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Abstract
Polynomial splines are ubiquitous in the fields of computer-aided geometric design
and computational analysis. Splines on T-meshes, especially, have the potential to
be incredibly versatile since local mesh adaptivity enables efficient modeling and
approximation of local features. Meaningful use of such splines for modeling and
approximation requires the construction of a suitable spanning set of linearly inde-
pendent splines, and a theoretical understanding of the spline space dimension can
be a useful tool when assessing possible approaches for building such splines. Here,
we provide such a tool. Focusing on T-meshes, we study the dimension of the space
of bivariate polynomial splines, and we discuss the general setting where local mesh
adaptivity is combined with local polynomial degree adaptivity. The latter allows
for the flexibility of choosing non-uniform bi-degrees for the splines, i.e., different
bi-degrees on different faces of the T-mesh. In particular, approaching the problem
using tools from homological algebra, we generalize the framework and the dis-
course presented by Mourrain (Math. Comput. 83(286):847–871, 2014) for uniform
bi-degree splines. We derive combinatorial lower and upper bounds on the spline
space dimension and subsequently outline sufficient conditions for the bounds to
coincide.
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1 Introduction

Standard B-spline parameterizations of surfaces in computer-aided geometric design
are defined on a grid of nodes over a rectangular domain. These representations are
also the basis of isogeometric analysis which generalizes high-order finite element
methods in numerical simulations [9]. However, grid structures do not allow com-
plex shapes to be easily resolved. They also preclude the flexibility of performing
local refinements for improving the error in numerical simulations. To address these
issues, meshes with T-junctions—also called T-meshes—and polynomial and ratio-
nal splines on such meshes have been investigated for performing both geometric
modeling and isogeometric analysis. Classically, uniform degree splines, i.e., piece-
wise polynomial functions of uniform degree on the faces, have been studied and
developed on T-meshes with the intent of using T-junctions for locally increasing the
resolution offered by the spline space. An alternate strategy to improve the approx-
imation power of splines is to increase the degree in a localized manner, providing
in this way more spline basis functions and more degrees of freedom for better
approximation in the desired regions. In this paper, motivated by applications for
isogeometric finite element methods, we study the space of piecewise polynomials
functions on a T-mesh with different bi-degrees on its faces and different regularities
across its edges. In particular, we analyze the dimension of these functional spaces,
thus providing a tool that can help identify when a given set of linearly independent
splines spans the full space.

Computing the dimensions of multivariate spline spaces is a highly non-trivial
task and involves an intimate interplay of algebra, topology, and geometry. Some
of the notable early contributions to this problem focused on splines on simplicial
meshes. The first studies were conducted by Strang [31, 32]; Schumaker [25] pro-
vided lower bounds on the dimension of splines on planar triangulations; Billera
[2] brought homological algebra to bear on the problem; and Schenck and Stillman
[24] modified the approach of [2] to devise a more tractable framework for studying
the dimension problem. Those earlier papers have paved the way for a multitude of
developments, and this direction of research is now a classical topic in the field of
approximation theory. In particular, over the past four decades, polynomial and non-
polynomial spline spaces have been analyzed and characterized on a wide variety of
meshes (e.g., polygonal, polyhedral, curvilinear). Nevertheless, in the following, we
describe the problem and discuss the literature only for splines on T-meshes in the
interest of an abbreviated but focused narrative.

Several works focused on the construction of spline functions and the analysis
of spline function spaces on T-meshes exist, mainly motivated by applications in
isogeometric analysis. So-called T-splines, which are B-spline functions defined on
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domains with a T-mesh structure, have been investigated for their flexibility of rep-
resenting shapes [28], for isogeometric analysis [1] and for functional approximation
[26]. However, linear dependencies of the blending functions involved in T-spline
constructions have been observed [8]. To remedy this problem, a special sub-family
of T-splines, called analysis suitable T-splines, has been developed, by imposing
sufficient constraints on the T-mesh [7, 20, 27].

The construction of so-called LR-splines defined on T-meshes and based on knot
sub-grids has been proposed in [12]. Their use in isogeometric analysis has been
further investigated in [17], including an analysis of the linear independency of the
blending functions [6]. Another type of splines, so-called hierarchical B-splines, has
been investigated in [10, 13, 14, 18]. They are defined by recursive subdivisions
of quadrangular faces, producing nested spaces of splines functions and providing
simple schemes for performing local refinements.

In general, the dimension of the spaces of splines on T-meshes can be unstable,
i.e., it can depend on the global geometry of the T-mesh [19, 22]. Since any efficient
constructive approach must rely only on local data for building spline functions, this
instability in the dimension necessitates identification of configurations where the
spline space dimension is a priori guaranteed to be stable. In this direction, a detailed
study of spline spaces on general T-meshes has been presented in [22] using homo-
logical techniques, which go back to [2]. Results from [22] were used in [11] to
devise a refinement strategy for LR-splines that ensures that the entire spline space is
spanned by LR B-splines at each stage of refinement. The dimension of Tchebychef-
fian spline spaces over planar T-meshes, which involve non-polynomial functions,
has been investigated in [4, 5], exploiting the same homological techniques as in [22].

In all the works referenced above, only uniform degree splines are considered on
the T-meshes. Spline spaces on triangulations with non-uniform degree have been
recently studied in [35] using homological techniques, and the interest of using non-
uniform degree T-splines in isogeometric analysis has been shown in [21, 33].

Here, we analyze in detail splines spaces over general T-meshes when non-uniform
polynomial bi-degrees are chosen on the faces, thus accounting for local degree adap-
tivity in conjunction with local mesh adaptivity. We provide combinatorial lower
and upper bounds on the dimensions of such spline spaces and outline sufficient
conditions for the bounds to coincide. These sufficient conditions are equivalent to
geometric conditions that need to be satisfied by the T-meshes. The approach is based
on homological techniques and generalizes the framework presented in [22] to the
case of non-uniform polynomial bi-degree distributions. As part of the approach,
we perform a degree-based decomposition of the mesh into nested regions and this
allows us to untangle the contributions of different bi-degrees to the spline space
dimension. The main results on the lower and upper bounds of the dimension of
these spline spaces (Theorems 6.3, 6.4, and 7.1) involve homological invariants of
the nested regions associated to the different bi-degrees. As mentioned previously,
the theoretical results presented here can be used to identify when a given set of lin-
early independent splines spans the full spline space. Conversely, given a constructive
approach that aims to produce linearly independent splines over T-meshes using only
local data, computation of the associated spline space dimension can help identify
cases where the splines produced by the approach cannot be linearly independent.
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This is crucial for devising constructive approaches that can be robustly employed
for performing isogeometric analysis.

The layout of the paper is as follows. We start by introducing preliminary con-
cepts and notation about T-meshes and non-uniform bi-degree spline spaces on such
meshes in Section 2. Thereafter, we introduce the topological complexes that form
the main object of our analysis in Section 3; in particular, Section 3.3 provides an
overview of our approach to the problem at hand. Sections 4 and 5 take a closer look
at the topological complexes introduced in Section 3, and the results presented therein
are used in Section 6 to provide bounds on the spline space dimension (Theorems 6.3
and 6.4). Section 7 contains Theorem 7.1, which outlines sufficient conditions for
the bounds derived in Section 6 to coincide. We also discuss the notion of maximal
segment weights, generalized from [22]. This notion helps provide a geometric cri-
terion that is useful when computing the spline space dimension. Finally, Section 8
provides examples of the theory developed here. We would like to mention here that
computations using Macaulay2 [15] went hand-in-hand with the research presented
here.

2 Planar T-meshes and polynomials

In the following, we define the basic concepts associated with planar T-meshes, and
thereafter present some preliminary results on polynomials. We will proceed as in
[22], albeit in the setting of non-uniform degree spline spaces.

2.1 T-meshes

Definition 2.1 (T-mesh) A T-mesh T of R2 is defined as:

– a finite set T2 of closed axis-aligned rectangles σ of R2, called 2-cells or faces,
– a finite set T1 of closed axis-aligned segments τ , called 1-cells or edges, included

in ∪σ∈T2∂σ , and,
– a finite set, T0, of points γ , called 0-cells or vertices, included in ∪τ∈T1∂τ ,

such that

– σ ∈ T2 ⇒ ∂σ is a finite union of elements of T1,
– σ, σ ′ ∈ T2 ⇒ σ ∩ σ ′ = ∂σ ∩ ∂σ ′ is a finite union of elements of T1 ∪ T0, and,
– τ, τ ′ ∈ T1 with τ �= τ ′ ⇒ τ ∩ τ ′ = ∂τ ∩ ∂τ ′ ⊂ T0.

The domain of the T-mesh is assumed to be connected and is defined as Ω :=
∪σ∈T2σ ⊂ R

2.

Sets of horizontal and vertical edges will be denoted by Th 1 and Tv 1, respectively.

Edges of the T-mesh are called interior edges if they intersect
◦

Ω , and boundary edges
otherwise. The set of interior edges will be denoted by

◦
T1; and the sets of interior

horizontal and vertical edges will be denote by
◦
Th 1 and

◦
Tv 1, respectively. Similarly, if

a vertex is in
◦

Ω , it will be called an interior vertex, and a boundary vertex otherwise.
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The set of interior vertices will be denoted by
◦
T0. We will denote the number of

i-cells with ti := #Ti ; the number of interior i-cells with
◦
ti := #

◦
Ti .

Assumption 1 The domain Ω is simply connected, and
◦

Ω is connected.

2.2 Splines on T-meshes

We will now define spaces of piecewise-polynomial splines on the planar T-meshes
introduced above. To do so, we will first define a map that specifies relative poly-
nomial degrees on the faces of T , and a second map that specifies the smoothness
across its edges. Note that these maps are assumed to be known/fixed throughout this
document and, when needed, we will omit mentioning them explicitly in order to
simplify notation.

To define a non-uniform degree spline space on T , we need as input a degree-
deficit distribution that will later help us specify non-uniform degrees on T . We
represent the degree-deficits in the form of a map that specifies an ordered pair of
non-negative integers to each face of T ,

Δm : T2 → Z
2≥0 ,

σ �→ Δm(σ ) .
(2.1)

It is assumed that D := {Δm(σ ) : σ ∈ T2} can be totally ordered using the relation
≤D defined as

(a1, a2) ≤D (b1, b2) ⇔ a1 ≤ b1 ∧ a2 ≤ b2 , (2.2)

and that (0, 0) ∈ D. Given a degree-deficit distribution as above, we build the
following sequence Δmi , i = 0, . . . , l,

minD = (0, 0) =: Δm0 < Δm1 < · · · < Δml := maxD , (2.3)

such that
Δmi − Δmi−1 =: Δni ∈ {(1, 0), (0, 1), (1, 1)} . (2.4)

Note that all comparisons carried out above are with respect to the ordering in Equa-
tion (2.2). We will denote the components of Δmi and Δni with (Δmi1, Δmi2) and
(Δni1, Δni2), respectively.

The map Δm will help specify the bi-degree of polynomials on a face σ ∈ T2.
Given m ∈ Z

2≥0, we define the bi-degrees m�, � ∈ T2 ∪ T1 ∪ T0, as

m� := m − Δm(�) , (2.5)

where the induced degree deficits on τ ∈ T1 and γ ∈ T0 are defined as

Δm(τ ) := min
τ⊂σ

Δm(σ ) , Δm(γ ) := min
γ∈σ

Δm(σ ) . (2.6)

Let R := R[s, t] be the polynomial ring with coefficients in R. We define
Pm1m2 ≡ P(m1,m2) ⊂ R as the R-linear vector space of polynomials of bi-degree at
most (m1, m2). If any of m1, m2 are negative, then Pm1m2 := 0.

A second ingredient needed for defining smooth splines on T is a smoothness
distribution on T , i.e., non-negative integers assigned to the interior edges of T to
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indicate the desired order of smoothness across them. We represent the smoothness
distribution in the form of the following map:

r : ◦
T1 → Z≥0 ,

τ �→ r(τ ) ,
(2.7)

such that τ, τ ′ ∈ ◦
Th 1 (or both in

◦
Tv 1) and τ ∩ τ ′ �= ∅ ⇒ r(τ ) = r(τ ′).

