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ABSTRACT

In this thesis, we start with giving a mathematical description of bipartite quantum cor-
relations and how they are built up in the Tensor model. This is needed because we want
to recover the state and the operators when only the bipartite quantum correlation is
known. In the literature, there are see-saw algorithms to recover the state, but they are
limited to only lower dimensions [1]. In this thesis we explore an alternative approach,
where we directly minimize the function

f (ψ, {E a
s }, {F b

t }) = ∑
a,b,s,t

(
P (a,b|s, t )−ψ∗(E a

s ⊗F b
t )ψ

)2. (1)

Here, P (a,b|s, t ) is the bipartite correlation, ψ is the state vector, and E a
s and F b

t are the
POVMs. Furthermore, ⊗ is the Kronecker product and ∗ indicates the conjugate trans-
pose of a vector. These variables are subject to constraints and some of them can easily
be transformed into penalty functions. The matrices E a

s and F b
t have to be Hermitian

positive semidefinite, for which we parameterize them by their Cholesky decomposi-
tions. The gradient of this (now unconstrained) problem can be explicitly determined
with the use of Wirtinger calculus. This offers an elegant way to determine the gradient
of real-valued functions with complex variables. Also, a total description of Wirtinger
calculus is also given, including a proof that the gradient indeed points towards the di-
rection of the steepest incline. We use first-order methods like gradient descent with
backtracking line search and momentum-based gradient descent to find a minimum
solution of the equation. If the cost function converges towards zero, we assume that the
variables converge to a correct state and measurement operators.

These methods can find large correlations of approximate 3000 separate variables in
1.5 hours and are able to find many different other correlations and states. The algo-
rithm had some problems finding the operators and state of a family of correlations that
had four inputs and two outputs. For some correlations the algorithms found states and
operators of lower dimension than the correlations were build with.
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1
INTRODUCTION

Is it really true that we are still unable to predict how a system behaves if we know ev-
erything about it? The first time I encountered the probabilistic nature of quantum me-
chanics, I felt frustrated. It seems unfair. Nevertheless, until now it appears to be true. It
gets even weirder when we start introducing entanglement. It turns out that if two parti-
cles are entangled, they can influence each other even faster than the speed of light. This
has recently been experimentally shown at the Delft University of Technology. [2]

In this thesis we investigate what happens when we have these entangled particles
and start measuring them. When we have a finite set of measurement devices for both
particles, we can generate a probability distribution by repeating the measurement enough
times. These probability distributions are called bipartite quantum correlations. This
thesis we start with these bipartite quantum correlations and try to recover the state vec-
tor and measurement operators. The state vector describes if and how the particles are
entangled and the measurement operators represent the measurements. The recovery of
this state is done with several different gradient descent methods. We do this with a cost
function that incorporates the constraints as penalties and Cholesky decomposition.

In Chapter 2 we formally introduce the bipartite quantum correlation, the state, and
the different measurement operators (Observable, PVM and POVM). We also look at the
oldest XOR game called CHSH and build the bipartite quantum correlation from the op-
erators.

Next, in Chapter 3 we introduce the Wirtinger calculus. The two Wirtinger deriva-
tives turn out to be really useful for calculating the gradient of real-valued functions with
complex variables. We also prove that the Wirtinger gradient points towards the direc-
tion of the steepest ascent.

After that, in Chapter 4 we show that it is possible to write the problem of finding
P(O)VMs and the state as a constraint optimization problem. Then we turn the con-
straints into penalty functions that are added to the cost function. We calculate the gra-
dient of the cost function with the penalty terms, using the Wirtinger derivatives.

Subsequently, in Chapter 5 we give several different first-order methods to solve the
optimization problem. We also look into second-order algorithms that could be benefi-
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cial for the computation time. These are however not implemented.
Finally, in Chapter 6 we implement the algorithms to find the P(O)VM and the state

of several bipartite quantum correlations. The bipartite quantum correlations that are
examined are CHSH, synchronous with four inputs and two outputs, and correlation-
based. Also, all different first-order algorithms in Chapter 5 are compared on a specific
case.

This thesis is written as the final part of the double bachelor’s degree in Applied
Mathematics and Applied Physics at the Delft University of Technology.

Enjoy reading this thesis. I hope you have as much fun reading it, as I had when combin-
ing the newly learned mathematics and physics that were required for this thesis.



2
BIPARTITE QUANTUM

CORRELATIONS

In this chapter, we introduce bipartite quantum correlations. This is done by first ex-
plaining what a bipartite correlation is, followed by an explanation of the quantum part.

First, in Section 2.1 we introduce the bipartite correlation. This is explained as a
probability distribution that arises from two parties (Alice and Bob) that both get a ques-
tion, which they have to answer. Following that, in Section 2.2, we investigate a classical
bipartite correlation. The main idea of this type of correlation is that it only takes into
account classical phenomena. Next, in Section 2.3 we look at the state and several mea-
surement operators. We start by giving the definition of the state and of an observable,
which is used to measure that state. Then, two more measurement operators are de-
fined, which are needed for the bipartite quantum correlation. Subsequently, in Section
2.4 we can finally define the bipartite quantum correlation. Also, the local dimension
is mentioned, which turns out to be extremely important and determines if we can find
the states and the operators of bipartite quantum correlation. In the last Section 2.5 we
introduce the CHSH game, which we use in Section 6.2 to test the algorithms.

We should mention that this chapter is mostly repeating the literature. The ideas and
concepts mentioned in Sections 2.1, 2.2, and 2.4 come from [3] and [1]. The quantum
ideas and definitions on state and operators come from [4]. In the last Section 2.5 the
ideas from [5] and [6] are used and further build on.

2.1. BIPARTITE CORRELATIONS
In this thesis, we explore bipartite quantum correlations. To understand how we can
interpret these correlations, we first look at a thought experiment of Alice, Bob, and a
third independent referee. The third independent referee asks a question s ∈ S to Alice
and t ∈ T to Bob. Bob and Alice are not aware of what the other person’s question is and
cannot communicate. The possible answers are a ∈ A for Alice and b ∈ B for Bob. The set
of all combinations of answers and questions is Γ= A×B×S×T . In this thesis we assume

3



2.2. CLASSICAL BIPARTITE CORRELATION 4

that Γ is finite. When we ask questions (s, t ) we want to establish the probability that the
answers to the respective questions are (a,b). In short, what is the bipartite correlation
P (a,b|s, t )? These bipartite correlations have to satisfy a few basic properties that are
given in Definition 2.1.1.

Definition 2.1.1 (Bipartite Correlations). A function P with domain Γ= A×B ×S×T is a
bipartite correlation if:

1. P (a,b|s, t ) ≥ 0 for all (a,b, s, t ) ∈ Γ,

2.
∑
a,b

P (a,b|s, t ) = 1 for all (s, t ) ∈ S ×T ,

3. (Non-signaling)
∑
b

P (a,b|s, t1) =∑
b

P (a,b|s, t2) for all (a, s, t1, t2) ∈ A×S ×T ×T ,

4. (Non-signaling)
∑
a

P (a,b|s1, t ) =∑
a

P (a,b|s2, t ) for all (b, s1, s2, t ) ∈ B ×S ×S ×T .

The first two conditions follow directly from being a probability distribution. The
last two conditions are known as non-signaling conditions. They make sure that there
the question that is asked to Bob does not influence the answer for Alice and vice versa.
Lastly, it can be noted that P (a,b|s, t ) can be thought of as a 4d-tensor or, in other words,
a matrix of matrices.

2.2. CLASSICAL BIPARTITE CORRELATION
In the classical case we don not use quantum phenomena. In the most general case it
is possible to write P (a,b|s, t ) as a convex sum of several P A,i (a|s),PB ,i (b|t ), when we
assume that Γ is finite. The correlation can then be written as

P (a,b|s, t ) =∑
i
λi P A,i (a|s)PB ,i (b|t ). (2.1)

Here P (a|s) and P (b|t ) are the conditional chances for the answer a and b to the ques-
tions. Furthermore,

∑
i
λi = 1 and λi ≥ 0∀i .

Example 1. An example of a classical bipartite correlation is the probability distribution
that arises when we have Alice and Bob in separate rooms and independently answering
questions. Both players have a fair dice and a fair coin. Then the referee can ask them
both two questions:

1. How many eyes are on top after rolling the dice?

2. Is head or tails showing after a coin toss?

There are 6 possible answers 1,2, . . . ,6 to the first question with equal probability.
P (# eyes|How many eyes?) = 1

6 . The second question has 2 answers with probability
P (Heads|Heads or Teals?) = P (Tails|Heads or Teals?) = 1

2 . So far it is hopefully clear and
nothing new has been said. However it changes when we start asking them both a ques-
tion at the same time. Then the probability becomes the product of their chances. So if
we ask Alice how many eyes and Bob which side then the probability of Alice getting 4
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eyes and Bob getting heads is P (4,Heads|How many eyes?,Heads or Teals?) = P (4|How many eyes?)·
P (Heads|Heads or teals?) = 1

6 · 1
2 .

If the reader is interested in a more detailed categorization of classical bipartite correla-
tions, the reader is advised to take a look at [1].

2.3. MEASUREMENT OPERATORS
Before we can fully understand the bipartite quantum correlation, we first have to repeat
some of the physics of quantum states. We start by noting that quantum states cannot
be measured directly, but always require a measurement operator to know something
about that state. However, when measuring a state, we also change the state. But what is
this state?

Definition 2.3.1 (Pure state). Let d be the dimension of the Hilbert space Cd , then a
vector ψ ∈Cd is a pure state if ‖ψ‖2 = 1.

Most physicists are also familiar with an observable to measure quantum states ψ.
In this case it is defined by Definition 2.3.2.

Definition 2.3.2 (Observable). Let d be the dimension of the Hilbert space Cd , then a
d ×d matrix A is an observable if A is Hermitian.

When we apply an observable X to a state ψ the state collapses to an eigenvector
vi of X and the measurement device outputs the corresponding eigenvalue of X . The
probability that this happens will be discussed later.
Since we know that X is Hermitian, we can apply the spectral composition to X . In this
case, this is equal to

X =∑
i
λi vi v∗

i . (2.2)

Here λi are the eigenvalues, vi are the corresponding eigenvectors(‖vi‖2 = 1) and v∗
i

denotes the conjugate transposed of vi . The set of matrices {vi v∗
i }i form a PVM. This is

defined as the state in Definition 2.3.3.

Definition 2.3.3 (PVM). Let d be the dimension of the Hilbert space and let I = {1 : n}
be an index set. Then a PVM is a set {Ai }i∈I where Ai is d ×d matrices for all i, with the
following properties:

1.
∑
i

Ai = I

2. Ai ∀i ∈ I is a Hermitian matrix and positive semidefinite

3. Ai is a projection matrix ∀i ∈ {1, . . . ,d}.

The projection matrix is defined as a square matrix A, with the property A2 = A. This
can be easily checked for the vi v∗

i for a fixed i . We use the fact that vi is an eigenvector
and we can see,

(Ai )2 = (Ai )(Ai ) = (vi v∗
i )(vi v∗

i ) = (vi (v∗
i vi )v∗

i ) = (vi v∗
i ) = Ai . (2.3)
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However, not all PVMs have rang(Ai ) = 1. It is also possible for a PVM to have a higher
rang, this happens when an eigenvalue of the observable has a algebraic multiplicity that
is larger then one.

Now we can use the PVMs to calculate the probability of each one of the eigenvalues
to be measured. This is given by one of the postulates of quantum mechanics.

P (vi is measured) = ‖Ai |ψ〉‖2

= 〈ψ(Ai )H |Aiψ〉
= 〈ψ|(Ai )2|ψ〉
= 〈ψ|Ai |ψ〉
= 〈ψ|vi v∗

i |ψ〉
= ‖〈vi ,ψ〉‖2.

(2.4)

Here the bra-ket notation is used which means that ψ〉 is a vector, and 〈ψ| is the conju-
gated transposed of that vector. To get an even better understanding of the relationship
between the PVMs and observables, we look at an Example 2 with an observable.

Example 2. Let us start with an observable X = 4e1e∗1 +2e2e∗2 =
(

4 0
0 1

)
, where e1 and e2 are

the standard basis in C2 and a state |ψ〉 = 1p
2

(
1
1

)
. Then the eigenvalues of the observable

are 4 and 2 and the respective eigenvectors are e1 and e2. The probability of eigenvalue
λ1 = 4 being measured depends on the state ψ and can be calculated as,

‖〈e1,ψ〉‖2 = (1 · 1p
2

)2 + (0 · 1p
2

)2 = 1
2 . (2.5)

After the measurement, the state has collapsed to e1, so ψ= (
1
0

)
. If we apply the observ-

able again, we measure 4, with probability 1.

Lastly we define the POVM, the operator that we are meanly interested in. It is quite
similar to Definition 2.3.3, but with the last requirement relaxed. It can be seen as a
generalization of a PVM.

Definition 2.3.4 (POVM). Let d be the dimension of the Hilbert space and let I = {1, . . . ,n}
be an index set. Then a POVM is a set {Ai }i∈I where Ai is d ×d matrices for all i, with the
following properties:

1.
∑
i

Ai = I

2. Ai ∀i ∈ I is a Hermitian matrix and positive semidefinite

Remark. All operators and states are elements of a Hilbert space with a certain dimen-
sion d . This dimension d is important for later parts of this thesis.
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2.4. DEFINITION OF BIPARTITE QUANTUM CORRELATIONS
A bipartite quantum correlation is a correlation created with the use of a quantum state
ψ. This state is then given to Alice and Bob. Subsequently, they use this state to answer
respectively questions s or t . Two models describe this correlation; the Tensor model
and the Commuting model. In this thesis we focus on the Tensor model.

In the Tensor model, the state that is passed to both Alice and Bob is described as
ψ ∈Cd ⊗Cd . For a dimension d ∈N. The ⊗ denotes the Kronecker product, or the tensor
product. The tensor product is defined as, the following.

Definition 2.4.1 (Tensor product). Let A ∈C2×2 and B ∈C2×2, then

A⊗B =
(

A11B A12B
A21B A22B

)
.

For larger matrices A and B the tensor product scales as expected.

A bipartite quantum correlations is build with two components, the state ψ ∈ Cd 2

and the POVM {E a
s ⊗ F b

t }(a,b)∈A×B ∈ Cd 2×d 2
. Here d is the local dimension. The state

ψ represents two (possibly entangled) states, and the POVM (E a
s ⊗F b

t ) is the Kronecker
product of two POVMs. It should be noted that the Kronecker product of two POVMs is
still a POVM, since the Kronecker product preserves the properties of a POVM (Hermi-
tian, positive semidefinite, and summing to the identity matrix).

Now let us finally define the bipartite quantum correlation:

Definition 2.4.2 (Bipartite Quantum Correlation). If Alice uses the POVM {E a
s }a∈A to an-

swer question s ∈ S and Bob uses the POVM {F b
t }b∈B to answer question t ∈ T , the prob-

ability to achieve the answers (a,b) to the questions (s,t) is given by

P (a,b|s, t ) = 〈ψ|E a
s ⊗F b

t |ψ〉. (2.6)

2.5. THE CHSH GAME
In a famous paper by Clauser, Horne, Shimony, and Holt in 1969 [6] the authors describe
a thought experiment that will help us get a better understanding of a bipartite quantum
correlation. We use the setting to test our algorithm for lower dimensional correlations.
In this thought experiment we have a question set S = {0,1} and an answer set A = {0,1}
for Alice. For Bob we have T = {0,1} and A = {0,1}. Important to note here is that there
are 2 questions for each player and 2 possible answers for each player as well.

In this case Alice and Bob play a game.The goal of this game is to satisfy the equation,

a ⊕b = s ∧ t , (2.7)

where ⊕ denotes a XOR function (which is 0 if a = b and 1 if a 6= b) and ∧ denotes an AND
function (which is 1 if s = t = 1 and is 0 in all other cases). The probability of each ques-
tion combination (s,t) to occur is equal for all four question combinations and therefore
is equal to 25%.
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When we try to win as a classical player, we can find the maximal win percentage is
75%. An example strategy could be to answer 0 to all questions. The result would then
be the following,

0 = a0 ⊕bo = s0 ∧ t0 = 0

0 = a0 ⊕b0 = s1 ∧ t0 = 0

0 = a0 ⊕bo = s0 ∧ t1 = 0

0 = a0 ⊕b0 6= s1 ∧ t1 = 1,

where it is clear that 3 out of the 4 answers are correct and one is incorrect, making
the winning percentage 75%. This is because the classical problem is overconstrained,
because at least one equation is always incorrect.

Now if we look at a quantum strategy for this game, we first start of with giving both
parties the EPR pair [7], which is named after Einstein, Podolsky and Rosen, and is equal
to

ψ= |0〉|0〉+ |1〉|1〉p
2

= 1p
2


1
0
0
1

 . (2.8)

The observables for Alice and Bob are expressed in terms of Pauli matrices, the three
Pauli matrices are:

X =
(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(−1 0
0 −1

)
.

The observables for Alice are E0 = X for question 0 and E1 = Y for question 1. For Bob
the observables are F0 = (X −Y )/

p
2 for question 0 and F1 = (X +Y )/

p
2 for question 1.

These can be used to determining the PVMs with spectral decomposition. This is done
for the first E0 as an example and can be done similarly for E1, F0 and F1.

