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Abstract Datasets produced by different countries or organisations are seldom

properly aligned and contain several discrepancies (e.g., gaps and overlaps). This

problem has been so far almost exclusively tackled by snapping vertices based on a

user-defined threshold. However, as we argue in this paper, this leads to invalid

geometries, is error-prone, and leaves several discrepancies along the boundaries.

We propose a novel algorithm to align the boundaries of adjacent datasets. It is

based on a constrained Delaunay triangulation to identify and eliminate the dis-

crepancies, and the alignment is performed without moving vertices with a snapping

operator. This allows us to guarantee that the datasets have been properly conflated

and that the polygons are geometrically valid. We present our algorithm, our

implementation (based on the stable and fast triangulator in CGAL), and we show

how it can be used it practice with different experiments with real-world datasets.

Our experiments demonstrate that our approach is highly efficient and that it yields

better results than snapping-based methods.
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1 Introduction

One of the main issues when dealing with datasets produced by different countries

or organisations is the management of the one-dimensional connections between

geographical objects at their common boundaries (e.g., on either side of an

international or provincial border). We need to ensure that the objects adjacent in

reality are connected and that the discrepancies have been eliminated. These

discrepancies are present because different equipments were used to collect the data,

because the data are represented at different scales, because different coordinates

reference systems are used and the conversion to a unified one introduces errors, or

because the border is a natural feature such as a river (Ruiz et al. 2011). This issue

is often referred to as horizontal conflation since the datasets to be integrated do not

overlap spatially (or only slightly, at their boundaries) (Yuan and Tao 1999; Davis

2003). The other type of conflation is vertical: Datasets covering the same area are

combined, usually to create a new dataset whose accuracy is improved (Lynch and

Saalfeld 1985).

We focus in this paper on one aspect of horizontal conflation (see Fig. 1): given

two or more datasets composed of polygons (e.g., representing provinces,

municipalities or cadastral parcels), we want to modify the boundaries of (some

of) the polygons and ‘‘align’’ them so that gaps and overlapping areas are

eliminated. As further explained in Sect. 2, this problem has been almost

exclusively tackled by first isolating the boundaries of the datasets from the

polygons they are incident to, and second using line-based algorithms to eliminate

the discrepancies: corresponding real-world entities are matched using a threshold

(a maximum searching distance), and then the alignment is performed by moving

the lines to the same location (often referred to as ‘‘snapping’’). We see several

problems with this approach (we elaborate on these in Sect. 2). First, in our

experience, finding a matching threshold that will resolve all discrepancies in a

dataset is often impossible—a too small value prevents some lines to be matched,

and a too large value creates invalid geometries somewhere else. Second, this

problem is amplified if we consider that the edges are not in isolation but are the

boundaries of polygons: the risk of collapsing parts of polygons to lines is high since

it is tempting to use a large threshold to solve problems. Third, there are no reliable

mechanisms to verify if the snapping was successful and what were the

consequences of it on the geometries.

We present in Sect. 3 a novel algorithm to align the boundaries of adjacent

datasets. Our algorithm differs significantly from other ones since it considers the

polygon as its primitive (and does not isolate lines or focus solely on them), does not

use a threshold to match features, and the alignment is performed without moving/

snapping geometries. Instead, the discrepancies are identified and eliminated by

using a constrained Delaunay triangulation (CDT) as a supporting structure. This

allows us to guarantee that the datasets have been properly conflated and that the

polygons are geometrically valid. We can furthermore indicate to the user what

changes were made to the polygons.
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The algorithm we present in this paper is an extension of our previous work for

automatically repairing planar partitions: We filled small gaps and overlaps (often

not visible to the user) by using a triangulation-based method (Arroyo Ohori et al.

2012). Our extensions are threefold: (1) gaps and overlaps are eliminated in a

manner this is consistent with how practitioners conflate datasets, i.e., by modifying

first geometries with the lowest accuracy; (2) large problem areas (such as those in

Fig. 1a) are partitioned and each part is repaired independently, which ensures that

the polygons involved to fix the area are not modify too much (the errors are

distributed) and that the connection between features are preserved; (3) we propose

a modification that allows us to perform what we call spatial extent alignment, e.g.,

to ensure that a set of polygons representing municipalities (or other administrative

entities) fit exactly in a larger polygon representing their province. The latter

improvements has the added benefits of allowing us to potentially align the

boundaries of very large datasets, since we align them at different levels—from the

neighbourhoods in a city to provinces in a country—and we can thus subdivide

datasets into parts that fit in memory. We report in Sect. 4 on our implementation of

the algorithm (it is based on the stable and fast triangulator in CGAL1) and on the

experiments we have made with different real-world datasets in Europe. We also

demonstrate how boundary lines, often used in practice, can be incorporated in our

approach. Finally, we discuss in Sect. 5 the shortcomings of our method and future

work.