As noted above, the map r will help us define the smoothness across all interior
edges, i.e., for τ ∈ ◦

T1, splines will be required to be at least Cr(τ ) smooth across
τ . For γ ∈ ◦

T0 such that {γ } = τh ∩ τv , (τh, τv) ∈ ◦
Th 1 × ◦

Tv 1, the smoothness in
horizontal and vertical directions is defined, respectively, as

rγ,h = r(τv) , rγ,v = r(τh) . (2.8)

Definition 2.2 (Spline space) Given a T-mesh T , a degree deficit distribution Δm,
a smoothness distribution r and a bi-degree m ∈ Z

2≥0, we define the spline space
Rr

Δm,m(T ) as

Rr
Δm,m ≡ Rr

Δm,m(T ) :=
{
f : ∀σ ∈ T2, f |σ ∈ Pmσ = Pm−Δm(σ ) ,

∀τ ∈ ◦
T1, f is Cr(τ ) across τ } .

Example 2.3 A T-mesh is shown in Fig. 1a, and example degree-deficits on its faces
are shown in Fig. 1b. The set D is given by

D = {(0, 0), (1, 1), (2, 2)} ,

and the sequence Δmi can be chosen to be

(0, 0) = Δm0 < (1, 1) = Δm1 < (2, 1) = Δm2 < (2, 2) = Δm3 .

a b

Fig. 1 Figure a shows an example T-mesh. Figure b shows a color-coded representation of the degree-
deficits on it; the deficit on the white faces is (2, 2), on the blue faces is (1, 1), and on red faces is
(0, 0)
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Clearly, the above choice of the sequence is not unique. We could have alternatively
chosen the shorter sequence:

(0, 0) = Δm0 < (1, 1) = Δm1 < (2, 2) = Δm2 .

We will employ the following algebraic characterization of smoothness of
piecewise-polynomial splines [3].

Lemma 2.4 ([2, 22]) For σ, σ ′ ∈ T2, let σ ∩ σ ′ = τ ∈ ◦
T1. A piecewise polynomial

function equaling p ∈ R and p′ ∈ R on σ and σ ′, respectively, is at least r times
continuously differentiable across τ if and only if

p − p′ ∈
(
lr+1

)
,

where l ∈ R is a non-zero linear polynomial vanishing on τ .

2.3 Homogenized problem

We will translate the problem of investigating the dimension of Rr
Δm,m to the homo-

geneous setting [2, 3]. To this end, let us introduce the ring of bi-homogeneous
polynomials S := R[u, v] = R[s, t, u, v] which is interpreted as the extension
of R by the variables u and v that homogenize s and t , respectively. We denote
the associated vector space of bi-homogeneous polynomials of bi-degree exactly
m = (m1, m2) ∈ Z

2≥0 with Sm ≡ Sm1m2 ⊂ S. If any of m1, m2 are negative then

Sm := 0. The ring S is naturally graded by Z
2, SijSkl = S(i+k)(j+l), and its graded

pieces are shifted in the usual manner: S(−i, −j)kl = S(k−i)(l−j).
For convenience, let us define the following notation s := (s, t), u := (u, v), and

for any tuple (a, b), (a, b)(i,j) := aibj , for i, j ∈ Z≥0. Using the above, we define
the vector space associated to � ∈ T2 ∪ T1 ∪ T0 as

S� :=
(
uΔm(�)

)
= uΔm(�)S(−Δm(�)) . (2.9)

In particular, given m ∈ Z
2≥0, we denote its mth graded piece as S�,m =

uΔm(�)S(−Δm(�))m. An algebraic characterization of smoothness for bi-
homogeneous piecewise polynomial functions follows in the vein of Lemma 2.4,
and is stated below. The module of bi-homogeneous splines of interest is defined
immediately thereafter.

Lemma 2.5 For σ, σ ′ ∈ T2, let σ ∩ σ ′ = τ ∈ ◦
T1. A bi-homogeneous piecewise

polynomial function equaling p ∈ S and p′ ∈ S on σ and σ ′, respectively, is at least
r(τ ) times continuously differentiable across τ if and only if

p − p′ ∈
(
lr(τ )+1
τ

)
,

where lτ is a non-zero u-homogeneous (resp. v-homogeneous) linear polynomial
vanishing on τ ∈ Tv 1 (resp. τ ∈ Th 1).
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Definition 2.6 (Module of bi-homogeneous splines) Given T-mesh T , degree,
and smoothness distributions Δm and r , respectively, we define the module of
bi-homogeneous splines Sr

Δm(T ) as

Sr
Δm ≡ Sr

Δm(T ) :=
{
f = ∑

σ∈T2

[σ]fσ : ∀σ ∈ T2, fσ ∈ Sσ ,

∀τ ∈ ◦
T1, τ = σ ∩ σ ′ ⇒ fσ − fσ ′ ∈

(
l
r(τ )+1
τ

) }
,

where lτ is the homogenization of the linear polynomial vanishing on τ ∈ T1.

Theorem 2.7 Given m ∈ Z
2≥0, the m-th graded piece of the S-module of splines

Sr
Δm is isomorphic to Rr

Δm,m, i.e.,

dim
(
Sr

Δm

)
m

= dim
(
Rr

Δm,m

)
.

Proof The proof follows from Lemma 2.5 and Definitions 2.2 and 2.6.

3 Topological complexes

In this section, we will describe the tools from homology that we will use for com-
puting the dimension of graded pieces of Sr

Δm but first let us introduce the relevant
notation.

First, we define the ideal:

L[i](−(j, k)) ≡ L[i](−j, −k) :=
{

0 , i = l + 1

uΔmi S(−Δmi − (j, k)) , 0 ≤ i ≤ l
, (3.1)

and denote L[i] ≡ L[i](0, 0). Then, from Equation (2.4), we have for 1 ≤ i ≤ l,

L[i](−j, −k) = uΔniL[i−1](−(j, k) − Δni ) . (3.2)

We also define the following (shifted) quotient for 1 ≤ i ≤ l + 1,

M[i](−j, −k) := L[i−1](−j, −k)/L[i](−j, −k) . (3.3)

For τ ∈ ◦
T1, it will be convenient to set �τ := l

r(τ )+1
τ , where lτ is the homogeneous

linear polynomial from Lemma 2.5. We will use �τ to define the edge and vertex
associated ideals Iτ and Iγ ,

Iτ :=
(
�τu

Δm(τ )
)

⊂ Sτ , Iγ :=
∑
γ∈τ

(
�τu

Δm(τ )
)

⊂ Sγ . (3.4)

In general, while Iτ = Sτ ∩ (�τ ), we have Iγ = Sγ ∩ ∑
γ∈τ (�τ ) only when γ is a

crossing vertex, i.e., when γ is shared by two horizontal and two vertical edges.



Adv Comput Math           (2021) 47:16 Page 9 of 42   16 

3.1 Definitions

Oriented i-cells of T will generate S-modules, and we will index the generators with
the respective faces, edges, and vertices of T : e.g., [σ], [τ], and [γ], respectively. We
will assume that all oriented 2-cells have been assigned a counterclockwise orienta-
tion. For τ ∈ T1 with end points γ, γ ′ ∈ T0, [τ] = [γ γ ′], with [γ ′γ ] = −[γ γ ′]
defining the oppositely oriented edge. Finally, we will consider cellular boundary
maps, denoted ∂ , relative to ∂Ω [16]:

∂([σ]) =
∑
τ∈ ◦

T1

εσ,τ[τ] , ∂([τ]) =
∑
γ∈ ◦

T0

ετ,γ[γ] , ∂([γ]) = 0 , (3.5)

where εθ,φ ∈ {−1, 0, +1} denotes if the orientation of the (n − 1)-cell [φ] is com-
patible with that of the n-cell [θ ]. As is clear from the above equation, we set
[τ] = 0 = [γ] for τ, γ contained in ∂Ω since only relative homology is of interest
here.

Then, for an element p = ∑
σ [σ]pσ of the S-module ⊕σ∈T2[σ]Sσ , its image

under the action of ∂ will be:

∂

⎛
⎝ ∑

σ∈T2

[σ]pσ

⎞
⎠ =

∑
τ∈ ◦

T1

[τ]
⎛
⎝ ∑

σ∈T2

εσ,τpσ

⎞
⎠ . (3.6)

It is clear that
∑

σ εσ,τpσ ∈ Sτ (= uΔm(τ ) S). Therefore, by Lemma 2.5, for p to be
in smoothness class Cr we require the following:

∀τ ∈ ◦
T1 ,

∑
σ∈T2

εσ,τpσ ∈ Iτ . (3.7)

Then, Sr
Δm contains all splines f (in all bi-degrees) such that their polynomial pieces

satisfy the above requirement, with pσ = f |σ . In other words, for m ∈ Z
2≥0,

dim
(
Rr

Δm,m

) = dim
(
Sr

Δm

)
m

= dim
(
ker

(
∂
))

m
, (3.8)

where ∂ , given below, is obtained by composing ∂ with the natural quotient map:

∂ : ⊕
σ∈T2

[σ]Sσ → ⊕
τ∈ ◦

T1

[τ]Sτ /Iτ . (3.9)

3.2 Degree-deficit–based topological complexes

In light of the above reasoning, we consider the following chain complex of S-
modules as the object of our analysis, with the top homology module of Q equaling
Sr

Δm.

Q : ⊕
σ∈T2

[σ]Sσ ⊕
τ∈ ◦

T1

[τ]Sτ /Iτ ⊕
γ∈ ◦

T0

[γ]Sγ /Iγ 0 .

(3.10)
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We analyze Q by performing a decomposition that untangles the individual con-
tributions from the different degree-deficits from Equation (2.3) to the dimension of
Sr

Δm.
First, for � ∈ T2 ∪ T1 ∪ T0, we define:

S�,‖i‖ = S�/(S� ∩ L[i]) I�,‖i‖ = I� · S�,‖i‖ , (3.11)

S�,[i] = S�,‖i‖ ∩ L[i−1] , I�,[i] = I� · S�,[i] . (3.12)

We also define the complex Q[i] as

⊕
σ∈T2

[σ]Sσ,[i] ⊕
τ∈ ◦

T1

[τ]Sτ,[i]/Iτ,[i] ⊕
γ∈ ◦

T0

[γ]Sγ,[i]/Iγ,[i] 0 ,

(3.13)
and the complex Q‖i‖ as

⊕
σ∈T2

[σ]Sσ,‖i‖ ⊕
τ∈ ◦

T1

[τ]Sτ,‖i‖/Iτ,‖i‖ ⊕
γ∈ ◦

T0

[γ]Sγ,‖i‖/Iγ,‖i‖ 0 .

(3.14)
Let us make a few observations about the setup so far and the motivations behind it:

– By construction of these complexes, we have a sequence of complexes:

0 Q[i] Q‖i‖ Q‖i−1‖ 0 . (3.15)

In other words, the components of Q[i], Q‖i‖, Q‖i−1‖ and the correspond-
ing maps induced form complexes. As we will see in Proposition 3.1, these
complexes are exact.

– With regard to the study of Q from Equation (3.10), it is clear from the above
definitions that Q‖l+1‖ = Q. We will perform its analysis using the previous
sequence of complexes.

– It can be observed that each module in Q‖0‖ is identically zero, thereby implying
Q‖1‖ = Q[1]. Therefore, it is only necessary to analyze the complexes:

Q[l+1] , Q[l] , . . . , Q[2] , Q[1] .

– Finally, for a given m ∈ Z
2≥0, it can be observed that the dimension of the

m-th graded piece of the top homology module of Q[l+1] is equal to the dimen-
sion of Rr

0,m−Δml
, which is the largest uniform-degree spline space contained

in Rr
Δm,m. Therefore, in a rough sense, the contributions from the complexes

Q[l] , . . . , Q[1] represent the incremental changes in the dimension of
Rr

0,m−Δml
that result from the introduction of non-uniformity in bi-degrees.

The net effect of these incremental changes on the dimension of Rr
0,m−Δml

will intuitively bring us close to the quantity of interest, dim
(
Rr

Δm,m

)
=

dim
(
Sr

Δm

)
m

.