We start of by determining the eigenvalues of E0, this can be done with the charac-
teristic polynomial (−λ)2 − 1 = 0. So the eigenvalues are λ0 = 1 and λ1 = −1. Then we
can calculate the unit vector that spans null space of (E0 −λ0I ) = (−1 1

1 −1

)
which is the

eigenvector v0 = 1p
2

(
1
1

)
. Similarly, we can calculate for λ1 that v1 = 1p

2

(
1−1

)
. If we now

use that the PVMs are the outer product of the eigenvectors, we get

E 0
0 = v0v∗

0 =
( 1

2
1
2

1
2

1
2

)
, E 1

0 = v1v∗
1 =

( 1
2 − 1

2
− 1

2
1
2

)
. (2.9)

The same can be done for E1, F0 and F1, that are given below for the sake of completeness

E 0
1 =

( 1
2 − i

2
i
2

1
2

)
, E 1

1 =
( 1

2
i
2

− i
2

1
2

)
, (2.10)

F 0
0 =

( 1
2

1+i
2
p

2
1−i
2
p

2
1
2

)
, F 1

0 =
( 1

2 − 1+i
2
p

2
− 1−i

2
p

2
1
2

)
, (2.11)
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F 0
1 =

( 1
2

1−i
2
p

2
1+i
2
p

2
1
2

)
, F 1

1 =
( 1

2 − 1−i
2
p

2
− 1+i

2
p

2
1
2

)
. (2.12)

These PVMs can be used to finally create our bipartite quantum correlation with Equa-
tion 2.6. This bipartite quantum correlation is hard to display since it is a d4 tensor.
However, we can show four times a quarter of it to show the whole correlation, which is
equal to:

PCHSH(a,b|0,0) =
( 1

4 + 1
4
p

2
1
4 − 1

4
p

2
1
4 − 1

4
p

2
1
4 + 1

4
p

2

)
, (2.13)

PCHSH(a,b|1,0) =
( 1

4 + 1
4
p

2
1
4 − 1

4
p

2
1
4 − 1

4
p

2
1
4 + 1

4
p

2

)
, (2.14)

PCHSH(a,b|0,1) =
( 1

4 + 1
4
p

2
1
4 − 1

4
p

2
1
4 − 1

4
p

2
1
4 + 1

4
p

2

)
, (2.15)

PCHSH(a,b|1,1) =
( 1

4 − 1
4
p

2
1
4 + 1

4
p

2
1
4 + 1

4
p

2
1
4 − 1

4
p

2

)
. (2.16)

Here a and b are the indexes of the matrix. The changes of winning the previous de-
scribed XOR game for (s, t ) = (0,0),(s, t ) = (1,0) and (s, t ) = (0,1) are given on the diagonal
and for (s, t ) = (1,1) on the anti diagonal. Adding these up (multiplied by the 25% chance
of each question occurring) shows that the chance of winning this game using this strat-
egy is ≈ 83%. This is higher then the classical maximum of 75%.

Later, in Chapter 6 we will try to find, using only the bipartite quantum correlation of
CHSH, the operators and state in local dimension d = 2.



3
WIRTINGER CALCULUS

Before we can move on and apply numerical methods to bipartite quantum correlations,
we first need some tools to tackle the problems. One of these tools is the Wirtinger cal-
culus, named after Wilhelm Wirtinger, who introduced it in 1927. The Wirtinger deriva-
tives can be seen as a more general approach to derivatives of complex functions. The
advantage of this method is its elegance and simplicity to use, especially when trying to
determine the derivative of a function with a high dimensional complex domain and a
real image.

Firstly, in Section 3.1 we define the Wirtinger derivative and conjugate Wirtinger
derivative. We also consider the basic behaviour for simple functions such as f (z) = z,
f (z) = z∗ and f (z) = zz∗. Next, in Section 3.2 we discuss what happens when we apply
the derivatives to functions that are holomorphic in c. This is done in a lemma that will
be proved afterward. After that, in Section 3.3 the more advanced differentiation rules
come to light. Using these advanced rules, we look at a few relevant examples that help
us in 4. Subsequently, in Section 3.4 we work out the gradient of real-valued function
with complex parameters. These are functions that often appear in optimization prob-
lems since the complex numbers C are not ordered. Finally, in Section 3.5 we start with a
brief overview of taking the derivative with respect to a matrix, followed by defining the
multi-variable CW- and W-derivative. Lastly, the chain rule for multi-variable functions
is given.

Again the same as Chapter 2, this chapter is mostly a collection of existing informa-
tion. The information in this chapter comes from [8], [9] and [10].

3.1. DEFINITION AND BASIC BEHAVIOUR OF THE WIRTINGER

DERIVATIVES
Before giving the definition of the Wirtinger equations, we first have to forget all we know
about complex derivatives. Especially the Cauchy Riemann equations that are require-
ments to be complex differentiable. We can start of by giving a definition of a property
of complex functions, that makes sure that the functions are well-behaved.

10
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Definition 3.1.1 (Differentiable in a real sense). Let f be a complex function, then it is
differentiable in the real sense if

∂Re( f (z))

∂Re(z)
,

∂Im( f (z))

∂Im(z)
,

∂Re( f (z))

∂Im(z)
, and

∂Im( f (z))

∂Re(z)
(3.1)

all exist everywhere.

There are 2 Wirtinger derivatives, the general Wirtinger derivative (W-derivative) and
the conjugate Wirtinger derivative (CW-derivative). The first one is defined as

Definition 3.1.2 (Wirtinger Derivative). Let f be differentiable in the real sense, then the
general W-derivative of function f is

∂ f

∂z
= 1

2

(
∂ f

∂Re(z)
− i

∂ f

∂Im(z)

)
, (3.2)

where Re(z) and Im(z) indicate respectively the Real and Imaginary parts of z.

Definition 3.1.3 (Conjugate Wirtinger Derivative). Let f be differentiable in the real
sense, then the CW-derivative of function f is

∂ f

∂z∗ = 1
2

(
∂ f

∂Re(z)
+ i

∂ f

∂Im(z)

)
. (3.3)

The only difference between the two the + or − sign. However, they behave quite
differently. To get a feeling for the two derivatives behaviour, we start by trying a few
examples. Using the Definition 3.2 and 3.3 we show that Wirtinger calculus is quite well
behaved. This is shown in the following four examples.

Example 3. When we take the W-derivative of the function f (z) = z, we get

∂z

∂z
= 1

2

(
∂(a +bi )

∂Re(z)
− i

∂(a +bi )

∂Im(z)

)
= 1

2

(
∂(a +bi )

∂a
− i

∂(a +bi )

∂b

)
= 1

2 (1− i 2) = 1, (3.4)

which is as we would expect.

Example 4. Next, when we take the CW-derivative of f (z) = z we get a more surprising
result

∂z

∂z∗ = 1
2

(
∂(a +bi )

∂Re(z)
+ i

∂(a +bi )

∂Im(z)

)
= 1

2

(
∂(a +bi )

∂a
+ i

∂(a +bi )

∂b

)
= 1

2 (1+ i 2) = 0. (3.5)

This might spark the feeling that the conjugate of z can be assumed to stay constant in
Wirtinger calculus.

Example 5. Now it might be interesting to look at the CW-derivative of f (z) = z∗, which
is

∂z∗

∂z∗ = 1
2

(
∂(a −bi )

∂Re(z)
+ i

∂(a −bi )

∂Im(z)

)
= 1

2

(
∂(a −bi )

∂a
+ i

∂(a −bi )

∂b

)
= 1

2 (1− i 2) = 1. (3.6)
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Example 6. Lastly, mostly for completeness, the W-derivative of f (z) = z∗, is equal to

∂z∗

∂z
= 1

2

(
∂(a −bi )

∂Re(z)
− i

∂(a −bi )

∂Im(z)

)
= 1

2

(
∂(a −bi )

∂a
− i

∂(a −bi )

∂b

)
= 1

2 (1+ i 2) = 0. (3.7)

These basic properties are useful when it comes to bigger derivatives and can be
summarized in the following remark.

Remark. When calculating the W-derivative, z could be considered as the only changing
variable, and z∗ can be seen as a constant. When calculating the CW-derivative, the z∗
is the only changing variable, and z should be considered as a constant. This trick only
works when we write f (z) in terms of z and z∗.

Using this remark, it can be straightforward to calculate the CW- and W-derivative of
the following example.

Example 7. Let f (z) = |z|2 = z∗z, then CW- and W-derivative of f (z) are,

∂z∗z

∂z∗ = z,
∂z∗z

∂z
= z∗. (3.8)

3.2. W- AND CW-DERIVATIVE FOR FUNCTIONS THAT ARE HOLO-
MORPHIC IN c

To see how functions that are holomorphic in c respond to the derivatives, we start by
defining what it means to be holomorphic. This is done with the CR-equations.

Definition 3.2.1 (CR equations). The 2 Cauchy Riemann (CR)-Equations for a complex
function f in point c are:

1.
∂Re( f )

∂Re(z)
(c) = ∂Im( f )

∂Im(z)
(c), (3.9)

2.
∂Re( f )

∂Im(z)
(c) =−∂Im( f )

∂Re(z)
(c). (3.10)

These equations are then used to define what it means to be holomorphic in a point.

Definition 3.2.2 (Holomorphic). We say a function f (z) is holomorphic in c ⇐⇒ There
exists a neighborhood of c for which the two CR-equations are true for all points in the
neighbourhood of c.

The functions that are holomorphic in c behave as expected around c when the W-
derivative is applied to it, which is stated in Lemma 3.2.3. This makes W-derivative a
generalization of complex differentiation.
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Lemma 3.2.3. If f is holomorphic in point c, then the W-derivative is equal to the complex
derivative.

Proof. We start the proof of with the expression of the complex derivative.

d f (z)

d z
= lim

z̃→z

f (z̃)− f (z)

‖z̃ − z‖ (3.11)

This is independent of the direction of z̃ − z. Therefore we can chose the direction z̃
approaches z. In this case it useful approach z in the direction of real axis. We do this by
writing z̃(x) = x̃ + i Im(z).

d f (z)

d z
= lim

x̃→Im(z)

(
f (x̃ + i Re(z))− f (z)

‖x̃ −Re(z)‖
)
= ∂ f (z)

Re(z)
(3.12)

Now, we almost have our desired result. Last step is to show that ∂ f (z)
∂Re(z) =−i ∂ f (z)

∂Im(z) , which
can be done with the CR-equations,

∂ f (z)

∂Re(z)
= ∂Re( f (z))

∂Re(z)
+ i

∂Im( f (z))

∂Re(z)

= ∂Im( f (z))

∂Im(z)
− i

∂Re( f (z))

∂Im(z)

=−i
∂ f (z)

∂Im(z)
.

(3.13)

Now we can combine the two previous results,

d f (z)

d z
= ∂ f (z)

∂Re(z)
= 1

2

∂ f (z)

∂Re(z)
+ 1

2

∂ f (z)

∂Re(z)
= 1

2

(
∂ f (z)

∂Re(z)
− i

∂ f (z)

∂Im(z)

)
= ∂ f (z)

∂z
(3.14)

which concludes the proof.

Next we see what happens when we take the CW-derivative of a function that is holo-
morphic in c.

Lemma 3.2.4. If f is holomorphic in c, then the CW-derivative is equal to 0.

Proof. For this we proof we apply the CR-equations to show that ∂ f (z)
∂Re(z) =−i ∂ f (z)

∂Im(z) . This
is done in the same way as done in the Proof of Lemma 3.2.3. Now we can apply this fact
to the definition of the CW-derivative,

∂ f (z)

∂z∗ = 1
2

(
∂ f (z)

∂Re(z)
+ i

∂ f (z)

∂Im(z)

)
= 1

2

(
∂ f (z)

∂Re(z)
− ∂ f (z)

∂Re(z)

)
= 0. (3.15)

This concludes the proof.

3.3. PROPERTIES OF WIRTINGER DERIVATIVES
In this section, we only mention the properties and not proof them due to simplicity and
a large amount of bookkeeping of the proofs. For the proofs, the reader is encouraged to
take a look at [8].
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Lemma 3.3.1. If f is differentiable in the real sense at c, then(
∂ f

∂z
(c)

)∗
= ∂ f ∗

∂z∗ (c). (3.16)

Lemma 3.3.2. If f is differentiable in the real sense at c, then(
∂ f

∂z∗ (c)

)∗
= ∂ f ∗

∂z
(c). (3.17)

Lemma 3.3.3. If f and g are differentiable in the real sense at c and α,β ∈C, then

∂(α f +βg )

∂z
(c) =α∂ f

∂z
(c)+β∂g

∂z
(c), (3.18)

∂(α f +βg )

∂z∗ (c) =α ∂ f

∂z∗ (c)+β ∂g

∂z∗ (c). (3.19)

Lemma 3.3.4. If f and g are differentiable in the real sense at c, then

∂( f · g )

∂z
(c) = ∂ f

∂z
(c) · g (c)+ f (c) · ∂g

∂z
(c). (3.20)

Lemma 3.3.5. If f and g are differentiable in the real sense at c, then

∂g ( f (z))

∂z
= ∂g

∂u

∂u

∂z
+ ∂g

∂u∗
∂u∗

∂z

= ∂g

∂u

∂u

∂z
+

(
∂g∗

∂u

)∗ ∂u∗

∂z
.

(3.21)

Notice that the second term in Lemma 3.3.5 becomes zero if f(x) is holomorphic in c,
leaving us with the normal chain rule. We can try a few examples.

Example 8. Consider f1(z) = z2z∗, a function with z as well as z∗ in it. To calculate this,
we can use the trick previously mentioned in Section 3.1 namely that we can see z and z∗
as independent variables. This way calculating the W-derivative and the CW-derivative
becomes quite easy. For the W-derivative, we can see the function as z2a, where a is a

constant. The W-derivative then becomes ∂ f (z)
∂z = 2zz∗. It works the same for the CW-

derivative. In that case, the function can be seen as bz∗, where b is a constant. The
CW-derivative is equal to ∂ f (z)

∂z∗ = z2.

Example 9. Next we can look at a larger example where the linearity can be used. Con-
sider a function f (z) = 5z5(z∗)3+z5, then by the linearity the W-derivative is easily calcu-

lated to be ∂ f (z)
∂z = 5 ∂(z5(z∗)3)

∂z + ∂(z5)
∂z = (25(z∗)3+5)z4. The same goes for the CW-derivative

which in this case is ∂ f (z)
∂z∗ = 5 ∂(z5(z∗)3)

∂z∗ + ∂(z5)
∂z∗ = 15z5(z∗)2.

Example 10. For the last one let us look at f3(z) = (‖z‖2
2 − 1)2. There are two ways to

determine the derivatives. The first one is with the linearity, which we can use when we
fully write out the function f3(z) = (zz∗−1)(zz∗−1) = z2(z∗)2 −2zz∗+1. Then the W-

derivative is ∂ f3(z)
∂z = 2z(z∗)2−2z∗. Now for the CW-derivative we use the chain rule, then

the CW-derivative is equal to ∂ f3(z)
∂z∗ = 2(zz∗−1) ∂(zz∗−1)

∂z∗ +0 = 2(zz∗−1)z. Here the second
part of the chain rule is zero as z2 is holomorphic.
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3.4. GRADIENT OF REAL-VALUED FUNCTIONS
We start this section with a definition for a gradient and then show that it points towards
the direction of the steepest ascent for real-valued functions with complex variables.

Definition 3.4.1 (Wirtinger gradient). Let f be a real-valued function with complex vari-
ables, then the gradient in point c is

∇ f (c) = 2
∂ f

∂z∗ (c) = ∂ f

∂Re(z)
(c)+ i

∂ f

∂Im(z)
(c). (3.22)

One of the most important theorems that we use is Theorem 3.4.2. We show a proof
from [8], with some small changes.

Theorem 3.4.2. Let f be a real-valued function with complex variables, that is differen-
tiable in the real sense, then the gradient of real-valued functions with complex variables

in c points in the direction of ∂ f
∂z∗ (c)

Proof. This proof is divided into three parts. The first part gives us the first-order Taylor
expansion of a complex function f . The second part simplifies that expansion for real-

valued functions with complex variables, and the last part shows us that ∂ f
∂z∗ (c) points in

the direction of steepest ascent in c.

1. Let us start with writing f (z) as f (x + i y) = u(x, y)+ i v(x, y), where x and u corre-
spond to the real parts and y and v to the imaginary parts. Now we can take the
first-order Taylor expansion of both u and v in c = c1 + i c2, with h = h1 + i h2

u(c +h) = u(c)+h1
∂u

∂x
(c)+h2

∂u

∂y
(c)+O (h2) (3.23)

v(c +h) = v(c)+h1
∂v

∂x
(c)+h2

∂v

∂y
(c)+O (h2) (3.24)

where O denotes the big-O, a way to write the remainder. Combining the two in a
function for f gives

f (c +h) = f (c)+
(
∂u

∂x
(c)+ i

∂v

∂x
(c)

)
h1 +

(
∂u

∂y
(c)+ i

∂y

∂x
(c)

)
h2 +O (h2) (3.25)

Subsequently, we substitute h1 = h+h∗
2 and h2 = h−h∗

2i and write ∂u
∂x (c)+ i ∂v

∂x (c) =
∂ f
∂x (c) and ∂u

∂y (c)+ i ∂v
∂y (c) = ∂ f

∂y (c)

f (c +h) = f (c)+ 1

2

(
∂ f

∂x
(c)+ 1

i

∂ f

∂y
(c)

)
h + 1

2

(
∂ f

∂x
(c)− 1

i

∂ f

∂ f
(c)

)
h∗+O (h2)

= f (c)+ 1

2

(
∂ f

∂x
(c)− i

∂ f

∂y
(c)

)
h + 1

2

(
∂ f

∂x
(c)+ i

∂ f

∂ f
(c)

)
h∗+O (h2)

= f (c)+
(
∂ f

∂z
,
∂ f

∂z∗

)
·
(

h
h∗

)
+O (h2)

(3.26)

which concludes our first step.
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2. The next step is to use the fact that the function is real-valued and applying Lemma

3.3.1,which gives us ∂ f
∂z∗ (c) = ∂ f ∗

∂z∗ (c) = ∂ f
∂z (c). This can then be filled in to 3.26.

f (c +h) = f (c)+ ∂ f

∂z
h + ∂ f

∂z∗ h∗+O (h2)

= f (c)+ ∂ f

∂z
h +

(
∂ f

∂z
h

)∗
+O (h2)

= f (c)+2Re

(
∂ f

∂z
h

)
+O (h2)

(3.27)

which already concludes our second step.