2 Related work

The specific issue we are addressing in this paper—the horizontal conflation of

datasets formed by polygons—is rarely explicitly discussed in the scientific

literature. The algorithms implemented in commercial software and used by

practitioners for this case are the generic ones developed for either edge-matching or

for vertical conflation.

Fig. 1 Two datasets: part of France (blue) and of Germany (green). Both datasets are formed of polygons
representing the first administrative subdivisions. a Original datasets (from different sources). b After
horizontal conflation has been applied (colour figure online)

1 The Computational Geometry Algorithms Library: http://www.cgal.org.
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2.1 Edge-matching

Edge-matching is a vague term that has no agreed-upon definition in geographical

information systems (GIS). It is most often used to refer to linear features (e.g.,

roads or rivers) on both sides of a border (e.g., international or provincial) that need

to be connected. Although its name implies otherwise, it usually means both finding

the corresponding entities (matching) and aligning them (fixing the discrepancies).

The matching between two features is performed by finding the closest pairs (of

either vertex-vertex or vertex-edge), up to a given distance (a threshold, which is

usually defined by the user). If two vertices/edges are matched, they are then

snapped together so that they become the same object in the resulting dataset.

Snapping is usually performed with one dataset being the reference dataset, that is,

when matching, the geometries are moved to the ones in the reference dataset. The

latter does not move because it is usually known that it is of higher accuracy. When

the accuracy of both datasets is the same, or is not known, the errors can be

distributed: two vertices to be snapped are then moved to their mid-point. The

INSPIRE Directive mandates to use both methods (with and without reference

dataset) for the harmonisation of European datasets (INSPIRE 2008, Annex B).

Most GIS packages implement edge-matching as described above (e.g., ArcGIS,

FME, GRASS and Radius Topology), albeit the algorithms used differ in: (1) the

order in which vertices are snapped together; and (2) what geometries are snapped

(only to vertices or also to edges). It is also common in the scientific literature to see

that snapping is being used with different types of datasets, e.g., cadastral

boundaries (Siejka et al. 2013; Zygmunt et al. 2014), topographic datasets (Bute-

nuth et al. 2007), digital gazetteer (Hastings 2008), and census data (Schuurman

et al. 2006).

As shown in Fig. 2, if edge-matching is used for with polygons as input, then it

implies that the vertices/edges on the boundary of each dataset are snapped to those

in the adjacent dataset—the concept of lines being the boundaries of polygons is

therefore ignored.

While snapping yields satisfactory results for simple cases, Arroyo Ohori et al.

(2012) demonstrate that for more complex ones it is often impossible or impractical

to find a threshold applicable to the whole dataset, and that it is prone to errors that

cause invalid geometries. There is often no single value that can be used for the

whole dataset since it requires an almost uniform distribution of points, and

discrepancies (gaps/overlaps) that are of the similar sizes. Observe the result in

Fig. 2c for instance, which snaps vertices from the top dataset to the closest

geometry (vertex or line) in the reference dataset (bottom one). Even if other rules

were used (e.g., snapping points only to other points), the results would still not be

satisfactory. Also, the decision to snap or not parts of lines/polygons is often binary:

All the vertices/edges closer than the threshold are snapped, the others not. While in

theory the threshold value is linked to the accuracy of a dataset, in practice users do

not always know how to translate the accuracy into a value, and if they choose the

wrong value then their resulting dataset will not be properly edge-matched. Notice

that while INSPIRE clearly states that each Thematic Working Group will define the

appropriate threshold (INSPIRE 2008), this is in our experience wishful thinking
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since the geographical datasets related to one theme usually come from different

sources that have very different accuracies.

In practice, we have observed that snapping is performed by practitioners with a

trial-and-error threshold value. However, there exists no straightforward mechanism

to detect automatically if the results are correct, i.e., if all discrepancies were

resolved. Other tools have to be used (e.g., constructing the planar partition of the

resulting datasets and comparing the number of polygons), and if there are problems

then a different threshold value is used.

