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Abbreviations

Nomenclature

Abbreviation

Definition

AIS
BAP
DSR
ETA
FCFS
HCC
HM
ICT
JIT
NC
NGO
PA
PCO
PCS
PoR
QC
QCAP
QCSP
STM
SLR
VTS

Automatic Identification System
Berth Allocation Problem

Design Science Research
Estimated Time of Arrival

First Come First Served

Harbor Coordination Center
Harbor Master

Information and Communication Technology
Just In Time

Nautical Chain
Non-Governmental Organization
Port Authority

Port Call Optimization

Port Community System

Port of Rotterdam

Quay Crane

Quay Crane Allocation Problem
Quay Crane Scheduling Problem
Sea Traffic Management
Systematic Literature Review
Vessel Traffic Service

Table 1: List of Abbreviations
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Symbols

Symbol Description

It Forget gate activation in LSTM

it Input gate activation in LSTM

cy Cell state in LSTM

0t Output gate activation in LSTM

Wy Weight matrix for forget gate in LSTM

W; Weight matrix for input gate in LSTM

W, Weight matrix for output gate in LSTM
V. Value function in DRL model

Qre, State-action value function in DRL model
5 Discount factor in DRL

Az, Advantage function in DRL

E Encoding of unfinished tasks

0y Output probability distribution at time step ¢
A Bias-variance trade-off parameter in GAE
Dtk Output probability of task & at step ¢

Ut Task selected at time step ¢

u§ Attention score for unfinished tasks in DRL
Wi, Wy Weight matrices for attention mechanism
v Parameter vector in attention mechanism
0, Policy parameters in actor network

0. Parameters in critic network

Leg Cross-entropy loss function

Ly, Loss function for actor in DRL model

Ly, Loss function for critic in DRL model
smoothL; Smooth L1 loss function

Sy State of the system at time step ¢

0 Policy in the actor network

a

Table 2: List of Symbols



summary

Efficient Port Operations are essential for minimiming delays and ensuring the safe
movement of vessels. Tugboats play a critical role in assisting ships during berthing,
unberthing, and navigating port waters. This thesis uses DRL4Route, a deep rein-
forcement learning (DRL) framework aimed at optimising tugboat routes and pick-up
locations. By using historical towage data and adapting to the dynamic conditions of
the Port of Rotterdam, DRL4Route provides real-time recommendations that stream-
line tugboat operations, reduce delays, and improve safety.

The core of the DRL4Route framework lies in its ability to continuously learn and adapt
to real-world conditions. Unlike traditional static models, DRL4Route leverages spatio-
temporal data to predict optimal tugboat routes. This allows for real-time evaluations
that can help the predicted route match closely with the actual route which helps tug-
boats arrive at the right location at the right times. The framework’s focus on optimising
both pick-up and drop-off points helps port operators avoid inefficiencies that can arise
from poorly coordinated tugboat movements.

By improving the efficiency of tugboat operations, DRL4Route contributes to a more
sustainable and resilient port ecosystem. The system’s adaptability and potential for
real-time decision-making make it a strong candidate for future automation of tugboat
operations. This thesis highlights how advanced machine learning techniques can
enhance the performance of ports like Rotterdam, driving economic benefits and re-
ducing the environmental impact of maritime operations.
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Introduction

Ports play a crucial part in the facilitation of global trade and are responsible for the
transport of approximately 80% of global trade [17] and ensure the safe transship-
ment of goods from ships to land and vice-versa [54]. Recent challenges such as the
COVID-19 pandemic and instability caused by the wars in Ukraine and Palestine have
shaken the industry but it still stands strong with a 2.4% projected increase in trade
in 2023 and a 2% increase annually from 2024 to 2028 [14]. The Port of Rotterdam
is Europe’s largest port and it moves over 438 billion tons in cargo and adds €38.6
billion in annual trade which equates to 3.2% of the Dutch GDP [30]. This volume
of cargo, the breakup of which can be seen in Figure 1.1, shows the importance of
efficient port call optimsation to ensure this massive and intricate machine, that is the
port, functions optimally to facilitate the movement of all the cargo and ships within
it. The planned vessel movements are essential in this system as they balance time,
allocate resources, and ensure safe operations in the port. Optimising port call pro-
cesses are necessary to minimise delays which can occur due to uncertain weather
conditions, dynamic vessel schedules and possible infrastructure limitations.

(Gross weight x 1,000 tonnes) 2023 2022 Difference (number) Difference (%)

Dry bulk cargo 70,642 80,064 -9,422 -11.8%
Liguid bulk cargo 205,627 212,71 -7,144 -3.4%
Total bulk cargo 276,269 292,835 -16,566 -5.7%
Containers 130,162 139,657 -9,495 -6.8%
Break bulk 32,37 34,889 -2,518 -71.2%
Total general cargo 162,533 174,546

Total cargo throughput 438,802 467,381

Total numbers of containers 7,816,755 8,315,417 -498,662 -6.0%
Total TEUs 13,446,709 14,456,313 -1,009,604 -7.0%

Figure 1.1: Throughput in Port of Rotterdam [30]

Figure 1.2 shows the complex coordination required during a ship’s port call and how
the multiple actors in the system collaborate to provide a smooth arrival, berthing, and
departure process. Each coloured line corresponds to a different service provider or
actor involved in the process such as the vessel, port authority, pilot, tugboat, mooring
crew, and terminal. The horizontal timeline shows the key events and stages which
range form the ship’s arrival to the port or anchorage, through berthing and operational
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activities, and finally its departure from the port. Intersections between the lines show
the critical points where the actors have to coordinate carefully with one another such
as the point where the tugboats are used or securing the ship at berth and these events
must be synchronised between different parties. The diagram highlights the need for
real-time data sharing and precise timing to avoid delays, reduce waiting times, and
optimise the overall port call process.

Figure 1.2: Port Call Metro Map [24]

Ships need the tugboats provided by towage companies to safely navigate the narrow
and shallow waters of the ports [18]. The quantity and duration of this assistance is
decided by the pilot who oversees the navigation of the ship [28]. These towage op-
erations are usually handled by private organisations because it has been observed
that this drives more competition and improves the quality of the assistance provided
to the ships.

Tugboat companies like Kotug International BV play a vital role in safe vessel oper-
ating within the port. KOTUG provides several services which include the design-
ing, building, chartering, and operating vessels, training people and also providing
consultancy services worldwide. In the Port of Rotterdam, KOTUG International B.V
offers towing services to ships entering and leaving the harbour. Kotug assigns tug-
boats that assist large sea-going vessels to operate safely within the port and with
berthing and unberthing. Tugboats have been used in this role for decades, with the
first commissioned tugboat dating back to 1842. In a port such as Rotterdam, which
handles approximately 30,000 sea-going vessels annually, tugboats are priceless for
the service they provide. KOTUG is constantly seeking innovative solutions to further
enhance the efficiency of their operations and bring down emissions from their oper-
ations. Their challenge lies in coordinating tugboat movements within the complex
network of activities at the Port of Rotterdam to best service their customers while
keeping operational costs to a minimum.

The Port of Rotterdam does not have the standardised regulations that determine the
location of each vessel. For this reason, tugboats are sometimes connected with tug-
boats in locations that are different from the scheduled locations. Efficiently and safely
scheduling activities for a large number of vessels presents significant challenges and
accurately predicting the locations where vessels are connected to and disconnected
from tugboats is vital for optimising port throughput and enhancing the competitive-
ness of both the port and the company on a global scale.
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Figure 1.3: Tugboats guiding a vessel [20]

The operation of tugboats in the port can be seen as a pick-up and delivery service
problem. It has been observed that the actual routes taken by the pilots often differ
from the best routes that routing tools have predicted [3] [45]. A study that conducted
experiments in the US and Mexico for a large soft drinks company showed that three
out of four deliveries deviated from the planned route [23] [6]. Accurate route predic-
tion can reduce these differences between the predicted and actual routes.

This thesis explores novel methods for optimising KOTUG’s tugboat pick-up optimisa-
tion and route prediction. The core concept DRL4Route is a deep reinforcement learn-
ing framework designed to optimise pick-up locations and route planning. DRL4Route
[8] uses neural networks to learn and adapt to dynamic port environments, offering sig-
nificant potential for improved tugboat efficiency and effectiveness.

Route prediction plays a significant role in improving the efficiency of operations in
a port. Accurate route prediction can allow for superior resource allocation, reduce
operational costs, and improve safety standards by minimising the distance between
the predicted and actual routes. Focusing on tugboat operations, accurate route pre-
diction will enable the safe navigation and berthing of large vessels. Discrepancies
between predicted and actual routes can often lead to increased fuel consumption,
higher emissions, and overall increased inefficiencies.

The method of route prediction used in this thesis is DRL4Route which is a type of
Deep Reinforcement Learning (DRL). DRL is an advanced machine learning method
that combines Deep Learning (DL) and Reinforcement Learning (RL) to generate the
best decisions possible in complex environments [36]. DL uses neural networks with
multiple layers to model, identify, and understand intricate patterns in the given data.
This can be very useful in route prediction as Deep Learning can identify trends in the
data that can facilitate better decision-making for the route prediction. RL trains agents
to perform tasks by evaluating the performance of the system at every time step and
providing feedback based on the evaluation metrics used in the system. This feedback
is given in the form of rewards based on the performance. The goal of the system is
to maximise the overall cumulative reward [21].

Figure 1.4 shows the framework of the DRL4Route method, which comprises an Actor-
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Figure 1.4: Framework of DRL4Route

Critic architecture, which is the reinforcement learning method used. There is an
observation phase where the features are introduced into the model as input which is
then processed by the route prediction agent. This agentis made up of an encoder that
converts the input features into encoded representations and a series of decoder cells
that generate the actual route predictions. The decoder outputs are then compared
against the actual route that is followed to compute the rewards. These rewards, along
with the state information that is passed to a critic network, are used to perform a policy
gradient update which is used to make the route prediction agent learn how the model
works in order to make more accurate predictions through reinforcement learning.

DRL is very useful in dynamic environments and it can learn optimal routing strategies
by observing and interacting with the environment. It is constantly learning which
means that it will only get better the longer it is left in the system. DRL has been shown
to optimise routing strategies by automatically adapting to prevailing traffic conditions
and suggesting routing strategies that can minimise delays in the system [35]. DRL
can be scaled to be useful in large and complex networks. This property of DRL
makes it ideal to be used in environments such as the port of Rotterdam which has a
large number of moving parts and situations which affect the state of the system. The
following case studies have been developed using DRL and show preferable results.

* Trailnet for IP Networks [35]:
Trailnet is a DRL method for routing in IP networks which replaces forwarding ta-
bles with a computational model that is trained using value iteration and stochastic
gradient descent. The function of this model is to estimate the cost of IP packet
forwarding along different ports and selects the best port that minimises the given
cost function. This model showed a very high accuracy and fast interference
times when it was tested on large network topologies.

* SDN Routing Optimisation [36]:
DRL has been used to optimise routing in software-defined networks where it
analyses the traffic conditions and develops strategies that minimise delays and
improves throughput which results in improved performance that outperforms the
traditional optimisation algorithms.

This research aims to develop an improved route prediction method and optimise



pick-up locations and route planning using advanced algorithms and machine learning.
The expected outcomes of this research are increased operational efficiency, reduced
costs and to provide Kotug with the information and methods to navigate the extremely
busy waterways of the port of Rotterdam.

This thesis has the potential to advance the tugboat operations of KOTUG and pave
the way for additional research opportunities. Additionally, the hope is to transform the
current challenges into opportunities and pave the way to a more efficient, sustainable,

and resilient port ecosystem.



Literature Survey

Port call optimisation is critical to advancing maritime logistics, improving the efficiency
and effectiveness of processes involved in managing vessels entering and exiting
ports. As global trade volumes increase, ports like Rotterdam are tasked with han-
dling a growing number of ships, making it crucial to optimise operations such as
berth allocation, tugboat scheduling, route prediction, and fleet management. This
section reviews recent port call optimisation advancements, focusing on pick-up and
route prediction methodologies that could benefit tugboat operations at the Port of
Rotterdam. The review categorises relevant studies into different thematic areas and
highlights their contributions and relevance to the study.

Category Paper References

Berth Allocation, | Rodrigues and Agra [33], Conca et al. [5], Hendriks
Scheduling, and Port | et al. [13],Gharehgozli et al.[10],Zhen et al.[53]
Infrastructure

Wang et al. [42], Cho et al. [4], Yang et al. [16],
Du et al. [7], Mao et al. [25], DeepRoute+, Qian
[32], Wen [45], FDNet [8], Graph2Route Wen [44],
OSquare Zhang [52], Wu et al.[48]

Route Prediction and
Optimisation

Fleet Management and
Operational Efficiency

Wu et al. [47], Li et al. [22], Rodrigues and Agra [33],
Merkel et al. [26], Poulsen and Sampson [31]

Tugboat Scheduling

Wang et al. [41], Wei et al. [43], Wang et al. [39],

Wang et al.[40], Yao et al.[49], Yu.[50]

Table 2.1: Categorisation of Papers in Port Call Optimisation

Table 2.1 highlights the various papers consulted for this study, organising them into
categories relevant to port call optimisation. The table helps illustrate how different
aspects of port operations can contribute to optimising processes, particularly con-
cerning the scheduling and allocation of resources in ports.

