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Abstract

Traffic congestion on highways is a multi-sectoral phenomenon affecting society, the economy
and the environment. It often takes place at specific locations such as on and off-ramps,
weaving segments and intersections. The on-ramp merging procedure is considered as one of
the main factors that causes traffic congestion on highways. The studies in literature show
that the merging procedure can result in adverse traffic scenarios such as the buildup of the
vehicles on the ramp which causes a downstream drop in capacity and subsequent blockage
of upstream off-ramp traffic flow. Moreover, the on-ramp vehicles need to take the actions of
leading and following mainlane vehicles into account during the merging process. On highly
congested roads, this merging process becomes even more tedious and undesirable stop-and-go
traffic behavior becomes unavoidable.

Connected and Autonomous Vehicles (CAVs) that can provide safe gaps between vehicles
along with identifying appropriate merging speed profiles have the potential to reduce traffic
accidents and improve traffic efficiency. This thesis introduces a Nonlinear Model Predictive
Control (NMPC) based control strategy for autonomous merging control based on a cost
function that tracks the desired inter-vehicular gaps for on-ramp and mainlane vehicles, and
thus intends to fully exploit the capacity of the road in order to maximize the traffic through-
put. The proposed controller aims to optimize both acceleration and steering rate profiles
of vehicles, and to guide on-ramp vehicles to merge efficiently, without frequent slowdown or
wait for merging gaps at the end of the ramp along with minimal disruption to the mainlane
traffic flow. The controller is evaluated under different initial conditions, ranging from low to
high traffic conditions. The performance of the controller is compared to that of a baseline
scenario, and the results show that the proposed controller increases travel times in the range
of 2.46% and 4.17% for different traffic conditions, without disrupting the mainline traffic
operation. Additionally, average speed of vehicles is improved in the range of 8.2% and 4.5%
under different traffic conditions.
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Chapter 1

Introduction

1-1 Motivation

Traffic congestion on highways is a multi-sectoral phenomenon affecting society, the economy
and the environment. It often takes place at specific locations such as on and off-ramps,
weaving segments and intersections. The on-ramp merging procedure is considered as one
of the main factors that causes traffic congestion on highways [2]. It has been identified
in the relevant literature that the merging procedure can result in adverse scenarios such
as the buildup of the vehicles on the ramp which causes a downstream drop in capacity
and subsequent blockage of upstream off-ramp traffic flow [2], [15]. Speed variance at ramps
due to different types of merging vehicles and driving behaviors (cooperative or adversarial) is
another factor which adversely impacts the occurrence of crashes, termed as Crash Occurrence
Likelihood (COL) [4], [22]. Moreover, a local perturbation such as a lane change can result
in congestion which ultimately influences the overall traffic flow stability [5], [16].

Connected and Autonomous Vehicles (CAVs) that can provide safe gaps between vehicles
along with identifying appropriate merging speeds have the potential to reduce traffic ac-
cidents and improve traffic efficiency [6], [7]. It has been shown that the merge bottleneck
capacity increases quadratically as Cooperative Adaptive Cruise Control (CACC) market pen-
etration becomes higher, and CACC vehicles can help to maintain a stable traffic flow free of
stop-and-go waves [12]. Vehicle-to-Vehicle (V2V) based communication during merging can
result in decreased travel times as compared to baseline case of manually driven vehicles [13].
To this end, a number of automobile companies and research institutions are dedicating their
efforts to demonstrate and implement partially or highly automated features in modern vehi-
cles such as the artificial intelligence based computational platforms for autonomous driving
from NVIDIA [9] and the Autopilot from Tesla [10]. In addition to these, fully autonomous
vehicles are also in advanced stages of development. In the context of this thesis, the use of
the term ’autonomous’ has been restricted to automation Level 4 or above as defined by the
Society of Automotive Engineers (SAE) [11]. Level 4 pertains to ’high automation’ where the
human intervention is not required sans in limited circumstances. Level 5 automation does
not require human intervention at all.
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2 Introduction

Research on the management and avoidance of congestion at on-ramps has been carried out
since the development of motorway roads. The research work in this regard, for ease of
understanding, can be described chronologically. In the first phase, most of the efforts to
decrease and prevent congestion at merges were related to the physical improvement of the
infrastructure layout. This included improvement in the road layout and identification of the
optimal junction design [17], [18], [19]. This physical road network enhancement is expensive
to undertake and often not desirable. In the second phase, Active Traffic Management
(ATM) strategies were introduced to control the traffic flow in an efficient way. ATM employs
technologies for real-time monitoring and management of traffic to respond to the continuously
changing traffic conditions. These primarily included ramp metering, Variable Speed Limit
(VSL) and route guidance [20], [21]:

• Ramp metering determines the rate of flow at which the vehicles enter the highway
which is implemented by the use of traffic signals at the on-ramps.

• Variable speed limit is used to manage the traffic speeds on highways. Speed limit
signs are displayed to mange the upstream vehicle speeds in order to mitigate the
occurrence of congestion on merging areas.

• Route guidance involves the use of on-board devices that display information about
the state of traffic such as waiting time or queue lengths and hence, assist drivers in
planning their routes accordingly.

In the third and most recent phase, innovative control strategies based on Vehicle-to-Vehicle
(V2V) and Vehicle-to-Infrastructure (V2I) communication are being used in combination with
other driving assistance systems to better manage the merging process. With the introduction
of Connected and Autonomous Vehicles (CAVs) on the roads and the anticipated arrival of
self-driving vehicles, the importance of V2V and V2I based strategies has grown manifold and
it necessitates further research on the topic [2], [3].

Figure 1-1: A typical highway on-ramp merging scenario [117].

A typical freeway merging situation is shown in Figure 1-1. Car-0 is the ego vehicle intending
to merge from the on-ramp into the mainlane on the highway. There are three spot candidates
where the it can be merged i.e. Spot-1, 2 and 3. The ego vehicle needs to determine a spot
from these set of the candidates while performing the merging process in a safe and efficient
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1-2 Problem statement and scope 3

manner. At first, the driver determines which spot is the best one based on certain criteria e.g.
the safest, the first available and with a comfortable driving profile. The comfort pertains to
the driver not being subjected to aggressive acceleration or braking commands. Once the spot
is selected, the driver adjusts accordingly the speed of the vehicle to align with the targeted
spots and mainlane vehicle speed; and, then performs the required maneuvers to merge.
Moreover, the vehicle on the mainlane can either give way to the ego vehicle or decline and
hence, the ego vehicle needs to take the actions of leading and following vehicles into account
during the merging process. On highly congested roads, this merging process becomes even
more tedious and undesirable stop-and-go traffic behavior becomes unavoidable.

The implementation of autonomous on-ramp merging presents many challenges. One chal-
lenge is that the merging vehicle should take the long-term effects into account while un-
dertaking current actions. These long term effects pertain to the successful completion of
smooth merging process (e.g. identifying gap, maintain merging speed and minimize distor-
tion of mainlane traffic flow) while the current actions include acceleration, deceleration or
steering commands. This also shows that the ramp merging is a time-sequential process as the
completion of the process depends on a sequence of current actions which have an impact on
the whole process. Another challenge is that the merging maneuver not only depends on the
ego vehicle’s own dynamic state but also depends on the surrounding vehicles’ actions. The
surrounding vehicles can either cooperate with the merging vehicle by giving way to them or
take adversarial actions such as speeding up to maintain their own speed profile which have
wider implications for the traffic throughput from the road segment. Moreover, the merg-
ing process usually includes two modules, a decision making module and a control execution
module. The former works on a strategic or tactical level and advises to make a lane change
based on either a planned route (e.g. making a detour to reach a specific destination) or
a specific driving condition (e.g. overtaking a slow vehicle to maintain speed profile). The
control execution module issues the necessary longitudinal and lateral commands to execute
a safe and smooth lane change process.

1-2 Problem statement and scope

A literature study [1] has been done to gain a holistic understanding of the ramp merging
problem and identify suitable research gaps for this research. One observation was that the
focus of research in this domain has been gradually shifting from rule-based methods to op-
timization and control based approaches. The latter have advantages in terms of devising
optimal solutions and achieving scalability, although the computational costs remain a chal-
lenge. Recent innovations in autonomous driving have offered the use of Vehicle-to-Vehicle
(V2V) and Vehicle-to-Infrastructure (V2I) communication capabilities to augment the de-
sign of control strategies, the feasibility of which needs to be explored further in complicated
traffic networks such as ramp merging. It was also inferred that most of the previous works
consider a single mainlane during merging and a rather simplified model, such as point mass
is used to study the proof-of-concept approaches [2]. As shown in Figure 1-1, such a scenario
includes a single mainlane with an on-ramp and varied number of vehicles. Furthermore,
previous works generally focus on the design of control algorithm and its assessment while
wider effects on the traffic performance and the subsequent evaluation of their metrics are
not explicitly considered such as merging delays and upstream or downstream congestion.
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4 Introduction

In recent years, Model Predictive Control (MPC) based control strategies have seen a signifi-
cant increase in usage for numerous new applications, particularly in the automotive industry
[121]. The recent spike in interest to use MPC for new applications can be ascribed to the ever
increasing processing power in modern day computing systems. This allows to solve complex
optimization problems online, that were not deemed to be solvable before. In this thesis
work, the applicability of the model predictive control and incorporation of lane changing in
a multi-lane setting is researched in application to the throughput maximization of traffic on
highways.

The road segment studied in the thesis is illustrated in Figure 1-2. It is pertinent to mention
here that previous works in this domain have mainly focused on scenarios with one mainlane
and an on-ramp [2], [3]. Moreover, if multi-lane scenario is considered, then a restriction on the
lane changes within the mainlanes is placed [8]. In order to address these research gaps, and
to portray a more realistic merging traffic scenario, two mainlanes, lane 1 and 2, and one on-
ramp are considered. The number of vehicles (N) in the road segment are varied for different
scenarios which are discussed later in the thesis. In a Vehicle-to-Infrastructure (V2I) and
Vehicle-to-Vehicle (V2V) connected vehicle environment, highway vehicles inside the Control
Zone are informed of the traffic conditions by the Centralized Control Agent. Based on the
generated control commands, the vehicles are tasked to slow down, accelerate, or shift to the
left lane to allow vehicles from the ramp to join the highway with the overall objective of
maximizing the throughput from the entire road segment. The location where the ramp and
the freeway connect is called the merging point. The Merging Zone is defined as a segment
of the right-most lane of the highway where the vehicles from the on-ramp merge onto the
mainlane. This is also the region where there is a potential lateral collision of the vehicles,
hence the distinction with regards to the Control Zone. The Acceleration Region allows the
vehicles on the ramp to accelerate/decelerate prior to merging onto the lane 2. In order to
induce generalization into the problem scenario, the initial velocities and the entry time of
vehicles in each lane are chosen subjectively and no limits are placed on the occurrence of
lane changing in either control or merging zones.

Figure 1-2: On-ramp merging road segment.