If we consider that in practice datasets very rarely contain only one polygon,

snapping increases the risk of creating topologically invalid polygons and

intersection polygons (because the boundaries between the polygons will also be

snapped to the closest geometry); Fig. 3 shows an example.

Klajnšek and Žalik (2005) consider, as is our case, datasets containing several

polygons and find matching points and lines by using threshold distances. However,

they do not align the boundaries, but instead simply removed from the dataset the

(a) (b)

(c)

Fig. 2 Edge-matching two datasets. a Input datasets (green is the master). b Snapping distance is shown
as grey circles, and the closest geometry is shown by a dashed line. c Result of the edge-matching process
(colour figure online)

(a) (b)

Fig. 3 a One dataset to be conflated is formed by two polygons (p1 and p2). b Snapping the vertices of
the blue dataset to the closest primitives in the green dataset introduces topological errors and
intersections (in the red circle) (colour figure online)
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matched geometries (since their aim is to create a dissolved dataset). The removals

significantly simplify the problem and avoid creating intersections.

2.2 Vertical conflation

The term vertical conflation was coined by Saalfeld Saalfeld (1988) in the early

1980s for the integration of two datasets representing the same region (Ruiz et al.

2011). One dataset is always the reference (the master), and the other one (the slave)

is aligned by first finding corresponding matching points (by using a threshold

value) and then applying rubber sheeting, i.e., a function to move all the other

points according to the deviation of the control points. Gillman (1985) and Saalfeld

(1988) use a triangulation to subdivide the slave dataset into subregions (triangles)

and apply an affine transformation to each; the process is repeated iteratively until

the displacement is minimal. Rubber sheeting is meant to work with points and

lines, and the concept of polygons (and their preservation) is not present. These

could be reconstructed from the resulting lines, but there is n guarantee that the

polygons will be preserved.

Beard and Chrisman (1988) use ideas of rubber sheeting for the horizontal

conflation of map sheets, i.e., datasets having only horizontal and vertical

boundaries. The threshold to find matches is applied to points within a certain

distance of the boundaries, and the lines incident to these are moved based on a

rubber-sheeting function. To avoid moving all the points inside the dataset, a second

threshold is used: only vertices closer to the boundaries are involved. There is no

guarantee that after a movement the polygon or lines are valid (or that they are free

of intersections).

Doytsher (2000) tackles the exact same problem as we do by first matching

vertices (also using a tolerance) and then moving all the vertices in the dataset

according to a rubber-sheeting transformation. The RMS errors of the transforma-

tion are minimised, and while it is claimed that the topological properties of the

polygons are preserved, it is not proved and we do not see how this could be the case

(since there are no constraints when moving vertices).

3 Aligning the boundaries of datasets with a triangulation-based
algorithm

Our approach to aligning the boundaries of polygons builds upon our previous work

to automatically repair the small gaps and overlaps in planar partitions where all

polygons are stored independently (with the Simple Features paradigm (OGC

2006), a shapefile for instance). In Arroyo Ohori et al. (2012), we used a

constrained triangulation (CT) as a supporting structure because, as explained

below, it permits us to fill the whole spatial extent of the datasets with triangles, and

then the triangles allow us to identify easily the gaps and overlaps between different

polygonal datasets. We use the idea of labelling each triangle with the label of the

polygon it decomposes: gaps will have no labels and regions where polygons
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overlap will have more than one label. Repairing implies relabelling triangles so that

each triangle has one and only one triangle.

We first briefly describe in Sect. 3.1 the original algorithm for repairing planar

partitions. Then, in Sect. 3.2, we describe our extensions to this algorithm so that

the boundaries of datasets can be properly aligned when the datasets are formed by

several polygons and when the gaps/overlaps are large. We also propose two

modifications to our approach (in Sects. 3.3, 3.4) so that two common conflation

issues faced by practitioners can be solved: how to perform horizontal conflation of

polygons against a boundary represented as a line, and spatial extent conflation.

3.1 Using a CT to repair a planar partition

The workflow of Arroyo Ohori et al. (2012) is illustrated in Fig. 4 and is as

follows:

1. the CT of the input segments forming the polygons is constructed;

2. each triangle in the CT is labelled with the identifier of the polygon inside

which it is located;

(a) (b)

(c) (d)

(e)

Fig. 4 a Original dataset with two polygons (same as Fig. 2). b The CT of the input polygons.
c Labelling of the triangles: the colours represent the label of each polygon (orange no label; red 2?
labels). d Triangles are relabelled such that each triangle has one and only one label. e The resulting
alignment of the two polygons (colour figure online)
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3. problems are detected by identifying triangles with no label or with two or more

labels;

4. gaps/overlaps are fixed locally with the most appropriate label;

5. modified polygons are reconstructed and returned in a GIS format (e.g., a

shapefile).