Proposition 3.1 For 1 ≤ i ≤ l + 1, the following is a short exact sequence of
complexes:

0 Q[i] Q‖i‖ Q‖i−1‖ 0 .
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Proof We have to prove that the following is a short exact sequence for all � ∈
T2 ∪ T1 ∪ T0:

0 S�,[i]/I�,[i] S�,‖i‖/I�,‖i‖ S�,‖i−1‖/I�,‖i−1‖ 0 ,

where Iσ,[i] := 0.
Given i, if S� � L[i−1], then we must have S� ⊆ L[i], which would imply that

all spaces of the above complex are identically 0. Therefore, the only non-trivial case
to consider is when S� ⊇ L[i−1]. Explicitly, the non-trivial cases to analyze yield the
following complexes:

0 L[i−1]/L[i] Sσ /L[i] Sσ /L[i−1] 0 , (a)

0 L[i−1]/
(
Iτ ∩ L[i−1] + L[i]

)
Sτ /

(
Iτ + L[i]

)
Sτ /

(
Iτ + L[i−1]

)
0 , (b)

0 L[i−1]/
(
Iγ ∩ L[i−1] + L[i]

)
Sγ /

(
Iγ + L[i]

)
Sγ /

(
Iγ + L[i−1]

)
0 . (c)

It is easy to see that (a) is a short exact sequence. The same observation follows for
(b) and (c) since, for � ∈ T1 ∪ T0, by definition we have:

L[i−1] ∩ (
I� + L[i]

) = (
I� ∩ L[i−1] + L[i]

)
,

which transforms (b) and (c) into

0
(
I� + L[i−1]

)
/
(
I� + L[i]

)
S�/

(
I� + L[i]

)
S�/

(
I� + L[i−1]

)
0 .

As stated above, Q can be studied by studying the complexes Q[i], i =
1, 2, . . . , l + 1. We do so by analyzing the following short exact sequence of chain
complexes for each i.

0 0

I[i] : 0 ⊕
τ∈ ◦

T1,[i]

[τ]Iτ,[i] ⊕
γ∈ ◦

T0,[i]

[γ]Iγ,[i] 0

C[i] : ⊕
σ∈T2,[i]

[σ]Sσ,[i] ⊕
τ∈ ◦

T1,[i]

[τ]Sτ,[i] ⊕
γ∈ ◦

T0,[i]

[γ]Sγ,[i] 0

Q[i] : ⊕
σ∈T2,[i]

[σ]Sσ,[i] ⊕
τ∈ ◦

T1,[i]

[τ]Sτ,[i]/Iτ,[i] ⊕
γ∈ ◦

T0,[i]

[γ]Sγ,[i]/Iγ,[i] 0

0 0
(3.16)
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Note that the morphisms above are obtained in the obvious way by composing
(restrictions of) ∂ with quotient maps. In Equation (3.16), T2,[i],

◦
T1,[i], and

◦
T0,[i] are

the active components of the mesh with respect to the index i; this notion was hinted
at in the proof of Proposition 3.1 and is defined next.

Definition 3.2 (Active T-mesh) For i = 1, 2, . . . , l + 1, the active T-mesh T[i] is
composed of

– T2,[i] ⊆ T2 such that σ ∈ T2,[i]
def.⇐⇒ Sσ ⊇ L[i−1];

– T1,[i] ⊆ T1 such that τ ∈ T1,[i]
def.⇐⇒ Sτ ⊇ L[i−1]; and,

– T0,[i] ⊆ T0 such that γ ∈ T0,[i]
def.⇐⇒ Sγ ⊇ L[i−1].

The domain of this active T-mesh, Ω[i], is defined to be ∪σ∈T2,[i]σ ⊂ R
2.

The symbols for interior edges, vertices, horizontal and vertical edges, etc., are
all appended with a subscript of [i] when talking about the active mesh T[i]; see
Equation (3.16). Note that “interior” will always mean interior with respect to Ω . It
should be noted that T1,[i] is exactly the set of edges that are contained in ∪σ∈T2,[i]∂σ .
Similarly, T0,[i] is exactly the set of vertices that are contained in ∪τ∈T1,[i]∂τ .

Remark 3.3 Note that Equation (2.4) may introduce more active meshes than strictly
necessary. However, we choose the degree-deficit sequence in compliance with Equa-
tion (2.4) because it simplifies the analysis later on. In particular, the results that are
affected by this simplification are Lemmas 6.8 and 6.10 (and those that depend on
these lemmas).

Example 3.4 Consider the setup in Example 2.3, and let us choose the shorter
sequence of degree deficits provided therein. Then, the associated active meshes with
respect to i = 1, 2, 3 are shown in Fig. 2. The bottom, middle, and top layers corre-
spond to T[3], T[2], and T[1], respectively. In other words, the layer corresponding to
T[i] is such that for the faces σ , edges τ and vertices γ contained in it, we have the
containment S� ⊇ L[i−1], � ∈ {σ, τ, γ }.

3.3 Summary of approach

Given m ∈ Z
2≥0, let χ (A)m be the Euler characteristic of the m-th graded piece of

the complex A : 0 → Ak → Ak−1 → · · · → A0 → 0,

χ (A)m =
k∑

j=0

(−1)j dim
(
Hj(A)

)
m

=
k∑

j=0

(−1)j dim
(
Aj

)
m

. (3.17)

Then, the Euler characteristic of Q = Q‖l+1‖ helps quantify the homological
contribution to the dimension of Sr

Δm.
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Fig. 2 Active regions of the T-mesh T from Fig. 1 for different indices i ∈ {1, 2, 3}; see Example 3.4 for
reference. Generators of H0(Ω[i], ∂Ω[i] ∩ ∂Ω) have been shown as gray disks. Boundaries of the meshes
have been emphasized in bold and solid lines correspond to the active boundary, i.e., ∂Ω ∩ Ω[i]

Definition 3.5 (Homological contribution to dimension) Given m ∈ Z
2≥0, we define

the homological contribution to the dimension of Sr
Δm in bi-degree m as

hr
Δm,m = dim

(
Sr

Δm

)
m

− χ (Q)m ,

so that we have dim
(
Sr

Δm

)
m

= χ (Q)m + hr
Δm,m.

It will be shown in Section 3.4 that the Euler characteristic of Q is computable
exactly using the rightmost expression in Equation (3.17). This leaves only the com-
putation (or estimation) of hr

Δm,m for the purpose of determining (bounds on) the
dimension of Sr

Δm. We approach this task as follows. First, using the short exact
sequence from Equation (3.15), we build the long exact sequence of homology
modules:

0 H2
(
Q[i]

)
H2

(
Q‖i‖

)
H2

(
Q‖i−1‖

)
H1

(
Q[i]

) · · · H0
(
Q‖i−1‖

)
0

∂̂i

(3.18)

with ∂̂1 ≡ 0. The above implies that

χ
(
Q‖i‖

)
m

= χ
(
Q[i]

)
m

+ χ
(
Q‖i−1‖

)
m

.
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Summing up the terms for i = 1, . . . , l + 1, we obtain:

χ (Q)m = χ
(
Q‖l+1‖

)
m

= ∑l+1
i=1 χ

(
Q[i]

)
m

since Q‖0‖ = 0 and Q‖l+1‖ = Q. That is, the Euler characteristic of Q decom-
poses additively in the above manner. The next results state that a similar additive
decomposition does not hold for the 2-homologies.

Lemma 3.6 Given m ∈ Z
2≥0, the dimension of the mth piece of Sr

Δm can be
additively computed as

dim
(
Sr

Δm

)
m

=
l+1∑
i=1

dim
(
H2

(
Q[i]

))
m

− dim
(

im ∂̂ i

)
m

.

Proof From Equation (3.18), we have the following exact sequence for all i ≥ 1,

0 H2
(
Q[i]

)
H2

(
Q‖i‖

)
H2

(
Q‖i−1‖

)
im ∂̂i 0 .

∂̂i

The above implies that

dim
(
H2

(
Q‖i‖

))
m

= dim
(
H2

(
Q‖i−1‖

))
m

+ dim
(
H2

(
Q[i]

))
m

− dim
(

im ∂̂i

)
m

.

The claim follows upon summing up the terms for i = 1 . . . , l + 1.

Using Lemma 3.6, we can simplify the expression for χ (Q)m,

χ (Q)m =
l+1∑
i=1

(
dim

(
H2

(
Q[i]

))
m

− dim
(
H1

(
Q[i]

))
m

+ dim
(
H0

(
Q[i]

))
m

)
,

= dim(Sr
Δm)m +

l+1∑
i=1

(
dim

(
im ∂̂i

)
m

− dim
(
H1

(
Q[i]

))
m

+ dim
(
H0

(
Q[i]

))
m

)
.

A final simplification is afforded by the following assumption.

Assumption 2 All complexes C[i] are without holes, i.e., H1
(
C[i]

) = 0 for all i.

Proposition 3.7 Given m ∈ Z
2≥0 and Assumptions 1 and 2, the homological

contribution to the dimension can be additively expressed as:

hr
Δm,m := dim

(
Sr

Δm

)
m

− χ (Q)m ,

=
l+1∑
i=1

dim
(
H0

(
I[i]

))
m

− dim
(
H0

(
C[i]

))
m

− dim
(

im ∂̂i

)
m

.

Proof The proof follows from Lemma 3.6 and the diagram in Equation (3.16).
Indeed, following Assumption 2, we obtain the long exact sequence of homology
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modules:

0 H1
(
Q[i]

)
H0

(
I[i]

)
H0

(
C[i]

)
H0

(
Q[i]

)
0 ,

which yields the claim when combined with Equation (3.17).

Therefore, the final problem is the computation (or estimation) of the dimension
of im ∂̂im and the difference in the dimensions of H0

(
I[i]

)
m

and H0
(
C[i]

)
m

for all i.

The next example shows that in general dim
(

im ∂̂i

)
m

is not equal to zero.

Example 3.8 Consider the T-mesh in Fig. 3. Assume that the degree deficit on all
faces touching the boundary is (1, 1), and on the remaining faces is (0, 0). Choose
the associated degree-deficit sequence to be Δm0 = (0, 0) < Δm1 = (1, 1). Let
us ask for C2 smoothness across all edges, and let m = (5, 5). Then, based on the
definitions, it can be checked that:

dim
(
Sr

Δm

)
m

= 81 .

However, we can also compute (using Macaulay2, for instance) that

dim
(
H2

(
Q[2]

))
m

= 81 , dim
(
H2

(
Q[1]

))
m

= 1 .

Fig. 3 A mesh that serves to counter the expectation that the spline space dimension can be additively
decomposed in the same manner as the Euler characteristic of Q; see Example 3.8 for details
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Thus, dim
(
Sr

Δm

)
m

�= ∑2
i=1 dim

(
H2

(
Q[i]

))
m

. Equivalently, we have that

dim
(

im ∂̂2

)
= 1.

In particular, the spline generating H2
(
Q[2]

)
in degree m is [σ ]p + [σ ′]q where

p = t5u(3s − u)3(9s − 5u) , q = t5u(3s − 2u)3(9s − 4u) .

It can be checked that p − q = 27t5u2(2s − u)3 ∈ Iτ , τ = γ16γ17, and that p, q ∈
Iτ + (uv) where τ is the edge γ13γ17 or γ9γ16.

3.4 Dimension formulas for relevant vector spaces

Before proceeding, we present combinatorial formulas for the dimensions of the dif-
ferent vector spaces that have appeared so far and are relevant for our analysis. In
the following, a+ := max{a, 0} for a ∈ Z. We will also need the bi-smoothness
associated to an interior edge τ ,

δ(τ ) :=
{

(0, r(τ ) + 1) , τ ∈ ◦
Th 1

(r(τ ) + 1, 0) , τ ∈ ◦
Tv 1

. (3.19)

For an interior vertex γ ∈ τh ∩ τv , (τh, τv) ∈ ◦
Th 1 × ◦

Tv 1, we define δ(γ ) := δ(τh) +
δ(τv).

Proposition 3.9 Let τ ∈ ◦
T1,[i], and let γ ∈ ◦

T0,[i] such that γ = τh ∩ τv , (τh, τv) ∈
◦
Th 1 × ◦

Tv 1. Then, the following hold for j, k, m, m′ ∈ Z≥0, m = (m, m′), where for
(c) − (e) we assume that 1 ≤ i ≤ l + 1.

dim (S(−j, −k))m = (m − j + 1)+ × (
m′ − k + 1

)
+ . (a)

dim
(
L[i](−j, −k)

)
m

=
{

dim (S(−j, −k))m−Δmi
, 0 ≤ i ≤ l

0, i = l + 1
. (b)

dim
(
M[i](−j, −k)

)
m

= dim
(
L[i−1](−j, −k)

)
m

− dim
(
L[i](−j, −k)

)
m

. (c)

dim
(
Iτ,[i]

)
m

= dim (S(−δ(τ ) − Δmi−1))m − dim (S(−δ(τ ) − Δmi ))m . (d)

dim
(
Iγ,[i]

)
m

= dim (S(−δ(τh) − Δmi−1))m + dim (S(−δ(τv) − Δmi−1))m

+ dim (S(−δ(γ ) − Δmi ))m − dim (S(−δ(γ ) − Δmi−1))m
− dim (S(−δ(τh) − Δmi ))m − dim (S(−δ(τv) − Δmi ))m . (e)

Proof Claims made in parts (a), (b), and (c) follow by definition. Parts (d) and (e)

follow from the following exact sequences, respectively:

S(−δ(τ ) − Δmi )

S(−δ(τ ) − Δmi−1)

⊕
S(−Δmi )

Iτ ∩ L[i−1] + L[i] ,
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S(−δ(γ ) − Δmi )

S(−δ(τh) − Δmi )⊕
S(−δ(τv) − Δmi )⊕

S(−δ(γ ) − Δmi−1)

S(−δ(τh) − Δmi−1)⊕
S(−δ(τv) − Δmi−1)⊕

S(−Δmi )

Iγ ∩ L[i−1] + L[i] .