Berth Allocation, Scheduling, and Port Infrastructure

The optimisation of berth allocation, scheduling, and port infrastructure is a crucial
component of port call optimisation. Berth allocation plays a vital role in ensuring that
ships can dock efficiently and with minimal delays and disruptions.

Rodrigues and Agra [33] investigate berth allocation and quay crane scheduling under
uncertainty, which are essential components of port call optimisation. Their research
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addresses how uncertainty in ship arrival times can complicate the planning process,
and proposes strategies for mitigating the impact of such uncertainties. By optimising
berth allocation, the port can increase throughput and reduce waiting times for incom-
ing vessels, which directly improves the overall efficiency of port operations. Conca
et al. [5] explore real-time data sharing and automation in port call processes, which
could significantly enhance tugboat operations. By using real-time data from various
sources—such as vessel tracking systems and automated terminal systems—port au-
thorities can make informed decisions on the scheduling of tugboats, cranes, and other
port resources. This timely exchange of information between different stakeholders
(e.g., shipping companies, terminal operators, and tugboat service providers) can lead
to more coordinated operations, reducing delays and increasing the efficiency of the
entire process. Hendriks et al. [13] delve into strategic investments in port infrastruc-
ture, which are critical for the long-term sustainability of ports. Their work suggests
that optimising infrastructure investments, such as expanding berths or modernising
equipment, can have a significant impact on reducing bottlenecks and enhancing oper-
ational efficiency. This is particularly relevant to ports like Rotterdam, which handle a
large volume of container traffic and require constant upgrading to meet the demands
of modern shipping. Gharehgozli et al. [10] and Zhen et al. [53] further contribute to
this field by examining the integration of sea and land-side operations. Their studies
highlight the importance of synchronising port infrastructure with hinterland logistics,
ensuring that goods can be efficiently moved in and out of ports. This synchronisation
is crucial in reducing congestion, minimising idle times for vessels, and streamlining
the overall port call process.

Route Prediction and Optimisation

Route prediction and optimisation are central to improving the efficiency of maritime
logistics, particularly in dynamic environments like the Port of Rotterdam, where mul-
tiple ships, trucks, and tugboats must operate in tandem. Advances in this area can
significantly reduce waiting times and improve the allocation of resources such as
tugboats, which are essential for guiding large vessels through narrow port channels.

Wang et al. [42], Cho et al. [4], and Yang et al. [16] explore optimisation models for
liner container shipping routes, offering insights into how network design and schedul-
ing decisions can affect overall efficiency. These models, although focused on large
container shipping, provide valuable methodologies that could be adapted for tugboat
route optimisation, particularly in complex, congested ports. Du et al. [7] propose
a machine learning-based approach for liner shipping schedule design, which inte-
grates predictive models for traffic patterns and port congestion. This approach could
be adapted for predicting tugboat movements within ports, offering a way to antici-
pate delays and optimise the allocation of tugboat resources based on real-time con-
ditions. One of the key papers in this area is by Mao et al. [25], which presents a
deep reinforcement learning framework, DRL4Route, tailored specifically for pick-up
and delivery route prediction. This framework has significant relevance to optimising
tugboat routes in dynamic environments like the Port of Rotterdam. DRL4Route offers
a flexible approach to route optimisation, allowing for real-time adaptation to chang-
ing conditions, such as varying weather patterns or fluctuating traffic within the port.
The reinforcement learning aspect also enables the system to learn from previous deci-
sions, progressively improving the accuracy and efficiency of tugboat route predictions
over time. The DeepRoute+ model discussed by Wen [45] takes a similar approach



but applies it to the courier industry. This deep neural network model is designed to
predict courier pick-up routes by taking into account spatial-temporal constraints and
individual courier decision preferences. The model can be adapted to maritime logis-
tics, particularly in predicting tugboat movements, by considering constraints such as
ship arrival times, tide conditions, and tugboat availability. The model’s ability to adapt
to individual preferences (in this case, the decision-making preferences of tugboat op-
erators) adds an extra layer of flexibility to its application in real-world scenarios. Qian
[32] offers Basic Time Greedy and Basic Distance Greedy models, which provide a
simple yet effective method for route optimisation by focusing on minimising time and
distance, respectively. These models can be applied to tugboat route planning by en-
suring that tugboats follow the shortest or quickest routes, depending on the specific
goals of the operation (e.g., minimising fuel consumption or maximising the number
of completed tasks). FDNet [8] is another deep learning model that leverages spatio-
temporal features for route prediction. Similar to DeepRoute+, it uses dynamic data
to predict routes, offering potential applications for scheduling and optimising tugboat
operations. Graph2Route, proposed by Wen [44], builds on this by using dynamic
spatio-temporal graphs, which could be especially useful in ports where conditions
change frequently, such as Rotterdam. By utilising these graphs, port authorities can
predict the most efficient routes for tugboats, even in the face of unpredictable factors
like weather or ship traffic. OSquare, developed by Zhang [52], uses machine learning
techniques, specifically XGBoost, to optimise routes. The system has been applied to
instant delivery services, but its core principles—such as learning from previous route
decisions and adjusting dynamically—could be adapted for use in tugboat scheduling
and route optimisation. OSquare’s ability to predict route efficiency based on real-time
data inputs makes it an attractive option for complex logistical environments like ports.

Fleet Management and Operational Efficiency

Fleet management and operational efficiency are key areas of focus in port call opti-
misation, as ports must manage large numbers of vessels and ensure that resources
are allocated effectively.

Wu et al. [47] present a comprehensive study on fleet deployment, refueling strate-
gies, and speed optimisation within liner shipping networks. The paper emphasises
reliability and travel time efficiency, both of which are critical for effective port opera-
tions. Their methodology could be adapted to manage the tugboat fleets in large ports
like Rotterdam, ensuring that resources are deployed in a way that minimises delays
and maximises fuel efficiency. Li et al. [22] focus on the optimisation of fuel consump-
tion and cost reduction for tugboats. The paper uses predictive models to determine
engine power requirements, which could directly impact the operational efficiency of
tugboats in the Port of Rotterdam. By optimising fuel consumption, the port could
not only reduce operational costs but also contribute to environmental sustainability
by cutting down on emissions. Merkel et al. [26] and Poulsen and Sampson [31] ex-
plore the connection between port call optimisation and greenhouse gas emissions.
As environmental regulations become stricter, ports are under increasing pressure to
reduce their carbon footprint. Optimising fleet management and scheduling can play
a significant role in this effort, as more efficient operations lead to reduced fuel con-
sumption and emissions. Rodrigues and Agra [33] again come into play here, as their
work on berth allocation and crane scheduling under uncertainty directly impacts fleet
management. By ensuring that ships are allocated berths efficiently and that cranes



are deployed at the right time, ports can improve the overall flow of goods and reduce
idle times for both ships and tugboats.

Tugboat Scheduling

Tugboat scheduling is a critical part of port operations, as tugboats are essential for
guiding large vessels through crowded and often narrow waterways. Efficient schedul-
ing of tugboats ensures that vessels can enter and exit ports without unnecessary
delays, contributing to overall port efficiency.

Yao et al. [49] propose an Improved Grey Wolf Optimisation (IGWOQO) algorithm for solv-
ing multi-objective tugboat scheduling problems. The model considers several key ob-
jectives, including tugboat operational time, fuel consumption, and efficiency, making it
particularly suited for large, busy ports like Rotterdam. The IGWO algorithm improves
upon previous optimisation techniques by introducing enhanced convergence param-
eters, allowing for more accurate solutions to complex scheduling problems. Yu [50]
focuses on the development of a mixed-integer linear programming (MILP) model for
tugboat scheduling, with a case study centered on Singapore Port. The MILP model
aims to minimise processing costs by optimising the allocation of tugboats to incom-
ing vessels. The model’s application to a real-world scenario like Singapore, one of
the busiest ports in the world, demonstrates its effectiveness in managing congested
port environments. This model could be adapted for use in Rotterdam, where simi-
lar challenges are faced. Other works, such as those by Wang et al. [41] and Wei
et al. [43], also address the tugboat scheduling problem, though they focus more
on optimising individual components of the scheduling process, such as minimising
tugboat idle times or maximising operational efficiency. While these studies provide
useful insights, they do not fully address the predictive route optimisation approach
emphasised in this study.

The reviewed papers offer a deep understanding of the field of port call optimisa-
tion, with specific focus on pick-up and route prediction methodologies that can en-
hance tugboat operations. As ports like Rotterdam continue to grow, the need for
efficient scheduling and route prediction becomes increasingly important. The stud-
ies reviewed here showcase the potential of modern machine learning techniques,
optimisation algorithms, and predictive models to transform how ports manage their
resources, reduce costs, and improve overall efficiency.

By integrating insights from these studies—such as predictive models for route opti-
misation and multi-objective scheduling algorithms—port authorities can significantly
enhance the operational efficiency of tugboats, leading to faster turnaround times,
lower fuel consumption, and reduced emissions. The applicability of these models to
real-world scenarios, such as the Port of Rotterdam, highlights the importance of con-
tinued research and development in this area, as well as the potential for significant
improvements in the way ports manage their operations.

2.0.1. Research Proposal

Based on the literature survey and the data available from Kotug, this thesis works
to answer the question "How can historic tugboat towage data be used to optimise
pick-up locations for tugboats and predict their routing within the Port of Rotterdam?”
This question can be split into two parts:

Routing Prediction:
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» How can historical tugboat towage data be used to develop accurate and reliable
routing prediction models?

» What predictive models or algorithms can be developed to forecast tugboat rout-
ing from identified pick-up locations?

Verification and Validation:

* What metrics and criteria should be used to evaluate the effectiveness and effi-
ciency of the proposed models?

* How do the proposed models compare to current practices regarding operational
performance?



Problem Definition

The towage process within the Port of Rotterdam is essential for ensuring the safe and
efficient movement of vessels, which involves three key types of movements: berthing,
unberthing, and shifting. This research focuses on the first two movements, berthing,
and unberthing, which are critical for maintaining the smooth operations of the port.
Towage plays a central role in these processes, as vessels, especially larger ones with
significant propulsion requirements, often need assistance from tugboats to navigate
safely within the port due to water depth limitations and geometric constraints of berths.
Additionally, environmental factors and potential interactions with other vessels require
precise control over speed and course which underlines the importance of tugboat
assistance to prevent accidents or collisions.

The current methods for assigning the route of the tugboats depend on human ex-
pertise to understand the optimal route. The Vehicle Routing Program optimises the
system before the pick-up and delivery processes but lacks the flexibility for real-time
adjustments. These programs assume static conditions and may not adapt well to
real-time changes in the environment such as vessel breakdowns or last-minute deliv-
ery change requests. These issues can make it challenging for the system to work in
environments with spontaneous changes in work conditions [12] [19]. The complexity
of the system also plays a major role in the overall process and as the complexity of
the system increases, a lot of VRP algorithms can lose their effectiveness drastically
which could lead to delays and increased costs [51].

The towage process starts well before a vessel arrives at the port. The vessel informs
the Harbour Master 24 hours in advance, after which the pilot and tugboats are sched-
uled based on the vessel’'s size and operational needs. Six hours before reaching
the pilot boarding point, the piloting organisation, in this case KOTUG, is alerted of
the ship’s expected arrival. Then, at 2.5 hours before reaching this location, the pilot
is officially scheduled and requested. At this stage, a berth availability check is con-
ducted. If no berth is available, the ship must anchor outside the port, and the pilot
service is canceled, which can be done without penalty up to one hour before the ship
reaches the boarding location. Once a berth is allocated by the terminal, the ship is
cleared to proceed, and if necessary, the pilot is rescheduled and boards the vessel at
the designated location. Once both the tugboats and pilot are ready, the mooring pro-
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Figure 3.1: Tugboat pick-up process

cess begins, allowing the terminal to start its operations and marking the conclusion
of the berthing process [38]. However, predicting the exact locations where vessels
should connect with or be released from tugboats remains a challenge despite exten-
sive scheduling. KOTUG is one of the companies responsible for managing these
tugboat operations and it uses a scheduling tool called Kotug Optiport that predicts
pick-up and drop-off locations. However, discrepancies between predicted and ac-
tual towage locations frequently occur as these locations are ultimately determined
by pilots based on real-time conditions. This misalignment can lead to inefficiencies
such as delays, increased fuel consumption, and suboptimal resource utilisation. The
towage process can be observed in Figure 3.1

The core problem lies in the difficulty of precisely predicting these connection/discon-
nection locations in advance. The dynamic nature of the port environment, coupled
with the varying sizes and navigation capabilities of vessels, makes it challenging to
allocate tugboat resources efficiently. These prediction errors can result in significant
operational issues, including increased waiting times, delays in terminal operations,
and reduced overall port efficiency. From an economic standpoint, these inefficien-
cies translate into higher operational costs and lower profitability for both KOTUG and
the Port of Rotterdam.

Given these challenges, there is a pressing need for more accurate and dynamic
predictive models to optimise the scheduling and routing of tugboats. These models
should be able to predict connection and disconnection points more reliably, using his-
torical towage data and incorporating real-time adjustments to mitigate the inherent
uncertainties of port operations. By mimicking the decision-making strategies of ex-
perienced pilots and dynamically adjusting to new tasks or conditions, these models
would pave the way for automated and more efficient tugboat operations.

