report, currency substitution could
have a range of negative effects on the ECB’s monetary policy
and even threaten the EU’s independence [1]. Along with the
ECB, other major governmental and commercial parties have
also shown interest in developing a CBDC. Some interested
governmental parties are e.g. the United States government
and the People’s Bank of China [10], [11]. An interested
commercial party is for instance Meta (formerly Facebook),
which initiated Die a hypothesized stablecoin that did not
launch due to legal and regulatory issues.

Due to the potentially far-reaching impact of the introduc-
tion of CBDCs to consumers and the rapid pace with which
central banks are operating, public discourse on the topic has
been increasing. Some regulators are questioning the use case
of CBDCs and their implications on the role of central banks
and consumers’ privacy [12]], [13].

To determine the appropriate role for a CBDC in the EU,
and to compete with other payment solutions, the ECB has
launched an extensive exploratory phase. In this exploration,
the ECB has expressed interest for its CBDC to be usable in
an offline environment [1]]. This is crucial in case of network
failure or in areas without a reliable internet connection. A
prominent example of currency that is spent offline is cash.

This thesis concerns itself with implementing a simple
transferable digital currency on the Kotlin-IPV protocol stack
and doing a performance analysis. In accordance with the
Offline First design principles, the currency can be spent of-
fline and guarantees retroactive fraud detection. It is therefore
resilient against temporary failure of central servers, unlike
many currently deployed systems. This thesis contributes 1) a
software-implemented simple token-based transaction system

!For Diem, refer to https://www.diem.com/en-us/,
2For Kotlin-IPv8 and EVA, refer to |https://github.com/Tribler/kotlin-ipv8|
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2) a performance analysis of various bottlenecks in this system,
with a special emphasis on the Kotlin-IPv8 framework and 3)
a slightly optimized version of the EVAZ protocol [[14].

II. PROBLEM DESCRIPTION

The main difficulty with implementing offline digital cur-
rencies is solving or mitigating the double spending problem.
Double spending is the action of spending a digital unit of
value more than once, illegitimately. In a digital environment,
data is easily duplicated. Thus, digital currencies must be made
resistant against duplication of data. When transacting parties
can only communicate to those within their physical proximity,
meaning they are offfine, fraud prevention becomes difficult.
This is because they cannot consult with others about their
counterparty. For example, common financial systems rely on
banks to verify that counterparties possess enough funds to
make a transaction. When offline, parties cannot contact their
bank, and thus cannot confirm the validity of their transactions.
The double spending problem has thus far not been solved in
an offline setting, only in an online setting.

Many cryptocurrencies (e.g. Bitcoin) mitigate the problem
by utilizing global consensus [|15]]. This removes the need for a
central authority but does require near-immediate connectivity
to parts of the network. Global consensus disallows offline
transfers and is therefore not the right solution to make offline
spending possible.

Since the first proposed digital currency in 1983 (see Section
[T-A), the problem of offline spending has been explored ex-
tensively. Many offline currency schemes in the field are token-
based, as opposed to account-based. Token-based schemes
transfer tokens: monetary units that can be identified with a
serial number. By contrast, account-based schemes perform
monetary transfers by crediting and debiting accounts. The
crucial difference is that currency in token-based schemes
is identifiable, whereas in account-based schemes it is not.
A commonly used analogy is that token-based schemes are
comparable to banknotes, whereas account-based schemes are
comparable to bank deposits. A crucial lesson observed from
the literature and our main prior work (see Section ,
is that account-based systems complicate robustness measures
such as safeguarding against double spending [16].

Another major problem is that realizing a proposed digital
currency is a difficult engineering challenge. For instance,
scalability and security need not only be accounted for in the
design of a system but also in its implementation.

ITI. RELATED WORK
A. Advancements in digital currency

In 1983, Chaum introduced blind signatures in what is
widely accredited as the first paper to describe digital currency
[17]. The paper describes a novel cryptographic primitive, the
blind signature. It allows parties to sign messages without
knowing their contents. The result is that the signing party
cannot relate their own signature to the original message they
signed. With this primitive, the literature’s first digital cash
scheme was described. In this scheme, a monetary authority

guarantees the validity of payments. Due to blind signatures,
the authority cannot identify the recipient of any transaction
it verifies, thereby safeguarding consumers’ privacy. Chaum’s
cash was however non-transferable. Non-transferable e-cash
can be spent only once, after which it must be redeemed by a
trusted authority. The authority returns an equivalent amount
of cash that is spendable again.

