
STIR: Preventing Routing Table Overload Attacks in RPL-based IoT Networks

Marin Duroyon1 , Mauro Conti1 , Chhagan Lal1
1Delft University of Technology (TU Delft)

Abstract
Routing Protocol for Low Power and Lossy Net-
works (RPL) is a routing protocol for Internet
of Things (IoT) devices with limited resources.
As IoT is becoming prevalent, it is important to
secure the underlying protocols that compose it
such as RPL. This paper sought to avoid an RPL-
specific routing attack by modifying the proto-
col’s functionalities. As a result, STIR is a novel
method improving memory efficiency of routing
tables in RPL’s storing mode of operation to pre-
vent Routing Table Overload attacks. STIR as-
signs IPv6 addresses in a specific way to form
clusters of addresses, thus resulting in routing ta-
bles with sizes proportional to the node’s number
of sub-DODAGs. The proposed contribution in-
creases memory efficiency in RPL’s storing mode,
therefore preventing routing table overload attacks.
STIR necessitates few protocol modifications and
additional control messages making it an ideal pre-
ventive method.

1 Introduction
The Internet of Things (IoT) is expanding at an unprece-
dented rate and is unlikely to slow down [1]. The increase
in the appearance of ‘smart’ objects in modern life originates
from their benefits. For example, the healthcare industry has
a significant market opportunity in IoT as it helps insurance
companies, patients, physicians and hospitals [2]. According
to Wipro, the healthcare IoT infrastructure strongly reduces
costs and improves the efficiency of treatment [2]. For in-
stance, IoT devices allow the systematic monitoring of the
evolution of patients’ health conditions. With the increased
use of such devices, more scrutiny is dedicated into ensuring
privacy and security in IoT networks.

Different protocols allow communication within Wireless
Sensor Networks (WSN), networks of sensor-based IoT de-
vices. The utilized protocols correspond to different needs
demanded by the infrastructure. This research paper will ex-
plore the routing protocol used in low power and lossy net-
works (LLN) appropriately named: Routing Protocol for Low
Power and Lossy Networks (RPL). Such networks consist of
so-called ‘constrained nodes,’ which have limited memory,

processing power, or energy consumption [3]. Therefore, the
mitigations to existing attacks must strike a careful balance
between performance and security. Solutions must be com-
plete enough to defend the attack, but over-engineering might
hinder the performance of the RPL protocol.

Previous works have analyzed and identified solutions to
existing RPL-specific vulnerabilities such as DODAG Incon-
sistency, Replay, or Version attacks. For example, Verma et
al. offers a solution that “determines when to stop resetting
the trickle timer to save the node’s resources” [4, p. 7] thus
preventing control message overheads caused by DIS flood-
ing attacks. Moreover, Le et al. designed a Specification-
based Intrusion Detection System (IDS) which is effective in
detecting the topology attacks of RPL [5]. Topology vulner-
abilities describe a large set of RPL-specific attacks such as
DIS, Neighbor, Rank, Local Repair, and Sinkhole.

While RPL is at the forefront of routing protocols for LLNs
and the center of research for WSN protocols, security vulner-
abilities lack specific solutions and more research is required.
According to Raoof et al., there is an urgent need to research
solutions to “DIS attack, neighbor attack, RPL storing mode
attacks, DODAG inconsistency attacks, and replay attacks in
dynamic networks or with mobile nodes” [6, p. 20]. There are
research gaps in existing threats to RPL networks, therefore,
it is crucial to analyze different attacks. The goal of this paper
is to understand an RPL storing mode attack, the routing table
overload attack, and to propose a prevention method, STIR,
for such vulnerability. This attack has been mentioned as a
resource exhausting issue [7], but no direct mitigations have
been proposed for it at the time of writing. It is therefore im-
portant to cover such basis with the paper’s contribution. The
storing mode of operation, which will be discussed in the sec-
tion 2.2, is an RPL-specific property simplifying the protocol
but opening the door to various attacks.

This paper contributes to existing research by discussing
a novel protocol modification that prevents the RPL-specific
Routing Table Overload attack by simplifying routing table
entries. The goal of STIR is to use specifically assigned IPv6
addresses to perform address coalescing. Following a search
tree pattern, efficient storage and data packet routing avoids
memory overflow caused by the routing table overload attack.

This report seeks to explore: How can RPL protocol’s func-
tionalities be modified to avoid an RPL-specific routing at-
tack? This research question will be done by identifying an

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

RPL-specific vulnerability and designing a possible solution
to mitigate or prevent it.

Firstly, this paper will describe background information on
IoT and RPL in section 2. We will then discuss related works
in the domain of RPL security vulnerabilities and the attack
specific to the paper in section 3. In addition, section 4 ex-
plores the paper’s contribution by providing details of the at-
tack and solution with examples. Furthermore, a performance
analysis section, subsection 4.4, will seek to analyze the im-
pact of the prevention on RPL networks. Section 5 will re-
view the methodology and discuss future possible research
for STIR. Finally, section 6 will consider responsible research
in the context of this project and section 7 will draw an over-
arching conclusion on the topic in question.

2 Background
2.1 The Internet of Things
The IoT infrastructure permits the collection of digital data on
previously inanimate objects. For example, the GSM Associ-
ation made a point on how ‘smart’ trash cans gathered data
which turned around a famously “inefficient and resource-
intensive industry” such as waste collection [8]. IoT permits
the analysis of information coming from traditionally non-
computerized sources. Additional digital data in urban infras-
tructures would further allow to predict and simulate entire
cities [9], leading to efficient civil life and prosperous devel-
opment. While IoT provides many benefits, it also faces sev-
eral challenges including security as the networks can be the
victim of cyberattacks. While the data can be inconsequential
to a malicious attacker at times, the integrity of the network
might bear larger responsibilities. Smart devices are as useful
as the trust placed upon them. Hence, their reliability is of the
utmost importance.

2.2 Routing Protocol for Low Power and Lossy
Networks

The Routing Protocol for Low Power and Lossy Networks
(RPL) was developed as a layer 3 (OSI model) routing proto-
col serving the needs of “resource-constrained devices in in-
dustrial, home, and urban environments” [10, p. 1]. It is built
on top of the adaptation layer for IPv6 low-power wireless
personal area networks (6LoWPAN). This protocol permits
various types of intercommunication, such as point-to-point,
multipoint-to-point, and point-to-multipoint, between nodes
with unstable links called lossy networks.