Constrained triangulations. A constrained triangulation (CT) permits us to

decompose one or more polygons into non-overlapping triangles, Fig. 5 shows an

example. Notice that no edges of the triangulation cross the constraints (the

boundaries of the polygon). It is known that any polygon (also with holes) can be

triangulated without adding extra vertices (de Berg et al. 2000; Shewchuk 1997). In

our original approach, the triangulation was performed by constructing a CT of all

the segments representing the boundaries (exterior and interior) of each polygon.

If, as in Fig. 5, two polygons are adjacent by one edge e, then e will be inserted

twice. Doing this is usually not a problem for triangulation libraries because they

ignore points and segments at the same location (as is the case with the solution we

use, see Sect. 4). Likewise, when edges are found to intersect, they are split with a

new vertex created at the intersection point. These are the only vertices that are

added during the conflation process.

Labelling triangles. The labels are assigned to the triangles by first labelling the

triangles adjacent to the edges of each polygon, and then visiting all the triangles

with graph-based algorithms (i.e., depth-first search) without traversing constrained

edges (the original boundaries of the input polygons). Triangles located inside the

convex hull of the dataset, but not decomposing any polygons, are labelled with a

special label ‘universe’. See Arroyo Ohori et al. (2012) for the details.

Identifying problems: gaps and overlaps. If the set of input polygons forms a

planar partition, then every triangle will be labelled with one and only one label.

Problems are easily identified: gaps are formed of triangles having no label, and

overlaps of triangles having two or more labels.

(a) (b) (c)

Fig. 5 a Two adjacent polygons, one of them containing 3 holes. b The constrained Delaunay
triangulation of the segments of these two polygons. c From the CT, it is possible to obtain the triangles
decomposing each polygon (here represented with the colour) (colour figure online)
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Repairing problems: relabelling triangles. Repairing a gap or an overlap simply

involves relabelling the triangles with an appropriate label, which means that the

label assigned should be the same as one of the three neighbours, otherwise regions

can become disconnected. Arroyo Ohori et al. (2012) proposes six repair opera-

tions. Four of them use triangles as a base: the label assigned is based on that of the

three neighbouring triangles, for example the label present in the largest number of

adjacent triangles is assigned (this method is used in Fig. 4e). Triangle-based

operators are fast (purely local operations that are performed in constant time) and

modify the area of each input polygon the least. However, the shape of the resulting

polygons can be significantly different from the original (because of the ‘spikes’ that

are created).

The other two methods use regions of adjacent triangles with equivalent sets of

labels, which is slower but generally yields results in which the polygons have less

spikes. Figure 6 shows one example where each of the eight problematic regions of

Fig. 4a is assigned one label. The label is obtained with the longest boundary

method, i.e., the boundary of the problem region is first decomposed according to

the label of the triangles incident to it (but outside the problem region), and second

the label is that of the longest portion of the boundary.

Notice that these repair operations can be used one after the other, for instance if

first the repair according to the largest number of adjacent triangles has a tie, then

this is solved by using another method (or randomly choose one)—this was used in

Fig. 4e.

3.2 The extensions necessary for horizontal conflation of polygons

To align boundaries of polygons, we extend and modify the repair algorithm

described above. The extended algorithm to align the boundaries of two or more

datasets is described in Algorithm 1 and contains three improvements: (1) priority

list of datasets; (2) gaps and overlaps treated differently; (3) subdivision of gap

regions by adding extra constrained edges.

(a) (b)

Fig. 6 Dataset from Fig. 4a when a region-based repair method is used (based on longest-edge).
a Labelling of the triangles. b The resulting alignment of the two polygons
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Priority list of datasets

The first extension is that we use a new operator based on a priority list of datasets.

It is a generalisation of the concept of a reference dataset often used for edge-

matching. We extend this concept so that several datasets can be used all at once

(instead of performing edge-matching with only two datasets). The input of the

algorithm has a priority list with all the datasets involved, ordered based on a given

criterion. The criterion is usually the accuracy of the datasets, but others can be

used. In a given problem region between two adjacent datasets, the one with the

lowest accuracy (priority) should be moved/modified. The first dataset in the list is

the master and others are its slaves; for instance, referring to Fig. 7, the list would be

[M, T, S], since we assume that M has the higher accuracy, and S the lowest.