The research proposed in this study centers around developing a predictive model,
DRL4Route, which leverages Deep Reinforcement Learning (DRL) techniques to out-
perform existing baseline methods for route prediction. This model aims to offer real-
time flexibility, improve the precision of pick-up/drop-off location predictions, and op-
timise tugboat usage. By improving the accuracy of these predictions, the model will
not only enhance the efficiency of towage services but also contribute to reducing de-
lays, lowering operational costs, and improving the overall economic performance of
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the Port of Rotterdam.

The goal of this research is to address the challenges in predicting towage locations
and optimising tugboat schedules through the integration of advanced machine learn-
ing techniques. This solution seeks to improve operational efficiency, ensure the
safety of vessels and infrastructure, and drive economic benefits for both the tugboat
operators and the port as a whole.



Methodology

This thesis tests the effectiveness of different route prediction techniques for tugboats
in the port of Rotterdam. This process involved looking at various methods of route
prediction and evaluating the best possible method to adopt for this model. The follow-
ing models have been evaluated for this thesis: Basic Time Greedy model[32], Basic
Distance Greedy [32] model, Deeproute [45], FDNet [8], Graph2route [44], OSquare
[52], and DRL4Route [25]. The roles involved in the pickup and dropoff of the ships
can be seen as the ship giving the information that it has arrived at the port or is ready
to depart, the tugboats picking the ships, and the tugboat finishing the task assigned
to it. This project is focused on predicting the route of the tugboat given its unfinished
tasks. These unfinished tasks can be defined as shown in Equation 4.1 where n is
the number of unfinished tasks at the query time, o; is the i-th task associated with

0¥ ={o;|i=1,...,n} 4.1)

These unfinished tasks can be mixed and matched to produce an order of unfin-
ished tasks. This order is called a service route as shown in Equation 4.2 where

yj € {1,...,n}, and if j # j' then y; # y;.

Y= 1, -, Yn) (4.2)

Finally, there are route constraints that are used to ensure real-world conditions such
as the agents in the system need to conduct pick-ups before the delivery process [8]
and capacity constraints which in this case is 1 because a tugboat can only service one
ship at a time. These constraints can be represented by C. The problem statement of
this model which is to predict the tugboat driver’s (w) decisions of the unfinished task
set O™ which abides by all the route constraints C. Equation 4.3which

Fo(O") = (91,02, - -+ Um) (4.3)

4.1. Data and Preprocessing

The data used for this thesis has been provided by KOTUG. This data shows the ves-
sels and tugboat operations between the 31st of May 2022 and the 31st of May, 2023.
As this thesis focuses on the route prediction of tugboats, the dataset containing the

14
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data of all the tugboat operations is looked at. The original dataset is provided in Ex-
cel format and includes extensive records of the tugboat movements in this timeframe.
The dataset contains 42,232 entries across 15 columns which include both numerical
and categorical data that correspond to tugboat movements. The data preprocess-
ing steps are aimed at cleaning the data, handling missing values, and preparing it
for further analysis. The first step involves handling missing values. The data that
corresponds to the Berth locations have 20,729 missing entries in the column "From
Berth” and 16,336 missing entries in the "To Berth column. Also, the "From Haven”
column has 20,807 missing entries and the "To Haven” column has 16,491 missing
entries. These missing entries have been filled with a placeholder text "Unkown” to
retain the record without losing any information. Furthermore, the columns containing
the dates in the original dataset are converted to a standard "datetime” format that
allows for time-based operations to be performed using the dates. This conversion
is essential for calculating the duration of operations and analysing the time trends in
the system. The columns containing the geographical locations of the tugboats "From
Location ”,”From Location Y”, "To Location X”, and "To Location Y” were checked for
consistency and standardisation so that these could be used for the route prediction
problem. These were found to be correctly formatted floating-point numbers and did
not require and additional standardisation. These were the preprocessing operations
conducted to ensure that the dataset contained no missing values, and for all the
columns to contains standarised data. This prepared the dataset for the subsequent
route prediction problem.

4.2. Encoder-Decoder Architecture

The Encoder-Decoder architecture [29] is a popular framework used in several ma-
chine learning applications. This framework can handle route prediction tasks for tug-
boats in the Port of Rotterdam. The Encoder-Decoder architecture is adept at handling
sequence-to-sequence tasks, making it ideal for handling tasks in the route prediction
field.

The model is split into the Encoder and the Decoder components. The Encoder pro-
cesses the historical route data and current state of the tugboats and places this
data into a fixed-size context vector. This context vector understands the state of
the system input based on the recent trajectory and operational context. The Encoder
consists of layers that handle sequential data such as the Long Short-Term Memory
(LSTM), Grated Recurrent Units (GRU), and Transformers. The Encoder input is usu-
ally the past locations of the tugboat and possibly additional features such as times-
tamps, speeds, and headings of the tugboat. With each iteration of the sequence, the
Encoder updates its internal state and, finally, generates a context vector that contains
all the necessary information for accurate route prediction.

After the Encoder process, the Decoder then uses the context vector to generate the
future routes of the tugboat. It uses the current state of the system and the context
vector to predict the future steps in a step-by-step process. The Decoder is similar to
the Encoder in structure and has layers such as LSTM, GRU or Transformers. This
iterative process continues until the entire route is generated.

To use the Encoder-Decoder architecture for route prediction models, the data needs
to be prepared. Historical route data with timestamps, GPS coordinates and other



4.3. DeepRoute 16

relevant features must be collected and preprocessed. This preprocessing ensures
that the data is a suitable input. The next step is the training of the model. The
data is split into testing, training, and validation sets. The architecture of the Encoder-
Decoder is defined using the necessary layers and parameters. The model is trained
by feeding it historical data and using a learning rate to improve the training efficiency.

The model is then evaluated to check the parameters and avoid overfitting. This pro-
cess involves validation to check the performance and make adjustments. Finally, the
model is tested again with some test data to evaluate the prediction model with the
existing model using several metrics discussed later.

The Encoder-Decoder architecture has numerous advantages for route prediction.
The architecture allows the system to use various features apart from just location
such as speed, direction, weather, and port traffic. The ability to handle sequential
data makes it very good at tasks where past locations influence future movements.
The scalability of this architecture allows it to handle large datasets and complex pre-
diction tasks.

4.3. DeepRoute

DeepRoute is an advanced neural network model that is used to predict package
pick-up routes of couriers by analysing the information gathered from their spacio-
temporal behaviours. This model is exceptional for optimisation of logistics operations,
efficient package dispatching, accurate arrival-time estimations, and risk management
of delivery delays. There are several layers which together make up Deeproute.

4.3.1. Spatio-Temporal Encoder

This Encoder, also called the Transformer Encoder, is a component of DeepRoute
that processes and encodes the spacio-temporal features of the data provided. It
uses a multi-head attention mechanism to capture complex dependencies within the
input data. The multi-head attention ensures that the model simultaneously focuses
on various sections of the sequence. This property of the Encoder helps the system
detect and learn numerous patterns. The encoder consists of sequentially structured
linear and multi-head to process input features. Input data is passed through these
layers in the forward pass. The attention mechanisms assist in understanding the
importance of the different parts in the sequence. The encoder output is a set of
context vectors that show the spacio-temporal information of the couriers.

4.3.2. Decoder with Attention Mechanism

The role of the Decoder is to use the LSTM cells and attention mechanisms to gener-
ate the predicted sequence of locations. Its main task is to use the encoded context
vectors to provide a sequence of actions. The attention mechanism within the decoder
makes the model focus on relevant parts of the context vectors during each decod-
ing step. The decoder is initialised with LSTM cells, attention modules, and softmax
layers. The decoder makes use of a recurrence function to update the hidden states
and generates the predictions at each step. This recurrence function works with the
attention mechanism to simultaneously focus on sections of the context vector.
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4.3.3. Route Prediction and Masking Techniques

DeepRoute uses masking techniques to handle route constraints and for the predicted
routes. These techniques are used to make the model adhere to the spatial and tem-
poral constraints of the environment. Some of these constraints are time constraints
and geographical barriers which these masking techniques can account for. The re-
currence function in the decoder updated the masks based on the previous predictions.
This means the model does not allow the courier to visit previous locations.

4.3.4. Mathematical Model
Attention Mechanism:

The attention mechanism of the DeepRoute model for the tugboat route prediction cal-
culates a weighted sum of encoder outputs based on the relation between the current
decoder hidden state and ecnoder outputs.

Wauery @and Wyer are weight matrices, v is a parameter vector, h; is the hidden state of
the decoder at time step ¢, and h; is the hidden state of the encoder at time step ;.
This equation makes the model focus on all parts of the input sequence.

This process involved the analysis of a dataset containing information about the tug-
boat operations with values such as the tugboat ID (IMO and MMSI), its current and
required locations (with coordinates), the berths, havens, and names of these loca-
tions. This dataset contains the following columns: IMO, MMSI, Name, From, To,
From Location X, From Location Y, To Location X, To Location Y, From Berth, To
Berth, From Haven, To Haven, From Location Name, and To Location Name. These
values provide the necessary information of tugboat’s movements required for the
route prediction process.

Multi-Head Attention:

This module gives the system the ability to run through the attention mechanism sev-
eral times in parallel. This is defined Equation 4.5 where each head is given by Equa-
tion 4.6. These equations allow the system to go through various sequences parallelly
in the input data.

MultiHead(Q, K, V) = Concat(head, ..., head,)IW° (4.5)

head; = Attention(QW<, KWX vivY) (4.6)

In the codebase, the DeepRoute class uses the encoder and decoder to predict the
tugboat routes. The enc_sort_em function encodes the input features and prepares
the initial states for the decoder. It generates attention masks and processes the input
through the transformer encoder, resulting in the decoder’s context vectors and initial
hidden states.
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The input data 'V’ and reachability masks V_reach_mask are processed to generate
the predicted routes in the forward pass. The decoder iterates through the generated
sequence to update its states and makes predictions at each step. The outputs are the
log probabilities and the selected routes which result in the prediction of the tugboat’s
path.

4.4. FDNet

Feauture-based Dynamic Network (FDNet) is a neural network model designed to
predict package pickup routes by using spacio-temporal features. This model works
to optimise logistics operations by accurately forecasting the sequence of locations a
tugboat will visit. FDNet uses techniques like LSTM encoders, attention mechanisms,
and multi-layer perceptors to find a solution.

The architecture of FDNet is given below:

* spacio-temporal Encoder: The LSTM encoder within FDNet processes spacio-
temporal input features and converts these into a fixed-size representation. The
encoder uses a bidirectional LSTM to understand forward and backward depen-
dencies in the input sequence.

* Decoder with Attention Mechanism: The Decoder generates the predicted se-
quence of locations based on the encoded input features. An LSTM cell with
attention mechanisms is used to find the important parts of the input sequence at
each step. The decoder can operate in different modes such as greedy search
and beam search to generate varied predictions.

» Time Prediction Module: The Time Prediction module predicts the time duration
between tugboat stops. It combines feature embeddings, factorisation machines,
and multi-layer perceptors to estimate the time required per section of the route.
This module performs the temporal aspect tasks of the route prediction.

* Feature Update Mechanisms: FDNet has mechanisms for updating features based
on the current state. The tp_update features’ and ’'rp_update features’ functions
regularly update the input features at each step for accurate predicitions.

4.4.1. Mathematical Model
FDNet uses complex formulae which make it an adept model for route predictions.

Attention Mechanism:
The terms used in the given equations are:

* Wauery is @ weight matrix for the query.

* Conv1D is a 1D convolution applied to the reference.

* v is a parameter vector.

* ()’ and R’ are the projected query and reference vectors, respectively.

» C'is a scaling factor.

* h; are the hidden states of the input sequence.

+ tanh is a hyperbolic tangent function that maps real numbers in the range -1 to 1.
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Query and Reference Projections:
Q/ - uneryQ (4-7)
R’ = Conv1D(R) (4.8)

Equation Equation 4.7 multiplies the query vector with the weight matrix and Equa-
tion 4.8 is used to convert the reference matrix using a 1D convolution.

Compatibility Scores:
U =v"tanh(Q' + R) (4.9)

Logits Calculation:

logits — C - tanh(U) if use_’fanh is True (4.10)
otherwise
Attention Weights:
a = softmax(logits) (4.11)
Context Vector:
c=Y b (4.12)

LSTM Encoder:
The LSTM encoder processes input sequences and generates hidden and cell states:

LSTM Equations:

fr =Wy [he—1, 2] + by) (4.13)
iy = o (Wi - [hy_1, 4] + by) (4.14)
¢ = tanh(W, - [hy_1, ) + b,) (4.15)
= frxci_1+ i %G (4.16)

op = oWy - [h—1, 2] + bo) (4.17)
hi = o * tanh(c;) (4.18)

o is the sigmoid function, and x denotes element-wise multiplication. The LSTM uses
gates (forget gate, input gate, output gate) to control the flow of information and update
its cell and hidden state.

