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Summary

Future space exploration missions on solar system bodies will require landing safely and
precisely, with an accuracy of ∼100 m at touchdown. This accomplishment is made challeng-
ing by vehicle design limitations, the dearth of onboard situational awareness, and the limited
knowledge of the variability of the landing terrain. To date, only the Chinese Chang’e-3 has im-
plemented hazard detection and avoidance capabilities, within its Guidance, Navigation, and
Control (GN&C) subsystem, therefore being able to actively adjust its trajectory. On the con-
trary, the majority of the space landers only had the ability to execute autonomously a small
series of simple and programmed commands. Therefore, past missions have essentially landed
"blind" in regions deemed relatively safe, forcing landing site selection to be capability-limited
rather than scientifically driven.

In this thesis, hazard detection was investigated as a mean to increase autonomy for plane-
tary landings and to further decrease the risk of a landing failure, employing equipment readily
available on space missions. The analysis has been limited to the framework of Structure-from-
Motion (SfM) where the input images are acquired from a single moving camera and thus the
scene is reconstructed from the resulting video sequence. A software package was developed
and tested to compute depth maps from adjacent descent images, captured at half altitude
from one to the other. The basic pinhole camera model was selected to address the measure-
ment taken from synthetic surface images, rendered in the Planet and Asteroid Natural scene
Generation Utility (PANGU). To assess the hazardousness of the terrain, hazard maps are com-
puted combining slope, roughness, and shadow information. In contrast to the results of the
Jet Propulsion Laboratory (JPL) NASA, it has been shown that rocks and boulders are not well
resolved from shape recovery with both low- and high-elevation image pairs. Thus, their pres-
ence on the surface has been accounted through an adapted version of the Harris Corner detec-
tor directly on the input images. Two different mission scenarios were simulated: 1) a perfect
vertical motion forward along the camera pointing direction and 2) a 45° angle dropping tra-
jectory for a more realistic approaching descent phase, with a 40° imaging sensor line-of-site
offset. Furthermore, the limitations of the developed algorithm were tested under ordinary
operative conditions.

For the former scenario, the results show that the overall quality of the recovered depth
maps does not appear adequate enough for landing site selection. As a matter of fact, the lo-
cations around the image centre can not be correctly assessed. This represents a significant
problem since these locations are the most convenient in terms of distance and guidance costs.
On the contrary, the latter descent sequence indicates that below 300 m altitude the software is
a suitable candidate for hazard detection, with total correct detection on average >94% and the
percentage of undetected hazards below the allowable maximum 1%.

To assess the algorithm robustness to errors in camera position, a Monte Carlo simulation
was performed. Thereupon, random uncertainties within the interval [-0.5 0.5] meters were
taken into account for the altitude of both camera poses. The errors for the computed Digi-
tal Elevation Model (DEM) are bounded to the maximum allowable only when both altitudes
are affected by small deviation of similar magnitude and same sign (approximately ±10 cm),
peaking to 250%-300% increase for the other values of the considered interval. Moreover, con-
cerning the robustness to errors in camera orientation, deviations of the camera pointing di-
rection were considered only along the plane containing both the normal to the surface and
the camera axis. Already differences greater than +0.05°, in the imaging sensor line-of-site, are
responsible for exorbitant errors in the DEM for all altitudes. These results clearly indicate that
the developed SfM algorithm is not suitable as a stand-alone method for hazard detection and
landing site selection.
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Chapter 1

Introduction

Landing safely and precisely on the Moon, Mars, or any Solar System body has been identified as a
crucial capability for future robotic and manned space exploration missions [17]. This is clearly not a
trivial task and its achievement is made challenging by different aspects. First of all, the distance involved
and thus the time delay in communication, between the spacecraft and the operators on Earth, make
impossible to actively control the trajectory of the robotic lander during its final descent. Furthermore, the
dearth of navigation aids (e.g. GPS or radio-beacons) forces Entry, Descent, and Landing (EDL) systems
to rely only on Inertial Measurement Units (IMU) for position and attitude determination [29].

Given an estimate of the initial position and velocity, IMUs simply integrate acceleration measure-
ments thus being in theory fully self-sufficient, with no knowledge about the surroundings necessary [14].
Nevertheless, these sensors are subject to unbounded error accumulation due to the associated integra-
tion of noise and errors (e.g. bias, axis misalignment, angle random walk to name but a few). This, when
combined with uncertainties in the position and attitude at entry, and in the decelerator models, results
in large landing error ellipses (200x100 km for Viking landers, 1976 [14]).

Despite guided entry has considerably shrunk them (20x7 km for Mars Science Laboratory MSL, 2012
[14]), we are still far from the capability of performing pin-point landings. [14] Moreover, to date, only the
NASA MSL and the Chinese Chang’e-3 were able to actively adjust their trajectory during the EDL phase.
All previous space landers only had the ability to execute autonomously a small series of simple and pro-
grammed commands, forcing to choose landing locations based on detailed analysis of coarse-resolution
orbital imagery: in plain words, past missions have essentially landed "blind" in regions deemed inher-
ently safe (hazard-free to the larger extent), in compliance with the lander design tolerances.

Still, the next robotic planetary surface missions are becoming much more ambitious in their scientific
goals [25], as they attempt to answer questions related to the opportunity of life in our Solar System and
how to access and utilize resources from other celestial bodies. Areas near craters, ridges, fissures, and
other relevant geological formations are likely to be the most interesting landing sites. Hence, landing
next to a surface asset and on bodies where the surface is not sufficiently mapped are key capabilities for
future exploration.

Hazard Detection and Avoidance (HDA) might represent the answer to reach landing sites with high
safety. As its name suggests, HDA allows to detect surface hazards by means of sensors, protecting the
vehicle from landing on top or right next to them. Sensing the surface and extracting local illumination,
slope, and roughness information, the safety of the candidate landing site (LS) can be assessed. Only
if deemed necessary, a new safe LS can be selected and communicated to the Guidance, Navigation, and
Control (GN&C) subsystem. Therefore, it is clear that HDA can be employed only if the vehicle can actively
adjust its trajectory.

Limiting the analysis to the framework of Hazard Detection (HD), therefore only to how potential haz-
ards can be identified, several architectures are currently in development. These technologies are pro-
posed in literature as methods employing active sensors, such as radar [3] and Light Detection and Rang-
ing (LIDAR) instruments [31], or passive sensors, like cameras [13]. The latter are optical devices usually
working in the visible spectrum: since the output is a simple image, they can only deliver an estimate of
the elevation at each pixel through complex algorithms. The former, instead, emit a signal of a certain
wavelength and then they detect the returning echo: illuminating the features of interest they can di-
rectly measure ranges of the sensed terrain, therefore allowing to obtain the Digital Elevation Map (DEM)
directly from the measurements. On the other hand, passive sensors have the advantage of being light
weight, cheap, and to consume only a little power. For instance, the modular space camera ECAM-C30 1

manufactured by Malin Space Science Systems (MSSS) has dimensions of 7.8(W)×5.8(L)×4.4(H) cm, mass

1http://www.msss.com/space-cameras
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of 0.256kg, and 2.5W for power consumption. The GoldenEye 3D 2 by Advanced Scientific Concepts (ASC)
represents instead the state of the art for flash LIDAR space cameras and is currently onboard OSIRIS-REx
sample return mission. With dimensions 14(W)×21.6(L)×14.5(H) cm, mass of 4kg, and 35W for power
consumption the difference stands out. Saving mass and volume, HD systems based on passive sensors
comply with the present needs for miniaturization and furthermore, they allow increased redundancy:
indeed cameras represent a feasible option as a back-up for active systems, keeping the added weight
within limits. [39]

The foregoing discussion has highlighted how landing a spacecraft requires autonomy, and how equip-
ment readily available on space missions can potentially help in reaching landing site with high safety.
Therefore, the following high-level Research Question (RQ) is set to be answered

RQ1 Is it possible to increase autonomy for planetary landings through
equipment readily available on space missions?

Considering passive sensors, it was previously mentioned that they can only recover depth informa-
tion through complex algorithms. Being a hot topic in computer vision over the past few decades, different
methods have been developed for shape recovery: these are often classified into different categories ac-
cording to the information they employed (e.g structure from motion, shape from silhouettes, shape from
shading). The analysis has been limited to the framework of structure-from-motion (SfM) where the input
image pair is acquired from a single moving camera and thus the scene is reconstructed from the result-
ing video sequence. This imaging technique has already been successfully employed in many fields [36],
including robotics, surveillance, and virtual reality. The framework of planetary EDL sets challenges that
traditional SfM algorithms cannot overcome: large difference in resolution, lander motion along the cam-
era optical axis, to name but a few. Therefore, the main research goal of the project is to numerically
investigate the limitations of a SfM algorithm for planetary landing applications. To move a step forward,
a lower-level RQ is set as follows

RQ1.1 Is structure-from-motion suitable for HD as a stand-alone
method?

When analyzing the flowchart of a possible GN&C system architecture, which employs HDA, this in-
cludes additional blocks to perform terrain absolute (TAN) and relative navigation (TRN) (Figure 1.1). The
outcome of these additional blocks is combined with the traditional IMU and altimeter measurements to
decrease the lander’s localization error. Nevertheless, no previous research has answered quantitatively
whether traditional sensors provide knowledge of the lander’s location accurate enough for hazard detec-
tion with SfM.

Figure 1.1: Flowchart of a GN&C system architecture [14]

2http://www.advancedscientificconcepts.com/products/portable.html
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Therefore a further research question has been identified and is shown below

RQ1.2 Do traditional sensors (e.g. IMU and altimeter) provide knowledge of the lander’s location
accurate enough for SfM Hazard Detection or Visual based Navigation (VN) has to be added to
GN&C architecture?

To understand the context of this study within the framework of actual space missions, Chapter 2 dis-
cusses past, present, and future missions relevant to our research. Chapter 3 extensively describes the
modelling of a single moving camera and how to generate depth maps from a sequence of descent im-
ages. Chapter 4 illustrates the software architecture and the choices made during its whole development
process. Software verification is extensively tackled in Chapter 5. The results obtained with the simula-
tion software are given in Chapter 6, together with a sensitivity analysis highlighting the overall software
performances under ordinary operative conditions. Finally, in Chapter 7 the conclusions of our research
are presented while Chapter 8 discusses some recommendations for future work.





Part I

Heritage





Chapter 2

HDA Studies

Technologies for planetary landings have been studied and developed since the late fifties during the
Moon race [8], which culminated on July 21st 1969 with the first human landing on the Earth’s natural
satellite. Despite the failure in the manned exploration of the Moon, the Soviets engaged in a highly fruit-
ful exploration of Venus during the same period. Indeed in December 1970, Venera 7 became the first
spacecraft to successfully soft land on another planet and the first to transmit data back from there to the
Earth.

Nowadays, small probes and landers are sent to far distant planetary bodies such as Mars (e.g. Schi-
apparelli EDM lander and NASA MSL), asteroids (e.g. NASA OSIRIS-REx on 101955 Bennu asteroid and
JAXA Hayabusa on 25143 Itokawa), and comets (e.g. Rosetta’s lander Philae on comet 67P/Churyumov-
Gerasimenko). Looking backwards, on how we got where we are, it is clear that the space agencies all over
the world still cannot master the task of planetary descent and landing: even if we increased our expertise
on landing on Mars we still have no idea how to land, for instance, on Europa, one of the Jupiters moons.
Besides, the more ambitious the scientific and engineering goals get the less likely it will be that we can
design missions solely based on heritage systems [14].

On one hand, it is impressive to acknowledge that to date only a single flying mission has employed
HDA during the descent and landing phase, namely the Chinese Chang’e-3 [35]. On the other hand, there
is the awareness that much progress needs to be made and therefore the thrill of just beginning. Despite
this study specifically investigates SfM systems, this does not imply that only such are important as a ref-
erence: as a matter of fact, different methods and also HDA architectures based on active sensors may
contribute with useful data and information. In the following, Sections 2.1 to 2.7 provide a short survey
on heritage missions and projects related to hazard detection, through which mission and system require-
ments have been derived and presented in Section 2.8. Finally, Section 2.9 presents the thesis project goals
to better structure the research effort.

2.1 Chang’e-3

On December 2013, Chang’e-3 successfully achieved China’s first soft-landing on the Moon. Being the
first robotic spacecraft adopting autonomous HDA [35], the technology that has been developed repre-
sents a critical foundation for any HD study. To ensure a safe landing, HD based on both passive and
active sensors was considered. For coarse avoidance, Chang’e-3 adopted a grey-image-based HD and a
fourth order polynomial guidance [42]. The algorithm involves the following five steps [35]:

• image histogram analysis

• k-means clustering-based image thresholding

• obstacle recognition according to brighter and darker textures

• obstacle distribution and edge detection

• edge closing of the hazardous area

Therefore, the algorithm relies on local intensity clustering to segment the image into regions and then
it classifies them as hazardous or not. To achieve near real-time performances on a flight hardware (less
than one second per image) only shadows and a single class of hazards are segmented [26]. Considering
an image of 400×400 pixels, local windows varying from 8 to 40 pixels are usually chosen with an overlap
of half of their area size. Thus, if a hazard falls precisely on the border of one local area then it will fall in

8
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the center of the next window considered. Local segmentation provides several advantages, for instance,
it allows the algorithm to be robust to a gradually changing surface: as a matter of fact, the difference
between the mean values of the outliers and the surface tends to be higher using a smaller area. The
algorithm selects the locally optimal k mean values, such that the distance of each data point to its nearest
mean value is minimized using the following equation:

E =∑
i

min
j

∣∣pi −u j
∣∣ (2.1)

where pi is the i-th pixel belonging to a specific local window, u j is the j-th mean intensity for a class
j=1,. . . ,k, and E represents the error value to minimize with clusters.
Minimization is achieved by looping the following three procedures until E is smaller than a certain toler-
ance

Assign clusters

lpi = argmin
j

∣∣pi −u j
∣∣ (2.2)

where lpi is the cluster to which pixel pi has been associated

Calculate k means

ul =
∑Nl

i p l
i

Nl
(2.3)

where ul is the new mean value for cluster l (with l=1,. . . ,k) and Nl represents its number of samples

Reiterate

After the image has been segmented, the separated regions are classified as either shadows, hazards,
or part of the attainable region. Chang’e-3 adopted a spiral search strategy to find the nearest safe LS [42].
As the name suggests, the search is performed spirally outward starting from the pre-selected LS. Figure
2.1 illustrates a sketch for the spiral search strategy together with an example of a computed target area
shown in both a hazard map and the input image.

Figure 2.1: Schematic of a spiral search strategy (top) and results on a hazard dis-
tribution map (bottom-right) and on the input grey-scale image (bottom-left). [35]
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For precise avoidance, a 3D laser radar topographic map with the well-established proportional-integration-
differentiation (PID) guidance were selected. The HD process is limited to a 50×50 m2 terrain area,
centered on the currently sub-satellite point [35] and a least-squares fitting is employed to compute
the reference level plane. Once the hazard cost map of the landing area has been computed, the spiral
search method is again applied for the location assessment of a safe LS. The presented approach enabled
Chang’e-3 to identify and avoid rocks larger than 0.2 m and slopes steeper than 8 deg [35].

As a valuable reference, Chang’e-3 mission outline is explained in detail. Captured by the Moon on
6 December at 17:53 UTC+8, Chang’e-3 first achieved a 100 km altitude circumlunar orbit. Four days
later, a de-orbit braking maneuver successfully targeted the spacecraft (S/C) into a 100×15 km elliptical
orbit. The preparation for the powered descent and soft-landing operations (Figure 2.2) occurred about
10 minutes before, with the upload of the ignition time (14 December 20:59:52 UTC+8), the initial (posi-
tion 19.0464°W, 28.9989°N, altitude 14.884 km, velocity 1695.7 m/s) and terminal landing states (position
19.509°W, 42.12°N, altitude 2 m, velocity 0 m/s) to the lander.

Figure 2.2: Illustration of Chang’e-3 powered descent and landing phases [35]

The ignition of the 7500 N main engine (ME) marked the beginning of the primary deceleration: Chang’e-
3 velocity was reduced from ∼1.7 km/s to ∼70 m/s and its altitude from ∼15 km to ∼3 km above the sur-
face. Concurrently, the pitch angle of the lander dropped from ∼85° to ∼65° (respect to the vertical to the
surface) due to the joint effect of thrust and lunar gravity.

Microwave ranging sensor measurements were introduced at an altitude of ∼8 km to correct bias and
drift of the IMU [35]. About 487 s after the beginning of the powered descent the GN&C system automat-
ically switched to the quick adjusting mode, within which the pitch angle was adjusted to ∼9°, while roll
and yaw angle were kept 0°.

At 503 s the approaching descent mode began, with the main objective to perform coarse HDA, while
the lander was descending from ∼2.4 km to ∼100 m above the lunar surface. According to the require-
ments of coarse avoidance, the line-of-sight of the imaging sensor was intentionally offset 40° to ensure
the imaging sensor 30° field of view (FOV) was directed towards the landing area. Taking optimal fuel
consumption into account, the onboard GN&C autonomously selected a new LS approximately 80 m far
from the originally updated LS. A 45° angle dropping trajectory was adopted to approach the reselected
site.

Reached the 100 m altitude, the lander started to hover above the surface while maintaining the atti-
tude. Subsequently, at 644 s the system switched to the hazard-avoidance mode, attaining an altitude of
∼30 m. Performing fine HDA the LS was moved approximately 9 m further to the northeast [35].

Thereupon, the GN&C transitioned to the constant low-velocity descent mode: the horizontal velocity
was reduced to zero while the attitude of the lander was progressively aligned with the normal direction
of the surface. In this phase only the IMU was adopted to provide navigation information, because the
thrusters effect on the lunar surface dust would have severely affected laser and microwave ranging sen-
sors reliability. The lander descended at a constant velocity of 2 m/s until it reached 2.88 m above the
surface, where a gamma sensor gave a shutdown signal, turning off all thrusters. The lander freely fell and
touched down the surface 687 s after the beginning of the powered descent.
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2.2 ESA Lunar Lander

The ESA Lunar Lander is a technological demonstration mission for autonomous soft, safe precision
landing on the Moon. Planned to be launched no later than 2018, the project dates back to the mid ’90s
where specific concerns in lunar landings led to several technological activities. The Lunar European
Demonstration Approach (LEDA) [1] assessed an exploration mission whose main objective was to soft-
land a spacecraft at the lunar south pole, using an autonomous onboard vision-based GN&C system,
including HD capability and landing site re-targeting. Besides, within the Aurora Core programme, ESA
initiated the Hazard Avoidance System Experiment (HASE) study to further mature the vision-based HDA
solution proposed for the Lunar Lander mission [7]. Notwithstanding all these efforts, at ESA’s Ministerial
Council in November 2012, no further funding was allotted for the project.