RPL Concepts
To adhere to its purpose, routing for Low Power and Lossy
Networks (LLN), RPL is a distance vector routing proto-
col utilizing Destination Oriented Directed Acyclic Graphs
(DODAG) as a topology [11]. DODAGs allow RPL to opti-
mize traffic through a graph following a data sink format [3],
the sink node is called the root. Multiple Directed Acyclic
Graphs (DAG) can be merged together to form a DODAG
which is the backbone of the routing protocol.

Multiple types of control messages are used in RPL. The
DODAG Information Solicitation (DIS) message obtains in-
formation about nearby DODAGs from an RPL node [3].

The DODAG Information Object (DIO) carries data about the
DODAG of the sender node. Moreover, the DIO control mes-
sage is utilized as an answer to a DIS message. Finally, Desti-
nation Advertisement Object (DAO) and Destination Adver-
tisement Object Acknowledgement (DAO-ACK) are used to
share destination information and acknowledge DAO mes-
sages respectively [3]. DAO messages are sent upwards, to
follow the DODAG topology, and announce nodes in their
sub-DODAG [12]. These messages declare children nodes in
the RPL instance from the source node.

RPL has two modes of operation: storing and non-storing
mode. In the non-storing mode, the DODAG’s root is the
main traffic hub and routes all data packets [11]. On the con-
trary, the storing mode allows routing through any node. Fur-
thermore, in storing mode, RPL data packets must travel up-
wards towards a common ancestor before taking a downward
route towards a destination. The storing mode of operation
will be the subject of interest in this paper.

DODAG Construction
This paper will present a preventive solution to the Routing
Table Overload Attack through a modification in the RPL
DODAG construction step. Therefore, it is important to un-
derstand the existing methods used to build and maintain
DODAGs.

The initial step is a DIO message from the root sharing in-
formation regarding the network, thus allowing new nodes to
join the RPL instance [7]. Obtaining a DIO message, the new
node wishing to join the network can determine its preferred
parent nodes and rank through the objective function (OF) of
RPL [13]. The rank is an RPL-specific value representing the
logical distance to the root node of the DODAG. Nodes then
build an upward route towards their preferred parent and can
have backup parents in case the default route fails [13]. The
response to a DIS message or simply broadcasting DIO con-
trol packets allows to further transmit information for newer
children nodes. The DAO message, sent from a node to its
parent, subsequently permits to the build of downward routes,
and, the parent then recursively sends DAO messages to warn
higher up nodes of existing routes.

3 Related Works
This paper will analyze an RPL-specific attack, the routing
table overload attack, and propose a solution as prevention. It
is important to understand existing security vulnerabilities on
the routing protocol for LLNs. We will explore the taxonomy
of security attacks on RPL networks. Then in the subsection
3.2, we will focus on the routing table overload attack.

3.1 RPL-specific Attacks
According to Mayzaud et al., RPL attacks can be separated
into three categories: traffic, resources, and topology [7].
While these differences are exploited and impact the network
differently, they all pose a risk to the network and should be
identified and mitigated if possible. Traffic attacks encom-
pass more traditional sniffing and misappropriation attacks
[7], therefore they will not be discussed throughout this paper.

Resources Attacks
The objective of resources attacks is to encumber the re-
sources of RPL nodes, such as memory, processing, or en-
ergy. Flooding attacks are directly instigated by a malicious
node. Their goal is to overload the network with control mes-
sages leading to network suffocation. For example, the DIS
attack uses the DIS control message, network information so-
licitation, to trigger a forced response from receiver nodes
[4]. In consequence, this affects the network control packet
overhead and results in increased power consumption in the
affected network nodes. This attack has been mitigated in
2020 by Verma et al. [4].

The rank attack is an example of an indirect resource at-
tack. As a reminder, rank is an attribute in each child node
that indicates the logical distance to the root node [3]. More-
over, increasing rank values as the DODAG deepens avoids
loops, thus keeping the DODAG’s integrity. By modifying
this property, nodes can become more or less attractive as
possible parents to their neighbors. That means that if a ma-
licious node increases its own rank, upwards traffic will be
rerouted to that node thus disrupting the DODAG by gener-
ating loops [14]. Furthermore, this leads to inefficient rout-
ing [15], therefore increases resource usage by the affected
nodes in the network. If nodes are constantly dealing with
non-optimal routing their resources become exhausted.

While resource attacks have two facets, direct and indirect,
these types of attacks drain resources on already constrained
devices. As RPL is optimized for LLNs, it is becoming in-
creasingly apparent that it is necessary to strike a balance be-
tween performance and security. Meaning that the protocol
must have enough security measures to avoid rendering the
network unusable while avoiding as many overhead compu-
tations and control messages. Attackers will use every oppor-
tunity to corrupt the nominal functioning of the routing pro-
tocol and it then becomes the goal of the research to weigh
the pros and cons of solutions.

Topology Attacks
An attack capable of targeting the topology of an RPL at-
tack belongs to the Topology attack category. Topology se-
curity vulnerabilities can be further distinguished into sub-
optimization and isolation classes, according to Mayzaud et
al. [7]. Sub-optimization attacks attempt to deteriorate the
performance of the RPL protocol by corrupting the nomi-
nal optimal IoT network setup. For instance, the routing ta-
ble falsification attack in the storing mode of operation at-
tempts to modify routing table entries of parent nodes to cre-
ate fake routes through the network. In consequence, the
attacked nodes route their messages through non-optimized
routes leading to impacts such as pack delays and drops, as
well as network congestion [7].

Isolation attacks in the topology category of RPL-specific
vulnerabilities attempts to isolate “a node or a subset of nodes
in the RPL network” [7, p. 466]. In consequence, these nodes
are unable to communicate with surrounding neighbors and
lose their importance on the infrastructure. The most com-
mon example is the blackhole attack, which is performed by
a malicious node with legitimate children nodes. Its goal is to
drop data packets routed to the malicious node [16]. Leading

to the isolation of children nodes. The DAO inconsistency at-
tack in the storing mode of operation utilizes the RPL mech-
anism to repair obsolete downward routes to remove legiti-
mate routing links, thus isolating certain nodes [7]. Having
the ability to set apart sections of an RPL network empow-
ers an attacker. This permits cutting off part of the topology
potentially creating a considerable amount of damage.