After this step, Recurrence mechanism is used to update the hidden states and calcu-
late the logits for the next steps. This involves the use of a Beam search which is a
way to hold onto the best solution after each iteration. Following this step, a masking
mechanism filters out the unusable sequences. The system then uses the final data
and initialises the embedding dimensions, hidden state dimensions and other param-
eters for a complete end-to-end learning structure. Recurrence Mechanism:

The recurrence mechanism updates the hidden states and calculates logits for the
next steps:

The FDNet class uses the encoder, decoder and time prediction modules for route
prediction. The input is passed through the encoder to gain the context vectors in
the forward pass. The decoder then generates a predicted route for the tugboats from
these context vectors. The time prediction module predicts the duration between each
successive stop of the predicted route. Using these methods, FDNet can be used
successfully for route prediction purposes.
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4.5. Graph2Route

Graph2Route is a dynamic spacio-temporal graph neural network developed to predict
pick-up and delivery routes. It optimises the prediction accuracy by using the graph
structure of tasks along with the spacio-temporal features. Graph2Route solves the
problems by looking at the tasks as graphs. This method allows it to identify different
tasks over time and space and, therefore, gives it a better grasp of the route prediction
problem.

4.5.1. Graph2Route Architecture

Graph2Route uses a spacio-temporal graph method to look at the tasks and these
tasks are represented as nodes in the graph. The edges between the tasks show
their relation to one another. The features of the nodes can be the coordinates, ar-
rival time, or other such relevant information and the edges between two nodes can
show the distance between them. An important feature of this model is the ST-Graph
Encoder. The Spatial-Correlation Encoding component uses a Graph Convolutional
Network (GCN) to update node and edge embeddings based on their interactions.
The Temporal Correlations Encoding component uses a Grated Recurrent Unit (GRU)
to model the evolution of decision contexts over time. Grpah2Route uses a Graph-
Based Personalised Route Decoder to predict future routes. This Decoder uses the
worker-specific information and the graph structure to predict routes. An attention
mechanism looks at the relevant parts of the graph during the decoding process and
then a mask mechanism is used to filter the infeasible nodes which saves memory
and improves prediction accuracy.
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Figure 4.1: Graph2Route architecture

Figure 4.1 shows the architecture of the Graph2Route model which uses a Dynamic
Spatio-Temporal(ST) Graph Encoder. This model processes tasks using a series of
steps which start with the spatial correlation encoding and node embedding to capture
spatial relationships of the tugboats represented in the data. The output is further pro-
cessed by temporal correlation encoding to understand the temporal dependencies
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depicted in the data. This encoded data is fed into a graph-based personalised route
decoder that uses a mask mechanism to only focus on relevant nodes and a person-
alised node decoding process to generate the final route predictions. This approach
allows for this route prediction model to adapt to different input scenarios and person-
alized the route predictions that reflect the individual factors of the specific tugboats.

4.5.2. Mathematical Model

The Graph2Route model uses a GCN for node and edge embeddings, GRU for tempo-
ral encoding, and an attention-based decoder for routing decisions. The mathematical
model involves matrix multiplications, non-linear activations, softmax operations, and
LSTM updates.

The future service routes of the tugboat is represented by Equation 4.19 where r;
represents the i-th node in the predicted route.

Fc(th) :7T1,7TQ7...,7T|VUt| (419)

The Dynamic ST-Graph Encoder uses the node and edge embeddings at each time
step using two encoding modules:

 Spatial-Correlation Encoding: A GCN is used to capture the spatial-temporal cor-
relations between the different nodes using both node and edge features to learn
more about the system It updates dj,-dimensional node and edge embeddings
across L layers. Let h be the embedding of node i at layer [, and z ) be the
edge embedding at Iayerl Initial embeddings are h{ = x; and zm = €.

RFY = (hg”,Agg ({hg.”, Wije Ni})> (4.20)

A = g (=) Agg (1. 0"})) (4.21)

N; is the set of neighbors of node i, Agg is the aggregation function, and f and ¢
are defined by:

B =2+ o BNIWRY + > ) o Wiy

JEN;

At =20 4 BN 2 + whY + WD)

v

» Temporal Correlation Ecnoding: An RNN studies the decision context and uses
the historical information to embed these features for the decoder. At each time
step t, the encoder takes the graph G,; and previous node embeddings H; ; as
input, producing updated embeddings H;.

H, = GRU(G\y, H,_1) (4.22)

The Decoding process uses the chain rule to find conditional probabilities of the pos-
sible actions it can take and then chooses the action with the highest probability as
shown in Equation 4.23 [9], where s is the problem instance, and 6 represents all
trainable parameters. f(s,6.) is the dynamic graph encoder, and 6, is the trainable
parameter of the decoder.
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n n

p(m | s;0) = Hp(ﬂ'j | 8,11, w;0) = Hp(ﬂ'j | f(s,60.),m1.j-1,w; 64) (4.23)

j=1 j=1

The decoding process generates the probabilities of the feasible locations that the
tugboat can visit next. This can be seen as a multi-class classification problem and the
cross-entropy loss function is used to calculate the loss of the model in Equation 4.24
where W is the set of workers, T is the set of the total sampling time steps, y; is the
order of task ¢ in the label of that sample, and p(y; | -) is the predicted probability of
task i predicted by the model.

L==Y > wlogpy: | 0)) (4.24)

weW teT iem:t!

GraphZroute also uses an Osquare algorithm that predicts the routes by initialising an
empty route m and padding the already outputted locations to avoid repeating locations.
Then the features of the locations are concatenated and LightGBM is used for the
prediction. The task with the highest score that has not yet been outputted is selected
as the next location and is then appended to the route. A mask mechanism is used
to avoid predictions not satisfying the system’s constraints.

4.5.3. Advantages of Graph2Route

Graph2Route improves the accuracy of predictions as it is able to fully encode the
spacio-temporal correlations between tasks. The model uses GCNs and GRUs that
allow it to look at current and historical decision decisions.

This method also reduces the search space needed using the mask mechanism. This
feature excludes the infeasible nodes during decoding, filters out unreasonable routes
and improves prediction quality. This exclusion feature ensures that the predictions
are more accurate.

Graph2Route also adapts to the newest tasks by updating the graph and embeddings.
This is very useful in real-world scenarios where tasks are added continuously and the
predictions are changed dynamically. These characteristics of Graph2Route make it
a very powerful method for route prediction.

4.6. Greedy Methods

The Greedy methods can be split into two different methods. Time Greedy and Dis-
tance Greedy.

4.6.1. Time Greedy Method
This method aims to minimise the time required to complete all the tasks assigned to
a tugboat. It selects the route with the shortest time between nodes.

The key components of this method are:

* Initialisation:
T is defined as the time vector, and 7 represents the time to reach node j. M is
defined as the mask vector. This is used to track the visited nodes. P is defined
as the path vector which stores the list of the visited nodes.
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* |terations:
At each time step t:

j =arg mkin{Tk | M), =0} (4.25)

Mark node j as visited and added to the path. M, = 1 and P, = j and update
current node to j.

* Termination:
The process repeats until all nodes are visited.

4.6.2. Distance Greedy Method
The distance greedy method is used to find out the shortest path for the solution in
terms of distance. The key components of this method are:

* Initialisation:
D is defined as the distance matrix where D, is the distance between noides i
and j. M and P are the mask vector and path vectors respectively. M tracks the
visited nodes and P stores the order of the visited nodes.

* |terations:
At each time step t: Select the unvisited node j that minimises the distance from
current node i.
j=arg mkin{Dik | My, =0} (4.26)

Mark node j as visited and added to the path. A/; = 1 and P, = j and update the
current node to j.

* Termination:
The process repeats until all nodes are visited.

These models are a simple route optimisation method by making locally optimal choices
at each step on the time or distance metrics.

47. DRL4Route

Deep Reinforcement Learning (DRL) is an advanced machine learning method that
uses both Reinforcement Learning (RL) and Deep Learning. The agents’ objective in
this method is to learn the optimal actions for the Route Prediction problem using a
trial and error system. The model DRL4Route [25] uses the deep learning models as
agents and the test criteria as the reward in reinforcement learning.

Reinforcement-Guided Route Prediction

Route Prediction can be seen as a step-by-step learning process where each step
on the route influences future decisions. A discrete finite-horizon Markov Decision
Process (MDP) [2] can be used to represent this decision-making process shown in
Equation 4.27, where S is the set of states, A is the set of actions, P : Sx Ax S — R"
is the transition probability, R : S x A — R is the reward function, s, : S — R* is
the initial state distribution, v € [0, 1] is a discount factor, and T' is the total time steps
determined by the number of unfinished tasks.
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M= (S,A PR, sy, T) (4.27)

The action that a route prediction agent makes is shown as 6. This action has a reward
r, associated with it based on how it performs under the evaluation metric being used.
The objective of this training is to maximise the total reward of the tasks which is seen
in Equation 4.28. ~ is the discount factor that balances the importance of immediate

vs future rewards. .
> fm] (4.28)

t=1

*
0" = arg max Er,

At this stage, the route prediction agent uses an encoder-decoder architecture. The
encoder is used to compute the representations E for unfinished tasks and the De-
coder predicts the route Y step-by-step based on the embeddings, E and previous
outputs as shown in Equation 4.30. h, is the hidden state of the decoder, o, is the
output probability distribution at the t-th decoding step, and C is the route constraints.

E = Encoder(O,,) (4.29)

o1, hiyr = DecoderCell(E, C, by, Yi.y_1) (4.30)

The state of the system shows the condition of the system at the t-th decoding step of
an agent which considers all the factors that make up the system and all the informa-
tion an agent of the system has to make the decisions at each time step as shown in
Equation 4.31 R

si = (E,C hy, Yi41) (4.31)

An action involves selecting a task ¢, from the current unfinished tasks based on the
current state of the system. A set of actions (a,...,a, € A= A; x... X A,). Basedon
the actions taken by the agent, a reward is given to the agent based on the evaluation
metric used to judge the action which can be seen in chapter 5. The goal of DRL is to
gain the maximum cumulative reward at the end of the route prediction.

The system described above evaluates the state of the system at every time step and
determines an action from the policy 7,. Depending on the output of the agent’s action
at time 't’, it receives a reward 'r, .

Lo, = =B, [r(f1, -+ 1 Gn)] (4.32)
where 7, -+, §, ~ my,, and they are sampled from the policy m4,. (91, -+ ,9,) is the
reward associated with the predicted route 74, - - - , 7,. Equation 4.32 along with the N

sampled routes from the agent’s policy my becomes the following function for loss Ly,.

N
1 X X X X
Volo. =~ > Vo, logmo, (Gi1, -+ s Gim) 7 (Fis - 5 Gin)] (4.33)
=1

Equation 4.33 is based on an algorithm called Reinforce from [46]. However, this
model would have to run its full course of action to observe the reward, which could
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lead to error accumulation.

To prevent this particular issue, an Actor-Critic architecture [37] is set up which re-
duces the variance of the policy gradient estimates by providing feedback at every
time step. The Actor (agent) is in charge of making the actions at every time interval
based on the actions available to it. The Critic evaluates these decisions based on
evaluation metrics to provide a reward at every time step based on the state-value
function. The Actor, which is the route prediction agent, learns from the Critic’s feed-
back and updates its policy distributions toward the direction that the Critic suggests.

The policy 7y, defines the values of the state-action pair Q(s;, a;) and the value V (s;) in
Equation 4.34 and Equation 4.35 and the state-action value function can be computed
recursively with dynamic programming as per Equation 4.36

Qny, (5,a1) = By [r(J1,- -+, Un) | 5 = 50,0 = ay (4.34)
Vo, (5¢) = Bayomy, [Qry, (51,0 = ay)] (4.35)
Qﬁea (St> at) = ]Est+l [Tt + ’Y]Eat+1~7r9a(st+1) [QW)a (5t+1, at-l-l)ﬂ (436)

The Critic shares the parameters of the system with the Actor to make use of the
spatio-temporal information of unfinished tasks and estimate the state function. The
predicted value of the state function is then used to estimate the advantage function
as per Equation 4.37

A7r9a (St7 at) - Qﬂ'ga (3t7 at) - Vﬂ'ga (St)
=7+ ’Y]Est+1~7rea (st+1]st) |:V7r9a ($t+1):| - Vﬂ'ga (St)
Ay (8t,00) =1y + 9V, (8441) — V™ (sy) (4.38)

(4.37)

Equation 4.37 gives the ability to sample an unfinished task set and estimate the ad-
vantage function to by calculating the expectation value function in state s;,;, which
is shown in Equation 4.38.

The value function V checks the quality of the policy in a specific state s;. The Q
checks the value of choosing an action when in that state. The advantage function
measures the difference between the Q-function and the value function V to check
the relative benefit of each action.

Multiple unfinished task sets are sampled for the advantage function to minimise the
variance of the gradient estimates. The loss in the Actor-Critic setup is measured in
Equation 4.39.

N
1
Lo, = N Z Zlog o, (@it | Si2)An, (Sit, Qi) (4.39)
=1 teT
As stated earlier,y, is the policy function modeled by the actor network. The critic tries
to estimate r(¢;,- - - , y,) for the model at each decoding step ¢. The predicted value

b, 0, (st) Of the critic is called the “baseline”. The critic is trained by considering it as a
regression problem, and the value function is trained using a loss function calculation
from [11] which is less sensitive to outliers than L, loss as depicted in Equation 4.40.
smoothL; is given by Equation 4.41
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1 N

Lo, = Z Z smooth L (bs, g, (5is) — (i, » Yim)) (4.40)

i=1 teT

0.5z if 2] <1

4.41
|z| — 0.5 otherwise ( )

smoothZ,(z) = {

The system is first pre-trained to optimise the parameters of the route-prediction agent
by using a maximum-likelihood objective and minimising the cross-entropy loss using
Equation 4.42

Ler = 3 S log(P(yis | 6) (4.42)

i=1 teT

The next phase is the joint training of the actor and the critic by using Equation 4.43
where 0,. = 6, U6, represents the parameters of both the actor and the critic. ay_, ag,,
and ac are hyper-parameters to control the weight of different loss functions.