Gaps and overlaps handled differently

The gap and overlap regions are handled differently, and this allows us to modify

the boundaries of datasets in a way that is consistent with the master-slave

paradigm. A second modification is that the labels assigned to each triangle are

formed by a tuple of the dataset and the unique identifier of the polygon: (dsid, pid).

For an overlap region, the label used to relabel all triangles is that whose dsid is the

highest in the priority list, e.g., in Fig. 7c the 3 overlapping regions (red regions) are

filled with polygons from the dataset M (having labels m1;m2 and m3). For a gap,

this label is the lowest in the priority list; the candidate labels are those adjacent to

the gap region. If a gap region is adjacent to more than 1 polygon from the same

dataset (see for instance Fig. 7b where both s1 and s2 could be assigned to the

region), then the ID can be determined with the one of the repair methods mentioned

above, such as the longest boundary.

However, aligning boundaries with this approach gives unsatisfactory results for

gaps, that is we obtain results that are far from what a human being would manually

do. For instance, in Fig. 7, the gap between the datasets is entirely assigned to the

polygon s2, while we could argue that some parts should be assigned to s1 and t1.

Observe that the overlap regions do not suffer from this problem since the
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constrained edges divide the region; in Fig. 7c the top overlap region between M

and S is divided into two sub-regions by the constraints, and each gets the

appropriate label (m1 and m2).

Subdividing gap regions

To improve the labels assigned to gaps, we propose a heuristic to subdivide the gap

regions into subregions. This is achieved by inserting extra constrained edges in the

triangulation (as shown in Fig. 8). The constrained edge is not new edges, but rather

existing edges that are labelled as constraints (thus no complex geometric operations

are involved). Observe that while a generic constrained triangulation was sufficient to

perform validation and repair in our original work (Arroyo Ohori et al. 2012), here a

constrained Delaunay triangulations (CDT) is required. A CDT is a triangulation for

which the triangles are as equilateral as possible (Chew 1987). We use the edges of

the triangles (and their lengths), and having well-shaped triangles is an advantage.

For a given gap region, we proceed as follows (see Algorithm 2). First, we visit

each vertex v on the boundary of the gap (there are 9 in Fig. 8a) and identify split

vertices: vertices whose number of incident constrained edges in the CDT is more

than 2. This allow us to identify where different polygons of the same dataset are

adjacent (e.g., vertices a and d in Fig. 8a) and also where different datasets are

adjacent (e.g., vertices b, c and e in Fig. 8a).

(a) (b) (c)

(d) (e)

Fig. 7 a Three datasets (S purple; T grey; M green), having, respectively, 2, 1 and 3 polygons, need to be
aligned. b The CDT of the datasets with problematic regions highlighted (red overlaps; orange gaps).
c Overlaps are repaired with the random neighbour method. d Holes with the same method. e Resulting
aligned datasets (colour figure online)
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Second, for each split vertex, we try to insert one constrained edge inside the gap

region (which means here that the edge is not on the boundary of the region). An

edge whose both ends are split vertices is favoured, if there are none then the

(a) (b) (c)

(d) (e) (f)

Fig. 8 The same three input datasets as in Fig. 7. The overlapping regions have already been repaired. a
five split vertices are identified (a–e), and three extra constrained edges are inserted in the CDT (bd, cd
and the one incident to a), separating the gap region into four sub-regions. b The sub-region adjacent to s2
is relabelled. c The sub-region adjacent to s1 is relabelled. d The sub-region adjacent to t1 is relabelled. e
The last sub-region is relabelled (to t1). f The resulting aligned datasets
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shortest edge is inserted as a constraint. Only edges that are shorter than a user-

defined maximum length are inserted as constraints. It is possible that for a

candidate vertex no constraint is inserted, either because there is no incident edges

inside the gap region (e in Fig. 8a), or that the constraint is already present. In

Fig. 8a, the extra constraints bd is added twice; the second insertion does not modify

the CDT.

