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Abstract

This thesis aims to enhance existing models that infer parameters describing the spread of a
virus by analyzing the distribution of empirical cluster sizes of identical genetic sequences. An
approach that has gained recent popularity assumes that each individual cluster can be modeled as
a Bienaymé-Galton-Watson process, with the distribution of empirical cluster sizes being equal
to the law of the final size Ỹ∞ of the branching process. By employing the theory of general
branching processes counted by characteristics, we demonstrate that the empirical cluster size
distribution Cα stochastically dominates Ỹ∞ due to the exponential growth of the branching
process. Under the assumption that the underlying branching tree follows either a Bienaymé-
Galton-Watson process or an age-dependent process, we show that the mean of the empirical
cluster size distribution can be used for a (strongly) consistent estimator for the probability of
mutation ν. For both branching models, we compute P(Cα = n) for n = 1, 2. We conjecture that
P(Cα = n) is independent of the underlying model and that it can be expressed as a function
of the mean of the offspring distribution X, and the probability mass function of BIN(X, 1− ν).
An extension of the model is considered where the probability of mutation is sampled from a
distribution ν for each cluster. We show that under this assumption the empirical mean of the
cluster sizes estimates the quantity

∫
ν−1(r) dr. We also show that the ν can still be estimated

by the empirical mean of the cluster sizes, when the population is divided into a finite number of
types with inhomogeneous offspring distributions.
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Chapter 1

Introduction

The importance of epidemic modelling dates back to at least the eighteenth century. Daniel
Bernoulli studied the effects of variolation, the predecessor of modern vaccination against small-
pox, on the mortality rates associated with the disease [3]. He used empirical data to support his
model and advice on public health policies. Using a mathematical framework to address a public
health concern marked a pivotal moment in the history of epidemiology.

The next benchmark in epidemic modelling was established by two British scientists in 1927
[23]. While they were not the first to divide the population into compartments based on infection
status [30], their formulation of the SIR (Susceptible-Infectious-Recovered) compartment model,
accompanied by a system of differential equations for simulating epidemics, became a foundational
framework for future research. Moreover, the concept of the basic reproduction number (R0) was
introduced, which is defined as the average number of secondary infections by a single infected
individual, in a fully susceptible population.

The basic reproduction number plays a crucial role in understanding and controlling infectious
diseases, as it serves as an indicator for the epidemic potential and guides the need for public
health interventions [10]. Although R0 is not a biological constant, as it may differ for the same
pathogen1 in distinct populations and has to be interpreted with caution, it remains critically
important [8].

In the 1950s it became evident that randomness plays a crucial role in epidemic spread. A key
figure in this movement was Bartlett, who formulated the SIR compartment model in terms of
transition rates instead of differential equations [2], resulting in a Markov chain. By understanding
the stochastic nature of disease spread, the ability to predict the course of an epidemic could be
improved.

At this point, it was not a significant leap to utilize the theory of branching processes to model
epidemics [19]. This theory originated from the works of Bienaymé in 1845 [4], and Galton and
Watson in 1874 [36], both of which aimed to investigate the survival chances of family names.
While the latter study is more widely recognized, we refer to the model defined in Section 2.2,
which is considered in both studies, as a Bienaymé-Galton-Watson process to acknowledge both
contributions.

The Bienaymé-Galton-Watson process is a simple model compared to the vast generalized
theory on branching processes. Nevertheless, it incorporates the stochastic elements of an epi-
demic better than earlier mentioned models. Unlike models that only consider the evolution of
an epidemic due to a fixed rate, the Bienaymé-Galton-Watson process captures elements caused
by random effects that occur in the early stages of an epidemic. In the Bienaymé-Galton-Watson

1A pathogen is defined as an organism causing disease to its host.
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model, each infected individual produces an independent number of random infected individuals,
according to some distribution. The exponential growth which arises in the earlier model still
persists if the distribution is chosen appropriately. Moreover, properties that arise due to the
stochastic nature of the model can be studied, such as the probability of extinction, i.e. the
probability that a spreading virus does not become an epidemic.

Moving forward in time, the inference of R0 under various models continues to be a persisting
goal in research [7, 9, 10, 15]. As a result, many studies assume a branching process driving
the spread of an infectious disease [5, 12, 25, 28, 35]. Advances in the field of DNA sequencing
enabled researchers to gather large amounts of genetic data sampled from infectious patients. As
a result, models can incorporate the availability of this data.

When a pathogen possesses the property that its genetic code mutates over time, clusters
of identical sequences appear in various sizes. This approach is used in [35] to infer model
parameters, such as R0 and a variance controlling parameter k. By considering a branching
process and a reproduction number pR0, where p is the probability that an infected individual has
an identical sequence to its infector, the distribution of cluster sizes is used to perform maximum
likelihood inference. This model is in fact the result of a branching process equipped with the
infinite alleles model [24], and the clusters can be modelled as branching processes embedded in
the original tree.

This thesis is the result of an attempt for inferring age-contact matrices2 from epidemiological
data. The methods of [35] inspired us to adapt the techniques in such a way that contacts between
groups can be inferred. However, it was suspected that the aforementioned methods were based
on incorrect assumptions, which could lead to biased estimates. One of these assumptions is that
each observed cluster has reached its final size and the sizes of the clusters can be modelled as
stand-alone branching processes. As mentioned before, the clusters appear inside a larger tree.
For this reason, if cluster sizes are observed at a certain time, inside a growing infection tree,
then the sample is more likely to contain small cluster sizes. This reasoning is made visible in
Figure 1.1.

Regarding the application of the Bienaymé-Galton-Watson model by [35], the machinery pro-
vided by the classic theory of branching processes appears to be too limited. Resolving these
shortcomings is the main motivation for this thesis. Properties of the infinite alleles branching
process have already been studied in various settings [11, 17, 26, 29, 37]. Motivated by [37],
where general branching processes counted by characteristics are used to derive results on the
frequency spectrum3, we aim to adapt these techniques and apply them to derive an expression
for the distribution of the clusters, as they appear in the larger infection tree.

The narrative of this thesis is divided in the following chapters. In Chapter 2 we formally
introduce the Bienaymé-Galton-Watson process and equip it with the infinite alleles model. The
derivations lead up to the probability mass function stated in Corollary 1 as it appears in [35], and
the chapter concludes with a discussion that motivates the use of general branching processes.
The theory given in Chapter 2 also serves as a steppingstone for the subsequent chapters.

In Chapter 3, the main theory is established. Basing our notation on that of [21], we introduce
the Ulam-Harris family history space. This space forms the foundation for constructing the
probability space. Each element from the sample space contains information on every conceivable
individual. Using this model, we define measurable functions on the whole tree of conceivable
individuals. The outcome of these functions, which we define as characteristics, depend on the
information provided by the sample. As a result, we construct characteristics that take the

2An age-contact matrix C = (cij) is a representation for the intensity of contacts between different age groups
within a population. Here, cij denotes the average number of contacts for an individual in age group i with
individuals from age group j. The time interval for this average dependents on the specific model and context.

3Within the infinite alleles framework, the frequency spectrum if often referred to as the vector (αj(t))j where αj(t)
is the number of alleles represented by j individuals at time t.
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Figure 1.1: An example of a Bienaymé-Galton-Watson process realization equipped with the
infinite alleles model. The dashed line denotes the time when the process is observed. If the time
of observation is before the time of extinction, it is possible that some clusters have yet to reach
their final size. This illustration demonstrates that, assuming all clusters have reached their final
size, larger clusters are disproportionately overrepresented in the sample, while smaller clusters
are underrepresented.

growth of the infection tree into account. Provided that the branching process is supercritical,
i.e. it grows exponentially in size, we may apply results from [21, 27] to obtain analogues for the
results derived in Chapter 2. The analogues are for the Bienaymé-Galton-Watson process and
the age-dependent branching process. In Theorem 5 we state that under the Bienaymé-Galton-
Watson model, the newly found random variable Cα stochastically dominates the random variable
counting the observed cluster sized found in Chapter 2.

The mean of the observed cluster sizes Cα for both models turns out to be independent of the
offspring distribution, but solely depends on the mutation parameter ν. The mean coincides for
the two models. In Theorem 6 we give the main result of this chapter. It states that the sample
mean of the observed cluster sizes Cα

n gives a strongly consistent estimator for ν. Moreover, we
explicitly compute the probability mass function P(Cα = n) for n = 1, 2, where the expressions
again coincide for the two models. We conclude the chapter with Conjecture 1, which states that
the expression for P(Cα = n) is independent of the two models, and only depends on the offspring
distribution.

In Chapter 4 we extend the single-type model we define in Chapter 3, where the individuals
are assumed to be indistinguishable, to a multi-type model. The statements from Chapter 3
are reformulated under the assumption that individuals carry types from a type space S. We
utilize this model to analyse the mean of the observed cluster sizes, under the assumption that
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each cluster has a different probability of mutation. The mean of the observed cluster sizes is
also studied in the context where individuals carry a type, which characterizes a type-dependent
offspring distribution, i.e. the offspring distribution is not homogeneous among different types.

In Chapter 5 we apply the main results of Chapter 3. By means of a simulation study we
show that in the supercritical regime, the statement in Theorem 5 is supported by the biased
estimates of the model derived in Chapter 2. We also show that Theorem 6 holds in a similar
simulation study.

6



Chapter 2

Classical branching processes

2.1 Model motivation

An infectious individual infects a random number of other individuals. We assume that every
newly infected individual also infects other individuals according to the same probability distri-
bution, which we refer to as the offspring distribution. This happens independent of all other
individuals. Continuing this process gives a random infection tree, and these trees can be modelled
as a branching process. In this section we model the tree as a classical Bienaymé-Galton-Watson
process.

When an epidemic is the result of a spreading virus, the virus is characterised by its genetic
sequence. Because the sequences mutate over time [31], infected individuals generally do not carry
identical sequences. Assuming there exists a probability ν such that for each infection the newly
infected individual is infected with a different genetic code than its infector, we can model the
mutation process according to the infinite alleles model [24]. When the root produces offspring,
each child assumes the same label as the parent, or the child carries a newly introduced unique
label. We reserve the term type when the model is extend to a multi-type branching process.
We make use of the property that the individuals carrying the root’s label can be modelled by
a branching process itself. The details are further explained in this section, which results in the
derivation of the probability mass function for the number of individuals carrying the same label.
We refer to the individuals with an identical label as a cluster.

As a result, one can perform statistical inference using the obtained probability mass function.
By counting the sizes of clusters of identical genetic sequences, a likelihood function can be
constructed to infer model parameters using a maximum likelihood estimation, which is done
in [35]. In this section, the most simplistic model for counting cluster sizes is considered. In
later sections we make the model more elaborate with the help of theory on general branching
processes.

2.2 The Bienaymé-Galton-Watson process

The Bienaymé-Galton-Watson process is a nonnegative integer valued stochastic process (Zn)n∈N
on a probability space (Ω,F ,P), starting with one initial individual alive, Z0 = 1, which we call
the root. When we require that the branching process starts with i individuals, i.e. Z0 = i, we
denote the process by (Z(i)

n )n∈N.
The root lives for one unit of time, and gives birth upon death to a random number of

children according to the offspring distribution given by a random variable X, Z1 ∼ X. Now
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every individual in the first generation, the children of the root, randomly produces offspring again
upon death, after one unit of time. The offspring distribution of every individual in generation
1 is again given by X and occurs independent of every other individual alive. Thus if X0 ∼ X
denotes the root’s offspring, then Z2 =

∑X0

i=1 X1,i, where (X1,i)i∈N is a sequence of i.i.d. copies
of X. The same logic applies to

Z3 =

X0∑
i=1

X1,j∑
j=1

X2,j =

X0∑
i=1

Z2,i,

where (Z2,i)i∈N are now i.i.d. copies of Z2. Thus the number of individuals in the third generation,
Z3, follows the same distribution as the sum of X0 independent copies of Z2. It is easily verified
that this holds for any n ≥ 0, which gives the characteristic property

Zn+1 =

X0∑
i=1

Zn,i,

where (Zn,i)i∈N
i.i.d.∼ Zn and X0 ∼ X. This follows from the additive property [1].

Proposition 1 (Additive property). The process (Z(i)
n )n∈N with i initial individuals is the sum

of i independent copies of the branching process (Zn)n∈N.

As mentioned at the beginning of this section, every newly introduced individual inherits
its parent’s label, or it introduces a new label with probability ν ∈ (0, 1). We refer to ν as the
probability of mutation. Given an offspring distribution X, the number of individuals that inherits
the label of the parent then follows a X̃ ∼ BIN(X, 1 − ν) distribution. Now every descendent
carrying the same label gives birth to a random number of children with this label according
to X̃ too. As a result, the number of individuals carrying the same label, follows a branching
process embedded in the initial tree of the branching process (Zn)n∈N. We refer to this embedded

branching process as (Z̃n)n∈N, where Z̃0 = 1 corresponds to the first individual to receive the
label after a mutation. Every such embedding is an i.i.d. copy of the embedding of individuals
carrying the ancestral label, which is the label assigned to the root. Because of this property, from
this point forward, the branching process (Z̃n)n∈N with offspring distribution X̃ is considered as
a standalone process independent of (Zn)n∈N.

We can use the process (Z̃n)n∈N to obtain a distribution for the cluster sizes. When a new label
is introduced with a newborn individual, we want to count all the descendent of this individual
which carry this exact same label. From the following lemma we conclude that the descendants
of an individual can be modelled as a branching process as well. The proof follows from applying
the additive property.

Lemma 1. Suppose that T is the random rooted tree generated by a branching process (Zn)n∈N.
For an individual v in T , let T (v) be the subtree rooted at v, pointing away from the root of T . If
Zn(v) denotes the size of n-th generation of T (v), then (Zn(v))n∈N is an i.i.d. copy of (Zn)n∈N.