The mission is yet a valuable case study for the framework of HDA. To introduce functional redun-
dancy for the slope and roughness computation, an architecture employing both a camera and LIDAR
was considered. The shadow, slope, and roughness maps computed by the hazard mapping (HM) func-
tion are converted into scoring maps, allocating scores to each pixel in compliance to the hazard values.
Thereupon, the three maps are merged into a single hazard map which reflects the overall hazard level of
the surface terrain.

Alongside, a piloting function determines the attainable region for re-targeting. Taking as input the
navigation data, and the terrain DEM directly measured by the LIDAR sensor, the ground coordinates of
the LS are evaluated. A related Distance cost map is therefore obtained, assessing the distance of every
candidate LS respect to the nominal LS, together with the associated cost: sites that are further away from
the nominal are penalized.

The associated guidance costs (function of the amount of fuel required to reach the candidate LS) are
taken into account in the guidance cost map. The piloting function indeed computes the trajectory profile
that the lander will follow to reach each candidate site, checking for feasibility, available fuel, and thrust
authority constraints. For a candidate LS, if the trajectory is not feasible, the guidance will select a maxi-
mum cost value, hence indicating the LS is not reachable. The attainable re-targeting map is determined
merging the Distance Cost Map and the Guidance Cost Map. [7]

An additional piloting function is responsible for the re-targeting decision. The hazard map (output of
the HM function) is interpreted and a risk score for each candidate LS is computed, thus attaining a risk
map. A global map, which merges the attainable re-targeting and the previous risk map, is then realized:
the aforementioned reflects both the reachability and safety constraints for the LS, enabling the best can-
didate to be identified. It should be pointed out that re-targeting only occurs if the current LS is found to
be unsafe and if the new candidate is meaningfully better. A consistency check is performed to verify that
the same LS is chosen consistently for few iterations. Only thereupon re-targeting is commanded.

2.2.1 Mission Outline

Through a de-orbit burn over Moon’s North Pole, the lander starts out its descent trajectory. This is
followed by a coast phase where Terrain Absolute Navigation (TAN) helps to establish an accurate deter-
mination of its position. Close to the South Pole at an altitude of ∼ 15km the Powered Descent Initiated
(PDI) point occurs, which marks the beginning of the main braking phase. Firing its all 500N ME the ve-
hicle velocity is reduced from ∼ 1500m/s to ∼ 100m/s, besides additional 220N pulsed assist engines (AE)
are ignited allowing thrust modulation and increased controllability. The GN &C guides and control the
vehicle to reach the Approach Gate (AG) at ∼ 2.5km where the approach phase starts. During this phase,
LIDAR data and camera images are collected to select autonomously a safe landing site.

Two diverts are allowed, and they are designed to occur within specific altitude zone: the first occurs
nominally between altitude ∼1.5km and ∼1.3km in a zone termed far range, while the second divert oc-
curs in the close range nominally between altitude ∼300m and ∼150m. With such strategy landing site
terrain is observe with progressively increased accuracy, leading precise touchdown capabilities of below
10m accuracy and horizontal divert capabilities of up to ∼300m. Lastly, the lander executes a controlled
vertical descent and soft touchdown on the lunar surface.

2.3 Space Technology 9 Terrain-Relative Guidance System (TRGS)

Further studies have performed HDA research independently from a specific mission. For instance,
the NASA’s New Millennium Program (NMP) inaugurated the Space Technology 9 (ST9) Terrain-Relative
Guidance System (TRGS), the latest of a series of technology validation activities begun in 1996 with Deep
Space 1. NASA selected TRGS from five candidate technology capabilities that had been under preliminary
consideration [19]. Within the project, three vision algorithms for HD were developed:
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• Stereo-based slope estimation

• Stereo-based rock detection

• Shadow-based rock detection

Slope estimation from stereo range data is achieved through a robust plane fitting [5]. A first least-
median square fit is repeated for multiple triplets of points. The triplet for which the median of the
squared plane error is minimum is kept, therefore allowing to eliminate outliers. A result of this is shown
in Figure 2.3

Figure 2.3: Robust plane fitting applied to 3D stereo range data for two different altitudes [5]

Stereo-based rock detection is achieved by computing the deviation from the mean plane and averag-
ing the 25 highest range points in each region. [5] The latter step enables to reduce noise in the estimates.
To detect rock hazards at much higher altitudes than stereo-based estimation, the shadows they cast has
been employed to detect their presence. This is achieved by fitting the "best-ellipse" in shadow regions
larger than five 5 pixels 2.4

Figure 2.4: Shadow-based rock detection [5]

2.4 ALHAT

The development of technology that enables safe precision landings has been identified as a priority
for future EDL missions also by the National Research Council (NRC) [2]. With the Autonomous precision
Landing and Hazard Avoidance Technology (ALHAT) project, NASA has addressed this priority aiming to
make LS selection scientifically driven rather than capability limited.

Tasked in 2006 [40], the project has developed and matured to a Technology Readiness Level (TRL)
6 [12] an autonomous system combining GN&C with terrain sensing and recognition functions for crewed,
cargo, and unmanned planetary landing vehicles. No Host Vehicle (HV) description has been made in the
definition of the HD system (HDS), therefore allowing a large-independent design and development path.

ALHAT design was driven by real-time landing operations requirements, primarily on HV navigation
performance, HD pointing accuracy, and software communication interface. The process of safe site de-
termination is demanded to occur within a 10 s interval [21], starting from a 1 km slant range along a 30°
approach angle trajectory. During this time interval, the HD system successfully executes the following 4
tasks

• Terrain imaging of a 1 hectare region

• DEM construction

• HD processing

• Safe sites identification.
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Aiming to be employed by vehicles with different hazard tolerances, ALHAT team established that the
system should detect LS that are free of 30 cm roughness hazards and with surface slopes not to exceed
5° [21]. This roughness tolerance requires DEM generation with a 10cm Ground Sample Distance (GSD),
using range images with a 5 cm (1σ) range precision. To generate such large DEMs under any lighting
conditions, a flash-LIDAR technology for real-time terrain imagery was selected. The sensor [22], based on
3D imaging camera technology developed by ASC, employs a 128×128 px detector array camera allowing a
900 m operational range at 30° approach angle (Figure 2.5). The receiver Field-Of-View (FOV) was chosen
to be 1.0° to provide the necessary 10 cm GSD accuracy. [21] The small FOV requires the overlapping of
multiple flash-LIDAR images of the surface terrain for generation of a 1000×1000 element DEM (1 hectare
at 10cm GSD). Therefore a twin-axis gimbal slews the flash-LIDAR to acquire the mosaic of images that
are processed to generate the desired DEM.

Figure 2.5: ALHAT HD trajectory profile for safe and precision landing [21]

2.4.1 Concept of Operations

Figure 2.5 also highlights that two operational phases occur during the HD trajectory profile: 1) the HD
phase and 2) the Hazard Relative Navigation (HRN) phase. During the former, the HDS generates onboard
a DEM of the surface terrain and processes it to assess safe LS within a 1 hectare region centered on the
nominal landing site (ILP). The latter generates additional descent images and correlates them with the
previously computed DEM, in order to match terrain features and to calculate lateral position offsets for
LS-relative state updates.

To construct the DEM, the HDS a collection of range images is seamlessly assembled. As previously
state, the entire 1 hectare region cannot be imaged to 10cm GSD from a single 1° FOV image. Therefore,
the HDS plans a mosaic path (Figure 2.6) along the surface that is tracked by the gimbaled sensor during
image collection. The slew maneuver takes approximately half of the 10 s required for the whole HD
phase [21]. The HRN phase starts automatically upon HD completion, nevertheless it is not discussed
since it is not meaningful for this project.

Figure 2.6: Detailed operations of ALHAT HD phase [21]
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2.5 NASA Mars Exploration Program Advanced Technologies

As its name suggests, the NASA Mars Exploration Program Advanced Technologies was started to solicit
technology developments needed for future martian missions, to be launched during or after the 2009
launch window. "Pin-point landing" (within tens of meters to 1 km of a target site), and advanced methods
for detecting, avoiding, or tolerating landing hazards were identified as crucial requirements for future
exploration missions [9].

Within this project Huertas et al. [4] developed a passive "multi-cue" HD system. Rather than comput-
ing a true hazard map, their proposed method selectively applies different algorithms to eliminate hazard
areas and to identify only promising areas for further processing. The HD system involves four different
phases. During the survey stage, occurring at early descent, only large craters are quickly located: compar-
ison of their intensity gradient against an ideal crater model allows to calibrate shape-from-shading (SfS)
and intensity to angle functions. The latter is employed at the last part of the parachute descent, namely
regional hazard detection stage, to identify pixels on steep slopes.

Furthermore, through a Homography-based Slope Estimation (HSE) the flatness of the potential LS is
assessed. As output, the best landing region (typically larger than the LS) is selected and the spacecraft
is steered there. During the last part of the descent the local hazard detection stage starts, allowing the
detection of small craters and rocks. The present mode employs texture analysis, SfS maps, and again the
HSE due to the availability of higher resolution images. Finally, in the site selection stage the algorithm
choose the "safest" site among all the potential candidates.

2.6 Depth Maps from Descent Images

Xiong et al. [43] at JPL have developed a method which computes depth maps, useful for navigation,
from adjacent descent images taken at half altitude from one to the other. Their proposed approach has
never flown on-board and experiments have validated it. A perfect motion forward along the camera
pointing direction (Figure 2.7) is here considered.

Terrain

I2

I1

Figure 2.7: Descent motion along the camera principal axis

Under such assumption, dense depth recovery is achieved through a set of virtual parallel planes [43].
These slice the terrain inducing a homography Hi such that the image I2, taken at camera 2nd pose, can
be warped back to the first image plane. Therefore, the two images are made resolution equivalent and
aligned. To better understand what this means, let us consider Figure 2.8. Given a point A, which lies
on both the terrain and plane πi , let a2 be its image belonging to I2. Therefore, a1 = Hi a2 represents
the projection of A in image I1. For the virtual parallel planes πi−1 and πi+1 the induced homography
matrices are Hi−1 and Hi+1, respectively. Both Hi−1a2 and Hi+1a2 are image points which belongs to I1,
nevertheless they are projection of the terrain points P and Q. Therefore, only when the 3-D point lies on
both the terrain and the virtual plane its projections satisfy the homography induced by the considered
virtual plane [11]. Since the lighting conditions vary little in the two images, the corresponding points are
highly correlated. Therefore, the estimated depth value at each pixel is the depth of the plane for which
the highest correlation is achieved.
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Figure 2.8: Scheme of the homography-based depth recovery [11]

2.7 Research at TU Delft

The Astrodynamics and Space Missions group at the Delft University of Technology is highly involved
in planetary re-entry and descent studies, and in guidance and control system design. For instance, Ir.
Svenja Woicke is currently investigating the use of simultaneous localization and mapping (SLAM) meth-
ods for HDA and terrain relative navigation (TRN). Her research also lead to the development of a stereo-
vision based hazard detection algorithm for future planetary landers [37].

Her work [38] [39] [37] is not only a valuable reference for the algorithm system requirements, but also
for the optimal methods to compute hazards within the framework of planetary landings. As a matter
of fact, considering the slope computation, she has shown that methods such stepest descent, third or-
der finite difference, and partial quadratic equation produce very large errors, overestimating the slope
by more than 200% [38] in presence of noise and boulders. In [38] she concluded that despite intelli-
gent mean plane algorithms better estimate slope, the gain obtained does not justify an execution time
increased by at least a factor 4 respect to linear regression. Furthermore, in [39] she also provides an
accurate comparison of 3 different shape recovery methods (stereo-vision, structure-from-motion, and
shape-from-shading) within the framework of HD.

2.8 System Requirements

The previous sections have established the context of this research within the framework of actual
space missions. This choice allows us to preset System Level 0 requirements (Table 2.1) for the hazard
detection software. Most of them can be explicitly derived from the reference missions/projects formerly
tackled. Despite Chang’e-3 considered 20 cm roughness features as hazardous [35], it has been decided
to be bound to the less stringent requirement (30 cm roughness) demanded by ALHAT [21]. As matter of
fact, in the attempt to answer more ambitious scientific goals, the next generation of landers is expected
to increase their hazard tolerances. In accordance with recent studies [38], when considering the hazard
posed by the terrain slope, it has been agreed that a 15° slope is expected to cause a hazard for future
landers, while ALHAT and Chang’e-3 identify and avoid LS characterized by 5° and 8° slope respectively.

The requirement concerning the computational time of the HD algorithm often results "hard-nosed".
Clearly, the HD system has to be computationally light enough to operate in real-time on space qualified
hardware. In literature [21] it can be found that the sophisticated ALHAT demands approximately 4 sec-
onds to get DEM readings, while other methods [18] have been tested to be much faster. Naively, we may
ask what is the "conversion factor" to come up with a number for the computational requirement on our
personal computer. Let us cut to the chase: it does not exist. Some tests have compared current personal
computer with space qualified hardware, nevertheless the numbers found are only valid for those specific
machines considered. Based on further studies [37] and common sense, it can be considered that if an
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HD evaluation takes up to 2 seconds in an ordinary personal computers, this will be fast enough when
operating on-board an older and slower [27] space qualified hardware. The requirements on the landing
sites are related to the performance assessment. Comparing the LS found in the computed hazard map
to the sites belonging to the ground-truth, the LS can in general be classified as

• True Positive (TP), if correctly identified as safe

• True Negative (TN), when it is correctly identified as unsafe.

• False Positive (FP), if an unsafe site is erroneously considered safe

• False Negative (FN), when an actually safe site is erroneously considered unsafe

For a robust and reliable HD algorithm, a strong correct assessment of the landing sites is obviously
desired with undetected hazards (FP) consequently bounded to a small percentage (≤ 1%) [37].

Table 2.1: Hazard Detection functional requirements

Autonomy fully autonomous

Hazards
Shadows
Roughness ≥ 30cm
Slope ≥ 15°

Landing Site (LS)
Safe LS classification (TP+TN) ≥ 99%
Unsafe LS labelled as safe (FP) ≤ 1%

Real-time performances
Computational time (on personal computer) ≤ 2s

2.8.1 Mission Scenarios

Similarly to the research paper [43], a scenario assuming a perfect vertical motion forward along the
camera pointing direction is initially considered. With the camera height decreasing from 1000 m to 50 m
above the surface, the altitude range is not only representative of the HDA assessments, but also it allows
the investigation of the algorithm operational envelope.

Only the very last phase of a planetary descent is characterized by a vertical motion, therefore an ad-
ditional scenario has also been constructed from literature to better simulate the lander’s approaching
phase. Based on Chang’e-3 powered flight (Section 2.1), a 45° angle dropping trajectory has been consid-
ered with the input images captured starting from 2400 m above the ground. The lander’s pitch angle is
initially set to 9°, while both the yaw and roll angle are kept at 0°. The sensor line-of-site is intentionally
offset to 40° to ensure the camera is free of the effect of main engine plume and and its 30° FOV is directed
towards the landing area. For both scenarios, a perfect knowledge of the lander’s position and orientation
has been initially assumed.

Given that the system employed is simply a camera, in accordance with other studies [30] [37] no refer-
ence vehicle has been described. A pinhole camera model (see Section 3.2 for description), which assumes
a linear relation between image point position and the direction of the associated camera ray, and 8-bit
gay scale input images have been considered. Color, indeed, does not add greater insights since most of
the information contained in an image comes from the intensity maps. Furthermore, in gray-color the
red, green, and blue components have all equal intensity in RGB space: therefore, it is only necessary to
specify a single intensity value for each pixel. This can be stored in only 8-bit, giving 256 shades of gray.
Concerning the size of the input images, 512×512 pixels size have been found a good compromise be-
tween the level of the terrain surface details and the demanded computational time for processing it. [37]
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Table 2.2: Parameters of the camera system

Camera Model pinhole
FOV 30°
Image resolution 512×512 px
Color 8-bit gay scale

2.9 Research Objectives

It is clear that planetary EDL sets challenges [43] [11] that traditional SfM approaches can not over-
come. For instance, images taken at different instant of time during the lander descent are affected by
large resolution differences, therefore making correlation more difficult. Furthermore, it is likely that the
epipoles (points of intersection of the line joining the camera centres with the image planes) (Appendix
A.3) are located inside the image boundaries, causing the failure of conventional rectification approaches:
indeed, no linear relation that can map the epipole to infinity exists.

Nevertheless, Section 2.6 has illustrated a method that can robustly compute depth maps from descent
images, for navigational purposes. Therefore, this approach is employed as a starting point for the devel-
opment of a SfM based hazard detection algorithm. Already in the Introduction (Chapter 1), the main
research goal of the project was stated as numerically investigate the limitations of a SfM algorithm for
planetary landings, given traditional sensor (e.g. IMU and altimeter) measurements to assess the lander’s
location. Since a SfM approach has been now selected, to better structure the research effort the following
sub-goals (SB) have been identified:

SB1: Solutions to tackle depth recovery in the vicinity of the epipole

SB2: Algorithm robustness to errors in both camera position and orien-
tation

SB3: Assess whether dense reconstruction, near the image center, is pos-
sible with adjacent image pairs such that one is taken at less than half
altitude (e.g. one third) of the other image

It is obvious that only after the software has been designed and verified, it is possible to proceed with
the implementation of the required simulations to assess all the SBs.
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Chapter 3

Modelling

As an introduction to structure-from-motion, the issue of generating terrain maps from a sequence of
descent images is tackled as follows: first, we present the reference frames and camera model selected to
address the measurements taken from images in Section 3.1 and 3.2, respectively. The current state-of-
the-art to compute depth from descent imagery is extensively discussed in Section 3.3. Finally, a descrip-
tion of the virtual descent images that will be employed in this research is given in Section 3.4.

3.1 Reference Frames

Any description and access to image locations requires the definition of a reference frame. Since dig-
ital gray-scale images are stored as two-dimensional arrays, the most convenient method for expressing
locations is to employ pixel indices: therefore images are treated as a grid of discrete elements. Similarly
to MATLAB and OpenCV [23], the reference system for the image plane is centred on the top left corner
of the image, with pixels ordered from left to right and top to bottom. For 3D scene reconstruction, the
camera frame has been set accordingly as illustrated in Figure 3.1, with the camera principal axis pointing
along the ZC axis.
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Figure 3.1: Camera (XC ,YC , ZC ) and image plane
(
x, y

)
reference frames

3.2 Camera Model

To address measurements taken from images it is necessary to select a model which coherently de-
scribes the camera. First and foremost, we define camera a mapping between the 3D world (object space)
and a 2D image. [32] The model here considered is the basic pinhole camera which can be simply de-
scribed thanks to projective geometry and expressed through a matrix representation. Under this model

20
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a point X, belonging to the object space, is mapped to the point where the line joining X and the camera
centre C meets the image plane (Figure 3.2).

