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Multi-Frequency Polarimetric SAR Data )
Analysis for Crop Type Classification e
Using Random Forest

Siddharth Hariharan, Dipankar Mandal, Siddhesh Tirodkar, Vineet Kumar,
and Avik Bhattacharya

1 Introduction

Classification of crops is an efficient way for managing agricultural areas and
monitoring yield. One of the successful ways of doing this is the use of Synthetic
Aperture Radar (SAR) data as recognized widely in the last two decades. The
potential of SAR for crop classification is significant since radar backscattering is
sensitive to the dielectric properties of the vegetation and the soil, plant geometry,
and surface roughness. Additionally SAR systems can operate efficiently under all
weather conditions making them ideal for crop classification. Crop classification
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using SAR data has produced admissible accuracies in literature [4, 13, 15, 25, 29—
31, 43, 48, 56].

Multi-frequency polarimetric SAR analysis of crops is even more useful since the
different depths of penetration of the EM wave at various frequencies give unique
information about the crop structure, vegetation water content, and biomass [44].
Multi-frequency data, available by airborne SAR systems like the AIRSAR, indicate
interesting crop classification results [19, 24, 34] due to differences in multi-
frequency polarimetric parameters associated with different plant geometries. Rao
et al. [50] indicated monotonic decrease in co-pol phase difference (¢ g—vv) over
corn fields at multi-frequency (P-, L-, C-band) polarimetric AIRSAR data. At higher
frequencies, radar backscatter return is more correlated with heads and fruiting
part, while they are better correlated with wet biomass and foliar area at lower
frequencies [27].

With the availability of multi-frequency SAR data from space borne platforms
(multi-sensor), crop classification studies have received much attention from remote
sensing community [47, 48]. These studies indicated that high biomass crops (e.g.,
corn) were well classified using the low frequency data, while higher frequency data
were needed to accurately classify low biomass crops. New generation SAR system
promises better availability of multi-frequency data from Copernicus Sentinel-1
program (C-band), RADARSAT Constellation Mission (C-band), SAOCOM-1A/B
(L-band), TerraSAR-X (X-band), and upcoming ROSE-L, Biomass, and NASA-
ISRO SAR (NISAR L- and S-band) missions. Nevertheless, diversity in frequency
is still only attainable by integrating data from multiple platforms and enabling
enhanced crop characterization capabilities by the synergy among these cross
platforms [6, 17, 44, 52].

The major features used in crop classification experiments are confined to
backscatter intensities at different polarization channels (HH, VV, and HV or
VH) [14, 41, 46, 53]. Additional information about the physical nature of the crops
can be obtained by generating the target decomposition polarimetric parameters
from fully polarimetric SAR data. Moreover, the ratios of individual backscatter
coefficients convey additional target scattering information [28, 45]. In addition
to the individual backscattering coefficients, polarimetric target decomposition
parameters obtained from both model based and eigenvalue-eigenvector based
polarimetric parameters [9, 60, 65] can better characterize different crops.

Identifying relevant and important polarimetric parameters is an integral part
of machine learning studies. Many machine learning techniques employ parameter
selection to form subsets resulting in dimensionality reduction. Some of the machine
learning techniques used for crop classification using SAR data are neural network
classifier [8], maximum likelihood classifier [33], Wishart classification [33, 55],
Support Vector Machines (SVM) [39], decision-tree classifier [47].

Among different classifiers, the Random Forest (RF) is gaining much attention
for land cover classification over agricultural areas [10, 11, 13,22, 36, 38,42, 58, 64].
RF also provides a parameter subset as a part of its classification technique. RF
additionally handles the diverse dynamic ranges of the polarimetric parameters and
it does not require parameter scaling or normalization. This provides an added
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advantage over other techniques since the polarimetric parameters used in crop
classification have varied ranges. In this work, we use polarimetric target decompo-
sition parameters obtained from both model based and eigenvalue-eigenvector based
polarimetric parameters in addition to the individual backscattering coefficient
parameters in a RF classifier.

The rest of this chapter is organized in the following order: Sect.2 briefly
describes the study area and datasets used. Section 3 explains in detail the
methodology of multi-frequency crop classification used in this study. Section 4
discusses the results and their subsequent observations and interpretations in depth;
and finally, this chapter is succinctly summarized and concluded in Sect. 5.