We can simplify the expression in Proposition 3.9(e) for special choices of
Δm, r, m.

Corollary 3.10 Let 1 ≤ i ≤ l and γ ∈ ◦
T0,[i] such that γ = τh ∩ τv , (τh, τv) ∈

◦
Th 1 × ◦

Tv 1. The following statements hold for m = (m, m′) ∈ Z≥0.

(a) If m − Δmi is entry-wise greater than or equal to (r(τv), r(τh)), then
dim

(
Iγ,[i]

)
m

= (m − Δm(i−1)1 + 1)Δni2 + (m′ − Δm(i−1)2 + 1)Δni1 − Δni1Δni2

= dim
(
M[i]

)
m

= dim
(
L[i−1]/L[i]

)
m

.

(b) If m − Δmi−1 is entry-wise smaller than or equal to (r(τv), r(τh)), then

dim
(
Iγ,[i]

)
m

= 0 .

The next result follows from the definition of the modules M[i](−j, −k) and
Equation (2.4).

Lemma 3.11 The following hold form, b ∈ Z
2≥0 and j, k ∈ Z≥0, where 1 ≤ i ≤ l+1

for (a) and 1 ≤ i ≤ l for (b) − (d).

dim
(
sbM[i](−j, −k)

)
m

= dim
(
M[i](−j, −k)

)
m−b

. (a)

dim
(
uM[i](−j, −k)

)
m

= dim
(
uL[i−1](−j, −k)

)
m

− dim
(
u(1−Δni1)+L[i](−j, −k)

)
m

. (b)

dim
(
vM[i](−j, −k)

)
m

= dim
(
vL[i−1](−j, −k)

)
m

− dim
(
v(1−Δni2)+L[i](−j, −k)

)
m

. (c)

dim
(
uvM[i](−j, −k)

)
m

= 0 . (d)

The next result has been adapted from [22] in a form relevant for our analysis; see
[22] for its proof.

Proposition 3.12 Consider m, b ∈ Z
2≥0, m = (m, m′), l distinct numbers

a1, . . . , al ∈ R, and d1, . . . , dl ∈ Z≥0. Denote with fk the linear polynomials t−akv.
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Then, we have the following dimension formulae, where 0 ≤ i ≤ l for (b) and
1 ≤ i ≤ l + 1 for (c),

dim

(
l∑

k=1

f
dk

k S(0, −dk)

)

m

= (m + 1) × min

(
m′ + 1,

l∑
k=1

m′ − dk + 1

)
. (a)

dim

(
l∑

k=1

f
dk

k L[i](−b − (0, dk))

)

m

= dim

(
l∑

k=1

f
dk

k S(0, −dk)

)

m−Δmi−b

. (b)

dim

(
l∑

k=1

f
dk

k M[i](−b − (0, dk))

)

m

=

dim

((
l∑

k=1

f
dk

k L[i−1](−b − (0, dk))

) /
L[i](−b − (0, dk))

)

m

. (c)

Symmetric claims can be made if the linear polynomials are instead chosen to be
s − aku.

4 Homology of C[i]

In this section, we collect the main results characterizing the homology of the chain
complex C[i]. We will use its following equivalent form that follows from the proof
of Proposition 3.1:

C[i] : ⊕
σ∈T2,[i]

[σ]M[i] ⊕
τ∈ ◦

T1,[i]

[τ]M[i] ⊕
γ∈ ◦

T0,[i]

[γ]M[i] 0 .

Proposition 4.1 Given m ∈ Z
2≥0 and Assumption 1,

dim
(
H2

(
C[i]

))
m

=
{

dim
(
L[l]

)
m

, i = l + 1

0 , 1 ≤ i ≤ l
.

Proof Let p = ∑
σ [σ]pσ , pσ ∈ L[i−1], be in the kernel of ∂ , i.e.,

0 = ∂(p) =
∑

τ∈ ◦
T1,[i]

[τ]
∑

σ∈T2,[i]

εσ,τpσ ⇔ ∀τ ∈ ◦
T1,[i] ,

∑
σ∈T2,[i]

εσ,τpσ ∈ L[i] .

If any σ and σ ′ share an edge τ , εσ,τ = −εσ ′,τ . Therefore, if both σ and σ ′ also
belong to T2,[i], we must have pσ − pσ ′ ∈ L[i]. Then,

– i = l + 1: Following Assumption 1, all edges in
◦
T1,[l+1] are shared by exactly

two faces in T2,[l+1] ≡ T2. Therefore, all pσ must correspond to the same global
polynomial in L[l] for all faces in T2.
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– i < l + 1: There exists at least one edge in
◦
T1,[i] that is contained in only one

face in T2,[i]. Therefore, all pσ must be polynomials in L[i], and therefore must
be zero in L[i−1]/L[i].

Definition 4.2 (Number of relative holes in Ω[i]) We define π[i] to be the number of
linearly independent, non-trivial cycles in Ω[i] relative to ∂Ω[i] ∩ ∂Ω ,

π[i] := rank
(
H1

(
Ω[i], ∂Ω[i] ∩ ∂Ω

))
.

Proposition 4.3 Given m ∈ Z
2≥0 and 1 ≤ i ≤ l + 1,

dim
(
H1

(
C[i]

))
m

= π[i] dim
(
M[i]

)
m

.

Proof The entire kernel of

∂ : ⊕
τ∈ ◦

T1,[i]

[τ]M[i] → ⊕
γ∈ ◦

T0,[i]

[γ]M[i]

can be generated by (R-linear combinations of) ck,i of the form

ck,i = pi−1αk +
∑

τ∈ ◦
T1,[i]

[τ]pτ,i ,

where

– αk = ∑
τ∈ ◦

T1,[i]
[τ]oτ , oτ ∈ Z, is a relative cycle, i.e., ∂αk = 0; and,

– pi−1 ∈ L[i−1] and pτ,i ∈ L[i].

Then, we only need to see how many such ck,i are linearly independent and not
nullhomologous. In particular, if pi−1 /∈ L[i], ck,i is nullhomologous if there exist
some dk,i of the form

dk,i = pi−1βk +
∑

σ∈T2,[i]

[σ]pσ,i

such that ∂βk = αk , where

– βk = ∑
σ∈T2,[i] [σ]oσ , oσ ∈ Z; and,

– pσ,i ∈ L[i].

Then, ck,i is not nullhomologous in H1
(
C[i]

)
iff αk is not nullhomologous in

H1

(
Ω[i], ∂Ω[i] ∩ ∂Ω

)
.

Definition 4.4 (Number of relative connected components in Ω[i]) We define N[i] to
be the number of connected components in Ω[i] relative to ∂Ω[i] ∩ ∂Ω ,

N[i] := rank
(
H0

(
Ω[i], ∂Ω[i] ∩ ∂Ω

))
.
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Proposition 4.5 Given m ∈ Z
2≥0 and 1 ≤ i ≤ l + 1,

dim
(
H0

(
C[i]

))
m

= N[i] dim
(
M[i]

)
m

.

Proof All [γ]pγ , γ ∈ ◦
T0,[i], pγ ∈ L[i−1], are in the kernel of ∂ . Let vertex γ0, edges

τ1, . . . , τk ∈ ◦
T1,[i], pτl

∈ L[i−1], and o1, . . . , ok ∈ Z be such that

– ∀l ∈ {1, . . . , k}, pτl
− pγ ∈ L[i]; and,

– [γ] = [γ0] + ∂
(∑k

l=1[τl]ol

)
.

Assuming pγ /∈ L[i], [γ]pγ is nullhomologous only if γ and γ0 belong to the same
connected component of Ω[i] and γ0 ∈ ∂Ω . Else, [γ0]pγ would be a generator of
H0

(
C[i]

)
for the particular connected component of Ω[i] that it belongs to. Then,

for each pγ , the number of such generators is exactly equal to N[i], and the claim
follows.

Example 4.6 Consider the setup in Example 3.4 and Fig. 2. Then, for m = (5, 5), it
can be verified that:

dim
(
H2(C[i])

)
m

=
{

16 , i = 3

0 , i = 1, 2
,

dim
(
H1(C[i])

)
m

= 0 , i = 1, 2, 3 ,

dim
(
H0(C[i])

)
m

=

⎧⎪⎨
⎪⎩

0 , i = 3

9 , i = 2

11 , i = 1

.

5 The 0-homology of I[i]

As per our objectives stated at the end of Section 3.3, only the characterization of
the 0-homology of I[i] remains, and we collect the associated results in this section.
Similarly to the previous section, we will do so keeping in mind the simplified form
of I[i] that follows from Proposition 3.1,
I[i] : 0 ⊕

τ∈ ◦
T1,[i]

[τ]Iτ ∩ L[i−1] + L[i]/L[i] ⊕
γ∈ ◦

T0,[i]

[γ]Iγ ∩ L[i−1] + L[i]/L[i] 0 .

We first provide a lower bound on the dimension of H0
(
I[i]

)
that holds for special

choices of Δm, r and m.

Proposition 5.1 Let m ∈ Z
2≥0 and 1 ≤ i ≤ l.

(a) If m − Δmi is entry-wise greater than or equal to (rγ,h, rγ,v) for each γ ∈
◦
T0,[i], then

dim
(
H0

(
I[i]

))
m

≥ dim
(
H0

(
C[i]

))
m

.
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In particular, the map from H0
(
I[i]

)
m

to H0
(
C[i]

)
m

in Equation (3.18) is a
surjection and H0

(
Q[i]

)
m
vanishes.

(b) If m − Δmi−1 is entry-wise smaller than or equal to (rγ,h, rγ,v) for each γ ∈
◦
T0,[i], then

dim
(
H0

(
I[i]

))
m

= 0 .

In particular, the map from H0
(
C[i]

)
m
to H0

(
Q[i]

)
m
in Equation (3.18) is an

isomorphism and H1
(
Q[i]

)
m
vanishes.

Proof

(a) If m − Δmi is entry-wise greater than or equal to (rγ,h, rγ,v), then Corollary
3.10 implies that the mth graded piece of ⊕

γ∈ ◦
T0,[i]

[γ]Sγ,[i]/Iγ,[i] vanishes and

so does H0
(
Q[i]

)
m

.
(b) If m−Δmi−1 is entry-wise smaller than or equal to (rγ,h, rγ,v), then Corollary

3.10 implies that the mth graded piece of ⊕
γ∈ ◦

T0,[i]
[γ]Iγ,[i] vanishes and so does

H0
(
I[i]

)
m

.

The claims then follow from Equation (3.18).

Let us define the graded multiplication map φ[i],γ for γ ∈ ◦
T0,[i],

φ[i],γ : ⊕
τ∈ ◦

T1,[i]

[γ |τ ]M[i](−δ(τ )) → [γ]Iγ,[i]

[γ |τ ]p �→ [γ]p�τ , (5.1)

where [γ |τ ] is a half-edge element, with [γ |τ ] := 0 when ετ,γ = 0 or when γ ∈ ∂Ω .

Lemma 5.2 The map φ[i],γ , 1 ≤ i ≤ l + 1, is surjective.

Proof The claim follows from the isomorphism Iτ
∼= S(−Δm(τ ) − δ(τ )) and the

surjective map:

⊕
τ∈ ◦

T1,[i]

[γ |τ ]Iτ ∩ L[i−1] → [γ]Iγ ∩ L[i−1]

[γ |τ ]p �→ [γ]p .

Define Eh,[i](γ ), Ev,[i](γ ) as the sets of horizontal and vertical edges in
◦
T1,[i] that

contain γ ∈ ◦
T0,[i], respectively, and let E[i](γ ) = Eh,[i](γ ) ∪ Ev,[i](γ ). Let P[i](γ )

be the set that contains edge-pairs (τ, τ ′) containing γ , both either in Eh,[i](γ ) or
Ev,[i](γ ); we identify (τ, τ ′) with (τ ′, τ ). Note that, depending on the index i, P[i](γ )

may be empty, or may contain either one or two elements. When the vertex γ is
obvious from the context, we will exclude it from the above notation to simplify the
reading of the text.
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Proposition 5.3 For 1 ≤ i ≤ l + 1, the kernel of φ[i],γ is generated by relations
between parallel and perpendicular half-edges in the following manner,

ker
(
φ[i],γ

) =
∑

(τ,τ ′)∈P[i]

([γ |τ ] − [γ |τ ′])M[i](−δ(τ )) +
∑

τ∈Ev,[i]
τ ′∈Eh,[i]

([γ |τ ]�τ ′ − [γ |τ ′]�τ

)
M[i](−δ(γ )) .