The implications of this approach are that vehicles do not have to come to a full stop at
the merging point, thereby conserving momentum while improving throughput and travel
time. The centralized controller is designed in way that controls the vehicles in the entire
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1-3 Major contributions 5

road segment i.e. the control and the merging zone. Moreover, by optimizing each vehicle’s
acceleration/deceleration, the transient engine operation can be better managed which can
result in additional benefits such as reduced energy consumption. To this end, the thesis
addresses this line of research and the overarching objective of the thesis is:

To design a centralized nonlinear model predictive control strategy for highway
traffic throughput maximization.

The proposed controller would be able to:

• make use of a nonlinear vehicle prediction model to capture the system dynamics during
merging of vehicles.

• coordinate the vehicles inside the control and merging zone so as to maximize the traffic
throughput from the road segment.

• incorporate both longitudinal (acceleration command) and lateral control (steering rate
command) for each vehicle.

• maintain safe inter-vehicular distances and attain safe trajectories for merging vehicles.

Scope

In Figure 1-3, the complete control environment for Connected and Autonomous Vehicles
(CAVs) is presented and the focus of this thesis is highlighted with the blue block. It is
assumed that the Supervisory Control has access to pre-processed data and is able to receive
messages from the other vehicles e.g. via GPS data and Vehicle-to-Infrastructure (V2I) com-
munication. The supervisory layer gives the Centralized Control Agent information of when
to perform the different tasks.

The focus of this thesis will exclusively be on this Centralized Control Agent which generates
the acceleration and steering rate commands for each vehicle, which are then transformed into
respective actuator signals by the Low-level Control. For instance, it asks a specific vehicle
to make a lane change while making sure that the safety distances to the other vehicles are
not violated during the merging.

1-3 Major contributions

This thesis aims to include the following major contributions to the field:

• Incorporation of nonlinear vehicle kinematic prediction model for the MPC based control
strategy.

• Formulation of a multi-lane highway setting with on-ramp merging.

• Integration of both longitudinal and lateral control of vehicles into the proposed control
strategy.

Master of Science Thesis Omer Khalid



6 Introduction

Figure 1-3: The complete control system environment for CAVs.

• Analysis of the possibilities and limitations of Nonlinear Model Predictive Control
(NMPC) based strategy for different traffic scenarios, with a focus on comparison with
baseline and state-of-the-art works.

• Evaluation of traffic performance metrics e.g. travel times and average speed, in addition
to the controller assessment.

1-4 Thesis outline

Following the introduction as presented in this chapter, the remainder part of the thesis is
structured as follows:

Chapter 2: Background information. This chapter gives the background information
on the topic. The traffic modelling and the formulated ramp-merging road segment are
presented. This is followed by the description of the vehicle model along with the respective
model assumptions. Next to this, an overview of control strategies is presented which is
followed by the motivation for the choice of MPC.

Chapter 3: Control design. This chapter introduces the control approach in detail. At
first, an introduction to MPC is presented and the motivation for its use is discussed. This
is followed by the formulation of objective function, constraints and further design choices.
Lastly, the lane change methodology of vehicles is presented.
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1-4 Thesis outline 7

Chapter 4: Simulation results. In this chapter, the implementation aspects of the con-
troller are discussed. The case studies of baseline scenario, low traffic, and high traffic scenario
are presented. This is followed by the simulation results and discussion.

Chapter 5: Conclusion. In this chapter, the conclusions from the entire thesis work are
summarized. Also, some recommendations and research directions for the future work in this
domain are presented.

Master of Science Thesis Omer Khalid
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Chapter 2

Background information

In this chapter, background information regarding the formulation of ramp merging problem
is presented. Section 2-1 starts with the description of the way the problem is formulated vis-
a-vis traffic and the road segment. In Section 2-2-1, the governing equations for the kinematic
single-track model are presented which form the fundamental basis for the proposed Model
Predictive Control (MPC) method. Section 2-3 summarizes the findings from the literature
survey conducted with regards to the different control strategies for the merging problem while
the motivation for the choice of Model Predictive Control (MPC) is presented in Section 2-4.

2-1 Modeling of the traffic

Traffic models are, in general, divided into two distinct classes based on the behavior that they
capture and the level of details that they provide; macroscopic, mesoscopic, and microscopic
models. In macroscopic modeling, the traffic is described in aggregate terms based on
average speed, flow and density of the highway sections instead of capturing the behavior of
individual vehicles. The three important variables of macroscopic modeling are flow, density
and speed of vehicles in a certain road segment. Mesoscopic models are another category
of traffic models which partly use the characteristics of both microscopic and macroscopic
models. The level of detail for a mesoscopic model is greater than a macroscopic model and less
than that of a microscopic model [39]. The traffic flow dynamics are described in an aggregate
way based on probability distribution functions. Three main classes of mesoscopic models
include headway distribution models, cluster models, and gas-kinetic models. Microscopic
modeling, on the other hand, is used to describe the behavior of vehicles at an individual
level. The important aspects of microscopic models are longitudinal driving behavior (car
following) and lateral driving behavior (lane changing). Car following and lane changing
behavior is generally described as a function of the distance to and relative speed of the
surrounding vehicles, and the desired speed. As the vehicles are modeled individually in
microscopic traffic models, different characteristics can be assigned to each vehicle. These
characteristics are related to the individual driving style of the driver, type of vehicle (e.g.
car, truck), its destination, and route choice.
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10 Background information

As the focus of the thesis will be to investigate the merging of vehicles at an individual level
along with studying and incorporating the notions of trajectory generation and lane changing,
so the microscopic traffic modeling is considered to be suitable for this purpose. In this way,
each vehicle in the network can be characterized by parameters such as, the desired velocity,
acceleration/deceleration, vehicle type, driving behaviour etc. The formulation of the road
segment considered in this thesis is shown in Figure 2-1.

Figure 2-1: On-ramp merging road segment.

In this thesis, the proposed controller is designed with an aim to maximize the traffic through-
put from the entire road segment. Throughput pertains to the overall travel efficiency, one
way of measuring which is to calculate the total travel time that the vehicles spend inside the
control and merging zones. A large travel time value means that the controller is conservative
and might take more time than desired time to complete the merging task, resulting in lower
traffic efficiency. Conversely, a smaller value could mean that the controller is assertive and
makes proactive decisions to achieve higher traffic efficiency. Another criteria is to analyse
the average speed of vehicles during the course of controller simulation. In particular, this
gives an indication about the merging behavior of on-ramp vehicles and whether they have
to slow down too much to merge into the lane 2, which could in turn, induce merging delays.

2-2 Vehicle models overview

The vehicle model plays a pivotal role in two aspects of the controller design. The first aspect
is the future states prediction, which can be based on the mathematical representation of
the vehicle model. The second aspect is the system simulation, where the vehicle model is
used to simulate the vehicle behavior and the performance of the proposed control strategy
is assessed. In general, three kinds of vehicle traffic models are presented in literature.

Point mass models treat the individual vehicle as a particle and describe the motion of the
vehicle along a specified path in a simplified way. In these models, the vehicle is considered
to be an object with a finite mass and the vehicle motion is described as a function of
time only based on parameters such as position, velocity and acceleration. Multi-body
models consider the vertical load of all 4 wheels due to roll, pitch, and yaw, along with
their individual spin and slip, and nonlinear tire dynamics. Different tire models are used
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2-2 Vehicle models overview 11

to describe the interaction between vehicle and the road. These models are able to include
suspension forces while also capturing the vehicle dynamics in high tire slip conditions [44].
Kinematic models are based on the geometry of the vehicle, i.e. using differential drive
kinematics to model wheeled robots. They are useful for representing the vehicle motion in
low and medium speed conditions which do not involve highly dynamic maneuvers and tire
force saturation. In case of kinematic bicycle model, the vehicle is modeled with only two
wheels, where the front and rear wheels are each lumped into one wheel. This simplification
is justified when the roll dynamics need not to be considered. An example, where the benefit
of a kinematic bicycle model is evident, is parking: a point-mass model is not sufficient since
it would not consider the non-holonomic behavior and in particular, the minimum turning
radius. A comparison of three different vehicle models is shown in Table 2-1.

Table 2-1: Brief comparison of vehicle models

Vehicle Models Level of detail Scalability and Computa-
tional tractability

Behavioral representation

Point mass models
[47]

2nd order dynamics,
vehicle motion is de-
scribed as a function
of time only based on
parameters such as
position, velocity and
acceleration

appropriate for higher num-
ber of vehicles, in coopera-
tive control approaches, lower
computational requirements,
better for optimization based
approaches

treat the individual vehicle as
a particle and describe the
motion of the vehicle along a
specified path in a simplified
way

Kinematic vehicle
model [44]

depend on geometric
parameters of the vehi-
cle

need higher computational re-
quirements than point mass
models, model is usually sim-
plified to point mass for reduc-
ing computational burden of
optimization

useful for low speed maneu-
vers, provides accurate repre-
sentation of the nonholonomic
motion of vehicle

Dynamic vehicle
model [44], [43]

describe interaction be-
tween vehicle (wheel)
and road so higher ac-
curacy

Number of agents modelled
and simulated can be ex-
tended to a higher number

longitudinal behaviour (car
following models), lateral be-
havior (lane changing), com-
plex dynamic behavior can be
captured

2-2-1 Choice of kinematic single-track model

In this thesis, the basis for the prediction model and plant model for the proposed control
strategy is the kinematics single-track vehicle model. This model of the vehicle dynamics uses
the approximation where the left and right wheels are lumped into a single wheel. This also
explains the term single-track model. This is a common simplification approach in developing
models suitable for the control design [44]. An illustration of this model is shown in Figure 2-
2. lr and lf are distance from center of gravity to rear axle and front axle, respectively. In
total, the length of the wheelbase lwb=lr+lf is taken to be 2.5m. The state equations of the
vehicle model are as follows:

Ẋ = fKM (X,U), (2-1)

where X and U are the state and input vectors respectively. The basic assumptions of the
single-track model are as follows:
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12 Background information

Figure 2-2: Kinematic single track model

• The wheels of the vehicle are assumed to be lumped into the center of each axle.

• The vehicle model is defined in a top-view 2D Euclidean space. 3D effects, such as
roll-over are not modeled.

• Each unit of the vehicle is a rigid body mass.

• No suspension movements, chassis or cabin dynamics are modeled.

• The aerodynamic forces are negligible.

Kinematic models are based on the geometry of the vehicle. They are useful for representing
the vehicle motion in low and medium speed conditions which do not involve highly dynamic
maneuvers and tire force saturation. The differential equations describing the motion of the
vehicle are as follows:

ẋ = v cos(ψ), (2-2)
ẏ = v sin(ψ), (2-3)
v̇ = a, (2-4)
δ̇ = vδ, (2-5)
ψ̇ = v

lwb
tan(δ), (2-6)

where the notation ψ is the heading angle, δ is the steering angle and vδ is the steering rate.
v and a denote the velocity and acceleration of the vehicle’s center of gravity, respectively.
The velocity vector v is always aligned with the link between the front and rear wheel. Hence,
the slip angle β = tan−1

(
lr

lf +lr tan(δ)
)
is assumed to be zero. As the scenario of on-ramp

merging does not corresponds to high-speed maneuvers or sharp cornering, so the choice of
neglecting the slip angle is acceptable in this case.
The state equations include 5 variables i.e. longitudinal position, lateral position, velocity,
steering angle, and heading for each vehicle present in the road segment. These states or
output variables are as follows:

X =
[
xi yi vi δi ψi

]T
.
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2-3 Overview of control 13

The manipulated variables of acceleration and steering rate are as follows:

U =
[
along,i vδ,i

]T
,

where the subscript i refers to each vehicle in the control and merging zone.