Figure 3.2: Pinhole Camera Model Geometry. Note the image plane is placed in front of the
camera centre C [32]

Therefore, there exists a linear mapping between the position of the image point and the direction of
the associated camera ray. Considering the camera frame, previously defined in Section 3.1, a 3D point is
mapped on the image plane as:

(X ,Y , Z )T →
(

f
X

Z
+u, f

Y

Z
+ v

)T

(3.1)

with f the focal length of the camera, while u and v the coordinates of the principal point (namely p
in Figure 3.2) relative to the image plane origin. Exploiting the matrix representation the following can be
written

 f X +u
f Y + v

Z

=
 f 0 u

0 f v
0 0 1

 X
Y
Z

= K X (3.2)

where K is called intrinsic camera matrix (or calibration matrix) and transforms 3D camera coordi-
nates to 2D homogeneous image coordinates. As the dominating imaging model in computer vision [16]
besides, in agreement with other studies employing cameras for space application (e.g. optical naviga-
tion [23]), the pinhole camera model has been chosen.

3.3 Depth Recovery

A qualitative description on how depth can be recovered from two adjacent descent images was pre-
viously outlined in Section 2.6. To move a step forward, the shape recovery steps are here presented in
detail. In the following, C1 and M1 represent the camera centre and camera projection matrix respec-
tively. Instead, ~C2 and M2 are the same parameters at camera 2nd pose. For any pixel of this latter image,
its world location has to lie on the 3D ray defined by

X = sM−1
2

 c2

r2

1

+C2 (3.3)

where r2, c2 are the row and column location of the pixel, while s is a positive scale factor. The k-th
virtual planar surface πk is given by

N T X + zk = 0 (3.4)
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where N = (0,0,−1)T is the normal of πk , and zk represents the distance between C1 and plane πk .
The minus sign in N is because the normal of the virtual parallel planes is pointing in opposite direction
of the camera frame ZC axis. Substituting Equation 3.3 into the previous constraint, the scale factor s can
be retrieved as follows:

sN T M−1
2

 c2

r2

1

+N T C2 + zk = 0

s =− N T C2 + zk

N T M−1
2

 c2

r2

1


(3.5)

The back projected 3D ray (Equation 3.3) can now be determined. Through the camera projection
matrix M1, the 3D world point ~X of the object space is mapped to the point onto the first image, taken at
a higher altitude. Referring to the centre of projection C1, it is possible to write

 x1

y1

z1

) = M1 (X −C1) (3.6)

Between the two images there exist a projective homography Hk , in other words, a 3×3 matrix that
linearly relates points of the image pairs.

 x1

y1

z1

= Hk

 c2

r2

1

=
 h11 h12 h13

h21 h22 h23

h31 h32 h33

 c2

r2

1

 (3.7)

where the matrix specifying the projective homography (see Appendix B for derivation) is attained
from

Hk = M1 (C2)−C1) N T M2
−1 − (

N T C2 − zk
)

M1M−1
2 (3.8)

Assuming the camera frame at 1st pose for the 3D reconstruction C1 = 0 and C2 = −R−1T , where R
and T describe respectively the relative orientation and location of the camera at 2nd pose. Similarly,
M1 = K and M2 = K R . Under the assumptions of a pure translation motion along the camera’s principal
axis R = I3×3, the identity matrix, thus M1 = M2 = K . With Hk , I2 is warped back to the first image plane.
Furthermore, through this approach images are made resolution equivalent and aligned, therefore ready
for correlation. The requirement for the input images, to be taken at half altitude from one to the other,
arises to achieve dense reconstruction maps near the image center [11]. Let t0 be the time at which the
first image is captured moreover, let assume the camera frame at this instant of time to coincide with the
world frame. Therefore, an arbitrary terrain point X = (X ,Y , Z ) is imaged into

xt0 =
1

Z
K X (3.9)

where K is the camera calibration matrix and the imaged point is characterized by an homogeneous
representation. Similarly, when the second image is captured at t1

x t1 =
1

Z −d
K (X −D) (3.10)



Modelling 23

assuming the lander has travelled the distance D = (0,0,d)T , along the optical axis.

By denoting with v = (
px , py ,1

)T the coordinates of the principal point in terms of pixel dimensions in the
K matrix, it is possible to write

Z
(
xt1 −xt0

)= 1

Z −d
(dK X −Z K D) = 1

Z −d
(dK X −Z d v )

Adding and subtracting d
Z−d K D yields

Z
(
xt1 −xt0

)= d

[
1

Z −d
(K X −K D)+ 1

Z −d
(K D −Z v )

]
= d

[
xt1 +

1

Z −d
(d v −Z v )

]

The previous expression can be simplified leading to the following relation

Z
(
xt1 −xt0

)= d
(
xt1 −v

)
(3.11)

Let x̄t1 = xt1 − v denote the coordinate of xt1 relative to the image centre (principal point) and ∆x =
xt1 −xt0 the disparity of the images of X between t0 and t1, then

∆x = d

Z
x̄t1 (3.12)

Therefore, the point disparity ∆x is directly proportional to its distance from the image center and the
ratio of descent height to elevation d/Z . If xt1 lies in the image center then x̄t1 =0, thus the disparity is
always zero. For points satisfying x̄t1 = 1 pixel, to have a 0.5 pixel disparity a ratio d/Z = 0.5 is required.
This means that the heights of two adjacent images should be halved to detect such disparity around the
image centre.

3.3.1 Image Correlation

The correlation operation is vital to the recovery problem. The Sum of Squared Differences (SSD) and
the Sum of Absolute Differences (SAD) are the most commonly employed statistical methods for obtaining
correlation

CkSSD (x, y) =
x+W∑

m=x−W

y+W∑
n=y−W

(
I1(m,n)− I k

2 (m,n)
)2

(3.13)

CkS AD (x, y) =
x+W∑

m=x−W

y+W∑
n=y−W

∣∣I1(m,n)− I k
2 (m,n)

∣∣ (3.14)

where 2W + 1 is the size of the correlation window. The correlation is computed on the area shared
by the descent images, border excluded (half-width of the correlation window), for every virtual planar
surface. Therefore the estimated depth value at each pixel is the depth zk of the plane whose correspond-
ing image pixel Ck (x, y) is the smallest. To further refine the depth values, once the smallest Ck (x, y) is
identified, the two adjacent values Ck−1(x, y) and Ck+1(x, y) (left and right side of Ck (x, y), respectively)
are employed together with Ck (x, y) to approximate the correlation curve by a second-order polynomial.
Therefore, the depth value with the "subpixel" adjustment can be computed [44] as:

z
(
x, y

)= zk +
δz

(
Ck+1

(
x, y

)−Ck−1
(
x, y

))
2
(
Ck+1

(
x, y

)+Ck−1
(
x, y

)−2Ck
(
x, y

)) (3.15)

where δz is the depth increment between adjacent planar surfaces.
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3.4 Descent Images

As previously mentioned, the input image pair is characterized by a large resolution difference. In-
deed the surface area of 1 pixel in image I2 (2nd pose) represents exactly a quarter of the area covered
by 1 pixel belonging to I1 (1st pose). Synthetic surface images, rendered in the PANGU planetary scene
generator [41], have been considered. This software tool has been developed at the Space Technological
Centre at the University of Dundee, to simulate the surface of various planetary bodies. Given position
and orientation of a spacecraft, PANGU generates realistic surface images of heavily cratered planetary
bodies such as the Moon. An example of input image pair is shown in Figure 3.3. Initially, a surface model
is created (which may be entirely synthetic or it may be based on existing low resolution DEMs) only then
features like craters and boulders are applied onto such model.
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Figure 3.3: Example of a PANGU input image pair. Image I1 taken at 1200 m above
the surface (left) and I2 taken when the altitude is halved (right)

Different scenes have been generated, all corresponding to a 30° FOV projective camera with 512×512
pixel 8-bits sensor (Table 2.2). The aforementioned sensor size has been found a good compromise be-
tween the level of terrain surface details and the demanded computational time for processing it [37].
Under this assumptions the intrinsic camera parameters have been set as follows:

K =
 f 0 u

0 f v
0 0 1

=
 955.4050 0 256

0 955.4050 256
0 0 1

 with K = px (3.16)





Chapter 4

Software

Through the modelling presented in the foregoing chapter, an HD algorithm has been implemented and
tested. The software developed is written in MATLAB language and is able to compute hazard maps from
two adjacent descent images. A modular structure has been chosen, allowing easier verification and a
more efficient integration and extension. The current chapter details the software architecture, with all
modules outlined in a coherent structure in Section 4.1. In addition, Section 4.2 discusses the challenges
faced during depth recovery, as well as the choices made to overcome these. Finally, the methods selected
for computing shadow, slope, and roughness maps within the framework of planetary HD are highlighted
in Section 4.4

4.1 Software Architecture

To better structure the architecture of the software (Figure 4.2), 2 high-level sections have been identi-
fied: DEM Computation and Hazard Detection. Besides, the entire system is embodied by only eight main
elements (blocks portrayed in light red), namely Rock Detection, Image Warping, Correlation, Shadow De-
tection, Slope Computation, Roughness Computation, Mapping, and Georeferencing. A detailed descrip-
tion per block will be given in the following sections.

• Rock Detection applies Harris Corner measure to determine the presence of rocks, boulders, and
their immediate nearby pixels. The function handles the input image at camera 1st pose and delivers
as output its related boolean rock map. A pixel value of 1 is associated with the presence of rocks,
instead 0 for no detection.
Input:

– I1, image at camera 1st pose

Output:

– I1_rockMap, rock boolean map of the image at camera 1st pose [/]

• Image Warping warps the image taken at camera 2nd pose back to the first image plane. Through
this block, I2 is made resolution equivalent and aligned to the image I1, therefore ready for correla-
tion.
Input:

– I2, image at camera 2nd pose

– invP_k, inverse of the homography induced by the k-th virtual parallel plane

Output:

– I2_k, warped version of the image taken at camera 2nd pose

• Correlation represents the last stage of the DEM Computation. The Sum of Absolute Differences
(SAD) is employed as correlation operator.
Input:

– I1, image at camera 1st pose

– I2_k, warped version of the image taken at camera 2nd pose

– I1_rockMap, rock boolean map of the image at camera 1st pose [/]

26
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– Ax, Ay, Bx, Cy, vertices limits for correlation [px]

– W, width correlation window from its center [px]

– C_k, array to store correlation coefficients

– n_slice, number indicating the current slicing surface

Output:

– C_k, array to store correlation coefficients

• Georeferencing is employed to assign real-world coordinates to each pixel of the raster. In other
words, it represents the process of projecting the results from the image plane to the world coordi-
nate frame.
Input:

– Z_e, computed depth map [m]

– h1, altitude camera at 1st pose [m]

– cameraTilted, logic variable for the imaging sensor offset

– Oworld, origin world frame (X ,Y ) [m]

– theta, line-of-site total offset [rad]

– FOV, field-of-view [rad]

– imgSize, image size [px]

– W, width correlation window from its center [px]

– nPX, number of pixel from the border to be neglected [px]

– Ax,Ay,Bx,Cy, vertices limits [px]

Output:

– Xgeo, x-real-world-coordinates [m]

– Ygeo, y-real-world-coordinates [m]

• Shadow Detection extracts shadow hazards through thresholding, which consists in comparing each
image pixel with a selected threshold value.
Input:

– I1, image at camera 1st pose

– cameraTilted, logic variable for the imaging sensor offset

– Z_e, computed depth map [m]

– K1,K2, indices of trapezoid lateral sides [px]

Output:

– shadowMap, shadow boolean map [/]

• Slope Computation adopts the well-known linear regression method to assess the slope of the sur-
face terrain. Based on the safety constraints previously defined in Section 2.8, the slope values are
re-scaled from 0 to 1.
Input:

– Z_e, computed depth map [m]

– Xgeo, x-real-world-coordinates [m]

– Ygeo, y-real-world-coordinates [m]

Output:

– z_mean, mean plane depth values [m]

– slopeMap, slope map [rad]

– hMap_slp, hazard slope map [/]

– Wx,Wy, width slope window from its center x,y-direction [px]

• Roughness Computation identifies additional terrain features that differ from the local mean plane.
Similarly to the slope computation block, roughness values are re-scaled from 0 to 1.
Input:

– Z_e, computed depth map [m]

– z_mean, mean plane depth values [m]
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– Wx,Wy, width slope window from its center x,y-direction [px]

Output:

– rghMap_DEM, roughness map [m]

– hMap_rgh_DEM, hazard roughness map [/]

• Mapping allows to combine the shadow, slope, and roughness hazard maps into a single map indi-
cating the hazardousness of the input subspace, on a scale from 0 to 1. Therefore, for each pixel, it is
a hazard value increasing from 0 to 1 (unsafe).
Input:

– Z_e, computed depth map [m]

– shadowMap, shadow boolean map [/]

– hMap_slp, hazard slope map [/]

– hMap_rgh_DEM, hazard roughness [/]

Output:

– hazardMap, map assessing the hazardousness of the landing region [/]

For the sake of simplicity, Figure 4.2 only depicts a schematic of the software architecture: indeed,
it can be clearly seen that only the main inputs/outputs (I/O) are displayed. Nevertheless, the flow of
information and data shown is relevant to the flow within the developed software. As previously stated, a
detailed description per block is given in the following sections, therefore allowing to better understand
of the software architecture too.

The legend for the software block diagram is presented as follows (Figure 4.1). It is important to notice
that all inputs and outputs (I/O) are characterized by a trapezoidal form. The different color is to highlight
blocks that can be seen either as input and output (azure) from the true initial software inputs. For the
latter, a further distinction is made to separate input describing camera parameters (light blue) from input
depicting perturbations (light green).

Initial Input
Camera parameters

Initial Input
Perturbation

Input/Output

Main Block

?

END

Figure 4.1: Legend for the Software Block Diagram
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Figure 4.2: SfM HD Software Architecture
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4.2 Challenges in Shape Recovery

Several challenges, related to the DEM Computation part, have been faced. Being one of these and
furthermore a crucial step for the correct depth assessment, image warping is here extensively analyzed.
First and foremost, image warping represents a geometric transformation between two images, a source
and a target image. [34] The geometric transformation defines the relationship among the source and
the target pixels. Hurdles have arisen due to lack of information in [43] concerning its implementation:
both from a strategy-wise point of view (direct/reverse mapping) and in how to handle pixel locations
expressed through real numbers, due to the homography computation. The strategy of reverse mapping
(Figure 5.2) has been chosen, where the target pixels in raster order are inversely mapped to the source
image and sampled accordingly. [34]

Source Image Target Image

Figure 4.3: Scheme of reverse warping

For every zk , belonging to the space of the depth search, the homography Hk (Equation 3.8) is com-
puted together with its inverse H−1

k . A matrix of the same size of I2 is pre-allocated for its warped version,

namely I k
2 : therefore, for every location (u, v) ∈ I k

2 the corresponding pixel (uk , vk ) ∈ I2 is determined as
follows

[uk , vk ,1]T = H−1
k [u, v,1]T (4.1)

[uk , vk ] =
[

h11u +h12v +h13

h31u +h32v +h33
,

h21u +h22v +h23

h31u +h32v +h33

]T

(4.2)

where hi j are simply the elements of the matrix H−1
k , associated with the k-th parallel planar surface.
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Figure 4.4: Computed DEM through warping accomplished by rounding coordinates to
the nearest integer (left) ground-truth (right). Altitude 300 m
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It must be highlighted that uk ,vk may not be integers, therefore a way to express pixel locations needs
to be found. Rounding the coordinates to their nearest integers led to wrong 3D reconstructions (Figure
4.4) since not correct gray-scale intensity were associated with the pixels belonging to I k

2 . On the other
hand, bi-cubic interpolation was proved too computationally expensive (tens of minutes for a single DEM
computation) for the tight real-time constraints involved (Section 2.8) and therefore it was discarded al-
ready at an early stage of the software implementation. Bilinear interpolation with the 4 nearest pixel
values has been found optimal, therefore it is employed for the intensity assessment

I k
2 (u, v) = I2 (uk , vk ) (4.3)

Figure 4.5 shows an input image I2 and its warped version I k
2 , computed for a specific depth zk . During

the first software performance assessment on depth recovery, an unusual squared pattern has emerged
on the computed DEMs (Figure 4.6). Further study has shown that such figures arise in presence of small
features (e.g. rocks and boulders), characterized by high differences in their gray-scale intensities from
pixel to pixel.
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Figure 4.5: Input image I2 (left) and its warped version I k
2 computed for zk = 600 m

(right)
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Figure 4.6: Squared pattern on a computed DEM with SSD. The length of the
squares sides equal the size correlation window (17 pixels)
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Furthermore, the length of the square side has been shown to perfectly match the size of the correla-
tion window employed. The reason behind the phenomenon is associated with the limitation of projective
warping implemented through bilinear interpolation. This can be clearly observed in Figure 4.7, where a
zoom for a specific boulder is shown for both the image taken at camera 1st pose and a warped version of
the image taken when the altitude is halved. It can be seen that the pixel highlighted on the right image
has a gray-scale intensity of 50, instead the corresponding pixel on the left image (highlighted in red) has
a gray-scale intensity of 0. Therefore, it can be concluded that the warping does not perform well since
corresponding pixels are characterized by large differences in the intensity values. Figure 4.8 shows how
such differences are responsible for high correlation costs (order of ∼ 104). The match between the length
of the square side and size of the correlation window also finds an explanation: for every correlation win-
dow, including the boulder, such high differences in pixel intensities drive the algorithm in the selection
of the same boulder’s depth value for their central pixel. As result, a levelling of all depth values is achieved
within an area (located around the boulder) that equals the size of the correlation window employed.

Figure 4.7: Zoom in for gray-scale pixel intensities depicting a specific boulder. Image
taken at camera 1st pose (left) and a warped version of the image at camera 2nd pose,
computed for zk = 600 m (right)

597 598 599 600 601 602 603 604 605 606 607
0

1

2

3

4

5

6
·104

Depth Value [m]

C
k

fo
r

(X
p

x,
Y

p
x)

=
(1

94
,3

42
)

-
w

in
d

ow
si

ze
3

Ck

Pixel true depth
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frame. A 3×3 correlation window was employed
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To tackle the problem, pixels depicting boulders and their immediate proximity are excluded from
correlation (they provide a null contribution) and Not-a-Number (NaN) values are instead associated with
their elevations. As outcome, we lose the opportunity to assess rock and boulder depth values and we
directly consider such locations as hazardous. This will be further explained in Section 4.4.5. In addition,
the SSD has been replaced with the SAD operator: by taking the absolute difference of the pixel intensities,
rather than their squares, the impact of further potential outliers is indeed minimized (Figure 4.10).
To achieve this, it is mandatory to detect boulders directly at an early stage. Therefore, a Rock Detection
block has been created to deliver the boolean rock maps of the images captured at 1st camera pose (Figure
4.2). Since pixels depicting rocks and boulders are characterized by large intensity differences from pixel
to pixel, the Harris corner detector has been selected and implemented. The related theory has been
extensively discussed during the literature research of the project [6] and is presented again in Appendix
C for sake of completeness. In plain words, its working principle consists in computing the second moment
matrix M

M =
 (

∂I
∂x

)2 (
∂I
∂x

)(
∂I
∂y

)
(
∂I
∂x

)(
∂I
∂y

) (
∂I
∂y

)2

 (4.4)

In order to detect features, the eigenvalues of M should be both large. Rather than enforcing a minimal
value for the smallest eigenvalue, Harris and Stephens [10] suggested to compute the following corner
response function

R = det(M)−αTr(M) (4.5)

where Tr represents the trace of the matrix (e.g. the sum of its diagonal terms), while α a constant
whose value ranges from 0.04 to 0.06. Features are then identified as points with large corner response
(R > threshold) and a related boolean map is thus obtained. Concerning its implementation, the image
derivatives have been computed using a small convolution filter of size 3×3.