In 1989, Okamoto introduced transferable e-cash [18].
Transferable e-cash is more like physical cash; it can be
spent repeatedly from one user to another. It does not require
a network connection to a monetary authority with every
transaction. In the same paper, divisible e-cash was introduced.
In contrast to physical cash, divisible e-cash can be spent
in smaller denominations than the piece that is owned. An
advantage of divisible e-cash is that exact payments can be
made and change is not required.

In 1995, a modification to blind signatures was proposed
that made them ‘fair’ [[19]. Most blind signature schemes
were perfectly unlinkable. Perfect unlinkability means that
no monetary authority can relate withdrawals to payments.
Therefore, these schemes allowed for a variety of crimes to
be undetectable, such as money laundering. With the introduc-
tion of ‘fair’ blind signatures, an additional and independent
authority (such as a judge) would be able to obtain information
that can be used to detect crime.

In 2008, Bitcoin was presented, widely accredited as the first
major cryptocurrency. It solves the double spending problem
probabilistically and without a central authority [15]]. Bitcoin’s
value is determined by market forces and is highly volatile.
This is in stark contrast to CBDCs, which are tethered in value
to government-issued money.

B. Eurotoken

We consider the main prior work for this thesis to be the
first Eurotoken prototype by Delft University of Technology
[20]. This digital currency is also implemented on Kotlin-IPvS.
Eurotoken is an account-based system and is non-transferable
by default. Eurotoken opted for a trusted authority to verify
transactions. It is therefore governed in a centralized manner.
The advantage of this approach in the context of CBDCs is
that it enables the respective central bank to exert control over
the network. Moreover, it provides a non-deterministic near-
immediate transaction finality.

Based upon Eurotoken and in line with many proposed
digital cash schemes, we also sacrificed governmental decen-
tralization and opted for a centralized monetary authority. By
contrast, our prototype is token-based instead of account-based
and offline transferable by design.

C. Price Stability

It is fundamental for a European CBDC to be tethered
in value to the Euro. A high price volatility like Bitcoin’s
is undesirable for a medium of exchange [21]. There are
various ways in which the value of an asset can be kept
stable. This topic has gained renewed interest with the rise
of stablecoins—cryptocurrencies that aim to be non-volatile
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Fig. 1: Graphical representation of a token. Tokens represent
monetary units of fixed value that store all their previous
recipients until they are verified by an authority.

with regards to a major non-cryptocurrency or physical asset.
There is an inverse relationship between the potential stability
of stablecoins and how much they are decentralized [22].
The strongest stabilization mechanism is collateralization by
currency or off-chain assets such as gold. By allowing free
trade between a stablecoin and its collateral at a fixed price, ar-
bitrage prevents the stablecoin’s price from fluctuating greatly.
However, off-chain assets are not traded in a decentralized way
and as such there is a trade-off between decentralization and
stability. To the best of our knowledge, no decentralized and
highly stable stablecoins exist. The prototype described in this
thesis does not have a functional exchange to keep it stable
with regards to the Euro. The implementation of this or other
means of maintaining price stability is intentionally left out of
scope.

IV. DESIGN AND ARCHITECTURE

This thesis implements a centralized CBDC prototype that
allows offline transactions with fixed-value tokens and guar-
antees retroactive fraud detection.

The proposed system requires a trusted monetary authority
that is in charge of token exchange and transaction verification.
We refer to this party as authority and identify them by their
public key. Verification is therefore a centralized operation.
The motivation for this design choice was elaborated upon in
Section

All system participants apart from the authority are clients.
They, too, are identified by their public key. It is assumed that
clients know the public key of the authority in the network.
Clients can transact tokens to each other and consult the
authority to verify the validity of their tokens. If clients cannot
connect to the authority, for instance during a power outage,
they can continue transacting but defer verification until they
can connect.