Combining this with the fact that the descendants carrying the ancestral label are distributed
as the branching process (Z̃n)n∈N, we need to count all the descendants of this process to find
the distribution of the cluster sizes.

We define the total size up to generation n of a branching process (Zn)n∈N as

Yn =

n∑
k=0

Zk, (2.1)
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for every n ≥ 0. Letting n→∞, we define to the limiting random variable Y∞ = limn→∞ Yn as
the total progeny of (Zn)n∈N.

The probability mass function is given by the following theorem. A proof can be found in [18]
and is a result of the hitting time theorem for random walks.

Theorem 1 (Law of total progeny). For a branching process with i.i.d. offspring distribution X

P(Y∞ = n) =
1

n
P(X1 + . . .+Xn = n− 1), (2.2)

where (Xi)
n
i=1 are i.i.d. copies of X.

Hence given an offspring distribution X, we can determine the probability mass function for
the final sizes of a cluster of identical labels with Theorem 1.

In [25] multiple offspring distributions are considered and fitted on epidemiological data. Here
they assume that every infected individual has an individual reproduction value given by a random
variable ρ with mean R, which denotes the average number of secondary cases. The secondary
infections are modelled with a Poisson process such that the number of infections has distribution
POIS(ρ), with ρ being random. When ρ is assumed to have a Gamma distribution with mean R
and parameter k such that Var(ρ) = R2/k, then POIS(ρ) ∼ NEGBIN(k, q), where q = k/(R+k).
This choice of offspring distribution includes the conventional POIS(R) and GEO(q) when k →∞
and k = 1 respectively.

Now letX ∼ NEGBIN(k, q), where k > 0 and q ∈ (0, 1). We use a generalized parametrization
of the negative binomial which allows positive real values for k instead of just integers. The
probability mass function is then given by

P(X = n) =
Γ(k + n)

n! Γ(k)
qk(1− q)

n
, (2.3)

for n ∈ N. The usual properties of the negative binomial still hold and are given in the following
claim.

Claim 1 (Basic properties of negative binomial distributions). The probability mass function
given in (2.3) sums up to 1 and the random variable X with NEGBIN(k, q) distribution has mean
E(X) = k 1−q

q for all k > 0 and q ∈ (0, 1). Moreover if X1 and X2 are two identical copies of X,

then X1 +X2 ∼ NEGBIN(2k, q).

Proof. The result follows from using the identity QX1+X2(s) = QX1(s)QX2(s), where QX1 and
QX2 are the probability generating functions of X1 and X2 respectively.

The estimates for k in [35] are often smaller than 1, which is why it is necessary to include
these cases in the parameter space. The claim ensures that we have defined a proper distribution.
Moreover, adding two negative binomials with the same success parameter still results in a neg-
ative binomial distribution. The intuition stems from the fact that a negative binomial random
variable is the sum of k i.i.d. geometric random random variables, but generalizes to the case
where k is not an integer.

Assuming a negative binomial offspring distribution comes with two useful properties in the
computation for the probability mass function in (2.2). Since the branching process where each

individual carries the ancestral label has offspring distribution X̃ ∼ BIN(X, 1 − ν), we need to

apply Theorem 1 to the offspring distribution X̃. It turns out that X̃ is again a negative binomial,
and by Claim 1 we also have that the sum of i.i.d. copies of X̃ is a negative binomial.

Claim 2. Let X ∼ NEGBIN(r, q) with k > 0 and q ∈ (0, 1) and let X̃ ∼ BIN(X, 1 − ν) be the

thinning of X, with ν ∈ (0, 1). Then X̃ ∼ NEGBIN(k, q̃) with q̃ = q
1−ν(1−q) .

9



The reproduction number R is the average number of secondary case infections and the infer-
ence of this parameter is the goal of many studies [5, 7, 9, 10, 15, 25, 28, 35]. In our model this
coincides with the mean of X and since we have E(X) = k q

1−q = R, we often refer to a negative

binomial with mean R and dispersion parameter k. In this case we have q = k
R+k and from Claim

1 is follows that q̃ = k
(1−ν)R+k for the thinned negative binomial, as E(X̃) = (1−ν)R. Now Claim

1 and 2 can be combined to show the following corollary of Theorem 1.

Corollary 1. Let (Zn)n∈N be a branching process with offspring distribution X ∼ NEGBIN(k, q)
with k > 0 and q = k

R+k for some R > 0, and let ν be the probability of mutation. Then the

probability mass function for the final size of a cluster of identical sequences Ỹ∞ is given by

P
(
Ỹ∞ = n

)
=

Γ(nk + (n− 1))

n! Γ(nk)

(
k

(1− ν)R+ k

)nk(
(1− ν)R

(1− ν)R+ k

)n−1

, (2.4)

which is proper if (1 − ν)R ≤ 1. Otherwise, (2.4) is defective and P(Ỹ∞ = ∞) is the survival
probability.

2.3 Inferring the reproduction number from identical ge-
netic sequence cluster sizes

Following the ideas of [25], the probability mass function in (2.4) can be used construct a likelihood
function. Given a set of observed cluster sizes, we can optimize the likelihood function to obtain
a maximum likelihood estimation for (R, k). In [35] they directly infer R and k from the result
obtained in Corollary 1. However, they assume that each cluster is a branching process standing
on its own, while in fact they are embedded in the bigger infection tree. This changes the observed
cluster size distribution, and the formula in (2.4) needs to be modified, as we explain now.

Suppose that we observe the whole branching process up to some generation n ∈ N. Moreover,
we also know the label of each node generated by the infinite alleles model, and therefore we know
the sizes of each cluster with identical labels. While observing clusters which have reached their
final size (the total progeny), we also observe newly started clusters of smaller sizes that have yet
to reach their final size (total size between its time of birth and n), see Figure 1.1. Thus as n
gets large, a proportion of the small clusters we observe were started only a few generations ago,
but their potential final size is as least as large as the one observed. Hence we expect that the
cumulative distribution function corresponding to (2.4), is stochastically dominated1 by the true
distribution function.

The goal of the following sections is to incorporate into the model that the clusters are
observed in an exponentially growing tree, where some clusters might not have reached their final
sizes yet. This requires us to consider a more general approach to model branching processes,
which uses the Ulam-Harris family space of trees. With the help of this model we can define
functions (characteristics), which count for example how many cluster of size n we observe at
some time t > 0 on a sampled tree. We then show that the stochastic processes that result from
counting these characteristics on a branching process, converge under the appropriate scaling, to
a computable limit. We use this limit to derive a likelihood function which better fits the model.
Moreover, this limit can be used to estimate the probability of mutation ν from genetic sequence
data.

1For two real valued random variables X and Y , not necessarily living on the same probability space, Y is stochas-
tically dominated by X if for all x ∈ R, P(X ≤ x) ≥ P(Y ≤ x).
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Chapter 3

General single-type branching
processes

3.1 The family space

Consider a branching process that starts at the root and gives birth to new individuals throughout
its lifetime. Each individual is given a name instead of a label, since the latter term is already
reserved for the infinite alleles model. The naming of the individuals is done according to the
Ulam-Harris family history space, and our notation is based on that of [21]. The root is named 0
and is the only element of N0 = {0}. All of the root’s possible children receive the names i ∈ N,
where N = {1, 2, . . .}. The second generation, which are the grandchildren of the root, are assigned
the names x ∈ N2, meaning that if x = (i, j), then j is the j-th child of i ∈ N. Continuing with
this logic, we can express any individual x ∈ Nn+1 for some n ≥ 0 as x = (x1, . . . , xn+1) = yj,
where y ∈ Nn and j ∈ N. Here we used the concatenation xy = (x1, . . . , xn, y1, . . . , yn) ∈ Nn+m

for some x ∈ Nn and y ∈ Nm. The previous notation is consistent for any n,m ≥ 0 if we also
introduce the notation x = x0 = 0x. A schematic overview of a realisation of the branching
process with only four generations is given in Figure 3.1.

0

1

11 12

121 122

13

2

21

211

22

Figure 3.1: A schematic representation of the ancestral tree of a general branching process. The
vertices represent the individuals born over time. If an edge is drawn between two vertices, then
the top vertex gave birth to the bottom one over the course of it’s life. The naming of the vertices
follows the naming described in Section 3.1.
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We build the sample space from which each realization of the branching process is drawn,
first constructing a space for the life career of a single individual and expanding it to include all
(possible conceivable) individuals.

Definition 1. Each possible individual is contained in the set of all individuals which is defined
as

I =

∞⋃
n=0

Nn.

All possible life careers are contained in the life space Ω equipped with a σ-algebra A.

All the individuals x ∈ I are assigned a life career ωx which is an element from the life space
Ω. The information given by ω ∈ Ω depends on the model assumptions. For example, if we
consider a multi-type branching process in which individuals are associated with a certain type,
then ω must describe which type is assigned to each child of the individual with life career ω.
The life careers should in any case contain enough information to define the functions τi(ω), for
each i ∈ N, which gives the age of the parent with life ω at the moment of giving birth to the
i-th child. So τ1(ω) is the first moment of childbearing. We define this formally now.

Definition 2. The age of childbearing of i-th child is defined as the real-valued function τi which
is measurable with respect to (Ω,A). Moreover, it must satisfy

0 ≤ τ1 ≤ τ2 ≤ . . . ≤ ∞, (3.1)

where we set τi(ω) = ∞ if the life ω describes less than i births. The reproduction process ξ is
defined as the point process

ξ(B) = |{i : τi ∈ B}|,

for any borel set B ∈ B(R+). We abbreviate

ξ(t) = ξ([0, t]). (3.2)

Given an individual x ∈ I with life ωx ∈ Ω, we denote its reproduction process by

ξx(B) = |{i : τi(ωx) ∈ B}|.

In the preceding definition, we also defined the reproduction process, which is an important
object for the application of the results in the following sections. Now that we have the ages
of childbearing of the mothers of the individuals, we can add up the ages of childbearing of the
ancestors to determine an individual’s time of birth in the process, provided we have knowledge of
the lives of these ancestors. For this reason, we now define the space from which the realizations
of the branching process are sampled.

Definition 3. The population process is defined as
(
ΩI ,AI

)
, where

ΩI =×
x∈I

Ω, AI =
⊗
x∈I

A, (3.3)

which respectively denotes the Cartesian product of (Ω)x∈I and the σ-algebra generated by the
cylinder sets of (A)x∈I .

The elements of ΩI are of the form {ωx}x∈I and we denote ω = {ωx}x∈I , which is a realisation
of the branching process. Hence a life career ωx can be identified for each individual x ∈ I. This
gives us enough information to inductively define the times of birth for the individuals.

12



Definition 4. The birth times σx of the individuals are defined by setting the birth time of the
root

σ0(ω) = 0,

and for any individual x = yi, where y ∈ Nn and i ∈ N for n ≥ 0, as

σx(ω) = σy(ω) + τi(ωy).

Note that in the definition of the birth times σx and σy are functions of ω and τi is a function
the element ωy. This ensures that i is really a child of y. If we refer back to Figure 3.1, we
see that individual 1 descended from 0 and gave birth to 11, which in turn did not produce any
offspring. We thus have σ11({ω}) = σ1(ω) + τ1(ω1).

Whenever an individual x = yi is not born, i.e. τi(ωy) = ∞, it then follows from the
definition that also the birth times σxz(ω) = ∞ for every z ∈ I. The branching process inherits
its characteristic properties, e.g. the additive property given in Proposition 1, from the basic
assumption that all individuals produce i.i.d. offspring. For this reason we make the following
natural assumption to capture these properties for all population processes considered.

Assumption 1. We assume the existence of a probability space (ΩI ,AI ,P) such that the repro-
duction processes ξx are i.i.d. for each x ∈ I.

3.2 Counting general branching processes

Now that we have constructed the population process along with the birth times and a probability
measure, we have defined the branching process. We want to derive measurable functions of the
branching process. For example, the total size up to time t can be counted via the function
Yt which is measurable with respect to the probability space (ΩI ,AI ,P). This can be done by
computing the sum

Yt =
∑
x∈I

1[σx,∞)(t), (3.4)

which counts every individual whose time of birth occurred before t. If we want to count how
many individuals gave birth to at least one individual by time t, we need to replace the indicator
in (3.4) by 1[σx1,∞)(t), since we want to count all individuals x which gave birth to their firstborn
x1. Giving the measurable function

Nmother
t =

∑
x∈I

1[σx1,∞)(t). (3.5)

The indicators in the expressions (3.4) and (3.5) evaluate the contribution of each individual to
outcome of the functions Yt and Nmother

t . We refer to the contribution of the root, in the examples
these are the indicators 1[0,∞)(t) and 1[σ1,∞)(t), as characteristics. We make this formal in the
following definition.

Definition 5. A random characteristic is any real-valued process (χ(t))t∈R defined on ΩI and for

which the map (t, {ωx}x∈I) 7→ χ
(
t, {ωx}x∈I

)
is measurable with respect to the product σ-algebra

B(R)×AI and vanishes for negative values in the first argument.

Remark 1. Both characteristics 1R+ and 1[σ1,∞) considered in (3.4) and (3.5) only look at the
root itself or at it’s reproduction process. For this reason we refer to characteristics that depend
on ω0 as individual characteristics. In more generality, a characteristic could also depend on a
larger (or the whole) subtree of the root. There is also an extension where one is allowed to look
upwards in the tree for finitely many generations, see e.g. [21].

13



To be able to formally describe sums like (3.4) and (3.5), we introduce for any x ∈ I the shift
operator Sx : ΩI → ΩI , which is defined as the map

Sx

(
{ωy}y∈I

)
= {ωxy}y∈I . (3.6)

It maps any element from ΩI to the subprocess where x is the new root, thus making it a branching
process started at x.

Definition 6. Let ω ∈ ΩI and x ∈ I. The daughter process of x is defined as the subprocess
obtained by applying shift operator Sx from (3.6) on ω.

