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Estimation and reduction of random noise in mass anomaly

time-series from satellite gravity data by minimization of

month-to-month year-to-year double differences

Pavel Ditmar, Natthachet Tangdamrongsub1, Jiangjun Ran2,∗, Roland Klees∗

Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands

Abstract

We propose a technique to regularize a GRACE-based mass-anomaly time-series in order to (i)

to quantify the Standard Deviation (SD) of random noise in the data, and (ii) to reduce the level

of that noise. The proposed regularization functional minimizes the Month-to-month Year-to-

year Double Differences (MYDD) of mass anomalies. As such, it does not introduce any bias in

the linear trend and the annual component, two of the most common features in GRACE-based

mass anomaly time-series. In the context of hydrological and ice sheet studies, the proposed

regularization functional can be interpreted as an assumption about the stationarity of climato-

logical conditions. The optimal regularization parameter and noise SD are obtained using Vari-

ance Component Estimation. To demonstrate the performance of the proposed technique, we

apply it to both synthetic and real data. In the latter case, two geographic areas are considered:

the Tonlé Sap basin in Cambodia and Greenland. We show that random noise in the data can

be efficiently (1.5 – 2 times) mitigated in this way, whereas no noticeable bias is introduced.

We also discuss various findings that can be made on the basis of the estimated noise SD. We

show, among others, that knowledge of noise SD facilitates the analysis of differences between

GRACE-based and alternative estimates of mass variations. Moreover, inaccuracies in the latter

can also be quantified in this way. For instance, we find that noise in the surface mass anomalies

in Greenland estimated using the Regional Climate Model RACMO2.3 is at the level of 2 – 6 cm

equivalent water heights. Furthermore, we find that this noise shows a clear correlation with the

amplitude of annual mass variations: it is lowest in the north-west of Greenland and largest in

the south. We attribute this noise to limitations in the modelling of the meltwater accumulation

and run-off.
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1. Introduction1

The Earth’s system is characterized by on-going large-scale mass transport. In most of land2

areas, it is associated with various hydrological processes. An exception are the polar regions,3

where the dominant contributors are ice sheets and Glacial Isostatic Adjustment (GIA).4

An accurate quantification of large-scale mass-transport is of major importance in various5

applications, including water management, climate science, and solid Earth geophysics. Satellite6

Gravimetry (SG) is a powerful tool to monitor large-scale mass transport. The first satellite7

mission suitable for that purpose – Gravity Recovery and Climate Experiment (GRACE) – was8

launched in 2002 (Tapley et al., 2004). In the first instance, SG data are used to compute time-9

series of the Earth’s gravity field solutions. Typically, one solution per month is obtained. Each10

of them consists of a set of spherical harmonic coefficients complete to some maximum degree11

(usually between 60 and 120). After appropriate processing (see, e.g., Wahr et al., 1998; Ditmar,12

2018), such solutions may yield a time-series of mass anomalies within a region of interest, i.e.,13

the differences between the instantaneous amount of mass at (or near) the Earth’s surface and the14

corresponding long-term mean value. Currently, the GRACE mission is not operational anymore,15

but its successor – GRACE Follow-On (GFO) – is scheduled for launch in early 2018 (Flechtner16

et al., 2014, https://gracefo.jpl.nasa.gov).17

Mass anomalies extracted from SG data suffer from inaccuracies. A part of the error bud-18

get consists of random noise propagated from the original satellite observations via spherical19

harmonic coefficients. Such noise is not time-correlated and may be quite strong, especially if20

the target region is small. The estimated mass anomalies may suffer also from systematic dis-21

turbances. For instance, various filters are typically used to reduce noise in spherical harmonic22

coefficients (Wahr et al., 1998; Han et al., 2005; Wouters and Schrama, 2007; Swenson and Wahr,23

2006; Kusche, 2007; Klees et al., 2008; Siemes et al., 2013). Unfortunately, filters also distort24

the signal of interest, introducing among others leakage errors.25

The random and systematic errors mentioned above may complicate the usage of SG-based26

mass anomaly estimates in practice. For instance, these errors make it more problematic to27

estimate the quality of a geophysical model describing mass transport of a certain type when28

SG is used as a source of independent information. This is because the differences between the29

geophysical model and SG-based estimates will be contaminated by errors in the latter estimates30

themselves. This may be particularly harmful if errors in SG-based estimates are comparable to31

or exceed errors in the geophysical model.32

With this article, we present a novel procedure that allows for: (i) quantifying the level of33

random noise in a mass anomaly time-series based on SG data; and (ii) reducing this level. The34

basic properties of the proposed procedure are as follows:35

• It is based on the Tikhonov regularization concept (Tikhonov and Arsenin, 1977) and does36

not require an explicit parameterization of the signal in the time domain, which makes the37

procedure very flexible38

• A new variant of the regularization functional is proposed, which minimizes the month-39

to-month year-to-year double differences in order to keep seasonal variations and linear40

trends (the dominant features of many mass transport processes) untouched, so that the bias41

introduced by the regularization is reduced.42

• Known stochastic properties of random noise (e.g., time-dependent standard deviation or43

full error variance-covariance matrix) can be accounted for in the statistically optimal way44
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• The optimal regularization parameter is computed by Variance Component Estimation45

(VCE) (Koch and Kusche, 2002), which makes the procedure not only flexible, but also46

fully automatized.47

• VCE allows also for a re-estimation of the random noise level in the original SG-based48

estimates.49

The ability of the procedure to quantify the level of random noise in a mass anomaly time-50

series from the time-series itself makes it particularly valuable when SG is used for the validation51

of a geophysical model. Knowledge of this level allows for a quantification of the contribution of52

random noise in SG-based estimates to their differences with respect to the time-series subject to53

validation. Then, it is easy to estimate the Standard Deviation (SD) of remaining noise, which is54

composed of systematic errors in SG estimates and noise in the geophysical model assuming that55

remaining noise is not correlated with random noise in SG estimates. This opens the door for56

the quantification of noise in the geophysical model alone (since the contribution of systematic57

errors in SG estimates can be assessed by, e.g., a numerical experiment).58

The proposed procedure has been already successfully used in a number of studies: to assess59

the performance of a novel variant of a so-called mascon approach in the context of Green-60

land Ice Sheet monitoring with SG (Ran et al., 2017); to calibrate the error covariance matrices61

of degree-1 and C20 spherical harmonic coefficients estimated from a combination of GRACE-62

based monthly solutions and an ocean bottom pressure model (Sun et al., 2017); as well as to63

demonstrate the added value of a novel technique for GRACE data processing by considering the64

estimated mass anomalies in Mississippi River basin and in Greenland (Guo et al., 2018). In this65

article, we present an in-depth analysis of the proposed techniques, including an open discus-66

sion of its strong points and limitations. We focus on two geographical areas as representative67

examples. The first one is the Tonlé Sap basin (Cambodia), which is subject to large seasonal68

and inter-annual mass variations of hydrological origin. The other area is Greenland, where a69

combination of snow fall and ice mass loss results in strong seasonal mass variations combined70

with large negative long-term trends. The two examples were deliberately chosen to demonstrate71

that the proposed methodology has a broad spectrum of potential applications. Among others,72

we discuss how the aforementioned ”remaining noise” can be quantified and how this informa-73

tion can be used to know more about a mass anomaly time-series alternative to the SG-based74

one. In addition, we isolate the ”remaining noise” in the differences between regularized SG75

estimates and the alternative time-series. This allows us to quantify the level of random noise in76

SG estimates after regularization and, therefore, to assess how efficiently that noise is damped77

by the proposed procedure.78

The structure of the article is as follows. Sect. 2 contains a description of the proposed reg-79

ularization procedure. In Sect. 3, we apply the developed procedure to mass anomaly time-80

series based on simulated and real GRACE data. Among others, we discuss in detail how the81

SD of ”remaining noise” and the reduction of random noise by regularization can be quantified82

(Sect. 3.1.2). Furthermore, realistic numerical simulations are conducted in order to support real83

data processing and make a comprehensive assessment of performance of the proposed regular-84

ization scheme. Sect. 4 contains a discussion and conclusions.85

2. Theory86

Mass anomaly time-series H
(obs)
i

based on SG data may contain gaps and strong noise. The87

proposed technique allows for a quantification and reduction of the noise level, as well as for fill-88
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ing in data gaps, if they are present. To that end, the Tikhonov regularization concept (Tikhonov89

and Arsenin, 1977) is used. To simplify the presentation of the method, we assume that the reg-90

ularized mass anomaly time-series is a continuous function Ĥ(t), where t is time in years. The91

corresponding equations for discrete time-series are provided in Appendix A. In the actual imple-92

mentation of the proposed technique, the discretization of the original and regularized time-series93

is always one month.94

We postulate that the regularized time-series Ĥ(t) minimizes the penalty functional95