To realize retroactive fraud detection, the implemented
system requires authorities to be able to unambiguously re-
construct the sequence of owners of a token. This is done
by providing each token with a linked list of all previous
owners until its last verification. Details of this procedure are
explained further in this section.

A. Token Format

The token protocol is based upon transacting tokens. A
diagram of a token is given in Figure |1} Each token contains:

1) Serial number. An 8-byte unique token identifier.

2) Value. A 1-byte representation of the token’s worth. Like
cash, tokens have a limited number of fixed denomina-
tions. Certain byte values are mapped to certain denom-
inations; the remaining values are considered invalid.

3) Authority public key. A T4-byte public keyﬂ of the
authority that is in charge of the token (the ‘authority’).

4) Nonce. A 64-byte pseudo-random nonce used by the
authority to differentiate between differing occasions
where the same token is sent to the same recipient.

5) Recipients. A list of recipient-proof pairs in chronolog-
ical order. This list must contain at least a first pair:

a) First recipient public key. A 74-byte public keym
of the token’s first recipient after creation or vali-
dation.

b) First proof. A 64-byte signature (‘proof’) given by
the authority signing serial number, value, nonce,
and first recipient public key.

All pairs in the list are of the same format and bit-length.
The second pair (if present) contains second recipient
public key and a signature given by first recipient public
key signing first proof and second recipient public key
together. Likewise, all subsequent pairs follow the same
pattern; they contain a signature from the previous public
key in the list, signing the previous proof together with
the next public key. This signature chain corresponds to
the token changing ownership during transactions.

6) Number of recipients. A 2-byte number counting how
many recipients are in recipients. This number is used
to (de)serialize individual tokens from data files.

The initial size of a token when transferred from a monetary
authority to the first recipient adds up to 287 bytes. Each
additional recipient adds 74 4+ 64 = 138 bytes for its public
key and signature, respectively. Thus, for k£ > 0 recipients, the
size of a token in bytes is defined as:

size =287+ (k—1) - 138 (1)

When a token is transferred to the first recipient, 147 of
its bytes need to be cryptographically verified. The 140 bytes
that do not need to be verified consist of authority public key
(74 bytes), first proof (64 bytes), and number of recipients
(2 bytes). Each additional recipient adds 138 bytes that need
to be verified; 74 for its own public key and 64 for the
previous proof in the list. For k > 0 recipients, k independent
cryptographic signatures need to be verified, amounting to a
total number of bytes defined as:

bytes = 147 + (k — 1) - 138 )

When a token is verified by a monetary authority, its size
is reset to 287 bytes (see Section [[V-E). The bit-lengths of the
signatures and public keys were adapted from those used in
Kotlin-IPv8 and are not integral to the protocol’s functioning.

3Public keys in Kotlin-IPv8 are 74 bytes long: 10 bytes for a string prefix;
32 bytes for an encryption key; and 32 bytes for a verification key. Only the
latter is required for our prototype. However, Kotlin-IPv8 does not allow these
to be split by design, as parties are identified by the entire 74 bytes.



B. Token Minting

When a token is created, its serial number, value, nonce,
authority public key, and recipients are set as specified in
Section The authority stores a copy of the entire token
and sends it to the intended client.

C. Client Verification

When a client obtains a token, it verifies it in a 3-step
process. First, the client verifies that the token’s last recipient
(that is, the last public key in recipients) refers to them.
Second, the client verifies that it knows the token’s authority
public key and that this key created the token’s first proof.
Third, the client verifies the remaining chain of proofs in
recipients. The purpose of the client’s verification process is
merely to ensure that they have received an unambiguous proof
of transfer from their transaction’s counterparty. This proof can
later be used by the relevant authority to prove potential fraud.
A client deciding that a token is valid does not imply that an
authority will decide the same. The client’s verification does
however guarantee that clients victimized by fraud can proof
so eventually.