Remark 2. In the preceding definition we have used the term daughter process of x to describe
the subtree with root x. This terminology is taken from [27] which assumes that everyone is
female, and is equivalent to assuming that the reproduction process is asexual. The latter aligns
with our framework regarding virus spread, which is why we choose to adapt this naming.

We can evaluate the characteristic on the daughter process of x, which we denote by

χx(a) = χ(a, Sx) = χ ◦ Sx(a) (3.7)

and can be interpreted as the score of x at age a. In order to count the scores at some time t,
we need to make the time shift t− σx to make sure that the time at which the characteristic χx

is evaluated coincides with the age of x. If we set χ(t) = 1R+(t), which corresponds to the case
of (3.4), then we indeed have χx(t− σx) = 1R+(t− σx) = 1[σx,∞)(t). With the tools at hand we
now define the general branching process counted by any characteristic satisfying Definition 5.

Definition 7. Suppose that χ is a random characteristic, we define the branching process counted
by the random characteristic χ as

Zχ
t =

∑
x∈I

χx(t− σx).

We conclude the section by stating an intuitive lemma that gives us the property that the
daughter processes are indeed i.i.d. copies of the branching process started at the root. We denote
by An the σ-algebra which contains the lives up to generation n, which is

An = σ

({
ωx : x ∈

n⋃
k=0

Nk

})
. (3.8)

We now give the following lemma known as the Generation branching lemma, as stated in [21].

Lemma 2 (Generation branching lemma). Given An, n ∈ N, all daughter processes Sx, x ∈
Nn+1, are conditionally independent and

P(Sx ∈ A | An) = P(A), (3.9)

for any x ∈ Nn+1 and A ∈ AI .

3.3 Some results from renewal theory

We want to study the asymptotics of Zχ
t . First, we study the convergence of the mean under

appropriate scaling. This scaling is also helpful in determining whether a limiting distribution
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exists. In this section, we derive some elementary results with the help of renewal theory. We
start with the mean of the process

mχ
t = E[Zχ

t ]. (3.10)

Results from renewal theory are relevant for us since they arise from the distribution of the arrival
of points on the real line, which in our case is the arrival of newborn children, described by the
reproduction process ξ. The expectation of ξ is a useful object to study, which leads us to the
following definition.

Definition 8. Suppose that ξ is a reproduction process as in Definition 2. The intensity measure
µ of ξ is defined as µ(B) = E[ξ(B)] for every B ∈ B(R+). We write

µ(t) = E[ξ(t)].

with ξ as in (3.2)

We use the intensity measure µ to derive the renewal equation for the mean mχ
t given in

(3.10), which is stated in the following theorem.

Theorem 2. Let Zχ
t be a branching process counted by χ and µ be the intensity measure for the

reproduction process. Then the mean mχ
t = E[Zχ

t ] satisfies the renewal equation

mχ
t = E[χ(t)] +

∫ t

0

mχ
t−u µ(du). (3.11)

We prove this theorem by deriving a (3.11) from a decomposition for Zχ
t . We make use of the

basic decomposition, which we state in the following lemma.

Lemma 3 (Basic decomposition of a branching process). The basic decomposition of a branching
process if given by

Zχ
t = χ(t) +

∑
i∈N

Zχ
t−σi

(i), (3.12)

where Zχ
t (i) = Zχ

t ◦ Si denotes the branching process counted by χ with individual i as the root.

Proof. We split the sum x ∈ I over the different generations Nn to arrive at

Zχ
t =

∑
x∈I

χx(t− σi) =

∞∑
n=0

∑
x∈Nn

χx(t− σx) = χ0(t) +

∞∑
n=1

∑
x∈Nn

χx(t− σx),

and point out that χ0(t) = χ(t). By writing every individual x ∈ Nn as x = iy with y ∈ Nn−1

and i ∈ N, the summation can be rewritten as

∞∑
n=1

∑
y∈Nn−1

∑
i∈N

χiy(t− σiy) =

∞∑
m=0

∑
y∈Nm

∑
i∈N

χiy(t− σiy) =
∑
i∈N

∑
y∈I

χiy(t− σiy).

Since we have Siy = Sy ◦ Si and σiy = σi + σy = σi + σy ◦ Si, we arrive at∑
i∈N

∑
y∈I

χy ◦ Si(t− σi − σy ◦ Si) =
∑
i∈N

Zχ
t−σi

(i),

which gives the result.

We are now ready to give the proof of Theorem 2.

15



Proof of Theorem 2. By taking expectations on both sides of (3.12) we obtain by monotonicity

mχ
t = E[χ(t)] +

∑
i∈N

E
[
Zχ
t−σi

(i)
]
.

Since Si is independent of A0 by Lemma 2 and σi is measurable with respect to A0, we see

E
[
Zχ
t−σi

(i)
]
= E

[
E
[
Zχ
t−σi

(i)1σi∈[0,t]

∣∣ A0

]]
= E

[
E
[
Zχ
t−σi

(i)
∣∣ A0

]
1σi∈[0,t]

]
= E

[
E
[
Zχ
t−σi

]
1σi∈[0,t]

]
= E

[
mχ

t−σi
1σi∈[0,t]

]
.

If we again exchange the summation and expectation, we obtain

E

[∑
i∈N

mχ
t−σi

1σi∈[0,t]

]
= E

[∫ t

0

mχ
t−u ξ(du)

]
.

By properties of the random measure ξ we have

E
[∫ t

0

mχ
t−u ξ(du)

]
=

∫ t

0

mχ
t−u E[ξ(du)] =

∫ t

0

mχ
t−u µ(du),

since we defined µ(t) as the intensity function of ξ.

Before stating the Renewal theorem, we give two definitions that are required for the statement
of the theorem. The first one puts a restriction on the integrability of E[χ(t)].

Definition 9. A non-negative function h : D ⊆ R→ [0,∞) is directly Riemann integrable if the
upper and lower Riemann sums of h over the whole domain converge to the same limit as the
mesh of the partition vanishes.

Remark 3. The above definition is more restrictive than the usual Riemann integrability. When
D = [0,∞), h is said to be Riemann integrable if the upper and lower Riemann sums converge on
[0, t] to a common value, and the integral is defined as the the limit of these values when t→∞.
For the direct Riemann integrability we require that the upper and lower sums directly converge
on [0,∞) as opposed to on [0, t] for all t > 0.

The next definition concerns the intensity measure µ and makes a distinction between the
cases where µ has all of its mass concentrated on λZ for some λ > 0.

Definition 10. A probability measure G on [0,∞) is called lattice with span λ, if for some r ≥ 0,
λ is the largest number such that

∑∞
j=0 G({jλ+ r}) = 1. We call G nonlattice if no such number

exists.

An example of such a lattice measure is the one for the Bienaymé-Galton-Watson process,
where all mass is concentrated at 1. Now we state the Renewal theorem. This version of the
theorem can be found in [13] together with a proof.

Theorem 3 (Renewal theorem). Let G be a probability measure on [0,∞) such that
∫
uG(du) <

∞ and h is a directly Riemann integrable function on [0,∞). Suppose that H is the solution of
the following equation

H(t) = h(t) +

∫ t

0

H(t− u)G(du). (3.13)

1. If G is nonlattice, then

lim
t→∞

H(t) =

∫∞
0

h(u) du∫∞
0

uG(du)
. (3.14)
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2. If G is lattice with span λ, then

lim
n→∞

H(x+ nλ) = λ

∑∞
u=0 h(x+ uλ)∫∞
0

uG(du)
. (3.15)

We can apply Theorem 3 to the (transformed) equation (3.11) if we scale µ such that it gives
a probability measure. Fisher describes in [14, Chapter 2] that given a density for the expected
offspring, in our case this corresponds to µ(du), we can determine the stable age distribution.
Note that µ does in general not need have a density with respect to the Lebesgue measure. In
this case the expression

∫
f(u)µ(du)) denotes the Lebesgue-Stieltjes integration of f with respect

to the measure µ. When the unique rate α such that
∫∞
0

e−αu µ(du) integrates to 1 is computed,

the cumulative distribution function for the stable age distribution is given by
∫ x

0
e−αu µ(du).

The parameter α captures the exponential growth of the process and is generally known as the
Malthusian parameter. For branching processes this is formally defined in the following way.

Definition 11. Suppose that µ is an intensity measure as in Definition 2. We define the Malthu-
sian parameter (if it exists) as the α ∈ R such that

µ̂(α) =

∫ ∞

0

e−αu µ(du) = 1. (3.16)

Remark 4. As pointed out in [1], the Malthusian parameter always exists if µ([0,∞)) ≥ 1 and
satisfies α ≥ 0 by monotonicity. If µ([0,∞)) < 1, then we always have α < 0 provided that it
exists. When α > 0, we speak of a supercritical branching process, and is a requirement for most
of the following statements. The process is called subcritical is α < 0 and critical otherwise.

By definition, e−αu µ(du) now gives a probability measure on [0,∞), which we use in the
following corollary of Theorem 3.

Corollary 2. Let Zχ
t be a branching process counted by χ and µ be the intensity measure for the

reproduction process with Malthusian parameter α. If E[χ(t)] ≥ 0 is continuous almost everywhere
as a function of t and satisfies

∞∑
k=0

sup
k≤a≤k+1

e−αa E[χ(a)] <∞, (3.17)

then as a result of Theorem 3, if µ is nonlattice we have

lim
t→∞

e−αt E[Zχ
t ] =

∫∞
0

e−αu E[χ(u)] du∫∞
0

ue−αu µ(du)
. (3.18)

If µ is lattice with span λ we have

lim
n→∞

e−αn E[Zχ
n ] = λ

∑∞
u=0 e

−αuλ E[χ(uλ)]∫∞
0

ue−αu µ(du)
. (3.19)

Proof. The result follows from multiplying both sides of equation (3.11) with e−αt. By rewriting
the following

e−αt

∫ t

0

mχ
t−u µ(du) =

∫ t

0

e−α(t−u)mχ
t−ue

−αu µ(du),

we see that Theorem 3 applies for H(t) = e−αtmχ
t , h(t) = e−αt E[χ(t)] and G(dt) = e−αt µ(dt),

provided that e−αt E[χ(t)] is directly Riemann integrable. It follows from the assumption (3.17)
that the upper Riemann sum is bounded from above. The assumption that E[χ(t)] is continuous
almost everywhere gives us then that the upper and lower sums converge to the same value. Now
(3.18) follows from (3.14) immediately and (3.19) follows from evaluating (3.15) at x = 0.
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Remark 5. Corollary 2 is stated under the same conditions as Theorem 3.4 in [21], except they
restrict µ to be nonlattice. We aim to extend the results obtained in Section 2.2 with the
use of characteristics, which is why we include the lattice case. Jagers and Nerman also prove
the convergence of e−αtZχ

t to a limiting random variable in probability and L1 under similar
conditions. Moreover, under a more restricting assumption, but still valid in our application,
they provide almost sure convergence.

We want to use the results of this section in the following sections, where we construct char-
acteristics for statistical analysis. Since we need stronger results than the convergence of the
mean. It turns out that the scaled process e−αtZχ

t converges to a random variable W∞ scaled by
a factor of the limit in (3.19). We skip the details and conclude this section with a statement on
the almost sure convergence of the process. The proof can be found in [27] and is based on the
construction of a martingale {Wt}t≥0 which converges to W∞. The more restrictive assumption
(3.20) is the cost for having the almost sure convergence.

Theorem 4. Let Zχ
t be a branching process counted by characteristic χ, where χ is nonnegative

and with paths in D([0,∞))1. Suppose that µ is nonlattice with Malthusian parameter α ∈ (0,∞)
and ∫ ∞

0

e−ru µ(du) <∞, (3.20)

for some r < α. Moreover, assume that χ satisfies

E
[
sup
u≥0

e−ruχ(u)

]
<∞, (3.21)

for some r < α. Then, as t→∞,

Zχ
t

Yt
→
∫ ∞

0

e−αu E[χ(u)] du almost surely, (3.22)

conditional on {Yt →∞} where Yt is as (3.4).

Remark 6. We stress that analogues for the lattice case also hold, as the results are intuitively
interchangeable in the sense of equations (3.18) and (3.19), i.e. the Lebesgue differential du can
be replaced by λm(du), where m(u) = 1 for every integer u ≥ 0. Conditions such as (3.20)
remain unchanged if interpreted as a Lebesgue-Stieltjes integral and (3.20) can be relaxed by
changing the supremum over positive real numbers to the positive integers. However, starting
from the preceding theorem, the analogues are not stated any more for the sake of readability
and to avoid repetition.

3.4 Counting cluster sizes on an infinite alleles single-type
branching process

At the end of Section 2.2 we argued that the observed sizes of the observed clusters are influenced
by the exponential growth of the process. With the results from Section 3.3, we can formalize
this conjecture.

We do not yet define the classical Bienaymé-Galton-Watson process as a general branching
process, because the characteristics we construct do not depend on the underlying reproduction

1D([0,∞)) is the space of functions defined on [0,∞) with left and right limits everywhere.
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process. We define the infinite alleles model again as a process independent of the reproduction
process ξ. We introduce the indicator function γ : N× Ω→ {0, 1} as

γ(i, ωy) = 1(the i-th child of an individual with life career ωy

inherits the label from the individual),

With probability ν a new label is introduced for every born individual, making γ(i, ωy) a inde-
pendent Bernoulli random variable with success probability 1 − ν for every i ∈ N and ωy ∈ Ω.
We assume that the outcome of γ is i.i.d. for every pair (i, ωy) ∈ N× Ω and independent of the
reproduction process.

We wish to derive an empirical measure of cluster sizes with the use of characteristics. When
gathering clusters of identical labels, e.g. genetic sequences, such a measure is exactly what can
be estimated from the data. The goal is to construct characteristics χn and χN such that

Zχn

t

ZχN

t

=
#clusters of size n up to time t

#clusters up to time t
, (3.23)

and let t → ∞. We are again computing a probability mass function for the observed cluster
sizes. But we expect to see a different result than (2.4), because we take into account that an
observed cluster can potentially attain a larger size than its size at the time of the observation.