The topology of the routing protocol for LLN is a fragile
web of interconnections. Any attack on these links can impact
the normal functioning and awareness of the infrastructure.

3.2 The Routing Table Overload Attack and
Related Works

The Routing Table Overload attack, as the name describes, is
an overload of the routing table entries within parent nodes.
This attack exploits all RPL’s devices with limited memory.
A malicious node attempts to encumber a parent through an
overwhelming amount of data packets. This attack is par-
ticularly prevalent in the Storing Mode of Operation as the
routing tables are established in every node. As RPL devices
can be excessively constrained, the routing table overload at-
tack has more of an impact with RPL in storing mode. The-
oretically, this attack is present in the non-storing mode of
operation, nonetheless, as the routing is performed through
the root node, which often is a non-constrained device [11], it
requires more effort to overload seemingly limitless memory.
For the rest of the paper, we will consider the RPL network
in the storing mode of operation.

The routing table overload attack is of the resources and
topology types of attacks as it overflows memory on parent
nodes [17] while at the same time blocking the creation of
“legitimate optimized routes” [18, p. 6]. Kamble et al. de-
scribe the attack without mentioning existing solutions [17].
The vulnerability identification first appeared in Mayzaud’s
et al. taxonomy paper and was described with no available
mitigation [7]. Furthermore, the routing table overload at-
tack affects Availability and Integrity in the Confidentiality,
Integrity, and Availability (CIA) model which impacts bat-
tery and memory normal functioning.

On the other hand, several solutions to limit memory over-
flow in the storing mode of operation have been erected in
the world of RPL research. One of these solutions is called
D-RPL and seeks to bypass memory limits in routing nodes
by utilizing multicast techniques [19]. Meaning that when
a parent node exceeds its routing table buffer and is unable
to identify where to route an incoming packet, the parent
node sends the data packet on the “D-RPL multicast chan-
nel” where other nodes with more memory will be able to
correctly route the information [19]. As described by Oh,
Hwang, et al., D-RPL contains some limitations as its imple-
mentation requires increased network traffic due to the mul-
ticast messages [20]. Moreover, this solution only bypasses
the memory limit issue and there is no active method to limit
overloads in the future or to slowly regain routing table en-
tries. Therefore, an RPL network with an overloaded parent
node will stay overloaded and constantly use the multicast
D-RPL technique for the rest of the IoT infrastructure, if the
topology is static.

An interesting proposition, moving away from non-storing

and storing mode-specific downward route issues, attempts
to hybridize the two RPL modes of operation to improve the
performance of downward packet transmission in RPL [20].
By separating routing authorities for leaf and parent nodes
this novel technique holds on to the benefits of each model.
This paper proposes a new mode of operation but does not ad-
dress specific memory overloads caused in the already imple-
mented storing mode, like MERPL [21]. MERPL is a modi-
fication to the storing mode in RPL which improves memory
efficiency, by re-ordering routing entries throughout the net-
work, thus preventing routing table overload attacks. This
method, however, generates packet processing overhead as a
re-balancing of routing tables needs to be performed.

In this article, we propose STIR, a protocol modification
to RPL’s storing mode of operation that clusters addresses
from sub-DODAGs together. Ultimately, routing nodes solely
store intervals of addresses instead of every child in a sub-
DODAG. This method enhances and addresses storing mode
issues while its intention is to solve the routing table overload
attack. STIR’s proposed modification on the RPL protocol
can help secure against routing table overload attacks.

4 Methodology
Throughout this section, we will explore the routing table
overload attack in more detail by examining an example.
Having understood the impact and ability of an attacker to
perform the memory overflow attack, the paper will then
present its contribution as a preventive solution against the
overload attack in RPL’s storing mode of operation. Even-
tually, section 4.4 will detail a performance analysis of the
paper’s contribution.

4.1 Routing Table Overload Attack in Action
As a reminder, the routing table overload attack is a vulner-
ability, prevalent in RPL’s storing mode, where an attacker
overflows the node’s routing table’s entries leading to the im-
possibility to add new routing table entries. In consequence,
legitimate nodes joining the network will be inaccessible by
the parent nodes as no path will be stored to reach them. RPL
implementations should account for nodes with “no more
than 128kB (host) or 256kB (parent) of memory” [10, p. 2].
With IPv6 addresses taking 128 bits or 16 bytes and assum-
ing simple storage of only the IP address, the routing table
can store 16000 addresses if the parent has 256kB of memory.
Practically RPL uses volatile memory, RAM, to store its rout-
ing table entries. Consequently, with RPL open-source imple-
mentations and standard devices running the routing protocol,
their RAM can only store 50 to 60 routing entries if the RAM
is dedicated to the network stack [19] and if we remove soft-
ware application memory requirements. It is realistic for a
malicious non-constrained device to spoof messages leading
to an overload in the routing tables of a network.

Example of a Routing Table Overload Attack
To perform a Routing Table Overload attack, a malicious
node can spoof DAO packets and establish illegitimate down-
ward nodes [7]. For example, in the Figure 1, the mali-
cious node N3 sends messages to the parent node N2 asking
to route packet, through DAO messages, to children in the

sub-DODAG of N3. In accordance, N2 realizes that children
nodes of N3 exist and therefore creates routing table entries
for these faked nodes S1 and S2. On a small scale this might
seem inconsequential, however, with the limited memory of
N2 and more powerful devices, a malicious node can over-
flow the memory of parent nodes, such as N2. As a result,
the routing table entries are completely full, thus blocking
the creation of routes towards new legitimate nodes [18]. Ac-
cordingly, this leads to an impact on the efficiency of the net-
work, negatively affecting the routing to certain nodes.

Figure 1: An example of a routing table overload attack performed
by the malicious node N3

4.2 Our Contribution
This section will discuss the paper’s contribution, STIR.
RPL’s storing mode of operation has a large memory flaw
which results in the existence of the routing table overload
attack. By increasing the routing table’s memory opportuni-
ties can prevent the mentioned vulnerability and improve the
versatility of the storing mode. This section will propose a
method to efficiently store routing table entries.

