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Linear and non-linear vibrations of fluid-filled hollow
microcantilevers interacting with small particles

P. Belardinellia, M.K. Ghatkesara, U. Staufera, F. Alijania,∗

aDepartment of Precision and Microsystems Engineering, TU Delft, Netherlands

Abstract

Linear and non-linear vibrations of a U-shaped hollow microcantilever beam filled with fluid and
interacting with a small particle are investigated. The microfluidic device is assumed to be sub-
jected to internal flowing fluid carrying a buoyant mass. The equations of motion are derived via
extended Hamilton’s principle and by using Euler-Bernoulli beam theory retaining geometric and
inertial non-linearities. A reduced-order model is obtained applying Galerkin’s method and solved
by using a pseudo arc-length continuation and collocation scheme to perform bifurcation analysis
and obtain frequency response curves. Direct time integration of the equations of motion has also
been performed by using Adams-Moulton method to obtain time histories and analyze transient
cantilever-particle interactions in depth. It is shown that exploiting near resonant non-linear be-
havior of the microcantilever could potentially yield enhanced sensor metrics. This is found to be
due to the transitions that occur as a matter of particle movement near the saddle-node bifurcation
points of the coupled system that lead to jumps between coexisting stable attractors.

Keywords: Non-linear vibrations, microbeam-particle interaction, transient response,
microfluidics

1. Introduction

The characterization of cells and biological molecules in lab-on-a-chip devices is one of sev-
eral goals reached by the Nano/Micro-Electro-Mechanical-Systems (NEMS/MEMS) technology
in recent years. A wide and fast evolution, driven primarily by new advances in the fabrication
processes, have led the sensors shrink in both size and mass, directing to new areas of investiga-
tions around previously unexplored experimental regimes [1, 2, 3].

Excellent dynamic characteristics of MEMS and NEMS resonators make them interesting tools
for mass sensing and molecular interactions [4, 5]. Among different configurations, suspended
cantilever resonators have shown superior qualities in terms of dynamic ranges and quality factors
(QFs) comparing to doubly clamped beams [6]. The ability of these micro and nano tools for
mass sensing is directly related to the fact that a decrease in the overall dimensions of the sens-
ing device, corresponds to an increase in mass sensitivity, which is proportional to the resonant
frequency of the cantilever and inversely proportional to its mass. Therefore, unprecedented sen-
sitivity can be reached by inertial mass sensing [7] with Very High Frequency (VHF) nanobeams
[8, 9]. Molecular mass measurements up to zeptogram [10] and attogram scale [11] have been
achieved combining higher resonance frequencies and quality factors. The actual real limits of
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these nanomechanical resonators are correlated to the imposed operating vacuum environment
and fundamental physical noise processes with a resolution at the level of individual molecules
[12, 13, 14].

For years, mass spectroscopy has been the primary method for weighing biomolecules [15] but
this method often involves expensive equipments and massive laboratory settings. The biggest
advantage of the traditional spectroscopy relies on the ability to distinguish samples that are chem-
ically very similar. Nowadays, most of the efforts towards mass spectroscopy concerns mass la-
belling of biomolecules for early detection of diseases [16]. This has particularly been achieved by
making use of nanomechanical resonators [17]. Yet, nanomechanical mass spectrometers, differ-
ently from traditional spectrometery that uses a potentially destructive ionization of the test sample,
are more sensitive to large molecules. Moreover, their implementation on a chip is straightforward,
enabling in vitro molecular recognitions such as protein markers of specific diseases [18, 19].

Bifurcation-based sensors are another class of MEMS/NEMS devices that exploit the sudden
jumps of the frequency-amplitude response for sensing applications. The capability of such sensors
in detecting both mass and position of a fixed particle located on the surface of a fully-clamped
electrically-actuated beam has also been exploited [20]. The same technique has been also used in
a piezoelectrically actuated microcantilever to detect gas molecules [21, 22].

Since inspection of biological samples requires aqueous environment, weighing biomolecules
involves fluid-structure interaction. The measurement in fluid complicates the response of the
sensor with a modification in the QF and in the resonant response [23]. The frequency shifts of a
cantilever oscillating in different surrounding mediums have been observed [24]. In the work of
Burg et al. [25], weighing biomolecules has been carried out by using a hollow cantilever known
as ”Suspended Microchannel Resonator (SMR)” . The experimental non-linear spring stiffening
of SMRs with different lengths used for weighing nanoparticles in solution at the attogram scale
is reported in the paper of Olcum et al. [26]. The dissipation phenomena in SMRs due to internal
and external fluid effects has also been addressed in the literature [27, 28]. The energy dissipation
caused by internal flow is found to be non-monotonic with respect to the viscosity of the filling
medium [29]. Moreover, it is found that the fluid velocity in SMRs is affected both by the position
and deformation of the embedded channel [30], as well as the oscillation mode [31].