2 Study Area and Dataset

We conducted the study over the international agricultural super-site at Flevoland
area in The Netherlands (Fig. 1). The test site is bounded between 52.266605°N,
5.648201°E (upper left coordinate) and 52.326725°N, 5.441733°E (lower right).
The terrain is flat and lies £3 m below the mean sea level. This region is dominated
by agricultural crops and nominal field sizes are ~80 ha. The major crops grown in
area includes wheat, barley, potato, sugarbeet, and maize. Secondary crops include
rapeseed, pea, onion, steam bean, and grass.

L SN

W Potato W Sugarbeet [ Winter wheat

Legends: [JUnclass
M Grass [OMaize M Rapeseed [ Barley B Fruit trees
B Onion @ Flax H Lucerne O Beans Peas

Fig. 1 The Flevoland test site location overlaid on Landsat-5 optical image. The extent of
AIRSAR acquisition is presented in cyan rectangular box, and test site in red dashed line. A
reference crop map indicates different agricultural crop parcels managed during the JPL-SAR
experiment 1991
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Sugarbeet

Fig. 2 Plant morphological structures for short-stem broad-leaf (sugarbeet and potato), and long-
stem (rapeseed and barley) crops

For the analysis, we group these crops in two types: short-stem broad-leaf
(SSBL), and long-stem (LS) (Fig. 2). In the long-stem category, barley and rapeseed
were analyzed, while in the SSBL category, sugarbeet and potatoes were included.
During the JPL-SAR experiment 1991, the Flevoland test site had 406, 317, 101,
and 13 fields of potato, sugar beet, barley, and rapeseed, respectively [20, 54, 62].

We utilized the AIRSAR datasets [3] acquired during the campaign as part of the
JPL-SAR experiment 1991. The acquisition of AIRSAR data (Process ID: cm3253,
Flight-line: flevoland116-1.91109) coincided with the agricultural growing season
in June. The acquisition of AIRSAR data was in multi-frequency (C-band: 5.7 cm,
L-band: 25 cm, and P-band: 68 cm) and full-polarimetric mode. The nominal pixel
spacing in range and azimuth was 6.66 m x 12.15 m. The AIRSAR data is provided
in compressed Stokes product format.! We generate 3x3 covariance matrices for
individual frequencies, i.e., C-, L-, and P-band from these products of AIRSAR data
using PolISARPro toolbox. Other polarimetric features are subsequently generated
from the elements of 3 x3 covariance matrices. An overview of Pauli RGB images
of these multi-frequency datasets over the Flevoland area is shown in Fig. 3.

Uhttps://airsar.asf.alaska.edu/data/cm/cm3253/.
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Fig. 3 Multi-frequency Pauli RGB images of the study area (Red=|Syy — Syv|, Green=2|Syv|,
and Blue=|Syy + Svv|). These three colors are the magnitudes of the scattering matrix elements
when they are expressed in the Pauli basis. (a) C-band. (b) L-band. (¢) P-band

PoISAR Data Preprocessing Guidelines

SAR data processing guidelines in PolSARPro: https://github.com/dipankar05/
springer-multifrequencyS AR-crop/blob/main/PolSARpro_features_guide.pdf

In the H-V basis, we generated co-polarized phase (¢gg—vv), co-polar coher-
ence amplitude (poggyy), co- and cross-pol ratios (02 " /08‘,, agv /02 5> and
crI(_)IV / 08‘/), and diagonal elements of the 3 x3 covariance matrix. Subsequently, the
covariance matrix in H-V basis is transformed to the circular R-L basis to obtain
the 02 R /cr? .- Apart from these non-decomposition (ND) parameters, we derive
14 features from the target decomposition parameters [9, 60, 65], as presented in
Table 1.

The training datasets for crop classification are generated using the reference map
(Fig. 1) provided during the campaign and aptly used in literature [20, 62]. From
these reference map, we generated training samples by drawing region of interest,
which we kept at ~15% sampling rate in this research. This selection of sampling
rate is taken considering the stability in classification accuracies above 15%.