STIR in Detail
STIR is a novel method utilizing search tree patterns and in-
tervals in order to efficiently store and route data packets to
the destination. By changing the routing methodology, IPv6
addresses can be coalesced, within RPL, to effectively route
packets to clusters rather than individual nodes. Indeed, STIR
seeks to let parent nodes store several children nodes into one
routing table entry rather than keeping a one-to-one address-
ing. The proposed solution modifies two elements of the RPL
protocol: the way a node joins the network and the routing
methodology. However, there are several sub-tasks that must
be performed for a node to correctly be part of the infrastruc-
ture. In STIR, a joining node is assigned an IPv6 address
by the parent node it is connecting to. As we are discussing

the storing mode of operation, any node will be or become a
parent node and store a routing table.

The previously described steps allow for the setup of the
RPL DODAG and provide an infrastructure to perform rout-
ing operations. STIR also modifies the way routing is per-
formed. Instead of storing one address to one network hop,
similar to Figure 2, STIR allows a parent to store one interval
of addresses to one network hop, as seen in Figure 3. The
interval contains the minimum and maximum IPv6 addresses
able to be routed through the node.

Figure 2: An example of routing table entries before STIR - Four
stored entries

Figure 3: An example of routing table entries improvement due to
STIR - Two stored entries

A parent node stores in memory the global interval it can
deliver to, this is obtained when first joining the network from
its own parent. The node can then use the general steps de-
scribed in subsection 4.2 to divide its global interval into sub-
intervals for children nodes. The DODAG is then built with
decreasing interval sizes following the same pattern as de-
scribed above. Indeed, every parent node simplifies their rout-
ing table entries, thus reducing memory usage while setting
up structures for future joining nodes. To route, whenever a
data packet reaches the node, the parent identifies the desti-
nation IP address and checks the interval it belongs to. Ac-
cordingly, the next network hop can be determined and the
information packet is forwarded to that link. If the IP address
is out of its own global interval, it redirects the data packet to
its parent.

Initializing and Implementing STIR
STIR relies on a specific network arrangement to benefit from
the efficient routing and storage provided by the intervals. In
order to initialize the network to comply to STIR’s properties,
an algorithm or list of steps should take place. This paper
will provide the essential features for STIR, as a lack of time
prevents a detailed implementation. Various ways exist to de-
velop STIR, for instance, one could use RPL’s options such
as Prefix Information Option and RPL Target. These could
facilitate the assignment of prefixes (IPv6 addresses follow-
ing a specific order) and the routing to clusters of nodes [3].

Nonetheless, the following section will discuss a global ap-
proach to the contribution in order to better grasp an under-
standing of STIR. Furthermore, following standard steps al-
lows the reader to better reflect on the solution’s place in the
RPL infrastructure.

With STIR, RPL network nodes must store an interval, a
minimum (min), and a maximum (max) of IPv6 addresses
in their own sub-DODAG. The interval is the stored prop-
erty by the parent allowing to identify coalesced addresses.
While, the minimum and maximum IPv6 values allows to
define tight boundaries of the utilized allocated space in an
interval. In addition, the min and max values highlight the
interim which cannot be redefined, informing the parents of
the latter. For instance, when joining the network a node is
assigned to the interval [100-200] and contains a few nodes
in its sub-DODAG. The node’s interval is then [100-200] but
its min value could be 100 and its max value 135. In con-
sequence, the parent knows the minimum space required for
that node.

A node joining the network, directly requests an IPv6 ad-
dress to the parent it wishes to connect too. The parent, acting
as a SLAAC server, responds with an address and an interval
for that node. To calculate these properties, the parent utilizes
knowledge of allocated space in its own interval. If possible,
if the interval allows it, the parent subdivides its interval with
the new joining node. However, if no space allows a new node
to join, the parent requests its own parent for more available
space to allocate the new child that is trying to join. Consid-
ering these steps are done at every level, they can recursively
free up space for a new node at a higher rank. Every time a
joining node has a lower or higher IPv6 address than the par-
ent, the min or max value must be updated. Furthermore, this
property update should recursively take upward routes until a
higher or lower value is found. Thus, lower ranked nodes are
informed of min and max values in the sub-DODAGs.

A new node tries to join the network, the parent acts ac-
cordingly:

1. Is the parent able to allocate enough interval space to
add the new node to my routing table, keeping in mind
min and max of each sub-DODAG stored in the routing
table entries?

• If yes, send the IPv6 address and interval to the
child.

• If no, ask the parent’s parent for more interval space
and transmit it to the child along with an IPv6 ad-
dress. This method is recursive and will go upwards
until the necessary interval space is returned.

2. Finally, if the assigned IPv6 address is smaller than the
parent’s min or larger than the parent’s max, update the
node’s min or max accordingly.

The majority of the algorithm is performed by the parent
node, occasionally with lower ranked nodes, in order to set up
the STIR-RPL system. The implementation is left to the ven-
dors to identify allocatable interval space and how to choose
the IPv6 address. For instance, the IPv6 address could be as-
signed by choosing the minimum of the transmitted interval
to the child. Through these general instructions, there are few

control messages that emerge. Control messages are needed
to identify interval space if the direct parent cannot subdivide
its own interval. Furthermore, updating the sub-DODAG’s
min and max values is transmitted information. This subsec-
tion explored the general instructions needed to initialize and
implement STIR. A deep dive into the instructions and their
repercussion on RPL’s performance will be analyzed in sec-
tion 4.4.

Point of Views
To understand STIR in more detail, it is interesting to explore
the point of views of the new and parent/parent node during
the joining of the network as this preventive solution seeks to
only change the initial steps of the RPL protocol.

From the joining node’s perspective:

1. Identify the preferred parent through a similar method as
RPL’s Objective Function (OF).

2. Request DODAG information and IP with interval using
a DIS and SLAAC control messages.

3. Receive a DIO control message. Assign IPv6 address
and store the provided interval.

4. Routing steps: If it is a leaf node, routing is done
through upward routes. If the node is now a parent, use
the parent node’s perspective, see the list 4.2 below.

Following these steps, the new node is now part of the RPL
network. Moreover, it can now act as a parent node following
the storing mode of operation if a node decides to join its sub-
DODAG. To clarify the OF, RPL has a standard technique to
select routes and preferred parents described in RFC 6552.
For instance, OF0 or Objective Function Zero has the goal to
select potential parents for upward routes [13]. Furthermore,
the RFC focuses on the connectivity above everything else to
choose a parent (6 out of 11 ordered criterion [13]); meaning,
no information of the DODAG is previously required and the
node can determine its connection in isolation. Therefore, by
using these standards and replicating a similar method before
joining the network it is feasible for STIR to occur.