∂I

∂x
= d x ∗ img =

 −1 0 1
−1 0 1
−1 0 1

∗ img (4.6)

∂I

∂y
= d y ∗ img = d x ′∗ img (4.7)

where ∗ denotes the 2 dimensional convolution operation, while img represents the input image. Con-
cerning the threshold for the corner response function, it is obvious that different images are character-
ized by different values of Equation 4.5. This makes the selection of a threshold suitable for the descent
images difficult. Inspecting the corner response function for different images has led the selection of the
following threshold value

threshold = kµ with k = 11 (4.8)

where µ denotes the mean of the corner response function values. Therefore, there is not a single
threshold for all the descent images but rather an optimal threshold is computed each time. An example
of rock map is shown in Figure 4.9.
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Figure 4.9: Input image (left) and its computed boolean rock map (right). Pixels depict-
ing boulders and their immediate proximity are highlighted in yellow
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The developed approach succeeds in solving the issue arisen. Figure 4.10 indeed highlights that the
square features of the previously computed DEM (Figure 4.6) are now no longer present. On the contrary,
NaN values have been associated with the boulder elevations which are depicting in white color.
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Figure 4.10: Computed DEM (left) and ground-truth (right). Altitude 500 m

4.3 Parametric Analysis

In Section 3.3.1, it was marked how correlation is vital to the recovery problem. Therefore, it is im-
portant to investigate which correlation window size allows a better reconstruction. To this end, window
sizes from 3 to 49 pixels (values referred to the length of the squared window side) were considered while
the depth step was initially chosen equal to half of the System Level 0 requirement on roughness (∆z =
15 cm). The analysis has been assessed by comparing the reconstructed DEM of the imaged scenes with
respect to its ground-truth. PANGU, indeed, provides a 3D representation of the terrain free from errors
and noise. Two different input image pairs, representative of the variability of the landing terrain besides
of the altitude range for precise HDA assessment, have been considered for the analysis (Appendix D):

• Scene 1 contains multiple craters and boulders of different size and shape. The input image pair
has been taken at relatively low altitudes: 150m elevation for camera 1st pose and 75m elevation for
camera 2nd pose, respectively.

• Scene 2 presents two large craters on an otherwise flat terrain. The lower the spacecraft goes the
more complex the scene appears since boulders are displayed with increasing resolution. The image
at 1st camera is taken at 600m altitude.

For the reconstruction quality assessment the mean value µ (based on absolute errors), median (based
on the errors taken with their own sign), and the median absolute deviation (MAD) have been selected.
The choice of these statistical parameters is further strengthened when inspecting that the DEM error
distributions are clearly not normal (Figures 4.11 and 4.12): indeed, skewness and kurtosis are always
different from zero for both scenes (Tables 4.1 and 4.2).

Table 4.1: Scene1: DEM error skewness and kurtosis

Window Size px2 Skewness Kurtosis
17×17 0.96329 -2.0367
19×19 0.6321 -2.3679
21×21 0.59238 -2.4076
23×23 0.60575 -2.3943
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Figure 4.11: Scene 1 DEM error distributions. Results for correlation window sizes
W = 17×17 px2 (top-left), W = 19×19 px2 (top-right), W = 21×21 px2 (bottom-left),
W = 23×23 px2 (bottom-right)

Figure 4.12: Scene 2 DEM error distributions. Results for correlation window sizes
W = 11×11 px2 (top-left), W = 13×13 px2 (top-right), W = 15×15 px2 (bottom-left),
W = 17×17 px2 (bottom-right)
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Table 4.2: Scene2: DEM error skewness and kurtosis

Window Size px2 Skewness Kurtosis
11×11 0.53946 -2.4605
13×13 0.55127 -2.4487
15×15 0.55103 -2.449
17×17 0.54362 -2.4564

As expected, the two scenes lead to different optimal values for the size of the correlation window: 19
px for scene 1, in contrast to 13 px for the other scene (Figure 4.13). Notwithstanding, a better inspection
of the DEM mean error µDE M shows that the optimal window size values are bounded within the interval
17-23 px for scene 1, and 11-17 px for scene 2. Clearly, the 17×17 px2 correlation window stands out as a
good candidate. Moreover, within both intervals, the MAD (Figure 4.14) reveals that the error-data values
are less dispersed for decreasing number of pixels. As outcome of the analysis, the 17×17 px2 correlation
window is considered optimal.
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Figure 4.13: Parametric Analysis on correlation window size. DEM Mean error µ
for 2 different PANGU input image pairs

It must be noticed that, so far, the variable time has not been taken into account. Clearly, increasing
the size of the correlation window leads to a greater number of calculations and thus to a higher compu-
tational time. As a matter of fact, the function in charge of the correlation requires approximately 7 s for
the 3×3 px2 window, on the contrary, approximately 90 s for the 49×49 px2 window. It is important to bear
in mind that the software is written in MATLAB language. Furthermore, the implementation chosen by
the author for correlation is probably not the fastest and a better coded function is believed to reduce the
required computational time. Nevertheless, the candidate 17×17 px2 window is rather small, leading to a
total time of ∼12 s for correlation. Therefore, this function will be employed in every other simulation.

The previous result is in contrast with the outcome of [43], though, where fairly large windows of 25
to 45 pixels were common in their experiments (Clark F. Olson, personal communication). This can be
explained through illumination differences and reflections which commonly occur when synthetic in-
put images are replaced by real images, causing larger correlation windows to yield better recovery [15].
The personal communication, concerning the correlation window size employed in the experiments at
JPL [43], is extremely valuable since allows to conclude that also larger window size can meet real-time
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requirements and so the 17×17 px2 window chosen.
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Figure 4.14: Parametric Analysis on correlation window size. DEM Median error
and MAD for 2 different PANGU input image pairs

Obviously, the quality of the reconstructed DEM also depends on the depth step ∆z: a small step size
is expected to yield better results nevertheless at the expense of a higher computational load, which is in
contrast with the tight real-time constraints. Therefore, it is mandatory to assess what elevation step is
optimal. Considering the correlation window size (17×17 pixels) previously identified, the DEM mean,
median, and MAD error have been computed for ∆z starting from 2.5 cm till 50 cm. For the sake of con-
ciseness, only the results for Scene 1 are here shown (Figure 4.16). The DEM mean error µDE M gradually
lowers for decreasing depth steps. Nevertheless, for ∆z < 15 cm the error reduction is not such to justify
the inevitably higher computational time (Figure 4.15). Moreover, at ∆z = 15 cm the median absolute de-
viation MADDE M indicates that the error deviation is minimum. Therefore, a depth step ∆z = 15 cm (half
of the System Level 0 requirement on roughness) has been selected as optimal.
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Figure 4.15: Effect of step size∆z on the shape recovery computational time. Time
required only by the function in charge of the 3D reconstruction.
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Figure 4.16: Parametric Analysis on∆z size. DEM mean error µ (top) median (cen-
ter) and MAD (bottom) for PANGU Scene 1 input image pair

4.4 Hazard Computation

The Hazard Computation class (Figure 4.2) consists of four main tasks:

• Shadow Detection

• Slope Computation

• Roughness Computation

• Mapping

for each block different methods are available and a first selection was carried out during the literature
research of the project. In the following, the ultimate trade-offs and the selected approaches are pre-
sented with insights on their implementation. To draw the attention only on how hazards are detected,
the ground-truths rather than the computed DEMs have been here employed.

4.4.1 Shadow Detection

Shadow hazards can be simply extracted through thresholding which consists of comparing each pixel
intensity with a selected threshold value. Since images taken at higher altitudes are generally darker than
images captured at a lower elevation above the surface, an optimal intensity threshold needs to be se-
lected. Analyses of pixel intensity distribution for several data set have led the selection of the following
threshold value

threshold = µ+σ
2

(4.9)

where µ and σ denote the mean and the standard deviation of the image intensity values, respectively.
Therefore, there is not a single threshold for all the descent images but rather an optimal threshold is
computed each time. The boolean shadow map is created by setting white, pixels whose intensity is lower
than the threshold. Viceversa, pixels with higher intensities are depicted in black (Figure 4.17).
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Figure 4.17: Input image (left) and its computed boolean shadow map (right). Pix-
els in shadow are highlighted in white

4.4.2 Slope Computation

Several approaches [33] are available to compute the slope. These have been considered in the litera-
ture research of the project [6], which has pointed out that methods such as steepest descent, third order
finite difference, and partial quadratic equation produce very large errors, overestimating the slope by
more than 200% [38] in presence of noise and boulders. In [38] it was also shown that despite intelli-
gent mean plane algorithms better estimate slope, the gain obtained does not justify an execution time
increased by at least a factor 4 respect to linear regression. Based on this analysis, linear regression was
selected to compute the slope of the terrain. The local surface is approximated through a plane, which
equation is presented below for sake of completeness

aX +bY + c Z +d = 0 (4.10)

where Z denotes the "depth" of a point on the plane, while X and Y are the x- and y-coordinate of the
plane, respectively. The previous expression can be re-written by solving for the Z variable as follows:

Z = p X +qY + r (4.11)

Equation 4.11 can be expressed in matrix form Ax = b


X1 Y1 1
X2 Y2 1
...

...
...

Xn Yn 1


 p

q
r

=


Z1

z2
...

Zn

 (4.12)

where the least-square (LSQ) solution for x = [
p, q,r

]T is commonly computed through Singular Value
Decomposition (SVD) [32] (see Appendix E). The slope S, of the considered patch, is simply obtained from

S = arccos

( ∣∣n̂ · Ẑ
∣∣∣∣n̂∣∣∣∣Ẑ
∣∣
)

(4.13)

where n̂ =
[
p, q,−1

]T represents the unit vector normal to the surface, while Ẑ is the unit vector of the Z
axis. The number of points considered and thus the size of the plane is determined by the lander footprint:
in accordance with other studies [38], a 3 m footprint has been assumed. The slope of the resulting plane
is then the slope at the central pixel of the window. This method represents a good compromise between
accuracy and computational speed, an example of computation is shown in Figure 4.18. Based on the 15°
safety constraints, the slope hazard map is computed: with values increasing from 0 (safest) to 1 (most
unsafe, ≥15°)
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Figure 4.18: Ground-truth slope map computed through linear regression method
(left) and map re-scaled using a grading scheme from 0 to 1 (right), based on the
15° slope constraint

4.4.3 Georeferencing

To compute the slope, real-world coordinates need to be assigned to each pixel of the image. This
is achieved through the georeferencing block (Figure 4.2) where the computed depth map is projected
from the image plane to the world coordinate frame, therefore obtaining a georeferenced DEM (Figure
4.21). Considering Figure 4.19 we want to compute the real-world coordinates XP ,YP of the image point
P. Through simple trigonometry it can be easily proved the following

XP = h

cos(θ+α)
tan

(
β
)

(4.14)

YP = h tan(θ+α) (4.15)

with h the camera elevation above the surface, θ the imaging sensor line-of-sight offset (for a camera
pointing along the nadir direction θ = 0°), α and β the camera FOV along the x-,y-direction, respectively.
According to Table 2.2, α = β. For each set of descent images, the center of the first image of the sequence
is taken as the origin of the world frame unless stated otherwise. Nevertheless, the two equations formerly
outlined are incomplete. Figure 4.20 shows how the terrain elevation values affect the ground coordinates:
as a matter of fact, when in presence of a crater the true ground coordinates increase, vice-versa decrease
when in presence of a rock or boulder.

Figure 4.19: Georeferencing: schematic representation
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Figure 4.20: Georeferencing: depth values affect the ground coordinates

Therefore Equation 4.16 and 4.17 are completed introducing the correction terms dX,dY which ac-
counts for the effect of the depth values.

XP = h

cos(θ+α)
tan

(
β
)+d X = h

cos(θ+α)
tan

(
β
)− ZP

cos(θ+α)
tan

(
β
)

(4.16)

YP = h tan(θ+α)+dY = h tan(θ+α)−ZP tan(θ+α) (4.17)

where ZP is the depth value of point P considered with its own sign.

Figure 4.21: Example of a georeferenced DEM. Coordinates are expressed in the
world coordinate frame
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4.4.4 Roughness Computation

Hazards are not only caused by shadow and slope, but also by roughness which originates from the
presence of rocks, boulders, and small craters. Its computation is far more complex than the slope as-
sessment, since roughness can be mistaken with noise in the input data [38]. Roughness features can
be determined directly from the DEM or by employing the information available from the input image
pair, such as texture and brightness. The different methods have been extensively analyzed during the
literature research of the project, concluding that deviation from the mean plane (Equation 4.18) and
histogram-based variance (Equation 4.19) are optimal for the framework of planetary HD. The equation
are reported below for the sake of completeness

R = abs(Zi −Zmean) (4.18)

where Z represents the DEM elevation and Zmean the elevation from the mean plane

σ2 =
∑

i , j
(
img

(
i , j

)−µ)2

N −1
(4.19)

with img the input image while N the total number of pixels of the considered window.
Nevertheless, to solve the squared pattern problem (Section 4.2), rocks and boulders are identified at an
early stage through the Harris Corner detector, losing the opportunity the assess their depth values. These
pixels are then directly considered as hazardous in the mapping phase, which is discussed in next section.
To avoid undetected roughness features such as small craters, the deviation from the mean plane was also
implemented. Similarly to the slope computation, this approach leads to a map whose values needs to be
re-scaled to the interval [0 1] according to the 30 cm constraint on roughness (Table 2.1).

4.4.5 Mapping

The final hazard map is obtained after combining shadow, slope, roughness and boulder information.
Their merging is achieved by simply associating for each pixel the maximum value among the three maps,
besides highlighting as hazardous pixels identified as depicting rocks and boulders. Therefore, the result-
ing hazard map has values increasing from 0 to 1 (unsafe). Hence, landing sites are not just grouped with
the pure binary representation "safe/unsafe" but different values of safety are also provided (Figure 4.22).
As matter of fact, not all the true positive landing sites are equal and such information needs to be taken
into account for further landing site selection. This outcome is collected by the so-called Piloting func-
tion, which will create other information such as a reachability map, based on the required propellant and
the guidance cost to reach each LS. The development of such function has been considered out of scope
for this master thesis project and it is only mentioned for sake of completeness. As highlighted in Figure
4.2 the hazard map can be expressed either in the world coordinate frame or as projection in the image
plane.
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Figure 4.22: Ground-truth DEM (left) and its resulting hazard map (right)
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Chapter 5

Verification

Verification and validation (V &V ) activity occurs for all the products we daily use. From the most sim-
ple to the most complex system, extensive V &V has indeed occurred to ensure they meet their intended
purpose. Space systems are different in the sense that they are usually one-of-a-kind products [24]. There-
fore V &V , for both space software and space hardware components, must be extremely rigorous.

In this chapter, we turn our attention to the description of all the tests developed to prove the compli-
ance of the software with its design solution specifications and descriptive documents [43]. Eight func-
tional blocks were identified in Chapter 4. Thus, at least one unit test has to be performed for each block
to assess it is providing the correct outputs from the given inputs. Nevertheless, it should be pointed out
that also tests at a lower level (e.g. per function) must be performed. All tests carried out were successful
and are summarized in Table 5.2. In Section 5.1, the results for some of the unit tests concerning the DEM
Computation part are presented, while Section 5.2 focuses on tests related to the Hazard Computation
part.

5.1 Unit Tests DEM Computation

Once running, the software opens a folder selection dialog box allowing to choose the mission sce-
nario. Thereupon, it asks to select the altitude of the camera at 2nd pose, among those available. Based
on this user-prompt command, it searches in the directory for the matching input images
(e.g. alt_userValue_Imghigh.ppm for the image at 1st camera pose and text al t_userValue_Imglow.ppm
for the image at 2nd camera pose) and ground-truths files (e.g. text al t_userValue_groundTruth.txt). Clearly,
it is desired that the right files matching the user-prompt command are selected. For this reason, test INT-
1 (Table 5.2) has been performed to assess that, for every altitude of the whole data-set, the right files are
picked. The test outcome has proved that all the correct files matching the user-prompt command are
uploaded.
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Figure 5.1: Input image at 600 m altitude (left) and its computed boolean rock map
(right). Pixels depicting boulders and their immediate proximity are highlighted in
yellow
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Figure 5.2: Input image at 1200 m altitude (left) and its computed boolean rock
map (right). Pixels depicting boulders and their immediate proximity are high-
lighted in yellow

Test RDT-1 has been conducted to assess that rock detection, through a Harris Corner measure, is
rightly accomplished. Several decent images have been considered, showing that the selected threshold
for the corner measure allows to identify pixels depicting rocks, boulders, and their immediate proximity.
Figures 5.1 and 5.2 shows an example.

Concerning reverse warping, Table 5.2 highlights that two different tests (tests RWT-1 and RWT-2) have
been carried out. Test RWT-1 aims to verify the correctness of the warping process as a whole. As a matter
of fact, inspecting Figure 5.3, already by visual inspection it can be seen that image I2 is correctly warped
back to the 1st image plane and made resolution equivalent and aligned to I1.
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Figure 5.3: Input image I1 (left) and a warped version of image I2 computed for
a specific zk (right)

To further ensure that, test RWT-2 has verified that bilinear interpolation has been correctly imple-
mented for the gray-scale intensity assessment, at non-integer image locations. For this purpose, bilinear
interpolation has been compared with interp2 at any image location (Figure 5.4). The latter is a MATLAB
embedded function which allows interpolation for 2-D gridded data in meshgrid format. Due to its low
computational speed, a better tailored function for the tight real-time constraints has been implemented,
namely imbinterp.m. Pixelwise comparison has demonstrated that the images obtained are equal at ε-
machine precision, therefore allowing to state that image warping is successfully accomplished. In test
CT-1 (Table 5.2) to verify the implementation of the SSD and SAD operator 3×3 matrices, rather than
actual images, were feeded to the function. The computations were proved manually to be correct.
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Figure 5.4: Warped versions of the input image I2, computed with the tailored
imbinterp (left) and with MATLAB built-in interp2 function (right)

So far, all the blocks within the DEM Computation part have been proved to work properly, providing
the correct outputs from the given inputs. Nevertheless, it is now mandatory to assess whether the inte-
gration of all these blocks allows to correctly compute DEMs. For this purpose, PANGU tool set comes
to aid. As a matter of fact, PANGU also provides the ground-truth DEMs of the scenes being imaged: in
other words, the 3D representation of the terrain free from errors and noise. It must be highlighted that
the reconstructed DEMs are not expected to be equal to their ground-truths. Nevertheless, characteristics
features of the scene (e.g craters), should be clearly identified. Moreover, the resulting errors should be
within acceptable limits.
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Figure 5.5: Image I1 at 100m elevation (left) and I2 (right) taken when the altitude
is halved

For the following test a PANGU image-pair (Figure 5.5) has been generated for a camera set-up at 100
m and 50 m, respectively. The mean (µ) and the resulting median absolute deviation (MAD) are:

µ= 0.3836m M AD = 0.2971m

The mean is based on absolute errors while the MAD on the errors taken with their own signs, other-
wise no meaningful conclusions could be drawn. These errors are clearly within acceptable limits. Figure
5.6 shows the resulting DEM and error map. As expected, the higher errors are located near the image
center since depth recovery is numerically unstable in the vicinity of the epipole. The comparison with
PANGU ground-truth identifies that the main features of the scene can be reckoned: the crater rim lo-
cated on the bottom-left and the surface dip on the top-right. Therefore, it can be concluded that shape
recovery has been successfully accomplished. Further discussion concerning the 3D reconstruction and
its limits is extensively tackled in Part IV Simulation and Results.