As it can be perceived, the published literature on using cantilevers for mass sensing applications
are quite abundant. However, non-linear dynamics of these systems interacting with flowing parti-
cles has not yet been addressed. Therefore, this paper undertakes modelling and simulations of a
hollow microcantilever beam in the linear and non-linear domain filled with a fluid and subjected
to a flowing particle. The hollow cantilever under investigation is shown in Figure 1. The hollow
cantilever is made of silicon dioxide and it has two on-chip reservoirs. The U-shaped cantilever is
connected between these reservoirs. The fabrication details of the device are given elsewhere [32].

The microfluidic device has two legs with an internal channel. Therefore, in the present work,
the particular geometry is described by means of discontinuous functions due to the variation
of the cross section. The equations of motion are obtained by using non-linear Euler-Bernoulli
beam theory retaining geometric and inertia non-linearities. The resulting system of equations is
then reduced to a set of ordinary-differential equations by applying Galerkin technique. A psuedo
arc-length continuation algorithm and Adams-Moulton direct time integration have been used to
investigate the particle-beam transient response. The rich dynamics of the hollow cantilever are
discussed, including a parametric study with the external harmonic excitation frequency used as
the parameter to amplify the effects of the particle interaction. The focus is on obtaining the
frequency-amplitude responses to be exploited for mass sensing applications.
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Figure 1: Hollow cantilever chip. a) Back side of the chip where the cantilever is located; b) U-shaped cantilever; c)
cross-section of the hollow cantilever.

2. Problem definition

The device illustrated in Figure 1 is modeled as a hollow cantilever beam with length L and
rectangular cross section in an orthogonal coordinate system (O;x,y,z) with unit vectors i, j,k as
shown in Figure 2(a,b). The beam is assumed to be made of isotropic material and is composed of
two legs with an embedded microchannel that is subjected to an inviscid axial flow while carrying
a particle of mass M. Figure 2(c) shows part of the deformed configuration with length s in base
inertial (x,z) and body coordinate (ξ ,θ) systems in which ψ =ψ(s, t) is the rotation angle between
ξ and x. The curvilinear coordinate X , measured along the center arc length of the beam, indicates
the position of the mass.

As a consequence of having the embedded microchannel, the geometric properties of the hollow
cantilever cannot be considered constant. Therefore, the variation in the area of the beam cross
section is written as

A = A(s) = A1H0 +A0Hl0−A2 (Hl1−Hl2)+A3Hl2 , (1)

in which Hli = H (s− li) for i = 0,1,2 (shown li in Figure 2(a)) and H0 = H (s), H being the
Heaviside function defined as:

H (s) =
{

1 if s≥ 0,
0 if s < 0. (2)

Figure 2(b) sketches the non-uniform cross sections of the beam having total thickness t0, total
width B, and partial areas A0 = (B−2w0) t0, A1 = 2(w0t0−w1t1), A2 = (B−w0−w1) t1 and A3 =
2w1t1. Thus, the mass per unit length of the beam with constant density ρ is given by

mb = mb (s) = ρA(s) , (3)

The area of the embedded microchannel is similarly defined and permits to describe the internal
fluid cross section as:

A f = A f (s) = A f leg1
+A f leg2

+A f end . (4)
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Figure 2: Hollow cantilever beam. a) A schematic view of the sectioned hollow cantilever carrying a particle. The
dashed lines represent the internal channel path; b) the cross section with symmetry in x and y; c) sketch of the
deformed configuration with inertial and body coordinate systems.

A f leg1
=A f leg2

=
A3

2
(H0−Hl1) and A f end = (A2 +A3)(Hl1−Hl2), are the areas of the first, second

leg, and free-end, respectively. m f = m f (s) = ρ f A f (s) is the mass of internal fluid per unit length,
and ρ f is the density of the fluid filling the microchannel. The symbol m = m(s) = mb +m f
indicates the mass of the beam per unit length accounting for the filling fluid. Due to symmetry,

the total mass filling each leg of the beam is m f leg1
= m f leg2

= ρ f
A3

2
l1. Moreover, the total mass

of the fluid at the free-end is m f end = ρ f (A3 +A2)(l2− l1). The moment inertia of the beam can
be defined accordingly as:

I = I (s) = I1H0 + I0Hl0− I2 (Hl1−Hl2)+ I3Hl2 , (5)

where I0 =
(B−2w0)t03

12 , I1 =
1
6

(
w0t03−w1t13), I2 =

(B−w0−w1)t13

12 , I3 =
w1t13

6 .

3. Equations of motions

The longitudinal and transverse displacements of the beam with respect to the clamped base
are u(s, t) and wr(s, t)as shown in Figure 2(c). The total transverse displacement of the beam
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accounting for the base motion wb(t) [33], is

w(s, t) = wb (t)+wr (s, t) , (6)

where wb = Z cos(ωt), in which Z and ω are amplitude and frequency of the base motion, respec-
tively.