Φ[H] =
∑

i

(

H(ti) − H
(obs)
i

)2

+ αΩ[H], (1)

where ti is the time of the i-th observation, α is the regularization parameter, and Ω[H] is the96

regularization functional. The latter depends on the function H(t) and its derivatives up to a given97

order. For simplicity, we assume here that noise in the input data is white. A generalization to98

arbitrary Gaussian noise is straightforward (see Appendix A).99

The highest order of the derivatives of H(t) used in the definition of the regularization func-100

tional defines the order of that functional. A commonly-used Tikhonov regularization functional101

is the zero-order functional102

Ω[H] =

∫

(H(t))2 dt, (2)

which requires that the target function Ĥ(t) is as close to zero as possible. As an alternative, the103

first-order functional104

Ω[H] =

∫

(

H′(t)
)2

dt (3)

(where H′(t) is the time-derivative of H(t)) is used frequently. This functional tries to make105

the unknown function the smoothest possible one. In the context of GRACE data processing, a106

somewhat similar idea was applied in the computation of mascon solutions (see, e.g., Luthcke107

et al., 2006, 2013). Both zero- and first-order functionals inevitably bias the solution, since108

they penalize all signals (an exception is a constant, which is not penalized by the first-order109

functional). This makes their application to mass anomaly time series sub-optimal.110

Many mass anomaly time-series typically show a pronounced annual periodicity; the temporal111

behaviour of mass anomalies in neighboring years is rather similar. This applies to, e.g., most112

signals of hydrological origin, as well as to signals related to the part of an ice sheet that is113

subject to summer melt. Therefore, we believe that a regularization functional that takes this114

periodicity into account would be a more natural choice when estimating mass anomalies. The115

most straightforward way to design such a regularization functional is to minimize the year-to-116

year differences of mass anomalies:117

Ω[H] =

K−1
∑

k=1

1
∫

0

(hk+1(t) − hk(t))2 dt, (4)

where K is the total number of years considered and hk(t) is by definition the mass anomaly in118

the k-th year (t ∈ [0; 1]; hk(1) = hk+1(0) due to the continuity of H(t); we remind that t is time in119

years).120

Unfortunately, the regularization functional of Eq. (4) penalizes an inter-annual variability of121

mass anomalies. This is a weak point whenever such a variability is present. This holds true, for122
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instance, for many hydrological processes (particularly, in areas where a long-term depletion of123

groundwater stocks takes place), as well as for ice sheets and mountain glaciers, many of which124

are subject to a long-term mass loss nowadays. Furthermore, a GIA-related signal may also be125

responsible for inter-annual mass variations (namely, long-term nearly-linear trends). Therefore,126

we propose to minimize the year-to-year difference not between mass anomalies themselves but127

between their time-derivatives:128

Ω[H] =

K−1
∑

k=1

1
∫

0

(

h′k+1(t) − h′k(t)
)2

dt. (5)

After discretization, this reduces to a minimization of Month-to-month Year-to-year Double Dif-129

ferences (MYDD). Obviously, such a functional does not penalize year-to-year differences in130

the presence of an arbitrary (but constant) offset between mass anomalies in neighbouring years.131

The regularization functional of Eq. (5) is exploited here.132

In the context of hydrological and ice sheet studies, the regularization functional of Eq. (5) has133

a physical interpretation. According to the mass balance equation, the rate of mass change in a134

particular river basin or ice drainage system is equal to the difference between mass gain (i.e.,135

precipitation) and mass loss (e.g., due to evaporation, transpiration, sublimation, water run-off,136

or ice discharge). Thus, the proposed regularization functional of Eq. (5) does not penalize the137

mass anomaly signals that reflect stationary climatological conditions (i.e., when the mass gains138

and mass losses per calendar month do not change from year to year).139

To find the optimal regularization parameter α, we propose to use Variance Component Es-140

timation (VCE). A brief description of this method, adapted from (Koch and Kusche, 2002), is141

provided in Appendix A. An advantage of VCE is that it not only provides the optimal regular-142

ization parameter, but also allows the level of noise in the input data to be quantified.143

To illustrate the behaviour of the regularization functional of Eq. (5), we consider a simple144

numerical example. Let the true time-series H(t) covering a 3-year time interval be analytically145

defined as146

H(t) = A sin 2πt +Ct, t ∈ [0; 3], (6)

where A = 1 cm in terms of Equivalent Water Height (EWH) and C = 0.5 cm/yr, see Fig. 1.147

Furthermore, the observations are assumed to be noise-free and cover only the first and the sec-148

ond year of the considered time interval, where the sampling rate is one month. The adopted149

regularization scheme allows the full 3-year time-series of mass anomalies to be restored. Since150

the seasonal variability of the considered function does not change, the proposed regularization151

scheme fully recovers it on the basis of the available data, without introducing any bias (Fig. 1).152

In particular, the linear trend is fully recovered, which is due to the fact that the requirement of153

similarity in successive years is applied to the time-derivatives of mass anomalies rather than to154

mass anomalies themselves.

Fig.

1

155

It can be proven analytically that any function H(t) not penalized by the regularization func-156

tional of Eq. (5) is a combination of arbitrary seasonal variations and a linear trend (see Appendix157

B). This means that the class of functions that can be processed with the proposed regulariza-158

tion without suffering from a bias is relatively wide. This may also have a negative effect. If a159

time-series is too short or noise is too strong, the regularized time-series may contain pronounced160

periodic features that are purely noise-driven and do not represent a real signal. To illustrate this,161

we consider a true function H(t), which comprises only a linear trend over a 3-year time interval:162

H(t) = C t, t ∈ [0; 3], (7)
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where C = 0.5 cm/yr (EWH). The observations simulated with a one-month sampling rate cover163

the entire time interval. They are artificially contaminated with a relatively strong white noise164

of 1-cm EWH standard deviation (Fig. 2, top plot). By chance, the simulated observations in165

November of each year suffer from a positive noise value. As a result, the regularized time-166

series shows a strong peak in this month. It is worth adding that the VCE estimate of the data167

noise SD remains reasonable: 1.020 cm EWH. Thus, the estimation error is only 2%.168

Next, we repeat the previous experiment, using a two-times longer set of synthetic observa-169

tions: six years instead of three. All the other parameters of the experiment are kept as before. In170

that case, the regularized time-series still suffers from data noise, but its impact is dramatically171

reduced (Fig. 2, bottom plot). Remarkably, the VCE estimate of the noise SD of 0.988 cm EWH172

is even more accurate than in the previous experiment. This differs from the actual noise SD by173

only 1.2%. Fig.

2

174

3. Application175

In this section, we apply the proposed regularization procedure to mass anomaly time-series176

in two geographical areas: (i) the Tonlé Sap basin in Cambodia and (ii) Greenland. In both177

cases, the processed time-series are based on real GRACE data. In Sect. 3.1, we provide general178

information about the GRACE data, and the data analysis approach (particularly, about quanti-179

fying the reduction of random noise in GRACE data after regularization). In Sections 3.2 and180

3.3, we present the results for the Tonlé Sap basin and Greenland, respectively. The structure of181

both sections is similar. First, we discuss the data processing aspects specific for the considered182

geographical area. Second, we discuss the results of a numerical study, where the behaviour of183

actual mass anomalies is reproduced. Third, we consider the results of real data processing.184

3.1. General information185

3.1.1. Input data186

The space segment of the GRACE mission consisted of two twin satellites, which followed187

each other in a nearly the same polar orbit with a 200-km separation. The satellites were188

equipped, among others, with a K-Band Ranging (KBR) system, which allowed temporal varia-189

tions in the inter-satellite separation to be measured with micrometer-level precision. A number190

of research centres process GRACE observations to produce a time-series of monthly gravity191

field solutions, which form the core of the so-called level-2 data product of the GRACE mission.192

In our study, we make use of the solutions produced at the Center for Space Research (University193

of Texas at Austin) (Bettadpur, 2012). Each of these solutions is formed by a set of spherical har-194

monic coefficients complete either to degree 60 (this variant was used to estimate mass anomalies195

over the Tonlé Sap basin) or to degree 96 (this variant was used for Greenland). Degree-1 coef-196

ficients are absent in the GRACE level-2 data product. Therefore, an independently computed197

time-series of these coefficients (Swenson et al., 2008) was exploited. Furthermore, the spherical198

harmonic coefficient C2,0 was replaced in each GRACE monthly solution by the one estimated199

from satellite ranging data (Cheng and Tapley, 2004) due to an insufficient accuracy of the former200

one.201

Mass anomaly estimates based on GRACE data are contaminated by random noise. The noise202

level increases rapidly with decreasing size of the area of interest. This noise is not correlated203

in the time domain, but shows a strong spatial correlation, which reflects, among others, the204

anisotropic sensitivity of GRACE KBR observations. They sense the along-track (North-South)205
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component of the mass anomaly gradient much better than the cross-track (East-West) compo-206

nent. As such, random noise in mass anomaly estimates depends also on the shape of the area207

of interest: an area elongated is the East-West direction is a much more favourable study object208

than an area elongated in the North-South direction. In addition, random noise increases towards209

the equator due to a lower density of satellite groundtracks, as well as due to small intersection210

angles of ascending and descending tracks, which makes the sensitivity of measurements partic-211

ularly anisotropic. State-of-the-art data processing in the spatial domain was applied to produce212

mass anomaly estimates with the lowest possible noise level. Further details are provided in213

sections 3.2.1 (Tonlé Sap basin) and 3.3.1 (Greenland).214

3.1.2. Analysis of results215

For both study areas, GRACE-based mass anomaly time-series are compared with reference216

ones, which are obtained with other techniques. The points of our special attention are: (i) quan-217

tification of random noise in GRACE data; (ii) the bias introduced into the data by the proposed218

regularization procedure; and (iii) reduction of noise in GRACE data after regularization. In a219

simulated experiment, an estimation of the noise SD after regularization is straightforward. In220

an experiment with real data, a reference dataset is needed. Doing so, we follow a two-step221

procedure. In the first step, we analyse the difference between the original GRACE data set222