In agreement to the software block diagram (Figure 4.2), the Georeferencing block is now considered
before moving to the unit tests for the Hazard Computation part (Section 5.2). Once again, PANGU
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ground-truths have been considered to verify this software block. Table 5.2 highlights that tests with
both DEMs captured through a camera pointing along the nadir-direction (GRT-1) and with a line-of-
site imaging sensor offset have been considered (GRT-2). To better understand the test assessments, let
us consider the PANGU ground-truths. These represent a set of 3 matrices X,Y,Z identifying the coor-
dinates of the planetary surface respect to the world reference frame (georeferenced DEM). An example
of a georeferenced DEM was already shown in Figure 4.21. If only the ground-truth depth values Z are
plotted, the result obtained are the elevation values shown as a projection into the image plane. Through
georeferencing we want to assign to every pixel of the raster its x-,y-coordinate with respect to the world
reference frame: in other words, we want to retrieve the X,Y matrices. Figure 5.7 shows an example of
DEM employed within test GRT-2. Already by visual inspection, it can be concluded that the DEMs have
been correctly georeferenced, with only a small difference.
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Figure 5.6: Computed DEM (left) DEM error (center) and ground-truth (right). Altitude h = 50m

Figure 5.7: Test GRT-2. Ground-truth depth values as a projection into the image plane
(left) Georeferenced DEM (center) Ground-truth DEM (right). Camera pointing along
nadir direction, altitude h = 500 m
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5.2 Unit Tests Hazard Computation

In this section, tests related to the Hazard Computation part are considered by starting with the assess-
ment of the shadow mapping. Given PANGU input images, the computation of shadow boolean maps
was already shown beforehand in Figure 4.17. Nevertheless, Table 5.2 illustrates that tests have also been
performed independently of these images. For this purpose, in test SDT-1 chessboard images have been
generated and fed as input to the Shadow Detection block (Test SDT-1). Figure 5.8 shows an example: as
expected, the computed boolean shadow map displays pixels in shadow depicted as white, while pixels in
light depicted as black. The following test has been performed for images with different number and size
of the chessboard squares. All tests were successful, meaning also that the threshold selected is optimal
and it can deal with different lighting conditions.
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Figure 5.8: Input test image (left) and resulting output from the Shadow Detection
block (right)

To test the Slope Computation block, both PANGU ground-truths (Test SCT-2) and DEMs generated by
the author (Test SCT-1) have been considered. For the latter, Figure 5.9 shows an example, where the
terrain elevation model resemble a "roof" turned upside down. Its key parameters are highlighted in the
Table 5.1. Observing the figures, it can be clearly seen that both slopes have been correctly detected. A
better inspection of the results reveals the presence of a 1 pixel-wide transition region when moving from
left to right slope (Figure 5.10). This is within the accuracy envelope of the algorithm, therefore it can be
concluded that the slope computation block is properly verified.

Figure 5.9: Input DEM for slope computation (left) and resulting output from the Slope
Computation block (right). Slope computed through the linear regression method
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Table 5.1: Input DEM parameters

slopeleft 10°

sloperight 20°

resolution 1 m

Figure 5.10: Zoom-in for the slope transition region

Through the previous tests, it has been assessed that shape recovery is successfully accomplished and
that the functions to compute the surface hazards have been verified. Obviously, a global test is now
needed to address the integration of all the software blocks: in other words, it is desired to ensure that the
software, as a whole, correctly provides hazards maps that will be employed for landing site selection. For
this purpose, in test HT-2, the hazard map from a computed DEM has been compared to the hazard map
directly obtained from the PANGU DEM (Figure 5.11).

In agreement with the expectations, the result from the estimation does not match the true values of the
corresponding ground-truth. Nevertheless, inspecting both maps it appears clear that main hazard such
as the boulders, and the four main craters in the scene have been correctly identified as hazardous. There-
fore, it is possible to state that the system has been successfully verified. Further discussion concerning
the detection probabilities, and number of false alarms/undetected hazards will be extensively tackled in
Part IV Simulation and Results.
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Figure 5.11: Computed scaled hazard map (left) and ground-truth scaled hazard map
(right). Altitude h = 500 m

All the tests beforehand discussed have been summarized in Table 5.2. It can be clearly seen that further
tests have also been executed, to prove the software compliance. At least one test for each software block
has been developed, nevertheless additional tests were conducted where necessary. It is further stressed
that all these tests were successful.
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Table 5.2: Software Tests Summary

Test
Name

Function Function Description Block/Part Test Input

INT-1 getFile The function looks up for files
matching a user-prompt input, re-
turning the descent adjacent im-
ages, the respective altitude of the
camera poses, and the LS ground
truth depth values

Input • Altitude camera
2nd pose

RDT-1 RockDetection Recognition of rocks, boulders,
and their immediate nearby pixels
through Harris Corner measure.
Computation of related boolean
map

Rock Detection • PANGU images

RWT-1 reverseWarping It warps the image taken at cam-
era 2nd pose back to the first im-
age plane

Image Warping • PANGU image
pairs

RWT-2 imbinterp Bi-linear interpolation employing
the 4 nearest pixels around the tar-
get location

Image Warping • PANGU images
2nd pose

CT-1 corr_operator Implemention of SSD and SAD Correlation • 3×3 matrix of
intensity values

GRT-1 georeferencing Assign real-world coordinates to
each pixel of the raster

Georeferencing • Ground-truth
DEMs (no tilted

camera)
GRT-2 georeferencing Assign real-world coordinates to

each pixel of the raster
Georeferencing • Ground-truth

DEMs (tilted
camera)

SDT-1 imshadow Computation of a shadow boolean
map

Shadow
Detection

• chessboard
images

SDT-2 imshadow Computation of a shadow boolean
map

Shadow
Detection

• PANGU images

SCT-1 slopeDEM Computation slope map through
linear regression

Slope
Computation

• "Roof"-like DEMs

SCT-2 slopeDEM Computation slope map through
linear regression

Slope
Computation

• Ground-truth
DEMs

RT-1 roughnessDEM Computation of a roughness map
as deviation from mean plane

Roughness
Computation

• artificial map

HT-1 hazardDEM Computation of the hazardous-
ness of the landing region

Mapping • Artificial maps

HT-2 hazardDEM Computation of the hazardous-
ness of the landing region

Mapping • PANGU image
pairs

• ground-truth DEM





Part IV

Simulation and Results





Chapter 6

Performance Assessment

At this point, the simulation software is complete. Its performance and accuracy are hereafter objec-
tively quantified. For this purpose, two different mission scenarios have been identified: 1) a perfect ver-
tical motion forward along the camera pointing direction (Section 6.1) 2) a 45° angle dropping trajectory
to simulate a realistic approaching descent phase (Section 6.2).

For the former scenario, the set of images is presented in Appendix F. As the camera height decreases
from 1000 m to 50 m above the ground, it can be noticed that the nominal landing site is dwelled by a
big boulder, therefore re-targeting is necessary. The scenes at high altitude contain multiple craters and
boulders on a rather sloped and complex terrain, with a maximum elevation difference of approximately
50 m. The latter scenario simulates Chang’e-3 powered flight (Section 2.1) and the descent sequence
(Appendix I) is captured starting from 2400 m above the ground. During this phase the pitch angle is set
to 9°, while both the yaw and roll angle are kept at 0°, and the lander approaches the nominal site through
a 45° angle dropping trajectory. The sensor line-of-site is intentionally offset to 40° to ensure the camera is
free of the effect of main engine plume and its 30° FOV is directed towards the landing area. For the input
image pairs at 300-150 m and 250-125 m, instead, the attitude of the lander is aligned with the normal
direction of the surface, preparing for the vertical approach phase. Similarly to the previous scenario, the
different scenes are representative of the lunar surface with multiple craters and boulders.

Finally, in Section 6.3, a sensitivity analysis is carried out to determine the limitations of the developed
algorithm under ordinary operative conditions. For this purpose, errors in the knowledge of the lander’s
position and orientation are introduced based on the accuracy that can be achieved through traditional
onboard sensors (e.g. altimeter, IMU) during an actual landing.

6.1 Mission Scenario 1

As the lander is steered towards the surface, in its vertical descending motion, the scenes captured have
different hazard-levels (Table 6.1). As a matter of fact, the number of safe landing locations progressively
decreases within the 400-100 m altitude range, with more than 55% of the scene imaged at 100 m altitude
labelled as hazardous.

Table 6.1: Reference Mission Parameters

Altitude [m] 50 75 100 150 200 300 400 500
Hazards in scene [%] 37.22 53.91 55.88 46.29 40.61 26.73 20.62 21.34

Size DEM patch [m×m] 24×24 36×36 48×48 71×71 95×95 143×143 190×190 238×238

The full set of DEM, slope (slp subscript), and roughness (rgh subscript) errors are presented in Table
6.2. Given that rocks and boulders are directly detected from the input images through a Harris Corner
measure, it must be highlighted that the roughness errors are not really meaningful. As carefully explained
beforehand (Section 4.2), the pixels depicting rocks and boulders are indeed omitted from the shape re-
covery quality assessment, being directly identified as hazardous. Therefore, roughness errors are here
only representative of secondary features which are not detected by the rock detection block (e.g small
craters). For this reason, the attention is focused foremost on the slope and DEM that, on the contrary,
are quantitatively assessed.
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Similarly to the reconstruction quality assessments of Sections 4.3 and 5.1, the mean value µ (based
on absolute errors) and median (based on the errors taken with their own sign) have been employed.
Likewise, the median absolute deviation (MAD) has been considered to assess the dispersion of the data
values. The choice of these statistical parameters is further strengthened when inspecting that the DEM
error distributions are clearly not normal (Figure 6.1): indeed, both skewness and kurtosis are always
different from zero for the whole descent sequence (Table 6.3). This holds true for slope errors as well
(Figure 6.2).

For decreasing altitudes, the DEM mean errors µDE M appear to lower steadily: from approximately
3.87 m at 500 m (red cell in Table 6.2) to only ∼0.38 m at 50 m above the surface (blue cell in Table 6.2).
Nevertheless, the reader’s attention should be drawn to the median absolute deviation MADDE M , which
appear to match the respectiveµDE M : this highlights that the errors fluctuate a lot, being highly dispersed.
As a consequence, the relevance of the information provided only by the mean parameter is not fully
reliable. Similarly for the slope errors: despite the mean µsl p is on average half of the value that would
indicate a hazard (<15°), the median absolute deviation MADsl p is 4 to 5 meters!

Figure 6.1: DEM error distributions. Results for altitude h = 75 m (top-left),
h = 150 m (top-right), h = 300 m (bottom-left), h = 500 m (bottom-right)

Table 6.3: Reference mission: DEM error skewness and kurtosis

Altitude [m] Skewness Kurtosis
50 0.29711 -2.9691
75 0.44251 -2.5575

100 0.066929 -2.9331
150 0.012546 -2.9875
200 -0.13797 -3.138
300 -0.23239 -3.2324
400 -0.36041 -3.3604
500 -0.42495 -3.4249
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Figure 6.2: Slope error distributions. Results for altitude h = 75 m (top-left),
h = 150 m (top-right), h = 300 m (bottom-left), h = 500 m (bottom-right)

These large errors are clearly linked to the quality of the reconstructed terrain maps. Appendix G shows
the computed DEMs together with the related error maps and ground-truths. It can be seen that all the
obtained DEMs are highly noisy, with the elevation either under-estimated or over-estimated also outside
the epipole region, where shape recovery is numerically unstable. While the crater rims appear recon-
structed rather well, the depth in their immediate inner region can be under-estimated by almost 7 m.
Furthermore, the rather flat regions at the top-left and bottom-right of the maps appear to be affected by
a bias error of 2 to 3 m. Investigating Figures 6.3 and 6.7 it can be seen that such DEM errors are propa-
gated to the slope, with the error map almost matching the actual computed map. Nevertheless, no new
errors are introduced. Due to the jagged shape recovery, slope and roughness are overestimated. It should
be pointed out, however, that overestimation is in general preferable to underestimation, as it can be seen
as a safety factor.

50 100 150 200

50

100

150

200

Figure 6.3: Slope Boolean Error Map. Slope errors below half of the
slope value that would indicate a hazard (15°) are shown in yellow, al-
titude h = 300 m
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Figure 6.4: Slope computed DEM (top-left) slope ground-truth (top-right) slope error
(bottom). Altitude h = 300 m

Xiong [43] only discloses the root-mean-square (RMS) DEM errors for two maps at 6 m and 12 m re-
spectively, obtained from a set of synthetic images. Furthermore, when true descent images are employed,
with the height of the camera decreasing from 1085 m to 8 m above the ground, no quantitative informa-
tion is provided. To assess whether the computed DEMs can be employed for HD, the final hazard maps
(Appendix H) obtained after combining slope, roughness, and shadow information are now considered.
Here, the red regions are those that are hazardous based on the safety constraints beforehand specified
(slope ≥ 15° and roughness ≥ 0.3 m). Appendix H also includes the related hazard-error maps indicating
the location of the undetected hazards (dark-gray regions) and false alarms (light-gray regions). Clearly,
the undetected hazards (FP) are those we want to minimize. Taking these into account, the detection
probabilities FP, FN, TP, TN are presented in Table 6.4.

In contrast to what is expected, it can be observed that the FP percentage grows for decreasing alti-
tudes. Further analysis reveals how such behaviour is primarily linked to the presence of a big boulder
at the image center. As a matter of fact, the image resolution increases as the lander is gradually steered
towards the surface. Therefore, the intensity difference from pixel to pixel depicting the boulder becomes
gradually smaller. As a consequence, the Harris corner measure is not successful in identifying the whole
boulder (Figure 6.5). Clearly, the issue does not arise at higher altitudes allowing to achieve better results
(1.36% at 500 m above the surface). Nevertheless, the percentage of the undetected hazards is never below
the allowable maximum 1%. Furthermore, inspecting the hazard maps, it can be seen that all FP errors
are always adjacent to a detected hazard or even surrounded by detected hazards.

Table 6.4: Reference mission: detection probabilities

Altitude [m] FP [%] FN [%] TP [%] TN [%]

50 7.27 11.70 51.08 29.95
75 4.73 8.96 37.14 49.17

100 4.71 11.79 32.33 51.17
150 4.77 14.85 38.86 41.52
200 3.82 16.19 43.20 36.79
300 1.87 17.23 56.04 24.86
400 1.44 17.18 62.20 19.18
500 1.36 15.60 63.06 19.98
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Figure 6.5: Input image at 50 m altitude (left) and its computed boolean rock map
(right). Pixels depicting boulders and their immediate proximity are highlighted in
yellow

Since the FP index is a measure on how many pixels represent undetected hazards out of all pixels in
the scene, the percentage of hazards correctly detected should also be analyzed. The results are presented
in Figure 6.6: from the graph it can be concluded that more than 90% of all hazards are correctly identified
above 75 m altitude. The graph also shows how many safe LS out of all safe LS are correctly identified
(TP%) and the percentage of total correct detection (CDI). Overall, TP% is always smaller than TN% index
due to the large number of false alarms, linked to the overestimation of the slope.

For 50 m altitude a major drop in the TN% and TP% values can be observed, which is inconsistent with
the pattern described by the data previously gathered. This is primarily linked to the failure of the rock-
detection block in identifying the whole boulder at the image center. As a matter of fact, when the rock is
excluded from the performance assessment through a 80×90 px2 area, Table 6.5 shows that the detection
probabilities and indices improve in agreement with the trend marked by the higher altitude values. The
result clearly suggests that this data-set might not be optimal for the hazard performances assessment
of the algorithm: the big boulder, located at the image center, together with the crater below appear to
negatively influence the results below 200 altitude.

Concerning the implementation aspects, the rectangular region has been simply neglected after the
DEM was computed. Nevertheless, to assess whether this area could potentially have a negative impact on
the surrounding pixels, its exclusion before the image correlation was also considered. Table 6.6 highlights
that the two approaches lead to the same results up to negligible differences. Therefore, for the sake of
simplicity, the first approach was chosen for further investigations.
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Figure 6.6: Correct detection TN%, TP%, CDI vs Altitude
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Table 6.5: Approach 1: detection probabilities and indices excluding
boulder at image center, altitude 50 m

FP [%] FN [%] TP [%] TN [%] TP% [%] TN% [%] CDI [%]

3.30 9.76 62.15 24.79 88.24 86.43 86.94

Table 6.6: Approach 2: detection probabilities and indices excluding
boulder at image center, altitude 50 m

FP [%] FN [%] TP [%] TN [%] TP% [%] TN% [%] CDI [%]

3.30 10.03 61.87 24.79 88.24 86.05 86.67
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Figure 6.7: Shape Recovery excluding boulder. Computed DEM (top-left) ground-truth
(top-right) and DEM error (bottom). Altitude h = 50 m

Clearly, the previous analysis raises questions whether removing completely the epipole region leads
to significant improvements in the hazard assessment for higher altitudes. The unstable recovery due to
the presence of the epipole can be enclosed approximately within a 80×80 px2 squared area around the
center. Table 6.7 highlights the results obtained for altitudes ≥200 m, where the boulder and the crater
below seem to not affect the results. The comparison with the data of Table 6.4 shows a decrease in the
percentage of false alarms, with a related growth of TP% and CDI indices. False alarms are indeed mainly
located around the nominal landing site. Nevertheless, the percentage of the undetected hazards is still
not below the allowable maximum 1%.

Whether removing the epipole region or not, it appears undeniable that the locations around the image
center can not be correctly assessed. This represents a significant problem since these locations are the
most convenient in terms of distance and guidance costs. As these sites are wrongly classified as unsafe,
they result unaccessible. Therefore, it can be concluded that the overall quality of the recovered depth
maps, obtained by correlating vertical image pairs, does not appear adequate enough for landing site
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selection.