By definition, the velocity of the beam element shown in Figure 2(c) is Ub = ẋi+(ż+ ẇb)k in
which ẋ = u̇ and ż = ẇr. As usual, overdot means differentiation with respect to time. Moreover,
the velocity of the fluid is U f =Ub±V τ where±V τ is the relative velocity of the fluid with respect
to the beam. The positive sign indicates the fluid flowing in leg1 and negative in leg2. Since we
assume the inextensibility of the beam over deformation, that is(

1+u′
)2

+w′r
2
= 1, (7)

the unit vector in ξ direction has the form

τ = x′i+ z′k =
(
1+u′

)
i+w′rk, (8)

in which prime denotes derivative with respect to the position s. It can also be observed that Eq. (7)
allows to reduce the dependent variables from two to one since u′ ≈ −1

2w′2. For a cantilever
without external load applied at the free edge the explicit relationship of u as a function of w is:

u =−1
2

∫ s

0
w′r

2ds. (9)

Therefore, by making use of Eq. (7) the expression of the fluid element is :

U f =
(
u̇±V

(
1+u′

))
i+
(
ẇ±V w′r

)
k. (10)

Here, it should be noted that the fluid velocity at the free-end contributes to the motion in y direction
which is not accounted in the beam theory utilized in this paper. Moreover, this effect comes to
play for a relatively short time due to the ratio between the width and the length of the channel,
and therefore can be neglected in real sensing applications [11].

An energy approach has been used to obtain the governing equations of motion. Since each leg
that composes the beam is an open system, Hamilton’s principle for systems with an open control
volume should be applied. Here, we assume that the fluid entrance and exit conditions over leg1
and leg2 are prescribed and constant. Hamilton’s principle yields [34]:

δ

∫ t2

t1
L dt +

∫ t2

t1
δWncdt =

∫ t2

t1
m f leg1

V (ṙl1 +V τ) ·δrl1dt−
∫ t2

t1
m f leg2

V (ṙl1−V τ) ·δrl1dt, (11)

where L is the Lagrangian of the system and δWnc is the work associated with the nonconservative
forces acting on the system. Moreover, δrl1 is the variation of the position of the fluid at the open
(flow) area, δrl1 = δul1i+ δwl1k. Therefore, by using Eq.(8), the right hand side of Eq. (11) can
be rewritten as

2
∫ t2

t1
m f leg1

(
V 2
(

1− 1
2

wr
2
l1

)
δul1 +w′l1δwrl1

)
dt. (12)

By making use of Eqs. (9) and (4) and neglecting higher-order terms (i.e.
1
2

wr
2
l1δul1) [34], Eq. (12)

reduces to

2
∫ t2

t1
m f leg1

V 2
(
−
∫ l1

0
wr
′
δwr

′ds+w′l1δwrl1

)
dt =

∫ t2

t1
V 2
∫ L

0
m f (H0−Hl1)wr

′′
δwrdsdt (13)
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after integration by parts.
The dissipation in the system is herein accounted in Eq. (11) by

δWnc =−
∫ L

0
cẇrδwrds, (14)

that represents a linear damping force with c being the viscous damping coefficient.
The expression for the Lagrangian is defined as follows

L = T −Π+
1
2

∫ L

0
λ

[
1−w′r

2−
(
1+u′

)2
]

ds, (15)

where λ (x, t) is the Lagrange multiplier that has been added to the Lagrangian in order to account
for the inextensibility condition given by Eq. (7), T and Π are the kinetic and the elastic energy,
respectively.

The elastic energy of the beam assuming Euler-Bernoulli beam theory and neglecting shear de-
formation and rotary inertia can be obtained as

Π =
1
2

∫ L

0
EI
(
ψ
′)2 ds, (16)

in which E is the Young’s modulus, and I is the nonuniform inertia obtained from Eq.(5). Further-
more, ψ ′ is the curvature that can be written as a function of u and w, [35]:

ψ
′ = w′′r

(
1+u′

)
−w′ru

′′. (17)

The kinetic energy of the system T includes that of the beam Tb, the fluid Tf and the moving mass
Tm. For the beam, the kinetic energy can be obtained neglecting the rotatory inertia as follows

Tb =
1
2

∫ L

0
mb
(
u̇2 + ẇ2)ds. (18)

The kinetic energy of the fluid using Eqs.(7) and (10) can be obtained as:

Tf =
1
2

(
m f leg1 +m f leg2

)∫ l1

0

[
u̇2 + ẇ2 +V 2]ds+

1
2

m f end

∫ l2

l1

[
u̇2 + ẇ2]ds. (19)

The kinetic energy of the moving mass is defined in a similar fashion as:

Tm =
1
2

M
[(

u̇+V
(
1+u′

))2
+
(
ẇ+V w′r

)2
]

s=X(t)
. (20)

Here it is assumed that the mass M is transported with constant velocity by the internal flowing
fluid along the channel, thus its instantaneous position is X =Vt.