2-3 Overview of control

A literature study was conducted to study the state-of-the-art in terms of control strategies
and their assessment for merging problems. Herein, the survey is summarized by highlighting
the relevant works in literature along with their underpinnings and caveats. It is pertinent to
mention here that the intersection control problem and the ramp merging control problem are
very similar in nature and most of the approaches proposed for intersection control, can easily
be adapted for merging coordination and vice versa. In the following subsections, the control
approaches for intersection and ramp merging control are briefly presented. For the sake
of brevity, the control methods are divided into heuristic, optimization-based and learning
control approaches.

2-3-1 Heuristic and rule-based approaches

In heuristic and rule-based approaches, the general idea is that there is a centralized controller
that coordinates the merging process based on scheduling requests and information received
from the vehicles inside the merging zone. The solutions generated in these approaches are not
guaranteed to be optimal [3]. Researchers have designed various approaches in this regard.

One approach is the reservation based method where a centralized controller or intersection
manager is used to coordinate the merging schedule based on the requests and information re-
ceived from the vehicles located inside the communication range. The merging area is divided
into cells, or points, which are to be assigned, or reserved, for only one vehicle at each instant
of time to avoid collisions. The main challenges in this approach are the heavy communica-
tion requirements and the possibility of deadlocks occurrence. The communication between
merging vehicles becomes a critical issue particularly when they are required to communicate
several times with the central controller until their reservation request is approved. Dresner
et al. [52] proposed the use of the reservation scheme to control a single intersection of two
roads with vehicles traveling with similar speed on a single direction on each road, i.e. no
turns are allowed. Each vehicle is treated as a driving agent which requests the reservation
of the cells to cross the intersection at a specific time interval. Once the centralized reserva-
tion system receives the request, it accepts if there is no conflict with the already accepted
reservations. Otherwise, the request is rejected. In case of rejection, the driving agent is
required to decelerate and send a new reservation request. This work was extended by Huang
et al. [53] in which the the computation of the vehicle trajectories is centralized to minimize
the possibility of reservation requests cancellation. Moreover, a a hierarchical processing of
requests based on priority is designed and indicators relating to environmental benefits are
assessed.

Uno et al. [72] presented the concept of virtual vehicle/platooning for efficient ramp merging.
The concept of virtual platooning relates to shifting of the time instant for platoon forming
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Figure 2-3: Virtual platooning merging mechanism [73].

forward before the real merging process takes place. A virtual vehicle is mapped onto the main
road before the actual merging is supposed to occur in order to allow the vehicles to perform
smoother and safer merging process. Figure 2-3 illustrates this mechanism. This concept
is further explored by Lu et al. [73] where a platoon of vehicles is merged by considering
it as a single vehicle. Furthermore, a merging algorithm using a "slot-based" approach for
autonomous vehicles is proposed by Marinescu et al. (2012) [71]. In this case, each vehicle
drives normally until the central Traffic Management System (TMS) detects that the traffic
conditions require a more efficient use of the infrastructure. At this point, each vehicle is
allocated to a virtual slot, and on-ramp vehicles are mapped into the empty slots on the
mainline that are selected by the central controller called Road Side Unit (RSU). The slot’s
occupancy status is determined in two ways. The first is a hierarchical approach where the
TMS maintains this information for all the slots on the motorway. Initially, all slots are
empty. When a vehicle moves into a slot based on the VTS algorithm, it marks the slot as
occupied. When a vehicle wants to change its slot, it asks the status of the target slot with
TMS which assigns a target slot to the vehicle. The second method is a distributed approach.
In this case, the vehicle coordinates the slot changing with its neighboring vehicle based on
Vehicle-to-Vehicle (V2V) information. Microscopic simulation has been used to evaluate the
algorithm performance, and results for medium and heavy traffic saturation show that this
approach results in an increment in the on-ramp throughput and decrease in merging delay.

2-3-2 Optimization and control based approaches

In literature, many optimization and control based approaches have been utilized to study the
merging of vehicles on ramps and intersections. The optimization based approaches involve
the formulation of a cost function with a certain objective to achieve. This objective is, for
instance, in terms of optimizing total ravel time, minimizing vehicles overlap or multi-objective
problem formulation. Additional terms are added into the cost function to include safety
constraints such as collision avoidance. One approach to generate trajectories for merging
is by using Model Predictive Control (MPC), also known as receding horizon control. The
main aim of MPC is to minimize a performance criterion in the future that is subjected to

Omer Khalid Master of Science Thesis



2-3 Overview of control 15

constraints on the manipulated inputs and outputs, where the future behavior is computed
according to a model of the plant. The model predictive controller uses the system model and
current plant measurements to calculate future direction in the independent variables that will
result in an operation that honors all the independent and dependent variable constraints. The
MPC then sends this set of independent variables to the corresponding regulatory controller
set-points to be implemented in the process.

A proactive merging strategy for two streams of vehicles is proposed by Awal et al. [83].
The objective is to minimize the merging time on on-ramps and hence reduce the traffic
bottlenecks. This is done by a recursive pruning algorithm that generates the optimal merging
order based on the current traffic condition so that the on-ramp vehicles can merge to the main
lane minimizing the merging delay. The vehicles are V2V enabled and the merging vehicle
obtains the position, velocity and acceleration information of the surrounding vehicles. The
results show improvement in merging time, energy consumption and average speed while the
average travel time on the main highway was slightly increased [83]. One way of reducing the
traffic congestion is by increasing the throughput at an intersection or the ramp merging area.
This can be achieved through the optimization of the travel time for all the vehicles located
inside the control zone. Raravi et al. [76] formulated the autonomous merging problem as an
optimization problem with the objective to minimize the driving time to intersection. The
literature such as Li et al. [61], Yan et al. [62] and Wu et al. [63] also involves optimization
of travel time.

Another approach used in optimization is to minimize the overlap of vehicles inside the
intersection zone. The objective is to determine the acceleration profiles of the vehicles such
that only a limited number of vehicles are present inside the intersection at each instant
of time. The total number of vehicles depends on different criteria such as the size of the
vehicles, the length of the intersection area and the minimum safest following distance. Lee
et al. [64] proposed this approach in which the potential overlaps of vehicle trajectories were
eliminated. The simulation results showed that this approach only reduces the total travel
time and delays but also minimizes the total fuel consumption during the procedure. This
work was further extended in [65] by considering the case of an urban corridor and studying
the safety and environmental aspects of the system.

Multi-objective optimization is based on including multiple performance criteria in the ob-
jective function. The assumption here is that the vehicles have already been assigned the
merging schedule and the aim is to minimize the error between the actual and desired control
commands i.e. speed or acceleration. The objective function can be formulated as follows:

min
T∑
t=1

(
wv
(
vi(t)− vd

)2
+ wuu2

i (t) + wcf2
i (t, ui(t))

)
, (2-7)

where T is the total number of horizon steps. Weighting factors are denoted by w and the
superscripts v, u correspond to speed and acceleration respectively. f(t, u) is an additional
function that can be used to quantify the risk of collisions in the system. In general, the
constraints found in literature include minimum headway (distance and/or time) between
vehicles, speed and acceleration limits [3].

Campos et al. [66] formulated the problem in which speed tracking error and acceleration
is incorporated in the objective function. The constraints include velocity and acceleration
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values that would make the crossing procedure safe. Model Predictive Control (MPC) is used
in [67] to solve the problem that includes a risk factor function to quantify the collision risk
at the intersection. In [68], the error between the desired speed and the actual speed of each
vehicle is minimized while keeping a safe time headway between the vehicles crossing the
intersection. Moreover, smaller acceleration values are assigned to heavier vehicles that those
assigned to the lighter vehicles. This helps to make the trajectory of heavier vehicles smooth
which in turn, improves the energy consumption of vehicles. This approach was compared
with a intersection controlled by traffic lights. The results showed marked improvement in
the safety and energy consumption aspects as compared to the latter approach.

A gap selection and path generation method is proposed by Cao et al. [69] where the vehicle
on the main lane adjusts its speed to facilitate the merging process of the vehicle attempting
to merge. The optimization problem is formulated by including four terms. These include: a)
relative distances between the relevant vehicles b) bounds on the available moving area for the
merging vehicle c) the desired traveling speed of vehicle and, d) bounds on the acceleration
vehicles. The simulation results showed that for the specified initial conditions, the proposed
method can generate trajectories for the vehicles during merging. Another multi-objective
optimization problem is formulated by Rios-Torres et al. (2016) [77] and a closed form solution
using Hamiltonian analysis is presented. The distinction of the work lies in the formulation
of vehicle fuel consumption as a function of speed and control input. The evaluated solution
results in decreased fuel consumption and total travel time as compared to baseline cases. The
work of Chen et al. [87] presents a cooperative merging control strategy based on MPC which
determines the optimal merging time along with the acceleration of the involved vehicles.
Human-like behavior is incorporated by making use of lane change path model from [88].
This results in on-ramp vehicles accepting smaller gaps when approaching the end of the
acceleration/merging lane. Simulation results show the feasibility of the designed controller
for completing the merging process automatically and safely, and the capability to accept
small gaps for merging.

2-3-3 Learning control methods

More recently, learning based techniques such as reinforcement learning has been explored for
the control of traffic and autonomous vehicles. The goal is to find an optimal driving policy by
maximizing a specific long-term reward. Reinforcement learning is a kind of machine learning
algorithm which trains itself continually through trials and errors [104]. It has the potential
to allow the vehicle agent to learn how to drive under different or previously unpredictable
situations by training it to build up its pattern recognition capabilities. Reinforcement learn-
ing is different from standard supervised learning techniques, which need ground truth as
input and output pairs. A reinforcement learning agent learns from past experience and then
tries to capture the best possible knowledge to find an optimal action given its current state,
with the goal of maximizing a long-term reward which is a cumulative effect of the current
action on future states. An illustration of the reinforcement learning procedure is shown in
Figure 2-4.

The system state is denoted by St, the control action is denoted by At while the goal is to
learn the optimal policy π which is defined as At = πt(St). The interaction of the agent with
the environment during the training process is as follows:
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Figure 2-4: Reinforcement learning procedure. Image from Sutton [104].

• observe the system state St

• take action At

• observe the system new state St+1

• get the immediate reward from the interaction Rt+1

Reward is the feedback that the agent receives from its interaction with the environment for
its immediate performance. It is a scalar function of the system state and control action. The
sum of all the immediate rewards over the course of a training episode is defined as return.
The agent learns a control policy by optimizing the reward obtained from the interactions
with the environment.