The algorithm for labelling gap regions is then used as described in Sect. 3.1, but

now each subregion is processed separately; after the insertion of the extra

constraint in Fig. 8a there are thus four gap regions. In the Algorithm 1, the

relabelling of regions are not applied to the CDT directly (since the result of one

could influence another, creating dependence on the order in which the triangles are

visited). Instead, triangles that have been relabelled are saved in a separate list, and

only after all the triangles have been visited are the new labels applied. Because the

insertion of extra constraints isolates subregions, not all subregions can be directly

relabelled. A subregion can be relabelled only if it is adjacent to two or more

datasets. If a subregion is adjacent to only one (e.g., the lower-right orange region in

Fig. 8a), then it is not repaired until one of its adjacent is relabelled (Fig. 8d). This

implies that several ‘passes’ over all the triangles have to be performed, each pass

tries to find a new label for triangles having 0 label and these are applied at the end

of the pass.

Our heuristic has the added benefit of connecting lines that are the boundaries of

polygons and/or datasets and of preserving better the area of polygons since gap

regions are split and subregions are assigned to different polygons. We demonstrate

in Sect. 4 the results we obtained with real-world datasets.

3.3 Edge-matching to a linear boundary

In practice, international and delimiting boundaries between countries and

administrative entities are often available as lines, because these are agreed upon by

the neighbouring parties. A trivial modification of our algorithm can be made for

such cases: the linear boundary is converted to a polygon. As shown in Fig. 9, this

can be easily done by first offsetting the line by a distance d (to either side of the

line), and then linking the two lines (this can be seen as a ‘half-buffer’). We

demonstrate in Sect. 4 how this performs with real-world datasets.

3.4 Spatial extent conflation

Another minor modification to Algorithm 1 allows us to perform what we refer to as

spatial extent conflation. This is used to ensure that a set of polygons fits exactly in a

spatial extent polygon that represents the entity higher in the hierarchy for instance.

It is a common problem for practitioners who deal with administrative and territorial

units, among others2. Each country is divided into administrative units at different

2 These units are called in Europe ‘Nomenclature of Territorial Units for Statistics’, or NUTS.
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administrative levels in a hierarchy. In the INSPIRE directive3, the hierarchy goes

from the national level to the 6th level (sub-city level in most cases) (INSPIRE

2014). All the units at one level should fit exactly inside its parent unit, and there

should not be any gaps.

Figure 10 shows the main modification to our algorithm: the polygon represent-

ing the spatial extent becomes a hole of a larger polygon (whose shape is irrelevant,

it can be obtained by enlarging the axis-aligned bounding box of all the polygons by

10 % for instance).

The only modification necessary to Algorithm 1 is that a new label, let us call it

spatialextent, is assigned to the triangles decomposing this polygon and it is

assigned the highest priority. Triangles having this label are ignored during the

process of reconstruction of the polygons.

(a) (b) (c)

Fig. 9 Creation of a polygon from a an input line that is b offset by a given distance. c The resulting
polygon

(a) (b) (c)

(d) (e) (f)

Fig. 10 a Four polygons with b the spatial extent polygon to which they should be aligned. c The spatial
extent polygon becomes the hole of a larger polygon. d CDT ? labelling ? insertion of extra constraints.
e Relabelling of the problem regions. f Resulting aligned datasets

3 The European directive that ensures that the spatial data infrastructures of the Member States are

compatible with each others and usable.
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In practice, the spatial extent polygon is not always a single polygon. As Fig. 11

shows, municipalities or counties are often disconnected (e.g., due to islands) and

have inner rings (holes). Thus, the creation of the polygons used for the input can be

obtained by first generating a large rectangle containing all the spatial extent

polygons, and then doing a Boolean difference between the two.

Observe that aligning polygons to a spatial extent allows us to align the

boundaries of very large hierarchical datasets since we can align them individually

at each level. As shown in Fig. 12, if we begin the alignment at the highest level

(the first level being the spatial extent of the polygons of the second level), and then

continue iteratively to the lower administrative level using the previously generated

results (i.e., in Fig. 12 the seven polygons are used as spatial extents for the thirdrd

level, and so on), then the memory footprint of the alignment should remain

relatively small. That is, the process is bounded by the size of the largest polygon

and its decomposition one level lower. We demonstrate in the next section an

example with real-world examples.

Fig. 11 Examples of two municipalities in the Netherlands (in yellow) having disconnected regions.
a Baarle-Nassau has 3 Belgian enclaves (white holes), and one of them has an enclave belonging to Baarle-
Nassau. b A municipality formed by 5 different islands (Schouwen-Duiveland) (colour figure online)

Fig. 12 Top 3 levels of a NUTS dataset
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4 Implementation and experiments

We have implemented the algorithm described in this paper with the C??

programming language, using external libraries for some functionalities: (1)

GDAL4, which allows us to read/write from/to a large variety of data formats

common in GIS and to handle the attributes of each polygon; and (2) CGAL5 which

has support for many robust spatial data structures and the operations based on

them, including polygons and triangulations (Boissonnat et al. 2002).