3. In the last step, we use the result found in step 2 and come to our final result. We
start by fixing the absolute value of h to ε with ε ∈ R, significantly small, such that
only first-order phenomena are working. Then we look at what direction would
minimize f (c +h). Since we have done that for an arbitrary value of ε, it works for
all ε small enough.

f (c +h) = f (c)+2Re

(
∂ f

∂z
h

)
+O (h2)

= f (c)+2Re

((
∂ f

∂z∗

)∗
h

)
+O (h2)

(3.28)

Since h has a fixed modulus and only the real part is taken of
((

∂ f
∂z∗

)∗
h
)
, f (c +h)

takes on the biggest value if h is parallel to ∂ f
∂z∗ . Therefore, we can conclude that

∂ f
∂z∗ points in the direction of the gradient.

3.5. MATRIX WIRTINGER CALCULUS
To understand how Matrix Wirtinger Calculus works, it is useful to first repeat how nor-
mal matrix differentials work. If we have an function f (X ), where X is a n×n matrix and
take the derivative with respect to X we get:

∂ f (X )

∂X
=



∂ f (X )
∂X11

∂ f (X )
∂X12

. . . ∂ f (X )
∂X1(n−1)

∂ f (X )
∂X1n

∂ f (X )
∂X21

∂ f (X )
∂X22

. . . ∂ f (X )
∂X2(n−1)

∂ f (X )
∂X2n

...
...

. . .
...

...
∂ f (X )
∂X(n−1)1

∂ f (X )
∂X(n−1)2

. . . ∂ f (X )
∂X(n−1)(n−1)

∂ f (X )
∂X(n−1)n

∂ f (X )
∂Xn1

∂ f (X )
∂Xn2

. . . ∂ f (X )
∂Xn(n−1)

∂ f (X )
∂Xnn


. (3.29)

Here Xkl is the element of matrix X on the kth row and lth column.
Before we can apply the W-derivative to multi-variable functions, we should first de-

fine it. This is done in Definition 3.5.1
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Definition 3.5.1 (Wirtinger derivatives). Let f be a function on Cn , then the Wirtinger
derivatives (also known as W-derivatives) are operators defined as

∂

∂z1
= 1

2

(
∂

∂Re(z1)
− i

∂

∂Im(z1)

)
,

∂

∂z2
= 1

2

(
∂

∂Re(z2)
− i

∂

∂Im(z2)

)
,

...

∂

∂zn
= 1

2

(
∂

∂Re(zn)
− i

∂

∂Im(zn)

)
.

(3.30)

The same should of course be done for CW-derivative in Definition 3.5.2.

Definition 3.5.2 (Conjugate Wirtinger derivative). Let f be a function on Cn , then the
conjugate Wirtinger derivatives (also known as CW-derivatives) are operators defined as

∂

∂z∗
1

= 1

2

(
∂

∂Re(z1)
+ i

∂

∂Im(z1)

)
,

∂

∂z∗
2

= 1

2

(
∂

∂Re(z2)
+ i

∂

∂Im(z2)

)
,

...

∂

∂z∗
n
= 1

2

(
∂

∂Re(zn)
+ i

∂

∂Im(zn)

)
.

(3.31)

Luckily the Lemmas 3.3.1, 3.3.2, 3.3.3, 3.3.4 that were true for 1 complex variable
derivatives are still true for multiple variables. The only one that has changed a bit is the
chain rule. This is because the chain rule has to take into account all different variables
and sum over them. The "new" chain rule becomes:

Lemma 3.5.3. If, for m,n, l ∈N f (z1, z2, . . . , zn): Cm−>Cn and g (z1, z2, . . . , zm):Cn−>Cl

are differentiable in the real sense at c, then the W-derivative is

∂g ( f (z))

∂za
=

n∑
i=1

(
∂g ( f (z))

∂ f (zi )

∂ f (zi )

∂za
+ ∂g ( f (z))

∂ f (zi )∗
∂ f (zi )∗

∂za

)
=

n∑
i=1

(
∂g ( f (z))

∂ f (zi )

∂ f (zi )

∂za
+

(
∂g ( f (z))∗

∂ f (zi )

)∗ ∂ f (zi )∗

∂za

)
.

(3.32)

The CW-derivative is similarly,

∂g ( f (z))

∂z∗
a

=
n∑

i=1

(
∂g ( f (z))

∂ f (zi )

∂ f (zi )

∂z∗
a

+ ∂g ( f (z))

∂ f (zi )∗
∂ f (zi )∗

∂z∗
a

)
=

n∑
i=1

(
∂g ( f (z))

∂ f (zi )

∂ f (zi )

∂z∗
a

+
(
∂g ( f (z))∗

∂ f (zi )

)∗ ∂ f (zi )∗

∂z∗
a

)
.

(3.33)



3.5. MATRIX WIRTINGER CALCULUS 18

When we want to determine the gradient of a function with a high dimensional do-
main (as in 4.20), it can be neat to determine the CW-derivative of each element of a
matrix separately [9]. In this case the expression 3.34 can be helpful. Here the property
of the trace tr(AB T ) =∑

i , j Ai j Bi j are used, where Ai j are the entries of matrix A.

∂g (F (X )

∂X ∗
kl

=
(∑

i j

∂g (F (X )

∂(F (X )i j

∂(F (X ))i j

∂X ∗
kl

)
+

(∑
i j

∂g (F (X )

∂(F (X )∗i j

∂(F (X ))∗i j

∂X ∗
kl

)

= Tr

(
∂g (F (X )

∂(F (X )

(
∂F (X )

∂X ∗
kl

)T )
+Tr

(
∂g (F (X )

∂(F (X )∗

(
∂F (X )∗

∂X ∗
kl

)T )

= Tr

(
∂g (F (X )

∂(F (X )

(
∂F (X )

∂X ∗
kl

)T )
+Tr

(
∂g (F (X )

∂(F (X )∗

(
∂F (X )

∂Xkl

)H
)

(3.34)

Here F and X are matrices. H denotes the Hermitian of a matrix and ∗ denotes only the
conjugated of a matrix. For vectors ∗ always means the conjugated transposed. In the
last line the identity (AT )∗ = AH is used.



4
PROBLEM DESCRIPTION

As described before, the bipartite quantum correlation P with local dimension d can be
described in the form of Equation 4.2

P (a,b|s, t ) = Tr((E a
s ⊗F b

t )ψψ∗) =ψ∗(E a
s ⊗F b

t )ψ (4.1)

where a,b are elements of the answer set, s, t are element of question set, ψ is a unit

vector in Cd 2
, and E a

s and F b
t are Hermitian positive semidefinite matrices in Cd×d . The

P (a,b|s, t ), depending on a,b, s, t , can be determined experimentally. However, this does
not give the explicitψ,E a

s and F b
t the right hand side of 4.1. This is were the optimization

comes into place.
Firstly, in Section 4.1 we define our problem with a cost function and constraints.

Next, in Section 4.2 we do 3 things. We start by changing the constraint of ‖ψ‖ = 1 into
a penalty function. The same is then done for the constraint that the POVMs have to
sum to the identity matrix. Lastly, a method gets introduced that requires the POVM to
be Hermitian and positive semidefinite. After that, in Section 4.3 we give a new uncon-
strained problem description, with the penalty functions. Subsequently, in Section 4.4
we calculate, using the Wirtinger calculus of Chapter 3, the gradient of the unconstrained
problem. Lastly, in Section 4.5 we look at two additional penalty functions to make sure
that the POVMs are also protective matrices, which make them PVMs.

4.1. PROBLEM DESCRIPTION, WITH CONSTRAINS

Given a bipartite quantum correlation P (a,b|s, t ) and dimension d , findψ,{E a
s } and {F b

t }
such that

f (ψ, {E a
s }, {F b

t }) = ∑
a,b,s,t

(
P (a,b|s, t )−ψ∗(E a

s ⊗F b
t )ψ

)2 (4.2)

is minimal. There are several norms that can be used to determine the distance of
(P (a,b|s, t )−ψ∗(E a

s ⊗F b
t )ψ but for now we use the L2-norm squared. Important to note

is that since we are minimizing towards zero we are allowed to square the norm, which
makes it easier to calculate the gradient. Subject to:

19
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ψ∗ψ= 1 (4.3)∑
a

E a
s =∑

b
F b

t = I ∀s, t ∈ S ×T (4.4)

(E a
s )i j = ¯(E a

s ) j i ∀i , j ∈ d ×d ∀a, s ∈ A×S (4.5)

x∗(E a
s )x ≥ 0 ∀x ∈Cd ∀a, s ∈ A×S (4.6)

(F b
t )i j = ¯(F a

s ) j i ∀i , j ∈ d ×d ∀b, t ∈ B ×T (4.7)

x∗(F b
t )x ≥ 0 ∀x ∈Cd ∀b, t ∈ B ×T (4.8)

Here we can write 4.3 as
∑

i ψ̄iψi = 1, which requires psi to be a unit vector. Furthermore,
since {E a

s } and {F b
t } are POVMs then by definition 2.3.4 they are required to obey 4.4, 4.5,

4.6, 4.7 and 4.8.

4.2. PENALTY FUNCTIONS
Gradient descent is only possible when there are no constraints, which of course, is not
the case for our current problem. Therefore we modify the problem slightly by express-
ing the constraints as penalty functions. For equality constraints of the form Ax = b it
can be written as µ‖Ax −b‖2.

Note that the ’type’ of the norm and µ can be changed. For the most simplistic case,
we assume µ = 1 and not variable and that the norm is the L2

2 norm. In the case for 4.3
the penalty function becomes,

(ψ∗ψ−1)2. (4.9)

Here ψ∗ψ ∈ C, so we only have to sum over one square. Next for 4.4 we require the
individual elements of the matrices to sum to, one if it is a diagonal element, and to zero
if it is a non-diagonal element. For E we have

fpenE =∑
s

∑
i

∥∥∥∥(∑
a

(E a
s )i i

)
−1

∥∥∥∥2

2

+∑
s

∑
i j

i 6= j

∥∥∥∥(∑
a

(E a
s )i j

)∥∥∥∥2

2

(4.10)

and similarly for F

fpenF =∑
t

∑
i

∥∥∥∥∥
(∑

b
(F b

t )i i

)
−1

∥∥∥∥∥
2

2

+∑
t

∑
i j

i 6= j

∥∥∥∥∥
(∑

b
(F b

t )i j

)∥∥∥∥∥
2

2

.

(4.11)

Although Equation 4.10 and Equation 4.11 do transform two of the constraints into penalty
functions, it does not get a lot easier. Therefore we introduce the Frobenius norm.
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Definition 4.2.1 (Frobenius norm). The Frobenius norm of a n ×m matrix M ∈Cn×m is

‖M‖F =
√√√√ m∑

i=1

n∑
j=1

|Mi j |2 =
√

tr(AH A).

Checking if the Frobenius norm is actually a norm can be considered as an exercise
for the reader. The Frobenius norm suits the penalty functions perfectly. Therefore 4.10
can be written as

fpenE =∑
s

∥∥∥∥(∑
a

(E a
s )

)
− I

∥∥∥∥2

F

(4.12)

and 4.11 as

fpenF =∑
t

∥∥∥∥∥
(∑

b
(F b

t )

)
− I

∥∥∥∥∥
2

F

. (4.13)

The norm can written as he trace form, which make is east to determine the gradient.
This is done in Section 4.4.

For the Hermitian constraints, we could add another penalty function, which would
add an error for elements that do not obey 4.5 and 4.7. However, this has the downside
that it makes the penalty function larger. For the positive semidefinite constrains Equa-
tion 4.6 and Equation 4.8, we have a larger problem since it is a more general statement
and it is hard to create penalty functions for these expressions. It could be done with
(TrE)2/Tr(E 2) > d −1, where d is the local dimension [11](equation 2.39). However, this
would make the overall penalty function more complicated.

Therefore we should look at an alternative, namely the Cholesky Decomposition of E
and F, which could kill two birds with one stone.

Definition 4.2.2 (Cholesky Decomposition). Let A be a n×n matrix. Then the Cholesky
decomposition of A is of the form

A = LH L,

where L is a lower triangle matrix.

We repeat that in this thesis we use H to denote the Hermitian conjugate of a matrix.
The usefulness of Cholesky decomposition can be best shown in the next theorem.

Theorem 4.2.3 (Cholesky decomposition are Hermitian and positive semidefinite). Let
A be a n ×n matrix. Then the following holds:
A is Hermitian and positive semidefinite ⇐⇒ There exists a Cholesky decomposition of
A.

To prove Theorem 4.2.3 we first have to prove Lemma 4.2.4.

Lemma 4.2.4. Let A be a positive semidefinite n×n matrix, then there is a n×n a Hermi-
tian matrix B such that A = BB

Proof. We know that A is Hermitian since A is positive semidefinite. Using diagonaliza-
tion, we know it is possible to write the Hermitian matrix A as A = SDSH where D is a
diagonal matrix with entries of the eigenvalues of A and S as an orthogonal matrix.



4.2. PENALTY FUNCTIONS 22

Next, we define Ds as a diagonal matrix with on the diagonal the square roots of all eigen-
values. We can do this since all eigenvalues λi ∈ {λ1,λ2, . . . ,λn} are greater or equal then
0, because A is positive semidefinite. Furthermore, we define S as before. Now we have
a SDs SH which is the square root of A, namely

BB = SDs SH SDs SH = SDs Ds SH = SDSH = A, (4.14)

which concludes the proof.

Following this we give a theorem about QR decomposition. Proving this can be done
by reader, by writing matrix product of QL out.

Lemma 4.2.5. Let B be a n ×n matrix, then it is possible to write B as,

B =QL, (4.15)

with L a lower triangular matrix and Q an unitary matrix.

Now we go back to Theorem 4.2.3 and use the previous 2 lemmas to get the desired
result.

Proof of Theorem 4.2.3. ( =⇒ )We first start with the forward implication. Let A be a pos-
itive semidefinite n ×n matrix, then by Lemma 4.2.4 there is n ×n Hermitian matrix B
such that B 2 = A. Furthermore, by Lemma 4.2.5 all matrices have a QL decomposition.
Combining these give us

A = BB H = (QL)H (QL) = LH Q H QL = LH L,

which completes the first part of the proof.
( ⇐= ) Next we do the backward implication, which is a bit more straight forward. Let us
start with the assumption that A = LH L, then Hermitian part is done directly,

AH = (LH L)H = LH L = A. (4.16)

That A is positive semidefinite is proven by,

x∗Ax = x∗(LH L)x = (Lx)∗(Lx) ≥ 0. (4.17)

Here the inequality comes from the fact that (Lx)∗Lx is the modulus squared of Lx. Now
we have shown that when matrix A has a Cholesky decomposition, it is Hermitian and
positive semidefinite. This completes our proof.

Using the previous proven result of Lemma 4.2.3 and the function G(X ) = X H X , we
can write

E a
s (X a

s ) =G(X a
s ) = (X a

s )H (X a
s ) ∀(a, s) ∈ A×S, (4.18)

where E a
s has to be Hermitian and positive semidefinite. We can do the same for F,

F b
t (Y b

t ) =G(Y b
t ) = (Y b

t )H (Y b
t ) ∀(b, t ) ∈ B ×T, (4.19)

then again we know that F b
t is Hermitian and positive.
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4.3. PROBLEM DESCRIPTION, WITH PENALTIES
So we can use the Cholesky decomposition to make sure that Equations 4.5,4.10,4.7
and4.11 are always true and we use the penalty function to replace constraints Equa-
tion 4.3 and Equation 4.4. The new problem is now expressed in terms of X and Y instead
of E and F description, which is equal to

f (ψ, {X a
s }, {Y b

t }) = ∑
a,b,s,t

(
P (a,b|s, t )−ψ∗(G(X a

s )⊗G(Y b
t ))ψ

)2

+ (
ψ∗ψ−1

)2 +∑
s

∥∥∥∥(∑
a

G(X a
s )

)
− I

∥∥∥∥2

F

+∑
t

∥∥∥∥∥
(∑

b
G(Y b

t )

)
− I

∥∥∥∥∥
2

F

.

(4.20)

Here the first rule is called the fob j and the second is called fpen . In the next section,
we tackle both of them separately. We can do this due to the linearity of the Wirtinger
derivatives.

4.4. GRADIENT
The next step is to determine the gradient of fpen and fob j , this is done separately in the
following to subsections. The total gradient has been numerically tested in Section 6.1.