An RL based framework is proposed by Ngai et al. [105] to study the problem of automated
overtaking of vehicles. A quantization method is used to convert continuous state and action
space into discrete spaces. The vehicle manages to complete the overtaking task although
it cannot always turn to the desired direction due to the use of discrete steering angles. In
literature, relatively fewer work has been done on continuous action space. Sallab et al. [107]
formulated an RL algorithm for lane keeping assistance and compared two action spaces:
discrete and continuous. The evaluation was done in TORCS simulator and it was shown
that discrete action space resulted in abrupt steering commands while continuous action
space gave better performance with smooth control. The use of reinforcement learning for
lane change maneuvers is explored by Mukadam et al. (2017) [112]. The authors state that
learning a full policy is relatively difficult as it includes learning tactical decisions as well as
low-level control and collision avoidance. This is due to increase in complexity of the training
network.

As part of Berkeley DeepDrive project, an autonomous ramp merge maneuver approach based
on deep reinforcement learning is presented by Wang et al. in [113], [114]. The action
space includes only the longitudinal acceleration while Q-function approximation is used to
calculate the Q-values. The cumulative reward curves for the trained policy are evaluated
which shows promising results for further investigation into the topic. The wider effects on
the traffic network are not investigated. This work has been further extended to lane change
maneuvers in [115] where both the state space and action space is treated to be continuous. A
quadratic function is designed to be used as the Q-function approximator which leads to low
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computational complexity. Extensive simulations are done which show the convergence of loss
and reward functions. A hierarchical reinforcement learning architecture is presented in [116],
which decomposes the autonomous lane change procedure into decision layer and execution
layer. Deep Q network is used to train the both layers separately and promising convergence
results are shown. The authors note that further work is required to assess the viability of
the approach by using other control decisions (e.g. overtaking), actor-critic methods and
incorporating different road geometries.

Although, reinforcement learning based approaches are being applied to many control-related
tasks with reasonable success but they also have drawbacks that need to be taken into account.
A few of these are described below:

• Learning based approaches can be sample inefficient. In many cases, a reinforcement
learning algorithm might need a very large amount of data to learn a policy. This is
particularly important for large-scale and complex problems. This results in not only
longer training time but also requires high processing power (GPUs) which is normally
difficult to obtain for most of the researchers [118]. Moreover, as a consequence of
sample inefficiency, many interactions with the environment are needed which can have
an effect for the real-world applications. For example, a robotic manipulator would
naturally suffer from wear and tear and for which maintenance costs would not justify
the benefits of a learning controller [119].

• The formulation of reward function is a critical factor that determines the success of
learning a desired policy. A misspecified reward function can add bias to the learning be-
haviour. As reported in literature [120], it is difficult to accurately formulate the reward
function as per the desired behavioural requirements. A reward defined too loosely can
improve the learning process time but can also result in learning an altogether different
behaviour.

• One drawback regarding reinforcement learning based approaches is the exploration vs
exploitation dilemma [104]. In control applications, the RL algorithm attempts to solve
a nonlinear optimization problem by finding a policy that maximizes the return. As
with all nonlinear optimization problems, there are often many different local optima,
and the RL agent might get stuck in one of those points. Therefore, the agent needs to
be able to explore its action space, while still exploiting what it has learned so far. On
the other hand, if the exploration is increased, the agent might not be able to converge
to a stable policy.

• Another drawback pertains to hyperparameter tuning as RL algorithms are known to
be sensitive to changes in hyper-parameters (e.g. number of hidden layers, learning
rate, discount factor) and other design choices such as topology of the designed neural
network. The tuning of these parameters is not a trivial task, as it requires a lot of
iterations and results in high computational effort.
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2-4 Motivation for MPC

To summarize, in case of heuristic or rule based methods, the main challenges are associated
with the heavy communication requirements and the scalability of the approach. The com-
munication becomes a critical issue, particularly when vehicles are required to communicate
several times with the central controller until their respective request is approved. These
methods are conceptually comprehensible and rather easy to implement but are practically
vulnerable due to their inability to adapt to unforeseen and complex traffic situations in the
real world.

Predictive control methods such as MPC have become an attractive solution for automotive
applications [121]. One reason is that MPC allows to include the state and actuator con-
straints along with incorporating complex models which gives it an edge over other methods
[122]. As compared to reinforcement learning, less tuning effort is required which is mostly
related to setting the weights in the specified cost function based on design requirements.
Tuning the objective function provides a rather straight-forward and intuitive way of achiev-
ing the desired performance. MPC can also take into account model errors. The solution
is calculated for each time step and when an external disturbance is added, then it is taken
into account in the control input that is calculated for the next time step. Moreover, the
Nonlinear Model Predictive Control (NMPC) has the same characteristics as the conven-
tional linear MPC but the prediction model, objective function and the constraints can be
nonlinear functions. This broadens a lot the possibilities by using a more realistic model of
the system that accurately captures the underlying system dynamics, although this requires
the use of non-convex optimization techniques to arrive at the optimal solution.

The use of Receding Horizon Control (RHC) in automotive control is very attractive for
several reasons. Firstly, the cost function is continuously updated with the latest sensor
measurements such as the vehicle configuration, road parameters, and obstacle information.
This takes into account the limited range of the sensors. Moreover, updating and solving the
problem incrementally introduces a feedback mechanism, offering the possibility to contin-
uously adjust the control commands to account for any sudden changes in the surrounding
environment. Lastly, the method based on receding horizon is similar to how humans drive in
real world traffic situations [51]. MPC based controllers are also akin to adaptive controllers.
This is because the notion of receding horizon accommodates for the rejection of distur-
bances. Adaptability is a desirable property in order to deal with various traffic conditions
in the vicinity of the vehicle. Furthermore, an adaptive controller can also compensate for
speed variations, inaccurate vehicle parameters, and other unforeseen circumstances. Hence,
the RHC principle also provides MPC with some robustness.

A major drawback of MPC is its high computational complexity. Detailed system dynamics
and often, a nonlinear optimization problem over an entire horizon need to be taken into
account. But due to ever-increasing automation within vehicles and the inevitable arrival of
self-driving cars, processors within vehicles are becoming more powerful with each iteration.
This concurrent advance in the available computational power of vehicles could allow to cope
with MPC’s computational complexity in the next few years.
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2-5 Concluding remarks

In this chapter, background information was given on the topic this research is focused on.
The road segment with traffic was presented. The equations of motion for kinematic single-
track vehicle model were presented. Next to this, a summary of the various vehicle merging
control strategies was discussed based on the literature survey conducted prior to start of
the thesis followed by the motivation for the choice of Model Predictive Control (MPC) as
a chosen strategy for the controller design. Next chapter delves deeper into the formulation
and implementation of the proposed MPC based approach.
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Chapter 3

Control design

In this chapter, the controller design will be discussed in detail. Section 3-1 starts with the
description of Model Predictive Control (MPC) framework followed by the formulation of
objective function and the constraints equations. The designed strategy for lane changing of
vehicles is presented in Section 3-4. Finally, the implementation of the controller is discussed
in Section 3-5 followed by the concluding remarks.

3-1 Model Predictive Control

Model Predictive Control (MPC), also known as Dynamic Matrix Control (DMC) or Receding
Horizon Control (RHC), is a type of control based on a model that predicts the behavior of the
system over time. Model predictive control is utilised to devise an optimal control sequence
based on a pre-defined objective function for a system over a time interval known as prediction
horizon. In other words, an optimization algorithm is used in the control scheme to find the
most suitable future values for the control inputs. During every iteration of the controller,
a prediction is made of the behaviour from the system model, and an optimal control signal
is formulated for the chosen prediction horizon. Instead of only using the current and past
states of the system to adjust the input signals, an MPC attempts to predict the future using
information from the current states and a model of how the system behaves.

The main aim of MPC is to minimize a performance criterion in the future that is subjected
to constraints on the manipulated inputs and outputs, where the future behavior is computed
according to a pre-conceived model of the plant. In this case, this model is as presented in
Section 2-2-1. A block diagram of a model predictive control system is shown in Figure 3-1.
The required control inputs are calculated at each sampling instance k, using the current
state as initial conditions to solve a finite optimal control problem. The number of prediction
steps for the control input are defined as the prediction horizon (Np). This control input
is implemented for the first step, and then the sequence of control inputs is calculated by
repeating the optimization process at the next sampling instance. To reduce the complexity
of the optimization problem, a control horizon (Nc) is introduced, which means that the input
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is taken to be constant beyond the sample step k+Nc. Along with a decrease in the number
of optimization parameters and the computational time, a smaller value of Nc also results in
a smoother control signal, which is often desired in practical situations.

Figure 3-1: Model Predictive control block diagram [78]

Figure 3-2: Model predictive control [78]

Essentially, an MPC control strategy is very much analogous to driving a car [121]. The
driver has a reference trajectory in mind over a certain spatial and temporal horizon, with
the intention to stay within a road lane and follow the lane centerline. Based on previous
experiences of driving, the driver has a mental model of the car and know how the car will
behave when applying a certain control input. Naturally, the control input is only applied
at the current time step but is also planned ahead i.e. planning in advance to brake before
an upcoming turn. This is in contrast to classical control strategies such as PID, where only
past and current errors are taken into account.
In Figure 3-1, the system and the prediction model refers to the discretized equations of
motions given by the Eq. (2-2) to Eq. (2-6). The continuous state equations Eq. (2-1) can be
converted to discrete form by representing them as follows:

Xk = f(Xk−1, Uk−1) = Xk−1 +
∫ tk

tk−1
f (X(τ), U(τ)) dτ, (3-1)
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where tk = tk−1 + ∆T and ∆T is referred to as the sampling time, the choice of which is
motivated in Chapter 4.

3-2 Objective function

The previously described system setup, as shown in Figure 3-3, allows us to formulate the
objective function centered around it. In this thesis, the main goal for the centralized control
agent is to maximize the throughput of vehicles from the road segment. With respect to
automotive control, the objectives typically deal with safe generation of safe trajectories
of vehicles while respecting vehicular and environmental constraints. The following control
objectives were defined to form a framework for the controller development. The controller
needs to be able to:

• Maximize the throughput of the vehicles from the road segment.

• Generate safe and smooth trajectories for vehicles by maintaining control inputs of
acceleration and steering rate accordingly.

• Maintain each vehicle’s velocity as per the desired highway cruising speed.

Figure 3-3: On-ramp merging road segment.