Taking the variation of the kinetic energy yields:

δ

∫ t2

t1
T dt =

∫ t2

t1

∫ L

0

(
mb +m f

)
(üδu+ ẅδwr)ds+

M
[(

ü+V̇
(
1+u′

)
+2V u̇′+V 2u′′

)
δu+

(
ẅ+V̇ w′r +2V ẇ′r +V 2w′′r

)
δwr

]
s=X(t) dt,

(21)

in which the integral with respect to the spatial coordinate s represents the inertial effect of the
beam and fluid masses. It can be noted that although the system presents a flowing fluid, the flow
in the opposite directions eliminates all the possible inertial effects due to the relative motion of the
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fluid with respect to the beam. The second term within the integral in time in Eq.(21) is the effect
of the flowing particle acting locally inside the beam. Here, for both the variations in δu and δwr,
four terms introduce the coupling between the particle and the beam. The first term is the inertial
effect of the particle proportional to its acceleration, the second (related to V̇ ) comes from the
particle acceleration. Finally, the third and fourth terms represent the Coriolis and the centripetal
accelerations, respectively [36]. Here it shall be noted that for the particle: (i) u = u(X (t) , t) and
w = (X (t) , t); (ii) V̇ = 0. Therefore, the equations for the variations δu and δwr become∫ L

0

[
mü−

(
Ew′r

(
Iw′′r
)′
+λ

(
1+u′

))′]
ds+M

[
ü+2V u̇′+V 2u′′

]
s=X(t) = 0

(22)∫ L

0

[
mẅ+ cẇr +E

(
Iw′′r
)′′

+V 2m f
(
H0−Hl1

)
w′′r +E

(
Iw′rw

′′2
r
)′− (λw′r

)′]ds+M
[
ẅ+2V ẇ′r +V 2w′′r

]
s=X(t) = 0

(23)

From equations (22) and (9), λ could be explicitly obtained as

λ =

(
1− 1

2
w′r

2
)−1{

−Ew′r
(
Iw′′r
)′− 1

2

∫ s

L
m
(∫ s

0
ẅ′r

2ds
)

ds−
∫ s

L

M
L

[
1
2

∫ s

0
ẅ′r

2ds+V ẇ′2r +V 2w′rw
′′
r

]
δ∆ (s−X)ds

}
.

(24)
where δ∆ is the Dirac-Delta function. Expanding the multiplier up to cubic order yields [37]:

λ =−Ew′r
(
Iw′′r
)′− 1

2

∫ s

L
m
(∫ s

0
ẅ′r

2ds
)

ds−
∫ s

L

M
L

[
1
2

∫ s

0
ẅ′r

2dx+V ẇ′2r +V 2w′rw
′′
r

]
δ∆ (s−X)ds.

(25)
The equation of motion is finally found by substituting the expression for Lagrange multiplier into
(23) as follows:

mẅr+E
(
Iw′′r
)′′
+cẇr+V 2m f

(
H0−Hl1

)
w′′r +E

(
Iw′rw

′′
r

2
)′
+E

(
w′r

2 (Iw′′r
)′)′

+

[
w′r

∫ s

L
m
(∫ s

0
w′rẅ′r + ẇ′r

2ds
)

ds
]′

+

(
w′r

∫ s

L

M
L

[
1
2

∫ s

0
ẅ′r

2ds+V ẇ′2r +V 2w′rw
′′
r

]
δ∆ (s−X)ds

)′
+

M
L

[
ẅ+2V ẇ′r +V 2w′′r

]
δ∆ (s−X) =−mẅb. (26)

3.1. Discretized model
For convenience we express the governing equations of motion in dimensionless form

m̂ ¨̂wr + ĉ ˙̂wr +
(
Îŵr
′′)′′+V̂ 2m̂ f

(
Ĥ0− Ĥl̂1

)
ŵr
′′+
(
Îŵr
′ŵr
′′2)′+(ŵr

′2 (Îŵr
′′)′)′+[

ŵ′r

∫ ŝ

1
m̂
(∫ ŝ

0
ŵr
′ ¨̂ ′wr +

˙̂ ′wr
2
dŝ
)

dŝ
]′
+

(
w′r

∫ ŝ

1
M̂
[

1
2

∫ ŝ

0
ẅ′r

2dŝ+V̂ ẇ′2r +V̂ 2w′rw
′′
r

]
δ̂∆

(
ŝ− X̂

)
dŝ
)′

+

M̂
[ ¨̂wr +2V̂ ˙̂w′r +V̂ 2ŵr

′′]
δ̂∆

(
ŝ− X̂

)
=
(

m̂+ M̂δ̂∆

(
ŝ− X̂

))
Ĝcos(ω̂ t̂) . (27)

The complete set of expressions for the dimensionless variables and parameters are reported in
Appendix A.