D. Client Transaction

A token’s initial recipient may choose to send it to another
client. If it does, it must append a new pair to the token’s
recipients that contains the desired recipient’s public key and
a signature combining the token’s last proof together with the
desired recipient’s public key. This is depicted in Figure

If the other client receives the token, it will verify it
as specified in Section A client that did not receive
their token from the authority directly may opt to send it
to their authority for verification. Sending a token to the
authority is done in the same manner as sending it to a client,
except that the public key of the recipient must be that of
the authority. However, clients may also be obstructed from
sending their token to the authority. Transactions can still
proceed in situations without a connection to the authority.
However, it may be that unverified tokens have been double
spent.

E. Authority Verification

The authority’s verification process is started when a client
sends them a token to verify. The verification process consists
of 6 steps:

1) The authority ensures that the incoming token has at
least 3 recipients in its recipients list. There should be
at least an initial recipient, a second recipient, and the
authority itself as the last recipient. If not, the token is
either invalid or ineligible for verification. Tokens can
contain more than 3 recipients. In such cases, the token
was spent offline. In all cases, the authority must be the
last recipient in the recipients list.

2) The authority ensures that the token’s penultimate recip-
ient is the client that sent the token in for verification.

3) The authority queries if the token is still valid. The
knowledge that the authority once signed the received

token, which can be derived from the token’s first proof,
says little about the token’s current state. The authority
compares its public key against the token’s authority
public key and queries the token’s serial number to
ensure that they are the authority that manages the token.
Then it verifies that the token is still in circulation and
not e.g. blacklisted.

4) The authority will, like an honest client, verify the chain
of proofs in the recipients list.

5) The authority will attempt to detect double spending.
It will compare the first proof of the incoming token
to the last proof of its own copy of the token. If these
are identical, double spending might have occurred but
cannot be proven (see Section and the authority
will finalize verification. Finalizing verification requires
the authority to update its own copy of the token by
appending all new recipient-proof pairs of the received
token to its recipients. The result is that the authority
owns a copy of the token that contains its entire ver-
ified history, from its initial minting to its last known
recipient.

6) The authority copies the incoming token, empties the
recipients list save for its last entry, and sends the
verified token to the desired recipient. It will also append
the desired recipient to its own recipients.

F. Double Spending Detection

In Section [IV-E]it is mentioned that the authority updates the
recipients of its own copy of a token upon a valid verification.
To detect double spending, an authority compares the last
proof of its own copy to first proof of an incoming token.
A diagram of this scenario is depicted in Figure [2] If a token
is double spent then multiple versions of the token will even-
tually reach their authority. The first time a token reaches their
authority, double spending cannot be detected and the token-
copy is updated. Subsequent times, the authority’s token-copy
already has an updated recipients list and therefore its last
proof will not correspond to the double spent token’s first proof
anymore. Thus, double spending must have occurred if the
proofs differ. If the proofs are equal, double spending might
have occurred but cannot be proven. If a double spent token
reaches the authority earlier than its legally-spent counterpart,
the illicit transaction will only be detected when a conflicting
transaction comes in.

When double spending is detected, the authority will search
for the instigator. It will find the received token’s first proof
in the recipients of its token-copy. It will then compare the
recipient-proof pairs of the token-copy with those of the
received token. Comparison starts from the pairs that contain
first proof. All pairs before it have already been verified.
Eventually, it must find two differing pairs, after which all
pairs will be different because proofs are chained to each other.
The first differing pairs are the start of the token’s split history
and prove that double spending was performed by the client
that signed them. The repercussions of implicating a client
with fraud are further discussed in Section [V-I]
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Fig. 2: The authority’s double spending detection mechanism.
In the figure, a client sent their token to the authority for
verification. The token was initially sent from the authority
to client A and reached client B after K transactions. The
authority compares its own version of the token (left) to the
incoming token (right). It detects that B double spent a token,
which was detected because proof N 4 K + 1 of the authority
was not equal to proof 1+ K + 1 of the incoming token.

G. Replay Attack Prevention

The detection mechanism of Section allows for a
replay attack in an offline environment. If a malicious sender
A were to replay sending the same token to the same receiver
B as before, said receiver would not flag this as malicious be-
havior. If B in turn were to spend this token, upon verification
of the token, B would be flagged as a double spender. When
an authority compares the transaction history of the token, it
cannot distinguish A’s first transaction to B from its second.
Thus B spending the token is the first occurrence that differs
from the authority’s history. As described in Section B
is therefore marked as a fraudster.