The control objectives described above broadly define the controller requirements and give a
general guideline for the formulation of the objective function and constraints. In mathemati-
cal terms, the formulated objective function for the MPC consists of the following performance
indices:
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J =
Np∑
j=1

ω1

N∑
i=1
‖vi(k + j|k)− vdesi ‖2︸ ︷︷ ︸

Desired velocity

+ω2

N∑
i=1
‖ui(k + j|k)‖2︸ ︷︷ ︸

Manipulated variables

+

ω3

N∑
i=1
‖∆di(k + j|k)−∆ddesi ‖2︸ ︷︷ ︸

Desired gap tracking

+ω4

N∑
i=1
‖∆ui(k + j|k)‖2︸ ︷︷ ︸

Manipulated variables rate

,

(3-2)

where ∗(k+j|k) denotes the expected value of the variable at j-th step from k, with vdesi being
the the desired velocity of the vehicles. The control inputs, henceforth known as manipulated
variables, refer to acceleration and steering rate of each vehicle. The subscript i refers to
the index of each vehicle inside the control and merging zones, with the total number of
vehicles equated to N . ∆di is the longitudinal distance between leading and following vehicle.
Np refers to the prediction horizon, the choice of which is motivated further in the thesis.
Weighting factors w1,2,3,4 are introduced to prioritize the terms in the multi-objective cost
function, since the cost function objectives are generally conflicting in nature and a tradeoff
has to be made between them. The performance indices in the objective function are described
as follows:

Desired velocity term (w1)

The first term refers to the speed objective. It is important for the centralized control to
set a desired speed for each vehicle inside the control zone based on the surrounding driving
conditions. The reasons for this are twofold. One one hand, different road segments have
a desired speed limit set in advance in order to be followed by the drivers. Moreover, the
choice of a specific speed value for a specific vehicle can effect the comfort of the trajectory
generated. Based on literature study of normal human driving conditions [124], the desired
velocity vdesi is chosen to be a nominal value of 30 m/s. Hence, this objective function term
aims at minimising the difference between the current and desired velocity for each vehicle.

Manipulated variable term (w2)

In order to restrict large control action in the prediction horizon, it is important to penalize
the manipulate variables of acceleration and steering rate accordingly. The manipulated
variable weight penalizes this term to ensure that there is no excessive acceleration, braking
or steering rate commands. Furthermore the ratio of weights relative to other performance
terms tells the controller the importance of achieving a certain performance metric. In this
thesis, this term has been penalized with the intention to obtain smooth acceleration and
steering rate profiles by tuning the weight accordingly.

Desired gap tracking term (w3)

The third term pertains to maximizing the throughput from the road segment by tracking a
desired gap between the vehicles. In a Connected and Autonomous Vehicles (CAVs) setting,
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the inter-vehicular gaps are an important consideration for the centralized control agent to
manipulate in order to achieve system-wide traffic benefits. ∆di is the longitudinal inter-
vehicular gap while the desired inter-vehicular gap ∆ddesi is taken to be 10m. By tracking
this desired value of gap between different vehicles in the two lanes and on-ramp, the vehicles
minimize the inter-vehicular distances and can make better use of available capacity and
thereby result in increasing throughput from the road segment.

Manipulated variable rate term (w4)

Also known as the manipulated variable move suppression [80], this term indicates the implicit
cost of the controller changing the manipulated variables per time increment. Abrupt tran-
sitions in the generated trajectory lead to rapidly varying control commands of acceleration
and steering rates, which may negatively affect the smoothness and comfort of the trajectory.
A high weight on this term would mean that the controller would consider it unfavourable to
quickly change the values of two consecutive control inputs and hence, improve the trajectory
profile of the vehicles. In the next chapter on Simulation Results, the weight tuning and the
effect of changing weights is discussed.

3-3 Constraints

The automotive control design brings along several physical constraints that need to be taken
into account due to the nature of the system. The constraints of the optimization problem
are set up to consider the factors of safety, comfort, vehicle (actuator) limitations, and the
aspects of human driving behavior in order to have a realistic representation of the designed
scenario. The formulated state and manipulated variable constraints are as follows:

amin ≤ ai ≤ amax, (3-3)
vmin ≤ vi ≤ vmax, (3-4)
δ̇min ≤ δ̇ ≤ δ̇max. (3-5)

The first set of constraints bound the maximum acceleration and deceleration values, the
second set of constraints put a limit on the vehicle speed, while the third set of constraints
limit the steering rate. The vehicle speed is bounded by an upper speed limit of 40 m/s. A
lower bound is set at 5 m/s to avoid stoppage or backward movement of the vehicle on the
highway.

A statistical analysis of manual driving data of 125 drivers is presented in [124] which shows
values of acceleration for different range of velocities. The results of this analysis are summa-
rized in Table 3-1, where the 5 percentile, 25 percentile, 75 percentile, and 95 percentile values
of the accelerations are presented. For instance, in the low velocity range of 0-40 kmph, 95%
of the acceleration values are in the range between -2.17 and 1.27 m/s2. At higher velocities,
these values are relatively less, as the drivers not to accelerate or decelerate too much during
high speed driving conditions [124]. Hence, an upper acceleration bound of 2 m/s2 is chosen.

In general, most of the drivers and passengers feel uncomfortable when the vehicle is decel-
erating with values that are greater than 3 to 4 m/s2. If the deceleration is of even higher
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Table 3-1: Acceleration values based on speed profile

Acceleration [m/s2] analysis
Velocity range/Percentile 1% 5% 95% 99%

0-40 [kmph] -2.17 -1.42 1.27 1.77
40-70 [kmph] -1.74 -0.85 0.81 1.09
Above 70 [kmph] -0.88 -0.52 0.55 0.73

Table 3-2: Values of parameters

Parameters Value Units
lwb 2.5 [m]
vmin 5 [m/s]
vmax 40 [m/s]
amin -4 [m/s2]
amax 2 [m/s2]
vδ,min -0.4 [rad/s]
vδ,max 0.4 [rad/s]

values, then it is to prevent the vehicle from crashing into other vehicles or obstacles. While
the data shows the deceleration range of 2.5 m/s2 for velocity profile of 40-70 km/h, a con-
servative value of 4 m/s2 is chosen as the lower bound on acceleration. Similarly, the steering
rate values human-driven vehicles are estimated to be in the range of 20 deg/s translating
to 0.35 rad/s [127], [128]. Hence, the bounds on the steering rate are taken to be a slightly
higher value of -0.4 rad/s and 0.4 rad/s. The values of the complete parameters are shown
in Table 3-2.

Next to this, the safety constraints for the vehicles are formulated as follows:

|x1,l − x1,l−1| ≥ S ∀l = 1, 2, ..., i1, (3-6)
|x2,m − x2,m−1| ≥ S ∀m = 1, 2, ..., i1, (3-7)
|x3,n − x3,n−1| ≥ S ∀n = 1, 2, ..., i1, (3-8)

where S is a predefined safe value of inter-vehicle distance selected to be 5m. The subscripts 1,
2, and 3 refer to the two mainlanes and on-ramp as shown in Figure 3-3. The subscripts l, m,
and n are the index for vehicles on the mainlane 1, mainlane 2, and the on-ramp, respectively.
The safety constraints are included such that there is collision avoidance for vehicles in the
same lane. This is done by defining a distance between two consecutive vehicles in the same
lane that must be greater than a minimum defined value, given by the set of constraints in
Equations (3-6), (3-7), (3-8).

3-4 Lane change strategy

The centralized control agent incorporates both longitudinal and lateral control and as such,
needs to devise lane changing trajectory for vehicles in the road segment. The lane changes are
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induced into the simulation primarily based on the distances between vehicles. This essentially
means that the lane changing is incorporated in an over-the-top manner, where the system,
as shown in Figure 3-4, is being simulated in a way that it not only traverses the motion
of vehicles from the road segment but also executes lane changing based on a pre-defined
strategy. The reason for including this strategy is to evaluate the Nonlinear Model Predictive
Control (NMPC) in a more realistic scenario, and while also studying the lateral trajectories
of vehicles. This does has a drawback as it underlies certain hard assumptions, such as the
vehicles must make a lane change if the conditions are met. Nevertheless, incorporation of
hard-coded lane changing in proof-of-concept studies can shed insights on the performance
of controller under varied traffic conditions and later on, the lane changing strategy can be
made part of the MPC formulation. In this thesis, the focus has been to accommodate the
on-ramp vehicles onto the mainlane with the intention to maximize the throughput from the
road segment. For an ego vehicle, if a safe distance is present with respect to the leading
vehicle in an alternating lane and the safety conditions are satisfied, then the ego vehicle
makes a lane change by merging into the gap between leading and following vehicle in the
alternating lane. In this way, the vehicles on lane 2 make way for the vehicles from the ramp
to merge into lane 2. As illustrated in Figure 3-3, the terms LV and FV refers to leading
vehicle and following vehicle, respectively.

Figure 3-4: Schematic overview of the controller environment

Three scenarios are generated to distinguish between the three phases of driving. In the
normal scenario, vehicles are made to traverse normally in their own lane while satisfying
the safety constraints as presented before. While doing so, if there is a gap available in
the alternating lane, with respect to leading vehicle in that lane while also satisfying safety
constraints with the following vehicles, then the vehicle starts to make lane change. During
thelane-change scenario, the vehicle tends to follow the leading vehicle in the target lane
while also satisfying the lateral position constraint of following the lane centerline. When a
vehicle is making a lane change, the other vehicles are put to a waiting scenario, in order
to minimize the possibility of conflicts occurrence due to excessive lane changing.

The lane change maneuver is executed by providing the controller with an external lane
change request. From an ego vehicle’s perspective, the lane changing is only based on the
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distances with the leading vehicles in the alternating lanes. If a safe distance is present to
make lane change, the decision maker approves to initiate the maneuver. Approximately 5
seconds after the lane change request, the lateral distance reference moves from the initial
lane to the target lane.

The pseudo-code for lane change strategy is presented in Algorithm 1.

Algorithm 1 Pseudo-code for lane-changing strategy
1: procedure (i: a specific lane, j: alternate lane, FV: Following vehicle, LV: Leading

vehicle)
2: Normal scenario:
3: initialize
4: xLV,i − xego,i = GapAheadi,i
5: xLV,j − xego,i = GapAheadi,j
6: xego,i − xFV,j = GapBehindi,j
7: if GapBehindi,j > SafeGap then POSSIBLE TO MAKE lane change
8: if GapAheadi,i < SafeGap
9: and GapAheadi,j - GapAheadi,i > GapDifference

10: and vehicle ahead in this lane is in Normal scenario
11: and it is POSSIBLE TO MAKE lane change then
12: switch to Lane-change scenario
13: if following vehicles are present in either lane then
14: set their scenario to Waiting
15: else set leading vehicle in current lane as target position
16: close;
17: Lane-change scenario:
18: if if gap to lane centerline ≤ bound then
19: change scenario form Lane-change to Normal
20: set leading vehicle as target position
21: else
22: set following vehicles to Waiting
23: set lane centerline as lateral target position
24: close;
25: Waiting scenario:
26: set leading vehicle as target position
27: set current lane centerline as lateral target position
28: close;
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3-5 Implementation

To solve the Model Predictive Control (MPC) problem, the optimization problem needs to
be cast as a nonlinear programming problem (NLP). The general formulation of a nonlinear
programming is as follows:

min
x(k),u(k)

J (x(k), u(k)) , (3-9)

subject to: u(k) ∈ U, x(k) ∈ X,
x(k + 1) = f (x(k), u(k)) , (3-10)
g (x(k), u(k)) ≤ 0; for each i ∈ {1, 2, ...,m},

where the cost function J constitutes the objective function as defined by Eq. (3-2), and the
inequality constraints g refers to the set of inequality constraints as defined in Section 3-3.
As part of MPC, the optimization problem (3-9) needs to be posed as a specific formulation
that a dedicated NLP solver is able to solve. A transcription method transforms the problem
into an NLP [123].