Proof With respect to the T-mesh T[i], let γ be a crossing vertex. (The proof for when
γ is a T-junction will proceed analogously.) Let τ1, τ2 ∈ Eh,[i], τ3, τ4 ∈ Ev,[i], and
P[i] = {

(τ1, τ2), (τ3, τ4)
}
, and let pj ∈ M[i](−δ(τj )). Then,

φ[i],γ

⎛
⎝ 4∑

j=1

[γ |τj ]pj

⎞
⎠ = [γ]

4∑
j=1

pj�τj
,

= [γ] (p1 + p2)�τ1 + [γ] (p3 + p4) �τ3 ,

where �τ1 = �τ2 , and �τ3 = �τ4 , and �τ1 and �τ3 are relatively prime. Therefore,
the kernel of the map is generated by:

([γ |τ1] − [γ |τ2]) p12 , ([γ |τ3] − [γ |τ4]) p34 ,
([γ |τh]�τv − [γ |τv]�τh

)
phv ,

where,

p12 ∈ M[i](−δ(τ1)) , p34 ∈ M[i](−δ(τ3)) , phv ∈ M[i](−δ(γ )) .

Using φ[i],γ , we can define a map φ[i] as

φ[i] : ⊕
γ∈ ◦

T0,[i]

⊕
τ∈ ◦

T1,[i]

[γ |τ ]M[i](−δ(τ )) → ⊕
γ∈ ◦

T0,[i]

[γ]Iγ,[i] , (5.2)

with kernel,
ker

(
φ[i]

) =
∑

γ∈ ◦
T0,[i]

ker
(
φ[i],γ

)
. (5.3)

Next, let us consider the diagram

⊕
τ∈ ◦

T1,[i]

[τ]M[i](−δ(τ )) ⊕
γ∈ ◦

T0,[i]

⊕
τ∈ ◦

T1,[i]

[γ |τ ]M[i](−δ(τ ))

⊕
τ∈ ◦

T1,[i]

[τ]Iτ,[i] ⊕
γ∈ ◦

T0,[i]

[γ]Iγ,[i]

∂̂

ψ[i] φ[i]
∂

, (5.4)

where the maps ∂̃ and ∂ are the restrictions of the following maps to the active T-
mesh,

∂̃ : [τ] �→
∑
γ

ετ,γ[γ |τ ] , ∂ : [τ] �→
∑
γ

ετ,γ [γ] , (5.5)
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and the graded map ψ[i] is defined as

ψ[i] : [τ] �→ [τ]�τ .

Lemma 5.4 The map ψ[i], 1 ≤ i ≤ l + 1, is surjective.

Proof The claim follows from the isomorphism Iτ
∼= S(−Δm(τ ) − δ(τ )).

Lemma 5.5 The zero homology of I[i], 1 ≤ i ≤ l+ 1, is isomorphic to the following
quotient of modules generated by half-edges of T[i],

H0
(
I[i]

) ∼= ⊕
γ∈ ◦

T0,[i]

⊕
τ∈ ◦

T1,[i]

[γ |τ ]M[i](−δ(τ ))

/⎛
⎝ker

(
φ[i]

) + ∂̃

⎛
⎝ ⊕

τ∈ ◦
T1,[i]

[τ]M[i](−δ(τ ))

⎞
⎠

⎞
⎠ .

Proof The diagram in Equation (5.4) commutes. Indeed,

[τ]p ∑
γ [γ |τ ]ετ,γp

[τ]p�τ

∑
γ [γ]ετ,γp�τ

.

Then, the result follows from surjectivities of φ[i] and ψ[i] (Lemmas 5.2 and 5.4,
respectively), and surjectivity of the induced morphism:

φ� : ⊕
γ∈ ◦

T0,[i]

⊕
τ∈ ◦

T1,[i]

[γ |τ ]M[i](−δ(τ ))
/

im
(
∂̃
)

→ ⊕
γ∈ ◦

T0,[i]

[γ]Iγ,[i]
/

im (∂) ,

∑
γ

∑
τ

[γ |τ ]pγτ + im
(
∂̃
)

�→ φ[i]

⎛
⎝∑

γ

∑
τ

[γ |τ ]pγτ

⎞
⎠ + im (∂) .

Indeed, the kernel of φ� is exactly ker
(
φ[i]

) + im
(
∂̃
)
/ im

(
∂̃
)

and we have the

isomorphism:⎛
⎝ ⊕

γ∈ ◦
T0,[i]

⊕
τ∈ ◦

T1,[i]

[γ |τ ]M[i](−δ(τ ))
/

im
(
∂̃
)⎞
⎠ /

ker (φ�) ∼= ⊕
γ∈ ◦

T0,[i]

[γ]Iγ,[i]
/

im (∂) = H0
(
I[i]

)
.

Before proceeding, we first introduce the concept of maximal segments for the
T-mesh T[i]. This will help us further simplify the half-edge–based description of
H0

(
I[i]

)
from Proposition 5.5.

Definition 5.6 (Active maximal segments) Given index i ∈ {1, . . . , l+ 1}, the set of
active horizontal (resp. vertical) maximal segments MSh

[i] (resp. MSv [i]) is the set

containing maximal connected unions of edges in Th 1,[i] (resp. Tv 1,[i]).
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The set of all active maximal segments will be denoted by MS[i] =
MSh

[i] ∪ MSv [i], while the set of active maximal segments that do not intersect

the boundary will be denoted by
◦

MS[i]; with some abuse of notation, we will refer
to these maximal segments as “interior maximal segments.” By definition of the
smoothness distribution, we can unambiguously define δ(ρ) = δ(τ ) and �ρ = �τ

for any edge τ ⊆ ρ ∈ ◦
MS[i].

Proposition 5.7 The zero homology of I[i], 1 ≤ i ≤ l + 1, is isomorphic to the
following quotient of modules generated by active maximal segments of T[i],

H0
(
I[i]

) ∼= ⊕
ρ∈ ◦

MS[i]

[ρ]M[i](−δ(ρ))

/ ∑
ρh∈ ◦

MSh [i]

∑
ρv∈ ◦

MSv [i]

∑
γ∈ ◦

T0,[i]
ρh∩ρv={γ }

([ρh]�ρv − [ρv]�ρh

)
M[i](−δ(γ )) .

Proof Using Equation (5.3) and Lemma 5.5, we define:

K ′ =
∑

τ∈ ◦
T1,[i]

⎛
⎝∑

γ

ετ,γ [γ |τ ]
⎞
⎠M[i](−δ(τ )) +

∑
γ∈ ◦

T0,[i]

∑
(τ,τ ′)∈P[i]

([γ |τ ] − [γ |τ ′])M[i](−δ(τ )) ,

K = K ′ +
∑

γ∈ ◦
T0,[i]

∑
τ∈Ev,[i]
τ ′∈Eh,[i]

([γ |τ ]�τ ′ − [γ |τ ′]�τ

)
M[i](−δ(γ )) ,

B = ⊕
γ∈ ◦

T0,[i]

⊕
τ∈ ◦

T1,[i]

[γ |τ ]M[i](−δ(τ )) .

The first term of K ′ corresponds to relations yielding the identification of [γ |τ ] with
[τ]. The second term of K ′ corresponds to relations yielding the identification of
[γ |τ ] with [γ |τ ′] whenever τ, τ ′ ⊂ ρ. Therefore, K ′ leads to the identification of all
edges that belong to the same maximal segment ρ ∈ MS[i].

Keeping the above in mind, and since B/K ∼= (B/K ′)/(K/K ′), we take the quo-
tient with K ′. The required description is obtained by noticing that, since [γ |τ ] = 0
if γ ∈ ∂Ω , terms corresponding to [ρ] must be zero in the quotient for all active
maximal segments that intersect ∂Ω .

6 Bounds on the dimension ofSr
Δm

We will use Proposition 3.7 in this section to provide upper and lower bounds on the
dimensions of graded pieces of Sr

Δm. Some of the results presented here will assume
that the condition of sufficiency in Proposition 5.1(a) is satisfied. Therefore, for the
sake of convenience, we define the following assumption so that we can refer to it
later.
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Assumption 3 Given m ∈ Z
2≥0, the degree and smoothness distributions are such

that m − Δml is entry-wise greater than or equal to (rγ,h, rγ,v) for each γ ∈ ◦
T0. In

particular, this means that the same is true for m − Δmi for all i ≤ l.

Theorem 6.1 (Lower bound for general smoothness distributions) Given m ∈ Z
2≥0

and Assumptions 1 and 2, the following lower bound on the spline space dimension
holds:

dim
(
Sr

Δm

)
m

≥ χ (Q)m −
l+1∑
i=1

N[i] dim
(
M[i]

)
m

.

Proof The lower bound can be arrived at in exactly the same way as Proposition
3.7 but with a slightly different point of departure. Instead of using the short exact
sequence in Equation (3.15), we embed the complex Q directly in the short exact
sequence 0 → I → C → Q → 0,

0 0

I : 0 ⊕
τ∈ ◦

T1

[τ]Iτ ⊕
γ∈ ◦

T0

[γ]Iγ 0

C : ⊕
σ∈T2

[σ]Sσ ⊕
τ∈ ◦

T1

[τ]Sτ ⊕
γ∈ ◦

T0

[γ]Sγ 0

Q : ⊕
σ∈T2

[σ]Sσ ⊕
τ∈ ◦

T1

[τ]Sτ /Iτ ⊕
γ∈ ◦

T0

[γ]Sγ /Iγ 0

0 0

In a manner similar to the proof of Proposition 4.5, it is easy to establish that

dim (H0(C))m =
l+1∑
i=1

dim
(
H0(C[i])

)
m

, dim (H1(C))m =
l+1∑
i=1

dim
(
H1(C[i])

)
m

.

Then, following the same steps as in Section 3.3 but for the diagram above, one can
derive the following equation:

dim
(
Sr

Δm

)
m

= χ (Q)m + dim (H0(I))m − dim (H0(C))m .

which yields the claimed lower bound since dim (H0(I))m ≥ 0.

Before presenting a sharper lower bound on the spline space dimension, and with

Proposition 3.7 in mind, let us present simple upper bounds on dim
(

im ∂̂i

)
m

.
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Corollary 6.2

(a) Given m ∈ Z
2≥0, 1 ≤ i ≤ l + 1 and Assumptions 1 and 2,

dim
(

im ∂̂i

)
m

≤ min

{
dim

(
H2(Q‖i−1‖)

)
m

,

dim
(
H0(I[i])

)
m

− N[i] dim
(
M[i]

)
m

+ dim
(
H0(Q[i])

)
m

}
.

(b) Given m ∈ Z
2≥0, 1 ≤ i ≤ l + 1 and Assumptions 1–3,

dim
(

im ∂̂i

)
m

≤ min

{
dim

(
H2(Q‖i−1‖)

)
m

, dim
(
H0(I[i])

)
m

− N[i] dim
(
M[i]

)
m

}
.

Proof The claimed upper bounds can be readily derived using Equation (3.18).

Theorem 6.3 (Lower bound for practical smoothness distributions) Given m ∈ Z
2≥0

and Assumptions 1–3, the Euler characteristic of the mth graded piece of Q bounds
the spline space dimension from below:

dim
(
Sr

Δm

)
m

≥ χ (Q)m .

Proof Since the conditions of sufficiency in Proposition 5.1(a) are assumed to be
satisfied for all 1 ≤ i ≤ l, H0(I[i])m surjects onto H0(C[i])m. For i = l + 1, the
dimension of H0(I[i])m is trivially bounded from below by 0 = dim

(
H0(C[i])

)
m

.
From Corollary 6.2, this implies that

− dim
(

im ∂̂i

)
m

≥ N[i] dim
(
M[i]

)
m

− dim
(
H0(I[i])

)
m

.

The claim follows from Propositions 3.7 and 4.5.