In order to study the dynamics of the cantilever, a reduced-order model is built, converting the
partial differential equation (27) to a set of non-linear ordinary differential equations. Hence,
first the transverse displacement ŵr is expanded in terms of admissible functions satisfying the
boundary conditions:

ŵr (ŝ, t̂) = ∑
n

φn (ŝ)qn (t̂) (28)
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where qn(τ) are the generalized temporal coordinates, and φn (ŝ) are the linear modes of the can-
tilever beam normalized such that

∫ 1
0 φ 2

n (ŝ)ds = 1:

φn (ŝ) = cosh(Λnŝ)− cos(Λnŝ)+
cosh(Λn)+ cos(Λn)

sin(Λn)+ sinh(Λn)
[sin(Λnŝ)− sinh(Λnŝ)] , (29)

the eigenfrequencies ωn = Λ2
n are obtained from the dispersion equation

1+ cos(Λn)cosh(Λn) = 0. (30)

Next, by applying Galerkin’s method, the discretized equations can be obtained as follows

I1 jnq̈n +
(
I2 jn + I6 jn

)
qn +

(
I3 jnmk + I4 jnmk

)
qnqmqk+

I5 jnmk (qnqmq̈k +qnq̇mq̇k)+ ĉI7 jnq̇n +Fpart = ĜI8 j cos(ω̂ t̂) (31)

in which the particle interaction function Fpart , taking into account the full motion of the particle
along the entire channel is:

Fpart = α2M̂V̂ 2φ ′′n
(
X̂
)

φ j
(
X̂
)

qn +2αM̂V̂ φ ′n
(
X̂
)

φ j
(
X̂
)

q̇n + M̂φn
(
X̂
)

φ j
(
X̂
)

q̈n+
α2I9 jnmkqnqmqk +αI10 jnmkqnq̇mq̇k + I11 jnmk (qnq̇mq̇k +qnqmq̈k)

(32)

α =


+1 if 0≤ X̂ < l̂1
0 if X̂ = l̂1
−1 if 0≤ X̂ < l̂1, t̂ ≥

(
l̂1 + B̂

)
/V̂ .

(33)

At the free-end of the beam, the mass travels along the y direction, and in the presented one-
dimensional model, it is stationary at a specific location. The integrals Ii for i = 1, ..11 in Eqs.(31)-
(32) are given in Appendix B. The terms I1,2 account for the global mass and the stiffness of
the beam whereas I6 is related to the flowing fluid. The integrals I3,4 govern the geometric non-
linearities while the inertia non-linearities are driven by I5. The linear damping is correlated with
I7, the base excitation with I8. Finally, Ii for i = 9, ..11 derive from the particle influence on the
longitudinal equation of motion. The particle interaction is a time dependent effect acting locally
and modelled in Eq. (27) by a function that shall be evaluated at the specific position of the particle.

4. Results and discussions

The procedure outlined in previous sections has been used to numerically study linear and non-
linear vibrations of the silicon dioxide hollow cantilever shown in Figure 1. Numerical values that
are used in the analyses are listed in Table 1. Note that Eq.(31) represents an infinite number of
ordinary differential equations with geometric and inertia non-linearities that shall be written in
state space form for numerical implementation. In order to characterize the non-linear response of
the cantilever and the fluid-structure interaction problem in the absence of particle and for the par-
ticle located at specific positions, a pseudo-arc length continuation and collocation technique have
been used [38]. In particular, a bifurcation analysis is performed in three steps: (i) The bifurcation
analysis begins at zero force level where the initial solution is the trivial undisturbed configuration
of the hollow cantilever by considering fluid velocity as the first bifurcation parameter at fixed
excitation frequency far from the fundamental frequency; (ii) Once the desired flow velocity is
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reached, the bifurcation analysis continues by considering the amplitude of the harmonic excita-
tion, Ẑ , as the continuation parameter and is increased till it reaches the desired force level; (iii)
Once the desired force amplitude is reached, the bifurcation analysis continues by considering the
excitation frequency as the continuation parameter to obtain the frequency-amplitude response of
the cantilever (at fixed excitation amplitude and for an assigned value of fluid velocity). In the
presence of moving particle, as a consequence of the transient vibrations induced by the particle,
direct time integration of the equations of motion has also been performed by using a multistep
Adams-Moulton method.

In what follows, unless otherwise specified, the cantilever is assumed to be filled with water with
a global QF = 500 [39, 40]. Moreover, a mass of 20pg is considered transported, i.e. without
relative motion with respect to the fluid and with constant velocity.

Parameter Symbol Unit Value
Cantilever length L µm 155
Cantilever width B µm 16.08
Cantilever height t0 µm 4.9
Beam density ρ kg/m3 2200
Young’s modulus E GPa 87
Leg separation length l0 µm 143.8
Leg width w0 µm 6.4
Fluid channel length (lower) l1 µm 146.8
Fluid channel max length l2 µm 153.5
Fluid channel width w1 µm 3.7
Fluid channel height t1 µm 2.2

Table 1: Geometric and physical characteristics of the hollow cantilever (see Figure 2).