In general, transcription methods for optimal control can be categorised in two distinct groups.
At first, there are direct and indirect methods. In direct methods, the problem is first dis-
cretized and then optimized. In indirect methods, the necessary conditions for optimality
are calculated first and then, these conditions are discretized and solved. The transcription
methods considered in this thesis, rely on direct transcription. Indirect transcription methods
are generally more accurate and will have a more reliable error estimate but are hard to solve
in practice as they require more accurate initial guesses to converge [123].

Direct methods can further be divided into single shooting and multiple shooting methods.
In single shooting method, only the control trajectories are discretized, by a piecewise smooth
approximation. The discretized control trajectories then enter the NLP. In other words, the
trajectory is approximated using a simulation. A single shooting method can be compared
to a shooting of cannon at a target. At first, an estimate is made of a good shooting angle.
Then, it is checked whether the target has been hit. If not, the angle is adjusted based on
the previous result and hence, the problem is solved in a sequential manner using multiple
iterations. The resulting NLP using a single shooting method is generally a smaller sized
problem, but highly nonlinear.

In multiple shooting method, instead of representing the entire trajectory as a single sim-
ulation, the trajectory is divided up into segments, and each segment is represented by a
simulation [123]. As compared to a single shooting method, a multiple shooting method typ-
ically results in more robust performance and a higher degree of numerical stability i.e. less
sensitive to errors due to e.g. poorly chosen initial guesses.

In this thesis, direct single shooting based on is used. The initial guess values for acceleration
and steering rate of vehicles are taken to be 1 m/s2 and 0 rad/s. Runge-Kutta methods
are a class of methods to integrate ordinary differential equations. The order of the Runge-
Kutta method refers to the amount of approximations of the slope within one time step. In
this case, a second order Runge-Kutta method (RK2) is employed in order to get a balance
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between performance and computational complexity. RK2 method is reasonably simple and
robust and is a good general candidate for numerical solution of differential equations. It
approximates the solution to a differential equation ẋ = f(x, t) with the associated initial
conditions.

With respect to Figure 3-1, the system measurements are updated at each time step and
serve as an input to the MPC controller. The optimal control inputs (manipulated variables)
are the outputs of the MPC, which are then used as an input to the actuators of the vehicle.
Moreover, the initial conditions for the states need to be defined within the MPC. This is
done by choosing the initial values of for different traffic scenarios, as presented later in the
thesis.

The two most established approaches to solve a nonlinear model predictive control problem
are Sequential Quadratic Programming (SQP) and the Interior-Point Method. In SQP, an
NLP is modelled as a Quadratic Programming (QP) subproblem at each iteration xk. This
subproblem is then solved to find the next iteration xk+1 [126]. This process is then iterated to
find an optimal solution x∗. In contrast to the interior point method, in SQP the iterations do
not require to be feasible. Interior point is a large scale algorithm. An optimization algorithm
is termed as large scale when it uses linear algebra that does not need to store or operate on
full matrices [125]. This may be done internally by storing sparse matrices, or by using sparse
linear algebra for computations whenever possible. In this thesis, SQP method is employed
as it is deemd to be the most suitable method for mid-range problems.

Optimization solver

The Sequential Quadratic Programming (SQP) is implemented using the fmincon function
in MATLAB. The fmincon function from MATLAB is a solver that finds the minimum of
constrained nonlinear multivariable function. The syntax to call the function to solve the
nonlinear optimization problem is:

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options).

The term fun pertains to the objective function as defined by the Equation (3-2). The
optimization is solved by starting from the initial conditions x0. The problem is subjected to
the associated constraints where the A and b refer to linear inequality constraints. Aeq and
beq refer to linear equality constraints, while lb and lb are lower and upper bound vectors,
respectively. nonlcon is the function for nonlinear constraints as presented in Section 3-3.
The input argument options is used to set specific solver settings for the optimization such
as the type of algorithm and maximum number of iterations.
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3-6 Concluding remarks

In summary, this chapter presented the prerequisites for controller development in terms
of the formulation of objective function, and the comfort and safety constraints along with
description of the relevant design choices. Hence, the problem setup of the thesis described
in Chapter 2 is linked with the MPC framework. Moreover, the lane change strategy adopted
for the vehicles is presented. This was followed by a discussion on the implementation of
the MPC controller. The simulation setup, design of MPC parameters, weight tuning, and
discussion on the obtained results is presented in the next chapter.
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Chapter 4

Simulation results

The previous chapters have described the framework and the design fundamentals of the
proposed centralized predictive control strategy for the throughput maximization of vehicles.
This chapter will focus on the implementation aspects of the proposed controller in order to
evaluate its performance. Furthermore, the obtained simulation results and the controller
assessment is discussed. Section 4-1 starts with describing the simulation setup based on
MATLAB. The design choices of Nonlinear Model Predictive Control (NMPC) such as sam-
pling time, prediction, and control horizons are motivated in Section 4-2. This is followed
by a discussion on the weight tuning of controller. Next to this, the simulated scenarios of
low and heavy traffic are described. Finally, a discussion is done on the obtained results in
Section 4-5.

4-1 Simulation setup

In order to inspect the proposed controller performance and to obtain insights into its be-
havior, a simulation framework is implemented in MATLAB. The multilane road segment as
shown in Figure 4-1 is simulated which is able to handle varied number of vehicles with a
specific set of initial conditions. To this end, three scenarios corresponding to the baseline
case, low traffic, and high traffic scenarios are studied. On a holisitic level, this comparison
helps to ascertain whether the controller can handle varied number of vehicles in a multilane
framework and what are the caveats for incorporating a high number of vehicles in the NMPC
scheme.

For a fair comparison with similar studies on the topic, it is pertinent to mention the system
specifications upon which the simulations are done. The simulations are obtained by running
MATLAB 2019a on an HP Pavilion notebook while other specifications are listed in Table 4-1.
Also pertinent to mention here is that very often the computer simulations are accompanied
by lots of tasks running simultaneously on the operating system. This implies that the effect
of unrelated background programs on the computational time of the control algorithm need
to be taken into account.
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Figure 4-1: Simulated on-ramp merging road segment. (The measurements are not to scale.)

Table 4-1: Hardware and software specification of the computer system

Specification Details
Processor Intel Core i7-6500 @ 2.5GHz
Memory (RAM) 12GB
Operating System Microsoft Windows 10, Build 18362

4-2 Design choices

The crux of the NMPC formulation lies in the appropriate values of its design parameters
such as sampling time (Ts), prediction horizon (Np), and the control horizon (Nc). For MPC
tuning and especially for horizon adjustments, it is a recommended practice to first define
the sampling time or control interval duration and then hold it constant during the process
of further tuning the controller.
As the control signal will be updated every sample time, so we do not want the vehicle to
drive too long a distance before it is updated. Qualitatively, as the control interval duration
decreases the disturbance rejection properties of the controller improves. On the other hand,
a lower value of sampling time will increase the computational time of the optimization
problem. Hence, a trade-off between performance and computational effort is required. With
a sampling time of 0.1 s and a vehicle driving at 20 m/s, the control signals would be updated
every 2 m. If the speed is increased, the vehicle will travel longer distances between the
updates e.g. if the velocity would increase to 40 m/s, the updates would come every 4 m
instead. This means that the sampling time may be needed to decrease if the vehicle is to be
driving faster.
After running simulations for different sampling times, a value of 0.5s was chosen to be the
most suitable for our case. As the desired velocity is set to 30 m/s so the vehicles would not
be traveling distances more than 15m before the next update. The vehicles would also not be
making maneuvers which are aggressive or evasive, and hence, a higher sampling time would
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have a minimal effect on the controller performance. Furthermore, a minimum of 10 vehicles
with two manipulated variables each, are being simulated and hence, the computational time
increases significantly even for a slight increase in the sampling time.
Choosing a suitable value of the prediction horizon (Np) is a matter of trade-off between an
acceptable computational time and the desired performance to be attained. Np is the number
of future control actions the MPC evaluates by prediction while optimizing the manipulated
variables. In other words, Np tells the controller how many future time steps to take into
consideration.
As the scenario primarily focuses on minimization of inter-vehicular distances in order to
maximize the throughput along with lane changing and merging from the on-ramp, so the
controller needs to be able to predict the states ahead into the future while attaining the
desired performance. Different values were tested and it was concluded that an Np value of
12 steps results in an appropriate controller performance along with limited computational
time. Moreover, the effect of varying the prediction horizon is also studied by way of running
simulations for different horizon values as depicted in Figure 4-2. Here, Tsolve is defined as
the as the time it took to perform one optimization iteration. An Np value of 12 results in the
Tsolve value of 3.5 seconds. It can be seen that the computational time increases drastically
as the number of prediction steps is increased. It was also observed that the computational
time also increases proportionally with the number of vehicles in the road segment.
It is pertinent to mention here that, on the face of it, a time of 3.5 seconds for the controller to
update the vehicle states is relatively high. This is due to the fact that the premise of the thesis
rests on simulating the vehicles on the complete road segment and observing the advantages
and limitations of employing an NMPC based strategy for traffic control. Furthermore, a few
points of discussion and future research directions are presented in the chapter on Conclusion
to mitigate the computational load of NMPC.
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Figure 4-2: Comparison of computational time with prediction horizon

Correspondingly, the the control horizon Nc is the number of control actions that are op-
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Table 4-2: Effect of varying gap minimization weight (w3) on travel times

Weight (w3) Travel time
5 21573.8 s
7 20917.2 s
10 20784.5 s
15 20494.3 s
25 20257.3 s
35 20183.4 s

timized at each control interval. It is recommended to take the value of Nc << Np [125].
For the controller, a smaller value of Nc will result in a smaller number of variables to be
computed by the solver at each control interval, thus improving computational time. An Nc

value of 5 was deemed to be appropriate in this case. Moreover, manipulated variable block-
ing is employed where the control inputs are kept constant for Nc > 5. This has advantages
in terms of tuning flexibility, and controller robustness. The complete lists of parameters is
shown in the Table 4-3.

Tuning of weights

The tuning of weights in an appropriate manner is another critical factor in the formulation
of an MPC based controller. The weights for the controller need to be carefully tuned in order
to make the its behaviour and actions fit the control objective and the specified requirements.
With tuning, the primary rule is that a smaller value of weight indicates that the controller
should consider the corresponding variable as less important to the overall performance index
of the controller. Conversely, putting more weight is akin to implicitly prefer that very variable
term by the controller.

As discussed in Section 3-2, the primary objective is to maximize the throughput from the
road segment which corresponds to the gap minimization term in the objective function, as
shown in Eq. (3-2). Next to this is the desired velocity term which is tuned by observing
the velocity plots and the convergence behavior of all the vehicles. In some cases, the control
inputs calculated by the NMPC were found to be excessive. Hence, the manipulated variables
a and v along with the rate terms namely ∆v and ∆a, were penalized by observing the velocity
and acceleration plots for different simulations and the values were chosen that resulted in
acceptable responses. Furthermore, hard constraints ensure that the manipulated variables
stay within designated bounds. Regarding steering rates, most of the tuning effort was spent
in making the merging trajectories of vehicles as smooth as possible.