Suppose that an individual y ∈ I produces an offspring yi which carries a new label, i.e.
γ(i, ωy) = 0. Then the number of individuals carrying the same label as yi in the subtree started

by yi, is equal to the size of this cluster. Hence we define a new reproduction process ξ̃ embedded
in ξ, which only keeps individuals carrying the parent’s label. This new process can be expressed
as follows

ξ̃(B,ω) =
∑
i∈N

γ(i, ω)1B(τi(ω)), (3.24)

for B ∈ B(R). Intuitively, this embedded process is the binomial thinning of original reproduction
process. All individuals in the branching process with the reproduction process ξ̃ carry the same
label as the root, which is referred to as the ancestral label, analogous to Section 2.2. We denote
by Ỹt the total size of the branching process carrying the ancestral label up to time t, in the same
way as (3.4). The characteristic χn which counts how many cluster of size n result from the root,
can be defined as

χn(t) =
∑
i∈N

1R+(t− σi)(1− γ(i, ω0))1{n}

(
Ỹt−σi

(i)
)
. (3.25)

Here 1R+(t−σi) is the indicator that the individual i is born by time t, (1−γ(i, ω0)) is the indicator

that a new label is introduced with i and 1{n}(Ỹt−σi
(i)) is the indicator that the subtree started

by i with the label of i is of size n. Thus with Zχn

t we count for every individual the number
of children that satisfy the following condition: a child is born, a mutation happened between
the child and the individual, and Ỹt−σi

(i) is equal to n. If we want to count the total number of
clusters, then we leave out the last indicator, which gives

χN(t) =
∑
i∈N

1R+(t− σi)(1− γ(i, ω0)). (3.26)

In order to compute the limit of (3.23) as t→∞, we state the following corollary of Theorem 4.

Corollary 3. Let Zχ
t and Zχ′

t be branching process counted by χ and χ′ respectively, such that
both χ and χ′ and µ satisfy the conditions of Theorem 4. Then, as t→∞,

Zχ
t

Zχ′
t

→
∫∞
0

e−αu E[χ(u)] du∫∞
0

e−αu E[χ′(u)] du
almost surely,
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conditional on {Yt →∞}.

In the next two section we apply the corollary under two different assumptions. The first case
coincides with the Bienaymé-Galton-Watson process, which means that the age of childbirth is
one for every birth that takes place in the life ω. The second case is the age-dependent branching
process, which means that the age of childbearing follows a general distribution G on [0,∞)
which is nonlattice, and all births in the life ω take place at this time. In both cases we wish to
compute the probability mass function for the cluster sizes observed in an exponentially growing
tree. It turns out that Corollary 3 can immediately give us a probability mass function with the
characteristics we constructed. We state this in the following definition.

Definition 12. The limiting empirical cluster size distribution Cα is defined as the random
variable with the probability mass function

P(Cα = n) =

∫∞
0

e−αu E[χn(u)] du∫∞
0

e−αu E[χN(u)] du
, (3.27)

where χn and χN are as in (3.25) and (3.26) respectively.

3.4.1 Empirical cluster size distribution for the Bienaymé-Galton-Watson
process

As in Section 2.2 every individual produces offspring upon death according to a distribution X.
The lifetime of each individual is of length 1. The reproduction process for an individual with
life ω is given by

ξ(t, ω) = Xω1[1,∞)(t), (3.28)

where Xω is a copy of X. The intensity measure µ(t) = E[χ(t)] takes the form

µ(t) = mδ1({t}),

where E[X] = m and δ1 is the Dirac measure with δ1(A)=1 if 1 ∈ A and 0 otherwise. Observe that
all the mass of µ is concentrated at 1, which makes µ lattice with λ = 1 according to Definition
10. According to Definition 11, the Malthusian parameter is the solution to∫ ∞

0

e−αu µ(du) = me−α = 1,

which is α = log(m). Observe that α > 0 only if m > 1, and corresponds to the supercritical
regime. We now wish to compute the probability mass function P(Cα = n) as in (3.27). Because
of the lattice property, the limit of the ratio (3.23) takes the form

P(Cα = n) =

∑∞
u=0 e

−αu E[χn(u)]∑∞
u=0 e

−αu E[χN(u)]
, (3.29)

where we point out that e−αu = m−u. We need to compute the expectation of χn(u), by the
independence of the mutation process we have

E[χn(u)] =
∑
i∈N

E[(1− γ(i, ω0)]E
[
1R+(u− σi)1{n}

(
Ỹu−σi

(i)
)]

= ν
∑
i∈N

E
[
1R+(u− σi)1{n}

(
Ỹu−σi

(i)
)]

,
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where ν is the probability that a child does not inherit the label of the parent. By conditioning
on Xω0 using the law of total expectation, we know that 1R+(u− σi) = 1R+(u− 1) if X ≥ i and
0 otherwise. This gives

E
[
1R+(u− σi)1{n}

(
Ỹu−σi

(i)
)]

= E
[
E
[
1R+(u− σi)1{n}

(
Ỹu−σi

(i)
) ∣∣∣ Xω0

]]
= E

[
E
[
1(Xω0 ≥ i)1R+(u− 1)1{n}

(
Ỹu−1(i)

) ∣∣∣ Xω0

]]
,

where we can take the indicator measurable with respect to Xω0 out. By Lemma 2 we know that
the branching process started at i is independent of the reproduction process of the root, and
therefore of Xω0 . Rewriting this leads us to

1(u ≥ 1)E
[
1(Xω0 ≥ i)E

[
1{n}

(
Ỹu−1(i)

)]]
= 1(u ≥ 1)E

[
1(Xω0 ≥ i)P

(
Ỹu−1(i) = n

)]
.

We again apply Lemma 2 to argue that Ỹu−1(i) and Ỹu−1 are equal in distribution, and therefore
have

1(u ≥ 1)P
(
Ỹu−1 = n

)
E[1(Xω0 ≥ i)] = 1(u ≥ 1)P

(
Ỹu−1 = n

)
P(Xω0 ≥ i).

At last we take out all terms that do not depend on i out the sum and recognize the expectation
of the offspring distribution X, to obtain

E[χn(u)] = 1(u ≥ 1)P
(
Ỹu−1 = n

)∑
i∈N

P(Xω0 ≥ i) = 1(u ≥ 1)P
(
Ỹu−1 = n

)
E[X].

The computation for E[χN(u)] is along the same lines but with the indicator 1{n}(Ỹu−1(i)) sub-
stituted by 1, and arrives at the expression

E
[
χN(u)

]
= 1(u ≥ 1)E[X].

We conclude that the probability mass function in equation (3.29) is equal to

P(Cα = n) =

∑∞
u=1 m

−u P
(
Ỹu−1 = n

)
∑∞

u=1 m
−u

=

(
1− 1

m

) ∞∑
u=0

m−u P
(
Ỹu = n

)
. (3.30)

The expression in terms of Ỹu in (3.30) allows us to compare the probability mass function with
the one derived in Corollary (1). The corollary is a specific case where the offspring distribution
is a negative binomial random variable, but it easily follows from Theorem 1 that a more general
formula can be stated.

Theorem 5. Consider an infinite alleles Bienaymé-Galton-Watson branching process with off-
spring distribution X and mutation parameter ν ∈ (0, 1). Then the total size Ỹ∞ of the final
cluster sizes with (possible defective) probability mass function

P
(
Ỹ∞ = n

)
=

1

n
P(BIN(nX, 1− ν) = n− 1),

is stochastically dominated by Cα with probability mass function (3.30).
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Proof. As mention at the end of Section 2.3, Ỹ∞ is stochastically dominated by Cα if for all
n ∈ N, P(Cα ≤ n) ≥ P(Ỹ∞ ≤ n). Observe that the event{

Ỹ∞ ≤ n
}
=
{
Ỹu ≤ n

}
∩
{
Ỹt ≤ n, ∀t > u

}
,

is contained in {Ỹu ≤ n} for any u ∈ N. It then follows that

P
(
Ỹ∞ ≤ n

)
≤ P

(
Ỹu ≤ n

)
,

which gives the result

P(Cα ≤ n) =

(
1− 1

m

) ∞∑
u=0

m−u P
(
Ỹu ≤ n

)
≥
(
1− 1

m

) ∞∑
u=0

m−u P
(
Ỹ∞ ≤ n

)
≥ P

(
Ỹ∞ ≤ n

)
.

The next quantity of interest is the mean of Cα. We state and prove the expression in the
following lemma which we use later to prove a more general statement regarding an estimator for
ν.

Lemma 4. For a Bienaymé-Galton-Watson process with Malthusian parameter α > 0 equipped
with the infinite alleles model with mutation probability ν ∈ (0, 1), the mean of empirically observed
cluster size is

E[Cα] = ν−1 (3.31)

Proof. Expanding and interchanging summation gives

E[Cα] =

∞∑
n=1

nP(Cα = n) =

(
1− 1

m

) ∞∑
u=0

m−u
∞∑

n=1

nP
(
Ỹu = n

)
=

(
1− 1

m

) ∞∑
u=0

m−u E
[
Ỹu

]
.

We can use the basic decomposition (3.12), for Ỹu where χ(t) = 1R+(t) and ξ̃(1, ω0) = X̃ω0 denotes
the number of individual produced by the root carrying the ancestral label. The decomposition
is as follows

Ỹu = 1 +

X̃ω0∑
i=1

Ỹu−1(i),

where we use the convention that Ỹ−1 = 0 such that we correctly have Ỹ0 = 1. Substituting this
decomposition into the preceding expression gives(

1− 1

m

) ∞∑
u=0

m−u E
[
Ỹu

]
=

(
1− 1

m

) ∞∑
u=0

m−u E

1 + X̃ω0∑
i=1

Ỹu−1(i)


=

(
1− 1

m

) ∞∑
u=0

m−u +

∞∑
u=0

m−u E

X̃ω0∑
i=1

Ỹu−1(i)


= 1 +

(
1− 1

m

) ∞∑
u=0

m−u E
[
X̃ω0

]
E
[
Ỹu−1

]
,

(3.32)
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where we used Wald’s identity and the fact that Ỹu−1(i) is a copy of Ỹu−1 in the last step. Since

X̃ω0 is the binomial thinning of Xω0 it has mean (1− ν)m and E
[
Ỹ−1(i)

]
= 0, we obtain

∞∑
u=0

m−u E
[
X̃ω0

]
E
[
Ỹu−1

]
= (1− ν)m

∞∑
u=0

m−u E
[
Ỹu−1

]
= (1− ν)

∞∑
u=0

m−u E
[
Ỹu

]
.

where we moved the index of Ỹu. Substituting this into (3.32) gives

E[Cα] = 1 + (1− ν)

(
1− 1

m

) ∞∑
u=0

m−u E
[
Ỹu

]
= 1 + (1− ν)E[Cα],

which simplifies to (3.31).

3.4.2 Empirical cluster size distribution for the age-dependent process

The age-dependent branching process is a stochastic process in continuous time. Similarly to
the Bienaymé-Galton-Watson process, individuals produce a random number of offspring with
distribution X upon death. However, lifetimes are not of length 1, but follow a general age
distribution G which takes values in [0,∞) and is of nonlattice type. The reproduction process
has a similar form as the Bienaymé-Galton-Watson case (3.28), but is due to the random waiting
times defined as

ξ(t, ω) = Xω1[Tω,∞)(t),

where Xω is a copy of X and Tω ∼ G which are independent. The intensity measure is given by

µ(t) = E
[
X1[T,∞)(t)

]
= E[X]P(T > t) = m(1−G(t)). (3.33)

We find the Malthusian parameter again by computing µ̂(α), which equals∫ ∞

0

e−αu µ(du) =

∫ ∞

0

e−αumG(du), (3.34)

where α solves µ̂(α) = 1 as in (3.16).
Since the support of µ is not a lattice in the age-dependent setting, we have to compute

P(Cα = n) in the form of (3.27). Starting with the numerator, we obtain in a similar way as the
lattice case that

E[χn(u)] = ν
∑
i∈N

E
[
1(Xω0 ≥ i)E

[
1R+(u− Tω0)1{n}

(
Ỹu−Tω0

) ∣∣∣ Xω0

]]
= ν

∑
i∈N

P(X ≥ i)E
[
1R+(u− Tω0)1{n}

(
Ỹu−Tω0

)]
= ν E[X]E

[
1R+(u− Tω0)1{n}

(
Ỹu−Tω0

)]
.

We can again apply the law of total expectation conditioning on Tω0

E
[
E
[
1R+(u− Tω0)1{n}

(
Ỹu−Tω0

) ∣∣∣ Tω0

]]
=

∫ ∞

0

E
[
1R+(u− Tω0)1{n}

(
Ỹu−Tω0

) ∣∣∣ Tω0 = t
]
G(dt)

=

∫ u

0

P
(
Ỹu−t = n

)
G(dt).
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At last we compute∫ ∞

0

e−αu E[χn(u)] du = ν E[X]

∫ ∞

u=0

e−αu

∫ u

0

P
(
Ỹu−t = n

)
G(dt) du

= νm

∫ ∞

t=0

∫ ∞

u=t

e−αu P
(
Ỹu−t = n

)
duG(dt),

and with the substitution v = u− t we arrive at

νm

∫ ∞

t=0

∫ ∞

v=0

e−α(v+t) P
(
Ỹv = n

)
dv G(dt)

= ν

∫ ∞

t=0

e−αtmG(dt)

∫ ∞

v=0

e−αv P
(
Ỹv = n

)
dv

= ν

∫ ∞

0

e−αv P
(
Ỹv = n

)
dv.