(i.e., the data set not subject to any interpolation or regularization) and the reference one. These223

differences reflect (i) random noise in GRACE data and (ii) ”other” errors, which may include in-224

accuracies of the reference data, as well as systematic errors in GRACE data (for instance, those225

due to signal leakage). We assume that random noise and ”other” errors are not cross-correlated,226

so that227

∆
2
orig
= σ

2
GRACE-orig

+ σ
2
other
, (8)

where ∆orig is the rms difference between GRACE and reference data, σGRACE-orig is the SD of228

random noise in the original GRACE data (which is estimated using VCE) and σother is the SD of229

the other errors. This allows the SD of ”other” errors to be estimated as230

σother =

√

∆
2
orig − σ

2
GRACE-orig. (9)

In the second step, we analyze the difference between the regularized GRACE data and the231

reference data. Assuming that the effect of regularization on the systematic errors in GRACE232

data is negligible, we can state that233

∆
2
reg
= σ

2
GRACE-reg

+ σ
2
other
, (10)

where ∆reg is the rms difference between the two data sets and σGRACE-reg is the SD of random noise234

in the regularized GRACE data. Eq. (10) allows the latter noise to be quantified as235

σGRACE-reg =

√

∆2
reg
− σ

2
other. (11)

We use the quantity236

σGRACE-reg

σGRACE-orig

× 100% (12)

to describe the reduction of random noise in a particular GRACE dataset due to regularization.237

Finally, knowledge of ”other” errors imposes an upper limit for possible errors in the reference238

data and in systematic errors in GRACE data. If there are reasons to believe that the contribution239

of the latter errors is minor, the estimateσother can be used to quantify the accuracy of the reference240

data themselves.241
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3.2. Tonlé Sap basin242

Tonlé Sap basin located in Cambodia has an area of 82 × 103 km2. It surrounds the Tonlé243

Sap Lake, which is the largest freshwater lake in Southeast Asia. The region is characterized by244

monsoon climate, the rainy season lasting from May to September or early October. As a result,245

a flood event takes place in the second half of each year, usually reaching the peak in October.246

3.2.1. Data preparation247

In this study, we use two time-series of mass anomalies over the Tonlé Sap basin: a GRACE-248

based and a reference one. Both time-series were prepared by one of the co-authors and exploited249

earlier in (Tangdamrongsub et al., 2016).250

The time-series of GRACE-based mass anomalies is based on monthly gravity field solutions251

pre-processed as explained in Sect. 3.1.1. At the next step, the solutions were cleaned from along-252

track artefacts by means of the de-striping procedure (Swenson and Wahr, 2006) and smoothed253

with a Gaussian filter of 350-km half-width (Jekeli, 1981; Wahr et al., 1998). After that, the254

smoothing effect of the Gaussian filter was mitigated by a signal restoration technique (Chen255

et al., 2014). Finally, the (unregularized) time-series of monthly mass anomalies within the Tonlé256

Sap basin was computed (Wahr et al., 1998). Mass anomalies in the months without GRACE data257

were obtained by means of a cubic polynomial interpolation, using the Matlab function interp1.258

Further details regarding the adopted data processing scheme can be found in (Tangdamrongsub259

et al., 2016).260

The reference estimates of mass anomalies in Tonlé Sap basin were obtained on the basis261

of surface reflectance data collected by the Moderate-Resolution Imaging Spectroradiometer262

(MODIS) instrument on board Terra and Aqua satellites (Vermote et al., 2011). The reflectance263

data were used to estimate the mean inundated area within the Tonlé Sap basin in each month.264

A comparison of those estimates with GRACE-based mass anomalies allowed an empirical rela-265

tionship between the two time-series to be established:266

H(x, t) = a0 + a1 x(t) + a2 e−
x(t)

1000 + a3 cos 2πt + a4 sin 2πt, (13)

where t is time in years (zero time being at the beginning of a year), H(t) is mean mass anomaly267

within the basin in cm EWH, x is inundated area in km2, and a0, ... a4 are constant coefficients268

obtained by means of the linear regression: a0 = −0.54, a1 = 1.4 × 10−3, a2 = −16.2, a3 =269

−4.8, and a4 = −9.2. The last two terms in Eq. (13) were needed to take into account seasonal270

variations in the soil moisture content (Tangdamrongsub et al., 2016).271

In our study presented below, we use as input unregularized mass anomaly estimates in the272

time-interval (Jan. 2003 – Oct. 2014). To improve the consistency between the GRACE- and273

MODIS-based mass anomalies, we have estimated their mean values in the considered time inter-274

val (the months with no GRACE data being excluded in both cases). After that, the corresponding275

mean value has been subtracted from each data set. The resulting GRACE- and MODIS-based276

time-series can be seen in Fig. 3 as blue dots and red lines, respectively. They both show a277

clear seasonal variability, with the maximum in October. In the first half of the considered time278

interval (i.e., 2003 – 2008), about the same annual pattern is visible with a peak amplitude in279

the range 25 – 30 cm EWH. In the second half of the considered time interval (2009 – 2014), a280

strong inter-annual variability is observed. In odd years (2009, 2011, and 2013), the peak mass281

anomaly reaches 40 cm EWH, which is substantially above the average peak level observed in282

2003 – 2008. In even years (2010, 2012, and 2014), the peak anomaly reaches only about 20 cm.283

Such an inter-annual variability poses a challenge for the proposed procedure, since the latter is284

tailored to scenarios when seasonal variations in neighbouring years are similar. Fig.

3

285
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3.2.2. Numerical study286

The time-series of mass anomalies is the Tonlé Sap basin is mimicked by a quasi-periodic287

function H(t) that reaches minimum and maximum in April and October of each year, respec-288

tively. In 2003 – 2008, the signal amplitude stays at the same middle level Am. In 2009-2014, the289

signal amplitude is year-dependent: it stays at a high level Ah in odd years and at a low level Al290

in even years. More specifically:291

H(t) = c + A[1 − cos(2πt − ϕ)], (14)

where292

A =



























































Am in Jan.2003–Mar.2009,

Ah in Apr.2009–Mar.2010,

Apr.2011–Mar.2012,

Apr.2013–Mar.2014;

Al in Apr.2010–Mar.2011,

Apr.2012–Mar.2013,

Apr.2014–Oct.2014.

(15)

The phase ϕ is set equal to 1.8326, which corresponds to the mid of April (the month when293

the mass anomalies are the lowest). The numerical values of the coefficients c, Am, Ah, and294

Al are estimated from the mass anomalies based on real GRACE data with a linear regression:295

c = −21.42 cm; Am = 20.53 cm; Ah = 27.28 cm; and Al = 17.31 cm. The simulated time-296

series is contaminated by pseudo-random zero-mean Gaussian white noise with a SD of 4.2 cm,297

which is consistent with our estimation of noise in real data processing (see Sect. 3.2.3). To298

make the results more representative, each numerical experiment is repeated with 1000 different299

noise realizations. The major outcome of each experiment is: (i) an estimate of the noise SD in300

the original data time-series; (ii) the noise SD after regularization; and (iii) the bias introduced301

by regularization. Noise after regularization is defined as the difference between the regularized302

noisy time-series and the true one. It is a combination of regularized random noise and the303

bias of the true signal introduced by regularization. To quantify the latter, we re-estimate the304

signal amplitudes from the regularized time-series with the linear regression, and then subtract305

the true amplitudes. For each estimate, we report the mean over the 1000 realizations and the306

corresponding SD.307

In the first experiment, the time interval 2003 – 2008 is considered. In this time interval, the308

true signal is exactly periodic, which is an ideal case for the proposed regularization procedure.309