Lg,. = ag.Lg. + a9, Lo, + acelcr (4.43)

The prediction step involves the actor taking the unfinished task set as an input and
predicting the whole route step by step. The task to select at each decoding step is
given by Equation 4.44 where p, ;. is the output probability of task £ at the ¢-th step.

Uy = arg mI?XPt,k: (4-44)

4.7.1. Generalised Advantage Method

Generalised Advantage Estimation is a method used to reduce the biasing due present
in the actor-critic model. Actor-critic models usually have low variance due to the batch
training method used and the baseline reward feature of the critic. As these models
usually use neural networks to approximate the V function and use this value to gen-
erate the va;ue of the Q function, the value of the Q function is biased if the system
doesn’t accurately approximate the V function. Models based on REINFORCE have
low bias but can have high variance as the expected discounted reward is generated
using sampling. To find a trade-off between the bias and variance in estimating the
expected gradient of the policy-based loss function, the generalised advantage estima-
tion method [34] is used. This is shown by Equation 4.45 which is an edited version
of Equation 4.37. ) is used to control the trade-off between the bias and variance.
Larger values of A lead to high variance and low bias and vice-versa.

T
AS:;E(M)(Sta ap) = Z(W\)(t/—t) (r(se, ar) + Vi, (sr41) = Vi, (51)) (4.45)

t'=t

Actor
The actor plays the role of the route prediction agent in this system. The Actor has
an encoder-decoder architecture, as described in section 4.2. The encoder uses the
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spatio-temporal features of the unfinished tasks to generate their representations. The
Decoder layer selects a task 3, at time instant t from the unfinished task set and this
task is used as the input in the following input step. This process is repeated until all
the tasks in the unfinished task set are completed.

According to the chain rule, the probability of an output service route Y,, is expressed
as a product of conditional probabilities in Equation 4.46

P(Yw ‘ Ow;6a> - Hp(gt | Ow,C, }A/’l:tfl;ea) (446)

t=1

The Encoder used is a transformer encoder, which consists of an N number of trans-
former blocks to integrate the spatio-temporal features of the unfinished tasks. Each
transformer block is made up of a multi-head attention (MHA) layer and a feed-forward
network (FFN) layer. The embeddings from these blocks are shownas i € {1,--- , K}
as eg. and npeaq IS the number of heads.

é; =BN; (¢ + MHA, (head| ', ,head]..q)) (4.47)

nhead

eé» = BN, (¢; + FFN(¢;)) (4.48)

The Decoder layer uses an attention-based recurrent layer to generate the prediction
route based on the encodings made by the encoder at time ¢ by outputting task ;. It
also uses the knowledge of the system, that is, the previous outputs of the decoder
before time step t. The decoder uses LSTM along with an attention mechanism to
understand the probability shown in Equation 4.46. The initial input to the decoder is
all of the task embeddings {ey, e, - - - , e,}, the aggregated embedding e = %Z?:l e,
and the randomly initialised hidden state of the LSTM h,. The next step is to generate
the attention score for all the unfinished tasks at each decoding step t, and masks
(uj = —oo0) for the tasks which have been output before the time step to meet the
route constraints C.

4.49
—00 otherwise ( )

. {’UT tanh(Wie; + Wahy) if j # gu, V' <t
where W, W, € R%*% and v € R% are learnable parameters. Finally, the output
probability p§ of task j at step ¢ by a softmax layer is shown in

Critic Network

In policy-based actor-critic networks, the critic provides an estimate of the state-value
function to reduce the variance of the gradient estimation. The critic is therefore ex-
pected to understand all the information about the environment of the system. This
environment includes the spatio-temporal information of the unfinished tasks, route
constraints, tasks that have been output already in the decoding process. Since the
output probability distribution at each decoding step is determined by the state and
has sufficient information to evaluate the state-value function, the parameters of the
actor are shared with the critic. The output probability distribution at each decoding
step is then input into the critic. In practice, the critic, which is parameterised by 6.
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is implemented as a feed-forward network functioning as a regression layer and is
trained simultaneously with the actor network.



Evaulation Metrics

A number of evaluation metrics are used to understand the performance of the route
predictions performed by the various methods mentioned in chapter 4.

5.1. Kendall Rank Correlation

Kendall Rank Correlation (KRC) [1] is @ metric used to evaluate the ordinal association
between two sequences. This shows how the two sets of data match with each other.
KRC checks which ranked items of one list match the order in which they are ranked
in the other.

This matching is determined by observing pairs of items from both sequences and
checking if their relative ranking in their sequence is agreeable. A pair of items (i,j)
is considered concordant if both sequences rank these items in the same order. This
means that is item i is ranked higher than item j in both sequences, or vice versa, the
pair is concordant. Else, the pair is call discordant.

When calculating KRC, the nodes in the predicted sequences are divided into two
sets. Set V;n consists of nodes that are in the predicted and actual sequence. Vot
consists of nodes that are only in the predicted sequence. The order of the items in
Vin is known but the order in V,,ot is not. It is assumed that the items in V;n precede
the ones in V,0t.

The following is the definition and the steps in the calculation of KRC.
For sequences Y,, and Y,,:

A node pair (i, j) is concordant if:

(Ry (1) > Ry (j) and Ry (i) > Ry (j)) or (Ry (i) < Ry(j) and Ry (i) < Ry(j)) (3.1)
To calculate KRC, nodes in the prediction are first divided into two sets as shown in
Equation 5.2 and Equation 5.3. The node pairs to be compares are determined in

Equation 5.4. N. and N, are the number of concordant and discordant pairs respec-
tively. KRC is calculates using the formula shown in Equation 5.5.

Vin={9: | 4 € Yo} (5.2)
Voot = {0 | Ui & Y} (5.3)
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(4,7) | 4,7 € Vimand i # j} U{(i,7) | i € Vip and j € Vqot} (5.4)
_N.— N,
KRC = N TR, (5.5)

The larger the value of KRC, the higher the correlation between the predicted route
and the actual route.

5.2. Edit Distance

Edit distance is a metric used to show the difference between two sequences by cal-
culating the minimum number of operations required to transform one sequence into
the other [27]. The operations considered are insertion, deletion, and substituion of
characters. The most common form of edit distance is the Levenshtein distance. This
distance is defined as the minimum number of single character edits needed to change
one stringinto the other.

The calculation of Levenshtein distance between two strings requires a few steps:

» A matrix of size (length of string A + 1) by (length of string B + 1) is initialised.
The first row and first column of this matrix are initialised with index values.

* The matrix is then filled by iterating through each cell and computing the cost of
converting the substrings of the given strings. If the characters being compared
are the same, the cost remains the same as

* The matrix is then filled by iterating through each cell and computing the cost of
converting the substrings of the given strings. If the characters being compared
are the same, the cost remains the same as that of converting the previous sub-
strings. A minimum cost is considered if the characters differ. These are: inser-
tion (adding a character to one string), deletion (removing a character from one
string), and substitution (replacing one character with another).

» The cost for the current cell is the minimum of these operations plus one. Once
the matric is full, the value in the bottom right cell is the Levenshtein distance
between two strings.

5.3. Location Square Deviation and Location Mean Deviation

The Location Square Deviation (LSD) and the Location Mean Deviation (LMD) mea-
sure the degree to which predictions deviate from the actual labels. The values in both
these metrics are inversely proportional to the accuracy of the prediction.

Location Square Deviation (LSD)
LSD measures the average squared difference between the predicted values and the
actual values which can be seen in Equation 5.6

LSD = =3 (Ry(y:) — Ry (3)) (5.6)

i=1

where:
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* m is the number of observations,
* y; is the actual value for the i-th observation,

7; is the predicted value for the i-th observation,

Ry (y;) is the rank of the actual value y;,
* Ry (y;) is the rank of the predicted value y;.

Large deviations in the metric are penalised more because the differences are squared.
It is useful to find significant prediction errors.

5.3.1. Location Mean Deviation (LMD)
The LMD measures the average absolute difference between the predicted and actual
values and can be seen in Equation 5.7

m

LMD = %Z |Ry (yi) — Ry (9:)] (5.7)

=1
where:

* m is the number of observations,

* y; is the actual value (label) for the i-th observation,
* y; is the predicted value for the i-th observation,

* Ry (y;) is the rank of the actual value y;,

* Ry (y;) is the rank of the predicted value ;.

The LMD metric shows a straightforward average of deviations.

LSD is good at identifying large deviations due to the squaring of differences and
LMD gives the overall average of the deviations by comparing the average absolute
difference between the predicted and actual values.

5.4. Hit rate @k

This metric measures how many of the top-k predicted items are also in the top-k items
of the actual labels. It provides a sense of how well the top-k predictions match the
true top-k items which shows the accuracy of the model in ranking the most relevant
items as seen in [15] and [25]. The HR@k formulation can be seen in Equation 5.8
where Y[1 : k] represents the top-k predicted items and Y[1 : k| represents the top-
k actual items. The numerator indicates the number of common items between the
predicted and actual top-k lists, and the denominator normalises this count by k.

A

V[1: K NY[L: K|

HR@k — (5.8)

5.5. Accuracy @k
Accuracy@k (ACC@k) is a metric similar to HR@k but it is sticker than HR@k. It

checks whether the exact order of the top-k predicted items matches the order of
the top-k actual items. This metric is more stringent because it requires not only the
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presence of the correct items but also their correct ordering. ACC@XKk is defined in
Equation 5.9 where [(-) is an indicator function that equals 1 if the predicted item g;
matches the actual item y; at position i, and 0 otherwise. This formula checks that
ACC@Xk is 1 only if all top-k predicted items exactly match the corresponding top-k
actual items in both presence and order, otherwise, it is O.

k
ACC@k = [ [ 1(4s,v:) (5.9)

=1

5.6. Dist

Dist is a metric that measures the average distance between corresponding points in
the predicted and actual routes. This is an additional metric to measure the effective-
ness of the route prediction by showcasing the closeness of the predicted sequence
with that of the actual sequence. To do this, the metric uses a haversine function that
measures the haversine distance between the two distances and saves this distance.
In the end, all of these distances are added up and divided by the total number of time
the metric function is called to generate the average deviation between the predicted
and actual routes in kilometres. The lower the value of this value, the better the func-
tioning of the route prediction method. The metric Dist is used to check the average
distance between the points on the predicted route and the actual route. The goal of
the route prediction is to get as small a value as possible for this particular metric with
the overall goal for this dist to be 0, which would indicate a perfect prediction.

The metrics in chapter 5, namely, KRC, ED, LSD, and LMD are used to compare the
similarity of the predicted and actual routes. Metrics such as HR@k and ACC@k
check the similarity from a local perspective. Higher values of KRC, HR@k, ACC@Xk,
and lower values of LSD,LMD, and ED indicate a better performance of the route
prediction method.



Results

Tables for eval_max = 11 and 25

krc ed Isd Imd hr@1 acc@3 method

0.5480 | 1.5019 | 2.7746 | 1.0321 0.5233 | 0.2903 deeproute

0.4156 | 1.5798 | 4.1757 | 1.3321 0.4167 | 0.2302 distance_greedy

0.3848 | 1.5860 | 3.5307 | 1.2321 0.4744 | 0.2140 fdnet
eval_max =11| 0.5301 1.5191 2.8336 | 1.0562 | 0.5088 | 0.2763 graph2route

0.3862 | 1.8043 | 4.4171 1.5276 | 0.3043 | 0.1273 osqure

0.4447 | 1.7147 | 3.9145 | 1.3299 | 0.3687 | 0.1976 time_greedy

0.5490 | 1.4868 | 2.5945 | 1.0017 | 0.5213 | 0.2941 DRL4Route_ REINFORCE

0.5503 | 1.4941 25730 | 1.0030 | 0.5215 | 0.2961 DRL4Route_REINFORCE_GAE

krc ed Isd Imd hr@1 acc@3 method

0.5476 | 1.5189 | 2.8012 | 1.0361 0.5230 | 0.2899 deeproute

0.4150 1.56982 | 4.2158 1.3372 0.4164 0.2299 distance_greedy

0.3848 | 1.5860 | 3.5307 | 1.2321 0.4744 | 0.2140 fdnet
eval_max =25| 0.5297 | 1.5364 | 2.8600 | 1.0602 | 0.5086 | 0.2758 graph2route