Theorem 6.4 (Upper bound for general smoothness distributions) Given m ∈ Z
2≥0

and Assumptions 1–2, the following upper bound on the spline space dimension
holds:

dim
(
Sr

Δm

)
m

≤ χ (Q)m +
l+1∑
i=1

dim
(
H0(I[i])

)
m

− N[i] dim
(
M[i]

)
m

.

Proof Since dim
(

im ∂̂i

)
m

≥ 0, the claim follows from Proposition 3.7.

It only remains to derive upper bounds on dim
(
H0(I[i])

)
m

and we do so next.
Given a particular i, we bound the dimensions of graded pieces of H0

(
I[i]

)
from

above by introducing an ordering on the active interior maximal segments, i.e., on the
elements of

◦
MS[i] and by utilizing the representation of H0

(
I[i]

)
from Proposition

5.7.



Adv Comput Math           (2021) 47:16 Page 27 of 42   16 

Definition 6.5 (Ordering of
◦

MS[i]) Given i, let ξ[i] be an ordering on
◦

MS[i], i.e., an

injective map from
◦

MS[i] to N. Given ξ[i] and ρ ∈ ◦
MS[i], define Γ[i](ρ) ⊂ MS[i]

as the set of maximal segments ρ′ that intersect ρ non-trivially and such that either
ξ[i](ρ) > ξ[i](ρ′) or ρ′ ∩ ∂Ω �= ∅.

Hereafter, we will assume that given i the ordering ξ[i] is fixed. We will abuse the
notation by using ρ > ρ′ to mean the same thing as ξ[i](ρ) > ξ[i](ρ′). Let us define
the modules:

M[i] := ⊕
ρ∈ ◦

MS[i]

[ρ]M[i](−δ(ρ)) , (6.1)

D[i] :=
∑

ρh∈ ◦
MSh [i]

∑
ρv∈ ◦

MSv [i]

∑
γ∈ ◦

T0,[i]
ρh∩ρv={γ }

([ρh]�ρv − [ρv]�ρh

)
M[i](−δ(γ )) . (6.2)

For p = ∑
ρ[ρ]pρ ∈ M[i], we define its initial, denoted In p, as [ρ′]pρ′ if, out of all

ρ such that pρ �= 0, ρ′ has the biggest index according to ξ[i].

Lemma 6.6 Given 1 ≤ i ≤ l + 1 and an ordering of
◦

MS[i], the description of

H0
(
I[i]

)
from Proposition 5.7 can be equivalently described as

H0
(
I[i]

) ∼= M[i]/In D[i] .

Proof The claim is a standard result; see [23], for example.

Proposition 6.7 Given m ∈ Z
2≥0 and 1 ≤ i ≤ l + 1, the following upper bound on

the dimension of the mth graded piece of H0
(
I[i]

)
holds:

dim
(
H0(I[i])

)
m

≤
∑

ρ∈ ◦
MS[i]

⎛
⎝dim

(
M[i](−δ(ρ))

)
m

− dim

⎛
⎝ ∑

ρ′∈Γ[i](ρ)

�ρ′M[i](−δ(ρ) − δ(ρ′))

⎞
⎠

m

⎞
⎠ .

Proof From Lemma 6.6, if we can provide a lower bound on the dimension of In D[i],
then we can provide an upper bound on dim

(
H0(I[i])

)
m

.
Notice that In D[i] is going to be at least partially generated by the initials of its

generators. Looking at the generators, for each ρ ∈ ◦
MS[i], the contributions only

come from the ρ′ ∈ Γ[i](ρ). The claim follows.

In practical computations, we have observed that if each connected component
of Ω[i] intersects ∂Ω , the upper bound in Proposition 6.7 is usually optimal. Thus,
this upper bound is useful for i = l + 1 since Ω[l+1] = Ω . Here, we use “optimal”
in the sense of the upper bound coinciding with the exact dimension of H0(I[i]) in
bi-degree m.
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However, for 1 ≤ i ≤ l, if ∂Ω[i] does not intersect ∂Ω , it turns out that the
upper bound in Proposition 6.7 is a poor estimate. In other words, the initials of
the generators of D[i] used in Proposition 6.7 do a bad job of approximating its
dimension. Nonetheless, we can significantly improve upon this estimate by system-
atically adding some new generators to the ones used previously. In particular, doing
so will allow us to compute the dimension of H0(I[i]) exactly even when there exist
connected components of Ω[i] that do not intersect ∂Ω; see Sections 7 and 8 for
examples. In turn, this will enable the use of the sufficient conditions outlined later
in Section 7 for computing the exact spline space dimension in many cases.

Following the above comments, for a given maximal segment ρ ∈ MS[i], con-
sider the particular connected component of Ω[i] that ρ belongs to. Let us focus on
enlarging the set of generators involving ρ in Equation (6.2). Define Υ[i](ρ) as the
following set of maximal segment pairs:

Υ[i](ρ) :=
{
(ρ1, ρ2) ∈ ◦

MS[i] × ◦
MS[i] : ρ2 ∩ ρ �= ∅ �= ρ2 ∩ ρ1, r(ρ) ≥ r(ρ1), ρ > ρ1

}
.

(6.3)

Note that in the above definition ρ and ρ1 must be parallel and ρ2 must be perpendic-
ular to both. In Equation (6.2), the generators of D[i] already contain explicit relations
between [ρ] and [ρ2], and between [ρ1] and [ρ2] for (ρ1, ρ2) ∈ Υ[i](ρ). Then, these
generators can be manipulated to give a generator involving only [ρ] and [ρ1].

ρ2

ρ1

ρ

Lemma 6.8 Given 1 ≤ i ≤ l and a maximal segment ρ ∈ ◦
MS[i], let (ρ1, ρ2) ∈

Υ[i](ρ). Recalling Equation (2.4), define Δpρ as

Δpρ :=
⎧⎨
⎩

(�ni1, 0) , ρ ∈ MSh j
[i] ,

(0, �ni2) , ρ ∈ MSv j
[i] .

Then, there is a polynomial �̂ such that

uΔpρ �ρ2

(
[ρ] − [ρ1]�̂

)
M[i](−δ(ρ) − δ(ρ2) − Δpρ) ⊂ D[i] .

Proof Without loss of generality, let ρ, ρ1 ∈ MSv [i] and define rρρ1 := r(ρ) −
r(ρ1) ≥ 0. By definition of D[i], the following are two of its generators:([ρ2]�ρ1 − [ρ1]�ρ2

)
M[i](−δ(ρ1) − δ(ρ2)) , (�1)([ρ2]�ρ − [ρ]�ρ2

)
M[i](−δ(ρ) − δ(ρ2)) . (�2)

Let �ρ1 = sr(ρ1)+1 and �ρ = (s + au)(r(ρ)+1), a ∈ R. We can write �ρ = �ρ1�̂ +
�′, where the term with the highest power of s in �′ is a multiple of sr(ρ1)urρρ1 +1.
Then, we can combine the two generators in Equations (�1) and (�2) to yield:

(�2) − (�1) × �̂ =
(
[ρ2]�′ − [ρ]�ρ2 + [ρ1]�ρ2�̂

)
M[i](−δ(ρ) − δ(ρ2)) ⊂ D[i] .
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We can further reduce the above relation to

uΔpρ �ρ2

(
[ρ] − [ρ1]�̂

)
M[i](−δ(ρ) − δ(ρ2) − Δpρ) ⊂ D[i]

because L[i](−δ(ρ2)) = uΔniL[i−1](−δ(ρ2) − Δni ) from Equation (3.2) and �′ is a
multiple of u.

Lemma 6.8 shows that, even if ρ2 > ρ, it may be a part of the contribution that [ρ]
makes toward In D[i]. Given enough new generators of D[i] of this form, we can go
a step further and identify some additional generators. To this end, given a bi-degree
m, define the set Υ[i](ρ, m) as

Υ[i](ρ, m) :=
{
Υ ⊂ Υ[i](ρ) :

∑
(·,ρ′)∈Υ

�ρ′M[i](−δ(ρ′) − δ(ρ) − Δpρ)m

= M[i](−δ(ρ) − Δpρ)m

}
. (6.4)

Corollary 6.9 Given m = (m, m′) ∈ Z
2≥0, 1 ≤ i ≤ l and ρ ∈ ◦

MS[i], and consider
Υ ⊂ Υ[i](ρ). Then Υ ∈ Υ[i](ρ, m) if

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
ρ′

(·,ρ′)∈Υ

(m − Δmi1 − r(ρ′))+ ≥ m − Δmi1 + 1 , ρ ∈ MSh
[i] ,

∑
ρ′

(·,ρ′)∈Υ

(m′ − Δmi2 − r(ρ′))+ ≥ m′ − Δmi2 + 1 , ρ ∈ MSv [i] .

Proof The proof follows directly from Proposition 3.12 since Δm(i−1)j + Δvij =
Δij , j = 1, 2.

Using the above definition, we define the set Θ[i](ρ, m) as

Θ[i](ρ, m) :=
{
(ρ1, ρ2) ∈ ◦

MS[i] × ◦
MS[i] : ρ1 ∩ ρ �= ∅ �= ρ2 ∩ ρ , r(ρ2) ≥ r(ρ1),

∃Υ ∈ Υ[i](ρ, m), ∀(ρ3, ·) ∈ Υ, ρ2 > ρ1 > ρ3

}
. (6.5)

Given a maximal segment ρ such that Υ[i](ρ, m) is not empty, we can identify further
contributions to the initial In D[i],m from maximal segments that intersect ρ. The
next result elucidates our reasoning.
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ρ

ρ1

ρ2

αρ2ρρ1

αρ1ρρ2

Lemma 6.10 Given m ∈ Z
2≥0, 1 ≤ i ≤ l and a fixed maximal segment ρ, let

(ρ1, ρ2) ∈ Θ[i](ρ, m). Define

αρ1ρρ2 :=
{

1 , Δpρ = 0 ,

0 , Δpρ �= 0 ,
αρ2ρρ1 := 1 .

Then, we have

[ρ1]αρ1ρρ2�ρM[i](−δ(ρ1) − δ(ρ))m ⊂ In D[i],m ,

[ρ2]αρ2ρρ1�ρM[i](−δ(ρ2) − δ(ρ))m ⊂ In D[i],m .

Proof From Lemma 6.8, there exist Υ ∈ Υ[i](ρ, m) and polynomials ηρ3 such that

g0 = [ρ]uΔpρM[i](−δ(ρ)−Δpρ)m−
∑

(ρ3,ρ4)∈Υ

[ρ3]uΔpρ ηρ3�ρ4M[i](−δ(ρ4)−δ(ρ)−Δpρ)m

is a relation in D[i],m. Then, as in the proof of Lemma 6.8, consider the relations
between [ρ1] and [ρ], and between [ρ2] and [ρ]; denote these with g1 and g2, respec-
tively. Thereafter, if Δpρ = 0, eliminate [ρ] from both g1 and g2 using g0 to get new
relations g1 and g2; the claim will follow since ρ1, ρ2 > ρ3 for all (ρ3, ·) ∈ Υ .

If, on the other hand, Δpρ �= 0, combine g1 and g2 to get a new relation g3 =
g2 − g1�̂. For an appropriate choice of �̂ (as in the proof of Lemma 6.8), it will
be possible to eliminate [ρ] from g3, and the initial of g3 will thus be a part of the
contribution that [ρ2] makes toward In D[i],m.

Finally, we can toss in all the new generators identified in Lemmas 6.8 and 6.10
with the original set of generators in Equation (6.2). Doing so, for 1 ≤ i ≤ l, we
define:

D
ρ
[i],m :=

∑
ρ′∈Γ[i](ρ) �ρ′M[i](−δ(ρ) − δ(ρ′))m

+ ∑
(·,ρ1)∈Υ[i](ρ) uΔpρ �ρ1M[i](−δ(ρ) − δ(ρ1) − Δpρ)m

+ ∑
(ρ,ρ2)∈Θ[i](ρ3,m) αρρ3ρ2�ρ3M[i](−δ(ρ) − δ(ρ3))m

+ ∑
(ρ4,ρ)∈Θ[i](ρ5,m) αρρ5ρ4�ρ5M[i](−δ(ρ) − δ(ρ5))m .

(6.6)

and, for i = l + 1, we define

D
ρ

[l+1],m :=
∑

ρ′∈Γ[l+1](ρ)

�ρ′M[l+1](−δ(ρ) − δ(ρ′))m . (6.7)

These are the contributions of [ρ] toward the initial of D[i], 1 ≤ i ≤ l + 1, corre-
sponding to the generators identified in Equation (6.2), and the results from Lemmas
6.8 and 6.10. Then, we can use the above definition and Lemma 6.6 to provide an
upper bound on the dimension of H0(I[i]) that improves upon the one presented in
Proposition 6.7.
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Corollary 6.11 Given m ∈ Z
2≥0 and 1 ≤ i ≤ l + 1, the following upper bound on

the dimension of the mth graded piece of H0
(
I[i]

)
holds:

dim
(
H0(I[i])

)
m

≤
∑

ρ∈ ◦
MS[i]

dim
(
M[i](−δ(ρ))

)
m

− dim
(
D

ρ
[i],m

)
.