In this experiment, the estimate of the random noise SD is very close to the true value, whereas310

the bias introduced by the regularization is negligible (Table 1). The reduction of data noise is311

quite substantial: the noise SD after regularization is only 44% of the original one.
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In the second experiment, we consider the time interval 2009 – 2014, when the true signal313

shows a substantial inter-annual variability. As a result, the SD of noise in the original data is314

estimated less accurately (in average, it is under-estimated by about 15%: see Table 1). Further-315

more, a moderate bias is introduced (about 5% of the difference between the high amplitude Ah316

and the low amplitude Ah). The noise reduction due to regularization is still substantial (though317

more modest than in the first experiment): the SD of noise after regularization is 73% of the318

original one.319

The third experiment covers the entire time interval 2003 – 2014. In this experiment, the be-320

havior of the signal component that does not follow the annual periodicity (and, therefore, is321
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penalized by regularization) is different over the years: it is absent in the first half of the consid-322

ered time interval and relatively large in the second half. As a result, regularization introduces323

a bias into the Ah and Al signal amplitudes, which is larger than in the second experiment: in324

average, about 14% of the difference Ah − Al (see Table 1). On the other hand, the noise SD of325

the original data is estimated much more accurately than in the second experiment: in average,326

it is underestimated by only 2%. We see two factors that may lead to that improvement. First, it327

is a longer duration of the considered time-series, which makes the VCE procedure more robust328

(there is a less chance that a part of random noise shows a periodic behaviour and, therefore,329

escapes the quantification; see also the discussion at the end of Sect. 2). Second, it is the absence330

of a non-annual signal in the first half of the considered time interval. As a result, at least half331

of the considered data set offers the ideal conditions for the quantification of random noise. To332

separate the contribution of these two factors, we conduct another numerical experiment.333

The time interval considered in the fourth experiment is the same as in the third one: 2003 –334

2014. The true signal, however, experiences inter-annual variations over the entire time interval,335

i.e, the expression Eq. (15) describing the signal amplitude is modified as follows:336

A =




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
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




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
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










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
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










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
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



























Ah in Apr.2003–Mar.2004,

Apr.2005–Mar.2012,

Apr.2007–Mar.2008,

Apr.2009–Mar.2010,

Apr.2011–Mar.2012,

Apr.2013–Mar.2014;

Al in Jan.2003–Mar.2003,

Apr.2004–Mar.2005,

Apr.2006–Mar.2007,

Apr.2008–Mar.2009,

Apr.2010–Mar.2011,

Apr.2012–Mar.2013,

Apr.2014–Oct.2014.

(16)

It turns out that now, the noise SD is estimated more accurately than in the second experiment:337

the under-estimation is reduced from 15% to 10% (Table 1). Still, this estimate is much less338

accurate than the one obtained in the third experiment. This means that the accurate estimation339

of the noise SD in the third experiment is mostly explained by the absence of an inter-annual340

signal in 2003 – 2008.341

Finally, we note that the level or random noise in all the numerical experiments presented so342

far is relatively high: 4.2 cm EWH or 42% of the difference between the high amplitude Ah and343

the low amplitude Al. One may ask how the performance of the proposed procedure depends344

on the signal-to-noise ratio. In order to shed light on this issue, we conduct the fifth numerical345

experiment. It is identical to the third one, but the noise SD is reduced from 4.2 to 2.0 cm. The346

reduction of the noise level makes its estimation with the proposed procedure more difficult:347

the resulting estimate is, in average, about 20% lower than the actual noise level (see Table 1).348

Furthermore, the reduction of the noise level due to regularization is more modest than in any of349

the previous experiments: the resulting noise SD is 77% of the original one. On the other hand,350

the bias is lower than before: less than 3% of the difference Ah − Al.351

3.2.3. Regularization of mass anomalies based on real GRACE data352
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Here, we use the time-series of GRACE-based mass anomalies excluding the months when353

original GRACE data do not exist (that is, the results produced by interpolation are ignored).354

In line with the findings of the numerical study, the obtained results look satisfactory, including355

the time interval 2009 – 2014 (black lines in Fig. 3). A closer inspection still reveals some bias356

introduced by the regularization: the peak values in the year of extreme flood events (2009, 2011,357

and 2013) become smaller, whereas the peak value in the dry year 2010 becomes larger. This358

effect is, however, minor. At the same time, regularization clearly reduces random noise in the359

original GRACE-based estimates.360

The statistics related to GRACE and reference mass anomaly estimates, as well as to their361

differences, is summarized in column 3 of Table 2. Just like in the numerical study, we also split362

the entire time interval under consideration into two sub-intervals: (I) 2003 – 2008 and (II) 2009363

– 2014. Table 2 reports the results both for the individual sub-intervals and for the total interval364

(I+II).

Ta-
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The rms difference between the GRACE (non-regularized) and reference mass anomalies is366

about 6 cm EWH, the results for sub-intervals I and II being very similar. At the first glance, this367

could be interpreted as an evidence of a similar accuracy of the time-series within the entire time368

interval under consideration. A further analysis shows, however, that this is not the case. VCE369

reveals that the noise SD of the un-regularized GRACE time-series changes in time substantially:370

it exceeds 5 cm EWH in the first sub-interval but drops more than two times in the second time371

interval. According to the findings of the numerical study, this difference can be partly explained372

by the presence of inter-annual signal variations in 2009 – 2014. In the case of real data, however,373

this difference is much larger. A discussion of this reduction in the estimated noise level is374

continued in Sect. 4.375

The SD of ”other” errors estimated with Eq. (9) also shows a temporal variability. Unlike376

random noise, ”other” errors increase: from about 3 cm EWH to more than 5 cm EWH. We377

explain this by a limited performance of the empirical link given by Eq. (13), particularly when378

the behaviour of mass anomalies deviates from a ”regular” behaviour. For instance, GRACE379

shows that extreme flood events, like those in 2011 and 2013, are followed by an increased mass380

level in the course of the next dry season, as compared to other years (Fig. 3). Most probably,381

this is because extreme flood events cause an accumulation of large ground water stocks, which382

are not fully depleted in the course of the next year. The reference data, which are based only on383

the extent of open water bodies, cannot observe this process.384

Application of regularization reduced the contribution of GRACE to the differences between385

GRACE-based and reference mass anomalies. As a result, the dependence of the differences on386

time increases: the rms difference increases from 4.6 cm EWH in the first sub-interval to 5.5 cm387

EWH in the second one.388

Finally, the noise SD after regularization is estimated with Eq. (11). It turns out that regular-389

ization reduces random noise rather substantially: to 60 – 66% of the original level. Remarkably,390

the reduction is similar for both sub-intervals and for the entire time interval under consideration.391

Furthermore, the result is consistent with the findings of the numerical study. All this increases392

the confidence in the results obtained.393

3.3. Greenland394

The area of Greenland exceeds 2 million km2. Most of it is covered by the Greenland Ice Sheet395

(GrIS) – the second largest ice sheet on Earth. GrIS contains enough ice to rise global mean sea396

level by 7.4 m (Vaughan et al., 2013). The GrIS mass balance is primarily a sum of two com-397

ponents: the Surface Mass Balance (SMB) and ice discharge. The SMB reflects the relationship398
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between the surface mass gain and mass loss processes, which are predominantly represented by399

snowfall and meltwater runoff, respectively (Van den Broeke et al., 2009). Seasonal GrIS mass400

variations are usually attributed to SMB only; the variations in ice discharge are believed to be401

slow (Van den Broeke et al., 2009). In our study, we rely on this assumption, in spite of recent402

evidences that ice discharge may contribute to the GrIS mass balance at inter-annual (Moon et al.,403

2012) and seasonal time scales (Moon et al., 2014). We address mass variations both over the404

entire Greenland and over individual drainage systems. In the latter case, the territory of Green-405

land is split into 5 regions: North (N), North-West (NW), North-East (NE), South-West (SW),406

and South-East (SE) (see Fig. 4), which is consistent with previous studies (e.g., Van den Broeke407

et al., 2009; Ran et al., 2017). Fig.