Table 6.7: Detection probabilities and indices excluding epipole re-
gion, altitude 300 m

Altitude [m] FP [%] FN [%] TP [%] TN [%] TP% [%] TN% [%] CDI [%]

200 3.49 12.62 45.80 30.09 78.399 91.06 83.89
300 1.46 12.55 61.46 24.52 83.04 94.37 85.98
400 1.07 13.07 67.84 18.02 83.85 94.39 85.86
500 1.33 11.82 68.56 18.29 85.29 93.23 86.85

6.2 Mission Scenario 2

For the new descent sequence (Appendix I) the computed depth maps are presented in Appendix J.
Figure 6.8 highlights the shape recovery results at 500 m above the surface. Two features immediately
catch the eye: the shape of the terrain patch and the location of the epipole. For the latter, the coupling
of selected descent trajectory and line-of-site offset ensure that the epipole is not anymore located at
the image center, thus allowing a stable shape recovery around the nominal LS. During the approaching
phase, when the nominal pitch angle is set to 9°, the epipole is always located below the image center.
Instead, it moves upward when the lander attitude is aligned with the normal direction of the surface.
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Figure 6.8: Computed DEM (top-left) ground-truth (top-right) and DEM error (bot-
tom). Altitude h = 500 m

Concerning the shape of the terrain patch, it does not resemble a square anymore but rather a trape-
zoid. The reason lies behind the warping, back to the first image plane, of scenes captured with a tilted
camera. For an intuitive explanation, let us now consider Figure 6.9 which outlines the current mission
scenario. Points C1 and C2 represent the camera centers at 1st and 2nd pose, respectively. The trapezoids
T1 (ABCD), T2 (EFGH) depict the surface caught by the squared imaging sensor at each pose. It is further
stressed that the images reflect the sensor size, therefore they are squares of 512×512 pixels. Nevertheless,
the terrain imaged resembles a trapezoid since a larger portion of the surface is captured while moving
from the lower to the upper border of the image, due to the tilted camera axis. It can be easily proved



Performance Assessment 64

that AB is double the length of EF . Similarly, this holds true for sides C D and G H . Therefore, it would
appear reasonable that the image at the lower altitude is warped to a square of 256×256 pixels, in order to
match the resolution of the upper image. Nevertheless, it should be noticed that the lateral resolution is
not constant throughout the whole image, as for the vertical image pairs, but rather it increases as moving
from the lower to the upper image border. Let us now consider the sides E ′F ′, G ′H ′ obtained by extension
of EF ,G H until touching the perimeter of the trapezoid T1. Side E ′F ′ is more than double the length of
EF . Therefore, when warped back to the first image plane, side EF is imaged into less than 256 px. Vice
versa, the length of side G ′H ′ is less than double the length of G H . Thus, it is warped to more than 256 px
to match the resolution of the image taken at 1st camera pose.

Figure 6.9: Schematic representation of the reference scenario

In contrast to the previous reference mission, the current descent sequence includes a lower number
of hazards: Table 6.8 highlights how the hazard percentage decreases from∼30% at 1200 m altitude to only
∼4% at 125 m, indicating that the designated landing area is rather safe. The full set of DEM, slope (slp
subscript), and roughness (rgh subscript) errors are presented in Table 6.9. Similarly to the previous sce-
nario, the MAD rather than the standard deviation has been considered to better described the dispersion
of a not gaussian data set (Table 6.10).

Table 6.8: Reference Mission Parameters

Altitude [m] 125 150 250 300 500 600 1000 1200
Hazards in scene [%] 4.20 13.05 13.06 14.17 18.73 22.71 27.58 29.87

In agreement with the expectations, the DEM mean errors µDE M appear to lower steadily for decreas-
ing altitudes: from approximately 4.29 m at 1200 m (red cell in Table 6.9) to only ∼0.72 m at 125 m above
the surface (azure cell in Table 6.9). The comparison of the former results against those outlined in Ta-
ble 6.9 allows to conclude that a better shape recovery is achieved for the coupling of selected descent
trajectory and line-of-site offsets. For instance, the DEM mean error µDE M and the median absolute de-
viation MADDE M at 500 m altitude, for the camera pointing upright, are greater than the respective errors
at 1000-1200 m obtained with a tilted camera (orange cell in Tables 6.2 and 6.9). Furthermore, the slope
mean error µsl p and the median absolute deviation MADsl p for the tilted camera are always half of the
values achieved at lower altitudes with the camera pointing upright. The overall improved reconstruction
is linked to the reduction of the epipole region, visible when inspecting the computed DEMs (Appendix
J). The DEMs also reveal that the rock-detection block is able to identify hazardous small craters and not
just rocks and boulders.
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Table 6.10: Reference mission: DEM error skewness and kurtosis

Altitude [m] Skewness Kurtosis
125 -0.29254 -3.2925
150 -0.826 -3.826
250 -1.6174 -4.6174
300 -1.7908 -4.7908
500 -1.6319 -4.6319
600 -1.8701 -4.8701

1000 -1.9732 -4.9732
1200 -2.1156 -5.1156

Further inspection of the obtained depth maps reveals that the algorithm is not able to correctly resolve
crater rims when the camera axis is not aligned with the normal direction of the surface. This is well
highlighted in Figure 6.8 where it can be seen that the true rim of the crater located top-left is completely
missing and it is instead identified as a rather flat region. Clearly, such errors are propagated to both slope
and roughness (Figure 6.10 and 6.11) nevertheless, no additional error is introduced.
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Figure 6.10: Slope computed DEM (top-left) slope ground-truth (top-right) and slope
error (bottom). Altitude h = 500 m
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Figure 6.11: Slope Boolean Error Map. Slope errors below half of the slope
value that would indicate a hazard (15°) are shown in yellow, altitude h = 500
m



Performance Assessment 67

To understand whether the overall quality of the computed DEMs is adequate enough for landing site
selection, the obtained detection probabilities are now considered (Table 6.12). It should be noticed that
the FP percentage is below the allowable maximum 1% at both 125 m and 150 m altitude. Moreover, for
the maps obtained at 250 m and 300 m altitude, such limit is approached with a value of approximately
1.3%. Investigating the final hazard maps (Appendix H), similar conclusions to the previous scenario
can be drawn regarding the location of the undetected hazard. This raises questions whether the lower
FP percentages are due to the robustness of the algorithm or the fact that the scenes are inherently safe
(Table 6.8). Unfortunately, tight timing and lack of additional data set did not allow further investigation.

The TN%, TP%, and CDI indices are presented in Figure 6.12. From the graph it can be seen that the
number of hazards correctly detected increases as the lander approaches lower altitudes: precisely, the al-
gorithm detects more than 90% of all hazard correctly up to 300 m, with total correct detection on average
above 94%. This behaviour is in agreement with the expectations since, as the lander is steered towards
the surface, higher resolution images are available. The result further support the idea that features in
the data-set, employed for the vertical motion analysis, might have negatively affected the results for low
altitudes.

Table 6.11: Reference mission: detection probabilities

Altitude [m] FP [%] FN [%] TP [%] TN [%]

125 0.10 6.24 89.56 4.10
150 0.75 5.11 81.84 12.30
250 1.32 5.34 81.60 11.74
300 1.34 4.48 81.35 12.83
500 2.26 4.62 76.65 16.47
600 3.34 4.83 72.47 19.36

1000 3.39 11.22 61.20 24.19
1200 5.67 14.46 55.67 24.20
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Figure 6.12: Correct detection TN%, TP%, CDI vs Altitude

Overall, the considered image descent sequence indicates that below 300 m the algorithm is a suitable
candidate for HD to increase the autonomy and decrease the risk of a landing failure for future exploration
missions. Furthermore, it has been proved that a solution to improve depth recovery, in the vicinity of the
epipole, consists of selecting an ad hoc coupling of descent trajectory and line-of-site offsets to move
the epipole away from the image center or potentially outside the image boundaries. For the sake of
completeness, the full data-sets (slope and roughness from DEM) of these feasible scenarios are shown in
Appendix L



Performance Assessment 68

6.3 Sensitivity Analysis

In the previous section, the experiments have resulted in depth maps that can be employed for HD, to
further increase the autonomy and decrease the risk of a landing failure. Nevertheless, a perfect knowl-
edge of the spacecraft’s state has so far always been assumed. The dearth of navigation aids (e.g. GPS or
radio-beacons) forces EDL systems to rely on onboard sensors for position and attitude estimation. Tradi-
tional sensors include, for instance, altimeter and IMU [29]. Given an estimate of the initial position and
velocity, IMUs simply integrate acceleration measurements thus being in theory fully self-sufficient with
no knowledge about the surroundings necessary. [14] Nevertheless, these are subject to unbounded error
accumulation due to the associated integration of noise and errors (e.g. bias, axis misalignment, angle
random walk to name but a few).

It is not the purpose of this MSc thesis to further dive into the description of these sensors nevertheless,
it turns out essential to assess whether they provide knowledge of the lander’s location accurate enough
to perform HD with the developed algorithm. During an actual landing, a 1 m and 2° level of accuracy
can be achieved for the spacecraft’s altitude and orientation, respectively. [28] [43] Therefore, assuming
to employ an inertial navigation system for position and attitude estimation, these levels of accuracy are
now considered.

6.3.1 Errors in Camera Position

To assess the algorithm robustness to errors in camera position, a Monte Carlo simulation was per-
formed. Thereupon, random uncertainties ∆h1, ∆h2, within the interval [-0.5 0.5] meters were taken into
account for the altitude of each camera pose up to 20 samples. With reference to the previous analy-
sis on shape recovery, it was concluded that a +15% increase of the DEM errors represents the maximum
allowable to further employ the reconstructed maps for landing site selection. As matter of fact, higher de-
viations would lead to depth maps that are not adequate enough for hazard detection. In Tables 6.12, 6.13,
6.14, and 6.15 the DEM mean, median, and MAD errors obtained for the different uncertainties are pre-
sented together with their percentage deviation, relative to the errors computed for a perfect knowledge
of the spacecraft’s state at each camera pose. It can be clearly marked that for all the altitudes considered,
the DEM errors are bounded to the maximum allowable 15% only for small deviations (approximately ±10
cm), peaking to 250%-300% for the other values belonging to the specified interval.

To gain more insights on the role played by these uncertainties, Figures 6.13, 6.14, 6.15, and 6.16 il-
lustrates the DEM mean relative percentage errors as function of the deviations on altitude (∆h1,∆h2) at
both camera poses. As expected, the lower error percentages appear to be arranged along the right-to-left
diagonal. As matter of fact, when both altitudes are affected by errors of similar magnitude and same sign
(±) the ratio h2/h1 is really close to 1/2, which has been previously proved necessary to achieve dense
reconstruction near the image center (Section 3.3). Furthermore, the admissible deviations along the di-
agonal increase gradually with altitude. This is linked to the fact that the weight of a deviation decreases
for progressively increasing altitudes (e.g. a deviation of 10 cm represents 8 parts over 10000 for 125 m,
on the contrary 3 parts over 10000 for 300 m). Nevertheless, traditional sensors obviously do not provide
knowledge of the lander’s altitude to such precise extent.

6.3.2 Errors in Camera Orientation

Concerning the robustness to errors in camera orientation, deviations of the camera pointing direction
were considered only along the plane containing both the normal to the surface and the camera axis. With
regards to the results of the sensitivity to camera position errors, the analysis was limited to only equal
angular deviations for both camera poses thus allowing to exclude major error contributions. The results
are alarming: already +0.05° difference at 250 and 300 m altitude is responsible for DEM errors exceeding
the maximum allowable (Tables 6.18 and 6.19). Besides, slightly larger angular deviations contribute to
an exorbitant increase of the DEM errors for all altitudes (Tables 6.16 and 6.17), proving useless to assess
the performances for greater angular variations.

Overall, these results clearly indicate that not only traditional sensors do not provide knowledge of the
lander’s location and attitude accurate enough for structure-from-motion hazard detection but also, that
developed structure-from-motion algorithm is not suitable for hazard detection as a stand-alone method.
As matter of fact, even if visual based navigation is employed, it is unrealistic to expect such sensor to track
the position and orientation of the lander to a sub-pixel accuracy.
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Figure 6.13: DEM mean relative percentage errors as function of the
deviations on altitude (∆h1,∆h2) at both camera poses. Altitude 125 m

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Error ∆h1 [m]

E
rr

o
r
∆

h
2

[m
]

50

100

150

200

250

300

Figure 6.14: DEM mean relative percentage errors as function of the
deviations on altitude (∆h1,∆h2) at both camera poses. Altitude 150 m
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Figure 6.15: DEM mean relative percentage errors as function of the
deviations on altitude (∆h1,∆h2) at both camera poses. Altitude 250 m
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Figure 6.16: DEM mean relative percentage errors as function of the
deviations on altitude (∆h1,∆h2) at both camera poses. Altitude 300 m
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Table 6.16: Sensitivity analysis on camera orientation: DEM errors, altitude 125 m

Angular Deviations [deg]
-0.15 -0.1 -0.05 0.05 0.1 0.15

µDE M [m] 3.319 2.5111 1.6181 0.79903 1.739 2.5358

∆µDE M
µDE M

[%] 358.72 247.06 123.64 10.43 140.35 250.47

medianDE M [m] -2.0058 -1.3981 -0.74589 0.26706 0.87236 1.4628

MADDE M [m] 2.7268 1.9245 1.1736 0.56939 1.1587 1.8045

Table 6.17: Sensitivity analysis on camera orientation: DEM errors, altitude 150 m

Angular Deviations [deg]
-0.15 -0.1 -0.05 0.05 0.1 0.15

µDE M [m] 3.552 2.6768 1.7351 0.89822 1.7418 2.5245

∆µDE M
µDE M

[%] 327.24 221.97 108.70 8.038345 109.51 203.65

medianDE M [m] -1.9101 -1.2289 -0.5786 0.22821 0.67785 0.89848

MADDE M [m] -1.9101 -1.2289 -0.5786 0.22821 0.67785 0.89848

Table 6.18: Sensitivity analysis on camera orientation: DEM errors, altitude 250 m

Angular Deviations [deg]
-0.15 -0.1 -0.05 0.05 0.1 0.15

µDE M [m] 5.1488 3.8752 2.4324 1.3132 2.497 3.7694

∆µDE M
µDE M

[%] 368.97 252.96 121.55 19.61 127.43 243.33

medianDE M [m] 2.7955 2.0401 1.1959 -0.50213 -1.3604 -2.2364

MADDE M [m] 1.8853 1.5235 1.0168 0.76611 1.1896 1.787

Table 6.19: Sensitivity analysis on camera orientation: DEM errors, altitude 300 m

Angular Deviations [deg]
-0.15 -0.1 -0.05 0.05 0.1 0.15

µDE M [m] 5.689 4.2881 2.6691 1.4963 2.9773 4.5027

∆µDE M
µDE M

[%] 356.47 244.07 114.16 20.06 138.89 261.28

medianDE M [m] 3.2432 2.3459 1.3228 -0.64804 -1.7048 -2.7886

MADDE M [m] 1.7897 1.5362 1.1259 0.90475 1.412 2.137
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6.3.3 Dense Reconstruction Image Center

The algorithm capability to achieve dense reconstruction near the image center, with adjacent descent
images taken at less than half altitude from one to the other has also been tested. Figure 6.17 highlights the
input images considered: for this analysis the image at 1st camera pose is taken at 375 m, while the image
at 2nd camera pose is captured at 250 m above the surface. Therefore, the two adjacent descent images
are taken at 1/3 altitude from one to the other. The computed DEM, together with the ground-truth and
related error map are presented in Figure 6.18. Their inspection reveals how the elevation is highly un-
derestimated for the hollow region located on the top-left corner, besides, as expected high errors (greater
than 3 m) characterize the whole image center. Previously in Section 3.3, it was indeed proved how the
point disparity is directly proportional to its distance from the image center and the ratio of descent height
to elevation d/Z (Equation 3.12). The relation is brought again to the reader’s attention below, for the sake
of completeness

∆x = d

Z
x̄ t1 (6.1)

where ∆x represents the point disparity, d the distance travelled by the lander, and x̄ t1 the coordinate of
a point belonging to the second image relative to the principal point (image center).

For the present state d/Z = 1/3, therefore points satisfying x̄ t1 = 1 pixel are only affected by a ∼0.3
disparity which is insufficient for a good recovery around the center. The DEM errors are presented in
Table 6.20. Overall, the errors are >2 times higher than those obtained when the altitude pair 250-500 m is
considered (Table 6.9).
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Figure 6.17: PANGU input image-pair. Image I1 taken at 1st camera pose (h = 375
m) while image I2 when the altitude drops to 250 m (right)
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Figure 6.18: Computed DEM (top-left) ground-truth (top-right) and DEM error (bot-
tom). Altitude 250 m
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Table 6.20: Test 1 Dense Reconstruction: DEM errors

µDE M [m] medianDE M [m] MADDE M [m]

2.6179 -0.41971 1.8359

Shape recovery for images taken at 2/3 altitude from one to the other has also been tested. For this
analysis, a 900-300 m altitude data set was available only for a vertical motion along the camera axis (Fig-
ure 6.19). The DEMs and the computed errors are shown in Figure 6.20 and Table 6.21, respectively. In
contrast to what is expected, the results are worse than those computed for the 600-300 m data set (Table
6.2). As matter of fact, with a ratio of descent height to elevation d/Z = 2/3, points 1 pixel far from the im-
age center have ∼0.66 increased disparity. Nevertheless, it should be reminded that for a vertical motion
the epipole lies in the image center, therefore improvements in the reconstruction around this region can
not be observed. For more insights, data sets with an imaging sensor line-of-site offset should be consid-
ered. Due to time constraints, further investigation on this specific case is left as a recommendation for
future work.