Analogous to the Bienaymé-Galton-Watson case, we obtain the result for χN by replacing 1{n}(Ỹu−σi
(i))

with 1, giving ∫ ∞

0

e−αu E
[
χN(u)

]
du = ν

∫ ∞

t=0

e−αtmG(dt)

∫ ∞

v=0

e−αv dv =
ν

α
.

The probability mass function for the observed cluster sizes in the age-dependent setting is there-
fore given by

P(Cα = n) = α

∫ ∞

0

e−αu P
(
Ỹu = n

)
du. (3.35)

There is an analogue for Lemma 4 in age-dependent case. Exactly the same phenomena occurs,
the average observed cluster size is given by ν−1. The proof uses many of the same details from
the derivation of (3.35) and the proof Lemma 4.

Lemma 5. For an age-dependent branching process with Malthusian parameter α > 0 equipped
with the infinite alleles model with mutation probability ν ∈ (0, 1), the mean of empirically observed
cluster size is

E[Cα] = ν−1

Proof. First we exchange the integral and summation, and make use of the basic decomposition
to obtain

E[Cα] = α

∫ ∞

0

e−αu E
[
Ỹu

]
du = α

∫ ∞

u=0

e−αu

(
1 + E

[
X̃
] ∫ u

t=0

E
[
Ỹu−t

]
G(dt)

)
du. (3.36)

We evaluate and again exchange integrals,

1 + E
[
X̃
]
α

∫ ∞

u=0

e−αu

∫ u

t=0

E
[
Ỹu−t

]
G(dt) du

= 1 + (1− ν)mα

∫ ∞

t=0

∫ ∞

u=t

e−αu E
[
Ỹu−t

]
duG(dt),

(3.37)

perform the substitution v = u − t, and recognize that µ̂(α) = 1 and the expression in (3.36),
which brings us to

1 + (1− ν)

∫ ∞

t=0

e−αtmG(dt)α

∫ ∞

v=0

e−αv E
[
Ỹv

]
dv = 1 + (1− ν)E[Cα], (3.38)

and concludes the proof.

24



3.4.3 Parameter estimation for single-type branching processes and the
infinite alleles model based on empirical cluster sizes

In this section we cover the estimation of model parameters based on the results derived earlier
in Sections 3.4.1 and 3.4.2. We ended both sections with the computation of the mean for the
observed cluster sizes. It appeared that in both cases the mean equals ν−1, which implies that we
can use the empirically observed cluster sizes to obtain an estimator for ν. Due to the simplicity
of the expression, we can obtain a strong result with the help of some basic limit theorems. In the
following theorem we state and prove that empirical mean gives a strongly consistent estimator
for the mutation probability ν.

Theorem 6. Consider a branching process equipped with the infinite alleles model where each
individual gives birth to a random number of children upon death according to a random variable
X. Moreover, assume that death occurs at age 1 (Galton-Watson) or after a random time with
nonlattice distribution G on [0,∞) (age-dependent) and the Malthusian parameter satisfies α ∈
(0,∞). If ν ∈ (0, 1) is the probability that a new allele is introduced, then

ν̂ = 1/Cα
n ,

is a (strongly) consistent estimator for ν, where (Cα
i )

n
i=1 are the observed cluster sizes with prob-

ability mass function (3.27).

Proof. We showed in Lemmas 4 and 5 that E[Cα
i ] = ν−1. From the Strong Law of Large Numbers

it follows that Cα
n → ν−1 almost surely as n → ∞, as the observed cluster sizes are assumed to

be i.i.d. daughter process of the branching process. From the Continuous mapping theorem it
follows that as n→∞, 1/Cα

n → ν almost surely, making Cα
n a strongly consistent estimator.

Observe how the only requirement for the process on the reproduction process is that α ∈
(0,∞) which is for the Bienaymé-Galton-Watson process and age-dependent process equivalent
to being supercritical. We refer to a standard probability textbook for the limit results used in
the proof.

We use the rest of the section to derive expressions for the probability mass functions obtained
in equations (3.30) and (3.35). Due to the dependence on the total size Ỹu, it is hard to compute
probability mass function for large n. We restrict ourselves to analytically computing the proba-
bilities of observing clusters of size 1 and 2, resulting in a distribution P(Cα = 1), P(Cα = 2) and
P(Cα ≥ 3). Furthermore, we assume the offspring distribution X to satisfy E[X] = m > 1. In

Chapter 5, such that we are in the same setting as Section 2.2. Now X̃ ∼ BIN(X, 1−ν) gives the
offspring distribution for the branching process carrying the ancestral label, which can be found
in Claim 2.

Bienaymé-Galton-Watson case

In the discrete time, we have that {Ỹu = 1} only occurs for u ≥ 1 when the root does not produce

offspring with the same label, i.e. {X̃ω0 = 0}. Thus P(Ỹ0 = 1) = 1 and P(Ỹu = 1) = P(X̃ω0 = 0)
for u ≥ 1. This gives

P(Cα = 1) =

(
1− 1

m

)(
1 +

∞∑
u=1

m−u P
(
X̃ω0 = 0

))
= 1− 1

m

(
1− P

(
X̃ = 0

))
.

For {Ỹu = 2} we need that the root gives birth to exactly one individual with the same label, and

that individual needs to produce no offspring with the ancestral label. That is {X̃ω0 = 1, X̃ω1 =
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0}. We have

P(Cα = 2) =

(
1− 1

m

)(
1

m
P
(
X̃ω0 = 1

)
+

∞∑
u=2

m−u P
(
X̃ω0 = 1

)
P
(
X̃ω1 = 0

))

= P
(
X̃ω0 = 1

)(
1− 1

m

)(
1

m
+ P

(
X̃ω1 = 0

) 1

m2

∞∑
u=0

m−u

)
,

which can be rewritten in the following form

P(Cα = 2) = P
(
X̃ = 1

)( 1

m
− 1

m2
+ P

(
X̃ = 0

) 1

m2

)
=

1

m
P
(
X̃ = 1

)(
1− 1

m

(
1− P

(
X̃ = 0

)))
=

1

m
P
(
X̃ = 1

)
P(Cα = 1).

Age-dependent case

We consider an age-dependent branching process with general age distribution G and offspring
distribution X, where E[X] = m > 1, such that the branching process has Malthusian parameter
α ∈ (0,∞), according to [1].

We can have {Yu = 1} if the root did not reach the end of its life yet at time u, or it produces
no offspring carrying the same label at the end of its life. Thus

P
(
Ỹu = 1

)
= P(Tω0 > u) + P

(
X̃ = 0, Tω0 < u

)
=

∫ ∞

t=u

G(dt) + P
(
X̃ = 0

)∫ u

t=0

G(dt),

where Tω0 ∼ G gives the root’s age of death. We simplify the equation further into

1−
∫ u

t=0

G(dt) + P
(
X̃ = 0

)∫ u

t=0

G(dt) = 1−
(
1− P

(
X̃ = 0

))∫ u

t=0

G(dt). (3.39)

This can then be substituted in

P(Cα = 1) = α

∫ ∞

u=0

e−αu

(
1−

(
1− P

(
X̃ = 0

))∫ u

t=0

G(dt)

)
du

= 1 +
(
1− P

(
X̃ = 0

))
α

∫ ∞

u=0

e−αu

∫ u

t=0

G(dt) du,

(3.40)

since αe−αu is the density of an EXP(α) random variable. We continue with the integral, where
we exchange the integrals such that

α

∫ ∞

u=0

e−αu

∫ u

t=0

G(dt) du =

∫ ∞

t=0

α

∫ ∞

u=t

e−αu duG(dt)

=

∫ ∞

t=0

e−αtα

∫ ∞

v=0

e−αv dv G(dt).

We again recognize the density of an exponential. Moreover, the other integral is a multiple of
µ̂(α), which equals 1. For this reason we have∫ ∞

t=0

e−αtα

∫ ∞

v=0

e−αv dv G(dt) =
1

m

∫ ∞

t=0

e−αtmG(dt) =
1

m
. (3.41)
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Returning to (3.40), we arrive at

P(Cα = 1) = 1 +
1

m

(
1− P

(
X̃ = 0

))
,

which coincides with the Bienaymé-Galton-Watson case.
We have again two cases where {Ỹu = 2} occurs. The root gives birth to one individual

with the same label before time u, but the newborn individual is still alive, which is the event
{Tω0 < u, X̃ω0 = 1, Tω0 + Tω1 > u}. Or the root also gives birth to one individual with the same
label, but that individual produces no offspring with the ancestral label before time u. This is
given by {X̃ω0 = 1, X̃ω1 = 0, Tω0 + Tω1 < u}. Thus

P
(
Ỹu = 2

)
= P

(
X̃ω0 = 1, Tω0 < u, Tω0 + Tω1 > u

)
+ P

(
X̃ω0 = 1, X̃ω1 = 0, Tω0 + Tω1 < u

)
= P

(
X̃ω0 = 1

)(
P(Tω0 < u, Tω0 + Tω1 > u) + P

(
X̃ω1 = 0

)
P(Tω0 + Tω1 < u)

)
.

We continue with the terms within the parentheses and rewrite them using the same step as in
(3.39), which gives

P(Tω0 < u, Tω0 + Tω1 > u) + P
(
X̃ω1 = 0

)
P(Tω0 + Tω1 < u)

=

∫ u

t0=0

∫ u

t1=u−t0

G(dt1)G(dt0) + P
(
X̃ = 0

)∫ u

t0=0

∫ u−t0

t1=0

G(dt1)G(dt0)

=

∫ u

t0=0

(
1−

(
1− P

(
X̃ = 0

))∫ u−t0

t1=0

G(dt1)

)
G(dt0).

We substitute it in the following expression, and exchange integrals once again

P(Cα = 2) = α

∫ ∞

u=0

e−αu

∫ u

t0=0

(
1−

(
1− P

(
X̃ = 0

))∫ u−t0

t1=0

G(dt1)

)
G(dt0) du

=

∫ ∞

t0=0

α

∫ ∞

u=t0

e−αu

(
1−

(
1− P

(
X̃ = 0

))∫ u−t0

t1=0

G(dt1)

)
duG(dt0),

we can do a substitution again, which gives∫ ∞

t0=0

e−αt0α

∫ ∞

v=0

e−αv

(
1−

(
1− P

(
X̃ = 0

))∫ v

t1=0

G(dt1)

)
dv G(dt0)

=

∫ ∞

t0=0

e−αt0 G(dt0)α

∫ ∞

v=0

e−αv

(
1−

(
1− P

(
X̃ = 0

))∫ v

t1=0

G(dt1)

)
dv,

where the first integral is equal to (3.41) and the second one is from (3.40). We arrive at

P(Cα = 2) =
1

m
P
(
X̃ = 1

)
P(Cα = 1),

which is again the same as in the Bienaymé-Galton-Watson case.
We have shown for the two models we considered, that the values P(Cα = n) coincide for

n = 1, 2. Due to a series of simulations, it is suspected that the probability mass functions for the
two models are equal. This would mean that the choice for the age distribution, either general or
constant, is irrelevant for the empirical cluster size distribution, as it would only depend on the
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choice of X. Moreover, if the conjecture is true, then an explicit expression for each n ∈ N holds
for both models. By assuming that the relation

P(Cα = n) =
1

m
P

1 +

X̃∑
i=1

Cα
i = n

,

holds for n ≥ 2, where the Cα
i ’s are i.i.d. copy’s of Cα, one can derive the implicit formula

QCα(z) = z(1− 1

m
) + z

1

m
QX̃(QCα(z)),

where QCα and QX̃ are the probability generating functions of Cα and X̃ respectively. Using
the Lagrange Inversion Formula [16], the coefficients of QCα are given explicitly, i.e. we can give
an explicit expression for P(Cα = n) for all n ∈ N. However, this formula already fails for n = 3,
but only by a small margin. This effort did not yield the desired result, but this may inspire a
different approach that will pay off. For this reason, we formulate the following conjecture.

Conjecture 1. The probability mass function for the empirically observed cluster sizes is the same
whether the branching process follows a Bienaymé-Galton-Watson process or an age-dependent
process, provided that E[X] = m > 1 holds for the offspring distribution X and the Malthusian
parameter satisfies α ∈ (0, 1). Moreover, for all n ∈ N there exist an explicit expression for
P(Cα = n) in terms of a finite sum, depending only on m and the probability mass function of

X̃.

3.4.4 Observing cluster sizes on a downsampled tree

In real-world spreading processes, it is not always the case that every infected individual can be
observed. This is known as partial sampling. We assume that each individual is independently
sampled with probability s. Referring back to Section 2.2, where the assumption is that each
cluster is a branching process on its own, the observed cluster size was denoted by Ỹ∞ with
probability mass function (2.4). Since each individual is independently sampled, the observed

downsampled cluster size follows a BIN(Ỹ∞, s) distribution. Hence the probability of observing
a downsampled cluster of size k is given by

P
(
BIN(Ỹ∞, s) = n

)
=

∞∑
k=n

P
(
Ỹ∞ = k

)
P(BIN(k, s) = n), (3.42)

where we include the case n = 0. Since clusters of size 0 can not be observed in general, this has
to be taken into account. The expression in (3.42) can be normalized by 1− P(BIN(Ỹ∞, s) = 0),
for an applicable statistical model.

In this section we show that we obtain an analogue of (3.42), for the case where we equip the
model in Section 3.4 with downsampling. Intuitively, this result follows from replacing the term
P(Ỹu = n) with P(BIN(Ỹu, s) = n) in (3.35) and exchange the integral and sum. By constructing
an appropriate characteristic, we show that this intuition is correct, up to a normalization factor.

Before we can construct the characteristic, we need to introduce a function on Ω that deter-
mines whether an individual is sampled. When we defined the reproduction process ξ̃ in (3.24)

for the total size Ỹt up to time t, we implied the existence of birth times σ̃x, for x ∈ I generated
by ξ̃. These birth times are used to define Ỹt in the same way as in (3.4).