4

408

3.3.1. Data preparation409

Since a mass re-distribution caused by GIA is present in the study area, the model of A et al.410

(2013) was used to clean GRACE monthly sets of spherical harmonic coefficients from that sig-411

nal. Next, each monthly solution was converted into a set of mass anomalies using the mascon412

approach of Ran (2017); Ran et al. (2017). This leads to a higher spatial resolution and reduced413

signal leakage, as compared to a direct conversion of spherical harmonic coefficients into mass414

anomalies. In particular, the signal leakage from Greenland to the surrounding ocean can be pre-415

vented, while preserving the in-land signal from damping. The lateral mass anomaly distribution416

within each mascon was assumed to be homogeneous. Importantly, the inversion of spherical417

harmonic coefficients into mass anomalies per mascon was performed without any filtering or418

regularization, in order to mitigate the signal leakage between the mascons. Of course, this could419

result in a higher noise level, as compared to a spatially-filtered or regularized solution. However,420

that noise can be mitigated by applying a regularization in the time domain, as is discussed be-421

low. The territory of Greenland was split into 28 mascons. The obtained mass anomalies (in Gt)422

were summed up to give the total mass anomaly per drainage system and for entire Greenland,423

respectively.424

The set of reference mass anomalies was extracted from daily SMB estimates based on the425

Regional Atmospheric Climate Model, version 2.3 (RACMO 2.3) (Ettema et al., 2009). The426

original SMB estimates (in terms of EWH) were integrated over time and then averaged in space427

and time to produce the total mass anomaly per region per month. To restore the ice discharge428

signal, the differences between GRACE- and RACMO-based mass anomaly time-series were429

approximated by a quadratic algebraic polynomial. After that, those polynomials were added430

back to the corresponding RACMO-based time-series.431

As an example, we present the obtained results for the NW drainage system and entire Green-432

land in Fig. 5. The unregularized GRACE-based time-series and RACMO-based time-series are433

shown there as blue dots and red lines, respectively. In the NW drainage system, seasonal mass434

variations are hardly visible. The dominant signal is a long-term negative trend, which increases435

in the course of time. As far as entire Greenland is concerned, an accelerated mass loss is also436

visible, but that long-term behaviour takes place in the presence of a clear seasonal cycle: mass437

accumulates in winter and diminishes in summer. Particular large mass loss is observed in the438

year 2012, which is notorious for an extensive summer melt over the entire GrIS (Nghiem et al.,439

2012). Fig.

5

440

3.3.2. Numerical study441

We use the time-series shown in Fig. 5 to set up two numerical experiments. In each experi-442

ment, we reproduce the behaviour of actual mass anomalies (represented in terms of EWH). As443
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in the numerical experiments discussed in Sect.3.2.2, the ”true” signals are defined analytically444

and contaminated by pseudo-random zero-mean Gaussian white noise. The noise SD was de-445

fined consistently with the corresponding estimate based on real data (see Sect. 3.3.3). In each446

experiment, 1000 noisy time-series realizations are synthesized and analyzed.447

In the first experiment, we reproduce mass changes in the NW drainage systems. The corre-448

sponding time-series is approximated by a parabola:449

H(t) =
a(t − t0)2

2
+ b(t − t0) + c. (17)

The reference time t0 is in the middle of the considered time interval, i.e., the beginning of July450

2008. This is needed to avoid the absorption of the trend estimate b by the acceleration term in451

a linear regression analysis. The constant coefficients a, b, and c are defined on the basis of real452

GRACE-based time-series: a = −1.82 cm/yr2, b = −16.29 cm/yr, and c = −45.64 cm. The noise453

SD is set equal to 3.4 cm.454

In this experiment, the proposed regularization procedure shows an excellent performance455

(Table 3). The SD of actual noise is only 3% below the true value, whereas the noise SD after456

regularization is reduced to the level of 38% of the original one. It is also remarkable that457

the bias introduced by regularization is negligible in both the trend estimate and the estimated458

acceleration. This is in spite of the fact that the acceleration term does not belong to the class459

of functions exempt from penalization. We explain this by the fact that the ”local” impact of the460

acceleration term in each particular set of neighbouring months is minor, so that the simulated461

function is still close to the ideal one.
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In the second numerical experiment, we mimic the behaviour of mass anomalies of entire463

Greenland. To that end, we extend the signal of Eq. (17) with an annual term:464

H(t) =
a(t − t0)2

2
+ b(t − t0) + c + A

[

1 − cos (2π(t − t0) − (ϕ − ϕ0))
]

. (18)

In line with the real mass anomaly time-series, the phase ϕ is set equal to 1.8326, which implies465

that the seasonal mass accumulation would reach a maximum in the middle of April if a long-466

term-trend were absent. The additional phase shift ϕ0 is included to reflect the fact that the467

reference time t0 does not coincide with the beginning of a year: ϕ0 = 2π (t0 − int[t0]). The468

amplitude A of the annual signal is set equal to a certain ”normal” level An in almost all the469

years. The only exception is the year 2012, when it is defined differently. More specifically:470

A =



















An in Jan.2003–Mar.2012,

Apr.2013–Dec.2013;

A2012 in Apr.2012–Mar.2013.

(19)

All the constant coefficients are estimates by a linear regression from the real GRACE-based471

time-series shown in the bottom plot of Fig. 5: a = −1.13 cm/yr2, b = −13.21 cm/yr, c = −23.40472

cm, An = −8.57 cm, and A2012 = −14.30 cm. The SD of the noise added to the synthetic signal473

is set equal to 1 cm, which makes the experiment set-up consistent with real data processing (see474

Sect. 3.3.3). Such a noise level is rather low. For instance, it is only 17.5% if the difference475

between the normal annual amplitude An and the annual amplitude in 2012 A2012. In that sense,476

this set-up is close to the set-up of the fifth (low-noise) numerical experiment considered in477

Sect. 3.2.2.478
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The results obtained after applying regularization are, in general, better than those of the fifth479

experiment in Sect. 3.2.2. The original noise SD is underestimated by only 10%, whereas the480

noise SD after the regularization is reduced to the level of 69%, as compared to the original one481

(Table 3). Furthermore, the biases introduced into the linear trend, acceleration, and the normal482

annual signal amplitude are negligible. For instance, the bias in the annual signal amplitude does483

not exceed, in average, 1% of the difference An−A2012. A good performance of the regularization484

procedure in this experiment is explained by the fact that the signal is close to the ideal one: the485

annual signal stays most of the time at a constant level, whereas the impact of the acceleration486

term apparently remains minor. On the other hand, it is worth noticing that the bias introduced487

into the annual signal in 2012 reaches 8% of the difference An − A2012. Though we still consider488

such a bias as minor, it is definitely larger than those observed in the fifth (low-noise) numerical489

experiment considered in Sect. 3.2.2. This is a clear indication that ”unusual” signals (e.g, a490

larger mass loss in a particular summer than in average) are subject to larger distortions. This is491

an expected result, since the regularization tends to make such signals similar to the signals in492

neighboring years.493

3.3.3. Regularization of mass anomalies based on real GRACE data494

Finally, we apply the proposed regularization procedure to mass anomalies extracted from real495

GRACE data. As in Sect. 3.2.3, we split the considered time interval into two sub-intervals in or-496

der to make the analysis more representative and to facilitate a consistency check of the results:497

(I) 2003 – 2007 and (II) 2008 – 2013. The results both for the individual sub-intervals (I, II)498

and for the total interval (I+II) are analyzed. In the latter case, two variants of the recovered ice499

discharge signals are considered. In both variants, those signals are approximated by quadratic500

polynomials, as explained above. The only difference is that in the first variant, a single poly-501

nomial is computed for the entire time interval 2003 – 2013. We consider it as the ”primary”502

variant; it is used, in particular, to compute the reference mass anomalies shown in Fig. 5. In503

the alternative variant, on the other hand, the best-fitting quadratic polynomials are found for the504

sub-intervals 2003 – 2007 and 2008 – 2013 independently. Thus, the reference mass anomaly505

time-series in the alternative variant is nothing but the result of merging the reference time-series506

for sub-intervals (I) and (II). A comparison of the results of these two variants allows some con-507

clusions to be drawn regarding their robustness with respect to long-term uncertainties associated508

with ice discharge.509

Regularized GRACE time-series for the NW drainage system and entire Greenland are shown510

in Fig. 5 as black lines. In columns 4 – 7 of Table 2, we present further information about the511

outcome of the regularization for the drainage systems N, NW, NE, and the combined region512

”SW&SE”. The last column reports the obtained results for entire Greenland.513

The estimated SD of random noise in GRACE-based mass anomalies for the northern drainage514

systems (N, NW, and NE) is quite similar: 3 – 4 cm EWH. This is in spite of the fact that the515

area of the drainage system N is more than two times smaller than that of the other regions.516

Most probably, this can be explained by the northern location of the drainage system N, so that517

its small size is compensated by a high density of GRACE ground tracks. The region SW&SE518

shows a relatively low noise level: 1 – 2.5 cm. We explain this by the shape of that region: unlike519

the regions NW and NE, it is not extended in the meridional direction, which implies a higher520

accuracy of GRACE-based mass anomaly estimates. The lowest noise level (0.8 – 0.9 cm) is521

observed for entire Greenland, which is definitely due to the large size of this region. The noise522

levels estimated for the entire time interval (I+II) and the sub-intervals (I) and (II) show a good523

agreement. The only exception is the SW&SE region, where a substantial reduction in the noise524
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level is observed. As similar reduction was observed earlier in the analysis of mass anomalies in525

the Tonlé Sap basin (Sect. 3.2.3). This issue is further discussed in Sect. 4.526

The rms differences between the non-regularized GRACE-based mass anomalies and the ref-527

erence ones show less variability than the random errors in GRACE estimates discussed above:528

they stay at the level of 3 – 5 cm EWH, except for the southern region SW&SE, where the RMS529

difference reach 5 – 7 cm. In two cases (N and entire Greenland), the rms differences computed530

over the entire time interval (I+II) are larger than the errors computed for both sub-intervals I and531