The steps required from the parent node’s perspective will
now be explored in more detail:

1. From a node trying to join the network, the parent re-
ceives a SLAAC message.

2. In response to the new node, the parent should send an
IP address and an interval that was determined.

3. The parent then appends the interval to the routing table
using the new node as the next hop.

4. Routing steps: If the node is not in the parent’s global
interval, reroute through upward routes. If the node is
in the parent’s global interval, identify in which interval
of the routing table buffer the IPv6 destination address
corresponds to and route accordingly.

The previous steps are a general overview of what a par-
ent node experiences when a new node seeks to join its sub-
DODAG.

Why is STIR useful?
The novel protocol modification of RPL was designed with
the goal of preventing the routing table overload attack. It
successfully achieves this objective by greatly reducing the
size of routing table entries, thus permitting more nodes to
join the network without adding new entries for every node.
In the traditional storing mode of operation, RPL nodes must
store routes to every node in their sub-DODAG, therefore,
a malicious attacker could falsify the existence of nodes in
the sub-DODAG forcing parent nodes to store additional il-
legitimate routing entries. STIR-RPL prevents this attack by
clustering sub-DODAGs with previously discussed intervals
in every routing table entry. A malicious node could fake
as many children nodes as it wishes but the parent node will
never add a routing entry. Therefore, it will not overflow in
memory due to the routing table buffer. The only way for
new entries to be appended to the routing table entry is if a
new node is joining the parent node directly. This issue will
be further discussed in section 5, but a simple response is that
it will require a large amount of colluding nodes to be real-
istic. STIR is intended to prevent the routing table overload
attack, but it is also an improvement on RPL’s storing mode.
It permits for a more memory-efficient routing protocol and
this aspect can be taken advantage of to ameliorate the current
routing protocol.

STIRing with an example DODAG
This subsection will demonstrate STIR’s routing methodol-
ogy with the goal of showing an example. Throughout this
paragraph, we will use a small DODAG with simplified in-
tervals and IPv6 addresses. Taking for example routing from
Node 3 (N3) with IPv6 address 2 to N5 with IPv6 address 62
in Figure 4.

1. N3 is trying to send a packet to IPv6: 62. N3’s interval
is [2, 29] and 62 is not in N3’s interval, therefore, N3
routes upwards to N1.

2. N1’s interval is [1, 60] and 62 is not in N1’s interval,
therefore, N1 routes upwards towards the root.

3. Root’s interval is [0, 100] so 62 is in the interval. The
root node now iterates through its routing table to find
the interval which contains 62. 62 is contained in the
interval [61, 100], therefore the next hop is N2 with IPv6
address 61.

4. N2’s interval is [61, 100] containing 62, therefore, N2
routes downwards towards the next hop that contains 62
in its interval.

5. N5’s interval is [62, 100] and N5’s IPv6 address is 62.
The packet has arrived at its destination.

4.3 Miscellaneous Information for STIR
Assigning IPv6 addresses
STIR requires assigning IPv6 addresses using a specific algo-
rithm. This can be done by utilizing a SLAAC or DHCPv6
server within every parent node a child is attempting to con-
nect to. Therefore, this allows the parent node to immedi-
ately calculate the IPv6 address, using the ideas of subsection
4.2, and to distribute the IP address as a traditional SLAAC

Figure 4: An example of a DODAG following the STIR method

server. IPv6 addresses are assigned through IPv6 Stateless
Address Autoconfiguration (SLAAC), DHCPv6, or other out-
of-scope techniques [22]. SLAAC dynamically calculates an
IPv6 address using information from Router Advertisement
(RA) messages and the MAC of the connecting device. The
first 64 bits (out of 128) of the address identifies the network
while the remaining 64 are usually a combination between the
MAC address and hexadecimal value ff:fe, called the EUI-64
formation [23]. STIR seeks to exploit the remaining 64 bits to
uniquely identify every device on the network. Instead of us-
ing more or less random final 64 bits, STIR will assign these
values using a specific algorithm implementation discussed
in subsection 4.2. Accordingly, it is realistic for STIR to take
place in an IPv6-based environment such as RPL, moreover,
this would only target a distinct modification in the already
existing IPv6 addressing server.

Interval Space
This paragraph seeks to demonstrate the validity of using in-
tervals and how in practice not many interval re-balancing
should happen. For simplicity, we will show how intervals
will grow with a full DODAG. In STIR, we are dealing with
intervals of IPv6 address which are 128 bits long and usu-
ally only modifying the Interface ID which is 64 bits, thus
the root interval size is 264. The Interface ID, the end section
of the IPv6 address, is the only modifiable part as it can be
done through the SLAAC or DHCPv6 system. Assuming a
full tree with 64 sub-DODAGs at each level, as we already
discussed an RPL device on the network can store 50-60 de-
vices is the maximum amount of routing entries that can be
stored in RAM [19]. The root node (layer 0) has an interval
size of:

264

Now we assume 64 or 28 nodes (layer 1) join the root node,
their interval size will be:

264/28 = 256

There will be 1 + 28 nodes in the DODAG. Now 64 more
nodes join: interval size per node on layer 2.

256/28 = 248

There will be 1+28+216 nodes in the DODAG. These steps
can be extended until there are 8 layers in the DODAG, mean-

ing at the last layer the interval size will be 1. By adding the
totality of nodes per layer we get:

1 + 28 + 216 + ...+ 264 = 18519084246547628289

Therefore, using STIR, a full DODAG can efficiently route
to sufficiently enough nodes. Moreover, using different re-
balancing techniques, DODAG’s can be balanced with spe-
cific weights leading to a variety of depth in the network.

4.4 STIR’s Performance Analysis
The research question of the paper attempts to find a solution
to an existing RPL-specific attack. Having proposed STIR as
a solution to the routing table overload attack it is of inter-
est to analyze the performance of the solution. This allows
to understand if STIR is a viable solution for more research.
This subsection will present a performance analysis based on
Control Packet Overhead and Routing Table Size. These met-
rics were chosen, out of a list, as they were proposed in the
standard RFC 6687 [24]. The three metrics that are to be ig-
nored in this paper are Delay Bound for P2P Routing, Path
Quality, and Loss of Connectivity. Delay in P2P routing is
disregarded as STIR does not affect RPL protocol once the
topology initialized. Loss of Connectivity discusses RPL in
a non-static organization and should be the subject of further
research. Path Quality is a metric analyzing the chosen opti-
mum path by RPL, a metric feasible to observe with a simula-
tion not in the scope of this paper. Moreover, STIR routes in
non-variable way, using intervals, therefore, the path quality
metric would be irrelevant for this research. A summary of
the analyzed performance metrics and their context in STIR
can be observed in Figure 5.