We introduce the indicator function ϕ : Ω→ {0, 1} as

ϕ(ωy) = 1(an individual with life career ωy is sampled).
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We stated at the beginning of this section that we assume to sample each individual independently
with probability s. Moreover, we assume that the outcome ϕ is independent of the reproduction
process and γ, which assigns the labels. This makes {ϕ(ωy)}y∈I a sequence of i.i.d. Bernoulli
random variables with probability s.

Now, we construct the process that counts the number of individuals which are both sampled
and wearing the ancestral label. The process is defined as

Ỹ ϕ
t =

∑
x∈I

1[σ̃x,∞)(t)ϕ(ωx),

which is a branching process counted by the characteristic

χϕ(t) = 1R+(t)ϕ(ω0) (3.43)

With Ỹ ϕ
t we are able to construct the characteristic which counts the number of empirically

observed downsampled clusters of size n. The characteristic is the same as in (3.25), but Ỹ ϕ
t

plays the role of Ỹt. We have

χn,ϕ(t) =
∑
i∈N

1R+(t− σi)(1− γ(i, ω0))1{n}

(
Ỹ ϕ
t−σi

(i)
)
,

and for the total number of empirically observed downsampled clusters

χN,ϕ(t) =
∑
i∈N

1R+(t− σi)(1− γ(i, ω0))1N

(
Ỹ ϕ
t−σi

(i)
)
.

Note that the term 1N(Ỹ
ϕ
t−σi

(i)) implies that we are not able observe to clusters of size 0. Similar
to Definition 3.29, we define the limiting distribution of the empirically observed downsampled
clusters as the random variable Cα,ϕ with probability mass function

P
(
Cα,ϕ = n

)
=

∫∞
0

e−αu E
[
χn,ϕ(u)

]
du∫∞

0
e−αu E[χN,ϕ(u)] du

, (3.44)

where χn,ϕ and χN,ϕ are as in (3.4.4) and (3.4.4) respectively. We skip the derivations leading to
the expressions ∫ ∞

0

e−αu E
[
χn,ϕ(u)

]
du =

∫ ∞

0

e−αu P
(
Ỹ ϕ
u = n

)
du, (3.45)

and ∫ ∞

0

e−αu E
[
χN,ϕ(u)

]
du =

∫ ∞

0

e−αu P
(
Ỹ ϕ
u ≥ 1

)
du, (3.46)

as they run analogous to the computations in Section 3.4.1 and 3.4.2. In order to arrive at the
analogue of (3.42), we do have to show that Ỹ ϕ

u ∼ BIN(Ỹu, s). Which prove in the following
claim.

Claim 3. The branching process Ỹ ϕ
t counted by χϕ as in (3.43) has probability mass function

P
(
Ỹ ϕ
t = n

)
= P

(
BIN(Ỹt, s) = n

)
=

∞∑
k=n

P
(
Ỹt = k

)
P(BIN(k, s) = n). (3.47)

29



Proof. We start with applying the law of total probability by conditioning on Ỹt

P
(
Ỹ ϕ
t = n

)
=

∞∑
k=n

P
(
Ỹ ϕ
t = n

∣∣∣ Ỹt = k
)
P
(
Ỹt = k

)
.

We proceed with the conditional probability. Since the characteristic χϕ vanishes for negative
arguments, we can apply the decomposition

Ỹ ϕ
t =

∑
x∈I

χϕ
x(t− σx) =

∑
σ̃x≤t

χϕ
x(t− σx) =

∑
σ̃x≤t

ϕ(ωx),

as birth times with σ̃ − t ≥ 0 imply that χϕ
x(t − σx) = 0. Conditional on {Ỹt = k}, we see that

|{σ̃x ≤ t}| = k. This gives

P
(
Ỹ ϕ
t = n

∣∣∣ Ỹt = k
)
= P

∑
σ̃x≤t

ϕ(ωx) = n

∣∣∣∣∣∣ Ỹt = k

 = P

(
k∑

i=1

ϕ(ωi) = n

)
,

as the outcome of ϕ is independent of the reproduction process. Since {ϕ(ωi)}ki=1 is an i.i.d.
sequence of Bernoulli random variables with parameter s, we arrive at

P

(
k∑

i=1

ϕ(ωi) = n

)
= P(BIN(k, s) = n),

which concludes the proof.

We are almost done with deriving the expression for (3.44). With the preceding claim we have
computed the integrand of the numerator. The denominator gives a normalization term which
is not as simple as the 1/α we obtained in (3.35). This is due to the fact that {Ỹ ϕ

u = 0} occurs
when every individual up to time u is not sampled.

Observe that (3.47) is valid for n ≥ 0, so we can apply it to (3.46) to obtain∫ ∞

0

e−αu P
(
Ỹ ϕ
u ≥ 1

)
du =

∫ ∞

0

e−αu
(
1− P

(
Ỹ ϕ
u = 0

))
du

=
1

α
−
∫ ∞

0

e−αu
∞∑
k=1

P
(
Ỹu = k

)
P(BIN(k, s) = 0) du.

We compute the probability that the outcome of a binomial is 0 and arrive by exchanging sum
and integration at

1

α
−
∫ ∞

0

e−αu
∞∑
k=1

P
(
Ỹu = k

)
P(BIN(k, s) = 0) du =

1

α
−

∞∑
k=1

∫ ∞

0

e−αu P
(
Ỹu = k

)
du(1− s)k

=
1

α
− 1

α
GCα(1− s),

(3.48)
where we recognize the expression in (3.35) up to a factor α. Here, GCα denotes the probability
generating function of Cα. At last we compute the numerator. We exchange sum and integration
by substituting (3.47) in (3.45), which gives∫ ∞

0

e−αu
∞∑

k=n

P
(
Ỹu = k

)
P(BIN(k, s) = n) du =

∞∑
k=n

∫ ∞

0

e−αu P
(
Ỹu = k

)
duP(BIN(k, s) = n).

(3.49)
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We recognize again the term P(Cα = k) up to a factor α in the summand. Substituting both
(3.46) and (3.49) in (3.44) gives

P
(
Cα,ϕ = n

)
=

∑∞
k=n P(Cα = k)P(BIN(k, s) = n)

1−GCα(1− s)
, (3.50)

where we multiplied both sides with α.
Deriving an expression for the denominator turns out to be a challenge, as one needs to

compute the Laplace transform of the probability generating function of Ỹu. However, one can
derive an implicit formula.

Proposition 2. For an age-dependent branching process with offspring distribution X with mean
m, lifetime distribution G, and Malthusian parameter α ∈ (0,∞), the following formula holds

L(QY•(z)) = zL(QX(QY•(z))), z ≥ 0,

where L denotes the Laplace transform and QX and QY• are the probability generating functions
of X and Y• respectively.

Proof. We write GYu(z) as E[zYu ] and express Yu as Yu = 1{Tω0<u}

(
1 +

∑Xω0
i=0 Y

(i)
u−Tω0

)
+

1{Tω0>u}, where the Y
(i)
u are i.i.d. copies of Yu, Xω0 ∼ X and Tω0 ∼ G. We apply the law

of total expectation and split the integral at t = u

E[zYu ] =

∫ u

t=0

E
[
zYu

∣∣ Tω0 = t
]
G(dt) +

∫ ∞

t=u

E
[
zYu

∣∣ Tω0 = t
]
G(dt)

=

∫ u

t=0

E
[
z1+

∑Xω0
i=0 Y

(i)
u−t

]
G(dt) +

∫ ∞

t=u

E[z]G(dt),

and consider the first integral. We take out z and condition on Xω0 which gives∫ u

t=0

E
[
z1+

∑Xω0
i=0 Y

(i)
u−t

∣∣∣∣ T = t

]
G(dt) = z

∫ u

t=0

E
[
E
[
z
∑Xω0

i=0 Y
(i)
u−t

∣∣∣∣ Xω0

]]
G(dt)

= z

∫ u

t=0

E

Xω0∏
i=1

E
[
zY

(i)
u−t

]G(dt),

since Y
(i)
u−t is independent of Xω0 . Since the Y

(i)
u−t are i.i.d. copies of Yu−t and Xω0 ∼ X we obtain

z

∫ u

t=0

E

Xω0∏
i=1

E
[
zY

(i)
u−t

]G(dt) = z

∫ u

t=0

E
[
E
[
zYu−t

]X]
G(dt) = z

∫ u

t=0

E
[
QYu−t

(z)X
]
G(dt)

= z

∫ u

t=0

QX

(
QYu−t

(z)
)
G(dt).

This proposition is related to Conjecture 1, as L(QY•(z)) = QCα(z). By solving either the
conjecture or the formula given in the proposition, the denominator in (3.50) can be explicitly
computed. As a result, this model would be more applicable to real data, than the model that
assumes observation of the entire tree, since it is often the case that only a fraction of a spreading
process is visible.
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Chapter 4

General multi-type branching
processes

This chapter serves as an extension to Chapter 3, where the individuals are assumed to be
indistinguishable. There are various reasons why we want to relax this assumption. For example,
in the context of epidemic spread, where a population can consist of multiple distinguishable
types. The transmission does not have to be homogeneous among the various types, resulting in
different reproduction processes. Another example is a varying mutation probability ν. In the
preceding chapters, it is assumed that ν is constant, but for each newly introduced allele, we can
sample a mutation probability ν from some distribution. This can be made precise using the
multi-type model. Each individual inherits the parents type if it inherits the same label, but an
individual assumes a new unique type if a new label is introduced. The mutation rate is then
determined by the type of the individual.

4.1 An extension of the general single-type branching pro-
cess

The aforementioned examples indicate that the type space can be broad. Jagers gives in [20] a
construction of a general branching with an abstract type space, providing us with the machinery
to handle the extension to the multi-type branching process. The naming of the individuals
is as in Section 3.1. The life space (Ω,A) as defined in Definition 1, and thus the times of
childbearing τi, remain unchanged. The types are elements of some abstract type space S with a
countably generated σ-algebra S. We require that the types are given by the measurable functions
ρi : Ω→ S, i ∈ N, where ρi(ω) denotes the type of the i-th child of an individual with life ω ∈ Ω.

As hinted in the beginning of this section, an individual can produce offspring of different
types, where the distribution might depend on the type of the individual itself. For this reason
the reproduction process in the multi-type case is defined as an extension of (2), which is

ξ(A×B) = |{i : ρi ∈ A, τi ∈ B}|, (4.1)

where A ∈ S and B ∈ B(R+). The appointment of each individuals type is a result of its parent’s
reproduction process, which is determined by the parent’s type. This can recursively be traced
back to the type of the root. Hence the population process which was previously defined in
Definition 3, now also has to include the type space S and the σ-algebra S. By including the

32



root’s type in the sampling of the trees, we arrive at the population process

(S × ΩI ,S ×AI), (4.2)

where ΩI and AI are as in (3.3) and the products in (4.2) represent the Cartesian product and
the σ-algebra generated by the cylinder sets respectively.

A probability measure on (4.1) can be constructed by assuming the existence of a probability
measure P (s, ·) on the life space (Ω,A) for each s ∈ S. The functions s 7→ P (s,A) should be
measurable for every A ∈ A. In [20] they show that this defines a unique probability measure
Ps on the population space (4.2) for each s ∈ S. The Ps-expectation is denoted by Es. We
refer to Er as the r-expectation. Moreover, in [20], Jagers gives a stronger version of Lemma
2, which implies branching, i.e. the independence of disjoint daughter processes. We skip most
of the details, but point out that the conditional independence of Sx for all x ∈ Nn+1 is in the
multi-type case with respect to S × An for some n ∈ N, where An is as in (3.8). Furthermore,
for each s ∈ S and n ∈ N, (3.9) now takes the form

Ps(Sx ∈ A | S × An) = Pρx(A),

for any x ∈ Nn+1 and A ∈ S×AI . Here, we use the convention that ρx gives the type of individual
x ∈ I.

In Section 3.2 the notion of characteristics is introduced as measurable functions on the
sampled trees. For this reason, we require in Definition 5 that they are measurable with respect
to the product σ-algebra B(R) × AI . Because the sampling of trees happens in the multi-type
scenario with respect to the population process (S×ΩI ,S×AI), it is only natural to define a multi-
type characteristic as any real-valued process (χ(t))t∈R for which the map χ : R× S × ΩI → R+

is measurable with respect to the product σ-algebra B(R)× S ×AI and vanishes for t < 0. The
definition of a branching process counted by characteristic χ remains unchanged.

The intensity measure of ξ given in (4.1) now takes the following form

µ(r, ds× du) = Er[ξ(ds× du)],

where r ∈ S denotes the type of the individual. The process is said to be Malthusian with
parameter α ∈ R, if the kernel

µ̂(r, ds;α) =

∫ ∞

0

e−αuµ(r, ds× du), (4.3)

has Perron root 1. How this condition is satisfied is made clear depending on the context.
According to [22], there now exists, if α > 0, a σ-finite measure π on the type space (S,S)

and a with respect to π-almost everywhere finite, strictly positive, measurable function h on the
same space, such that ∫

S

µ̂(r, ds;α)π(dr) = π(ds),∫
S

h(s) µ̂(r, ds;α) = h(r).

It is assumed that

0 < β =

∫ ∞

0

ue−αuh(s)µ(r, ds× du)π(dr) <∞,

which implies that we can norm h such that
∫
h(s)π(ds) = 1. Moreover, under the assumption

that inf h > 0, we can also norm π to a probability measure. At last we assume that there exists
ε > 0 such that

sup
r∈S

µ(r, S × [0, ε]) < 1. (4.4)
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To be able to use the techniques of Chapter 3, we need multi-type analogues for Theorem 4 and
as a result Corollary 3. Unfortunately, we do not have these convergence results in the almost sure
sense for the multi-type case. Because we can restate Theorem 4 with L1-convergence at most,
the analogue of Corollary 3 can only be as strong as convergence in probability. However, the
conditions to obtain L1-convergence are more relaxed in some sense. The most notable difference
is that we require the reproduction process ξ to satisfy what is known as the x log(x)-condition,
which we define now.