II, if the first variant of ice discharge correction is exploited. When the alternative variant of ice532

discharge correction is applied (i.e., when the corresponding quadratic polynomials are estimated533

for the two sub-intervals individually), the rms differences obtained for the entire interval I+II534

are always between the rms differences obtained for the sub-intervals I and II, as expected.535

By subtracting the contribution of random noise from the obtained rms differences in line with536

Eq. (9), we estimate the SD of ”other” noise. ”Other” noise for the entire GrIS likely reflects537

errors in the SMB estimates produced by the RACMO model, as well as the processes not related538

to the ice sheet surface, such as the meltwater retention inside the ice layer and the residual ice539

discharge signal. The contribution of a multi-year time-scale to ”other” noise can be assessed by540

a comparison of the estimates obtained with the two variants of ice discharge correction in 2003541

– 2013: 3.1 cm EWH for the first variant versus 2.6 cm EWH for the alternative one. Thus, the542

contribution of a multi-year time-scale is at the level of only 15%; the rest of ”other noise” is543

likely associated with a relatively short time scale (2 – 3 years or less). ”Other” noise estimates544

for individual drainage systems show a substantial variability. Those estimates, however, must545

be interpreted with some caution. The fact is, all of them are obtained by subtracting two close546

numbers. Thus, the observed variability may reflect inaccuracy of the obtained error estimates.547

An extreme example is the drainage system NE in time interval II. ”Other” noise cannot be548

quantified in that case at all, since the rms difference between GRACE (original) and reference549

time-series is smaller than the estimated error SD of GRACE-based mass anomalies. However,550

in spite of these uncertainties, the ”other” errors show a consistent behaviour. They stay at a mid551

level (2.5 – 3 cm EWH) for the drainage systems N and NE, as well as entire Greenland; they552

reduce to ∼2 cm for the drainage system NW, and increase to 5 – 6 cm for the region SW&SE.553

This behavior shows an excellent correlation with the mean amplitude of annual signals in the554

considered regions: 7 – 9 cm EWH in the regions with the mid level of ”other errors”, ∼4 cm in555

the drainage system NW with a low error level, and ∼17 cm in the region SW&SE, where the556

level of ”other” errors is relatively high (see the last row in Table 2). We believe, therefore, that557

the observed errors reveal deficiencies associated with modelling the summer ice melting (the558

primary cause of seasonal mass variability).559

The rms differences between the regularized GRACE-based mass anomalies and the refer-560

ence mass anomalies are also computed. Then, Eq. (11) allows us to quantify random noise in561

GRACE-based mass anomalies after regularization. It turns out that the regularization typically562

reduces the random noise SD to 40 – 60% of the original value. This outcome is an agreement563

with the results of the numerical studies. In a few cases, an even more substantial reduction of564

random noise seems to be achieved. For instance, the SD of random noise for entire Greenland is565

estimated for some time intervals as only ∼ 20% of the original level. However, these estimates566

are likely caused by an underestimation of the original noise SD due to its low level, as it is567

discussed in Sect. 3.3.2. If, for instance, the true noise SD is originally equal to 1 cm (i.e., if this568

underestimation is 10%, which is not impossible according to the conducted numerical study),569

the estimate of noise SD after the regularization should be increased from ∼20% to ∼50% of the570

original level, which is consistent with the other results.571
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4. Discussion and conclusions572

In this study, we developed a statistically-optimal regularization technique that allows one to573

smooth and interpolate a mass anomaly time-series based on satellite gravimetry data, as well as574

to estimate the level of random noise in it. The proposed regularization functional minimizes the575

MYDD (month-to-month year-to-year double differences) of mass anomalies. As we showed576

theoretically, this functional does not introduce any bias into two types of signals, which com-577

monly occur in the Earth’s system: arbitrary signals with an annual periodicity and long-term578

linear trends.579

We conducted a number of numerical simulations, in which actual signals and errors in580

GRACE-based mass anomaly time-series were reproduced. In all the considered experiments,581

the bias introduced into the actual signals was minor and did not exceed, in average, 14%. The582

largest bias was observed in the cases when the level of random noise was high and when the583

signal in a given year was substantially different from the signal in the neighbouring years. At584

the same time, the developed regularization scheme effectively reduces random noise. In the585

considered numerical experiments, for instance, the noise SD was typically reduced to 40 – 70 %586

of the original level. The factors that facilitate an efficient noise reduction are high level of noise587

in the original time-series and minimal inter-annual variability of signals.588

Another important outcome of the proposed regularization methodology is the assessment of589

random noise in mass anomaly time-series; such estimates are provided by the VCE procedure,590

which is a part of the regularization technique. Conducted numerical experiments showed that591

the obtained estimates of noise SD are close to the true values or slightly less. However, this592

under-estimation did not exceed 22% in the conducted experiments. The factors that facilitate an593

accurate estimation of noise SD are a long duration of the analyzed time-series and a relatively594

high noise level, as compared to the penalized signal (the signal that shows neither an annual595

periodicity nor a long-term linear behaviour).596

The proposed technique can be considered as a handy tool to quantify the accuracy of various597

mass anomaly time-series in general. As such, it can be applied, for instance, to estimate the598

performance of a particular methodology designed for SG data processing, to compare the accu-599

racy of alternative mass anomaly estimates, to demonstrate and compare the impact of various600

supporting data used in SG data processing, etc. Examples of such applications can already be601

found in (Sun et al., 2017; Ran et al., 2017; Guo et al., 2018).602

In our study, we applied the developed procedure to analyze GRACE-based time-series of603

mass anomalies in the Tonlé Sap basin in Cambodia and Greenland. In this way, we showed how604

some more findings can be extracted from the estimates of random noise SDs.605

First, the noise SD estimates allow for a separation of the contribution of random noise and606

”other” errors when GRACE mass anomalies are compared with mass anomalies derived from607

other data and/or models. The ”other” errors comprise systematic errors in GRACE data (e.g.,608

due to signal leakage) and errors in the reference data. In the study of Greenland, for instance,609

we found that the SD of ”other” errors stays at the level of 2 – 6 cm EWH and strongly correlates610

with the amplitude of the annual signal. From this, we concluded that the revealed errors are611

likely associated with modelling of summer ice melting. The most probable cause of these errors612

is meltwater accumulation and run-off. On the one hand, the signal related to meltwater may613

be quite significant, since it takes meltwater, in average, about two weeks to leave GrIS (van614

Angelen et al., 2014). On the other hand, this signal is not fully taken into account by the615

RACMO2.3 model: it implies that the run-off process is instantaneous. A further analysis of this616

signal in GRACE-based mass anomalies can be found in (Ran, 2017). Speaking more generally,617
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the conducted study opens the door for a more accurate quantification of noise in reference618

mass anomalies when the latter are compared with those based on SG data. This concerns any619

application area of SG, such as the study of ice sheets, hydrology, oceanography, and others.620

Second, the quantification of ”other” errors allowed us to estimate the SD of random noise621

in GRACE-based mass anomalies after regularization. It turned out that regularization typically622

reduces noise to 40 – 66% of the original level (i.e., about 1.5 – 2 times). This is in a good623

agreement with the results of numerical experiments.624

A division of the considered time interval into two allowed us to check the internal consistency625

of the noise SD estimates obtained for a given region. The estimates obtained for entire Green-626

land and for its northern regions turned out to be in a reasonable agreement (the differences were627

within 20%, cf. Table 2). However, the estimates obtained for the combined SW&SE region of628

Greenland and for the Tonlé Sap basin turned out to be quite different: they show that noise in629

2009 – 2014 or 2008 – 2013 is noticeably (more than 2 times) lower than in 2003 – 2008 or 2003630

– 2008. To shed more light on this issue, we considered, among others, the SW and SE regions631

of Greenland separately. For the SE region (the area is 398,000 km2), the obtained estimates of632

noise SD were 9.2 cm, 8.3 cm, and 9.3 cm for the time intervals (I), (II), and (I+II), respectively.633

For the small SW region (the area is 214,000 km2), the corresponding estimates were 18.0 cm,634

14.3 cm, and 16.6 cm, respectively. Thus, even though some noise reduction is observed. it stays635

with the 20-% limit. From this and other evidences, we conclude that a very large reduction in636

the noise level observed for the the combined SW&SE region of Greenland and the Tonlé Sap637

Basin is likely an evidence of an insufficient robustness of the proposed technique when short638

(≤ 6 years) are concerned. Thus, it is advised to consider results obtained for such time intervals639

with a caution.640

Another caveat concerns the temporal behaviour of the signals in the time-series under consid-641

eration. The proposed regularization functional minimizes a variant of signal double-differences,642

which implies that the signal must change smoothly in the time domain. Obviously, a signal that643

rapidly change from month to month may be over-regularized, whereas the level of random noise644

may be overestimated. In the extreme case, when the stochastic behavior of signal is not distin-645

guishable from that of white noise, the separation of the time-series into signal and noise is,646

naturally, impossible.647

It is also worth mentioning that the proposed regularization technique may be used to fill in648

gaps in mass anomaly time-series. Since the year 2011, the GRACE data time-series suffers from649

multiple gaps, which are frequently filled in by means of interpolation. We found, however, that650

the obtained results are not necessarily better than those produced with a simple interpolation651

scheme (e.g., cubic splines). A typical example in the estimation of mass anomalies for entire652