0.3848 | 1.8297 | 4.4850 | 1.5353 | 0.3034 | 0.1269 osqure

0.4441 1.7338 | 3.9473 | 1.3345 | 0.3681 0.1972 time_greedy

0.5485 | 1.5043 | 2.6226 | 1.0072 | 0.5209 | 0.2935 DRL4Route_REINFORCE

0.5498 | 1.5115 | 2.6013 | 1.0059 | 0.5210 | 0.2955 DRL4Route_ REINFORCE_GAE

Table 6.1: Comparison of Different Methods for eval_max 11 and 25

Table 6.1 shows the results of the different route prediction methods from chapter 4
evaluated using the metrics mentioned in chapter 5. From this table, it can be ob-
served that the baseline methods, Distance-Greedy and Time-Greedy methods ,per-
form the worst. These methods show low KRC, and hit rates, and high ED, and LSD
values. This is because these methods focus only on the time or distance reduction
factors and aim to reduce distance and time of the next possible step respectively.
This does not focus on the overall goal and therefore performs poorly when compared
to the other methods. Osquare, with its XGBoost method, also performs quite poorly
compared to the deep learning methods because they use more sophisticated encod-
ing and decoding processes and are better at handling sequential data, identifying pat-
terns and extracting relevant features. In the deep learning methods, Graph2Route
performs better than FDNet because it uses a dynamic spatio-temporal graph encoder
and graph-based personalised route decoder that enable it to understand the input
data better and make more accurate route predictions and score highly in the KRC,
hit rate and ACC metrics and also have low ed, Isd and Imd scores which indicate the
superiority of the Graph2route method and indicate its effectiveness in route prediction
problems. Deeproute and Graph2Route perform very similarly but Deeproute edges
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Figure 6.1: fig: Performance of the route prediction methods

out in front because of its powerful transformer encoder which dynamically adjusts it
to factors such as distance and time and the attention mechanism-based decoders
determine the relevant part of the data to make accurate predictions which are seen
particularly in the KRC and hit rates which show that a higher percentage of deep-
route’s predictions align with the actual route that is provided .
DRL4Route-REINFORCE improves on the above methods because this method uses
the evaluation metrics mentioned in chapter 5 to optimise the solution directly. This
means the solution solves the issues faced by cross-entropy methods with different
goals during the training and testing phases. Combining deep learning and reinforce-
ment learning and optimisation using the evaluation metrics allows DRL4Route to
have a more accurate route prediction model which is reflected by the metric values
shown in Table 6.1. DRL4Route-REINFORCE-GAE uses the Generalised Advantage
Estimator which balances the bias and variance of the policy gradient. By balancing
the bias and variance, this method is able to make the most accurate predictions which
can be inferred by the high KRC, Hit rate and ACC values and the low ed, Isd, Imd
values.

The above Table 6.2 compares the average distance between corresponding nodes
in the predicted route and the actual route. This data is also visualised in Figure 6.2.
Based on the evaluation metrics and the results discussed in Table 6.1, DRL4Route
and DRL4Route-GAE emerged as the best methods for route prediction from the meth-
ods that were described in chapter 4 when applied to the same dataset. These two
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Method Incoming harbour EURO | Outgoing harbour EURO | Incoming berth EUROPAH
DRL4Route 1.2091 1.7904 1.9717
DRL4RouteGAE 1.2090 1.79 1.9716
Inverse optimisation 1.1780 1.7860 1.4500
Benchmark - kotug 1.1020 2.1760 1.5170

Table 6.2: Comparison of different methods based on the average distance between points in the predicted vs actual route

methods were selected for further analysis using the average distance metric, "dist”,
as discussed in chapter 5. The other methods used to compare this metric’s results
are an inverse optimisation model and a benchmarking model developed by KOTUG.
For this evaluation, data was drawn from the incoming and outgoing vessels at the
EURO harbour and the incoming vessels to the EUROPAH berth. The large dataset
was split to focus specifically on these routes. The results indicate that while the
two DRL methods performed well overall, they did not outperform the inverse optimi-
sation model. The inverse optimisation model achieved a marginally lower average
in the incoming and outgoing EURO harbour segments and a significant margin in
the incoming EUROPAH berth segment. However, The two DRL models performed
better overall than the Benchmarking method employed by KOTUG. This fluctuation
between the four methods could be due to the difference in the datasets and prepro-
cessing methods used to prepare the data. For a more concrete understanding of
the accuracy of the models, the inverse optimisation and KOTUG models should be
evaluated using the other metrics discussed in chapter 5.

Performance Comparison

221 o Incoming harbour EURO

Outgoing harbour EURO
—e— Incomin g berth EUROPAH
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Figure 6.2: Average distance between predicted and actual nodes

DRL4Route and DRL4Route-GAE have also been used on other route prediction prob-
lems. [25] talks about the application of these models for the pick-up and delivery route
prediction scenarios based on extensive real-world datasets in multiple cities in China.
A notable example is the performance of these models in the city oh Hangzhou, which
can be seen in Table 6.3 and Figure 6.3.

The results presented in Table 6.3 clearly showcase the superior performance of the
DRL4Route and DRL4Route-GAE models when compared to both traditional heuristic
methods, such as the Time and Distance-Greedy methods, and other deep learning-
based approaches (e.g., FDNET, DeepRoute). DRL4Route and DRL4Route-GAE
models achieve higher Kendall's Rank Correlation (KRC), Hit Rate (HR@1), and Ac-
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krc ed Isd | Imd | hr@1 | acc@3 method
0.4192 | 1.78 | 6.85 | 1.70 | 0.3315 | 0.2032 Time-Greedy
0.52.68 | 1.48 | 5.02 | 1.27 | 0.5168 | 0.3413 Distance-Greedy
0.5547 | 1.50 | 4.14 | 1.18 | 0.5276 | 0.3322 FDNET
0.5861 | 1.45 | 3.71 | 1.10 | 0.5476 | 0.3464 DeepRoute
0.6063 | 1.43 | 3.47 | 1.05 | 0.5645 | 0.3612 Graph2Route
0.6057 | 1.05 | 3.47 | 1.05 | 0.5585 | 0.3574 | DRL4Route-REINFORCE
0.6147 | 1.41 | 3.44 | 1.03 | 0.5772 | 0.3612 DRL4Route-GAE

Table 6.3: Performance comparison of various methods on different metrics.

curacy at Top-3 (ACC@3) values than the other methods in both Table 6.1 and Ta-
ble 6.3 which indicate a higher degree of concordance between predicted and actual
routes. This suggests that the DRL-based methods are significantly better at rank-
ing the predicted routes more closely to the real-world outcomes. The HR@1 met-
ric, which measures the likelihood of the top-predicted route being correct, is particu-
larly high for DRL4Route-GAE and DRL4Route, significantly outperforming traditional
heuristic methods such as Time-Greedy and Distance-Greedy. The low error values
for Edit Distance (ED), Location Square Deviation (LSD), and Location Mean Devia-
tion(LMD) metrics for DRL4Route and DRL4Route-GAE further confirm the ability of
these models to provide precise and accurate route predictions with minimal devia-
tion from the true paths. These results demonstrate the effectiveness of DRL4Route
and DRL4Route-GAE models for complex route prediction tasks. Their ability to out-
perform traditional methods, as well as other deep learning models, suggests that
DRL-based approaches are highly suitable for real-world applications in the domain
of logistics, pick-up, and delivery services. The combination of high KRC, HR@1,
and ACC@3 values, coupled with low ED, LSD, and LMD values, demonstrates that
DRL4Route and DRL4Route-GAE are robust models capable of delivering highly ac-
curate and reliable solutions to route prediction problems.
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Figure 6.3: Performance of the route prediction methods



Managerial Insights

The implementation of Deep Reinforcement Learning models, such as DRL4Route
and DRL4Route-GAE, in the tugboat route prediction has showcased the superiority
of these models when compared to the traditional heuristic models such as Time and
Distance-Greedy models as well as Deep Learning methods such as Deeproute and
Graph2Route due to their dynamic learning capabilities and continuously adapting to
the new input data. Several managerial insights can be identified by analysing the
results from the real-world data provided by KOTUG. These insights not only shed
light on the effectiveness of DRL models but also highlight key considerations for future
research into this topic.

» Superior Performance of DRL Models The DRL4Route and DRL4Route-GAE
models outperform traditional heuristic methods such as Time and Distance-Greedy
methods as well as other Deep Learning models due to their ability to dynamically
learn from the environment and optimise decisions in real time by its Actor-Critic
method.

« Significance of Data Quality and Quantity The performance of the models is
heavily dependent on the quality and quantity of the data. Rich datasets from real-
world sources help understand the environment better, leading to a better route
prediction overall. The data from KOTUG, while plentiful was not as extensive as
the Hangzhou dataset which is the DRL methods perform better than the Deep
Learning models when running that data.

« Effect of Critic’s Evaluation Metrics The choice of the evaluation metric that the
critic uses to optimise the route prediction plays a major role in how the model
behaves. The model works to maximise these metrics so it stands to reason
that if other metrics are chosen as the metrics that the critic optmises, the model
would perform differently as it tries to maximise the rewards that the critic assigns
to follow those metrics closely. For example, if instead of the KRC metric, the dist
metric is used by the Critic, the model’s performance based on this metric would
improve, leading to a lower value of average distance between the actual and
predicted sequences.

» Scalability and Adaptability Across Environments The DRL4Route models
are not just tailored to a single environment. They are highly scalable and adapt-
able to various operational contexts. This means that the successful implemen-
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tation of this model in one port can be scaled and applied to other ports as well.

* Room for Improvement in Model Performance The DRL4Route models cur-
rently outperform the other Deep Learning models but this model could be further
improved by the incorporation of additional features such as vessel speed, and
cargo type. The Critic could be made more complex by adding additional metrics
by which the performance of the model is compared. The important thing to note
here is not to make the Critic too many things to optimise which results in an
overcomplicated Critic which does not perform well.

* Risk of OVerfitting and Need for Continuous Monitoring There is a potential
risk of overfitting when models are trained on specific datasets and environments.
Continuous monitoring and validation of the models across different conditions
are crucial to ensure they generalise well and do not become overly reliant on
specific patterns in the training data. Regular model audits and performance
evaluations are necessary to mitigate this risk.



Conclusion

This thesis focused on improving tugboat operations at the Port of Rotterdam using
advanced route prediction models. The primary research aim was to enhance the
accuracy and efficiency of tugboat scheduling by developing a Deep Reinforcement
Learning (DRL) model, DRL4Route, which is capable of optimising the pick-up and
drop-off locations for tugboats in a highly dynamic environment. This is crucial for ports
like Rotterdam, where the efficient movement of vessels directly impacts operational
costs, fuel consumption, and safety.

To achieve this goal, various route prediction techniques mentioned in chapter 5 were
evaluated which included traditional methods such as Time-Greedy and Distance-
Greedy, as well as more advanced machine learning approaches like FDNet, Graph2Route,
and DeepRoute. The Deep Reindorcement Learning models DRL4Route and DRL4Route-
GAE were benchmarked against these models using multiple performance metrics,
including Kendall Rank Correlation (KRC), Edit Distance (ED), Location Square De-
viation (LSD), Location Mean Deviation (LMD), Hit Rate (HR), and Accuracy (ACC).
The results indicated that traditional methods like Distance-Greedy and Time-Greedy
were outperformed by DRL4Route due to their narrow focus on minimising either time
or distance, leading to suboptimal route predictions. Machine learning models, par-
ticularly DeepRoute and Graph2Route, demonstrated better performance by utilising
spatio-temporal data, but DRL4Route-REINFORCE-GAE emerged as the most accu-
rate. This model was able to directly optimise key metrics using an actor-critic method,
leading to superior performance across all of the mentioned testing scenarios. How-
ever, when compared using the "dist” metric against the benchmarks set by KOTUG
and the performance of the inverse optimisation model, the inverse optimisation model
performed the best, with the lowest average distances between nodes in the predicted
route and the actual route. This could be due to the splitting up of the data into the
testing, training and validation datasets or how the data was preprocessed. More-
over, changing the critic’s evaluation criterion could alter the way the model performs
and possibly improve the performance of the DRL models according to this evaluation
metric.

Several key insights were gained through this research. First, the superior perfor-
mance of DRL models shows the potential of advanced machine learning techniques
to replace outdated heuristic methods, which often lead to suboptimal routing. Data
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quality emerged as a critical factor, as rich historical data enhanced the model’s learn-
ing capacity, while poor data could significantly hinder performance. Furthermore,
the results underscored the importance of evaluation metrics in determining model
success and altering these metrics could lead to different outcomes, depending on
operational priorities such as minimising delays or fuel consumption. Scalability and
flexibility were also highlighted as major strengths of the DRL models, making them
adaptable to other port environments and complex logistical networks. The models’
ability to make real-time adjustments offers considerable value in dynamic environ-
ments and minimising delays caused by unforeseen changes in vessel schedules or
port conditions. Despite these advancements, there remains a need to monitor the
risk of overfitting and ensure that models are continuously updated to prevent perfor-
mance degradation.