Definition 13. A branching process satisfies the x log(x)-condition if the following holds for the
reproduction process

Eπ

[
αξ log

+(αξ)
]
<∞, (4.5)

where log+(x) = max(0, log(x)) and

αξ =

∫
S×R+

e−αuh(s) ξ(ds× du).

Remark 7. In Remark 5 it is pointed out that e−αtZχ
t converges to a multiple of the limiting

random variableW∞. In [27], we find that the condition (4.5) is equivalent toW > 0 almost surely
on {Yt →∞}. This allows us to imply the convergence of ratios. Moreover, in the age-dependent
case defined in Section 3.4.2, the x log(x)-condition is equivalent to

E
[
ξ log+(ξ)

]
<∞.

We are ready to state the following theorem from [22]

Theorem 7. Consider a branching process Zχ
t counted by characteristic χ with reproduction

process ξ. Assume that ξ satisfies the x log(x)-condition and ξ(S × R+) <∞, and the nonlattice
intensity measure µ has Malthusian parameter α ∈ (0,∞) and satisfies (4.4). Moreover, assume
that χ is bounded and e−αu Er[χ(u)] as a function of r and u is directly Riemann integrable with
respect to π(dr)× du1. Then, as t→∞,

e−αtZχ
t →

∫ ∞

0

e−αuW∞ Eπ[χ(u)]

αβ
du in L1(Pr),

for π-almost all r ∈ S. Here W∞ is a nonnegative random variable such that Er[W∞] = h(r).

In the single-type case, the x log(x)-condition is enough to ensure that W∞ > 0 on {Yt →∞},
as mentioned in Remark 7. However, for the multi-type branching process we need to make this
assumption stronger by stating the analogue of Theorem 4 in the following way.

Theorem 8. Suppose that the assumptions of Theorem 7 hold, add the assumption that infr∈S Ps(W∞ >
0), then, as t→∞,

Zχ
t

Yt
→
∫ ∞

0

e−αu Eπ[χ(u)] du in Pr-probability,

conditional on {Yt →∞}, for π-almost all r ∈ S.

Remark 8. Observe the difference with (3.22), apart from the mode of convergence, that the
expectation here is what we denote as the π-expectation, i.e. we integrate over Er on the type
space with respect to the stationary measure π(dr).

1According to [33], a measurable function g is called directly Riemann integrable if for any ε > 0 we can find
δ > 0 and functions g−, g+ ∈ L1(π(dr) × du) such that for π-almost all r ∈ S, g−(r, ·) ≤ g(r, ·) ≤ g+(r, ·),
g±(r, u) = g±(r, nδ) for nδ ≤ u < (n+ 1)δ, and the difference in L1(π(dr)× du) between g− and g+ is less than ε.
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4.2 Varying the probability of mutation

As an extension to the infinite alleles model, we can assume that with every newly introduced
allele a, we associate a probability of mutation ν(a) ∈ (0, 1) with all individuals carrying the
allele. Rather than using the conventional labelling system, where the first introduced allele is
associated with label 1, the second with 2, and so forth, we instead uniformly sample a value
from the interval S = (0, 1). In this way we can sample a new probability of mutation according
to the density ν : S → (0, 1).

The varying probability of mutation per allele influences the reproduction process ξ, as op-
posed to the assumption where ν is constant. Individuals that carry an allele which is associated
with a large probability of mutation, are more likely to produce children which carry a new allele.
For this reason, we need the multi-type extension, and the labels the alleles are associated with,
are referred to as types from this point onward.

According to the lines of the beginning of this chapter, the i-th child’s type is given by ρi.
For an individual with type r ∈ S, we want to assign to each child a new type uniformly from S
with probability ν(r), or assign type r with probability 1 − ν(r). Hence for each x ∈ I we need
to introduce Ux ∼ U ∼ U(0, 1) and Mxi ∼Mρx ∼ BER(ν(ρx)), for all children i ∈ N. We assume
that the sequences (Ux)x∈I and (Mx)x∈I are independent of each other and independent of the
ages of childbearing (τi(ωx))i∈N for each x ∈ I. The random variables Mx indicate if a mutation
has occurred, and Ux samples a new type. Hence for an individual with life ωx, the functions ρi
take the following form

ρi(ωx) = UxiMxi + ρx(1−Mxi).

It must be pointed out that we assume S = B(S).
We immediately consider the application to an age-dependent process with offspring distribu-

tion X and a general age distribution G, as defined in Section 3.4.2. The reproduction process
for an individual with life ω and type r ∈ S, takes the following form

ξ(r,A× [0, t], ω) =

[
Xω∑
i=1

1A(UiMi + r(1−Mi))

]
1[Tω,∞)(t), (4.6)

for A ∈ S, where Xω is a copy of X and Tω ∼ G. Taking the expectation of (4.6) gives the
intensity measure

µ(r,B × [0, t]) = Er[X]Pr(UiMi + r(1−Mi) ∈ B)G(t).

Computing the Malthusian parameter requires finding α ∈ R in equation (4.3). With some abuse
of notation, we have

µ̂(r, ds;α) =

∫ ∞

0

e−αuµ(r, ds× du) = Er[X]

∫ ∞

0

e−αu G(du)Pr(UMρ0 + r(1−Mρ0) ∈ ds),

where we recognize the expression (3.34), considering that the number of offspring is independent
of the root’s type, i.e. E[X] = Er[X] = m. For any distribution π, we find that∫

S

Pr(UMρ0 + r(1−Mρ0) ∈ A)π(dr) =

∫
S

P(U ∈ A)ν(r)π(dr) +

∫
S

1A(r)(1− ν(r))π(dr)

= |A|
∫
S

ν(r)π(dr) + π(A)−
∫
A

ν(r)π(dr),

and therefore for any eigendistribution, we must have

π(A) = µ̂(α)

(
|A|
∫
S

ν(r)π(dr) + π(A)−
∫
A

ν(r)π(dr)

)
. (4.7)
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Assuming π(A) = µ̂(α)π(A), we obtain that the Malthusian parameter is the same as in Section
3.4.2.

Remark 9. This assumption only holds if the kernel has Perron root µ̂(α), which we did not show.
However, we motivate this assumption by consulting the intuition which argues that the infinite
allele labelling process does influence the offspring distribution.

A suitable candidate which gives the equality in (4.7) is π(dr) = Nν
ν(r) dr, such that∫

A

ν(r)
Nν

ν(r)
dr = Nν

∫
A

dr = Nν |A|
∫
S

dr = |A|
∫
S

ν(r)
Nν

ν(r)
dr,

where

N−1
ν =

∫
S

ν(r)−1 dr.

Note that we made an implicit assumption about ν. Specifically, the inverse ν−1 must be inte-
grable over S with respect to the Lebesgue measure.

We may again use the characteristics χn and χN defined in (3.25) and (3.26). We obtain
the multi-type analogue for the probability mass function in (3.27) defined in Definition 12, by
applying the following corollary of Theorem 8.

Corollary 4. Let Zχ
t and Zχ′

t be branching process counted by χ and χ′ respectively, such that
both χ and χ′ and µ satisfy the conditions of Theorem 7. Then, as t→∞,

Zχ
t

Zχ′
t

→
∫∞
0

e−αu Eπ[χ(u)] du∫∞
0

e−αu Eπ[χ′(u)] du
in Pr-probability,

conditional on {Yt →∞}, for π-almost all r ∈ S.

In order to compute

P(Cα = n) =

∫∞
0

e−αu Eπ[χ
n(u)] du∫∞

0
e−αu Eπ[χN(u)] du

, (4.8)

we must evaluate the expectations in the integrands. This is similar to the computations that
lead to (3.35). However, when we take the expectation of 1− γ(i, ω0) in the single-type case, this
gives the constant mutation rate ν. We are now under the assumption that a mutation occurs
with probability ν(r), if the root is of type r ∈ S. Hence, taking the π-expectation of 1− γ(i, ω0)
gives

Eπ[1− γ(i, ω0)] =

∫
S

Er[1− γ(i, ω0)]π(dr) =

∫
S

ν(r)π(dr),

where ν(r) is the probability of mutation for the root. Writing π(dr) as a density with respect
to the Lebesgue measure then gives∫

S

ν(r)
Nν

ν(r)
dr =

∫
S

Nν dr = Nν . (4.9)

As a result we have
Eπ[χ

n(u)] = Nν Eπ[X],

and
Eπ[χ

N(u)] = Nν Eπ[X].

Substituting these equations in (4.8) gives similarly to the single-type case the following expression

P(Cα = n) = α

∫ ∞

0

e−αu Pπ

(
Ỹu = n

)
du. (4.10)
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Computing the mean of Cα with the probability mass function given above is again similar to
the single-type case. Along the lines of equations (3.36)-(3.38), we obtain

E[Cα] = α

∫ ∞

0

e−αu Eπ

[
Ỹu

]
du = 1 + Eπ

[
X̃
] ∫ ∞

t=0

e−αt G(dt)α

∫ ∞

v=0

e−αv Eπ

[
Ỹv

]
dv,

where we used the fact that

Eπ

[
Ỹv(i)

]
=

∫
S

Eπ

[
Ỹv(i)

∣∣∣ ρi = r
]
Pπ(dr) =

∫
S

Er

[
Ỹv

]
π(dr) = Eπ

[
Ỹv

]
. (4.11)

We compute Eπ

[
X̃
]
by observing that the r-expectation of X̃ is equal to the expectation of a

BIN(X, 1− ν(r)) random variable, which gives

Eπ

[
X̃
]
=

∫
S

Eπ

[
X̃
]
π(dr) = m

∫
S

(1− ν(r))π(dr).

Identical to the computation in (4.9), we obtain

m

∫
S

(1− ν(r))π(dr) = m(1−Nν),

and

E[Cα] = 1 + (1−Nν)

∫ ∞

t=0

e−αtmG(dt)α

∫ ∞

v=0

e−αv Eπ

[
Ỹv

]
dv

= 1 + (1−Nν)E[Cα].

The mean of Cα is therefore given by

E[Cα] = N−1
ν =

∫
S

ν(r)−1 dr,

which includes the case where ν is constant.

4.3 Multi-type age-dependent model

We consider the age-dependent model in the multi-type case, as an extension of Section 3.4.2.
The goal of this section is to show that Lemma 5 also holds when the offspring distribution is not
homogeneous. As mentioned in the introduction in Chapter 1, we aim to eventually extend the
results towards inferring the age-contact matrices. As this requires us to divide the population
into a finite number of age groups, we define our type space to be S = {1, 2, . . . , N}, for some
N ∈ N. We equip S with the σ-algebra S = 2S . We assume in contrary to the previous section,
that the probability of mutation ν ∈ (0, 1) is constant.

For an individual of type r ∈ S, we assume that it produces a random vector of offspring
(Xrs)s∈S , where Xrs denotes the number of offspring with type s. Note that the Xrs’s are not
necessarily independent. One could assume a type-dependent age distribution Gr for each r ∈ S,
but we impose the restriction that Gr ≡ G for each r ∈ S, for some general age distribution
G. The matrix M = (mrs)(r,s)∈S2 whose elements are given by mrs = E[Xrs], is denoted as the
mean matrix of the branching process.

The reproduction process for an individual with life ω and type r ∈ S, is of the form

ξ(r, {s} × [0, t], ω) = Xrs,ω1[Tω,∞)(t),
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for s ∈ S. Here, Xrs,ω ∼ Xrs and Tω ∼ G. According to [1], the Malthusian parameter is

given by the number α such that the matrix M̂(α) = (m̂rs)(r,s)∈S2 , whose elements are m̂rs =
mrs

∫
e−αu Gr(du), has largest eigenvalue 1. Since we assume that Gr ≡ G for each r ∈ S, the

matrix M̂(α) is given by

M̂(α) =

∫ ∞

0

e−αu G(du)M.

Let λi denote the eigenvalues of M , for 1 ≤ i ≤ N . We define ρ = maxi λi as the largest
eigenvalue of M . Hence, the eigenvalues of M̂(α) are given by

∫
e−αu G(du)λi. In order to find

the Malthusian parameter, we must therefore compute α such that∫
e−αuρG(du) = 1.

We point out that ρ has taken over the role of E[X] = m in (3.34).
The eigendistribution, π, is now given by a vector in R1×N . More specifically, it is given by

the left eigenvector π such that πM̂(α) = π, or equivalently,

πM = ρπ.

As mentioned in Section 4.1, we require that the vector π = (π(r))r∈S sums up to 1.
We continue with the computation of P(Cα = n), as expressed in (4.8), in order to derive the

mean of the average observed cluster size for a multi-type age-dependent process. The computa-
tions are again similar to the derivations in Section 3.4.2. However, one arrives at

Eπ[χ
n(u)] = ν

∑
i∈N

∑
s∈S

Eπ[1(Xρ0s ≥ i)]

∫ u

0

Pπ

(
Ỹt = n

)
G(dt).

By separately considering the double sum, we observe that∑
i∈N

∑
s∈S

Eπ[1(Xρ0s ≥ i)] =
∑
i∈N

∑
s∈S

∑
r∈S

Er[1(Xρ0s ≥ i)]π(r) =
∑
s∈S

∑
r∈S

∑
i∈N

E[1(Xrs ≥ i)]π(r),

where we recognize that the inner sum over i gives the mean of Xrs. Which leads to∑
s∈S

∑
r∈S

E[Xrs]π(r) =
∑
s∈S

∑
r∈S

π(r)mrs =
∑
s∈S

ρπ(s) = ρ, (4.12)

as π is an eigenvector of the mean matrix M corresponding to eigenvalue ρ. In the last step we
use that π is normed to 1. We obtain

Eπ[χ
n(u)] = νρ

∫ u

0

Pπ

(
Ỹt = n

)
G(dt),

which gives ∫ ∞

0

e−αu Eπ[χ
n(u)] du = ν

∫ ∞

0

e−αu Pπ

(
Ỹu = n

)
du,

as e−αuρG(du) integrates to 1. As a result we obtain the same expression for P(Cα = n) as in
(4.10).