4.4.1. GRADIENT OF fob j WITH RESPECT TO ψ, X AND Y
The function of fob j is

fob j (ψ, {X a
s }, {Y b

t }) = ∑
a,b,s,t

(
P (a,b|s, t )−ψ∗(G(X a

s )⊗G(Y b
t ))ψ

)2. (4.21)

First let’s take the derivative w.r.t. ψ. This is quite easily done with the CW-derivative
and the product rule. This leave us with

∇ψ fob j (ψ, {X a
s }, {Y b

t }) = 2
∂ fob j (ψ, {X a

s }, {Y b
t })

∂ψ∗

= 2
∂

∂ψ∗
∑

a,b,s,t

(
P (a,b|s, t )−ψ∗(G(X a

s )⊗G(Y b
t ))ψ

)2

= 4
∑

a,b,s,t

(
P (a,b|s, t )−ψ∗(G(X a

s )⊗G(Y b
t ))ψ

)
· ∂

∂ψ∗
(
P (a,b|s, t )−ψ∗(G(X a

s )⊗G(Y b
t ))ψ

)
=−4

∑
a,b,s,t

(
P (a,b|s, t )−ψ∗(G(X a

s )⊗G(Y b
t ))ψ

) · (G(X a
s )⊗G(Y b

t ))ψ
)
.

(4.22)

The next step is to take the derivative with respect to X a
s . This is done in two steps, the

first step considers a version of Equation 4.21, where we take the derivative w.r.t. E a1
s1

and
(E a1

s1
)∗, with s1 and a1 fixed. This is done because we need these for the chain rule. Then

we determine the both W-derivatives of G(X ) = X H X . To eventually apply Equation 3.34
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to Equation 4.21. So starting with a single element of the matrix (E a1
s1

)i j . The single
element derivatives use the fact that our objective is the sum of a lot of linear equations,
the chain rule, and the fact that ∂E

∂Ei j
= J i j , where J i j is a single element matrix. This

gives us

∂ fob j (ψ, {E a
s }, {F b

t })

∂(E a1
s1

)i j
= ∂

∂(E a
s )i j

∑
a,b,s,t

(
P (a,b|s, t )−ψ∗(E a

s ⊗F b
t )ψ

)2

= ∂

∂(E a
s )i j

∑
b,t

(
P (a1,b|s1, t )−ψ∗(E a1

s1
⊗F b

t )ψ
)2

=−2
∑
b,t

(
P (a1,b|s1, t )−ψ∗(E a1

s1
⊗F b

t )ψ
) · ∂

∂(E a
s )i j

ψ∗(E a1
s1

⊗F b
t )ψ

=−2
∑
b,t

(
P (a1,b|s1, t )−ψ∗(E a1

s1
⊗F b

t )ψ
) ·ψ∗(J i j ⊗F b

t )ψ.

(4.23)

Next we note that the CW-derivatives is equal to zero, for all elements of E a1
s1

. This is
because fob j (ψ, {E a

s }, {F b
t }) is everywhere holomorphic, when we consider the only {E a

s }
as a variable. This also means that

∂

∂(E a
s )∗i j

fob j (ψ, {E a
s }, {F b

t }) = 0. (4.24)

Next up, we calculate ∂(X H X )
∂(X ∗

kl ) and ∂(X H X )
∂(Xkl ) [9], these are equal to

∂G(X )

∂(X ∗
kl )

= J l k X , (4.25)

∂G(X )

∂(Xkl )
= X H J kl . (4.26)

Notice that the single entry matrix J lk is flipped in the case of Equation 4.25, this is be-
cause X H is Hermitian transposed.

Now the fun starts, we can start combining. We start with Equation 3.22 and apply
Equation 3.34. The combination results in

2
∂ fob j (ψ, {X a

s }, {Y b
t })

∂(X a1
s1

)∗kl

= 2

( ∑
i , j ,a,s

∂ fob j (ψ, {X a
s }, {Y b

t })

∂G(X a
s )i j

∂(E a
s )i j

∂(X a1
s1

)∗kl

)

+2

( ∑
i , j ,a,s

∂ fob j (ψ, {X a
s }, {Y b

t })

∂G(X a
s )∗i j

∂
(
X H X

)∗
i j

∂(X a1
s1

)∗kl

)

= 2
∑
a,s

Tr

((
∂ fob j (ψ, {X a

s }, {Y b
t })

∂G(X a
s )

)T
∂((X a

s )H X a
s )

∂(X a1
s1

)∗kl

)
+0.

(4.27)

This can be used as an expression for the gradient. However, since we will use this in

computation, we should try to make it more neatly. This will be done by filling in ∂(X H X )
∂X ∗

kl
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and using two characteristics of the trace namely

Tr (ABC ) = Tr (BC A) (4.28)

and
Tr (J i j A) = A j i . (4.29)

Working the equation further out gives us

2
∂ fob j (ψ, {X a

s }, {Y b
t })

∂(X a1
s1

)∗kl

= 2
∑
a,s

Tr

((
∂ fob j (ψ, {X a

s }, {Y b
t })

∂G(X a
s )

)T
∂((X a

s )H X a
s )

∂(X a1
s1

)∗kl

)

= 2Tr

((
∂ fob j (ψ, {X a

s }, {Y b
t })

∂G(X a1
s1

)

)T

J l k X a1
s1

)

= 2Tr

(
J lk X a1

s1

(
∂ fob j (ψ, {X a

s }, {Y b
t })

∂G(X a1
s1

)

)T )

= 2

(
X a1

s1

(
∂ fob j (ψ, {X a

s }, {Y b
t })

∂G(X a1
s1

)

)T )
kl

.

(4.30)

Next, we write out the multiplication and fill in the function, leaving us with

2
∂ fob j (ψ, {X a

s }, {Y b
t })

∂(X a1
s1

)∗kl

= 2
∑

i

(
(X a1

s1
)ki

((
fob j (ψ, {X a

s }, {Y b
t })

∂G(X a1
s1

)

)
i l

)T )

= 2
∑

i

(
(X a1

s1
)ki

(
fob j (ψ, {X a

s }, {Y b
t })

∂G(X a1
s1

)

)
l i

)
=−4

∑
i ,b,t

(
(X a1

s1
)ki

(
P (a,b|s, t )−ψ∗(E a1

s1
⊗F b

t )ψ
)(
ψ∗(J l i ⊗F b

t )ψ
))

.

(4.31)

This leaves us with quite a nice expression, which can be used for computation. How-
ever, we can make it even faster by rewriting ψ∗(E ⊗ J l i )ψ, as the sum over the non zero
elements. This is used in the code in Appendix A.

The same steps can be taken for Y , this gives us

2
∂ fob j (ψ, {X a

s }, {Y b
t })

∂(Y b1
t1

)∗kl

=−4
∑

i ,a,s

(
(Y b1

t1
)ki

(
P (a,b|s, t )−ψ∗(E a

s ⊗F b1
t1

)ψ
)(
ψ∗(E a

s ⊗ J l i )ψ
))

.

(4.32)

4.4.2. GRADIENT OF THE PENALTY FUNCTIONS
To obtain the total function over which we want to use gradient descent, we simply add
the penalty functions to the objective function. Therefore, we can calculate the gradient
over the penalty function separately. The penalty function of which we want to calculate
the gradient is

fpenalty(ψ, {X a
s }, {Y b

t }) = (
ψ∗ψ−1

)2+∑
s

∥∥∥∥(∑
a

G(X a
s )

)
− I

∥∥∥∥2

F

+∑
t

∥∥∥∥∥
(∑

b
G(Y b

t )

)
− I

∥∥∥∥∥
2

F

. (4.33)
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We start of by calculating the (Wirtinger) gradient with respect to ψ,

∇ψ fpenalty(ψ, {X a
s }, {Y b

t } = 2
∂(ψ∗ψ−1)2

∂ψ∗

= 4(ψ∗ψ−1)ψ.

(4.34)

Now we want to determine the gradient with respect to the elements of X a
s and Y b

t . This
is done in 2 steps, first we calculate the derivative for the with respect to (E a1

s1
)i j (the

diagonal and non diagonal elements separate) and then we apply the chain rule in 4.39.
The first step is done in four sub-steps, first we calculate the W- and CW-derivative and
of the diagonal elements and then we calculate the W- and CW-derivative of the none
diagonal elements. The W-derivative of the diagonal element is equal to,

∂ fpenalty(ψ, {X a
s }, {Y b

t })

∂(E a1
s1

)i i
=
∂
∑
s

(((∑
a

(E a
s )i i

)
−1

)((∑
a

(E a
s )i i

)
−1

)∗)
∂(E a1

s1
)i i

=
((∑

a
(E a1

s1
)∗i i

)
−1

)
.

(4.35)

which makes sense, as the constraint only says something about the sum. The derivative
is the same for F. Similarly the conjugated derivative is equal to,

∂ fpenalty(ψ, {X a
s }, {Y b

t })

∂(E a1
s1

)∗i i

=
∂
∑
s

(((∑
a

(E a
s )i i

)
−1

)((∑
a

(E a
s )i i

)
−1

)∗)
∂
(
E a1

s1

)∗
i i

=
((∑

a
(E a1

s1
)i i

)
−1

)
.

(4.36)

This, of course is not equal to zero as the fpenalty is not holomorphic. For the non diago-
nal element the W- and CW-derivatives respectively are

∂ fpenalty(ψ, {X a
s }, {Y b

t })

∂(E a1
s1

)i j
=
∂
∑
s

((∑
a

(E a
s )i i

)(∑
a

(E a
s )i j

)∗)
∂(E a1

s1
)i j

=∑
a

(E a1
s1

)∗i j ,

(4.37)

and

∂ fpenalty(ψ, {X a
s }, {Y b

t })

∂(E a1
s1

)∗i j

=
∂
∑
s

((∑
a

(E a
s )i i

)(∑
a

(E a
s )i j

)∗)
∂(E a1

s1
)∗i j

=∑
a

(E a1
s1

)i j .

(4.38)

Keep in mind this is only part of the gradient, as the total Equation 4.33 is expressed in
terms of X a

s and Y b
t . In the next calculation the gradient is calculated. In this case fpenalty
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is not holomorphic and therefore the conjugate derivative is not equal to zero, as was the
case for fobj. This leaves us with

2
∂ fpenalty(ψ, {X a

s }, {Y b
t }

∂(X a
s )∗kl

= 2Tr

((
∂ fpenalty((X a

s )H (X a
s ))

∂(X a
s )H (X a

s )

)T
∂((X a

s )H (X a
s ))

∂(X a
s )∗kl

)

+2Tr

((
∂ fpenalty((X a

s )H (X a
s ))

∂((X a
s )H (X a

s ))∗

)T (
∂
(
(X a

s )H (X a
s )

)
∂(X a

s )kl

)∗)
.

(4.39)

We apply a similar trick with the single entry matrices as before in 4.30. This results in

= 2Tr

((
∂ fpenalty(ψ, {X a

s }, {Y b
t }

∂(X a
s )H (X a

s )

)T

J l k (X a
s )

)
+2Tr

((
∂ fpenalty((X a

s )H (X a
s ))

∂((X a
s )H (X a

s ))∗

)T

(X a
s )T J kl

)

= 2Tr

(
J lk (X a

s )

(
∂ fpenalty((X a

s )H (X a
s ))

∂(X a
s )H (X a

s )

)T )
+2Tr

(
J kl

(
∂ fpenalty((X a

s )H (X a
s ))

∂((X a
s )H (X a

s ))∗

)T

(X a
s )T

)

= 2

(
X a

s

(
∂ fpenalty((X a

s )H (X a
s ))

∂(X a
s )H (X a

s )

)T )
kl

+2

((
∂ fpenalty((X a

s )H (X a
s ))

∂((X a
s )H (X a

s ))∗

)T

(X a
s )T

)
l k

= 2

(
∂ fpenalty((X a

s )H (X a
s ))

∂(X a
s )H (X a

s )
(X a

s )T

)
l k

+
(

(X a
s )
∂ fpenalty((X a

s )H (X a
s ))

∂((X a
s )H (X a

s ))∗

)
kl

.

(4.40)

Writing out the matrix product and fill in the function, which gives us

= 2
∑

i

(
(X a

s )ki

(
fpenalty((X a

s )H (X a
s ))

∂(X a
s )H (X a

s )

)
l i

)
+2

∑
i

((
fpenalty((X a

s )H (X a
s ))

∂((X a
s )H (X a

s ))∗

)
i l

(X a
s )ki

)

= 2
∑

i

(
(X a

s )ki

((∑
a

(
(X a

s )H (X a
s )

)
l i

)∗
−δ(l , i )

))
+2

∑
i

(
(X a

s )ki

((∑
a

(
(X a

s )H (X a
s )

)
i l

)
−δ(l , i )

))
= 2

∑
i

(
(X a

s )ki

((∑
a

(
(X a

s )H (X a
s )

)
l i

)∗
+

(∑
a

(
(X a

s )H (X a
s )

)
i l

)
−2δ(l , i )

))
= 4

∑
i

(
(X a

s )ki

(∑
a

(
(X a

s )H (X a
s )

)
i l −δ(l , i )

))
.
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For Y exactly the same steps can be taken which results in a gradient that is equal to

2
∂ fpenalty(ψ, {X a

s }, {Y b
t }
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4.5. PROBLEM DESCRIPTION AND GRADIENT FOR PVMS
In the previous sections we looked at POVMs, however it is possible to add a constraint
to make sure that the POVMs are projection matrices, which makes them PVMs. The
constraints then are,

(E a
s )2 = E a

s ∀a, s ∈ A×S, (4.43)
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and
(F b

t )2 = F b
t ∀b, t ∈ B ×T. (4.44)

Both of these can be written as a penalty function, this is done in a same way as in Equa-
tion 4.10 and 4.11. The penalty function for constraint Equation 4.43 is

fPVM,E({E a
s }) =∑

a,s

∥∥(E a
s )2 −E a

s

∥∥2
F , (4.45)

and for constraint Equation 4.44 the penalty function is

fPVM,F({F b
t }) =∑

b,t

∥∥∥(F b
t )2 −F b

t

∥∥∥2

F
. (4.46)

The last step is to calculate the gradients, when we write Equation 4.45 and 4.46 in
terms of respectively X a

s and Y b
t . The gradient of Equation 4.45 with respect to an ele-

ment of X a
s is equal to
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The gradient of Equation 4.46 can be determined in a similar way and is equal to,
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5
GRADIENT DESCENT

In this chapter, we explore different first-order descent methods. For each method, we
give a brief overview of how it works, then we give an algorithm that suits the variables
of our problem, and after that, we give the advantages and disadvantages.

In Section 5.1 we introduce the most basic gradient descent method, namely the
fixed step size method. Next, in Section 5.2 we look at an improved version of the fixed
step size method that keeps the step size variable and does an exact optimization step
each iteration. This way, each iteration has to have a lower value than the previous one.
After that, in Section 5.3 we change out the exact line search with a backtracking line
search. We do not have to go through a full optimization step but accept a step size
for which the cost function reduces enough. Subsequently, in Section 5.4 we look at
momentum-based gradient descent, there are many different momentum-based meth-
ods [12], but we focus on the most basic one. In this method, we add a velocity to each
iteration based on the previous steps. Lastly, in Section 5.5 we take a step from first-order
methods and look at potential second-order methods.

The first three methods come from [13], whereas the momentum-based method
comes from [12]. In the last section the ideas come from [14].

5.1. FIXED STEP SIZE
The most general gradient descent method works as the following. We start with a ran-
dom point x0, calculate the gradient ∇ f (x0), and then take a step in the negative direc-
tion of the gradient. So to find the next point the following formula is used,

xk+1 = xk − t∇ f (xk ), (5.1)

where t > 0 is the step size, and k = 0,1,2 . . . denotes the iteration number. Note that
the name for step size t can be confusing, since in general ‖ f (xk+1)− f (xk )‖ 6= t , only
if the gradient is an unit vector. Let us now try to implement an algorithm that uses
Equation 5.1. In this case f is Equation 4.20 and x is ψ, {X a

s }, {Y b
t }. Here the gradient is

29
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split into 3 parts and reshaped in the shape of a vector and two lower diagonal matrices.
The algorithm stops if f ({X a

s }, {Y b
t },ψ) ≤ 10−5. The algorithm then is:

Algorithm 1: Gradient descent with fixed step size

Result: {X a
s }, {Y b

t } and ψ such that f ({X a
s }, {Y b

t },ψ) ≤ 10−5

Start with random {X a
s }, {Y b

t } and ψ ;
choose t >0 ;

while f ({X a
s }, {Y b

t },ψ) > 10−5 do
Calculate gradient {d X a

s },{dY b
t } and dψ;

X = X − t ∗d X ;
Y = Y − t ∗dY ;
ψ=ψ− t ∗dψ.

end

With the right choice of t the algorithm turns out to work quite well. This correct
value t has to be found through trial and error. In practice, it can be seen after 100 it-
erations if t is sufficiently small. If it is not sufficiently small, the cost function might
increase or oscillate. If t is chosen too small, the algorithm converges slow. So an ideal
algorithm has value for the step size t , that is as large as possible, while still provides
convergence towards a minimum. Furthermore, it should be noted that monotonicity is
not guaranteed. This whole searching for an ideal t is, of course, far from ideal. We can
do better. Next, we look at a variable step size t , which hopefully works better.