Figure 5: STIR’s discussed performance based on RPL’s perfor-
mance metrics from RFC 6687

First of all, RFC 6687 clarifies that routing table size is de-
termined by the number of entries for each node [24]. In addi-
tion, “each entry has the next-hop node and path cost associ-
ated with the destination node” [24, p. 8]. The Routing Table
Size metric is appropriate to analyze STIR as the preventive

solution is reducing the routing table size. In traditional stor-
ing mode RPL, the nodes closer to the DODAG root will often
store more routing table entries [24], this is due to the fact that
the node must store routes to all children nodes. By using ad-
dress coalescence with intervals, STIR permits to only store
as many routing table entries as there are sub-DODAGs con-
nected to a parent node. In consequence, rather than storing
a complete list of children in every sub-DODAG connected
to a node [11], STIR greatly optimizes routing table entries.
Moreover, lower ranked nodes do not require larger memory
to store important routing table entries. Due to the nature of
the proposed solution, STIR has a great benefit on the Routing
Table Size metric.

An important metric to discuss the feasibility of STIR-RPL
is the control packet’s overhead. In comparison to traditional
storing mode RPL, STIR potentially adds extra packets when-
ever a new node tries to join the topology. Following subsec-
tion 4.2, new messages are added to the protocol to answer
to STIR’s properties. The IPv6 Router Advertisement (RA)
packets used to obtain an IPv6 address and an interval will
be the same then any other topology. However, this differs
when a parent node needs to transmit upward messages in
order to have more interval space or to update the min and
max values. It is complicated to quantify how many addi-
tional control packets will be needed to answer to these STIR
needs, especially since these messages can recursively attain
the root node. Updating min and max values will be nec-
essary, leading to additional data packets. Nonetheless, it is
important to note that following paragraph 4.3, some of these
messages will be extremely rare in large networks. In realis-
tic RPL topologies, with more or less 60 nodes, the interval
space control packets will never be utilized. Theoretically,
STIR adds additional control messages for that could appear
to be a heavy toll on STIR’s feasibility, but, with the realistic
interval space the occurrence of this is very unlikely.

STIR is a protocol modification to RPL which only modi-
fies the method of a node joining the network. Accordingly,
the affected performance metrics are contained to the routing
table size and the control overhead messages. On one hand,
STIR’s purpose is to diminish the size of the routing tables
which is a benefit to this performance metric. On the other
hand, STIR increases the control message overheads through
interval space request and an update of node properties. The
data packet for more interval space is improbable and only
happens when a node joins the network. The impact on RPL’s
performance with STIR is minimal but must be taken into ac-
count.

5 Discussion
Throughout this paper, a novel technique has been presented
to prevent the routing table overload attack in RPL networks.
As the vulnerability stems from a lack of storage in routing
table buffers of the storing mode of operation, the preven-
tion opted to solve the issue through a change in the rout-
ing methodology. By utilizing address coalescence, individ-
ual parent nodes can store entire sub-DODAGs in a single
routing entry. This method requires specific node address-
ing, entirely feasible with a modification to the RPL proto-

col, named STIR. While STIR has a goal of preventing the
routing table overload attack, its implementation proposes an
improvement to the already existing storing mode in RPL.
Therefore, it alternatively proposes protection against acci-
dental memory overflow within networks implementing RPL
in storing mode. In the following sections, the conclusions
from the methodology using an advantages and disadvantages
approach will be explored. While the ultimate subsection 5.2,
future research that could benefit STIR and what is left to be
explored will be discussed.

5.1 Conclusions from the Methodology
Following solution propositions, a balance between benefits
and disadvantages can be drawn on the STIR solution. The
first step is to understand the performance analysis done in
subsection 4.4, which presents two affected performance met-
rics. From the previous analysis, it is already demonstrated
that STIR benefits the routing table size but has an eventual
slight increase in terms of control packet overhead. How-
ever, as could be determined, the total number of additional
control messages would greatly be limited in realistic RPL
topologies.

Advantages
STIR is an RPL protocol modification leading to an in-
crease in memory efficiency for RPL parent nodes in the stor-
ing mode of operation. This novel approach to the routing
methodology stores clusters of addresses in a single routing
table entry. Identifying the next network hop is simplified to
comparing intervals in the routing table. In STIR-RPL, any
node storing routes will only have as many entries as the node
has children. STIR coalesces addresses from the same sub-
DODAG, therefore, the stored intervals will store the entire
sub-DODAGs of every children node. This property allows
routing table overload attacks to be prevented no malicious
child node can overflow a parent’s memory by the simulation
of illegitimate devices. All IPv6 addresses from the malicious
node should be in the interval range of that node, and if they
are not, the parent will simply discard the packet. Moreover,
a request for more interval space will not add an entry but
simply re-balance the intervals accordingly. To restate the
practicality of STIR, this technique can also be used in RPL
storing mode without an attacker attempting to overflow par-
ent nodes’ RAM.

Disadvantages
STIR presents issues which does not discredit the solution
but demonstrates more research is needed to fill in the gaps.
Indeed, an initial problem that faces STIR-RPL, as well as
traditional RPL, is network mobility. Parent nodes moving
around on the DODAG might cause issues as routing routes
are completely corrupted. However, this issue is also present
in traditional RPL in storing mode. A consequence of ap-
proaching simple protocol modification is that issues present
in the original protocol exist in STIR-RPL. Although, nodes
in RPL might occasionally have backup feasible parents al-
lowing them to reroute their data packets [13]. This func-
tionality is missing in STIR, nonetheless, more research in
dealing with mobile nodes could elucidate this issue.

In terms of security vulnerabilities which the STIR method
faces, the technique is not impervious to collusion attacks.
As STIR simplifies routing table entries for sub-DODAGs, it
cannot regulate on its own the number of nodes attempting
to connect to a single parent node. There are as many routing
entries as there are children, unfortunately or with enough co-
ordination, the memory can be overflowed with enough ma-
licious collusion. In addition, the communication to find in-
terval space and update node properties from paragraph 4.2
must be secured a little more thoroughly. A system of expo-
nential back-off linked to sufficient interval allocation could
be a feasible solution, however, more research is needed.