The accuracy and convergence of the model can be examined by considering different number of
generalized coordinates in Eq.(31). Figure 3 shows the convergence rate of the response for models
with different number of generalized coordinates. The frequency-response curves are obtained in
the frequency neighbourhood of the fundamental mode. In this case the hollow cantilever is filled
with water and is subjected to a harmonic force at the base with different dimensionless amplitudes
Ẑ = {0.00003,0.0001,0.0003}, showing a transition from linear to hardening behavior. The
convergence appeared to be quite fast and good balance between precision and computational time
is obtained if only three transverse modes are included in the model.
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Figure 3: Effect of number of modes retained in the expansion (31) for the hollow cantilever beam filled with water
when Ẑ = {0.00003,0.0001,0.0003} and QF = 500.
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In order to validate the accuracy of the new model, we present a comparison by reducing the
hollow cantilever to a rectangular homogeneous silicon microbeam (l0 = w1 = t1 = 0, l1 = l2),
with the response obtained by Mahmoodi et al. [41]. For this comparison L = 46µm, B = 50µm,
t0 = 2µm. In Figure 4 the results presented in Figure 10(b) of Ref. [41] are repeated and compared
to the numerical simulations with the present model. Here, σ is the detuning parameter σ =(
ω̂/
√

I111/I211−1
)
, ω̂ is the nondimensional excitation frequency and I1,2 are defined in Appendix

B. Good agreement can be observed with a similar qualitative hardening non-linearity. The small
deviation in the results can be attributed to the approximations that are made to convert the hollow
cantilever to a uniform rectangular cantilever.
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Figure 4: Comparison of the result presented in Figure 10(b) of Ref. [41] (◦) with that replicated by means of the
current model (solid line). For the simulations, three modes are retained in the discretization.

In order to check the validity of the present model when filled with fluid, the first three natural
frequencies of the empty and fluid filled cantilever have been compared to those obtained from
finite element software Comsol. A good agreement is observed for both the empty and the filled
cases also by considering different fluids with a maximum deviation of around 2.1%.

Empty Ethanol H2O Deuterium Oxide (D2O)

Mode 1st 2st 3rd 1st 2st 3rd 1st 2st 3rd 1st 2st 3rd

Present model 235.3 1469.7 4093.5 221.3 1380.8 3861.3 218.0 1359.6 3802.3 216.4 1349.9 3786.1

Finite Element Package
(Comsol) 233.8 1453.2 4022.4 219.5 1368.7 3788.5 216.3 1348.6 3732.9 214.8 1339.3 3707.8

Table 2: Comparison of the first three natural frequencies of empty and fluid filled hollow cantilever (values unit kHz).

Figure 5 shows the maximum deflection of the cantilever in time domain when it is excited
harmonically by dimensionless amplitude and frequency Ẑ = 0.000015, ω̂ = 3.268 and is subjected
to a moving particle with a velocity of 0.004m/s. The plot reports four vertical dashed lines
corresponding to four distinct instants in time. The first line corresponds to the instant in which
the particle enters the channel; the second and the third are the start and the end of the motion
in the y direction, respectively (in our one-dimensional model the particle is fixed at X̂ = l̂1 (see
Eq.(32))). Finally, the last line represents the point at which particle leaves the channel. It can be
observed that the presence of moving particle inside the channel changes the steady state response
of the cantilever.
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Figure 5: Time response of the beam during linear motion when Ẑ = 0.000015 and ω̂ = 3.268. The moving particle
has M = 20pg and a velocity of 0.004m/s. The time history is evaluated for the complete travel of the particle inside
the two legs of the beam.

The response shown in Figure 5 is discussed in more details in Figure 6(a,b) when the particle
is passing through the first leg of the cantilever only. It can be seen that since the chosen excitation
frequency is close to the fundamental frequency of the beam, the motion is primarily driven by the
first mode with an increase in the amplitude of the oscillation. This could also be interpreted from
the discrete time instants A,B,C and D in Figure 6(a). This monotonic behaviour is interrupted at
t̂ = 12600 where the amplitude of the motion starts to decrease (points E and F of Figure 6).
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Figure 6: Particle influence on the beam response with the same simulation parameters of Figure 5. Points A-F depict
different time instants at which the particle lies at specific position along the first leg of the channel (shown as red dots).
(a) Amplitude of the beam as a function of time for the particle travelling along one leg of the beam. (b). Frequency
response curve translation due to the particle movement. The upper horizontal arrows indicate the translation of the
resonant peak.