5.2. EXACT LINE SEARCH
A solution to the problem of guessing to the step size is to keep t as a variable and do
an one dimensional optimization for the ideal step size each step. For each iteration we
choose t = argmins≥0 f (x − s∇ f (x)). This could be useful, if it would be easy to parame-
terize gx (s) = f (x − s∇ f (x)). This can be done with the following algorithm:

Algorithm 2: Gradient descent with exact line search

Result: {X a
s }, {Y b

t } and ψ such that f ({X a
s }, {Y b

t },ψ) ≤ 10−5

Start with random {X a
s }, {Y b

t } and ψ ;

while f ({X a
s }, {Y b

t },ψ) > 10−5 do
Calculate gradient {d X a

s },{dY b
t } and dψ;

t = ar g mi ns≥0 f ({X a
s }− s{d X a

s }, {Y b
t }− s{dY b

t },ψ− sdψ);
X = X − t ∗d X ;
Y = Y − t ∗dY ;
ψ=ψ− t ∗dψ.

end

The most significant benefit of this method is that the need to guess the step size is
removed. The downside is that for each step, we get a new optimization problem. This
could be solved with parameterization, but this makes our problem more complex and
could eventually slow it down.
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5.3. BACKTRACKING LINE SEARCH
When an exact line search is too complicated, one alternative is the backtracking line
search. It is quite simple and depends on 2 parametersα,β, withα ∈ (0,0.5) andβ ∈ (0,1).
The method starts with a step size t = 1, then it checks if

f (x + t∆x) ≤ f (x)−αt∇ f (x)T∆x. (5.2)

Here x is the starting point, ∆x the search direction and f the function that has to be
optimized. In case of minimization and gradient descent ∆x = −∇ f , as is the case for
our problem. Then the condition becomes

f (x − t∇ f (x)) ≤ f (x)−αt‖∇ f (x)‖2. (5.3)

If this condition is true then we know that f (xk ) is larger then f (xk+1) which make sure
that the series f (xk )k≥1 is a strictly descending series. If the condition is false t is mul-
tiplied with β until the condition is true and the new found step size t is used to take a
step. This is described by the following algorithm:

Algorithm 3: Gradient descent with backtracking line search

Result: {X a
s }, {Y b

t } and ψ such that f ({X a
s }, {Y b

t },ψ) ≤ 10−5

Start with random {X a
s }, {Y b

t } and ψ ;
choose α ∈ (0,0.5) and β ∈ (0,1);

while f ({X a
s }, {Y b

t },ψ) > 10−5 do
Calculate gradient {d X a

s },{dY b
t } and dψ;

while f (x − t∇ f (x)) ≥ f (x)−αt‖∇ f (x)‖2 do
t = t ∗β

end
X = X − t ∗d X ;
Y = Y − t ∗dY ;
ψ=ψ− t ∗dψ;

update f ({X a
s }, {Y b

t },ψ).
end

The inner while loop will always eventually terminate since when t is small enough.
Since α< 0.5

f (x − t∇ f (x)) ≈ f (x)− t‖∇ f (x)‖2 < f (x)−αt‖∇ f (x)‖2 (5.4)

One of the great benefits of this method is that it can be relatively fast, especially when
the cost function is easy to compute, but the gradient is not. However, it should be con-
sidered that it adds an extra computation step over fixed step size gradient descent. Fur-
thermore, it should be noted that the backtracking parameters α and β do influence the
convergence rate, but their effect is not that large [13]. Lastly, this method can have some
problems with saddle points, where it first slowly converges towards the critical points
and then goes down along the negative sides of the saddle.
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5.4. MOMENTUM-BASED GRADIENT DESCENT
Next, we are going to look into an advanced gradient descent method. This method
works similarly to the previously mentioned fixed step size method in Section 5.1. How-
ever, this method tries to incorporate some learning aspects because they remember the
previous step and use them to make the next step. This done by calculating the velocity
terms X a

s , Y b
t and Ψ each iteration step. The velocity terms are equal to

vk = γ · vk−1 + t ·∇ f (xk ). (5.5)

Here γ ∈ (0,1) is the learning rate and vk−1 the previous velocity term. This is applied in
the following algorithm:

vk = γ · vk−1 + t ·∇ f (xk ). (5.6)

Here γ ∈ (0,1) is the learning rate and vk−1 the previous velocity term. This is applied in
the next algorithm:

Algorithm 4: Gradient descent with momentum

Result: {X a
s }, {Y b

t } and ψ such that f ({X a
s }, {Y b

t },ψ) ≤ 10−5

Start with random {X a
s }, {Y b

t } and ψ ;
choose t >0 ;
choose γ ∈ (0,1) ;
initialize X a

s = 0 ;

initialize Y b
t = 0 ;

initialize Ψ= 0 ;

while f ({X a
s }, {Y b

t },ψ) > 10−5 do
Calculate gradient {d X a

s },{dY b
t } and dψ;

X a
s = γ∗X a

s − t ∗d X a
s ;

Y b
t = γ∗Y b

t − t ∗dY b
t ;

Ψ= γ∗Ψ− t ∗dψ;
X = X −X a

s ;

Y = Y −Y b
t ;

ψ=ψ−Ψ.
end

The significant advantage is that the oscillations are dampened and convergence is
accelerated. However, there is one downside: this method does not have to be descend-
ing, in contrast with the line search methods. Furthermore, if we choose the learning rate
and the step size wrongly, the program keeps on overshooting each step and, therefore,
diverges. This concludes our most advanced first-order method.

5.5. SECOND-ORDER METHODS
As the focus of this thesis is mostly on first-order methods, this chapter might seem a bit
out of place. However, this section should be seen as creating some possibilities for faster
algorithms, for in the future. Most second order methods require a Hessian and luckily it
is possible to calculate the Hessian using the same Wirtinger calculus. This could make it
possible to make the algorithms converge even faster. The downside could be that each
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iteration might be a lot slower. Let us first start by a second-order Taylor expansion to
show what the Hessian looks like. This can be done via a similar way as the first part of
the proof of Theorem 3.4.2.

f (c +h) = f (c)+
(
∂ f

∂z
,
∂ f

∂z∗

)
·
(

h
h∗

)
+ 1

2
(h,h∗) ·

(
∂2 f
∂z2

∂2 f
∂z∂z∗

∂2 f
∂z∗∂z

∂2 f
∂(z∗)2

)
·
(

h
h∗

)
(5.7)

Here the Hessian is

(
∂2 f

∂z2
∂2 f
∂z∂z∗

∂2 f
∂z∗∂z

∂2 f

∂(z∗)2

)
. It be could be interesting to investigate if using second-

order methods could be beneficial, since it requires extra computation work per itera-
tion, but it could speed up the convergence.

Something else that could be done is determining the Hessian with the use of first-
order methods. The Broyden–Fletcher–Goldfarb–Shanno algorithm [14] does precisely
this. We only have to calculate the gradient and then do some linear algebra such that
we get a matrix that approaches the Hessian.



6
COMPUTATIONAL EXPERIMENTS

In this chapter all our previous work comes together. We start with three types of bipar-
tite quantum correlation from different papers and then try to find the states and the
operators for an as low possible local dimension.

In Section 6.1 we check our work of Chapter 4. This is done by perturbing our gradi-
ent and then applying Theorem 3.4.2. Then, in Section 6.2 we try to find the states and
operators of the CHSH bipartite quantum correlation that was introduced in 2.5. After
that, in Section 6.3 we look at the correlations given in a recent paper [15] and try to find
their operators and state. Later, in Section 6.4 we search for the operators and state of the
correlations described in [16]. Finally, in Section 6.5 we compare four of the algorithms
that were used to find the state and operators.

6.1. VALIDATION OF THE GRADIENT
Before we can apply our first-order gradient descent methods described in Chapter 5, we
first should check if the gradient that we found in Chapter 4 is correct. This is to assure
us that during the mathematical derivation, we did not make any mistakes. Thus, the
mathematical derivation is a proof, whereas this section is a numerical validation of that
proof.

So how do we check if the gradient points in the right direction? Let us first start
by thinking about the gradient and what characterizes it. A gradient points towards the
direction of the steepest increase of a function for all points on the domain by Theorem
3.4.2. Therefore if look at a function f at point c and calculate the gradient, then the
directional derivative in the direction of the gradient is equal to

∂ f

∂v
(c) = lim

h→0

f (c +h ∗ v)− f (c)

h
, (6.1)

where v is in the direction of the gradient. This directional derivative is larger than all
other directional derivatives. So if we perturb v a small bit to v ′, where ‖v − v ′‖ = ε then
∂ f
∂v ′ (c) should always be smaller then ∂ f

∂v (c).

34
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The program first calculates the directional derivative of the gradient and then com-
pared it to the directional derivative of the perturbed directions. The code to check this
is the function testgrad() in Appendix A. The results show that the gradient of the total
function, with and without PVM penalty, is likely to be correct since it did not find an
improvement over the gradient.

6.2. CHSH
In this section, we test three algorithms by looking at the bipartite quantum correlation
given in Section 2.5. Using only the bipartite quantum correlation (Equations 2.13, 2.14,
2.15 and 2.16) we try to recover the a state and POVMs. Furthermore, it should be noted
that all three methods have the same starting point.

6.2.1. FIXED STEP SIZE
Here we apply the algorithm described in Section 5.1. The step size has to be chosen be-
forehand. After some trial and error, it can be seen that the largest step size for which the
algorithm converges, in this case, is t = 1/20. In the figure below, an instance can be seen
that the algorithm finds a solution with an error smaller than 1e-5 in 10532 iterations.

Figure 6.1: A log-log plot of an instance of the fixed step size algorithm applied to the bipartite quantum cor-
relation. The local dimension d chosen here is 2.

Since the figure has two logarithmic axes, the figure is ideal for spotting power functions.
The slope in such plots is equal to the power of a · xk . In our case k ≈−1.5.

6.2.2. BACKTRACKING LINE SEARCH
Next we apply the backtracking line search algorithm described in Section 5.3. We chose
α= 0.3 and β= 0.7 for the parameters. In the figure 6.2 an instance can be seen that the
algorithm finds a solution with a error smaller then 1e-5 in 8653 iterations.
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Figure 6.2: A log-log plot of an instance of the backtracking line search algorithm applied to the bipartite quan-
tum correlation of CHSH. The local dimension d chosen here is 2.

Here we can again use logarithmic axis to determine the power of the power function
k ≈−1.55, which is almost then the convergence of the fixed step size method.

6.2.3. PVM
We can also look for the PVMs of CHSH. We mostly do this as a proof of concept that
the algorithm is also able to produce PVMs. The PVMs have a smaller subspace then
the POVMs, since all PVMs are POVMs, but not the other way around. Therefore it is
expected for the gradient descent to take longer; surprisingly this is not the case as can
been seen in Figure 6.3. An explanation could be that the extra penalty function helps to
"push" the operators in the right direction.

The power function that imitates the descent has an exponent of k = −1.67, which
is better than the backtracking line search without PVM penalty functions. This does,
however, not always have to be the case, as can been seen in Section 6.5
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Figure 6.3: A log-log plot of an instance of the backtracking line search algorithm applied to the bipartite quan-
tum correlation. The local dimension d chosen here is 2.

6.3. FOUR INPUT TWO OUTPUT FAMILY
Apart from CHSH, we also look at correlations of the family of where |S| = 4, |T | = 4,
|A| = 2 and |B | = 2. In other words, we look at correlations with four questions and two
answers. This family had been recently studied in [15]. Where it shows that for several
examples the correlation is realizable in local dimension d = 2k +1 k ∈N+. The recipe
for generating these correlations is given as: For k ∈ N+, let x = 4k

2k+1 . If both parties
receive the same question s = t , then

P (a,b, s, s) =
( x

4 0
0 1− x

4

)
. (6.2)

Where s is fixed. If the questions differ s 6= t , then

P (a,b, s, t ) =
( x(x−1)

12
x
4 − x(x−1)

12
x
4 − x(x−1)

12 1− x
2 + x(x−1)

12

)
. (6.3)

If we look at the situation for s = t , then it is only possible to give the same answer. This
is called a synchronous bipartite quantum correlation. For k = 1 the program was able to
find states and POVMs that have a cost function f ({X a

s }, {Y b
t }, psi ) ≤ 10−5 in dimension

d = 3. Next for k = 2 the lower bound for the dimension was shown to be d = 5. In the
appendix of [15] the author even shows what the PVMs look like. Sadly our algorithm
was not able to find the POVMs in ±25 tries it always ended at a local minimum with
a cost value of f ({X a

s }, {Y b
t }, psi ) = 0.003617282390680469. Luckily when we upped the

dimension we were able to find a state and operators in local dimension d = 9, which is
the greatest problem that the program was able to solve with (d ∗d +1)/2 · (|A| · |B | · |S| ·
|T |)+d 2 = 45(2 · 2 · 4 · 4)+ 81 = 2961 variables. This calculation was done on a normal
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laptop and took about 100 min. The convergence can been seen in figure 6.4 The total
results are shown in table 6.1.

Figure 6.4: A log-log plot of an instance of the backtracking line search algorithm applied to the synchronous
bipartite quantum correlation with 4 inputs, 2 outputs and k = 2 . The local dimension d chosen here is 9.

Table 6.1: This table shows for dimension found and given for a family of bipartite quantum correlations with
|A| = |B| = 2 and |S| = |T| = 4. The table also shows the amount of iterations that the program took for each k in
the local dimension.

k d given d found Iterations
1 3 3 10953
2 5 9 11374
3 7 ? ?

6.4. CORRELATION BASED BIPARTITE QUANTUM CORRELATIONS
The next type of correlations are a bit more challenging to construct. They are also quite
a bit different than previously examined correlations. This is because they have not the
same amount of questions for Alice and Bob. The function that generates these corre-
lations is generatePGD(k) in Appendix A. To fully understand all the steps, the reader is
strongly advised to read the papers [16],[17] and [18]. The paper shows several different
correlations, which are indexed by k. For each correlation Ck , the size, a lower bound for
the dimension given by the paper, the dimension that was used to build the correlation,
the dimension found by backtracking line search and the number of iterations it took are
given in Table 6.2.

The most notable results are C3 and C5, for which we can find the states and opera-
tors in a lower dimension than it was built. It should be noted that the POVMs that were
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Table 6.2: This table shows the results of several tries of the algorithm to find the state and operators in a
dimension for different bipartite quantum correlations, with different sizes.

|A| |B| |S| |T| d paper d minimum d found iterations
C1 2 2 1 1 2 2 2 848
C2 2 2 2 2 2 2 2 4090
C3 2 2 3 4 4 2 2 3194
C4 2 2 4 7 4 4 4 125461
C5 2 2 5 11 8 4 4 158204
C6 2 2 6 16 8 8 ?

found create an error of less than 1e-5. It can, therefore, be possible that there are no
POVMs that generate the bipartite quantum correlations in the dimension mentioned.

6.5. COMPARISON ALGORITHMS
To find the most effective gradient descent algorithm we investigate the four algorithms
on the same starting location on C4 and same local dimension d = 4. C4 has (d · (d +
1))/2 · (|A| · |B | · |S| · |T |)+d 2 = 656. The algorithms used are:

1. fixed step gradient descent with step size t = 1/50,

2. backtracking line search with parameters β= 0.7 and α= 0.3,

3. momentum-based gradient descent with step size t = 1/50 and learning rate γ =
0.9,

4. backtracking line search with parametersβ= 0.7 andα= 0.3 with the PVM penalty
terms.

The results are shown in Figure 6.5.
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Figure 6.5: A log-log plot of four different algorithms applied to the C4 bipartite quantum correlation. The local
dimension d is 4.

If we now take a better look at the results in figure 6.5, we can note a few things:

• First of all, there is one line that does not go towards zero. This is the line of the
PVM. This is because when there it is possible to find a POVM, it does not have
to imply that it is possible to find a PVM. In this case, the algorithm cannot find a
PVM and strands at a local minimum after 350011 iterations. This has happened
for the ten different starting points in this dimension.

• Next, there are two quite similar lines, the line corresponding with backtracking
line search (229724 iterations) and the line corresponding to the fixed step size
method (293502 iterations). The backtracking line search works a bit better ini-
tially and is a bit smoother, but they do not differ that much. However, they have
quite exciting behaviour at the kink at ±3300. Before that point, their convergence
is relatively slow, but it accelerates strongly after the kink. Similar behaviour has
been seen for all other correlations. If cost functions would be able to get below
±10−3 it always converged towards zero. The reason why this happens is yet un-
known.

• Lastly, we have the momentum-based gradient descent. The line shows many ex-
citing behaviour at several parts. First of all, as stated in Section 5.4 it is not always
descending. In the beginning, it overshoots, which can be seen by the saw-tooth
patterns. This can be made less by fine-tuning the learning rate γ and step size
t . The biggest surprise from looking at this line is the overall steepness it has. It
converges below 10−5 in 35678 iterations. This is about six times faster than the
backtracking line search method.



7
CONCLUSION

In the first chapter of this thesis, we give a mathematical description of bipartite quan-
tum correlations. This is done by defining a bipartite correlation, followed by explaining
how the quantum side works.

In the following chapter the Wirtinger calculus is presented. This chapter consists of
explaining how two operators can be used to calculate the gradient of real-valued func-
tions with complex variables.

Then the optimization problem is introduced. Here the Cholesky decomposition and
penalty functions are used to transform all constraints into the unconstrained cost func-
tion. This unconstrained cost function perfectly suits gradient descent methods, and a
few of these are then given.

These algorithms are applied to several different bipartite quantum correlations. The
first is the CHSH correlations. Here the state and operators (POVMs and PVMs) are easily
found in ±2s on a regular laptop. The state and operators of a family of bipartite quan-
tum correlations with four inputs and two outputs is also recovered. The dimension of
the Hilbert space of these states and operators is higher than expected in the literature.
For an even more complex bipartite quantum correlation, the state and correlations are
found. The results show some states and operators with a lower local dimension that
was required to build them.

The following recommendations are put forward for future studies. In light of the
promising momentum-based method results, it could be exciting to investigate other
advanced descent methods. Also, it would be interesting to try to find the state and op-
erators of an experimentally determined bipartite quantum correlation. Lastly, it could
be interesting to look into alternatives to the penalty functions, such a projected gradient
descent.
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A
CODE

In this Appendix, we give the code that is used in 6. The code is written in Version 1.5.3
of Julia.