STIR’s use of intervals opens the door to discussion on any
potential disadvantage of using intervals in RPL’s routing en-
tries. While current RPL implementations store a single IPv6
address for one hop, STIR requires the storage space of two
addresses per routing entry to bound the interval. This slight
disadvantage is necessary to permit a more memory-efficient
network. Moreover, the proposed contribution will most
likely need to access and modify routing entries more often
than traditional RPL. The increased strains will be placed at
the moment a node joins the network, therefore, this can be
accounted for as startup overhead.

5.2 Future Research Directions
1. Research the mobility of RPL nodes in the storing mode

of operation.

2. Research collusion between malicious node with the
same rank.

3. Secure update control messages in STIR.

4. Perform a COOJA simulation to verify the implementa-
tion steps and practical performance metrics.

6 Responsible Research
RPL is a protocol used in many IoT infrastructures and has
an important responsibility in domains such as healthcare,
critical infrastructure, and transportation. A security issue
or wrong implementation can have a disastrous effect on
a technology with a market share of $381.30 billion [25].
Therefore, it is important to realize the ethical impact borne
by the proposition of a protocol modification. An imple-
mented mishap can negatively affect patients in the health-
care field. The routing table overload attack can have grave
consequences on IoT networks and should never be exploited
without proper approval. Moreover, an issue with STIR can
open the door to even more cyberattacks, as steps ease or al-
low malicious attackers to find backdoors into networks. For
this reason, this paper is the result of many weeks of research,
and it then was reviewed by supervisors in the field of cyber-
security and the internet of things. A great deal of thought
were spent improving and verifying the feasibility of the con-
tribution. Furthermore, directions and ideas sought to impede
future malicious actions on RPL networks. An important em-
phasis is placed on the discussion of future work as more re-
search and peer reviews are needed to fully form the idea of
STIR. Vendors should make sure to fully prove the efficiency
of STIR before implementing it in the wild.

With the contribution brought to light by this paper, it is
important to discuss the reproducibility of STIR. This arti-
cle does not present any specific data in regards to STIR,
but, it does provide information on the potential performance
brought by the novel protocol modification. As the paper does
not provide a specific implementation, in the end the perfor-
mance metrics could vary between vendors using STIR. The
general performance metrics follow the described ideas of
STIR and are therefore reproducible. For instance, the reduc-
tion of the number of routing table size is proportional to the
number of sub-DODAGs of the parent. This property follows
the STIR methodology and can be observed and reproduced
to derive performance metrics of the routing table size. The
authors of this paper welcomes more research into the perfor-
mance of STIR through simulations and other tests.

7 Conclusion
This paper proposes STIR, an RPL protocol modification that
simplifies routing table entries through address coalescing.
The preventive method originates from an answer to the re-
search question: how can RPL protocol’s functionalities be
modified to avoid an RPL-specific routing attack? This so-
lution prevents routing table overload attacks by permitting
parent nodes to solely store as many entries as it has children
or sub-DODAGs. As a result, no malicious child node can
create new routing table entries based on fake nodes in their
own sub-DODAGs. The strong advantage of STIR is that
it provides a relevant modification to prevent storing mode
RPL issues. Storing mode is limited by the constrained nodes
acting as routers. Providing a more efficient way to store
and route data packets allows larger RPL networks in stor-
ing mode. STIR improves on the routing table size metric,
nonetheless, the protocol modification slightly reduces per-
formance by adding additional control messages in order to
inform higher nodes of STIR properties.

While this paper seeks to present a complete solution to the
routing table overload attack, the preventive method, STIR,
could benefit from additional research to tie the ends to-
gether. As an example, more research into the mobility of
RPL networks could help implement mobile nodes in STIR.
Moreover, a detailed algorithm to follow the re-balancing of
STIR interval trees would benefit future implementations of
STIR. Finally, with a detailed implementation a simulation in
COOJA could verify the validity and efficiency of the paper’s
contribution.

References
[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aled-

hari, and M. Ayyash, “Internet of things: A survey
on enabling technologies, protocols, and applications,”
IEEE Communications Surveys and Tutorials, vol. 17,
pp. 2347–2376, 10 2015.

[2] R. Karjagi and M. Jindal, “Iot in healthcare industry
— iot applications in healthcare - wipro.” [Online].
Available: https://www.wipro.com/business-process/
what-can-iot-do-for-healthcare-/

[3] A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, and R. Alexander, RPL: IPv6 Routing

https://www.wipro.com/business-process/what-can-iot-do-for-healthcare-/
https://www.wipro.com/business-process/what-can-iot-do-for-healthcare-/

Protocol for Low-Power and Lossy Networks. IETF,
Mar 2012. [Online]. Available: http://dx.doi.org/10.
17487/RFC6550

[4] A. Verma and V. Ranga, “Mitigation of dis flooding at-
tacks in rpl-based 6lowpan networks,” Transactions on
Emerging Telecommunications Technologies, vol. 31, 2
2020.

[5] A. Le, J. Loo, K. K. Chai, and M. Aiash, “A
specification-based ids for detecting attacks on rpl-
based network topology,” Information (Switzerland),
vol. 7, 5 2016.

[6] A. Raoof, A. Matrawy, and C. H. Lung, “Routing at-
tacks and mitigation methods for rpl-based internet of
things,” IEEE Communications Surveys and Tutorials,
vol. 21, pp. 1582–1606, 4 2019.

[7] A. Mayzaud, R. Badonnel, and I. Chrisment, “A
taxonomy of attacks in rpl-based internet of things,”
International Journal of Network Security, vol. 18,
pp. 459–473, 2016. [Online]. Available: https:
//hal.inria.fr/hal-01207859

[8] G. Association, “Smart trash cans are quietly sup-
porting the rise of the smart city,” Nov 2019.
[Online]. Available: https://www.gsma.com/iot/news/
smart-trash-cans-telebelly/

[9] M. Akkurt and K. Küçük, “Simulation of smart city ap-
plications based on iot technologies with cupcarbon,”
in 2018 3rd International Conference on Computer Sci-
ence and Engineering (UBMK), 2018, pp. 179–184.