In order to attain the maximization of throughput, the weight pertaining to the gap min-
imization term w3 was tuned carefully. A comparison of different weights values for travel
times was done in order to ascertain the effect of weight variation on the travel time of vehi-
cles. This is shown in Table 4-2. It can be seen that an increase in the value of w3 from 15
does not substantially increase the total travel time for vehicles and hence, a value of 15 is
chosen for this term. It is also to be noted that this effect of varying weights is not exhaustive
in nature, as different travel times were observed while running the simulations for various
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Table 4-3: Values of parameters

Parameters Symbol Value
Prediction horizon Np 12
Control horizon Nc 5
Sampling time Ts (s) 0.5
Desired velocity weight w1 10
Acceleration weight w2,a 5
Steering rate weight w2,vst 120
Gap minimization weight w3 15
∆a weight w4,a 5
∆vst weight w4,vst 40
Length of control zone lCZ (m) 1300
Length of merging zone lMZ (m) 400
Lane width lwidth (m) 4

traffic scenarios. Nevertheless, it gives an intuitive indication about the tuning of weights in
the multi-objective optimization formulation.

4-3 Low traffic scenario (i = 10)

At first, a baseline case is designed in order to assess the performance of the proposed con-
troller. In this case, the number of vehicles (i) is limited to 10. The gap tracking term is
removed from the objective function (3-2) in order to mimic a no-control case, and hence,
only the desired velocity along with manipulated variables and their rates are penalized. This
baseline formulation also helps to compare the proposed NMPC controller to previous works
(such as [83], [74]) where the focus has largely been on the smooth and collision-free ramp
merging trajectories. Furthermore, to compare the performance of NMPC, a linear Model
Predictive Control (MPC) is formulated based on the linearization of the vehicle prediction
model. The linearization is done by using small angle approximation for the state equations
described in Eq. (2-2) to Eq. (2-6). In a real world scenario, different vehicles enter and exit
the road network at different time, and their initial speeds are also different, although within
certain ranges. Here, the vehicle entry time pertains to the moment the vehicle enters the
control zone, as shown in Figure 4-1. The velocities for vehicles have been randomly initial-
ized and the initial lane index has also been specified for the vehicles. The specifics for this
scenario are as follows:

vehicle entry time = {0, 0.5, 1, 3, 4, 6, 9, 12, 13, 14},

initial velocity = {35, 25, 25, 30, 33, 27, 20, 35, 40, 25},

initial lane index = {1, 2, 2, 1, 3, 2, 1, 2, 3, 3}.

For the case of low traffic scenario, the number of vehicles are also taken to be 10. Here, the
complete objective function as shown in Eq. (3-2) is included. The specification for vehicle
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entry time, initial velocities and lane indexes for this scenario are similar to that of the
baseline case. More vehicles are placed on the lane 2 in order to observe the behavior of
vehicles merging form the ramp onto lane 2.

4-3-1 Notable results

For the sake of brevity, only the most relevant plots are presented here, while the complete
results are shown in Appendix. At first, the velocity plots for the vehicles are presented.
Figure 4-3 shows the comparison between the velocity plots for NMPC and baseline case.
Note that all the vehicles are represented with the same color code to distinguish between the
two cases. It can be seen that the vehicles tend to achieve the desired velocity of 30 m/s for
both cases. The velocity profile for baseline case is very smooth. This is expected, because
the gap tracking is not being done and hence, the vehicles attain the desired velocity and
then traverse with it during the course of the simulation. But the baseline has a drawback
in terms of travel times which is discussed later. For the NMPC scenario, the jumps in the
velocity profile are because the vehicles tend to achieve the desired inter-vehicular gap while
simultaneously attaining the desired velocity. The gap tracking has been penalized more and
hence, there are instances of vehicles increasing their velocity and then settling down to 30
m/s.
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Figure 4-3: Comparison of velocity plots with baseline scenario

Figure 4-4a and Figure 4-4b show the plots for manipulated variables i.e. acceleration and
steering rates, respectively for all the simulated vehicles. It can be seen that the manipulated
variables of acceleration and steering rates remain within the designated bounds. The min-
imum and maximum values obtained for the manipulated variables are listed in Table 4-4.
The reason for the vehicle to reach high longitudinal acceleration is partly because the vehicle
intends to close the gap with the vehicle ahead in the lane and any desired acceleration rate is
not specified. Furthermore, the term regarding gap minimization is being penalized more in
comparison to other terms and hence, the acceleration values reach close to the upper bound.
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(a) Vehicular acceleration vs time plot
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(b) Vehicular steering rate vs time plot

Figure 4-4: Manipulated variables i.e, acceleration and steering rate for the low traffic scenario
based on the proposed NMPC controller
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(a) Lateral trajectory between lanes 1 and 2
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(b) Lateral trajectory between lanes 2 and on-ramp

Figure 4-5: Lateral trajectories of vehicles for the low traffic scenario based on the proposed
NMPC controller
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(a) Lateral trajectory between lanes 1 and 2
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(b) Lateral trajectory between lanes 2 and on-ramp

Figure 4-6: Comparison of lateral trajectories of vehicles between NMPC and linear MPC
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Nevertheless, the acceleration return to zero over time as the simulation progresses. The
deceleration behavior shows that apart from a few vehicles reaching close to the lower bound,
the other vehicles decelerate with reasonably small values. The values of the obtained steering
rates are observed to be well within the bounds. This is due to the fact that the vehicles are
not intended to make aggressive or evasive maneuvers which ask for abrupt steering rates.
The plots for the lateral trajectories for the vehicles are shown in Figure 4-5a and Figure 4-
5b. The plots for lane 1-2 and lane 2-ramp are to be inspected next to each other as they
complement each other to make the complete road segment. The lane changing and on-ramp
merging behavior of vehicles show that there are smooth trajectories and a minimal value
of overshoot for one vehicle. Furthermore, the trajectories for NMPC and linear MPC are
plotted together in Figure 4-6. It is inferred that the NMPC performs better in case of lane
changing between the two mainlanes (lane 1 and lane 2) as the lane changing duration of
NMPC is shorter than that of linear MPC. This difference is almost negligible in case of
on-ramp merging where both methods result in a similar duration of lane change.

4-4 High traffic scenario (i = 20)

For the case of high traffic scenario, the number of vehicles are taken to be 20, and divided
into the three lanes as shown below. Six vehicles are placed on the on-ramp in order to
observe the ramp merging behavior of vehicles under heavy traffic. The initialization values
for simulation are as follows:

vehicle entry time = {0, 0.5, 1, 3, 4, 6, 9, 9, 9, 12, 12, 12, 12, 10, 8, 7, 5, 4, 12, 11},

initial velocity = {35, 25, 25, 30, 33, 27, 20, 35, 40, 25, 35, 25, 25, 30, 33, 27, 20, 35, 40, 25},
initial lane index = {1, 2, 2, 1, 3, 2, 1, 2, 2, 3, 1, 2, 2, 1, 3, 2, 1, 3, 3, 3}.

4-4-1 Notable results

For this scenario, the plots for acceleration and steering rates of vehicles are shown in Figure 4-
7a and Figure 4-7b, respectively. The acceleration values are similar to that of the low traffic
scenario, with a few vehicles reaching the upper and lower bounds. Similarly, the steering
rate values also remain well within the bounds. The plots for lateral trajectories are shown in
Figure 4-8a and Figure 4-8b, respectively. It can be seen from Figure 4-8b that more vehicles
on the ramp result in slightly higher merging time for the vehicles from the acceleration region
to the lane 2. The interaction between car 5 and car 18 as shown in Figure 4-8b, highlights
that the two vehicles have to wait for some while in the acceleration region while merging onto
lane 2. This behavior was not observed in case of low traffic scenario, but was a consequence
of increasing the number of vehicles on the ramp. Nevertheless, the merging profile of vehicles
remain smooth with minimal overshoot achieved for one vehicle.

4-5 Discussion on results

The lateral trajectories of vehicles is shown in Figure 4-5 and Figure 4-8 for the scenarios of
low and high traffic, respectively. It can be seen that the lane changing and ramp merging
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(a) Vehicular acceleration vs time plot
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(b) Vehicular steering rate vs time plot

Figure 4-7: Manipulated variables i.e, acceleration and steering rate for the high traffic scenario
based on the proposed NMPC controller

Table 4-4: Extremum values of the manipulated variables

Algorithm amin amax δ̇min δ̇max

baseline (low) -4 m/s2 2 m/s2 −1.5x10−3 rad/s 1x10−3 rad/s
NMPC (low) -4 m/s2 2 m/s2 −0.4x10−3 rad/s 1x10−3 rad/s
NMPC (high) -4 m/s2 2 m/s2 −0.4x10−3 rad/s 1x10−3 rad/s
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(a) Lateral trajectory between lanes 1 and 2

20 25 30 35 40 45 50 55 60

t [s]

0

0.5

1

1.5

2

2.5

3

y
 [
m

]

Car 2

Car 5

Car 8

Car 9

Car 10

Car 12

Car 15

Car 16

Car 18

Car 19

Car 20

(b) Lateral trajectory between lanes 2 and on-ramp

Figure 4-8: Lateral trajectories of vehicles for the high traffic scenario based on the proposed
NMPC controller
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Table 4-5: Performance metrics for the three scenarios

Algorithm Travel time Average speed Tsolve Computation time
baseline (low) 21012.1 s 29.95 m/s 12.5 s 1205.6 s
baseline (high) 35173 s 30.7 m/s 21.7 s 2115.8 s
NMPC (low) 20494.3 s 32.9 m/s 14 s 1290.3 s
NMPC (high) 33705.4 s 32.4 m/s 23 s 2241 s

Linear MPC (low) 20644.6 s 32.5 m/s 11.5 s 590 s
Linear MPC (high) 33541.2 s 32.1 m/s 13 s 865 s

Comparison of NMPC (low)
with baseline (low) +2.46% +8.18% -12% -7.2%

Comparison of NMPC (high)
with baseline (high) +4.17% +4.5% -10.6% -14.8%

Comparison of NMPC (low)
with linear MPC (low) +0.72% +1.2% -21.7% -118.5%

Comparison of NMPC (high)
with linear MPC (high) +0.48% +0.93% -76.9% -158%

trajectories of vehicles are smooth in nature. However, small deviations for a few vehicles was
observed. In case of high traffic scenario, the deviation of merging vehicles was a bit more
apparent and the maximum overshoot was observed to be of 0.15 m.

An overview of the results of the three scenarios, obtained from simulation, is shown in
Table 4-5. In order to quantify the performance of the proposed NMPC controller, two
metrics of travel time and the average speed of the vehicles are calculated. Travel time refers
to the total time that all the vehicles take to traverse the complete road segment as shown
in Figure 4-1. Average speed is observed in order to evaluate the controller performance with
respect to the baseline case. It is seen that the travel time and average speed of vehicles for
low traffic scenario is improved by 2.46% and 8.18%, respectively. An improvement of 4.17%
and 4.5% was observed for the travel time and average speed during the high traffic scenario.
It was evident from the simulation that the average speed of vehicles is higher than that from
the baseline case, as the vehicles tend to achieve the upper bound of velocity (40 m/s) while
closing the inter-vehicular gaps.