Our prototype is open-source (under a GPL license) and can be freely

downloaded at www.github.com/tudelft3d/pprepair... It can read most GIS for-

mats, perform the alignment of the boundaries, and return to the user the input files

with the boundaries modified; all the attributes of the polygons are preserved.

Furthermore, as shown in Fig. 13, the user obtains an overview of which polygons

were modified, and the modifications are also exported as a GIS file (in the form of

polygons showing parts that were added/removed from the datasets). This is

something practitioners often mention as useful (‘‘how much was my dataset

modified?’’) and that is rather difficult to accomplish with traditional snapping-

based alignment methods. The only solution is to perform a Boolean difference

between the input dataset and the output, which is computationally expensive and

prone to floating-point errors.

We have tested our implementation with several real-world datasets that are

publicly available, and we report on some of these in the following. Our

experiments cover a broad range of alignment problems that practitioners have to

solve. Furthermore, our implementation handles MultiPolygons and polygons

with holes, which are very common in practice when dealing with administrative

subdivisions and other datasets related to the territory.

4.1 Experiment #1: Conflation of polygons

The eastern border of France was selected as a test area, and subsets of these two

datasets are used (shown in Fig. 14):

Fig. 13 For the datasets in Fig. 1a, a labelled triangulation of the datasets, and b errors as polygons. For
both: red overlap and orange gap (colour figure online)

4 Geospatial Data Abstraction Library: www.gdal.org.
5 Computational Geometry Algorithms Library: www.cgal.org.
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1. The GEOFLA6 of the 2nd level of the administrative units in France. [21

polygons—6678 vertices]

2. The Vector Map (VMAP) at the lowest resolution (VMAP0)7. [37 polygons—

10,256 vertices]

To obtain a comparison with other tools, we performed snapping as described in

Sect. 2 with FME8. We used the AnchoredSnapper transformer with the

VMAP0 as master dataset; vertices in the slave dataset (GEOFLA) are snapped to

the closest vertex/line in the VMAP0 dataset (a rather large snapping value was used

because of the large gap near Geneva). Both our prototype and FME took about the

same processing time (0.5 vs 0.6 s).

We have been able to align the boundaries successfully with our implementation,

that is all output polygons are valid and there are no gaps nor overlaps along the

boundary of France and its neighbours. With FME, there are several cases where

there are gaps and overlaps, and several parts of polygons have collapsed, creating

invalid geometries. We show in Fig. 15 the results for some specific locations. First,

observe that in Fig. 15b there are still gaps and overlaps. These are mostly caused

Fig. 14 Overview of two datasets used for the Experiment #1. The blue dataset is a subset of GEOFLA,
and the neighbouring countries (from top to bottom: Belgium, Luxembourg, Germany, Switzerland and
Italy) are a subset of VMAP0 (colour figure online)

6 http://professionnels.ign.fr/geofla.
7 http://gis-lab.info/qa/vmap0-eng.html.
8 http://www.safe.com/fme/fme-desktop.
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because only slave vertices are snapped to the master primitives without the

insertion of extra vertices. With our implementation, the gaps are split into different

regions and the alignment is performed without leaving any problematic regions.

Second, observe in Fig. 15e how snapping makes the slave move to the wrong

boundary (that of an administrative unit that is not on the boundary of the dataset),

and how the very large gap is only partly aligned (some parts of it are within the

given tolerance, others not). A large tolerance would have most likely solved this

issue, but would also have modified the boundaries of polygons unacceptably more

Fig. 15 Left column input (parts of Fig. 14). Middle column results with snapping. Right column results
with our implementation
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in other parts of the dataset. Third, it can be seen in Fig. 15h that part of the

boundary between two French polygons is collapsed to the boundary of the master

dataset; in our implementation this boundary is left intact. Fourth, in Fig. 15k, an

enclave is snapped to the master dataset, which actually separates the polygon

containing the enclave into unconnected parts.

4.2 Experiment #2: Conflation with an international boundary

As shown in Fig. 16, we have extracted the international boundary from the

VMAP0 and used it as input. The results of the aligned GEOFLA is exactly the

same as in the previous section.