100 200 300 400 500

100

200

300

400

500
100 200 300 400 500

100

200

300

400

500

Figure 6.19: PANGU input image-pair. Image I1 taken at 1st camera pose (h = 900
m) while image I2 when the altitude drops to 300 m (right)
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Figure 6.20: Computed DEM (top-left) ground-truth (top-right) and DEM error (bot-
tom). Altitude 300 m
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Table 6.21: Test 2 Dense Reconstruction: DEM errors

µDE M [m] medianDE M [m] MADDE M [m]

3.6091 1.0302 3.0791

6.4 Computational Time

Beforehand, in Section 4.3, the software computational time was considered for the assessment of the
optimal size of the correlation window and depth step. Nevertheless, the analysis was only limited to the
the functions in charge of the correlation and shape recovery. Therefore, the complete execution time
profiling of the software is presented in Figure 6.21. For the sake of simplicity, the whole software profile
has been divided into only 5 main tasks as follows:

• load, within this task the input image pair is loaded into the workspace besides, parameters neces-
sary for the homography-based shape recovery are computed (e.g. camera projection matrices)

• Rock Map, rock detection assessment through the computation of a rock boolean map for the image
taken at camera 1st pose

• DEM, 3D reconstruction of the landing region

• Georeferencing, task to assign real-world coordinates to each pixel of the raster

• HMAP, evaluation of the hazardousness of the landing region

Figure 6.21 highlights that the major contribution is due to the computation of the hazard map. Further
analysis also reveals that most time is required for the slope assessment (approximately 30.67 s), which
indeed is more computationally demanding. On the contrary, tasks like Rock Map and Georeferencing
only requires only 0.0347 s and 0.0569 s, respectively, being hardly visible in the bar graph. It should be
remembered that the simulation software is written in MATLAB language, therefore the execution time
is always above the allowable maximum of 2 s, for all performed test cases. This was clear already by
the inspecting the time required for the correlation in Section 4.3. Figure 6.21 shows that the current
set-up allows to achieve a complete hazard map in less than 75 s. Therefore, it is expected that a better
implementation and the employment of C/C++ software language will enable to accomplish the real-time
requirements
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Figure 6.21: Software execution time profiling
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Chapter 7

Conclusions

The main research goal of the project is to numerically investigate the limitations of a SfM algorithm for
planetary landings, given traditional sensor (e.g. IMU and altimeter) measurements to assess the lander’s
location. The better structure the research effort the following SBs have been identified:

SB1: Solutions to tackle depth recovery in the vicinity of the epipole

SB2: Algorithm robustness to errors in both camera position and orientation

SB3: Assess whether dense reconstruction, near the image center, is possible
with adjacent image pairs such that one is taken at less than half altitude
(e.g. one third) of the other image

Concerning SB1, two different mission scenarios were considered: 1) a perfect vertical motion forward
along the camera pointing direction and 2) a 45° angle dropping trajectory for a more realistic approaching
descent phase, with a 40° imaging sensor line-of-site offset. A perfect knowledge of both lander’s position
and orientation was initially assumed.

For the former scenario, the epipole coincides with the nominal landing site (image center). The re-
sults show that its presence seriously affect depth recovery within an area of approximately 80×80 px2

around the image center. This represents a significant problem since these locations are the most conve-
nient in terms of distance and guidance costs. As these sites are wrongly classified as unsafe, they result
unaccessible. Excluding the epipole region has been proved to have no significant impact rather than
decreasing the number of false alarms. For the latter scenario, when the nominal pitch angle is set to 9°
the epipole is always located below the image center. Instead it moves upward when the lander attitude
is aligned with the normal direction of the surface. The results for this descent sequence indicates that
below 300 m altitude the software is a suitable candidate for hazard detection, with total correct detection
on average >94% and the percentage of undetected hazards below the allowable maximum 1%.

Thus, the ad hoc selection of descent trajectory and imaging sensor line-of-site offset (to move the
epipole away from the image center or potentially outside the image boundaries) has been shown to
shrink the epipole region and to improve the overall depth recovery. In addition, the analysis of the com-
puted depth maps has highlighted that rocks and boulder are not well resolved from both high- and low-
elevation image pairs, in contrast to the result NASA JPL [43]. The presence of rocks on the surface is
accounted by employing an adapted version of the Harris Corner detector directly on the input images.

Addressing SB2, a Monte Carlo simulation was performed to assess the algorithm robustness to errors
in camera position. Random uncertainties within the interval [-0.5 0.5] meters were taken into account for
the altitude of both camera poses. As expected, the lower DEM errors are obtained when both altitudes
are affected by small deviations of similar magnitude and same sign (approximately ±10 cm). Indeed,
for this specific case the ratio h2/h1 of camera poses altitudes is really close to 1/2, necessary to achieve
dense reconstruction near the image center. The relative percentage errors peak above 100% everywhere
else within the considered interval. Moreover, concerning the robustness to errors in camera orientation,
deviations of the camera pointing direction were considered only along the plane containing both the
normal to the surface and the camera axis. Already differences greater than ±0.05°, in the imaging sensor
line-of-site, are responsible for exorbitant errors in the DEM for all altitudes. Overall, these results allow
us to answer the lower-level thesis RQs reported below for the sake of completeness

RQ1.1 Is Structure from Motion suitable for HD as a stand-alone
method?
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RQ1.2 Do traditional sensors (e.g. IMU and altimeter) provide knowl-
edge of the lander’s location accurate enough for SfM Hazard Detection
or Visual based Navigation (VN) has to be added to GNC architecture?

Clearly, the sensitivity analysis has highlighted that not only traditional sensors do not provide knowledge
of the lander’s location and attitude accurate enough for SfM hazard detection but also, that developed
SfM algorithm (at current stage) is not suitable for hazard detection as a stand-alone method. As a matter
of fact, even if visual based navigation is employed, it is unrealistic to expect such sensor to track the
position and orientation of the lander to a sub-pixel accuracy.

With reference to SB3, the capability to achieve dense reconstruction near the image center with ad-
jacent descent images taken at less than half altitude from one to the other has also been tested. For this
analysis the image at 1st camera pose is taken at 375 m, while the image at 2nd camera pose is captured
at 250 m above the surface. Therefore, the two adjacent descent images are taken at 1/3 altitude from one
to the other. In agreement with the expectations, the computed errors are >2 times higher than those ob-
tained when the altitude pair 250-500 m is considered: the lower pixel disparity, around the image center,
is insufficient to achieve a dense recovery around the aforementioned region.

The high-level RQ set to answered for the project is shown below

RQ1 Is it possible to increase autonomy for planetary landings using
equipment readily available on space missions?

For this reason, the framework of hazard detection has been considered. Through a single camera, there-
fore employing equipment readily available on space missions, it was shown that valuable information
related to the hazardousness of the landing region can be obtained. This potentially allows to increase the
autonomy and decrease the risk of a landing failure for future exploration missions. Nevertheless, several
limitations of the developed algorithm have been marked, highlighting that further research is needed to
properly address them and further mature this technology.



Chapter 8

Recommendations for Future Work

Having concluded the results of this MSc thesis, a number of recommendations for future work on the current topic
are listed below.

• Concerning shape recovery, the limitation of projective warping implemented through bilinear in-
terpolation have clearly emerged. Unfortunately, here, there are not many parameters to play with
since higher order interpolations are way too computational expensive for the tight real-time con-
straints imposed by planetary landings. Different approaches to correlate input image pairs affected
by high resolution differences (as those considered in this research) shall be explored. Since this
involves re-thinking a core part of the algorithm, completely from scratch, it is author’s personal
opinion that a strong background in projective geometry and computer vision would be required.

• As stated in Section 4.2, the presence of rocks and boulders on the surface is accounted through an
adapted version of the Harris Corner detector directly on the input images. For the scenario sim-
ulating the approaching phase of Chang’e-3 lunar landing, it was shown that also hazardous small
craters can be identified. Therefore, further investigation whether to enhance the rock detection
block and totally discard the computation of roughness, based on the resulting DEMs, should be
made. Initially, a different approach was developed to solve the square-pattern problem: the SSD
chosen for correlation was replaced with the SAD operator for pixels, within the correlation window,
detected by the Harris Corner measure to depict boulders and their immediate proximity. By tak-
ing the absolute difference of the pixel intensities rather than their squares, their impact was indeed
minimized. Nevertheless, this approach was verified to fail for the images belonging to the second
mission scenario, which was only considered at a late stage of the project.

• Considering the perfect vertical motion along the camera axis, a different data-set without features
that could negatively affect shape recovery for lower altitudes should be analyzed. This recommen-
dation is to prove that better results can be achieved as the lander is steered towards the surface,
since higher resolution images are available.

• All the scenes generated correspond to a 30° FOV projective camera with a 512×512 pixel 8-bits sen-
sor. It may be valuable to assess whether employing a higher resolution sensor (for instance 16-bits)
would lead to improve the overall accuracy of the depth maps.

• The previous three points highlight that it will be convenient for the student to obtain a license for
the PANGU software, to be more independent for the creation of tailored data-sets. This is a process
based on trials and errors, and it turns out difficult for the student to ask further in advance for data-
set with features complying with specific requirements.

• For an improved and advanced version of the software, it will be interesting to further improve the
sensitivity analysis by considering lateral deviations in the lander’s position and orientation at each
camera pose. In addition, it will be valuable to implement a flight version of the software (C/C++
implementation) to assess whether the algorithm can meet the tight real-time constraints and for
validation in an experimental landing facility, gaining the highest possible confidence for the in-
flight operations.
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Appendix A

Fundamentals of Computer Vision

This appendix presents the geometric concepts for computer vision which represents a necessary back-
ground for this thesis. Its drafting has been mostly based on [32], elsewhere stated otherwise. Section
A.1 introduces homogeneous coordinates and notations of projective geometry, central for the analysis
of two view geometry. Homographies, namely transformations that arise when a plane is imaged by a
perspective camera, are outlined in Section A.2, while epipolar geometry is extensively covered in Section
A.3.

A.1 Homogeneous Coordinates

As a basic concept of planar geometry, it is well known that a line is represented by an equation such as
ax + by + c = 0. Of course, different choices of the coefficients a, b and c give rise to different lines in
the plane. Therefore, it appears straightforward that a line can be defined by the vector (a,b,c)T . Nev-
ertheless, it must be highlighted that the correspondence between vectors and lines is not one-to-one:
equations ax +by + c = 0 and (ka) x + (kb) y + (kc) = 0 are indeed the same, for any non-zero constant k.
Thus, under such assumption, (a,b,c)T and k (a,b,c)T represent the same line. Vectors equal by an over-
all scaling are equivalent besides, a class of equivalent vectors is defined homogeneous. It is possible now
to introduce a new structure, namely the Projective Space P2 which is described by the set of all classes of
homogeneous vectors of R3 - (0,0,0)T .

Let us now consider a point x = (
x, y

)T in the plane. Such a point lies on the line l = (a,b,c)T if and only if
ax +by + c = 0. The previous equation can be expressed through a scalar product of vectors as follows

[
x y 1

] a
b
c

= [
x y 1

]
l = xT l = 0 (A.1)

where
(
x, y

)T ∈R2 has been represented through a 3-vector by adding an additional coordinate equal to 1.
Multiplying by a non-zero constant k, the previous expression becomes

(
kx,k y,k

)
l = 0. Thus, it appears

natural to consider the set of vectors
(
kx,k y,k

)T as a representation of
(
x, y

)T in the Projective Space. As
result, points as homogeneous 3-vectors are also elements ofP2. The key role played by homogeneous co-
ordinates will be further highlighted in Section A.2, nevertheless in the following it will be shown how they
allow a natural representation of points at infinity (or ideal points), without the necessity of taking limits.
Consider a point (x1, x2,0)T : now, if we attempt to find its inhomogeneous representation we would ob-
tain (x1/0, x2/0)T , which makes no sense. The previous expression, however, suggests that the point has
infinitely large coordinates. Thus, the set of ideal points can be specified by a 3-vector whose last coor-
dinate equals zero. In the previous paragraph, a result has been mentioned and it is further highlighted
below

Result 3.1 A point x lies on the line l if and only if xT l = 0

The former can be used to prove the following result
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Result 3.2 The intersection of two lines l and l ′ is the point x = l × l ′

Proof
Let us consider two lines l = (a,b,c)T and l ′ = (

a′,b′,c ′
)T , we wish to determine their intersection.

Define the vector x = l ×l ′, where × symbolizes the cross product. From l ·(l × l ′
)= 0 and l ′ ·(l × l ′

)= 0,

it is possible to deduce l T x = l ′T x = 0. Therefore, x lies both on l and l ′ hence is the intersection of the
two lines.

Similarly, the expression for the line passing through two points can be derived.

Result 3.3 The line through two points x and x ′ is l = x ×x ′

The purpose of highlighting the previous results is twofold: they introduce the notation applied through-
out the entire chapter furthermore, they enable an handy and algebraic representation of basic geometric
concepts (e.g. belonging and intersection) which are recurring in modelling the geometry of multiple
views in computer vision.

A.2 Projective Geometry

In the previous section we have seen that homogeneous coordinates represent ideal points without the
necessity of taking limits. Besides, homogeneous coordinates allow non-linear mappings (such as per-
spective projections) to be defined through linear matrix equations. In the following, projective transfor-
mations of 2-space will be introduced. These are the transformations that model the perspective geomet-
ric distortion which arises when a plane is imaged by a camera.

Definition 3.1

A projectivity (or homography) is an invertible mapping h from P2 to itself such that three
points x1, x2 and x3 lie on the same line if and only if h (x1), h (x2) and h (x3) do

Therefore projectivities preserve collinearity, in other words they map lines into lines.
The previous definition has been expressed in terms of a coordinate-free viewpoint, nevertheless an alge-
braic definition of homography is also possible and stems from the following theorem

Theorem 3.1

A mapping h: P2 →P2 is a projectivity if and only if there exists a non-singular 3×3 matrix H
such that for any point in P 2 represented by a vector x it is true that

h(x) =H x

The theorem asserts that a planar projectivity is a linear transformation on homogeneous 3-vectors and
conversely any such mapping is a projectivity.

 x ′
1

x ′
2

x ′
3

=
 h11 h12 h13

h21 h22 h23

h31 h32 h33

 x1

x2

x3

 (A.2)

Note that H is a homogeneous matrix and it may be changed by a multiplication factor. Therefore, with
only the ratio of its elements being significant, the transformation has 8 degrees of freedom (dof).
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A.3 Epipolar Geometry

Epipolar geometry encodes the relation between two images of the same scene but taken from different
viewpoints. Being independent of the scene structure, it is only affected by camera’s internal parameters
and relative pose. As it will appear clearer, this geometry is motivated by the search of corresponding
points within the image pair. Consider a point X in 3-space which is imaged into x in the first view, while
x ′ in the second view (Figure A.1). We wish to determine the existing relation between x and x ′.

Figure A.1: The two cameras centres, 3D world point X , and its 2D images lie in a common plane, namely
π [32]

The world point X , the image pair
(
x , x ′), and the camera centres C , C ′ are all coplanar. Therefore, also

the rays back-projected from x and x ′ lie on such plane denoted by π. Assuming that x is known, how is
the corresponding point x ′ constrained? From what has been previously stated, x ′ must lie on π hence it
belongs to the line l ′, intersection of π with the second image plane. This line is the image in the second
view of the ray back-projected from x and is named epipolar line. Figure A.2 illustrates the geometric
entities involved in the epipolar geometry:

• epipole (e), the point of intersection of the line joining the camera centres (baseline) with image
plane. It can be also defined as the image in one view of the camera centre of the other view.

• epipolar plane (π), plane containing the baseline: there is a pencil of epipolar planes.

• epipolar line (l), defined as intersection of the epipolar plane with the imaged plane. All epipolar
lines intersect at the epipole.

Due to the epipolar constraint, the search for the correspondent point is thus restricted to the line l ′ and
not extended at the entire image plane (Figure A.3).

It turns out that there exist a projective mapping from points to lines, which is represented by the Funda-
mental Matrix F

l ′ = F x (A.3)

F is 3×3 matrix which encapsulates the epipolar geometry and whose main properties are outlined as
follows

Result 3.4 The Fundamental Matrix satisfies the condition that for any pair of corresponding
points x ←→ x ′ in the two images



Fundamentals of Computer Vision 91

Figure A.2: Any plane π containing the baseline is an epipolar plane and intersects the image planes in
the corresponding epipolar lines l and l ′. The camera baseline intersects each image at the epipoles e and
e ′ [32]

Figure A.3: Each point in I1 is constrained to lie on its corresponding epipolar line in I2 [20]. In presence
of translation parallel to the image plane, and the rotation axis perpendicular to the image plane, a spe-
cific geometry of the epipolar line arises: the intersection between the baseline and the image plane is at
infinity, therefore epipolar lines are parallel.

x ′T F x = 0 (A.4)

Proof
Points x and x ′ are corresponding, therefore the latter lies on the epipolar line l ′ = F x . In other words,
it is possible to write 0 = x ′T l ′ = x ′T F x .

Result 3.4 has characterized the fundamental matrix only in terms of correspondence points, thus F can
be computed from image correspondences alone (Section ??). Furthermore,

Result 3.5 Given a Fundamental Matrix F , the epipole e ′ is its left null-vector while e is right
null-vector

e ′F = 0 F e = 0 (A.5)
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Proof
For any point x , other than the epipole, the epipolar line l ′ = F x contains the epipole e ′. In other

words, we may write e ′T l ′ = e ′T (F x) =
(
e ′T F

)
x = 0. This holds for all x , therefore e ′F = 0. Similarly

F e = 0

The following result is frequently used

Result 3.6 The Fundamental Matrix corresponding to a pair of camera matrices
P = [I3×3|03×1] = [I |0] (canonical form) and P ′ = [M |m] is equal to

F = m ×M = [m]x M (A.6)

In order to show that a given fundamental matrix determines the pair of camera matrices up to right
multiplication by a projective transformation, we first introduce the following lemma

Lemma 3.1 Suppose the rank 2 matrix F can be decomposed in two different ways as
F =[a]x A and F =[ã]x Ã; then

ã = ka Ã = k−1 (
A +av T )

(A.7)

for some non-zero constant k and 3-vector v

Proof
Note that aT F = aT [a]x A = aT (a × A) = 01×3 = 0. Similarly, ãT F = 0. Since F has rank 2 it follows that
ã = ka as required. In light of the the previous result, [a]x A = [ã]x Ã can be further manipulated

[ã]x Ã − [a]x A = k [a]x Ã − [a]x A = [a]x
[
k Ã − A

]= 0

Therefore, it follows that k Ã − A = av T . Indeed

[a]x av T =
 0 −a3 a2

a3 0 −a1

−a2 a1 0

 a1v1 a1v2 a1v3

a2v1 a2v2 a2v3

a3v1 a3v2 a3v3

= 03×3

Therefore we have k Ã − A = av T . Writing this expression out it is obtained

k Ã = A +av T → Ã = k−1 (
A +av T )

We have now the necessary knowledge to prove the following theorem

Theorem 3.2

Let F be a fundamental matrix and let
(
P ,P ′) and

(
P̃ , P̃ ′) be two pairs of camera matrices such

that F is the fundamental matrix corresponding to each of these pairs. Then there exists a
non-singular 4×4 matrix H such that P̃ = PH and P̃ ′ = P ′H .
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Proof
Let’s first simplify the problem, assuming that each of the two pair of camera matrices is in canonical
form. This can be achieved by applying a projective transformations to each pair. Thus, P = P̃ = [I |0]
and P ′ = [A|a] and P̃ ′ = [Ã|ã]. According to Equation A.6 the fundamental matrix can then be written

F = [a]x A = [ã]x Ã

Applying Equation A.7 to the two camera matrices we obtain P ′ = [A|a] and P̃ ′ = [
k−1

(
A +av T

) |ka
]
.