The first part of the code contains all functions and the second part contains some
commented functions. To run the specific function the lines can be uncommented.

The entire code is also available at GitHub:
https://github.com/Vgoverse/Bipartite-Quantum-Correlation-Recovery
If you are intending on using this code and want to know more about it, you can

always contact me at v.goverse@gmail.com.

using LinearAlgebra, Plots, QuantumInformation
function Pcalc(E, F, psi)

P = zeros(Float64,size(E,3),size(F,3),size(E,4),size(F,4))
psipsi = psi*psi’
for a=1:size(E,3), b=1:size(F,3), s=1:size(E,4), t=1:size(F,4)

P[a,b,s,t] = real(tr(kron(E[:,:,a,s], F[:,:,b,t]) * psipsi))
end
return P

end

function CHSH()
psi = [1/sqrt(2), 0, 0, 1/sqrt(2)]

E = zeros(ComplexF64,(2,2,2,2))
E[:,:,1,1] = [1/2+0im 1/2; 1/2 1/2] #E_0^0
E[:,:,2,1] = [1/2 −1/2; −1/2+0im 1/2]#E_0^1
E[:,:,1,2] = [1/2 −im/2; im/2 1/2] #E_1^0
E[:,:,2,2] = [1/2 im/2; −im/2 1/2] #E_1^1

F = zeros(ComplexF64,(2,2,2,2))
F[:,:,1,1] = [1/2 1/(sqrt(2)*2)*(1+im); 1/(sqrt(2)*2)*(1−im) 1/2] #F_0^0
F[:,:,2,1] = [1/2 −1/(sqrt(2)*2)*(1+im); −1/(sqrt(2)*2)*(1−im) 1/2] #F_0^1
F[:,:,1,2] = [1/2 1/(2*sqrt(2))*(1−im); 1/(2*sqrt(2))*(1+im) 1/2] #F_1^0
F[:,:,2,2] = [1/2 1/(2*sqrt(2))*(−1+im); 1/(2*sqrt(2))*(−1−im) 1/2] #F_1^1

return E, F, psi
end

function costobj(P, E, F, psi)
obj = 0.0
P_calc = Pcalc(E, F, psi)
for a=1:size(E,3), b=1:size(F,3), s=1:size(E,4), t=1:size(F,4)

obj +=(P[a,b,s,t] − P_calc[a,b,s,t])^2
end
return obj

end

function cost(P, E, F, psi)
obj = 0.0
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P_calc = Pcalc(E, F, psi)
for a=1:size(E,3), b=1:size(F,3), s=1:size(E,4), t=1:size(F,4)

obj +=(P[a,b,s,t] − P_calc[a,b,s,t])^2
end

#pentalties
p_unitpsi = (psi’*psi−1)^2

p_sumE= 0.0::Float64
for s=1:size(E,4)

p_sumE += tr((sum(E[:,:,a1,s] for a1 = 1:size(E,3))−I)*(sum(E[:,:,a2,s] for a2 = 1:size(E,3))−I))
end
p_sumF = 0.0::Float64
for t=1:size(F,4)

p_sumF += tr((sum(F[:,:,b1,t] for b1 = 1:size(F,3))−I)*(sum(F[:,:,b2,t] for b2 = 1:size(F,3))−I))
end

penalties = real(p_unitpsi +p_sumE +p_sumF)
return(real(obj + penalties), p_unitpsi, p_sumE, p_sumF,obj,penalties)

end
function costPVM(P, E, F, psi)

obj = 0.0
P_calc = Pcalc(E, F, psi)
for a=1:size(E,3), b=1:size(F,3), s=1:size(E,4), t=1:size(F,4)

obj +=(P[a,b,s,t] − P_calc[a,b,s,t])^2
end

#pentalties
p_unitpsi = (psi’*psi−1)^2

p_sumE= 0.0::Float64
for s=1:size(E,4)

p_sumE += tr((sum(E[:,:,a1,s] for a1 = 1:size(E,3))−I)*(sum(E[:,:,a2,s] for a2 = 1:size(E,3))−I))
end
p_PVME = 0.0
for s=1:size(E,4),a=1:size(E,3)

p_PVME += tr((E[:,:,a,s]^2−E[:,:,a,s])*((E[:,:,a,s]^2−E[:,:,a,s])))
end

p_sumF = 0.0::Float64
for t=1:size(F,4)

p_sumF += tr((sum(F[:,:,b1,t] for b1 = 1:size(F,3))−I)*(sum(F[:,:,b2,t] for b2 = 1:size(F,3))−I))
end
p_PVMF = 0.0
for t=1:size(F,4),b=1:size(F,3)

p_PVMF += tr((F[:,:,b,t]^2−F[:,:,b,t])*((F[:,:,b,t]^2−F[:,:,b,t])))
end

penalties = real(p_unitpsi +p_sumE +p_sumF+ p_PVME+ p_PVMF)
return(real(obj + penalties), p_unitpsi, p_sumE, p_sumF,obj,penalties)

end
function single!(i,j,d,E)

E .= zeros(ComplexF64,d,d)
E[i,j]=1
E

end

function delta(i,j)
if i == j

return 1.0
else

return 0.0
end

end
function gradientNOPEN!(P, X, Y, psi, dX, dY, dpsi, d, Pa, Pb, Ps, Pt)

E = zeros(ComplexF64,d,d,Pa,Ps) #matrix of matrici
F = zeros(ComplexF64,d,d,Pb,Pt)
# add full cost function
for i1 = 1:Pa, i2 = 1:Ps

E[:,:,i1,i2] = adjoint(X[:,:,i1,i2])*X[:,:,i1,i2]
end
for i1 = 1:Pb, i2 = 1:Pt

F[:,:,i1,i2] = adjoint(Y[:,:,i1,i2])*Y[:,:,i1,i2]
end

#dX :

P_calc = Pcalc(E, F, psi)
Single = zeros(ComplexF64,d,d)

for a = 1:Pa, s = 1:Ps #X_a^s
for k = 1:d, l in 1:k #row,column of a,s matrix

dX[k,l,a,s] = −4*sum(X[k,i,a,s]*(P[a,b,s,t]−P_calc[a,b,s,t])* dot(psi[(((l−1)*d)+1):(l*d)],F[:,:,b,t],psi[((i−1)*d+1):(i*d)]) for i=1:d,b=1:Pb,t=1:Pt)
end

end

for b = 1:Pb, t = 1:Pt #Y_b^t
for k = 1:d, l in 1:k #row,column of a,s matrix

dY[k,l,b,t] = −4*sum(Y[k,i,b,t]*(P[a,b,s,t]−P_calc[a,b,s,t])* dot(psi[l:d:(d^2 − d)+ l], E[:,:,a,s], psi[i:d:((d^2−d)+i )]) for i=1:d,a=1:Pa,s=1:Ps)



45

end
end
dpsi .= zeros(ComplexF64,d^2)
for a =1:Pa, s =1:Ps, b= 1:Pb, t= 1:Pt

kronEF= (kron(E[:,:,a,s],F[:,:,b,t])*psi)
dpsi .+= −4 * (P[a,b,s,t] − P_calc[a,b,s,t]) * kronEF

end

end
function gradient!(P, X, Y, psi, dX, dY, dpsi, d, Pa, Pb, Ps, Pt)

E = zeros(ComplexF64,d,d,Pa,Ps) #matrix of matrici
F = zeros(ComplexF64,d,d,Pb,Pt)
# add full cost function
for i1 = 1:Pa, i2 = 1:Ps

E[:,:,i1,i2] = adjoint(X[:,:,i1,i2])*X[:,:,i1,i2]
end
for i1 = 1:Pb, i2 = 1:Pt

F[:,:,i1,i2] = adjoint(Y[:,:,i1,i2])*Y[:,:,i1,i2]
end

#dX :

P_calc = Pcalc(E, F, psi)
Single = zeros(ComplexF64,d,d)

for a = 1:Pa, s = 1:Ps #X_a^s
for k = 1:d, l = 1:k #row,column of a,s matrix

dX[k,l,a,s] = −4*sum(X[k,i,a,s]*(P[a,b,s,t]−P_calc[a,b,s,t])* dot(psi[(((l−1)*d)+1):(l*d)],F[:,:,b,t],psi[((i−1)*d+1):(i*d)]) for i=1:d,b=1:Pb,t=1:Pt)
dX[k,l,a,s]+=4*sum(X[k,i,a,s] * (sum(E[i,l,a2,s] for a2 = 1:Pa)−delta(i,l)) for i = 1:d)

end
end

for b = 1:Pb, t = 1:Pt #Y_b^t
for k = 1:d, l = 1:k #row,column of a,s matrix

dY[k,l,b,t] = −4*sum(Y[k,i,b,t]*(P[a,b,s,t]−P_calc[a,b,s,t])* dot(psi[l:d:(d^2 − d)+ l], E[:,:,a,s], psi[i:d:((d^2−d)+i )]) for i=1:d,a=1:Pa,s=1:Ps)
dY[k,l,b,t]+=4*sum(Y[k,i,b,t] * (sum(F[i,l,b2,t] for b2 = 1:Pb)−delta(i,l)) for i = 1:d)

end
end

dpsi .= (4* ((psi’*psi) −1)*psi)
for a =1:Pa, s =1:Ps, b= 1:Pb, t= 1:Pt

kronEF= (kron(E[:,:,a,s],F[:,:,b,t])*psi)
dpsi .+= −4 * (P[a,b,s,t] − P_calc[a,b,s,t]) * kronEF

end

end

function gradientPVM!(P, X, Y, psi, dX, dY, dpsi, d, Pa, Pb, Ps, Pt)
E = zeros(ComplexF64,d,d,Pa,Ps) #matrix of matrici
F = zeros(ComplexF64,d,d,Pb,Pt)
# add full cost function
for i1 = 1:Pa, i2 = 1:Ps

E[:,:,i1,i2] = adjoint(X[:,:,i1,i2])*X[:,:,i1,i2]
end
for i1 = 1:Pb, i2 = 1:Pt

F[:,:,i1,i2] = adjoint(Y[:,:,i1,i2])*Y[:,:,i1,i2]
end

#dX :

P_calc = Pcalc(E, F, psi)
Single = zeros(ComplexF64,d,d)

for a = 1:Pa, s = 1:Ps #X_a^s
for k = 1:d, l = 1:k #row,column of a,s matrix

dX[k,l,a,s] = −4*sum(X[k,i,a,s]*(P[a,b,s,t]−P_calc[a,b,s,t])* dot(psi[(((l−1)*d)+1):(l*d)],F[:,:,b,t],psi[((i−1)*d+1):(i*d)]) for i=1:d,b=1:Pb,t=1:Pt)
dX[k,l,a,s]+=4*sum(X[k,i,a,s] * (sum(E[i,l,a2,s] for a2 = 1:Pa)−delta(i,l)) for i = 1:d)
dX[k,l,a,s]+=2*(4*tr(single!(l,k,d,Single)*X[:,:,a,s]*E[:,:,a,s]^3) + 2*tr(single!(l,k,d,Single)*X[:,:,a,s]*E[:,:,a,s]) −
6*tr(single!(l,k,d,Single)*X[:,:,a,s]*E[:,:,a,s]^2) )

end
end

for b = 1:Pb, t = 1:Pt #Y_b^t
for k = 1:d, l = 1:k #row,column of a,s matrix

dY[k,l,b,t] = −4*sum(Y[k,i,b,t]*(P[a,b,s,t]−P_calc[a,b,s,t])* dot(psi[l:d:(d^2 − d)+ l], E[:,:,a,s], psi[i:d:((d^2−d)+i )]) for i=1:d,a=1:Pa,s=1:Ps)
dY[k,l,b,t]+=4*sum(Y[k,i,b,t] * (sum(F[i,l,b2,t] for b2 = 1:Pb)−delta(i,l)) for i = 1:d)
dY[k,l,b,t]+=2*(4*tr(single!(l,k,d,Single)*Y[:,:,b,t]*F[:,:,b,t]^3) + 2*tr(single!(l,k,d,Single)*Y[:,:,b,t]*F[:,:,b,t]) −
6*tr(single!(l,k,d,Single)*Y[:,:,b,t]*F[:,:,b,t]^2) )

end
end

dpsi .= (4* ((psi’*psi) −1)*psi)
for a =1:Pa, s =1:Ps, b= 1:Pb, t= 1:Pt

kronEF= (kron(E[:,:,a,s],F[:,:,b,t])*psi)
dpsi .+= −4 * (P[a,b,s,t] − P_calc[a,b,s,t]) * kronEF

end

end
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function gradientNOPSI!(P, X, Y, psi, dX, dY, dpsi, d, Pa, Pb, Ps, Pt)
E = zeros(ComplexF64,d,d,Pa,Ps) #matrix of matrici
F = zeros(ComplexF64,d,d,Pb,Pt)
# add full cost function
for i1 = 1:Pa, i2 = 1:Ps

E[:,:,i1,i2] = adjoint(X[:,:,i1,i2])*X[:,:,i1,i2]
end
for i1 = 1:Pb, i2 = 1:Pt

F[:,:,i1,i2] = adjoint(Y[:,:,i1,i2])*Y[:,:,i1,i2]
end

P_calc = Pcalc(E, F, psi)
Single = zeros(ComplexF64,d,d)

for a = 1:Pa, s = 1:Ps #X_a^s
for k = 1:d, l = 1:k #row,column of a,s matrix

dX[k,l,a,s] = −4*sum(X[k,i,a,s]*(P[a,b,s,t]−P_calc[a,b,s,t])* dot(psi[(((l−1)*d)+1):(l*d)],F[:,:,b,t],psi[((i−1)*d+1):(i*d)]) for i=1:d,b=1:Pb,t=1:Pt)
dX[k,l,a,s]+=4*sum(X[k,i,a,s] * (sum(E[i,l,a2,s] for a2 = 1:Pa)−delta(i,l)) for i = 1:d)

end
end

for b = 1:Pb, t = 1:Pt #Y_b^t
for k = 1:d, l = 1:k #row,column of a,s matrix

dY[k,l,b,t] = −4*sum(Y[k,i,b,t]*(P[a,b,s,t]−P_calc[a,b,s,t])* dot(psi[l:d:(d^2 − d)+ l], E[:,:,a,s], psi[i:d:((d^2−d)+i )]) for i=1:d,a=1:Pa,s=1:Ps)
dY[k,l,b,t]+=4*sum(Y[k,i,b,t] * (sum(F[i,l,b2,t] for b2 = 1:Pb)−delta(i,l)) for i = 1:d)

end
end

end

function gradientsquare(dX,dY,dpsi)
som = 0.0
for a = 1:size(dX,3), s = 1:size(dX,4), i = 1:size(dX,1), j = 1:size(dX,2)

som += abs2(dX[i,j,a,s])
end
for b = 1:size(dY,3), t = 1:size(dY,4), i = 1:size(dY,1), j = 1:size(dY,2)

som += abs2(dY[i,j,b,t])
end
som += real(dpsi’*dpsi)
som

end

function gradientdescent(P, d; alpha = 0.5, beta=0.9)
println("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−")
println("\n\n\n\n\n")
println("New Gradient descent")

Pa= size(P,1)
Pb= size(P,2)
Ps= size(P,3)
Pt= size(P,4)

println("a $Pa,b $Pb, s $Ps, t $Pt, d $d")
# random initialization
psi = randn(ComplexF64,d^2)
psi /= norm(psi)

X = zeros(ComplexF64,d,d,Pa,Ps) #dimensies uit p halen
Y = zeros(ComplexF64,d,d,Pb,Pt)
for a = 1:Pa,s =1:Ps,i=1:d, j=1:i

X[i,j,a,s] = randn(ComplexF64)/d
end
for b = 1:Pb,t =1:Pt,i=1:d, j=1:i

Y[i,j,b,t] = randn(ComplexF64)/d
end

dX = zeros(ComplexF64,d,d,Pa,Ps)
dY = zeros(ComplexF64,d,d,Pb,Pt)
dpsi = zeros(ComplexF64, d^2)

Xtest = zeros(ComplexF64,d,d,Pa,Ps)
Ytest = zeros(ComplexF64,d,d,Pb,Pt)
psitest = zeros(ComplexF64, d^2)

E = zeros(ComplexF64,d,d,Pa,Ps) #matrix of matrici
F = zeros(ComplexF64,d,d,Pb,Pt)

Etest = zeros(ComplexF64,d,d,Pa,Ps) #matrix of matrici
Ftest = zeros(ComplexF64,d,d,Pb,Pt)
c_array = []
t1 = 1
t3 = 0 #counter
while t1< 1000002

gradient!(P, X, Y, psi, dX, dY, dpsi, d, Pa, Pb, Ps, Pt)

for a = 1:Pa, s = 1:Ps
E[:,:,a,s] = adjoint(X[:,:,a,s])*X[:,:,a,s]

end
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for b = 1:Pb, t = 1:Pt
F[:,:,b,t] = adjoint(Y[:,:,b,t])*Y[:,:,b,t]

end
c = cost(P, E, F, psi)
if t1 % 100 ==1

println(t1,c) #real(obj + penalties), p_unitpsi, p_sumE, p_sumF)
end
if t1 % 100 == 0

display(plot(1:size(c_array,1), c_array,xaxis=:log, yaxis=:log, legend = false, title = "Gradient descent backward linesearch, P = C_6", xlabel = "Interations (n)", ylabel
,→ = "Cost function f(x_k)"))

end
t2 =1.0::Float64
while true

Xtest = X − t2.*dX
Ytest = Y − t2.*dY
psitest = psi − t2.*dpsi

for a = 1:Pa, s = 1:Ps
Etest[:,:,a,s] = (Xtest[:,:,a,s]’)*Xtest[:,:,a,s]

end

for b = 1:Pb, t = 1:Pt
Ftest[:,:,b,t] = (Ytest[:,:,b,t]’)*Ytest[:,:,b,t]

end

if (cost(P,Etest,Ftest,psitest)[1]) < c[1]− alpha*t2 *gradientsquare(dX,dY,dpsi)
X = Xtest
Y = Ytest
psi = psitest
push!(c_array,c[1])
break

else
t2 *= beta
if t2 < 10.0^(−10)