3 Methodology

3.1 Random Forest

Random Forests (RFs) are an ensemble learning technique for classification and
regression which is constructed by several decision trees that are trained and their
results are combined through a voting process by the majority of the individual
decision trees [7]. The multiple decision trees of the RF are trained on a boot-
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Table 1 SAR polarimetric decomposition (14) and non-decomposition (9) parameters used in this
study

Decomposition parameters Description
Touzi [60] Touzi symmetric scattering type magnitude
(O‘x] 5 Olm)

Touzi symmetric scattering type phase (¢, , ¢s,)
Kennaugh-Huynen target helicity (7, , T, )

Yamaguchi 4-component [65] | Odd-bounce scattering power (P;), Double-
bounce scattering power (Py)

Volume scattering power (P,), Helix scattering

power (P.)
Cloude-Pottier [9] Entropy (H ), Anisotropy (A), Average target scat-
tering mechanism («); Span = Z?:l A
Non-decomposition parameters Description
Co-polarized phase dHH-VV
Co-polar coherence amplitude logHVY|
Co-polarized and Cross-polarized Ratio Co-polarized: 0101 H /‘7\9\/? Cross-

polarized: ‘71(-)1 v/ U,(_)I y and 02, v/ 08 v
0 0
andopp/op;
Diagonal elements of the 3x3 covariance matrix | Cjj, C22 and C33

strapped sample of the original training data. At each node of every decision tree,
one among a randomly selected subset of input parameters is chosen as the best
split and subsequently used for node splitting [37]. Each tree uses only a portion of
the input samples (typically two-third) for the training while the remaining roughly
one-third (referred to as Out-Of-Bag (OOB)) of the samples are used to validate the
accuracy of the prediction. In general, RF increases the diversity among the decision
trees by randomly resampling the data with replacement and by randomly changing
the parameter subsets for node splitting at each node of every decision tree.

3.2 Parameter Importance Evaluation

Parameter importance evaluation helps in identifying the most relevant parameters
out of the total set for classification by ranking them in descending order of their
importance. In RF, for every decision tree the misclassification rate is calculated
from the OOB observations. The parameter whose importance is to be evaluated,
is randomly permuted for the OOB observations, and then the modified OOB
values are passed down the tree to get new predictions. This difference in the
misclassification rate between the modified and the original OOB observations
averaged over all trees, is the parameter importance measure which is used in
this study [59]. This difference in classification accuracy before and after random
permutation of the parameter whose importance is to be determined is the Mean
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Decrease Accuracy (MDA) [49] measure used in this study. RF based parameter
selection using this technique was studied in [2, 12, 21]. It is necessary to note that
in this study the original MDA scores were normalized (the highest MDA score was
set to 100 and the others were scaled accordingly) for the sake of comparison.

3.3 Partial Probability Plot

The RF is capable of identifying important parameters and generating partial
dependence plots [18, 23] which may be used to establish relationships between
the parameters and the predicted classes. The partial dependence plots provide an
unique way to visualize the marginal effect of a parameter on the classification using
RF. The partial dependence function is given as in (1) [18],

~ 1
fx) = ;i;f(x,xic) (1)

where x is the parameter for which partial dependence is sought, and x;c is the other
parameters in the data.

f(x) =log pr(x) — Y log pj(X)/K )

J

The logits (i.e., log of fraction of votes) is the predicted classification function as
given in (2). Here K is the number of classes and p; is the proportion of votes for
class j.

The partial dependency plots produced with probability distribution based on
scaled margin distances are the partial probability plot used in this study. The partial
probability plot provides a visual representation of the probability of occurrence of
a class for each parameter over its entire dynamic range [5, 49]. By partialling out
the average effect of all other parameters, we can analyze the influence of a given
parameter on the probability of occurrence of the predicted class.

In this study, the partial probability plot of polarimetric parameters was useful
for crop characterization and separation. For polarimetric parameters with diverse
ranges, the partial probability plot helped to identify an optimal dynamic range [22]
in which the probability of occurrence of “crop” class was >0.8. Identification
of this range can be useful for crop characterization and separation. Mainly, the
partial probability plots help to study the underlying physical scattering mechanisms
associated with crops through their diverse optimal dynamic ranges.
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3.4 Processing Steps for Parameter Selection and
Classification Using RF

The schematic overview of the workflow used in this study is shown in Fig. 4.
The processing steps for multi-frequency crop classification in this study are as
follows:

* Polarimetric target decomposition and non-decomposition parameters were gen-
erated from the coherency matrix and covariance matrix ([T]) and ([C]), which
resulted in total 23 parameters.