Furthermore, the optimization time and computational time is also evaluated for the three
scenarios. Here. Tsolve refers to the time it takes for one optimization cycle to complete which
gives an indication of the time required to update the states for the vehicles. Computational
time, on the other hand, pertains to the total time required to perform the controller simula-
tion for the complete road segment. The proposed controller results in higher values for both
Tsolve and the computational time, increasing them by 12% and 7.2% respectively. This can
be explained by the addition of gap minimization term in the objective function and the fact
that a mere addition of one term would have a substantial effect on the overall computational
time because a large number of vehicles are being simulated. Apart from depending upon the
formulation of controller, the computational time also proportionally varies with the length
of the road segment. Here, a length of 1700 m was chosen in order to take into account the
upstream and downstream effects of traffic due to the on-ramp merging. While the metrics
of travel time and average were almost similar to that of the NMPC case, the linear MPC
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Figure 4-9: Comparison of total travel time for the baseline, NMPC, and linear MPC cases

showed a marked improvement in the Tsolve and computational time of the algorithm. It was
inferred that this improvement in the computational time was higher than that of simplifying
the objective function by removing some of the sub-objectives, which shows that the incor-
poration of the nonlinear model greatly increases the computational effort of the controller.
Another way to look at travel time is to study the average travel time for the vehicles as they
traverse through the road segment. This gives an indication of the time that each vehicle
would take to traverse a specific distance on the road segment, as shown in Figure 4-9 for
low traffic scenario. It can be seen that the baseline case has higher travel time for vehicles.
Furthermore, it can be concluded that the short plateau in the curve at the beginning is when
there is no lane change taking place. This behavior can be correlated with Figure 4-5, where
there is a brief interval after the first lane change and after that, there are subsequent lane
changes with relatively shorter duration, which ultimately increases the travel time.

Omer Khalid Master of Science Thesis



4-6 Concluding remarks 47

4-6 Concluding remarks

In summary, this chapter detailed the implementation aspects of the proposed NMPC con-
troller along with presenting the obtained simulation results. The observations for the two
scenarios of low and high traffic along with the baseline case were presented. It can be seen
that the proposed NMPC controller results in maximizing the throughput of vehicles as indi-
cated by the travel times and the average speed of vehicles. There exists some outlier aspects
such as high computational time and the applicability of controller for different traffic scenar-
ios. To this end, in the next chapter, conclusions derived from the work done in this thesis
are presented along with highlighting a few threads of recommendations for future research.
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Chapter 5

Conclusion

In this chapter an overall conclusion will be given on the research done in this thesis. Fur-
thermore, a few recommendations will be presented together with a discussion on possible
improvements and some future research threads.

5-1 Conclusion

In this thesis a Nonlinear Model Predictive Control (NMPC) based control strategy is devised
to maximize the throughput of vehicles from an on-ramp merging road segment. It is shown
that the proposed strategy works well to achieve the desired requirements although there
exists a few caveats that need to be further evaluated.

The choice of MPC framework was motivated by the easy integration of the vehicle dynamics
and system constraints into the MPC optimization. Moreover, equations from the kinematic
bicycle model, which give a good representation of the vehicle dynamics for the ramp merging
associated driving conditions were used. The nonlinear equations captures the most relevant
nonlinearities associated with merging of vehicles in a highway setting. The objective function
pertaining to the NMPC consisted of several different terms that each play their own role in
maximizing the traffic throughput from the road segment along with controlling the vehicles’
motion. Within the centralized framework, the central control agent determines the control
inputs for the entire road network. These control inputs are found by optimizing the objective
function using measurements of all the states. Hence, the goal was to devise a centralized
controller that would lead to the optimal system performance in a receding horizon context.

Even though some simplifications were made in terms of an over-the-top formulation for lane
changing, good performance was obtained. The lane changing was included primarily to
make use of the space present in the alternating lane and by doing so, the on-ramp vehicles
would have shorter delays during merging onto the mainlane. The centralized controller can
accommodate varying traffic conditions such as initial velocities, lane indexes and the time
instants of vehicles entering into the control zone.
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As compared to baseline case, lower travel times and higher average velocities for the vehicles
were achieved. The travel times improved by 2.46% while the average speed improved by
8.18% for the case of low traffic scenario. The simulation results show that the ramp merging
and lane changing trajectories are smooth with minimal overshoot. This goes to show that
the proposed controller scheme is a promising prospect for application in traffic control.
The main conclusions that are made in this thesis work, can be summarized as follows:

• Incorporation of nonlinear vehicle kinematic prediction model for Model Predictive Con-
trol (MPC) based control strategy works well for the designed scenarios. The optimized
values of manipulated variables show that the values remain within bounds and a smooth
merging profile for all the vehicles is obtained.

• The integration of both longitudinal and lateral control into the proposed control strat-
egy works well to augment the traffic control. The lane changing makes use of the
space available and keeps the lane 2 free enough so that the on-ramp vehicles can merge
onto it. Although, this demands an assumption that any and all vehicles who meet the
specified conditions must have to make a lane change.

• The formulation of a multi-lane highway setting with on-ramp merging provides with
a more realistic traffic scenario and the centralized controller can successfully execute
highway maneuvers such as lane changing and merging for all the vehicles. The trade
off between different terms in the cost function can be incorporated as in this case,
the minimization of inter-vehicular was penalized more than the other terms and the
associated benefit in terms of throughput maximization was gained.

• The proposed NMPC based strategy works well in low and high traffic scenarios, al-
though the trajectories of vehicles in high traffic show some deviations. The metrics of
travel time and average speed of vehicles show an improvement in comparison with the
baseline scenario.

• The computational effort of NMPC controller remains high. As is the case with the
centralized control architecture, the size of the optimization problem scales with the
size of the considered network. It was observed that the computational time varies
with the number of sub-objectives in the objective function, along with the number of
vehicles being simulated. The associated high computational expense associated with
NMPC necessitates exploring different techniques to speed up the computation.

5-2 Recommendations

Validation of controller A prototype field testing or hardware-in-the-loop simulation is
the first recommended next step to validate the proposed control strategy. After an extensive
simulation phase, it is important to do real-world testing in order to evaluate the performance
of controller. In this way, the real-time advantages and limitations could be studied such as
the model mismatch along with the communication requirements on part of the Dedicated
Short-Range Communication (DSRC) system.
Model mismatch The kinematic single-track model employed in this thesis assumes a vehicle
with only two wheels, where the front and rear wheel pairs are each lumped into one wheel.
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Furthermore, the tire slip is not included and hence, effects like oversteer and understeer are
not considered. In future, a more detailed model, such as multi-body model could be used to
include the effects of vehicles when they drive close to their physical capabilities.

Computational complexity An important direction in which future work can be done
is to explore approaches for reducing the computational complexity of NMPC based con-
troller. One example is to investigate the use of explicit MPC, which removes one of the main
drawbacks of traditional MPC, namely the need to solve a mathematical program online to
compute the control action. Explicit MPC allows to solve the optimization problem offline for
a given range of operating conditions of interest. By exploiting multiparametric programming
techniques, explicit MPC computes the optimal control action offline as an “explicit” function
of the state and reference values, so that the online operations can be decreased and hence,
the overall computational expense is reduced.

Traffic homogeneity In this thesis, the traffic was taken to be homogeneous. In future, a
heterogeneous traffic could be introduced and the effects on wider traffic ought to be analyzed.
The larger vehicles such as trucks have different model dynamics and as such, would behave
differently in merging scenarios. Moreover, the introduction of vehicle platooning and mixed
traffic (human-driven and autonomous) also needs to be analyzed as there will most likely
be a transition phase. Future work could be done to study whether the centralized NMPC
controller can equally work for such heterogeneous and/or mixed traffic flows.

Measurement errors This work assumes perfect measurements of the specified states in
order to determine the optimal manipulated variables or control inputs. However, in real-
world implementation, the measurements usually contain some errors. Future work could be
done to examine the robustness of the method with respect to these measurement errors. In
general, the vehicular trajectories should be insensitive to small and uncertain measurements.
On the other hand, the vehicle should be reactive to certain deviating measurements, with
the goal to have a consistent vehicle behavior without unnatural fluctuations. For instance,
the use of robust MPC approach with application to traffic control have been explored in
[129].

Communication delays This work assumes that there is no delay in the communication of
vehicles with the centralized control agent. Moreover, it assumes that no errors occur with
the communication. However, in real-world applications, there are always delays in the DSRC
communication and errors are prone to occur. Hence, during implementation, the controller
needs to be made robust against these types of delays and errors.

Motion prediction If the controller is equipped with a motion prediction model such as a
simple curve fitting or regression method, it would help to better predict the dynamics of the
surrounding traffic. However, equipping the controller with trajectory prediction comes at
the expense of increased computational expense, since the trajectories need to be calculated
at each time step.

Road geometries Another relevant research thread is to investigate the performance of
centralized controller for different road geometries such as weaving sections, high curvature
roads, and intersections. It would be interesting to apply the proposed controller for these
scenarios and study the wider effect on the traffic flow.
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Chapter 6

Complete plot sets

6-1 Manipulated variables and trajectory plots
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(a) Vehicular acceleration vs time plot
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(b) Vehicular steering rate vs time plot
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(c) Lateral trajectory between lanes 2 and on-ramp
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(d) Lateral trajectory between lanes 2 and on-ramp

Figure 6-1: Manipulated variables and trajectories for low traffic scenario based on NMPC
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(a) Vehicular acceleration vs time plot
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(b) Vehicular steering rate vs time plot
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(c) Lateral trajectory between lanes 2 and on-ramp
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(d) Lateral trajectory between lanes 2 and on-ramp

Figure 6-2: Manipulated variables and trajectories for high traffic scenario based on NMPC
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(a) Vehicular acceleration vs time plot
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(b) Vehicular steering rate vs time plot
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(c) Lateral trajectory between lanes 2 and on-ramp
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(d) Lateral trajectory between lanes 2 and on-ramp

Figure 6-3: Manipulated variables and trajectories for low traffic scenario based on linear MPC
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(a) Vehicular acceleration vs time plot
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(b) Vehicular steering rate vs time plot
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(c) Lateral trajectory between lanes 2 and on-ramp
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(d) Lateral trajectory between lanes 2 and on-ramp

Figure 6-4: Manipulated variables and trajectories for high traffic scenario based on linear MPC
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List of Acronyms

DCSC Delft Center for Systems and Control

DSRC Dedicated Short-Range Communication

RSU Road Side Unit

ATM Active Traffic Management

TMS Traffic Management System

CACC Cooperative Adaptive Cruise Control

CAVs Connected and Autonomous Vehicles

MPC Model Predictive Control

NMPC Nonlinear Model Predictive Control

DMC Dynamic Matrix Control

RHC Receding Horizon Control

V2V Vehicle-to-Vehicle

V2I Vehicle-to-Infrastructure

VSL Variable Speed Limit

COL Crash Occurrence Likelihood

CACC Cooperative Adaptive Cruise Control

SQP Sequential Quadratic Programming
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