Greenland in August-September 2013, when no GRACE data were available (see the inset in the653

bottom plot in Fig. 5). Unfortunately, this is exactly the time interval when rapid mass loss due654

to summer melting occurred. By chance, a particularly large summer mass loss took place one655

year earlier – in 2012. Then, the proposed regularization technique uses that mass change pattern656

to fill in the gap in 2013. However, the RACMO model shows that mass loss in summer 2013657

was minor. Then, a cubic interpolation, which ignores the behaviour of mass anomalies in other658

years, apparently yields better results. This illustrates a conceptual problem associated with data659

gaps. The presence of such gaps means some loss of information in the collected data. If the660

behavior of a target process in that time interval is ”non-typical” in whatever sense, a reliable661

recovery of such behavior becomes conceptually impossible: no mathematical technique can662

replace a collection of field measurements.663

The proposed regularization technique has space for further improvements. For instance, we664
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assumed so far that noise in the mass anomaly time-series is stationary. In reality, this may not be665

the case because the accuracy of GRACE-based mass anomalies may change in time. There are666

several reasons for that. First, the altitude of GRACE satellites rapidly decreased after year 2011667

(http://www2.csr.utexas.edu/grace/operations/orbit evolution/ semiB.png), which must have had668

a positive impact on the accuracy and spatial resolution of the mass anomaly estimates; Second,669

the attitude control of GRACE satellites was relatively poor at the beginning of the mission,670

which may reduce the quality of the resulting estimates (Inácio et al., 2015). Third, GRACE671

orbits enter the periods of a short repeat cycle from time to time, which also deteriorates the672

quality of the resulting estimates (Wagner et al., 2006). In addition, switching from GRACE673

to GFO data in the future will also likely change the accuracy of mass anomaly estimates due674

to a higher accuracy of the onboard instruments. Finally, it is not unlikely that gaps in GRACE675

time-series, as well as the gap between the GRACE and GFO missions will be somewhat filled in676

by the usage of GNSS data from various other satellite missions. Though the accuracy of GNSS677

data is relatively low, still they definitely can capture some mass transport signals (Ditmar et al.,678

2009; Gunter et al., 2011; Weigelt et al., 2013; Guo et al., 2017). Thus, the picture of future679

mass anomaly time-series will not be ”black-and-white” (mass anomaly is either provided or not680

provided). Instead, the time-series will likely be continuous, but of rather heterogeneous quality:681

more accurate in the months when GRACE or/and GFO data are available and much less accurate682

otherwise. As it is shown in Appendix A, the proposed regularization technique can be easily683

adjusted to such a situation. Then, this technique may become a tool to homogenize future mass684

anomaly time-series by exploiting all available information in the statistically optimal sense (i.e.,685

taking into account the accuracy of each particular monthly estimate).686

Another direction of further developments is the optimal estimation of the regularization pa-687

rameter, taking into account the dependence of the actual mass anomaly signal on time. Cur-688

rently, the adopted regularization procedure makes use of time-invariant soft constrains (cf.689

Eqs. (A.3-A.5) in Appendix A). In reality, the expected deviations of the actual signal from a690

regular behaviour may show a variability in time (an example is the mass anomalies in the Tonlé691

Sap basin in 2009 – 2014). By taking this variability into account in the construction of the692

regularization functional, one may further improve the quality of the regularization.693
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Table 1: Results of the numerical study that reproduces mass variations over the Tonlé Sap Basin. The following informa-

tion is provided for each of the experiments: (1) Considered time interval; (2) Reference to the analytic expression used

to define the ”true” signal; (3) Actual SD of pseudo-random noise added to the synthetic signal; (4) Noise SD estimated

with the VCE technique; (5) Actual noise SD after the regularization; (6) Same as the previous item but in percentages of

the original noise SD; and (7-9) Bias introduced by the regularization into the signal amplitudes. The shown error bars

reflect the variability of the obtained estimates after the consideration of 1000 different noise realizations. Units are cm

EWH.

Experiment 1 2 3 4 5

Time interval 2003–2008 2009–2014 2003–2014 2003–2014 2003–2014

True signal Eq. (15) Eq. (15) Eq. (15) Eq. (16) Eq. (15)

Random noise SD before 4.20 4.20 4.20 4.20 2.00

regularization (true)

Random noise SD

before regularization 4.16±0.19 3.57±0.54 4.10±0.38 3.76±0.69 1.57±0.20

(VCE-based estimation)

Noise SD after 1.83±0.32 3.07±0.30 2.70±0.30 2.90±0.35 1.53±0.10

regularization

Noise after

regularization 44±8 73±7 64±7 69±8 77±5

(% of original noise)

Bias in the

middle-amplitude 0.01±0.70 N/A 0.08±0.58 N/A 0.01±0.27

signal (Am)

Bias in the

high-amplitude N/A -0.53±0.88 -1.44±0.95 -0.68±0.63 -0.29±0.37

signal (Ah)

Bias in the

low-amplitude N/A 0.49±0.87 1.36±0.88 0.69±0.63 0.26±0.35

signal (Al)
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Table 2: Results of two case studies (over the Tonlé Sap Basin and over Greenland) based on real data. In the second

case, the results are shown both for individual drainage systems (columns ”N” – ”SE&SW”) and for entire Greenland.

The following estimates are provided for each of the considered regions: (1) SD of random noise in the original GRACE-

based mass anomalies (i.e., before regularization), estimated with the VCE technique; (2) the rms difference between

the GRACE-based (original) and reference mass anomalies; (3) SD of ”other” errors (consisting of systematic errors in

GRACE-based mass anomalies and errors in reference data); (4) the rms difference between the GRACE (regularized)

and reference mass anomalies; (5) SD of random noise in GRACE-based mass anomalies after regularization; (6) same

as the previous item but in percentages of the original random noise SD. The results are shown both for the individual

sub-intervals (I and II) and the entire time interval (I+II). In the Tonlé Sap Basin case study, the sub-intervals are: (I)

01.2003 – 12.2008 and (II) 01.2009 – 10.2014. In the study of Greenland, the sub-intervals are: (I) 01.2003 – 12.2007

and (II) 01.2008 – 12.2013. Bold font is used for the estimates based on the time-series for the entire time interval (I+II)

when the primary variant of ice discharge correction is exploited (i.e., when the RACMO-based time-series are corrected

for ice discharge in the entire time interval at once). Italic font is used for the estimates based on the time-series for the

entire time interval (I+II) and the alternative variant of ice discharge correction (i.e., when the RACMO-based time-series

are corrected for ice discharge in the sub-intervals (I) and (II) individually). The last line shows the amplitude of annual

variations in 2003 – 2013 in different Greenland regions estimated on the basis of the original GRACE data. Units are

cm EWH.

Time Tonlé Greenland regions

inter- Sap N NW NE SW & Entire

val basin SE Greenland

Area (km2
×103)a 82 256 686 601 612 2154

1. Random noise in GRACE- I+II 4.16 3.61 3.34 3.42 1.89 0.880

based mass anomalies before I 5.42 3.44 3.60 3.81 2.48 0.802

regularization (VCE-based) II 2.57 3.42 2.85 3.89 0.90 0.869

2. RMS difference from I+II 6.05 4.69 3.93 4.52 6.62 3.215

reference data I+IIb - 4.52 3.75 4.40 5.22 2.785

before regularization I 6.25 4.40 4.02 5.12 5.30 2.834

II 5.81 4.62 3.49 3.64 5.15 2.741

3. ”Other” noise, including I+II 4.40 2.99 2.08 2.95 6.34 3.093

noise in reference I+IIb - 2.72 1.72 2.76 4.86 2.642

data I 3.12 2.74 1.78 3.42 4.68 2.718

II 5.22 3.11 2.02 - 5.07 2.599

4. RMS difference from I+II 5.06 3.55 2.71 3.32 6.38 3.096

reference data I+IIb - 3.35 2.49 3.14 4.92 2.650

after regularization I 4.60 3.44 2.57 3.89 4.85 2.751

II 5.48 3.56 2.64 2.91 5.07 2.607

5. Random noise in GRACE- I+II 2.50 1.91 1.74 1.51 0.72 0.151

based mass anomalies I+IIb - 1.97 1.80 1.49 0.77 0.199

after regularization I 3.39 2.08 1.84 1.84 1.28 0.427

II 1.68 1.74 1.70 - 0.29 0.203

6. Random noise in GRACE- I+II 60% 53% 52% 44% 38% 17%

base mass anomalies I+IIb - 54% 54% 44% 41% 23%

after regularization I 62% 60% 51% 48% 52% 53%

(% of original noise) II 66% 51% 60% - 32% 23%

Amplitude of annual 7.6 3.8 7.5 17.4 9.0

mass variations

a – Shown areas reflect the geometry of regions used in GRACE data inversion (see Fig. 4).