Future work

This research lays the foundation for future work in optimising the route prediction of
tugboats. Further improvement could be achieved by integrating more features such
as vessel speed, cargo type, environmental conditions, and port congestion data. Fur-
thermore, experimenting with different evaluation metrics being used as the metrics
that the critic checks the performance of the model against could show different and
more accurate results. For example, if the "dist” evaluation metric discussed in chap-
ter 5 is used as one of the metrics that the critic uses to check the performance of
the system, the model could perform in a way that reduces the average distance be-
tween the nodes in the predicted route and the actual route. Ultimately, the enhanced
safety and resource utilisation achieved through accurate route predictions can lead
to substantial economic benefits for both tugboat operators and port authorities.
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Optimising Tugboat Route Prediction Using Deep
Reinforcement Learning

Navneet Sajith, Frederik Schulte, Mahnam Saeednia
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Abstract—Tugboats play a crucial role in ensuring the safe and
efficient movement of vessels in ports, especially for berthing and
unberthing operations. This research focuses on improving tug-
boat route prediction and scheduling at the Port of Rotterdam by
leveraging Deep Reinforcement Learning (DRL). The proposed
model, DRL4Route, optimises pick-up and drop-off points by
analysing historical data and real-time conditions. It outperforms
traditional methods such as Time-Greedy and Distance-Greedy
algorithms, which focus narrowly on minimising time or distance.
DRL4Route-REINFORCE-GAE emerged as the most accurate
method across key performance metrics, including Kendall Rank
Correlation (KRC), Edit Distance (ED), and Location Square
Deviation (LSD). Future improvements could integrate additional
variables such as vessel speed and environmental conditions to
further refine the model’s predictions. The research underscores
the potential of DRL in optimising complex maritime logistics,
ultimately contributing to a more resilient and sustainable port
ecosystem.

Index Terms—Tugboat Scheduling, Route Prediction, Deep
Reinforcement Learning, Port Operations, Maritime Logistics,
DRL4Route

I. INTRODUCTION

Ports are indispensable to global trade, facilitating the
transport of approximately 80% of global goods [44]. Their
role in the transshipment of cargo between ships and land-
based transport systems is crucial for the global supply chain’s
efficiency [45]. The global maritime industry, while resilient,
has faced unprecedented disruptions from events such as
the COVID-19 pandemic and ongoing geopolitical conflicts,
including the wars in Ukraine and Palestine. Nevertheless, the
industry is projected to grow by 2.4% in 2023 and 2% annually
from 2024 to 2028, highlighting the ongoing importance of
maritime trade despite global challenges [46].

The Port of Rotterdam, Europe’s largest port, serves as a
vital hub within this ecosystem. It handles over 438 billion
tons of cargo annually, contributing €38.6 billion to the Dutch
economy—about 3.2% of the Netherlands’ GDP [1]. Efficient
port call optimisation is essential to manage this immense flow
of goods, as illustrated by the breakdown of cargo throughput
in Fig. 1. The ability to synchronise vessel movements with
resource allocation, while minimising delays caused by dy-
namic vessel schedules, unpredictable weather conditions, and
infrastructure constraints, is critical to maintaining efficient
operations.

The coordination of multiple actors—ranging from port
authorities, vessel operators, and pilots, to tugboat companies,
mooring crews, and terminal operators—plays a pivotal role

(Gross weight x 1,000 fonnes) 2023 2022
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Fig. 1. Throughput in Port of Rotterdam [1]

in ensuring that the port functions smoothly. The intricate
interaction of these stakeholders is visualised in Fig.2, which
demonstrates the complex sequence of events required for a
vessel’s safe arrival, berthing, and departure. This “Port Call
Metro Map” illustrates the necessity for real-time data sharing
and precise timing across all involved parties to avoid delays,
reduce vessel waiting times, and optimise the overall port call
process.

Fig. 2. Port Call Metro Map [47]

Tugboats are a critical element of this system, assisting
large vessels in safely navigating the narrow and often shallow
waters of ports [48]. Pilots, who oversee a ship’s navigation,
determine the quantity and duration of tugboat assistance
needed [57]. The Port of Rotterdam handles approximately
30,000 sea-going vessels annually, with tugboats ensuring
the safe and timely berthing and unberthing of these ships.
Tugboat operations are primarily handled by private compa-
nies, such as Kotug International BV, whose services include
tugboat design, building, chartering, and operations. Kotug
assigns tugboats to assist sea-going vessels entering or leaving
the port, with a focus on ensuring safety and efficiency in each
maneuver. However, one of the key challenges faced by these



companies is the optimisation of tugboat operations within the
port’s intricate and busy environment.

In the Port of Rotterdam, the scheduling and coordination
of tugboat operations is not standardised, leading to inefficien-
cies. Tugboats are sometimes connected to vessels at different
locations from their planned assignments, adding complexity
to the already challenging task of optimising vessel movements
within the port. This challenge is akin to solving a pick-
up and delivery service problem, where deviations from the
planned routes can significantly impact efficiency. Studies have
shown that actual routes taken by pilots often differ from those
predicted by routing tools, with similar deviations observed
in related logistics fields. For example, in a study conducted
on delivery operations for a large soft drinks company in the
US and Mexico, three out of four deliveries deviated from
the planned route [36], [38]. Such discrepancies underscore
the importance of accurate route prediction for enhancing port
operations.

This research explores the potential of using advanced
machine learning techniques, specifically a deep reinforcement
learning (DRL) framework called DRL4Route, to optimise
tugboat pick-up locations and route planning. DRL combines
Deep Learning (DL) and Reinforcement Learning (RL) to
create models that can make decisions in complex, dynamic
environments [17]. DL is used to identify patterns in data,
while RL trains agents to perform tasks by rewarding actions
that contribute to improved performance. The goal is to
maximise the overall system reward, continuously learning and
adapting to the environment to improve decision-making [35].

Test Criteria
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features|
features
features|

Route Prediction Agent

Encoder

Fig. 3. Framework of DRL4Route

As illustrated in Fig. 3, DRL4Route employs an Actor-
Critic architecture, where the model observes features of
the environment, processes them through an encoder, and
generates route predictions through a series of decoder cells.
The model then compares the predicted route with the ac-
tual route taken, using this comparison to compute rewards.
These rewards are used to update the route prediction agent’s
policies, enabling it to improve its predictions over time. The
continuous learning capabilities of DRL make it well-suited
to dynamic environments like the Port of Rotterdam, where
variables such as vessel schedules, weather conditions, and

infrastructure limitations are constantly changing.

The application of DRL to route prediction has shown
promising results in other fields. For instance, Trailnet, a DRL-
based model for routing in IP networks, replaced traditional
forwarding tables with a computational model trained to
minimise packet forwarding costs across different ports [40].
Similarly, DRL has been used in software-defined networks
(SDNs) to optimise traffic routing, significantly improving
network performance compared to traditional methods [39].
These case studies highlight the potential of DRL to enhance
complex routing and scheduling problems, making it a promis-
ing approach for optimising tugboat operations in the Port of
Rotterdam.

This research aims to develop a novel route prediction
method for Kotug’s tugboat operations, leveraging DRL to op-
timise both pick-up locations and route planning. By improv-
ing route prediction accuracy and reducing the discrepancies
between planned and actual routes, this research is expected
to enhance Kotug’s operational efficiency, lower fuel con-
sumption, reduce emissions, and minimise costs. Ultimately,
this work seeks to provide Kotug with the necessary tools
to navigate the complex and dynamic environment of the
Port of Rotterdam, while contributing to a more efficient and
sustainable port ecosystem.

II. LITERATURE SURVEY

Port call optimisation is essential to enhancing maritime
logistics, ensuring that processes like berth allocation, tugboat
scheduling, and route prediction are efficient as global trade
volumes rise. Ports such as Rotterdam, with their growing
number of ships, benefit significantly from optimisation ef-
forts aimed at improving resource allocation and reducing
delays. This section reviews recent advancements in port call
optimisation, particularly in the context of tugboat operations,
highlighting relevant studies.

Category Paper References

Berth Allocation, | Rodrigues and Agra [3], Conca et al. [4], Hendriks
Scheduling, and Port | et al. [49], Gharehgozli et al.[50], Zhen et al.[51]
Infrastructure

Route Prediction and | Wang et al. [7], Cho et al. [8], Yang et al. [9], Du
Optimisation et al. [10], Mao et al. [12], Qian [19], Wen [18],

Graph2Route Wen [16], OSquare Zhang [15]

Fleet Management and
Operational Efficiency

Wu et al. [11], Li et al. [2], Merkel et al. [5], Poulsen
and Sampson [6]

Tugboat Scheduling

Wang et al. [13], Wei et al. [14], Yao et al.[54],
Yu.[55]

TABLE T

CATEGORISATION OF PAPERS IN PORT CALL OPTIMISATION

Table I organises relevant studies into categories addressing
different aspects of port call optimisation, helping illustrate
how various components contribute to the overall process.

A. Berth Allocation, Scheduling, and Port Infrastructure

Berth allocation and scheduling are critical to minimising

delays in port operations. Rodrigues and Agra [3] explore
berth allocation and quay crane scheduling under uncertainty,
proposing strategies to mitigate disruptions caused by variable



ship arrival times. Conca et al. [4] emphasise the importance
of real-time data sharing for better coordination among stake-
holders. Additionally, investments in port infrastructure, as
discussed by Hendriks et al. [49], are necessary to enhance
long-term port efficiency. Studies by Gharehgozli et al. [50]
and Zhen et al. [51] focus on the integration of sea and land-
side operations to reduce congestion and streamline processes.

B. Route Prediction and Optimisation

Accurate route prediction and optimisation are crucial for
improving the allocation of resources such as tugboats in ports.
Wang et al. [7] and Cho et al. [8] provide optimisation models
for shipping routes that can be adapted for tugboat operations.
Mao et al. [12] introduce DRL4Route, a deep reinforcement
learning framework that adapts to real-time conditions, making
it suitable for dynamic environments like the Port of Rotter-
dam. Graph2Route, proposed by Wen [16], leverages spatio-
temporal graphs to enhance real-time route prediction, offering
potential for more efficient tugboat coordination.

C. Fleet Management and Operational Efficiency

Effective fleet management is vital for reducing delays
and maximising fuel efficiency. Wu et al. [11] address fleet
deployment strategies, while Li et al. [2] focus on optimising
fuel consumption for tugboats, contributing to both economic
and environmental sustainability. Merkel et al. [S] and Poulsen
and Sampson [6] emphasise the importance of optimising port
calls to reduce emissions, aligning operational efficiency with
environmental goals.

D. Tugboat Scheduling

Tugboat scheduling is essential for guiding large ves-

sels through congested waterways. Yao et al. [54] propose
the Improved Grey Wolf Optimisation algorithm to address
multi-objective scheduling problems, while Yu [55] presents
a mixed-integer linear programming model for minimising
processing costs. These models, when adapted to ports like
Rotterdam, can enhance the efficiency of tugboat operations
and reduce delays.
The reviewed studies highlight the importance of integrating
machine learning and optimisation algorithms to improve
tugboat operations. By leveraging these advancements, ports
like Rotterdam can significantly enhance efficiency, reduce
costs, and improve environmental sustainability.

III. PROBLEM DEFINITION

The towage process in the Port of Rotterdam is essential
for the safe and efficient movement of vessels, particularly
during berthing and unberthing. Tugboats assist large vessels
in navigating the port’s confined waters, ensuring precise
control to prevent accidents or collisions. However, current
methods for assigning tugboat routes rely heavily on human
expertise and static vehicle routing programs, which lack
the flexibility to adapt to real-time changes such as vessel
delays or environmental factors [32] [31]. As port complexity
increases, these systems often struggle, leading to delays and
higher costs [33].
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Fig. 4. Tugboat pick-up process

The towage process begins well before a vessel’s arrival,
with scheduling steps involving the Harbour Master, pilots,
and tugboats. Despite extensive planning, predicting the exact
connection and disconnection points for tugboats remains a
challenge. KOTUG, which manages these operations using
the Kotug Optiport scheduling tool, often faces discrepancies
between predicted and actual towage locations. This misalign-
ment, driven by pilots making real-time decisions, leads to
inefficiencies such as delays, increased fuel consumption, and
suboptimal resource use.

The core issue is the difficulty in predicting tugboat connec-
tion/disconnection points due to the dynamic port environment
and varying vessel capabilities. These inaccuracies result in
operational delays, higher costs, and reduced port efficiency.
This research aims to develop a more accurate predictive
model, DRL4Route, leveraging Deep Reinforcement Learn-
ing (DRL) to improve real-time flexibility and the precision
of pick-up/drop-off predictions. By incorporating historical
towage data and real-time adjustments, the model will enhance
towage operations, reduce delays, and lower operational costs,
contributing to improved economic performance for KOTUG
and the Port of Rotterdam.

The objective of this study is to address the challenges in
predicting towage locations and optimise tugboat schedules
through advanced machine learning techniques, ultimately im-
proving safety, efficiency, and profitability for all stakeholders.

IV. METHODOLOGY
A. Data and Preprocessing

The dataset used for this research was provided by KOTUG
and covers tugboat operations between May 31, 2022, and
May 31, 2023. The dataset contains 42,232 entries across 15
columns, including numerical and categorical data relevant to
tugboat movements.
The key preprocessing steps included:
o Handling Missing Values: The columns “From Berth,”
”To Berth,” ”From Haven,” and ”To Haven” contained
a significant number of missing entries. Missing values
were filled with a placeholder "Unknown” to retain the
records for further analysis.



o Datetime Conversion: Date columns were converted
to a standard “datetime” format to enable time-based
operations, such as calculating the duration of tugboat
operations and analysing time trends.

o Geolocation Standardisation: Columns containing ge-
ographical coordinates ("From Location X,” "From Lo-
cation Y,” ”To Location X,” and "To Location Y”) were
checked for consistency. All coordinates were correctly
formatted as floating-point numbers, eliminating the need
for further standardisation.

The processed dataset was then used for the route prediction
problem, ensuring that no missing data remained and that
all relevant columns were formatted consistently for use in
machine learning models.