The frequency response curves associated with discrete time instants A-F are shown in Fig-
ure 6(b). It can be observed that the movement of the particle changes the frequency response
curve, shifting the curve to the left side of the excitation point ω̂ = 3.268. As a consequence, as
long as the peak amplitude of the frequency response curve is above the amplitude of the excitation
frequency the particle runs on the left branch. Therefore, the amplitude of the motion continues
to grow monotonically as the particle approaches the free-end (moving from point A - D ). Once
the particle passes the peak amplitude then the amplitude drops from E-F as a mater of particle
moving along the right branch of the frequency response curve.

The time response envelopes of the hollow cantilever subjected to the same moving particle are
shown in Figure 7 for different excitation frequencies before and after the resonance frequency.
The frequency response curve shown in the figure is for the case without added particle. Four
different excitation frequencies are chosen and for each the time response envelope is shown in an
inset figure. Starting far from the resonant frequency the amplitude is low and the translation of
the curve caused by the particle is not enough to observe the peak; as a matter of fact particle is
moving only along the left branch of the frequency response curve. By approaching the resonant
frequency (e.g. ω̂ = 3.266), the initial amplitude increases following a decrease as a consequence
of passing the peak amplitude. Conversely, a relative offset beyond the resonant frequency (e.g.
ω̂ = 3.272) decreases the amplitude of the response continuously.
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Figure 7: Time response envelops of the hollow cantilever excited at different excitation frequencies and subjected to
moving particle. The response is shown for the particle passing only the first leg of the hollow cantilever.

As it can be perceived, the final response highly depends on the excitation frequency. In fact,
the combined effect of amplitude growth and reduction is only possible if the cantilever is excited
with an offset below the resonant frequency.

Figure 8 shows the reduction in the frequency as a function of particle travelling time for dif-
ferent excitation frequencies till X̂ = l̂1. This reduction is associated with the variation in the
response amplitude described previously that highly depends on the particle position and the exci-
tation frequency. Thus, if the final purpose is to exploit the frequency drop for mass-sensing, the
fundamental step is to locate the correct range of beam parameters such that maximum frequency
resolution is achieved (e.g. in this case when ω̂ = 3.265), potentially eliminating the need for
sophisticated frequency tracking hardware [22, 25].
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Figure 8: Frequency drop as a function of the travelling time (V = 0.004m/s) in the hollow cantilever carrying a mass
of 20pg for one leg travel of the particle. The frequency reduction is compared to the fundamental frequency of the
beam without particle interaction.

Figure 9 compares the non-linear frequency amplitude response of the empty cantilever with
cantilevers filled with D2O, H2O and Ethanol. As it can be observed the presence of liquid inside
the channel decreases the fundamental frequency similar to the linear case (see Table 2), while it
has a trivial effect on the trend of non-linearity. In fact the strength of non-linearity may change at
sufficiently large flow velocities which are not the case in real sensing applications.
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Figure 9: Influence of fluid on the non-linear frequency response curves (Ẑ = 0.0003). beam filled with deuterium
oxide (ρD2O = 1100kg/m3), water (ρH2O = 1000kg/m3), empty beam, channel filled with Ethanol
(ρEtOH = 790kg/m3).

Figure 10(a) shows the maximum deflection of the hollow cantilever under the action of the
moving particle (passing only the first leg) when Ẑ = 0.00011 and ω̂ = 3.278. As it can be seen
from the figure, for this set of excitation values, the time response is characterized by a jump
between points D and E. This non-linear behavior is better explained in Figure 10(b).

0 5000 10000 15000
0.00

0.02

0.04

0.06

0.08

M
a
x
(w

(1
,t
))

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

M
a
x
(w

(x
,t
N
))

tA


tB


tC


tD


tE
 xA

 xB
 xC

 xD
 xE



t


x

(a)

3.25 3.26 3.27 3.28 3.29 3.30
0.00

0.02

0.04

0.06

0.08

ω

M
a
x
(w

(1
,t
))

E

tA


tD


tE


3.272 3.274 3.276 3.278 3.280 3.282 3.284
0.060

0.065

0.070

0.075

0.080

0.085

0.090

0.095

ω

M
a
x
(w

(1
,t
)) D

A

C

tA


tD


tE


(b)

Figure 10: Maximum deflection of the beam under the action of the moving particle when the excitation frequency and
amplitude are fixed at ω̂ = 3.278 and Ẑ = 0.00011, and particle velocity is 0.004m/s. Points A-E depict different time
instants at which the particle lies at specific position along the channel. (a) Time response along one leg of the beam
with the corresponding maximum deflection. (b). Frequency response curve translation due to the particle movement.
The upper horizontal arrows indicate the translation of the resonant peak and dashed lines indicate unstable solutions.

Once the cantilever is excited at a frequency close to the resonant frequency, with the motion

14



of the particle, the natural frequency decreases in time, until a saddle-node bifurcation is reached.
At this point, the response jumps from a large limit cycle to a small one and as a matter of fact
the amplitude of the response greatly decreases (point E). It is worth noting that, after the jump,
the cantilever exhibits a new transient behaviour at the onset of the motion of the lower amplitude
branch. Observation of the non-linear behavior, similar to the linear case, highly depends on the
excitation frequency. This can also be seen from the time response envelopes of the beam-particle
interaction at frequency offsets relative to the resonant frequency in Figure 11.