Those areas may somewhat deviate from the actual area of Greenland or the areas of individual

drainage systems.
b - The alternative variant of ice discharge correction is applied.
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Table 3: Results of the numerical study that reproduces mass variations in the NW drainage system of GrIS and in entire

Greenland. Information provided is similar to that reported in Table 1. Units are cm EWH (except for the linear trend

and acceleration).

Region considered NW Entire Greenland

True signal Eq. (17) Eq. (18)

Random noise SD before 3.4 1.0

regularization (true)

Random noise SD

before regularization 3.30±0.10 0.90±0.08

(VCE-based estimation)

Noise SD after 1.29±0.18 0.69±0.05

regularization

Noise after

regularization 38 69

(% of original noise)

Bias in the

linear trend 0.00±0.09 -0.02±0.03

(cm/yr)

Bias in the

acceleration 0.01±0.07 -0.01±0.02

signal (cm/yr2)

Bias in the

”normal” annual N/A -0.04±0.13

signal (An)

Bias in the

annual signal N/A 0.44±0.29

in 2012 (A2012)
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Figure 1: Simulated noiseless observations of mass anomalies (blue dots) and the time-series recovered on their basis

with the proposed regularization technique (black line). The ”true” time-series in shown in red.
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Figure 2: Simulated noisy observations of mass anomalies (blue dots) and the regularized time-series computed on their

basis with the proposed technique (black line). The ”true” time-series in shown in red. The considered time intervals are

3 year (top plot) and 6 years (bottom plot).
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Figure 3: Mass anomalies at the Tonlé Sap basin: directly extracted from GRACE data without a regularization (blue

circles) and obtained on their basis by cubic interpolation (open circles), as well as those obtained after applying the

proposed regularization procedure (black line). Reference mass anomaly estimates based on MODIS data are shown in

red. To make the illustration better readable, the entire time interval under consideration is split into two parts: 2003 –

2008 (top plot) and 2009 – 2014 (bottom plot).
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Figure 4: Adopted division of the territory of Greenland into individual drainage systems.
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Figure 5: Mass anomalies in the NW drainage system (top plot) and entire Greenland (bottom plot). The plots show

mass anomalies directly extracted from GRACE data without a regularization (blue circles) and obtained on their basis

by cubic interpolation (open circles); as well as those obtained after applying the proposed regularization procedure

(black line). Reference mass anomalies estimated on the basis of RACMO2.3 model are shown in red. The inset in the

bottom plot zooms in on the time interval 2012 – 2013.
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Appendix A. Regularization of the discrete time-series and the optimal choice of the regu-807

larization parameter using Variance Component Estimation808

The description of Variance Component Estimation (VCE) is adapted from (Koch and Kusche,809

2002). We present VCE in the context of an arbitrary linear functional model, i.e. the model that810

links the data vector d and the vector of unknown parameters x with linear observation equations811

Ax = d, (A.1)

where A is an arbitrary matrix (frequently called ”design matrix”). In our special case, matrix A812

is unit.813

The data can be contaminated by arbitrary correlated Gaussian noise. The noise covariance814

matrix C is assumed to be known up to a scaling factor, i.e., it can be represented as815

C = σ2
d P−1

, (A.2)

where P is a known matrix (called ”weight matrix”) and σ2
d

is an unknown constant.816

The system Eq. (A.1) is to be solved under soft constraints, which are introduced by means of817

an additional set of linear equations818

Dx = 0, (A.3)

where D is an arbitrary matrix. For instance, setting the matrix D to the unit one reduces the819

soft constraints to the classical zero-order Tikhonov regularization. In our special case, matrix820

D is defined such that the expression Dx is the finite-difference analog of the double-difference821

expression h′
k+1

(t) − h′
k
(t), cf. Eq. (5). This means that all the non-zero elements of matrix D are822

equal, up to a constant scaling factor, to 1 or −1. To prevent a jump at the beginning of each823

year, we apply the similar constraints also onto ”December-January” pairs of months, i.e. by824

definition x(k+1,1) = x(k,13), where the first lower index stands for the year and the second one for825

the calendar month of a year.826

The set of soft constraints given by Eq. (A.3) can be interpreted as a system of additional827

observation equations with zero ”observations” in the right-hand side. In what follows, those828

”observations” are called pseudo-observations.829

Assuming that the pseudo-observations are contaminated by white noise, one can find the830

least-squares solution x̂ of the combined system composed of linear equations (A.1) and (A.3)831

by minimizing the penalty function832

Φ[x] =
1

σ
2
d

(d − Ax)T P (d − Ax) +
1

σ2
x

xT Rx, (A.4)

where σ2
x is the error variance of the pseudo-observations and R is the regularization matrix,833

which is defined as834

R = DT D. (A.5)

The multiplication of the penalty function (A.4) with σ2
d

yields the equivalent penalty function835

Φ̃[x] = (d − Ax)T P (d − Ax) + αxT Rx, (A.6)

where α is the regularization parameter defined as836

α =
σ

2
d

σ2
x

. (A.7)
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837

838

The penalty functional (1) introduced at the beginning of the article is a continuous analog of the839

penalty function (A.6), provided that matrix P is unit.840

Obviously, the explicit expression for the vector x̂ minimizing the penalty function (A.4) (and,841

therefore, the penalty function given by Eq. (A.6)) is:842

x̂ =
1

σ
2
d

N−1AT P d, (A.8)

where N is the normal matrix defined as843

N = Nd + Nx (A.9)

with844

Nd =
1

σ
2
d

AT PA (A.10)

and845

Nx =
1

σ2
x

R. (A.11)

The goal of the VCE method is to estimate the level of noise in each input data set. In the846

context of actual data, this means that the scaling factor σ2
d

is to be found. If data noise is847

assumed to be white, so that matrix P is unit, this task reduces to the estimation of the noise848

variance. Furthermore, both the actual observations and the pseudo-observations are treated by849

the VCE method equally. Since noise in pseudo-observations is assumed to be white, the VCE850

method can estimate the noise variance σ2
x of the pseudo-observations as well.851

The VCE method is iterative. It starts from certain initial values
(

σ̂
2
d

)

0
and
(

σ̂
2
x

)

0
, which allow852

the initial solution x̂0 to be found with Eqs. (A.8 – A.11). Then, an updated estimate of factor σ2
d

853

is found as854

σ̂
2
d =

1

n − τ̂d

(d − Ax̂)T P(d − Ax̂), (A.12)

where n is the number of data (i.e., the length of the vector d) and855

τ̂d = trace
[

N̂dN̂−1
]

. (A.13)

The noise variance of pseudo-observations – factor σ2
x – is estimated similarly:856

σ̂
2
x =

1

m − τ̂x

x̂T Rx̂, (A.14)

where m is the number of pseudo-observations (i.e., the length of the zero vector in the right-hand857

side of Eq. (A.3)) and858

τ̂x = trace
[

N̂xN̂−1
]

. (A.15)

The improved estimates of the factorsσ2
d

andσ2
x are used for an improved estimate of the solution859

x, etc. The iterations are repeated until convergence.860

30



Appendix B. Proof that any function not penalized by the proposed regularization is a com-861

bination of seasonal variations and linear trend862

Let us demonstrate analytically that any function H(t) not penalized by the regularization863

functional from Eq. (5) is a combination of arbitrary seasonal variations and a linear trend. Let864

function H(t) in the first and second year be equal to arbitrary functions h1(t) and h2(t), re-865

spectively. Obviously, function H(t) escapes penalization if and only if h′
2
(t) = h′

1
(t), i.e., if866

h2(t) = h1(t) + C1, where C1 is an arbitrary constant. Since the time-series of mass anomalies867

is a continuous function, h2(0) = h1(1). Therefore, constant C1 can be represented as C1 =868

h2(0)− h1(0) = h1(1)− h1(0) or, alternatively, C1 = h2(1)− h1(1) = h2(1)− h2(0). Thus, constant869

C1 is nothing but the yearly mass change, which is equal in the first and the second year. In the870

third year, a non-penalized function H(t) must be equal to h3(t) = h2(t) +C2, where the constant871

C2 can be defined, in line with the derivation above, as C2 = h3(1) − h3(0) = h2(1) − h2(0) = C1.872

Therefore, h3(t) = h1(t) + 2C1. By considering the further years, we readily find that function873

H(t) avoids penalization if it is defined in the k-th year as874

hk(t) = h1(t) + (k − 1) C1. (B.1)

The first term in Eq. (B.1) describes an arbitrary seasonal variability; the second term is a linear875

function of time and represents a long-term linear trend.876
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