In order to prove that these camera pairs is projectively related, consider the following matrix H

H =
[

k−1I3×3 03×1

k−1v T k

]
(A.8)

It is possible to verify that PH = k−1P̃ besides, P ′H = P̃ ′

PH =
 1 0 0 0

0 1 0 0
0 0 1 0




k−1 0 0 0
0 k−1 0 0
0 0 k−1 0

k−1v1 k−1v2 k−1v3 k

=

 k−1 0 0 0
0 k−1 0 0
0 0 k−1 0

= k−1 [I |0] = k−1P̃

P ′H = [A|a] H = A11k−1 +k−1v1a1 A12k−1 +k−1v1a1 A13k−1 +k−1v1a1 a1k
A21k−1 +k−1v1a1 A22k−1 +k−1v1a1 A23k−1 +k−1v1a1 a2k
A31k−1 +k−1v1a1 A32k−1 +k−1v1a1 A33k−1 +k−1v1a1 a3k


= [

k−1 (
A +av T ) |ka

]= [
Ã|ã]= P̃ ′

It has been proved that P ,P ′ and P̃ ,P̃ ′ are projectively related.
Through Result 3.7, a specific formula for a pair of cameras with canonical form will be derived

Result 3.7 A non-zero matrix F is the fundamental matrix corresponding to a pair of camera
matrices P and P’ if and only if P ′T F P is skew symmetric

Proof
The condition that P ′T F P is skew-symmetric is equivalent to X T P ′T F P X = 0 for all X . Substituting
x = P X and x ′ = P ′X , it is obtained x ′T F x = 0 which is the defining equation of the fundamental matrix
and thus holds true.

Result 3.8 Let F be a fundamental matrix and S any skew-symmetric matrix. Define the pair of
camera matrices

P = [I |0] P ′ = [
SF |e ′]

where e ′ is the epipole such that e ′ = 0. Then F is the fundamental matrix corresponding to the pair
(
P ,P ′)
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Proof
Applying the previous result we only need to verify that P ′T F P is skew symmetric. Writing out this
expression we obtain

[
SF |e ′]T F [I |0] =

[
F T ST

e ′T
]

[F |0] =
[

F T SF 03×1

e ′T F 0

]

Remembering that e ′ is the left null vector of F (Equation A.5), the only term left is taken into account

F T SF =
 f11 f12 f13

f21 f22 f23

f31 f32 f33

 0 s2 −s3

−s2 0 −s1

s3 s1 0

 f11 f12 f13

f21 f22 f23

f31 f32 f33

= 03×3

A good choice for S is S = [
e ′]

x , which leads to the following useful result

Result 3.8 The general formula for a pair of canonic camera matrices corresponding to a
Fundamental Matrix F is given by

P = [I |0] P ′ =
[[

e ′]
x F +e ′v T |λe ′

]
(A.9)

where v is any 3-vector and λ a non-zero scalar.





Appendix B

Homography HK Derivation

In this Appendix, the derivation of the Equation 3.8 is presented.

Equation 3.7 can be re-written as follows

Hk = x1 c1

r1

1


(B.1)

Through the camera matrix M1, the 2-D image point x1 is related to the 3-D world point X

x1 = M1 (X −C1) (B.2)

Therefore, substituting it back to the previous equation we obtain

Hk = M1
(
~X −C1

) c1

r1

1


(B.3)

~X is replaced with the right term of Equation 3.3

Hk =
M1

sM−1
2

 c2

r2

1

+C2 −C1


 c1

r1

1


=

M1 (C2 −C1)+M1M−1
2 s

 c2

r2

1


 c1

r1

1


(B.4)

Substituting the expression for the scale factor s (Equation 3.5) the following is attained

Hk =

M1 (C2 −C1)−M1M−1
2

N T C2+zk

N T M−1
2


c2

r2

1



 c2

r2

1


 c1

r1

1


(B.5)
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which can be re-arranged as follows

Hk =
M1 (C2 −C1) N T M−1

2

 c2

r2

1

−M1M−1
2

[
N T C2 + zk

] c2

r2

1


N T M−1

2

 c2

r2

1

 c1

r1

1



Hk = M1
(
~C2 −C1

)
N T M−1

2 −M1M−1
2

(
N T ~C2 + zk

)
N T M−1

2

 c2

r2

1


(B.6)

Since the homography Hk may be changed multiplying by an arbitrary non-zero scale factor, without alter-

ing the projective transformation, the scalar term ~N T M−1
2

 c2

r2

1

 at the denominator can thus be omitted.

Moreover, since the quantity N T ~C2+zk is a scalar, it can be written to the left side of factor M1M−1
2 obtaining

Hk = M1
(
~C2 −~C1

)
~N T M−1

2 − (
N T ~C2 − zk

)
M1M−1

2 (B.7)



Appendix C

Harris Corner Detector

This appendix introduces one of the earliest key-point detector, namely Harris Corner detector. Pre-
sented by Harris and Stephens in 1988 [10], it is still widely employed nowadays [20] due to its simplicity.

To describe its working principle, let us now consider a single image: we would like to assess how do
pixels in W change by shifting the kernel window by a vector ∆~x = (

∆x,∆y
)

(Figure C.1).

Image

W

∆~x

W

Figure C.1: The Kernel W (2N+1×2N+1) is shifted by a vector
(
∆x,∆y

)
within the image boundaries

Each pixel is compared before and after through the sum of the squared differences (SSD)

SSD(W ) =
N∑

x=−N

N∑
y=−N

[
I
(
x +∆x, y +∆y

)− I
(
x, y

)]2 (C.1)

Considering a Taylor Series expansion of I
(
x +∆x, y +∆y

)
and assuming that∆~x is small, the following

first order approximation holds

I
(
x +∆x, y +∆y

)≈ I
(
x, y

)+ ∂I

∂x
∆x + ∂I

∂y
∆y (C.2)

Substituting the previous relation back into Equation C.1 yields

SSD(W ) =
N∑

x=−N

N∑
y=−N

[
I
(
x, y

)+ ∂I

∂x
∆x + ∂I

∂y
∆y − I

(
x, y

)]2

=
N∑

x=−N

N∑
y=−N

[[
∂I
∂x

∂I
∂y

][
∆x
∆y

]]2

Writing the expression out, it is obtained

SSD(W ) =
N∑

x=−N

N∑
y=−N

[(
∂I

∂x

)2

∆x2 +2

(
∂I

∂x

)(
∂I

∂y

)
∆x∆y +

(
∂I

∂x

)2

∆x2
]

(C.3)
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Equation C.3 can be further manipulated yielding

SSD(W ) =
N∑

x=−N

N∑
y=−N

[
∆x ∆y

] (
∂I
∂x

)2 (
∂I
∂x

)(
∂I
∂y

)
(
∂I
∂x

)(
∂I
∂y

) (
∂I
∂y

)2

[
∆x
∆y

]

= [
∆x ∆y

] N∑
x=−N

N∑
y=−N

 (
∂I
∂x

)2 (
∂I
∂x

)(
∂I
∂y

)
(
∂I
∂x

)(
∂I
∂y

) (
∂I
∂y

)2

[
∆x
∆y

]
=∆xT M∆x (C.4)

where M is called second moment matrix.
To detect features, the M matrix has to be computed for each pixel of W. To ensure that no displacement
exists for which the SSD value is small, the eigenvalues of M should be both large (Figure C.2).

λ1

λ2

"Flat"

λ1,λ2 small
"Edge"
λ1 Àλ2

"Edge"

λ2 Àλ1

"Corner"

λ1,λ1 large

λ1 ∼λ1

Figure C.2: Classification of image pixels according to the eigenvalues of M

This can be either achieved by enforcing a minimal value for the smallest eigenvalue or computing the
corner response function [10]

R =λ1λ2 −α (λ1 +λ2)2 (C.5)

with α a constant whose value ranges from 0.04 to 0.06. In their original paper, Harris and Stephens
considered the exact computation of the eigenvalues to be too expensive and instead suggested the fol-
lowing response function

R = det(M)−αTr(M) (C.6)

where Tr represents the trace of the matrix (e.g. the sum of its diagonal terms). The next step consists
to identify points with large corner response (R > threshold). The so-called feature points are represented
by local maxima of R.



Appendix D

Parametric Analysis - Input Images

The appendix hereby displays the input image pairs employed for the assessment of the optimal correlation window
W and depth step size ∆z (Section 4.3).
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Figure D.1: Scene 1, image I1 at 150m elevation (left) and I2 (right) taken when the altitude is halved

100 200 300 400 500

100

200

300

400

500
100 200 300 400 500

100

200

300

400

500

Figure D.2: Scene 2, image I1 at 600m elevation (left) and I2 (right) taken when the altitude is halved
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Appendix E

Least-Square Minimization through SVD

In this appendix it is discussed how to solve a linear system of equations through SVD. Its drafting is
fully based on [32].

Consider a system of equations expressed in the form Ax = b. Let A be an m ×n matrix (with m > n)
of rank n. In general this system will not have a solution, unless b lies in the span of the columns of A.
Therefore, it makes sense to seek a vector x which is closest to provide a solution to the system: in other
words, we seek x such that the norm ||Ax −b|| is minimized. The vector x is known as the least-square
solution, and it is conveniently found employing the SVD. Given the previously defined matrix A, through
SVD it can be factorized as follows

A =U DV T (E.1)

where U is an m ×n matrix with orthogonal columns, D is an n ×n diagonal matrix, and V is an n ×n
orthogonal matrix. Thus, applying Equation E.1 the following holds

||Ax −b|| = ||U DV T −b|| (E.2)

Due to the norm-preserving property ||U x || = ||x || for any vector x , the previous equation can be re-
written as

||U DV T x −b|| = ||U T U DV T x −U T b|| (E.3)

Furthermore, since U has orthogonal columns U T U = In×n . Therefore, the quantity we want to mini-
mize is

||DV T x −U T b|| (E.4)

Writing y = V T x and b′ = U T , the problem becomes one of minimizing ||D y −b′||



d1

d2

. . .
dn

0




y1

y2
...

yn

=



b′
1

b′
2
...

b′
n

b′
n+1
...

b′
m


(E.5)
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It is straightforward that the nearest D y that approaches b′ is the vector
(
b′

1,b′
2, . . . ,b′

n ,0, . . . ,0
)T . This

is achieved by setting yi = b′
i /di for i = 1,

...,n. Note that the assumption rank(A) = n ensures that di 6= 0.
Finally, the solution x is retrieved by

x =V y (E.6)

For the sake of a direct computer implementation, the algorithm can be sum up to only 4 simple steps

(i) Find the SVD → A =U DV T

(ii) Set b′ =U T b

(iii) Find the vector y defined by yi = b′
i /di , where di is the i-th diagonal entry of D

(iv) The solution is x =V y



Appendix F

Mission Scenario 1 - Input Image Pairs

The appendix hereby displays the input descent sequence employed in the mission scenario 1 (Section 6.1).
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Figure F.1: Scene 1, image I1 at 1000m elevation (left) and I2 (right) taken when the altitude is halved
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Figure F.2: Scene 2, image I1 at 800m elevation (left) and I2 (right) taken when the altitude is halved
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Figure F.3: Scene 3, image I1 at 600m elevation (left) and I2 (right) taken when the altitude is halved
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Figure F.4: Scene 4, image I1 at 400m elevation (left) and I2 (right) taken when the altitude is halved
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Figure F.5: Scene 5, image I1 at 300m elevation (left) and I2 (right) taken when the altitude is halved
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Figure F.6: Scene 6, image I1 at 200m elevation (left) and I2 (right) taken when the altitude is halved
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Figure F.7: Scene 7, image I1 at 150m elevation (left) and I2 (right) taken when the altitude is halved
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Figure F.8: Scene 8, image I1 at 100m elevation (left) and I2 (right) taken when the altitude is halved





Appendix G

Mission Scenario 1 - DEM

This appendix shows the shape recovery results for the mission scenario 1 (Section 6.1). The computed DEMs are
displayed together with their error maps and ground-truths.
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Figure G.1: Computed DEM (left) DEM error (center) and ground-truth (right). Altitude h = 500 m
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Figure G.2: Computed DEM (left) DEM error (center) and ground-truth (right). Altitude h = 400 m
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Figure G.3: Computed DEM (left) DEM error (center) and ground-truth (right). Altitude h = 300 m
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Figure G.4: Computed DEM (left) DEM error (center) and ground-truth (right). Altitude h = 200 m
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Figure G.5: Computed DEM (left) DEM error (center) and ground-truth (right). Altitude h = 150 m
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Figure G.6: Computed DEM (left) DEM error (center) and ground-truth (right). Altitude h = 100 m
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Figure G.7: Computed DEM (left) DEM error (center) and ground-truth (right). Altitude h = 75 m
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Figure G.8: Computed DEM (left) DEM error (center) and ground-truth (right). Altitude h = 50 m



Appendix H

Mission Scenario 1 - Final Hazard Maps

The appendix hereby displays the hazard maps for the mission scenario 1 (Section 6.1). Also the related hazard-error
maps, indicating the location of the undetected hazards (dark-gray regions) and false alarms (light-gray regions), are
present.
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Figure H.1: Scaled hazard map (left) and hazard mapping errors darkgray=FP, white=TP,
lightgray=FN, black=TN (right). Altitude h = 500 m
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Figure H.2: Scaled hazard map (left) and hazard mapping errors darkgray=FP, white=TP,
lightgray=FN, black=TN (right). Altitude h = 400 m
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Figure H.3: Scaled hazard map (left) and hazard mapping errors darkgray=FP, white=TP,
lightgray=FN, black=TN (right). Altitude h = 300 m
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Figure H.4: Scaled hazard map (left) and hazard mapping errors darkgray=FP, white=TP,
lightgray=FN, black=TN (right). Altitude h = 200 m
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Figure H.5: Scaled hazard map (left) and hazard mapping errors darkgray=FP, white=TP,
lightgray=FN, black=TN (right). Altitude h = 150 m
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Figure H.6: Scaled hazard map (left) and hazard mapping errors darkgray=FP, white=TP,
lightgray=FN, black=TN (right). Altitude h = 100 m
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Figure H.7: Scaled hazard map (left) and hazard mapping errors darkgray=FP, white=TP,
lightgray=FN, black=TN (right). Altitude h = 75 m
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Figure H.8: Scaled hazard map (left) and hazard mapping errors darkgray=FP, white=TP,
lightgray=FN, black=TN (right). Altitude h = 50 m





Appendix I

Mission Scenario 2 - Input Image Pairs

The appendix hereby displays the input descent sequence employed in the mission scenario 2 (Section 6.2).
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Figure I.1: Scene 8, image I1 at 2400 m elevation (left) and I2 (right) taken when the altitude is halved
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Figure I.2: Scene 7, image I1 at 2000 m elevation (left) and I2 (right) taken when the altitude is halved
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Figure I.3: Scene 6, image I1 at 1200 m elevation (left) and I2 (right) taken when the altitude is halved
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Figure I.4: Scene 5, image I1 at 1000 m elevation (left) and I2 (right) taken when the altitude is halved
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Figure I.5: Scene 4, image I1 at 600 m elevation (left) and I2 (right) taken when the altitude is halved
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Figure I.6: Scene 3, image I1 at 500 m elevation (left) and I2 (right) taken when the altitude is halved
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Figure I.7: Scene 2, image I1 at 300 m elevation (left) and I2 (right) taken when the altitude is halved
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Figure I.8: Scene 1, image I1 at 250 m elevation (left) and I2 (right) taken when the altitude is halved





Appendix J

Mission Scenario 2 - DEM

This appendix shows the shape recovery results for the mission scenario 2 (Section 6.2). The computed DEMs are
displayed together with their error maps and ground-truths.
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Figure J.1: Computed DEM (left) DEM error (center) and ground-truth (right). Altitude h = 1200 m
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Figure J.2: Computed DEM (left) DEM error (center) and ground-truth (right). Altitude h = 1000 m
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Figure J.3: Computed DEM (left) DEM error (center) and ground-truth (right). Altitude h = 600 m
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Figure J.4: Computed DEM (left) DEM error (center) and ground-truth (right). Altitude h = 500 m
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Figure J.5: Computed DEM (left) DEM error (center) and ground-truth (right). Altitude h = 300 m
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Figure J.6: Computed DEM (left) DEM error (center) and ground-truth (right). Altitude h = 250 m
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Figure J.7: Computed DEM (left) DEM error (center) and ground-truth (right). Altitude h = 150 m
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Figure J.8: Computed DEM (left) DEM error (center) and ground-truth (right). Altitude h = 125 m



Appendix K

Mission Scenario 2 - Final Hazard Maps

The appendix hereby displays the hazard maps for the mission scenario 2 (Section 6.2). Also the related hazard-error
maps, indicating the location of the undetected hazards (dark-gray regions) and false alarms (light-gray regions), are
present.
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Figure K.1: Scaled hazard map (left) and hazard mapping errors darkgray=FP, white=TP,
lightgray=FN, black=TN (right). Altitude h = 1200 m
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Figure K.2: Scaled hazard map (left) and hazard mapping errors darkgray=FP, white=TP,
lightgray=FN, black=TN (right). Altitude h = 1000 m
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Figure K.3: Scaled hazard map (left) and hazard mapping errors darkgray=FP, white=TP,
lightgray=FN, black=TN (right). Altitude h = 600 m
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Figure K.4: Scaled hazard map (left) and hazard mapping errors darkgray=FP, white=TP,
lightgray=FN, black=TN (right). Altitude h = 500 m
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Figure K.5: Scaled hazard map (left) and hazard mapping errors darkgray=FP, white=TP,
lightgray=FN, black=TN (right). Altitude h = 300 m
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Figure K.6: Scaled hazard map (left) and hazard mapping errors darkgray=FP, white=TP,
lightgray=FN, black=TN (right). Altitude h = 250 m
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Figure K.7: Scaled hazard map (left) and hazard mapping errors darkgray=FP, white=TP,
lightgray=FN, black=TN (right). Altitude h = 150 m
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Figure K.8: Scaled hazard map (left) and hazard mapping errors darkgray=FP, white=TP,
lightgray=FN, black=TN (right). Altitude h = 125 m





Appendix L

Feasible Scenarios - Slope and Roughness

This appendix hereby shows the computed slope and roughness maps for the feasible scenarios (Section 6.2).
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Figure L.1: Computed DEM slope (left) slope error (center) and ground-truth slope (right). Altitude h =
300 m
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Figure L.2: Computed DEM roughness (left) roughness error (center) and ground-truth roughness (right).
Altitude h = 300 m
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Figure L.3: Computed DEM slope (left) slope error (center) and ground-truth slope (right). Altitude h =
250 m
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Figure L.4: Computed DEM roughness (left) roughness error (center) and ground-truth roughness (right).
Altitude h = 250 m
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Figure L.5: Computed DEM slope (left) slope error (center) and ground-truth slope (right). Altitude h =
150 m
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Figure L.6: Computed DEM roughness (left) roughness error (center) and ground-truth roughness (right).
Altitude h = 150 m

50 100 150 200

50

100

150

0

20

40

60

50 100 150 200

50

100

150

0

20

40

60

50 100 150 200

50

100

150 5

10

15

[d
eg

]

Figure L.7: Computed DEM slope (left) slope error (center) and ground-truth slope (right). Altitude h =
125 m
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Figure L.8: Computed DEM roughness (left) roughness error (center) and ground-truth roughness (right).
Altitude h = 125 m
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