There exist various solutions for preventing such an attack.
One such solution is to initiate each transaction with the
receiver sending a short handshake. This handshake must
contain a number that is guaranteed or likely to not have been
used in earlier transactions between this sender and receiver.
The sender must then include this number in its transaction. If
the sender attempts to replay an old transaction, the receiver
can verify that the included number is different from the
one specified in the handshake and refuse the transaction. To
prevent the need for storing a set of previously used numbers,
a pseudo-random nonce can be securely generated for each
handshake.

There are, however, multiple solutions for preventing replay
attacks. A suitable implementation depends on the intended
use case of the digital currency and as such has been left out
of scope.

H. Threat Model

In the protocol there exists one centralized authority. All
other parties are clients and all clients are equal. All parties
are identified by their public keys. Clients need only be
online when involved in a transaction or when validating their
tokens. It is assumed that clients transacting with each other
can contact each other directly. All clients must contact the
centralized authority to finalize their transactions. If the author-
ity is unavailable, clients can continue transacting with each
other but transactions will be unverified until they successfully
contact the authority.

A malicious authority can 1) give tokens to clients at will
2) deny clients from verifying transactions and 3) conceal
double spending attempts from other clients. It cannot 1) prove
illegitimate accusations of double spending 2) transact in the
name of its clients or 3) prevent clients from making offline
transactions.

A malicious client can double spend until multiple versions
of the same token reach the authority. It cannot 1) spend tokens
that were never transacted to it 2) transact in the name of other
clients or 3) prevent other clients from making transactions.
Note that any client can see all previous recipients of its tokens
until the tokens’ last verification.

1. Anonymity & Fairness

It is expected that fraudsters cannot always be penalized
within the confines of the transaction system, as paying a
corrective fine might not always be proportionate or possible.
Penalizing fraudsters would likely require knowledge of the
person or organization behind a client’s account. This is
detrimental to clients’ privacy and anonymity. Finding a fair
way to correct fraud and penalize fraudsters was intentionally
left out of scope.

Furthermore, the described system requires aggregating a
linked list of previous owners of a token, up until the last
verification by an authority. Specifically, recipients of a token
can see all previous recipients of that token until its last
verification. This is also detrimental to privacy and anonymity.
There are digital cash schemes that provide stronger notions
of anonymity. Some schemes protect the identities of previous
recipients and provide unlinkability, such that it is also impos-
sible to relate different payments from the same client [23]].
Some schemes provide an even stronger notion of anonymity
where an adversary cannot recognize a token spent between
other clients, even if it has already owned the token [24]. It has
however been proven that an adversary can always recognize
his previously-owned tokens if they are paid back to him [24].

V. IMPLEMENTATION

We prototyped the design described in Section The
prototype is deliberately minimalist because its function is to



provide a baseline implementation that can be evaluated. It
includes only the basic facets required to transact currency per
Section It was implemented on the Kotlin-IPv8Z protocol
stack.

The IPv8 stack is typically used for connecting clients in a
peer-to-peer fashion. Kotlin-IPv8’s main use case is to provide
a networking overlay for clients on Androicﬂ and connect
them with other IPv8 clients. However, neither Kotlin-IPv8
nor our prototype rely on Android and as such it is not
used during the evaluation in Section Clients in IPv8 are
identified by their public key and not by their IP address.
Clients perform peer discovery using a gossip protocol and
form communities for application-specific purposes. These
communities are loose-knit and intended to be flexible and
resistant against high churn rates. Connections are considered
too fragile for TCP sessions. As such, IPv8 relies on UDP
and clients connect using UDP hole punching. Kotlin-IPv8,
however, is not intended exclusively for decentralized peer-to-
peer communities but also provides generic communication
utilities. Our prototype deploys these utilities for its purpose
of transacting tokens. The specified sizes for public keys
and signatures mentioned in Section were adapted from
Kotlin-IPv8.