Data preprocessing involved handling missing values, stan-
dardising geographical data, and converting timestamps to a
consistent format. Missing values in location data were filled
with placeholders to retain as much information as possible.
The resulting dataset was then used as input for the predictive
model.

B. Model Architecture

The DRL4Route framework employs an encoder-decoder
architecture for route prediction. The encoder processes his-
torical tugboat movement data and converts it into a fixed-
sise context vector, which summarises the current state of the
system. The decoder then generates future route predictions
based on the context vector and real-time input data. Both
the encoder and decoder are built using Long Short-Term
Memory (LSTM) layers to handle the sequential nature of
tugboat operations.

DRL4Route DRL4Route is a Deep Reinforcement Learning
(DRL) model developed to predict tugboat routes by optimis-
ing pick-up and drop-off points. It treats route prediction as
a sequential decision-making process, where the goal is to
maximise cumulative rewards based on the efficiency of the
route.

1) Reinforcement-Guided Route Prediction: The route pre-
diction problem is framed as a Markov Decision Process
(MDP), where:

o S represents the states (i.e., the current system status).

o A represents the actions (i.e., the route decisions for the
tugboat).

e R is the reward function, evaluating the performance of
each action.

The goal is to maximise the cumulative reward, with the agent
learning the optimal policy to minimise delays and improve
route efficiency. The cumulative reward function is given by:

T
>, vtn] (1)
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2) Actor-Critic Architecture: To enhance stability and re-
duce variance in policy learning, DRL4Route employs an
Actor-Critic architecture. The Actor selects actions based on
the current state, while the Critic evaluates the actions by

estimating the state-value function V' (s;) and the state-action
value Q(s¢,a;). The advantage function A(s;,a;) measures
how much better an action is compared to the baseline, helping
the Actor improve its decisions:
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The loss function for training the Actor is:
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3) Training and Loss Functions: The Critic evaluates the
state-value function, while the Actor updates the policy using
policy gradient methods. The Critic is trained with a regression
loss that minimises the error between the predicted state value
and the actual reward:
TR
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Initially, the system is pre-trained using cross-entropy loss
to maximise the likelihood of correct predictions. This is
followed by joint training of both the Actor and Ceritic:

Lg,. = ag.Lg. +ap, Lo, + aceLcE (5)

ac

4) Generalised Advantage Estimation: Generalised Advan-
tage Estimation (GAE) is used to balance the trade-off between
bias and variance in policy estimation. It allows the system to
compute a more stable estimate of the advantage function by
adjusting for future rewards:

T
AN (500) = 3 (N (1o 00

t'=t
+YVro, (str41) = Vo, (St’)) (6)

5) Encoder-Decoder in DRL4Route: The Encoder-Decoder
architecture is used to handle the sequential nature of route
prediction. The Encoder processes spatio-temporal features
of unfinished tasks, generating a fixed-size context vector F,
while the Decoder predicts the next route step based on this
context and previous outputs.

The attention mechanism ensures the Decoder focuses on
relevant tasks, dynamically adjusting the predictions step-by-
step until the entire route is generated:

o, hi+1 = DecoderCell(E, C, hy, let,l) @)

V. EVALUATION METRICS

The performance of the DRL4Route framework is evaluated
using several metrics:

A. Kendall Rank Correlation (KRC)

KRC measures the ordinal association between predicted
and actual routes. A higher KRC indicates a greater similarity
between the predicted route ranking and the actual route
ranking.



B. Edit Distance (ED)

Edit distance is used to calculate the minimum number
of operations required to transform the predicted route into
the actual route. Lower ED values signify more accurate
predictions.

C. Location Mean Deviation (LMD) and Location Square
Deviation (LSD)

These metrics quantify the deviation between the predicted
and actual pick-up/drop-off locations. The smaller the devia-
tion, the more accurate the model.

D. Hit Rate @k and Accuracy @k

These metrics evaluate how many of the top-k predicted
routes match the actual routes. Hit Rate @k measures the
proportion of correctly predicted routes, while Accuracy @k
considers the order of the predictions.

E. Dist

Dist measures the average physical distance between cor-
responding points on the predicted and actual routes. This is
particularly relevant for optimising tugboat fuel consumption
and scheduling.

VI. RESULTS

Tables for eval_max = 11 and 25

eval_max = 11

kre ed Isd Imd | hr@1 | acc@3 method
0.548 1.502 | 2.775 1.032 | 0.523 0.290 DR
0.416 | 1.580 | 4.176 1.332 | 0.417 0.230 DG
0.385 1.586 | 3.531 1.232 | 0474 0.214 FN
0.530 | 1.519 | 2.834 | 1.056 | 0.509 0.276 G2R
0.386 | 1.804 | 4.417 | 1.528 | 0.304 0.127 0S
0.445 1.715 | 3914 | 1.330 | 0.369 0.198 TG
0.549 | 1.487 | 2.595 1.002 | 0.521 0.294 DRL-R
0.550 | 1.494 | 2.573 1.003 | 0.522 0.296 DRL-R-GAE
eval_max = 25
kre ed Isd Imd hr@1 | acc@3 method
0.548 1.519 | 2.801 1.036 | 0.523 0.290 DR
0.415 1.598 | 4.216 1.337 0.416 0.230 DG
0.385 1.586 | 3.531 1.232 0.474 0.214 FN
0.530 | 1.536 | 2.860 | 1.060 | 0.509 0.276 G2R
0.385 1.830 | 4.485 1.535 0.303 0.127 oS
0.444 | 1.734 | 3.947 | 1.335 0.368 0.197 TG
0.548 1.504 | 2.623 1.007 0.521 0.294 DRL-R
0.550 | 1.511 2.601 1.006 | 0.521 0.296 DRL-R-GAE
TABLE 1I

COMPARISON OF DIFFERENT METHODS FOR EVAL_MAX 11 AND 25

Table II presents the performance of different route prediction
methods. Time and Distance-Greedy methods underperform,
as they focus only on reducing immediate time or distance,
failing to optimise the overall goal. Osquare, despite us-
ing XGBoost, also lags behind the deep learning models.
Among the deep learning models, Graph2Route outperforms
FDNet, as its graph-based architecture better captures spatio-
temporal dependencies. Deeproute performs slightly better

than Graph2Route, benefiting from its powerful transformer
encoder and attention mechanism.

DRL4Route-REINFORCE surpasses other models by di-
rectly optimising the solution based on evaluation metrics.
This addresses the issues faced by cross-entropy-based meth-
ods. The best-performing model, DRL4Route-REINFORCE-
GAE, balances bias and variance using the Generalised Ad-
vantage Estimator (GAE), resulting in the most accurate
predictions.

Method Incoming harbour | Outgoing harbour | Incoming  berth
EURO EURO EUROPAH
DRLA4Route 1.2091 1.7904 1.9717
DRL4RouteGAE | 1.2090 1.79 1.9716
Inverse Optimi- 1.1780 1.7860 1.4500
sation
Benchmark (Ko- 1.1020 2.1760 1.5170
tug)
TABLE TII

COMPARISON OF AVERAGE DISTANCE BETWEEN POINTS IN PREDICTED VS
ACTUAL ROUTE - DIST

IIT compares the average distance between predicted and actual
routes for various models. DRL4Route and DRL4RouteGAE
outperform the KOTUG benchmark but do not outperform the
inverse optimisation model in some cases. This suggests that
while DRL models are effective, there is room for improve-
ment in specific cases.

Results in IV show DRL4Route and DRL4RouteGAE models
consistently outperform traditional methods in real-world ap-
plications. These models have higher KRC, Hit Rate (HR@1),
and Accuracy (ACC@3) scores, indicating that they closely
match predicted routes with actual outcomes. These models
are thus highly suitable for route prediction tasks in dynamic
environments.

krc ed Isd Imd hr@1 acc@3 method
04192 | 1.78 | 6.85 | 1.70 | 0.3315 | 0.2032 Time-Greedy
0.5268 | 1.48 | 5.02 | 1.27 | 0.5168 | 0.3413 Distance-Greedy
0.5547 | 1.50 | 4.14 | 1.18 | 0.5276 | 0.3322 FDNET
0.5861 | 1.45 | 3.71 | 1.10 | 0.5476 | 0.3464 DeepRoute
0.6063 | 1.43 | 3.47 | 1.05 | 0.5645 | 0.3612 Graph2Route
0.6057 | 1.05 | 3.47 | 1.05 | 0.5585 | 0.3574 | DRL4Route-REINFORCE
0.6147 | 1.41 | 3.44 | 1.03 | 0.5772 | 0.3612 DRL4Route-GAE
ABLE IV
PERFORMANCE COMPARISON OF VARIOUS METHODS ON DIFFERENT
METRICS
As shown in Table IV and II, the DRL4Route-

REINFORCE-GAE model achieved the highest Kendall Rank
Correlation (KRC), the lowest Edit Distance (ED), and supe-
rior Hit Rate @1, demonstrating its ability to predict tugboat
routes more accurately than other models. It also outperformed
the FDNet and Graph2Route models in terms of Location
Mean Deviation (LMD) and Location Square Deviation (LSD),
indicating a closer match between the predicted and actual
tugboat routes.

VII. DISCUSSION

The performance of the DRL4Route model shows signif-
icant improvement over traditional and deep learning-based
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methods for route prediction in dynamic environments such
as port operations. The reinforcement learning component en-
ables the model to continuously learn from real-time feedback,
adapting to changing conditions more effectively than static or
predefined models.

Several key factors contributed to the superior performance
of DRL4Route:

o Real-Time Adaptability: The model’s ability to adapt
to real-time changes in port conditions allowed for more
accurate route predictions even under unpredictable cir-
cumstances.

o Optimised Resource Allocation: By predicting more
accurate tugboat routes, the model helped optimise the

Methods

allocation of resources, leading to reduced fuel consump-
Comparison of ed Metric for Different Methods (eval_max = 11 and 25) 3 .
= s tion and operational costs.
_ o Generalied Advantage Estimation (GAE): The use of
GAE reduced the bias-variance tradeoff, allowing the

model to generalie better to unseen data while maintain-
ing high accuracy.
A. Limitations

While DRL4Route showed promising results, several limi-
tations must be considered:

Methods

oot i o it e (o 1 25 « Data Dependency: The model’s performance is heavily
= rosamn reliant on the quality and quantity of historical tugboat
operation data. In cases where the data is sparse or noisy,

the model may produce suboptimal predictions.

o Computational Complexity: Training a deep reinforce-
ment learning model can be computationally expensive
and time-consuming. Real-time deployment of such mod-
els in high-traffic ports may require substantial computa-
tional resources.

- o Scalability: Although DRL4Route performed well in the

Comparison of acc3 Metric for Different Hethods eval mox = 11.0nd 25 context of the Port of Rotterdam, the model may require

further fine-tuning and retraining to generalie to other

port environments with different operational constraints.

VIII. CONCLUSION

This thesis explored improving tugboat operations at the Port
of Rotterdam through advanced route prediction models. The
primary objective was to enhance the accuracy and efficiency

Methods

Fig. 5. Performance of route prediction methods



of tugboat scheduling using a Deep Reinforcement Learning
(DRL) model, DRL4Route, aimed at optimising pick-up and
drop-off locations in a dynamic environment. Efficient tugboat
movement is crucial in ports like Rotterdam, as it directly
impacts operational costs, fuel consumption, and safety.
Various prediction techniques, as outlined in ”V”, were as-
sessed including traditional methods like Time-Greedy and
Distance-Greedy, and machine learning approaches such as
FDNet, Graph2Route, and DeepRoute. DRL models, par-
ticularly DRL4Route and DRL4Route-GAE, were evaluated
against these methods using performance metrics like Kendall
Rank Correlation (KRC), Edit Distance (ED), Location Square
Deviation (LSD), Location Mean Deviation (LMD), Hit Rate
(HR), and Accuracy (ACC). Traditional methods, such as
Distance-Greedy, were outperformed by DRL4Route due to
their limited focus on either time or distance, leading to
suboptimal routing. Machine learning methods like Deep-
Route and Graph2Route demonstrated better performance,
but DRL4Route-REINFORCE-GAE proved to be the most
accurate overall, as it optimised key metrics through an actor-
critic method. However, when compared to the inverse optimi-
sation model and KOTUG benchmarks using the “dist” metric,
the inverse optimisation model showed the lowest average
distances between predicted and actual routes, suggesting that
further improvements could be achieved by refining the data
preprocessing and evaluation processes.

Key insights from the research highlight the superior perfor-
mance of DRL models over traditional heuristics and machine
learning methods. DRL models’ capacity to adapt and optimise
based on real-time conditions showed clear benefits in dynamic
port environments. Data quality and the selection of evaluation
metrics were crucial in model success, with the possibility that
altering these metrics could yield different optimisation results
depending on operational priorities. Although the results were
promising, monitoring overfitting and ensuring model updates
remain essential to maintaining long-term model performance.
Future Work

Future research can expand on these results by incorporating
additional features like vessel speed, cargo type, environmental
conditions, and port congestion. Adjusting evaluation metrics
for the critic’s performance, such as integrating the “dist”
metric from V, could refine the model’s route accuracy. With
continued development, DRL models can offer substantial
economic and operational benefits to tugboat operators and
port authorities by improving safety, reducing delays, and
optimising resource utilisation.
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