[10] H. S. Kim, J. Ko, D. E. Culler, and J. Paek, “Challenging
the ipv6 routing protocol for low-power and lossy net-
works (rpl): A survey,” IEEE Communications Surveys
and Tutorials, vol. 19, pp. 2502–2525, 10 2017.

[11] M. Richardson and I. Robles, RPL- Routing over Low
Power and Lossy Networks. IETF 94, 2015, pp. 1–66.
[Online]. Available: https://www.ietf.org/proceedings/
94/slides/slides-94-rtgarea-2.pdf

[12] B. Ghaleb, A. Al-Dubai, E. Ekonomou, M. Qasem,
I. Romdhani, and L. Mackenzie, “Addressing the dao
insider attack in rpl’s internet of things networks,” IEEE
Communications Letters, vol. 23, no. 1, pp. 68–71,
2019.

[13] P. Thubert, “Objective Function Zero for the Routing
Protocol for Low-Power and Lossy Networks (RPL),”
RFC 6552, Mar. 2012. [Online]. Available: https:
//rfc-editor.org/rfc/rfc6552.txt

[14] D. S. S. A. Professor, I. M. S. A. Professor, and
S. Jain, “Impact factor: 4.295 a detailed classification
of routing attacks against rpl in internet of things,”
International Journal of Advance Research, 2017.
[Online]. Available: www.ijariit.com

[15] K. K. Rai and K. Asawa, “Impact analysis of rank at-
tack with spoofed ip on routing in 6lowpan network,” in
2017 Tenth International Conference on Contemporary
Computing (IC3), 2017, pp. 1–5.

[16] K. Chugh, A. Lasebae, and J. Loo, “Case study of
a black hole attack on 6lowpan-rpl,” in SECURWARE
2012 : The Sixth International Conference on Emerg-
ing Security Information, Systems and Technologies, 07
2012.

[17] A. Kamble, V. S. Malemath, and D. Patil, “Security at-
tacks and secure routing protocols in rpl-based internet
of things: Survey,” in 2017 International Conference on
Emerging Trends Innovation in ICT (ICEI), 2017, pp.
33–39.

[18] A. Verma and V. Ranga, “Security of rpl based 6low-
pan networks in the internet of things: A review,” IEEE
Sensors Journal, vol. 20, pp. 5666–5690, 6 2020.

[19] C. Kiraly, T. Istomin, O. Iova, and G. P. Picco, “D-
rpl: Overcoming memory limitations in rpl point-to-
multipoint routing,” in 2015 IEEE 40th Conference on
Local Computer Networks (LCN), 2015, pp. 157–160.

[20] S. Oh, D. Hwang, K. Kim, and K.-H. Kim, “A hybrid
mode to enhance the downward route performance in
routing protocol for low power and lossy networks,”
International Journal of Distributed Sensor Networks,
vol. 14, no. 4, p. 1550147718772533, 2018. [Online].
Available: https://doi.org/10.1177/1550147718772533

[21] W. Gan, Z. Shi, C. Zhang, L. Sun, and D. Ionescu,
“Merpl: A more memory-efficient storing mode in rpl,”
in 2013 19th IEEE International Conference on Net-
works (ICON), 2013, pp. 1–5.

[22] C. Press, “Mastering ipv6 slaac concepts and con-
figuration,” Dec 2013. [Online]. Available: https:
//www.ciscopress.com/articles/article.asp?p=2154680

[23] T. Coffeen, “Slaac-to-basics (part 1 of 2),” Sep
2017. [Online]. Available: https://blogs.infoblox.com/
ipv6-coe/slaac-to-basics-part-1-of-2/

[24] J. Tripathi, J. C. de Oliveira, and J. Vasseur,
“Performance Evaluation of the Routing Protocol for
Low-Power and Lossy Networks (RPL),” RFC 6687,
Oct. 2012. [Online]. Available: https://rfc-editor.org/
rfc/rfc6687.txt

[25] F. B. Insights, “Internet of things (iot) market size, share
& covid-19 impact analysis, by component (platform,
solution & services), by end use industry (bfsi, retail,
government, healthcare, manufacturing, agriculture,
sustainable energy, transportation, it & telecom, others),
and regional forecast, 2021-2028,” May 2021. [Online].
Available: https://www.fortunebusinessinsights.com/
industry-articles/internet-of-things-iot-market-100307

http://dx.doi.org/10.17487/RFC6550
http://dx.doi.org/10.17487/RFC6550
https://hal.inria.fr/hal-01207859
https://hal.inria.fr/hal-01207859
https://www.gsma.com/iot/news/smart-trash-cans-telebelly/
https://www.gsma.com/iot/news/smart-trash-cans-telebelly/
https://www.ietf.org/proceedings/94/slides/slides-94-rtgarea-2.pdf
https://www.ietf.org/proceedings/94/slides/slides-94-rtgarea-2.pdf
https://rfc-editor.org/rfc/rfc6552.txt
https://rfc-editor.org/rfc/rfc6552.txt
www.ijariit.com
https://doi.org/10.1177/1550147718772533
https://www.ciscopress.com/articles/article.asp?p=2154680
https://www.ciscopress.com/articles/article.asp?p=2154680
https://blogs.infoblox.com/ipv6-coe/slaac-to-basics-part-1-of-2/
https://blogs.infoblox.com/ipv6-coe/slaac-to-basics-part-1-of-2/
https://rfc-editor.org/rfc/rfc6687.txt
https://rfc-editor.org/rfc/rfc6687.txt
https://www.fortunebusinessinsights.com/industry-articles/internet-of-things-iot-market-100307
https://www.fortunebusinessinsights.com/industry-articles/internet-of-things-iot-market-100307

	Introduction
	Background
	The Internet of Things
	Routing Protocol for Low Power and Lossy Networks
	RPL Concepts
	DODAG Construction

	Related Works
	RPL-specific Attacks
	Resources Attacks
	Topology Attacks

	The Routing Table Overload Attack and Related Works

	Methodology
	Routing Table Overload Attack in Action
	Example of a Routing Table Overload Attack

	Our Contribution
	STIR in Detail
	Initializing and Implementing STIR
	Point of Views
	Why is STIR useful?
	STIRing with an example DODAG

	Miscellaneous Information for STIR
	Assigning IPv6 addresses
	Interval Space

	STIR's Performance Analysis

	Discussion
	Conclusions from the Methodology
	Advantages
	Disadvantages

	Future Research Directions

	Responsible Research
	Conclusion