X −= dX
Y −= dY
psi −= dpsi
print("t2 heel klein")
return(c[1],t1)
break

end
end

end
if abs(c[1]) < 1e−5

display(plot(1:size(c_array,1), c_array,xaxis=:log, yaxis=:log, legend = false, title = "Gradient descent backward linesearch, P = C_6", xlabel = "Interations (n)", ylabel
,→ = "Cost function f(x_k)"))

println("E, $E")
println("X , $X")
println("F, $F")
println("Y, $Y")
println("psi $psi")
output_file = open("output_file.jl","w") # this will create a file named output_file.jl, where we will write the data
write(output_file, "\n\n\n\n a:$Pa b:$Pb s:$Ps t:$Pt d:$d; \n \n")
write(output_file, "X = ") # writes A =
show(output_file, X) # writes the content of A
write(output_file, "; \n \n") # puts a semicolon to suppress the output and two line breaks
write(output_file, "E = ") # writes A =
show(output_file, E) # writes the content of A
write(output_file, "; \n \n") # puts a semicolon to suppress the output and two line breaks
write(output_file, "Y = ") # writes A =
show(output_file, Y) # writes the content of A
write(output_file, "; \n \n") # puts a semicolon to suppress the output and two line breaks
write(output_file, "F = ") # writes A =
show(output_file, F) # writes the content of A
write(output_file, "; \n \n") # puts a semicolon to suppress the output and two line breaks
write(output_file, "psi = ") # writes A =
show(output_file, psi) # writes the content of A
write(output_file, "; \n \n") # puts a semicolon to suppress the output and two line breaks
close(output_file)
println(t1)
return(c[1])

end
if isnan(c[1])

println("NaN, annuleer die hele zooi maar")
return(10)

end
t1+=1

end

return(c[1])
println("E, $E")
println("X , $X")
println("F, $F")
println("Y, $Y")
println("psi $psi")

end

function gradientdescentPVM(P, d; alpha = 0.5, beta=0.9, Pname = "P")
println("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−")
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println("\n\n\n\n\n")
println("New Gradient descent")

Pa= size(P,1)
Pb= size(P,2)
Ps= size(P,3)
Pt= size(P,4)

println("a $Pa,b $Pb, s $Ps, t $Pt, d $d")
# random initialization
psi = randn(ComplexF64,d^2)
psi /= norm(psi)

X = zeros(ComplexF64,d,d,Pa,Ps) #dimensies uit p halen
Y = zeros(ComplexF64,d,d,Pb,Pt)
for a = 1:Pa,s =1:Ps,i=1:d, j=1:i

X[i,j,a,s] = randn(ComplexF64)/d
end
for b = 1:Pb,t =1:Pt,i=1:d, j=1:i

Y[i,j,b,t] = randn(ComplexF64)/d
end

dX = zeros(ComplexF64,d,d,Pa,Ps)
dY = zeros(ComplexF64,d,d,Pb,Pt)
dpsi = zeros(ComplexF64, d^2)

Xtest = zeros(ComplexF64,d,d,Pa,Ps)
Ytest = zeros(ComplexF64,d,d,Pb,Pt)
psitest = zeros(ComplexF64, d^2)

E = zeros(ComplexF64,d,d,Pa,Ps) #matrix of matrici
F = zeros(ComplexF64,d,d,Pb,Pt)

Etest = zeros(ComplexF64,d,d,Pa,Ps) #matrix of matrici
Ftest = zeros(ComplexF64,d,d,Pb,Pt)
c_array = []
t1 = 1
t3 = 0 #counter
while t1< 1000002

gradientPVM!(P, X, Y, psi, dX, dY, dpsi, d, Pa, Pb, Ps, Pt)

for a = 1:Pa, s = 1:Ps
E[:,:,a,s] = adjoint(X[:,:,a,s])*X[:,:,a,s]

end
for b = 1:Pb, t = 1:Pt

F[:,:,b,t] = adjoint(Y[:,:,b,t])*Y[:,:,b,t]
end
c = costPVM(P, E, F, psi)
if t1 % 100 ==1

println(t1,c) #real(obj + penalties), p_unitpsi, p_sumE, p_sumF)
end
if t1 % 100 == 0

display(plot(1:size(c_array,1), c_array,xaxis=:log, yaxis=:log, title = "gradient descent $Pname", xlabel = "interations (n)", ylabel = "cost function"))
end
t2 =1.0::Float64
while true

Xtest = X − t2.*dX
Ytest = Y − t2.*dY
psitest = psi − t2.*dpsi

for a = 1:Pa, s = 1:Ps
Etest[:,:,a,s] = (Xtest[:,:,a,s]’)*Xtest[:,:,a,s]

end

for b = 1:Pb, t = 1:Pt
Ftest[:,:,b,t] = (Ytest[:,:,b,t]’)*Ytest[:,:,b,t]

end

if (costPVM(P,Etest,Ftest,psitest)[1]) < c[1]− alpha*t2 *gradientsquare(dX,dY,dpsi)
X = Xtest
Y = Ytest
psi = psitest
push!(c_array,c[1])
break

else
t2 *= beta
if t2 < 10.0^(−20)

X −= dX
Y −= dY
psi −= dpsi
print("t2 heel klein")
return(c[1],t1)
break

end
end

end

if abs(c[1]) < 1e−5
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display(plot(1:size(c_array,1), c_array,xaxis=:log, yaxis=:log, title = "gradient descent PCHSH", xlabel = "interations (n)", ylabel = "cost function"))
println("Geweldig gedaan!! amount of iterations: $t1")
println("E, $E")
println("X , $X")
println("F, $F")
println("Y, $Y")
println("psi $psi")
output_file = open("output_file.jl","w") # this will create a file named output_file.jl, where we will write the data
write(output_file, "\n\n\n\n a:$Pa b:$Pb s:$Ps t:$Pt d:$d; \n \n")
write(output_file, "X = ") # writes A =
show(output_file, X) # writes the content of A
write(output_file, "; \n \n") # puts a semicolon to suppress the output and two line breaks
write(output_file, "E = ") # writes A =
show(output_file, E) # writes the content of A
write(output_file, "; \n \n") # puts a semicolon to suppress the output and two line breaks
write(output_file, "Y = ") # writes A =
show(output_file, Y) # writes the content of A
write(output_file, "; \n \n") # puts a semicolon to suppress the output and two line breaks
write(output_file, "F = ") # writes A =
show(output_file, F) # writes the content of A
write(output_file, "; \n \n") # puts a semicolon to suppress the output and two line breaks
write(output_file, "psi = ") # writes A =
show(output_file, psi) # writes the content of A
write(output_file, "; \n \n") # puts a semicolon to suppress the output and two line breaks
close(output_file)
return(c[1])

end
if isnan(c[1])

println("NaN, annuleer die hele zooi maar")
return(10)

end

t1+=1
end

return(c[1])
println("E, $E")
println("X , $X")
println("F, $F")
println("Y, $Y")
println("psi $psi")

end

function gradientdescentNOPSI(P, d; alpha = 0.5, beta=0.9)
println("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−")
println("\n\n\n\n\n")
println("New Gradient descent")

Pa= size(P,1)
Pb= size(P,2)
Ps= size(P,3)
Pt= size(P,4)

println("a $Pa,b $Pb, s $Ps, t $Pt, d $d")
# random initialization
psi = zeros(ComplexF64,d^2)
psi[1] = 1/sqrt(2)
psi[d^2] = 1/sqrt(2)

X = zeros(ComplexF64,d,d,Pa,Ps) #dimensies uit p halen
Y = zeros(ComplexF64,d,d,Pb,Pt)
for a = 1:Pa,s =1:Ps,i=1:d, j=1:i

X[i,j,a,s] = randn(ComplexF64)/d
end
for b = 1:Pb,t =1:Pt,i=1:d, j=1:i

Y[i,j,b,t] = randn(ComplexF64)/d
end

dX = zeros(ComplexF64,d,d,Pa,Ps)
dY = zeros(ComplexF64,d,d,Pb,Pt)
dpsi = zeros(ComplexF64, d^2)

Xtest = zeros(ComplexF64,d,d,Pa,Ps)
Ytest = zeros(ComplexF64,d,d,Pb,Pt)
psitest = zeros(ComplexF64, d^2)

E = zeros(ComplexF64,d,d,Pa,Ps) #matrix of matrici
F = zeros(ComplexF64,d,d,Pb,Pt)

Etest = zeros(ComplexF64,d,d,Pa,Ps) #matrix of matrici
Ftest = zeros(ComplexF64,d,d,Pb,Pt)
c_array = []
t1 = 1
t3 = 0 #counter
while t1< 1000002

gradientNOPSI!(P, X, Y, psi, dX, dY, dpsi, d, Pa, Pb, Ps, Pt)
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for a = 1:Pa, s = 1:Ps
E[:,:,a,s] = adjoint(X[:,:,a,s])*X[:,:,a,s]

end
for b = 1:Pb, t = 1:Pt

F[:,:,b,t] = adjoint(Y[:,:,b,t])*Y[:,:,b,t]
end
c = cost(P, E, F, psi)
if t1 % 100 ==1

println(t1,c) #real(obj + penalties), p_unitpsi, p_sumE, p_sumF)
end
if t1 % 100 == 0

display(plot(1:size(c_array,1), c_array,xaxis=:log, yaxis=:log))
end
t2 =1.0::Float64
while true

Xtest = X − t2.*dX
Ytest = Y − t2.*dY
# psitest = psi − t2.*dpsi

for a = 1:Pa, s = 1:Ps
Etest[:,:,a,s] = (Xtest[:,:,a,s]’)*Xtest[:,:,a,s]

end

for b = 1:Pb, t = 1:Pt
Ftest[:,:,b,t] = (Ytest[:,:,b,t]’)*Ytest[:,:,b,t]

end

if (cost(P,Etest,Ftest,psi)[1]) < c[1]− alpha*t2 *gradientsquare(dX,dY,dpsi)
X = Xtest
Y = Ytest
push!(c_array,c[1])
break

else
t2 *= beta
if t2 < 10.0^(−10)

X −= dX
Y −= dY
psi −= dpsi
print("t2 heel klein")
return(c[1],t1)
break

end
end

end

if abs(c[1]) < 1e−5
display(plot(1:(t1), c_array,xaxis=:log, yaxis=:log))
println("Geweldig gedaan!! amount of iterations: $t1")
println("E, $E")
println("X , $X")
println("F, $F")
println("Y, $Y")
println("psi $psi")
output_file = open("output_file.jl","w") # this will create a file named output_file.jl, where we will write the data
write(output_file, "\n\n\n\n a:$Pa b:$Pb s:$Ps t:$Pt d:$d; \n \n")
write(output_file, "X = ") # writes A =
show(output_file, X) # writes the content of A
write(output_file, "; \n \n") # puts a semicolon to suppress the output and two line breaks
write(output_file, "E = ") # writes A =
show(output_file, E) # writes the content of A
write(output_file, "; \n \n") # puts a semicolon to suppress the output and two line breaks
write(output_file, "Y = ") # writes A =
show(output_file, Y) # writes the content of A
write(output_file, "; \n \n") # puts a semicolon to suppress the output and two line breaks
write(output_file, "F = ") # writes A =
show(output_file, F) # writes the content of A
write(output_file, "; \n \n") # puts a semicolon to suppress the output and two line breaks
write(output_file, "psi = ") # writes A =
show(output_file, psi) # writes the content of A
write(output_file, "; \n \n") # puts a semicolon to suppress the output and two line breaks
close(output_file)
return(c[1])

end
if isnan(c[1])

println("NaN, annuleer die hele zooi maar")
return(10)

end
t1+=1

end

return(c[1])
println("E, $E")
println("X , $X")
println("F, $F")
println("Y, $Y")
println("psi $psi")

end
function gradientdescentNOPEN(P, d; alpha = 0.5, beta=0.95)
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println("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−")
println("\n\n\n\n\n")
println("New Gradient descent")

Pa= size(P,1)
Pb= size(P,2)
Ps= size(P,3)
Pt= size(P,4)

println("a $Pa,b $Pb, s $Ps, t $Pt, d $d")
# random initialization
psi = rand(ComplexF64,d^2)
psi /= norm(psi)

X = rand(ComplexF64,d,d,Pa,Ps) ./d #dimensies uit p halen
Y = rand(ComplexF64,d,d,Pb,Pt) ./d

dX = zeros(ComplexF64,d,d,Pa,Ps)
dY = zeros(ComplexF64,d,d,Pb,Pt)
dpsi = zeros(ComplexF64, d^2)

Xtest = zeros(ComplexF64,d,d,Pa,Ps)
Ytest = zeros(ComplexF64,d,d,Pb,Pt)
psitest = zeros(ComplexF64, d^2)

E = zeros(ComplexF64,d,d,Pa,Ps) #matrix of matrici
F = zeros(ComplexF64,d,d,Pb,Pt)

Etest = zeros(ComplexF64,d,d,Pa,Ps) #matrix of matrici
Ftest = zeros(ComplexF64,d,d,Pb,Pt)

t1 = 1
t3 = 0 #counter
while t1< 1002

gradientNOPEN!(P, X, Y, psi, dX, dY, dpsi, d, Pa, Pb, Ps, Pt)

for a = 1:Pa, s = 1:Ps
E[:,:,a,s] = adjoint(X[:,:,a,s])*X[:,:,a,s]

end
for b = 1:Pb, t = 1:Pt

F[:,:,b,t] = adjoint(Y[:,:,b,t])*Y[:,:,b,t]
end
c = costobj(P, E, F, psi)

println(t1,c) #real(obj + penalties), p_unitpsi, p_sumE, p_sumF)
t2 =1.0
while true

Xtest = X − t2.*dX
Ytest = Y − t2.*dY
psitest = psi − t2.*dpsi

for a = 1:Pa, s = 1:Ps
Etest[:,:,a,s] = (Xtest[:,:,a,s]’)*Xtest[:,:,a,s]

end

for b = 1:Pb, t = 1:Pt
Ftest[:,:,b,t] = (Ytest[:,:,b,t]’)*Ytest[:,:,b,t]

end

if (costobj(P,Etest,Ftest,psitest)[1]) < c[1]− alpha*t2 *gradientsquare(dX,dY,dpsi)
X = Xtest
Y = Ytest
psi = psitest
break

else
t2 *= beta
if t2 < 10.0^(−20)

X −= dX
Y −= dY
psi −= dpsi
print("t2 heel klein")
t3 += 1
if t3 > 10

return(10)
end
break

end
end

end

# println("E, $E")
# println("F, $F")
if abs(c[1]) < 1e−8

println("Geweldig gedaan!! amount of iterations: $t1")
println("E, $E")
println("X , $X")
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println("F, $F")
println("Y, $Y")
println("psi $psi")
output_file = open("output_file.jl","w") # this will create a file named output_file.jl, where we will write the data
write(output_file, "\n\n\n\n NOPEN a:$Pa b:$Pb s:$Ps t:$Pt d:$d; \n \n")
write(output_file, "X = ") # writes A =
show(output_file, X) # writes the content of A
write(output_file, "; \n \n") # puts a semicolon to suppress the output and two line breaks
write(output_file, "E = ") # writes A =
show(output_file, E) # writes the content of A
write(output_file, "; \n \n") # puts a semicolon to suppress the output and two line breaks
write(output_file, "Y = ") # writes A =
show(output_file, Y) # writes the content of A
write(output_file, "; \n \n") # puts a semicolon to suppress the output and two line breaks
write(output_file, "F = ") # writes A =
show(output_file, F) # writes the content of A
write(output_file, "; \n \n") # puts a semicolon to suppress the output and two line breaks
write(output_file, "psi = ") # writes A =
show(output_file, psi) # writes the content of A
write(output_file, "; \n \n") # puts a semicolon to suppress the output and two line breaks
close(output_file)
return(c[1])

end
if isnan(c[1])

println("NaN, annuleer die hele zooi maar")
return(10)

end
t1+=1

end
return(c[1])
println("E, $E")
println("X , $X")
println("F, $F")
println("Y, $Y")
println("psi $psi")

end

function gradientdescentMomentum(P, d; t= 1/20, gamma = 0.9)
println("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−")
println("\n\n\n\n\n")
println("New Gradient descent no backward linesearch")

Pa= size(P,1)
Pb= size(P,2)
Ps= size(P,3)
Pt= size(P,4)

println("a $Pa,b $Pb, s $Ps, t $Pt, d $d")
# random initialization
psi = rand(ComplexF64,d^2)
psi /= norm(psi)

X = rand(ComplexF64,d,d,Pa,Ps) ./d #dimensies uit p halen
Y = rand(ComplexF64,d,d,Pb,Pt) ./d

dX = zeros(ComplexF64,d,d,Pa,Ps)
dY = zeros(ComplexF64,d,d,Pb,Pt)
dpsi = zeros(ComplexF64, d^2)

E = zeros(ComplexF64,d,d,Pa,Ps) #matrix of matrici
F = zeros(ComplexF64,d,d,Pb,Pt)