* RF was created using 1000 decision trees and 23 parameters. It was decided
to use 1000 decision trees since Breiman [7] suggested that as many trees as
possible can be used in the RF ensemble since they do not overfit.

» Parameter selection and classification performed for each band (C-, L- & P-band)
individually.

e The top 10 parameters with the highest MDA scores were chosen as the
parameter subset in this study for multi-frequency crop classification.

* RF parameter ranking in co-ordination with partial probability plots were used to
analyze separability and mixing among crop classes.

Multi-frequency
PolSAR Data
e RF Parameter Selection and Classification

C-band

1

1

1

1

! Preprocessing
! SAR data

P-band
SAR data

D+ND i

Parameters

L ;
oo |
§ ] J i
' [\ : [\ i '
i| Separation || Separation || !
i arameters arameters |

| —{ o e |
| sl
Crop Discriminat

e[ |

| i P I
J— S N B S

1| Separation |!!| Separation ! 1| Separation Separation
i rameters |:i| parameters | | : arameters arameters

i — L

: SSBL vs. LS Separation le Lis 55BL vs. LS Separation
parameter pairs

| parameter pairs |

olo ola)
T

——_—
SSBL vs. LS Separation
parameter pairs

Fig. 4 Schematic workflow for multi-frequency crop classification and crop separability analysis
using RE. D: Decomposition parameters, ND: Non-decomposition parameters, PS: Parameter
Selection, Cl: Classification, SSBL: Short-stem broad-leaf crop, LS: Long-stem crop, B: Barley,
R: Rapeseed, S: Sugarbeet, P: Potato
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* In addition, we analyze separability of crop classes by measuring dissimilarity
between partial probability plot curves using the Fréchet distance [1, 16]. The
Frechet distance closer to 0 indicates similarity between curves while closer to
1.0 indicates distinct curves.

RF Classification Code

RF Classification code along with partial probability plotting and Frechet distance

for R: https://github.com/dipankar05/springer-multifrequencySAR-crop/tree/main/
Codes

4 Results and Discussion

Classification over the Flevoland area with the help of 23 polarimetric parameters
was conducted. Out of this, only the top 10 were selected and subsequently used for
classification with RF. These 10 parameters were used since it was observed that the
Overall Accuracy (OA) does not change significantly beyond these parameters as
shown in Fig. 5.

The number of training samples for each crop is given in Table 2. For ease of
analysis, number of training and testing points of only 4 selected crops (2 in SSBL
and 2 in LS categories) have been included out of the total 12 crop classes in the
Flevoland study area.

90 T T T

(=) = [ele]
S (= (=
T T T

Accuracy (%)
i
<

40 4
301 B
20k —=-L band
P band
10 ‘ ‘ ‘ ‘ —~C band
0 5 10 15 20 25

Number Of Parameters

Fig. 5 Overall RF classification accuracy for number of parameters at multiple frequencies
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Table. 2 Flevoland: Number Crop #Train | #Testl | #Test2

of training and test samples.
Barley 1100 600 592
Rapeseed 1115 563 571
Sugarbeet 2808 1342 1303
Potato 2357 1108 1119
Winter Wheat | 1029 615 720
Lucerne 1516 636 688
Flax 1340 789 902
Beans 706 464 393
Fruit trees 1451 725 743
Grass 2281 1026 1251
Peas 855 439 409
Unclass 3009 1504 1314

Legends: [JUnclass M Potato M Sugarbeet [Winter wheat M Grass M Onion [ Flax
O Maize MRapeseed [ Barley [ Fruit trees M Lucerne O Beans Peas

Fig. 6 RF classified images for C-, L-, and P-band over the Flevoland area. (a) C-band. (b) L-
band. (¢) P-band

The multi-frequency RF classified images are shown in Fig.6. The overall
classification accuracy for the multi-frequency crops are given in Table 3. In the
following subsections we analyze the LS (barley and rapeseed) and SSBL (sugarbeet
and potato) crops.