The de facto way of transferring binary files reliably via
Kotlin-IPv8 is by using the EVA protocol [[14]. Messages not
sent through EVA provide no delivery guarantees. EVA is an
acknowledgement protocol for UDP that uses acknowledge-
ment windows to guarantee packet delivery and retransmis-
sions. We were confronted with EVA’s limitations with regards
to stability and throughput and thus opted to use our own
(slightly) modified version. Our modified versimﬂ

« Fixes a race condition that caused EVA to fail subsequent
data transfers arbitrarily.

o Uses a faster and more compact encoding of lost packet
numbers: £97% faster serialization and £95% faster
deserialization.

« Allows encryption to be disabled.

Nevertheless, in Section we will demonstrate that we
were unable to solve all problems with EVA that we encoun-
tered.

Furthermore, the implementation provides several scripts
that were used for the performance analysis that will follow
in Section [VIl

VI. PERFORMANCE ANALYSIS

We present an analysis of our prototype’s performance. We
performed our measurements between two processes on the
same host machine, to eliminate the fluctuations of network
latency. For a proper frame of reference, we place additional
emphasis on low-level functionality of the underlying Kotlin-
IPv8 framework. Experiments were performed on standard
consumer electronics: a Lenovo Thinkpad L13 with an Intel
15 CPU operating at 2.11 GHz and 8 GB of DDR4 RAM.

4For Android, see https://www.android.com.
SFor the modified version of EVA, refer to https://github.com/Tribler/kotlin-
1pv8/pull/71.
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put of only cryptographic signing and verification of tokens.

A. Cryptographic Verification

We measured the throughput of cryptographic signing and
verification operations to ascertain performance bounds of
Kotlin-IPv8 and thus the transaction protocol. The core idea
is that by stripping the implementation of all other factors,
the influence of cryptographic operations on an authority’s
throughput can be determined. All operations were performed
with Ed25519 using a Kotlin port of Libsodiunﬂ identical to
Kotlin-IPv8 [25]]. The chosen parameters were also identical
to those used in Kotlin-IPv8.

Figure [3] shows the throughput of the cryptographic opera-
tions required from an authority to sign and verify tokens in an
online setting. Per Section signing a token requires one
operation on 147 bytes. Verification requires three operations:
the authority’s initial signature; the signature of the first
recipient to the second; and the signature of the second back
to the authority.

The figure shows that throughput increases steadily with the
number of CPUs until four CPUs. Additional CPUs do not
provide a significant increase in performance, which limits
scalability significantly. In a practical scenario, a deployed
authority would certainly require the performance benefits of
parallelism beyond four CPUs. We suspect the diminishing
increase to be due to resource sharing within Libsodium,
although the exact reasons are unknown. Moreover, on a
single CPU, the token throughput of signing and verification
was only £38239 tokens per second (tokens/s) and +5840
tokens/s, respectively. Per Equation [2| this corresponds to a
data throughput of only 5.62 and 2.47 megabytes per second
(MBps).

To ascertain that the results of Figure E] were not erroneous,
we examined the throughput of cryptographic signing and
verification of an authority for arbitrary binary data. Figure [
shows the throughput of signing and verification for increasing
data sizes on a single thread. Again, we used Libsodium with

SFor Lazysodium, see https://github.com/terl/lazysodium-javal
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collapses for small data sizes. Operations on tokens are at most
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Ed25519 to mimic Kotlin-IPv8. We also measured the per-
formance of Ed25519 on two other implementations, Bouncy
Castl and IZPH The figure shows that larger file sizes are
tremendously faster to sign and verify than smaller, for all im-
plementations. It also shows that, by comparison, Libsodium
has a relatively fast implementation of Ed25519.

Per Figure [] signing has a throughput of +6.05 MBps for
files of 147 bytes. Signing 6.05 MBps is equivalent to signing
41156 tokens/s. According to Figure [3| signing tokens on 1
thread has a throughput of 38239 tokens/s. The throughput of
a verification operation on 147 bytes is 2.60 MBps, per Figure
[Z_f} Verification of a token requires three operations of 147, 138,
and 138 bytes. For simplicity, we assume an upper bound of
147 bytes per operation. Thus, per Oljg§ure M the throughput
of verifying tokens would be +=—7— = 5896 tokens/s. In
Figure 3| verifying tokens on 1 thread has a throughput of
45840 tokens/s. We thereby conclude that the measurements
obtained in Figure [3] were not erroneous.