0 5000 10000 15000

-0.05

0.00

0.05

t

M
�
�
w

1
,t
))

3���

0 5000 10000 15000

-0.05

0.00

0.05

t

M
�
�
w

1
,t
))

3����

���	 ���
 ���� ���� ��� ���� ����
0.00

0.02

0.04

0.06

0.08

Max w 1, t))

0 5000 10000 15000

-0.05

0.00

0.05

t

M
a
x
w
1
,t
))

3����

0 5000 10000 15000

-0.05

0.00

0.05

t

M
a
x
w
1
,t
))

3���

Figure 11: Time response envelops of the hollow cantilever excited at different excitation frequencies and subjected
to moving particle towards the primary leg only. The parameters are the same as those indicated in Figure 10.

Figure 12 shows the transition from linear to non-linear response and the time history of the
cantilever as the particle passes the first leg. It can be seen that comparing to linear case, in non-
linear regime the amplitude drop due to particle movement could be detected with a much higher
resolution.

t̂
ω̂

ŵ(1, t̂)

Figure 12: Transition between linear and non-linear response with different time history shapes. Sets of parameters:(
Ẑ, ω̂

)
= {(0.00005,3.265) ,(0.00005,3.27) ,(0.0001,3.275) ,(0.00015,3.285)}. Particle velocity 0.002m/s.

The frequency variation in time for both linear and non-linear cases while particle is passing
both legs is shown in Figure 13 . The jump down behavior found in the time response is associated
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with a sudden frequency-drop (solid line), indicating better frequency resolution with respect to
the linear case (dashed line). It can be also observed that by operating the hollow cantilever in
the non-linear regime the behaviour in the two legs becomes more asymmetric. In this case, the
second frequency drop during the outgoing travel of the particle (i.e. particle passing the second
leg) is different from the first frequency drop and it is due to a jump-up phenomenon from a lower
to an upper stable branch.
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Figure 13: Frequency drop in time (full particle travel) for different excitation amplitudes and frequencies.
Ẑ = 0.00003 - ω̂ = 3.27, Ẑ = 0.00008 - ω̂ = 3.273, Ẑ = 0.0001 - ω̂ = 3.277.

5. Conclusions

Linear and non-linear vibrations of hollow microcantilevers interacting with small particles in
liquid environment have been investigated. The microcantilever is subjected to base excitation and
has an embedded microchannel through which a small particle flows. The equations of motion are
obtained by using the extended Hamilton’s principle and Galerkin’s method is applied to obtain
an accurate reduced-order model. The effect of excitation frequency and transient motion of the
particle on the time history, frequency response curves and frequency drops (due to the added mass
effect) have been analyzed in detail. It is observed that by operating the cantilever in the non-linear
regime, higher resolutions could be achieved both in time and frequency domain. This is found to
be due to transitions that occur with particle movement at saddle-node bifurcation points resulting
in jumps in the frequency amplitude response that could be well-detected for sensing applications,
potentially avoiding the use of complex frequency tracking devices.

16



Appendix

Appendix A
Non-dimensional variables and parameters used in the dimensionless system (27):

ŝ =
s
L
, X̂ =

X
L
, m̂(ŝ) =

m(ŝL)
ρA1

, Î (ŝ) =
I (ŝL)

I1
,M̂ =

M
ρA1L

,

B̂ =
B
L
, l̂i =

li
L
, ŵ =

w
L
, ŵ′ = w′, ŵ′′ = Lw′′, Ĥl̂i

= H
(

ŝ− li
L

)

t̂ =
t√
EI1

ρA1L4

, ĉ = c

√
EI1

ρA1L4 L4

EI1
, Ẑ =

Z
L
, Ĝ = ω̂

2Ẑ, δ̂∆

(
ŝ− X̂

)
= δ

(
L
(
ŝ− X̂

))
,

ω̂ =
ω√
EI1

ρA1L4

,V̂ =
V

L
√

EI1
ρA1L4

, m̂ f (ŝ) =
m f (ŝL)

ρA1
(.1)

Appendix B
The constants Ii for i = 1, ..11 of Eqs.(31)-(32) obtained by applying Galerkin method:

I1 jn =
∫ 1

0
m̂(ŝ)φn (ŝ)φ j (x̂)dŝ (.2)

I2 jn =
∫ 1

0

(
Î (ŝ)φ
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n (ŝ)
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φ j (ŝ)dŝ (.3)
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∫ ŝ
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m (ŝ)φ

′
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dŝ (.10)

I10 jnmk = V̂
∫ 1

0
φ j (ŝ)
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(
φ
′
n (ŝ)
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