XM = zeros(ComplexF64,d,d,Pa,Ps)
YM = zeros(ComplexF64,d,d,Pb,Pt)
psiM = zeros(ComplexF64, d^2)
c_array = []

t1 = 1
while t1< 1000000

gradient!(P, X, Y, psi, dX, dY, dpsi, d, Pa, Pb, Ps, Pt)

for a = 1:Pa, s = 1:Ps
E[:,:,a,s] = adjoint(X[:,:,a,s])*X[:,:,a,s]

end
for b = 1:Pb, t = 1:Pt

F[:,:,b,t] = adjoint(Y[:,:,b,t])*Y[:,:,b,t]
end

c = cost(P, E, F, psi)
if t1%100==1

println(t1,c) #real(obj + penalties), p_unitpsi, p_sumE, p_sumF)
end
push!(c_array,c[1])

XM = gamma * XM + t*dX
YM = gamma * YM + t*dY
psiM = gamma * psiM + t*dpsi
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X −= XM
Y −= YM
psi −= psiM

# println("E, $E")
# println("F, $F")
if abs(c[1]) < 1e−5

println("Geweldig gedaan!! amount of iterations: $t1")
display(plot(1:size(c_array,1), c_array,xaxis=:log, yaxis=:log, legend = false, title = "Gradient descent with fixed stepsize, P = CHSH", xlabel = "Interations (n)", ylabel

,→ = "Cost function f(x_k)"))
return c[1]

end
if isnan(c[1])

println("NaN, annuleer die hele zooi maar")
return c[1]

end
t1+=1

end

return c_array
end

function gradientdescentNOLINE(P, d; t = 1/20)
println("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−")
println("\n\n\n\n\n")
println("New Gradient descent no backward linesearch")

Pa= size(P,1)
Pb= size(P,2)
Ps= size(P,3)
Pt= size(P,4)

println("a $Pa,b $Pb, s $Ps, t $Pt, d $d")
# random initialization
psi = rand(ComplexF64,d^2)
psi /= norm(psi)

X = rand(ComplexF64,d,d,Pa,Ps) ./d #dimensies uit p halen
Y = rand(ComplexF64,d,d,Pb,Pt) ./d

dX = zeros(ComplexF64,d,d,Pa,Ps)
dY = zeros(ComplexF64,d,d,Pb,Pt)
dpsi = zeros(ComplexF64, d^2)

E = zeros(ComplexF64,d,d,Pa,Ps) #matrix of matrici
F = zeros(ComplexF64,d,d,Pb,Pt)

c_array = []

t1 = 1
while t1< 10000

gradient!(P, X, Y, psi, dX, dY, dpsi, d, Pa, Pb, Ps, Pt)

for a = 1:Pa, s = 1:Ps
E[:,:,a,s] = adjoint(X[:,:,a,s])*X[:,:,a,s]

end
for b = 1:Pb, t = 1:Pt

F[:,:,b,t] = adjoint(Y[:,:,b,t])*Y[:,:,b,t]
end

c = cost(P, E, F, psi)
if t1%100==1

@info c #real(obj + penalties), p_unitpsi, p_sumE, p_sumF)
end
push!(c_array,c[1])

X −= dX*t
Y −= dY*t
psi −= dpsi*t

if abs(c[1]) < 1e−5
println("Geweldig gedaan!! amount of iterations: $t1")
display(plot(1:size(c_array,1), c_array,xaxis=:log, yaxis=:log, legend = false, title = "Gradient descent with fixed stepsize, P = CHSH", xlabel = "Interations (n)", ylabel

,→ = "Cost function f(x_k)"))
return c_array

end
if isnan(c[1])

println("NaN, annuleer die hele zooi maar")
return c[1]

end

t1+=1
end

end
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function CorrelationGen(n,x)
P = zeros(Float64,2,2,n,n)
for v = 1:n, w = 1:n

if v == w
P[1,1,v,w] = x/n
P[2,1,v,w] = 0
P[1,2,v,w] = 0
P[2,2,v,w] = 1 − x/n

else
P[1,1,v,w] = (x*(x−1))/(n*(n−1))
P[2,1,v,w] = x/n − x*(x−1)/(n*(n−1))
P[1,2,v,w] = x/n − x*(x−1)/(n*(n−1))
P[2,2,v,w] = 1 − 2*x/n + x*(x−1)/(n*(n−1))

end
end
return P

end

function find_d(P)
d = 1
while d<10 #loop looking for dimension

c = gradientdescent(P,d, alpha=0.3, beta=0.8)
if c < 1e−5

println("Dimension is less or equal then $d")
return d

end

d+=1
end
print("NO DIMENSION LESS THEN 10 WAS FOUND")

end

function finddims(n,m)
x = zeros(m)
Pcor = zeros(ComplexF64,m,2,2,n,n)

x[1] = 1 + 1 /(n−1)
Pcor[1,:,:,:,:] = CorrelationGen(n,x[1])

for i in 2:(m)
x[i] = 1 + 1 / (n − 1 − x[i−1])
Pcor[i,:,:,:,:] = CorrelationGen(n,x[i])

end
println(x)

d = zeros(Int64,m)
for i in 3:m

d[i] = find_d(Pcor[i,:,:,:,:] )
end
for i = 1:m

println("dimension of x_$i = $(d[i])")
end

end

function f(P,X,Y,psi)
Pa= size(X,3)
Pb= size(Y,3)
Ps= size(X,4)
Pt= size(Y,4)
d= size(X,1)
E = zeros(ComplexF64,d,d,Pa,Ps) #matrix of matrici
F = zeros(ComplexF64,d,d,Pb,Pt)
for a = 1:Pa, s = 1:Ps

E[:,:,a,s] = adjoint(X[:,:,a,s])*X[:,:,a,s]
end
for b = 1:Pb, t = 1:Pt

F[:,:,b,t] = adjoint(Y[:,:,b,t])*Y[:,:,b,t]
end
cost(P,E,F,psi)[1]

end

function directionalderivative(P,f, X, Y, psi, dX, dY, dpsi)
ns = sqrt(gradientsquare(dX, dY, dpsi))
dXtest = dX/ns
dYtest = dY/ns
dpsitest = dpsi/ns
#println(" gradientsquare $(gradientsquare(dXtest, dYtest, dpsitest))")
eps = 1e−7
(f(P,X + eps*dXtest, Y + eps*dYtest, psi + eps*dpsitest) − f(P,X, Y, psi)) / eps

end

function test(P,f, X, Y, psi, dX, dY, dpsi)
steep = directionalderivative(P,f, X, Y, psi, dX, dY, dpsi)
println("steep: $steep")
for i1 = 1:d, j1 =1:i1, a=1:Pa, s=1:Ps

println("|")
for k1 = 1:2, k2 = 1:2



55

Xtest .= dX
Xtest[i1,j1,a,s] = dX[i1,j1,a,s]+real(dX[i1,j1,a,s])*0.1*(−1)^k1 +imag(dX[i1,j1,a,s])*im*0.1*(−1)^k2
dir = directionalderivative(P,f, X, Y, psi, Xtest, dY, dpsi)
if dir > steep

println("MORE i1: $i1, j1: $j1, a: $a, s: $s, k1: $k1, k2: $k2, dif: $(dir−steep)")
else

println("LESS i1: $i1, j1: $j1, a: $a, s: $s, k1: $k1, k2: $k2, dif: $(dir−steep)")
end

end
end
for i2 =1:d, j2=1:i2,b=1:Pb, t=1:Pt

println("|")
for k1 = 1:2, k2 = 1:2

Ytest.= dY
Ytest[i2,j2,b,t] = dY[i2,j2,b,t]+real(dY[i2,j2,b,t])*0.1*(−1)^k1+imag(dY[i2,j2,b,t])*im*(0.1)*(−1)^k2
dir = directionalderivative(P,f, X, Y, psi, dX, Ytest, dpsi)
if dir > steep

println("MORE i2: $i2, j2: $j2, b: $b, t: $t, k1: $k1, k2: $k2, dif: $(dir−steep)")
else

println("LESS i2: $i2, j2: $j2, b: $b, t: $t, k1: $k1, k2: $k2, dif: $(dir−steep)")
end

end
end
for i3 = 1:d^2

println("|")
for k1 = 1:2, k2= 1:2

psitest .= dpsi
psitest[i3] = dpsi[i3]+real(dpsi[i3])*(0.1)*(−1)^k1+imag(dpsi[i3])*im*(0.1)(−1)^k2
dir = directionalderivative(P,f, X, Y, psi, dX, dY, psitest)
if dir > steep

println("MORE i3: $i3, k1: $k1, k2: $k2, dif: $(dir−steep)")
else

println("LESS i3: $i3, k1: $k1, k2: $k2, dif: $(dir−steep)")
end

end
end
steep = directionalderivative(P,f, X, Y, psi, dX, dY, dpsi)
println("steep end: $steep")

end

function testgrad()
d =2
Pa= 2
Pb= 2
Ps= 2
Pt= 2

psi = randn(ComplexF64,d^2)
psi /= norm(psi)

X = zeros(ComplexF64,d,d,Pa,Ps) #dimensies uit p halen
Y = zeros(ComplexF64,d,d,Pb,Pt)
for a = 1:Pa,s =1:Ps,i=1:d, j=1:i

X[i,j,a,s] = randn(ComplexF64)/d
end
for b = 1:Pb,t =1:Pt,i=1:d, j=1:i

Y[i,j,b,t] = randn(ComplexF64)/d
end

dX = zeros(ComplexF64,d,d,Pa,Ps)
dY = zeros(ComplexF64,d,d,Pb,Pt)
dpsi = zeros(ComplexF64, d^2)

Xtest = zeros(ComplexF64,d,d,Pa,Ps)
Ytest = zeros(ComplexF64,d,d,Pb,Pt)
psitest = zeros(ComplexF64, d^2)

E = zeros(ComplexF64,d,d,Pa,Ps) #matrix of matrici
F = zeros(ComplexF64,d,d,Pb,Pt)

Etest = zeros(ComplexF64,d,d,Pa,Ps) #matrix of matrici
Ftest = zeros(ComplexF64,d,d,Pb,Pt)

gradient!(PCHSH, X, Y, psi, dX, dY, dpsi, d, Pa, Pb, Ps, Pt)
test(PCHSH,f, X, Y, psi, dX, dY, dpsi)

end

function parameterana(P,d)
alpha = 0.1:0.1:0.5
beta = 0.1:0.1:0.9
timemeas = zeros(Float64, size(alpha,1), size(beta,1))
for a = 1: size(alpha,1), b = 1:size(beta,1)

for t = 1:10
timemeas[a,b] += @elapsed gradientdescent(P,d,alpha = alpha[a], beta = beta[b])

end
end
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timemeas /= 5
return(timemeas)

end

function timetaken()
P = PcorGen8
cst = []
grad = []
Pa= size(P,1)
Pb= size(P,2)
Ps= size(P,3)
Pt= size(P,4)

for d = 1:20
psi = randn(ComplexF64,d^2)
psi /= norm(psi)

X = zeros(ComplexF64,d,d,Pa,Ps) #dimensies uit p halen
Y = zeros(ComplexF64,d,d,Pb,Pt)
for a = 1:Pa,s =1:Ps,i=1:d, j=1:i

X[i,j,a,s] = randn(ComplexF64)/d
end
for b = 1:Pb,t =1:Pt,i=1:d, j=1:i

Y[i,j,b,t] = randn(ComplexF64)/d
end

dX = zeros(ComplexF64,d,d,Pa,Ps)
dY = zeros(ComplexF64,d,d,Pb,Pt)
dpsi = zeros(ComplexF64, d^2)

push!(cst , @elapsed f(P,X,Y,psi))
push!(grad, @elapsed gradient!(P, X, Y, psi, dX, dY, dpsi, d, Pa, Pb, Ps, Pt))

end
plot(hcat(cst,grad),xlabel = "dimension", ylabel = "time elapsed (s)",label = ["cost" "gradient"])

end

function C(r)
M = zeros(r, binomial(r, 2)+1)
c = 1
for i = 1:(r−1), j=i+1:r

M[i, c] = 1/sqrt(2)
M[j, c] = −1/sqrt(2)
c += 1

end
for j=1:r

M[j, end] = 1/sqrt(r)
end
M

end

function getxandy(M)
L, U, p = lu(M’)
s = zeros(Int, length(p))
for i=1:length(p)

s[p[i]] = i
end
U, L[s,:]’

end

function b(i, d)
v = zeros(d)
v[i] = 1.0
v

end

function psi(d)
1/sqrt(d) * sum(kron(b(i, d), b(i, d)) for i=1:d)

end

function phi(r, i)
X = [0.0 1.0; 1.0 0.0]
Y = [0.0 −im; im 0]
Z = [1.0 0.0; 0.0 −1.0]
if isodd(i)

A = reduce(kron, [Z for _ = 1:div(i−1, 2)], init=ones(1,1))
A = kron(A, X)
s = div(r+1,2) − div(i+1,2)
A = kron(A, Matrix(I,2^s,2^s))
A

else
A = reduce(kron, [Z for _ = 1:div(i−2, 2)], init=ones(1,1))
A = kron(A, Y)
s = div(r+1,2) − div(i,2)
A = kron(A, Matrix(I,2^s,2^s))
A

end
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end

function Xmat(v)
sum(v[i] * phi(length(v), i) for i=1:length(v))

end

function Ymat(v)
sum(v[i] * transpose(phi(length(v), i)) for i=1:length(v))

end

function getcliffordrep(r)
M = C(r)
d = 2^div(r+1,2)
mypsi = psi(d)
X, Y = getxandy(M)
mypsi, [Xmat(X[:,i]) for i=1:size(X,2)], [Ymat(Y[:,i]) for i=1:size(Y,2)]

end

function obsertoPOVM(X)
r = size(X,1)
d = size(X[1],1)
XP = zeros(ComplexF64,d,d,2,r)
for s = 1:size(X,1)

for a = 1:2
XP[:,:,a,s] = (I + (−1)^a*X[s])/2

end
end
XP

end

function generatePGD(r)
mpsi, X,Y = getcliffordrep(r)
XPOVM = obsertoPOVM(X)
YPOVM = obsertoPOVM(Y)
PGD = Pcalc(XPOVM,YPOVM,mpsi)

end
PCHSH = Pcalc(CHSH()...)

PGD1 = generatePGD(1)
PGD2 = generatePGD(2)
PGD3 = generatePGD(3)
PGD4 = generatePGD(4)
PGD5 = generatePGD(5)
PGD6 = generatePGD(6)

PcorGen3= CorrelationGen(3,3.0/2)
PcorGen4= CorrelationGen(4,(4.0/3.0))
PcorGen4_2= CorrelationGen(4,(8.0/5.0))
PcorGen4_3= CorrelationGen(4,(12.0/7.0))
PcorGen5= CorrelationGen(5,(5.0/4.0))
PcorGen6 = CorrelationGen(6,6.0/5)
PcorGen8 = CorrelationGen(8,8.0/7)

#
# gradientdescentPVM(PcorGen4_2,5)
#
# gradientdescent(PcorGen4_2,9)
#
# gradientdescentNOLINE(PCHSH,2)#nope
# gradientdescent(PCHSH,2)
# gradientdescentMomentum(PCHSH,2)
# gradientdescentNAG(PCHSH,2,t = 1/30, gamma = 0.6)
#
# gradientdescent(PcorGen4_2,5)
#
#
# gradientdescent(PcorGen4_2,9)
# gradientdescent(PcorGen4_2,27) #300 0.016
# gradientdescent(PcorGen4_2,29) # todo
#
# gradientdescent(PCHSH,2, alpha = .5, beta = .5)
# gradientdescentNOLINE(PCHSH,2,t=20)
#
# gradientdescent(PcorGen4_3,7)
# gradientdescent(PcorGen4_3,9)
# gradientdescent(PcorGen4_3,11)
# gradientdescent(PcorGen4_3,11)
# gradientdescent(PcorGen4_3,13)
# gradientdescent(PcorGen4_3,15)
#
# gradientdescentNOPEN(PcorGen4,3)
# #
# # gradientdescentNAG(PcorGen6,5,eta = 1/130) #3??? niet verwacht gaat wel echt naar nul
# #
# # gradientdescent(PcorGen4,3) #3??? niet verwacht gaat wel echt naar nul
# gradientdescent(PcorGen8,5)
# # @profiler gradientdescent(PcorGen6,4)
# # @profiler gradientdescent(PcorGen6,5)
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# # gradientdescent(PcorGen6,6)
# #
# # gradientdescent(PcorGen8,6)
# gradientdescent(PcorGen8,7)
# gradientdescent(PcorGen8,8)
# # #
# # #
# # # gradientdescentNOLINE(PCHSH,4)
# # # gradientdescentNOLINE(PcorGen4,3)
# # #
# # #
# # gradientdescentNOLINE(PcorGen3,3)
# # # find_d(PCHSH)
# # find_d(PcorGen) #3!??!
#
#
#
#
#

# gradientdescent(PGD1,2)

# @elapsed gradientdescent(PGD2,2)

# gradientdescent(PGD3,2)

# gradientdescentNOLINE(PGD4,4,t= 1/70)
# gradientdescent(PGD4,4,beta = .5)
# gradientdescentMomentum(PGD4, 4, t = 1/30, gamma = .9)
# gradientdescentPVM(PGD4,4,beta= .7, alpha = .3)

# gradientdescent(PGD5,3)

# gradientdescentMomentum(PGD6,8, t = 1/70)
#
# r=4
# mpsi, X,Y = getcliffordrep(r)
# XPOVM = obsertoPOVM(X)
# YPOVM = obsertoPOVM(Y)
# PGD4 =Pcalc(XPOVM,YPOVM,mpsi)
# gradientdescent(PGD4,4)
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