Figure [5| shows the throughput of cryptographic verification
of an authority for an increasing number of offline recipients.
The case where the number of recipients equals 2 corresponds
to the online setting.

B. Data Transfer

Figure [0 shows the throughput of data transfers on a
range of different software layers. The majority of these
layers have no practical usage for our prototype. They do,
however, provide valuable insights in its throughput and that
of Kotlin-IPv8. We measured a native pipeline as the upper
bound of throughput on our host machine (£1652.28 MBps).
Then, we measured local UDP traffic (801.16 MBps). All
subsequent measurements use UDP and were performed on
Kotlin, which executes on the Java Virtual Machine. We first

"For Bouncy Castle, see https://github.com/bcgit/bc-java,
8For 12P, see |https://github.com/i2p/i2p.i2p.
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Fig. 5: Throughput of token verification declines for additional
recipients.

performed a measurement where we reused one UDP datagram
in memory (+£652.16 MBps). Then, we performed the same
measurement but recreated datagrams for each transmission
(£560.29 MBps). Subsequent measurements were performed
on Kotlin-IPv8 (£30.71 MBps). Figure [6] shows that switching
to Kotlin-IPv8 incurs a significant drop in throughput. For
our next measurements, we enabled Kotlin-IPv8’s encryp-
tion feature, which performs per-packet encryption (4+14.99
MBps). Finally, we measured the throughput of EVA for its
most performant configuration with encryption enabled (£8.25
MBps).

Figure [6] shows that additional software layers decrease
throughput. Most of these layers are necessary and outside the
scope of this thesis, and the respective drops unpreventable.
Within the scope of this thesis are the measurements regarding
Kotlin-IPv8 and EVA. Kotlin-IPv8 incurs the largest percentual
drop of throughput in the figure, £95%. Applications built on
Kotlin-IPv8 will invariably be limited by this.

Due to further unexpected results, we have detailed EVA

performance in Section
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Fig. 6: Throughput of various data transfer methods.

C. EVA Acknowledgement Protocol

Figure [/| shows EVA’s throughput and packet loss for
various configurations. EVA’s main configurable parameters
are the number of payload bytes per UDP packet (block
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Fig. 7: Throughput and corresponding packet loss of EVA
with encryption enabled (Figure and disabled (Figure [7b)).
Packet loss soars for increasing blocks per window when
encryption is disabled. UDP buffers were fixed at 106496
bytes.

size) and the number of blocks per acknowledgement window
(blocks per window). There is a positive correlation between
throughput and both block size and blocks per window, save
for the last two measurements of Figure [7bl From Figure [7D] it
can also be observed that all measurements of 256 blocks per
window show subpar throughput when encryption is disabled.

To explain the sudden drop in throughput, Figure [/] also
shows the measurements’ corresponding packet loss. From
the figures it can be observed that packet loss increases as
throughput decreases. Our measurements were performed on
a single host, so external routing devices cannot account for
the anomaly. The fact that none of the measurements in Figure
(where encryption is enabled) suffer from packet loss
indicates that processing speed is not the bottleneck either;
enabling encryption is strictly more intensive than not. We
therefore hypothesized the drop to be caused by UDP buffers
overflowing.

Figure [8| shows that this is indeed the case. We fixed
blocks per window at 256 (corresponding to the slowest
measurements in Figure[/)) and repeated our measurements for
varying UDP buffer sizes. The leftmost measurement shows
results for a buffer size of 106k bytes, our initial configuration.
The figure shows that packet loss decreases as buffer size
increases. In turn, there is a positive correlation between buffer
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Fig. 8: EVA’s throughput increases and its corresponding
packet loss decreases when UDP buffers are expanded. The
number of blocks per window was fixed at 256, correspond-
ing to the slowest measurement in Figure [/| Encryption is
disabled.

size and throughput. It can also be observed that as packet loss
nears 0%, increasing buffer size has no effect.