7 Configurations with stable dimension

In this section, we outline sufficient conditions that guarantee that the dimension of
the spline space Sr

Δm,m can be computed exactly. We will work in a setting where
Assumption 3 is true, i.e., where the bounds from Theorems 6.3 and 6.4 hold. Note
that supplementary Macaulay2 scripts accompanying some of the examples presented
in this section and the next can be downloaded from [34].

Theorem 7.1 Given m ∈ Z
2≥0 and Assumptions 1–3, if dim

(
H0

(
I[i]

))
m

=
dim

(
H0

(
C[i]

))
m
for all 1 ≤ i ≤ l + 1, then hr

Δm,m = 0, i.e.,

dim
(
Sr

Δm

)
m

= χ (Q)m .

As per Theorem 7.1, if the upper bound in Corollary 6.11 equals dim
(
H0

(
C[i]

))
m

then the dimension of the spline space can be exactly determined. Before presenting
a result that simplifies the computation of that upper bound, let us first consider an
example where we explicitly use the results from the previous section to compute the
spline space dimension.

Example 7.2 Consider the T-mesh shown in Fig. 4 and let r(τ ) = 1 for all interior
edges. Let us consider two different degree deficit distributions on this mesh and
find the dimension of the resulting spline space. In all of the following cases, the bi-
smoothness for each maximal segment is simply δ(ρ) = (2, 0) or (0, 2). We will also
use the following fact that is implied by Proposition 3.12 for real numbers a1 �= a2
and m ≥ (3, 3):

dim
(
M[i](0, −2)

)
m

= dim
(
(s + a1u)2M[i](−2, −2) + (s + a2u)2M[i](−2, −2)

)
m

,

dim
(
M[i](−2, 0)

)
m

= dim
(
(t + a1v)2M[i](−2, −2) + (t + a2v)2M[i](−2, −2)

)
m

.(�)

(a) Let Δm(σ ) = (1, 1) for all faces σ ∈ T except for the face bounded by vertices
γ4, γ8, γ12, γ11; on the latter face, the degree deficit is chosen to be (0, 0). Let
us choose the associated degree-deficit sequence as Δm0 = (0, 0) < Δm1 =
(1, 1) so that l = 1. We will choose m = (3, 3). The following results follow
on the different active meshes T[i], 1 ≤ i ≤ l + 1 = 2.
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Fig. 4 The T-mesh used in Example 7.2 to explicitly demonstrate how results from Section 3 can be used
to find the dimension of Sr

Δm,m

– [i = 2]: From Proposition 4.5, dim
(
H0

(
C[i]

))
m

= 0. Furthermore,
from Proposition 5.7, there are no interior maximal segments therefore
dim

(
H0

(
I[i]

))
m

= 0.
– [i = 1]: From Proposition 4.5, dim

(
H0

(
C[i]

))
m

= 0. Furthermore, there is
a single active interior maximal segment ρ = γ11γ12, and the non-interior
maximal segments ρ1 = γ4γ11 and ρ2 = γ8γ12 intersect it. Therefore,
ρ1, ρ2 ∈ Γ[i](ρ) and from Proposition 6.7 and Equation (�) above, we get

dim
(
H0

(
I[i]

))
m

≤ dim
(
M[i](0, −2)

)
m

−dim

⎛
⎝ ∑

ρ′∈{ρ1,ρ2}
�ρ′M[i](−2, −2)

⎞
⎠

m

= 0 .

From the above, we can see that Theorem 7.1 applies. Thus, the dimension
of Sr

Δm,m can be determined to be exactly 17. It can be observed using the
Macaulay2 script [34, ex0a.m2] that m = (3, 3) is also the smallest degree for
which we get an increase in the dimension because of the non-uniformity in
polynomial degrees.

(b) Let Δm(σ ) = (1, 1) for all faces σ ∈ T except for the face bounded by vertices
γ6, γ9, γ12, γ11; on the latter face, the degree deficit is chosen to be (0, 0). Let
us choose the associated degree-deficit sequence as Δm0 = (0, 0) < Δm1 =
(1, 1) so that l = 1. We will choose m = (4, 4). The following results follow
on the different active meshes T[i], 1 ≤ i ≤ l + 1 = 2.
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– [i = 2]: From Proposition 4.5, dim
(
H0

(
C[i]

))
m

= 0. Furthermore,
from Proposition 5.7, there are no interior maximal segments therefore
dim

(
H0

(
I[i]

))
m

= 0.
– [i = 1]: From Proposition 4.5, dim

(
H0

(
C[i]

))
m

= 9. In this case, there
are 4 active maximal segments ρ1 = γ11γ12, ρ2 = γ12γ9, ρ3 = γ9γ6,
ρ1 = γ6γ11. Let us order these maximal segments as ρ3 > ρ2 > ρ4 > ρ1.
Therefore,

Γ[i](ρ1) = ∅ , Γ[i](ρ2) = Γ[i](ρ4) = {ρ1} , Γ[i](ρ3) = {ρ2, ρ4} .

Once again, from Proposition 6.7 and Equation (�), there is no contri-
bution to dim

(
H0

(
I[i]

))
m

from ρ3. Furthermore, from Lemma 6.8 and
Corollary 6.9, we can also verify that Δpρ3

= (1, 0) and Υ[i](ρ3, m) =
{{(ρ1, ρ2), (ρ1, ρ4)}}. Therefore, from Lemma 6.10, we can state that:

[ρ2]�ρ3M[i](−2, −2)m ⊂ In D[i] .

However, since ρ1 ∈ Γ[i](ρ2), we also have the containment

[ρ2]�ρ1M[i](−2, −2)m ⊂ In D[i] .

Therefore, again from Equation (�), there is no contribution to
dim

(
H0

(
I[i]

))
m

from ρ2. Thus, the only contributions to the upper bound
in Proposition 6.7 come from ρ1 and ρ4,

dim
(
H0

(
I[i]

))
m

≤ dim
([ρ1]M[i](0, −2)

)
m

+ dim
([ρ4]M[i](−2, 0)

)
m

− dim
([ρ4]�ρ1M[i](−2, −2)

)
m

= 7 + 7 − 5 = 9 = dim
(
H0

(
C[i]

))
m

.

Thus, dim
(
H0

(
I[i]

))
m

= dim
(
H0

(
C[i]

))
m

.

From the above, we can see that Theorem 7.1 applies. Thus, the dimension
of Sr

Δm,m can be found to be 41. As in part (a), it can be observed using the
Macaulay2 script [34, ex0b.m2] that m = (4, 4) is again the smallest degree
for which we get an increase in the dimension because of the non-uniformity in
polynomial degrees.

Let us now present a result that simplifies the computation of the upper bound on
dim

(
H0

(
I[i]

))
. Following Equations (6.6) and (6.7), let us define the sets:

Λ[i](ρ, m) :=
{
ρ′ : ρ′ ∈ Γ[i](ρ) , or (·, ρ) ∈ Θ[i](ρ′, m) , or

(ρ, ρ′′) ∈ Θ[i](ρ′, m) and αρρ′ρ′′ = 1

}
, 1 ≤ i ≤ l ,

Λ[l+1](ρ, m) := Γ[l+1](ρ) . (7.1)
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Definition 7.3 (Maximal-segment weights) For ρ ∈ ◦
MS[i], m = (m, m′) ∈ Z

2≥0 and
1 ≤ i ≤ l + 1, the weight of ρ is denoted by ω

ρ
[i],m, and it is defined to be

ω
ρ
[i],m :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
ρ′∈Λ[i](ρ,m)

(m − Δm(i−1)1 − r(ρ′))+ , ρ ∈ MSh
[i] ,

∑
ρ′∈Λ[i](ρ,m)

(m′ − Δm(i−1)2 − r(ρ′))+ , ρ ∈ MSv [i] .

Lemma 7.4 For m = (m, m′) ∈ Z
2≥0 and 1 ≤ i ≤ l + 1,

ω
ρ
[i],m ≥

{
m − Δm(i−1)1 + 1 , ρ ∈ MSh

[i]
m′ − Δm(i−1)2 + 1 , ρ ∈ MSv [i]

⇒ D
ρ
[i],m = M[i](−δ(ρ))m .

In particular, if ω
ρ
[i],m satisfies the above sufficient condition, then ρ will not

contribute to the dimension of dim
(
H0

(
I[i]

))
.

Proof The claimed implication follows from Proposition 3.12 and, subsequently,
Corollary 6.11 implies that ρ does not contribute to dim

(
H0

(
I[i]

))
.

Example 7.5 Let us revisit Example 7.2(b) and see how Lemma 7.4 and the notion
of maximal-segment weights simplifies the computation of (bounds on) the spline
space dimension. For i = 2 there are no interior maximal segments; so, let us look at
the case of i = 1. We have

Γ[i](ρ3) = {ρ2, ρ4} , Γ[i](ρ2) = {ρ1} , Γ[i](ρ4) = {ρ1} , Θ[i](ρ3, m) = {(ρ2, ρ4)} .

Thus, from Equation (7.1), we have:

Λ[i](ρ1, m) = ∅ , Λ[i](ρ2, m) = {ρ1, ρ3} , Λ[i](ρ3, m) = {ρ2, ρ4} , Λ[i](ρ4, m) = {ρ1} ,

and from Definition 7.3, for ρ ∈ {ρ2, ρ3} we obtain:

ω
ρ
[i],m = 2 × (4 − 1 − 1) = 4 .

Then, from Lemma 7.4, we see that ρ2 and ρ3 do not contribute to dim
(
H0

(
I[i]

))
m

.

8 Examples

In this section, we provide three examples that illustrate how the theory developed
in this document can be used to compute the spline space dimension in the presence
of non-uniform degrees. The first two examples show configurations where Theorem
7.1 applies, i.e., where the dimension can be computed exactly. The last example
serves to counter the expectation that Theorem 7.1 will apply in all circumstances.
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Remark 8.1 This article is focused on the development of theoretical tools that help
compute or estimate the dimension of non-uniform degree spline spaces. Thus, our
aim in this section is to present explicit examples that illustrate the utility of our
results in this context. Presenting applications of such spline spaces to finite element
computations, for instance, is beyond the scope of this paper and involves several
open research questions such as the computation of a normalized, well-conditioned
basis for the spline spaces. This is a well-understood problem in the univariate setting
(e.g., [30, 37]), but is a topic of ongoing research in the multivariate setting (e.g.,
[21, 33]). This article can thus be viewed as a theoretical companion to any (existing
and future) application oriented efforts. For instance, when studying a spline space,
dimension counts can help certify if a linearly independent set of splines in it forms
a basis for it.

Example 8.2 Consider the T-mesh shown in Fig. 5. Let us build a C1 spline space
on this mesh, i.e., r(τ ) = 1 for all interior edges τ . The degree deficit on the shaded
faces is chosen to be (0, 0) and on the white faces it is chosen to be (1, 1). We choose
Δm0 = (0, 0) and Δm1 = (1, 1), i.e., l = 1, and choose m = (3, 3). Let us examine
the active T-meshes T[i] in the following for i = 1, 2.

– [i = 2]: The only interior maximal segments in T[i] are

ρ1 = γ20γ22 , ρ2 = γ23γ25 , ρ3 = γ26γ28 , ρ4 = γ29γ31 .

Let us order these interior maximal segments as ρ1 < ρ2 < ρ3 < ρ4. Then,
notice that the cardinality of Γ[i](ρj ) is 3 for each ρj . Therefore, we can compute
the weight of each interior maximal segment to be ω

ρj

[i],m ≥ 3 for all j . Then,
using Lemma 7.4, we see that

dim
(
H0

(
I[i]

))
m

= dim
(
H0

(
C[i]

))
m

= 0 .

Fig. 5 A non-uniform degree
C1 spline space consisting of
quadratic and cubic polynomial
pieces is built on the above
mesh. Example 8.2 shows that
the dimension of the spline
space can be computed using
Theorem 7.1
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– [i = 1]: All maximal segments in T[i] are interior maximal segments, let us
denote them as below:

ρ1 = γ11γ13 , ρ2 = γ22γ18 , ρ3 = γ29γ31 , ρ4 = γ12γ17 , ρ5 = γ26γ28 ,

ρ6 = γ11γ23 , ρ7 = γ29γ22 , ρ8 = γ23γ25 , ρ9 = γ28γ18 .