We may argue that the computation for the mean of Cα, leads to the expression

Eπ[C
α] = α

∫ ∞

0

e−αu Eπ

[
Ỹu

]
du = 1 +

∑
s∈S

Eπ

[
X̃ρ0s

] ∫ ∞

t=0

e−αt G(dt)Eπ[C
α], (4.13)
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using a similar argument as in (4.11), where X̃ρ0s ∼ BIN(Xρ0s, 1 − ν). The summation can be
simplified to ∑

s∈S

Eπ

[
X̃ρ0s

]
= (1− ν)

∑
s∈S

E[Xrs]π(r) = (1− ν)ρ,

which was derived in (4.12). Substituting this in (4.13), gives

E[Cα] = 1 + (1− ν)

∫ ∞

t=0

e−αtρG(dt)E[Cα],

yielding
E[Cα] = ν−1.
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Chapter 5

Application: A simulation study

In this chapter, the models derived in earlier chapters are applied in two simulation studies, one
which strengthens the importance Theorem 5 and the other which demonstrates Theorem 6.

The goal of the first study is to compare the random variables Ỹ∞ and Cα as a model for
the empirically observed cluster sizes in a branching process, equipped with the infinite alleles
model. The probability mass functions of the two random variables are respectively given by
(2.4) and (3.30). The probability mass function of Ỹ∞ is used by [35] to infer (R, k) on real
epidemiological data, assuming an offspring distribution X ∼ NEGBIN(k, q), with E[X] = R.
We argue in Section 2.3 that the empirically observed cluster size distribution is influenced by
the exponential growth of the branching process. This specifically happens when the clusters
are observed in a supercritical tree, i.e. with Malthusian parameter α ∈ (0,∞). Because this is
merely a demonstration, we restrict ourselves to only showing a comparison for one combination
of parameters R, k and ν. To be able to apply the probability mass function of Cα, we need the
branching process to be supercritical, which requires R > 1. The probability mass function of
Ỹ∞ is proper if (1 − ν)R ≤ 1. In order to be in the regime where both models are applicable,
which is also consistent with COVID-19 estimates, we choose the parameters R = 1.75, k = 0.5
and ν = 0.5.

In Section 3.4.3, we explicitly computed the P(Cα = 1) and P(Cα = 2). Continuing this
reasoning, one can also show that

P(Cα = 3) =
1

m
P
(
X̃ = 2

)(
1− 1

m

(
1− P

(
X̃ω0 = 0

)2))
+

1

m
P
(
X̃ = 1

)
P(Cα = 2).

We use the convention that all clusters of size n ≥ 4, are observed with probability P(Cα ≥ 4) =
1− P(Cα ≤ 3). We perform maximum likelihood estimation with this probability mass function,
which is referred to as the ”Malthusian” model, because this model captures the emerging of
cluster sizes under Malthusian growth. The probabilities P(Ỹ∞ = n) can explicitly be computed
for all n ≥ 1, and this model is referred to as ”Progeny”, as it is given by the law of total progeny
in Theorem 1.

The results obtained by the simulations are shown in the box plots in Figure 5.1. The Progeny
model consistently underestimates both values, with very few outliers. Additionally, the distance
between the first and third quartiles is small compared to the Malthusian model. In contrast,
the Malthusian model shows a higher variance, but it demonstrates higher accuracy. Despite
the variance in the Malthusian model appearing to be at least an order of magnitude larger, its
accuracy is very promising. Especially considering the fact that only the first three values of the
probability mass function were computed, which is a plausible explanation for the high variance.
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Figure 5.1: Box plots of simultaneously estimated values for R and k from N = 100 simulations.
In each simulation, an infinite alleles single-type Bienaymé-Galton-Watson process with offspring
distribution X ∼ NEGBIN(k, q) is simulated up to the tenth generation (t = 10), where k = 0.5
and q = k

R+k , such that R = E[X] = 1.75. The probability of mutation ν = 0.5 is chosen
such that the distribution in (2.4) is proper. The sample is used for the maximum likelihood

estimation if the size of the branching at time t = 10, y10, satisfies y10 > 1−R11

2(1−R) = E[Y10]. We

impose this threshold to exclude trees that have gone extinct or have a disproportional small size
which does not show the behaviour due to exponential growth. Maximum likelihood estimation
is performed for (R, k) assuming two different models. The first model has the probability mass
function given by (3.30) for n = 1, 2, 3, and for n ≥ 4 we compute 1−P(Cα ≤ 3). We refer to this
model as ”Malthusian” on the x-axis. The second model has the probability mass function given
by (2.4), and is referred to as ”Progeny”. For both models the log-likelihood function LL(R, k)
is maximized simultaneous in both arguments, using the L-BFGS-B method [6].

The Progeny model seems to be consistently estimating a reproduction value close to 1. This
can be explained with Figure 1.1. In the caption it is argued that assuming all clusters have
reached their final sizes, i.e. under the Progeny model, small cluster sizes are underrepresented.
Clusters that eventually reach a large size, might be represented in the sample at the time
of observation by a small value, further increasing the imbalance and decreasing the observed
reproduction number R under the Progeny model. This has a similar effect on the estimated
dispersion parameter k, which is proportional to the variance of offspring distribution.

The following simulation study is demonstrating the potential of Theorem 6 for real world
applications. The goal is estimate ν, by computing the empirical mean of the observed clus-
ter sizes of an infinite alleles single type Bienaymé-Galton-Watson process. We again assume
X ∼ NEGBIN(k, q), such that R = E[X], for the offspring distribution. However, we let
R ∈ {1.05, 1.75, 2.45}, such that we have an almost critical branching process with R = 1.05,
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the same setting as the previous simulation study for R = 1.75, and a relatively high reproduc-
tion number with R = 2.45. For the probability of mutation we choose ν ∈ {0.1, 0.5, 0.9} to test
two extreme values, ν = 0.1 and ν = 0.9, and the same value as in the previous study, ν = 0.5.
The results are shown in the box plots in Figure 5.2.
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Figure 5.2: Box plots of estimates for ν. In each simulation, an infinite alleles single-type Bi-
enaymé-Galton-Watson process with offspring distribution X ∼ NEGBIN(k, q) is simulated up
to the tmax-th generation (t = tmax), where k = 0.5 and q = k

R+k
, such that R = [X] ∈

{1.05, 1.75, 2.45}. The value of tmax is tmax = 11, tmax = 9 and tmax = 7, for R = 1.05,
R = 1.75 and R = 2.45 respectively to reduce computation time for the branching processes
with R = 2.45 specifically. The probability of mutation ν takes values ν ∈ {0.1, 0.5, 0.5}. The
sample is used for the estimation if the size of the branching at time t = tmax, ytmax , satisfies

ytmax > max( 1−R11

2(1−R)
, 100) = E[Ytmax ]. For each combination of R and ν, a total of N = 100

simulations are performed. It must be pointed out that the estimates for ν with different under-
lying R are not directly comparable, as a sample from a branching process with R = 2.45 often
contains hundreds of clusters, as 2.457 > 500. Whereas we only have 1.0511 = 1.71, for R = 1.05.
The results show indeed that the average of the cluster sizes is not dependent on the parameters
of the offspring distribution, but only depends on ν.

The results show what is expected, provided that the whole tree is known up to the time of
observation, the average empirically observed cluster size is approaching ν−1, independent from
the parameters of the offspring distribution. The estimations with R = 1.05 exhibit a larger
variance, likely due to the branching processes achieving much smaller sizes compared to those
with higher underlying reproduction numbers. These deviations are not unexpected, since a
consistent estimator converges as the sample size increases.
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Chapter 6

Conclusion

Multiple models of the infinite alleles branching process were considered, all with the same goal;
to count the sizes of cluster with identical labels. The classical Bienaymé-Galton-Watson process
was considered in Chapter 2, for which we derived a probability mass function P(Ỹ∞ = n),
counting the sizes of empirically observed clusters. Here the cluster sizes are modelled as the
final size of a branching process (Z̃n)n∈N. We argued that this model is not suitable under the
assumption that the branching process is supercritical, i.e. the mean offspring distribution X
satisfies E[X] > 1. This reasoning led to the next chapter.

In Chapter 3 we considered general branching processes counted by characteristics in order to
derive a probability mass function P(Cα = n). By utilizing the properties of these characteristics,
we count the cluster sizes as they emerge in the exponentially growing branching process. As a
result, we showed in Theorem 5, that the obtained random variable Cα stochastically dominates
Ỹ∞. This implies that, by modelling a sample of observed cluster sizes as Ỹ∞, smaller clusters
are underrepresented in the sample. Applying this model to any spreading event therefore leads
to biased estimates.

The random variable Cα also provided a notably straightforward method for estimating the
probability of mutation, ν. In Theorem 6, we demonstrated that the inverse of the empirical
mean of the observed cluster sizes gives a (strongly) consistent estimator for ν. However, one
should be careful with the interpretation of ν, as mutations in genetic codes are often modelled
as a continuous process, characterized by rates [32]. In [35], the probability of mutation ν is
modelled as 1− p, where p is the probability that transmission occurs before substitution1. The
estimation of ν could therefore be of interest for the inference of transmission or substitution
parameters.

We also studied the expression for the probability mass function of Cα, in the two cases where
the underlying branching process is either modelled by a Bienaymé-Galton-Watson process or an
age-dependent process. This lead to Conjecture 1, which states that P(Cα = n) coincides for all
n ∈ N, for the two models we mentioned. This would mean that, the empirically observed cluster
sizes are not affected by the general age distribution G. At last, the chapter was concluded with
the derivation of a probability mass function for cluster sizes which underwent downsampling.
Here, it is necessary to know the probability generating function of Cα, which is unknown, as it
would partly solve the conjecture. The importance of solving the conjecture is strengthened by
the applied viewpoint of this section.

In Chapter 4, the multi-type extension of the general branching process is constructed upon
the fundamentals of its single-type analogue. The machinery provided by the multi-type model

1Also referred to as a substitution mutation, which is the event where a character in the genetic code gets replaced
by another character.
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is employed in two different setups, which both aim to derive analogues of Theorem 6. In the
first model, it is assumed that the probability of mutation for each cluster is given by ν(r), where
a type r is uniformly sampled from (0, 1) and ν : (0, 1) → (0, 1) a function. This allows the
probability of mutation to vary among different individuals in the branching process. However,
individuals carrying the same label, or which are of the same type in this case, have the same
probability of mutation. We show that, under the condition that ν−1 is integrable on (0, 1),
the mean of Cα is equal to N−1

ν . Here, Nν is the normalization factor such that N−1
ν ν−1 is a

probability density function with respect to the Lebesgue measure.
We also considered the case where the population is divided into a finite number of groups,

and the offspring distribution might not be homogeneous among the different types. For the
purpose of extending the developed theory towards inferring age-contact matrices, which was
briefly discussed in the introduction in Chapter 1, it is of interest to know whether Theorem 6 is
still valid. We have shown that the mean of Cα is still equal to ν−1, assuming that the branching
process has Malthusian parameter α ∈ (0,∞).

The results of Chapter 3 are applied in a simulation study in Chapter 5. Here, Cα and
Ỹ∞, are compared as a model for the empirically observed cluster sizes. A maximum likelihood
estimation is performed for the parameters R and k, where the offspring distribution is given
by X ∼ NEGBIN(k, q) such that E[X] = R. We have shown that the simulation is consistent

with the obtained results. That is, when Ỹ∞ is used as a model, the estimates show a significant
bias. This implies that in the context of virus spread, the severity of an epidemic might be
underestimated, which is undesirable from a public health perspective.

In light of the comparison of these two models, which indirectly compares to the model defined
in [35], we note that the application of Cα as a model still requires careful consideration. For

example, Ŷ∞ has been applied as a model by [5] to perform exactly the same inference, a maximum
likelihood estimation for (R, k). However, the context which supports the research in [5], is a
disease that is introduced from an external source, but is too weak to support epidemic spread,
i.e. they assume R ∈ (0, 1). It is not possible to compare Cα and Ŷ∞ under this assumption, as
most of our results do not hold.

Concluding Chapter 5, using the same simulations as mentioned before, but for varying val-
ues of R, we demonstrated the capabilities of Theorem 6. Under multiple extreme setups, the
estimation of ν appeared to be accurate, highlighting the potential for further investigation into
the inference of parameters determining the probability of mutation.

It is important to point out, that we are not the first to derive an expression of the form in
(3.35). A similar observation has been made by Täıb in [34]. Whereas we look at the proportion
of observed n-sized clusters up to some time t, Täıb investigates the proportion of alleles which
are represented by n individuals, exactly at t. The resulting expressions are almost identical,
as we can achive Täıb’s formula by replacing Ỹu with Z̃u in (3.35), but their interpretations are
quite different. Our approach assumes that data is continuously gathered throughout time until
t, which is a valid assumption in the context of epidemiological data. When this assumption fails,
and data is only available at a single point in time, Täıb’s model is more fitting. However, Täıb
claims that it is not possible to be more specific about his formula, which we do not believe to
be true for (3.35).

Because finding an explicit expression for Cα would be highly valuable, we set out to make
further attempts to discover this expression. We expect that the computation of this expression
will be as computationally expensive as that of (2.4), resulting in more accurate estimator without
losing computational efficiency. This would be worth a publication on its own. If we do not
succeed in this, a larger simulation study will be conducted. This study will involve maximum
likelihood estimation using P(Cα = n) with explicit terms up to some n ≥ 4, with a possible
application to real epidemiological data.
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