From inspection of the source code, we found that Kotlin-
IPv8’s EVA implementation attempts to transmit an entire
window’s worth of data at once. For example, at 256 blocks
per window and blocks of 1200 bytes, this results in a series of
consecutive transmissions amounting to 256 - 1200 = 307.2kB
excluding overhead. This transmission causes buffer overflows
and thereby packet loss. We found that enabling encryption
acts as an unintended form of flow control. Due to reduced
throughput, the buffer does not fill up. We have left improving
EVA with proper flow control out of scope.

D. End-to-end Token Throughput

Table [[] shows the end-to-end throughput of the prototype
for one thread in an online setting, in tokens per second. The
measurements show a full round trip of a token, from its
signing to its validation. This process is displayed in sequential

TABLE I: End-to-end token throughput

MBps

Tokens/s Signatures/s

Authority signs
tokens for
recipient #1
Recipient #1
receives tokens
from authority
Recipient #1
validates tokens
from authority
Recipient #2
receives tokens
from recipient #1
Recipient #2
validates tokens
from recipient #1
Authority
receives tokens
from recipient #2
Authority
validates tokens
from recipient #2

37663 - -

43523 1249 | -

17477 - 17477

34223 14.54 | -

8797 - 17594

23452 13.20 | -

5143 - 15429
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Fig. 9: Flame graph of an authority verifying tokens.

order from top to bottom. From the table, it can be observed
that the throughput of transfer and verification declines as
the tokens grow. As defined by Equation [T} each transaction
adds 138 bytes to a token. However, the number of signatures
verified per second (signatures/s) is relatively constant. The
majority of the execution time in the verification process
goes to verifying signatures. Thus, if a token grows with a
factor N, it will be £ N times slower to verify. Therefore, we
can establish that with our setup, the authority’s verification
throughput is at most roughly £17000 signatures per second
per thread, regardless of the size of the tokens it verifies.

E. Verification Flame Graph

Figure 9| shows a flame graph of an authority verifying
tokens and returning them to their owner [26]. From the
figure it can be observed that token verification was account-
able for £63% of the workload on the CPU. Verifying the
cryptographic signatures of incoming IPv8 packets accounted
for 14% of the workload. Per Section the authority
returns verified tokens to their owners. From Figure [J] it can
be observed that signing these tokens accounted for +8%,
and signing the resulting IPv8 packets accounted for +4%
of the workload. The remaining £11% was accounted for by
coroutine scheduling, logging, and miscellaneous tasks.

From the results it is apparent that cryptographic signing and
verification dominate the computational load of an authority.
In total, cryptographic operations accounted for +89% of the
workload. To increase an authority’s throughput, it is therefore
crucial to accelerate and parallelize cryptography first and
foremost. Currently, parallelization of cryptography is limited,
as shown in Figure [3]

VII. CONCLUSION

This thesis describes a token-based transaction protocol and
its implementation on the Kotlin-IPv8 protocol stack. The pro-
tocol allows funds to be spent in an offline setting and provides
retroactive fraud detection. Fraud can be detected because each
token maintains a list of its previous recipients. Clients can
submit their tokens to a monetary authority for verification.
Upon verification, the authority stores the list of previous

recipients. Each time a token is sent in, its list is compared to
the list stored by the authority. Discrepancies between the lists
prove that double spending was done and reveal by whom.
Many facets of the protocol require improvement before it
can be used as a practical digital currency. The protocol is
not intended for deployment but instead serves as a trial for
building digital currencies on Kotlin-IPv8.

The performance analysis of our prototype emphasizes
various areas where Kotlin-IPv8 requires improvements before
it can support a highly scalable digital currency. The analysis
shows that:

1) The throughput of cryptographic operations does not
scale with the number of available CPUs.

2) Adding Kotlin-IPv8 as a semantic layer on top of
Kotlin’s own UDP stack reduces throughput by £95%.

3) Kotlin-IPv8’s implementation of the EVA protocol over-
looks the system’s available UDP buffers and experi-
ences massive packet loss for certain configurations.

Nevertheless, the performance analysis also shows that
cryptographic signing and verification account for the majority
of an authority’s computational load. Thus, for improving an
authority’s verification throughput in the current prototype, we
recommend accelerating its cryptographic operations.
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