Let us order these interior maximal segments so that ρj < ρk when j < k. The
sets Γ[i](ρj ) can be seen to be

Γ[i](ρ1) = ∅ , Γ[i](ρ2) = Γ[i](ρ3) = Γ[i](ρ4) = Γ[i](ρ5) = Γ[i](ρ6) = {ρ1} ,

Γ[i](ρ7) = {ρ2, ρ3} , Γ[i](ρ8) = {ρ2, ρ3, ρ4, ρ5, ρ6} , Γ[i](ρ9) = {ρ2, ρ4, ρ5} .

Next, it can be seen from Corollary 6.9 that

Υ[i](ρ8, m) � Υ := {(ρ1, ρ2), (ρ1, ρ3), (ρ1, ρ4), (ρ1, ρ5), (ρ1, ρ6)} .

Then, from Lemma 6.10, we can build the sets Λ[i](ρj ) for j = 3, . . . , 6 such
that

{ρ1, ρ8} ⊆ Λ[i](ρ3) , Λ[i](ρ4) , Λ[i](ρ5) , Λ[i](ρ6) .

Then, we see that the weight ω
ρj

[i],m ≥ 4 for all j = 3, . . . , 9, and thus the upper
bound on the dimension of H0

(
I[i]

)
can be computed to be the following:

dim
(
H0

(
I[i]

))
m

≤ dim
([ρ1]M[i](0, −2)

)
m

+ dim
([ρ2]M[i](−2, 0)

)
m

− dim
([ρ2]�ρ1M[i](−2, −2)

)
m

= 5 + 5 − 3 = 7 = dim
(
H0

(
C[i]

))
m

.

Therefore, dim
(
H0

(
I[i]

))
m

= dim
(
H0

(
C[i]

))
m

.

From the above, we can see that Theorem 7.1 applies and

dim
(
Sr

Δm

)
m

= χ (Q)m = 37 .

In particular, there are 30 splines on T[2] and 7 on T[1]. The reader can use the accom-
panying Macaulay2 script [34, ex1.m2] to confirm that m = (3, 3) is the smallest
bi-degree for which non-uniformity in degrees leads to an increase in the dimension.

Example 8.3 Consider the T-mesh shown in Fig. 6. Let us build a C2 spline space
on this mesh, i.e., r(τ ) = 2 for all interior edges τ . The degree deficit on the shaded
faces is chosen to be (0, 0) and on the white faces it is chosen to be (1, 1). We choose
Δm0 = (0, 0) and Δm1 = (1, 1), i.e., l = 1, and choose m = (4, 4). Let us examine
the active T-meshes T[i] in the following for i = 1, 2.

– [i = 2]: The only interior maximal segments in T[i] are

ρ1 = γ35γ39 , ρ2 = γ40γ44 , ρ3 = γ45γ49 .

We can order them in any manner with respect to each other since they do
not intersect each other. The weight of each interior maximal segment can be
computed to be ω

ρj

[i],m = 5 for all j . Then, using Lemma 7.4, we see that

dim
(
H0

(
I[i]

))
m

= dim
(
H0

(
C[i]

))
m

= 0 .
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Fig. 6 A non-uniform degree C2 spline space consisting of cubic and quartic polynomial pieces is built
on the above mesh. Example 8.3 shows that the dimension of the spline space can be computed using
Theorem 7.1

– [i = 1]: All maximal segments in T[i] are interior maximal segments, let us
denote them as below:

ρ1 = γ12γ32 , ρ2 = γ36γ18 , ρ3 = γ12γ13 , ρ4 = γ37γ23 , ρ5 = γ38γ28 ,

ρ6 = γ39γ44 , ρ7 = γ36γ39 , ρ8 = γ40γ44 , ρ9 = γ13γ28 .

Let us order these interior maximal segments so that ρj < ρk when j < k. The
sets Γ[i](ρj ) can be seen to be:

Γ[i](ρ1) = ∅ , Γ[i](ρ2) = Γ[i](ρ3) = Γ[i](ρ4) = Γ[i](ρ5) = Γ[i](ρ6) = {ρ1} ,

Γ[i](ρ7) = {ρ2, ρ4, ρ5, ρ6} , Γ[i](ρ8) = {ρ2, ρ3, ρ4, ρ5, ρ6} , Γ[i](ρ9) = {ρ2, ρ3, ρ4, ρ5} .

Next, it can be seen from Corollary 6.9 that

Υ[i](ρ7, m) � {(ρ1, ρ2), (ρ1, ρ4), (ρ1, ρ5), (ρ1, ρ6)} ,

Υ[i](ρ8, m) � {(ρ1, ρ2), (ρ1, ρ3), (ρ1, ρ4), (ρ1, ρ5), (ρ1, ρ6)} ,

Υ[i](ρ9, m) � {(ρ1, ρ2), (ρ1, ρ3), (ρ1, ρ4), (ρ1, ρ5)} .

Then, from Lemma 6.10, we can build the sets Λ[i](ρj ) for j = 3, . . . , 6 such
that

{ρ1, ρ8, ρ9} ⊆ Λ[i](ρ3) , {ρ1, ρ7, ρ8} ⊆ Λ[i](ρ4) , Λ[i](ρ5) , Λ[i](ρ6) .
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Fig. 7 A non-uniform degree C2 spline space consisting of cubic and quartic polynomial pieces is built
on the above mesh. Example 8.4 shows that the dimension of the spline space coincides with the upper
bound implied by Theorem 7.1

Then, we see that the weight ω
ρj

[i],m > 5 for all j = 3, . . . , 9, and thus the upper
bound on the dimension of H0

(
I[i]

)
can be computed to be the following:

dim
(
H0

(
I[i]

))
m

≤ dim
([ρ1]M[i](0, −3)

)
m

+ dim
([ρ2]M[i](−3, 0)

)
m

− dim
([ρ2]�ρ1M[i](−3, −3)

)
m

= 6 + 6 − 3 = 9 = dim
(
H0

(
C[i]

))
m

.

Therefore, dim
(
H0

(
I[i]

))
m

= dim
(
H0

(
C[i]

))
m

.

From the above, we can see that Theorem 7.1 applies and

dim
(
Sr

Δm

)
m

= χ (Q)m = 75 .

In particular, there are 66 splines on T[2] and 9 on T[1]. The reader can use the accom-
panying Macaulay2 script [34, ex2.m2] to confirm that m = (4, 4) is the smallest
bi-degree for which non-uniformity in degrees leads to an increase in the dimension.

Example 8.4 Consider the T-mesh shown in Fig. 7. Let us build a C2 spline space
on this mesh, i.e., r(τ ) = 2 for all interior edges τ . The degree deficit on the shaded
faces is chosen to be (0, 0) and on the white faces it is chosen to be (1, 1). We choose
Δm0 = (0, 0) and Δm1 = (1, 1), i.e., l = 1, and choose m = (6, 6). Let us examine
the active T-meshes T[i] in the following for i = 1, 2.
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– [i = 2]: The only interior maximal segments in T[i] are

ρ1 = γ16γ17 , ρ2 = γ20γ21 , ρ3 = γ18γ19 .

Let us order them as ρ1 < ρ2 < ρ3. Then, for m = (6, 6), it can be computed
that ω

ρj

[i],m ≥ 6. Then, using Lemma 7.4, we see that

dim
(
H0

(
I[i]

))
m

= dim
(
H0

(
C[i]

))
m

= 0 .

Note that m = (6, 6) is the smallest bi-degree in which H0
(
I[i]

)
vanishes.

– [i = 1]: All maximal segments in T[i] are interior maximal segments, let us
denote them as below:

ρ1 = γ16γ17 , ρ2 = γ16γ10 , ρ3 = γ17γ14 , ρ4 = γ10γ14 ,

ρ5 = γ18γ19 , ρ6 = γ20γ21 , ρ7 = γ18γ20 .

Let us order these interior maximal segments so that ρj < ρk when j < k. The
sets Γ[i](ρj ) can be seen to be:

Γ[i](ρ1) = ∅ , Γ[i](ρ2) = Γ[i](ρ3) = Γ[i](ρ5) = Γ[i](ρ6) = {ρ1} ,

Γ[i](ρ4) = {ρ2, ρ3} , Γ[i](ρ7) = {ρ5, ρ6} .

Next, it can be seen from Corollary 6.9 that

Υ[i](ρ4, m) � {(ρ1, ρ2), (ρ1, ρ3)} ,

Υ[i](ρ7, m) � {(ρ1, ρ5), (ρ1, ρ6)} .

Then, from Lemma 6.10, we can build the sets Λ[i](ρ3) and Λ[i](ρ6) such that

Λ[i](ρ3) = {ρ1, ρ4} , Λ[i](ρ6) = {ρ1, ρ7} .

Then, we see that the weight ω
ρj

[i],m ≥ 8 for j = 3, 4, 6, 7. Thus, the upper bound
on the dimension of H0

(
I[i]

)
can be computed to be the following:

dim
(
H0

(
I[i]

))
m

≤ dim
([ρ1]M[i](0, −3)

)
m

+ dim
([ρ2]M[i](−3, 0)

)
m

+ dim
([ρ5]M[i](0, −3)

)
m

− dim
([ρ2]�ρ1M[i](−3, −3)

)
m

− dim
([ρ5]�ρ1M[i](−3, −3)

)
m

= 10 + 10 + 10 − 7 − 7 = 16 .

On the other hand, using Proposition 4.5, we can compute that

dim
(
H0

(
C[i]

))
m

= 13 .

Therefore, dim
(
H0

(
I[i]

))
m

− dim
(
H0

(
C[i]

))
m

≤ 3.

From the above, we see that Theorem 7.1 does not apply. Therefore, let us use
Theorems 6.3 and 6.4 to bound the spline space dimension from below and above.
Computing the Euler characteristic of Q to be χ (Q)m = 143, we use those theorems
to obtain the following:

143 ≤ dim
(
Sr

Δm

)
m

≤ 146 .
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The reader can use the accompanying Macaulay2 script [34, ex3.m2] to confirm
that the dimension of the spline space is exactly 146 for this configuration and thus
coincides with the computed upper bound. This example serves to show that there
exist configurations where a maximal segment ordering that allows us to use Theo-
rem 7.1 does not exist. Indeed, the accompanying script can be used to verify that
dim

(
H0

(
I[i]

))
m

− dim
(
H0

(
C[i]

))
m

= 3 for all bi-degrees greater than or equal to
(6, 6).

9 Conclusions

Splines have been used for geometric modeling for several decades, and they are
now rapidly becoming indispensable tools for performing approximation. In order
to efficiently alter the local resolution offered by a spline space, it is important to
be able to perform local adaptivity. While local mesh adaptivity on quadrilateral
meshes has been widely studied since the introduction of T-splines [29], theoreti-
cal studies focused on splines that allow local degree adaptivity have been missing
heretofore from the bivariate spline literature. Since the possibility of using non-
uniform bi-degree splines on T-meshes would enable powerful new paradigms of
local refinement, we take a first step in this direction by analyzing the dimension of
such spline spaces. In particular, using tools from homological algebra, we provide
combinatorial bounds on the dimension. We also outline sufficient conditions that
guarantee that the spline space dimension is stable, i.e., the dimension of the space
is independent of the geometry of the T-mesh for a fixed topology. Several examples
are provided to show applicability of the theory developed here.

The results presented in this paper can be used for classifying spline spaces with
stable dimension. This is important for avoiding geometry-based linear dependency
issues that may arise when performing approximation. The ability to combina-
torially compute the spline space dimension is also important because it can be
used to determine when a given set of linearly independent splines spans the full
spline space. Conversely, given a constructive approach that aims to produce lin-
early independent splines over T-meshes using only local data, computation of the
associated spline space dimension can help identify cases where the splines pro-
duced by the approach cannot be linearly independent. This is crucial for devising
constructive approaches that can be robustly employed for performing isogeometric
analysis.

Current research on this topic is progressing along several lines of inquiry. An
interesting direction is the study of local refinement algorithms for both mesh sizes
and polynomial degrees that ensure stability of the spline space dimension. The
construction of a suitable basis that possesses B-spline-like properties remains an
open and essential question and will be a part of future efforts focused on formu-
lation of constructive approaches. A practical construction of this nature has been
successfully devised for univariate non-uniform degree splines [30, 36, 37]. A gen-
eralization of this univariate approach to the bivariate setting has been recently
conjectured [33].
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