4.3 Experiment #3: Spatial extent

We have performed a hierarchical conflation with the hierarchy of a dataset from

the Statistics Netherlands9. The dataset, let us call it CBS2009, is shown in Fig. 17

and is publicly available10. The 441 municipalities are divided into 2542 districts,

Fig. 16 a Part of the GEOFLA dataset with an international boundary (red line). b Creation of a polygon
from the boundary (red polygon). c The labelled CDT. d GEOFLA correctly aligned to the boundary
(colour figure online)

9 CBS (Centraal Bureau voor de Statistiek).
10 http://www.cbs.nl/nl-NL/menu/themas/dossiers/nederland-regionaal/publicaties/geografische-data/

archief/2010/2010-wijk-en-buurtkaart-2009.htm.
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and these are further divided into 11,574 neighbourhoods (many of these objects are

MultiPolygons, as explained in Sect. 3.4). Each polygon has an identifier

linking it to its parent. The conflation was performed in two steps: (1) all the district

polygons with a given identifier are aligned to their respective municipality polygon

(thus 441 times); (2) all the neighbourhood polygons with a given identifier are

aligned to their respective (aligned and modified) district polygon (thus 2542 times).

As an indication, the whole process—2983 boundary alignments—took 9m50s

(4m45s computation; 5m05s for reading/writing to disc the datasets). While there

were no very large errors, 98/441 municipalities and 2213/2542 districts were not

properly subdivided (often by only a millimetre or less).

5 Conclusions

We have proposed a new algorithm to perform the horizontal conflation, and we

have shown that it is suitable for several cases that practitioners face in their work. It

can be used with polygons and lines, and supports the alignment of polygons to a

spatial extent. Furthermore, the conflation can be performed with a local criteria,

instead of a global one (the user-tolerance is usually for the whole dataset).

Our approach is highly efficient (since it is based on a highly optimised

triangulator and only the labelling of triangles is involved), it avoids the pitfalls of

choosing the appropriate threshold (if it even exists), and perhaps more importantly,

it guarantees that valid geometries are constructed, which allows practitioners to use

Fig. 17 a Municipalities of the Netherlands (CBS2009 dataset). b Each municipality is subdivided into
districts and then into neighbourhoods
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the output for further analysis. Anyone who has tried—and perhaps failed—to find

the appropriate snapping threshold for a given dataset by using trial-and-error will

recognise that our approach has great benefits. One can get an overview of which

polygons were modified (including what part(s) of these, and their exact geometry),

and collapsed geometries are completely avoided (which happen often with large

snapping tolerance).

We plan in the future to modify the algorithm so that the conflation of only lines

is possible, e.g., for highways or rivers crossing a boundary. These would be

‘‘linked’’, with edges of the CT, although the use of a tolerance would still be

necessary. We also plan to add more repair functions, particularly one where we can

edge-match two polygons without the notion of a master and a slave and thus

distribute errors. Triangles could be used to find the centreline of a region (Bader

and Weibel 1998).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were

made.

References

Arroyo Ohori K, Ledoux H, Meijers M (2012) Validation and automatic repair of planar partitions using a

constrained triangulation. Photogramm Fernerkund Geoinform 1(5):613–630

Bader M, Weibel R (1998) Detecting and resolving size and proximity conflicts in the generalization of

polygonal maps. In: Proceedings 18th international cartographic conference, Stockholm, Sweden

Beard KM, Chrisman NR (1988) Zipper: a localized approach to edgematching. Cartogr Geogr Inf Sci

15(2):163–172

Boissonnat JD, Devillers O, Pion S, Teillaud M, Yvinec M (2002) Triangulations in CGAL. Comput

Geom Theory Appl 22:5–19
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Zygmunt M, Siejka M, Ślusarski M, Siejka Z, Piech I, Bacior S (2014) Database inconsistency errors

correction, on example of LPIS databases in Poland. Surv Rev 47(343):256–264

42 H. Ledoux, K. A. Ohori

123


	Solving the horizontal conflation problem with a constrained Delaunay triangulation
	Abstract
	Introduction
	Related work
	Edge-matching
	Vertical conflation

	Aligning the boundaries of datasets with a triangulation-based algorithm
	Using a CT to repair a planar partition
	The extensions necessary for horizontal conflation of polygons
	Edge-matching to a linear boundary
	Spatial extent conflation

	Implementation and experiments
	Experiment #1: Conflation of polygons
	Experiment #2: Conflation with an international boundary
	Experiment #3: Spatial extent

	Conclusions
	Open Access
	References