The number of test samples for each crop for the two sets is given in Table 2. The
independence between two sets of randomly selected test samples was measured
using the Wilcoxon signed-rank test [26, 63] using the sample median. The
Wilcoxon signed-rank test evaluated the independence between these two sets of
test samples to be >90% for all three bands (90.84%, 95.41%, and 96.36% for C-,
L-, and P-band, respectively).
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Table 3 RF Overall Class C L P
Accuracy using top 10 Barley 66.81 | 91.73 | 86.18
parameters
Beans 78.45 | 86.85 | 80.39
Flax 92.65 |99.75 |90.75
Grass 67.84 |43.18 | 63.06
Lucerne 47.64 | 99.69 | 83.49
Peas 71.99 |97.77 | 80.52
Potatoes 84.32 19542 | 94.57
Rapeseed 91.45 | 81.54 |73.42
Winter wheat 77.03 |73.13 | 44.27
Fruit trees 57.33 162.29 | 84.57
Sugarbeets 46.49 | 86.22 | 66.89
Unclass 22.39 |63.27 | 98.53
Overall user accuracy (%) |71.95 |80.77 |75.85
Kappa 0.68 |0.78 |0.73
Table 4 REF classification Band | Testl (%) | Test2 (%)
accuracy for the two
independent test samples C 71.31 68.08
L 83.33 83.30
P 78.41 77.14

! Attention

The Wilcoxon signed-rank test [26, 63] was used in this study since it can be
performed without assuming underlying distribution of the samples [40]; and we
know that the polarimetric parameters in general for SAR data seldom follow normal
distribution. The parameter median was calculated instead of mean since the mean
of the parameter can be misleading when outliers are present in the data [35] which
is possible for these kind of parameters.

The multi-frequency RF classification accuracy for the two test samples is
given in Table 4. In addition, we provided the normalized MDA scores of top 10
parameters at C-, L-, and P-band for individual crops in Table 5, 6, 7, and 8.

4.1 Separation Among Long-Stem (LS) Crops

Stems of barley are long in length with thin diameter, and canopy consists of narrow
leaves, while rapeseed plants have ramified stems with secondary and tertiary stems
and pods. The RF parameter selection helped us to identify the important parameters
for barley and rapeseed classification at different frequencies. The optimal dynamic
range of these parameters were analyzed and the parameters which were used
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Table 5 Normalized MDA scores of the top 10 parameters for barley classification

C-band MDA scores L-band MDA scores P-band MDA scores
P, 100 ol /oy, 100 oy/od, 100
P 65.00 P, 98.44 P, 97.07
Py 47.76 H 89.32 Py 81.91
H 39.77 ody/od, | 87.99 A 75.65
oYY 38.45 Py 83.26 ol /ody 71.40
of /oY, 3433 oy 72.97 P 65.33
P, 32.52 @y, 69.29 @y, 62.44
o 29.71 P 68.78 0d./0%, 60.91
@, 27.92 lormvyl 64.97 oy /0%, 6024
oyv/ohy 2167 o, 64.81 SPAN 56.81

Table 6 Norm

alized MDA scores of the top 10

parameters for rap

eseed classification

C-band MDA scores L-band MDA scores P-band MDA scores
P, 100 P, 100 P, 100
oby/ohy 53.07 oby /oy, 7441 P 83.93
SPAN 41.30 P, 64.36 ody/ad, 7331
H 33.64 Py 53.59 A 53.17
P, 31.94 ooy 5322 Py 48.88
o y/od, 3178 Ty 48.50 @y, 46.70
0, /0%, 31.49 @, 47.58 @y, 45.71
o 30.94 @y, 4435 lprHVY] 43.95
ofy/ovy, 30.84 Py 43.10 oy /ohy | 42.04
Cxn 30.26 ody/od, | 40.86 oy /o0, | 40.68
Table 7 Normalized MDA scores of the top 10 parameters for sugarbeet classification
C-band MDA scores L-band MDA scores P-band MDA scores
P, 100 ol /oy 100 Ty 100
Py 60.12 Py 85.83 %y /0%, | 83.60
A 53.91 ody/od, | 84.46 P, 81.26
@y, 52.75 P, 84.46 T, 72.49
Ty 52.13 H 70.99 opplopy, 7231
P, 50.83 P 61.95 oby/ody, 7126
P 49.95 lprnvy 58.80 Py 67.16
oby/ob, | 47.94 @, 58.75 A 67.09
oy /ob, 46.84 oy /od, 5742 o, 63.76
oy /oY, |38.88 o 56.23 Py 61.14

to discriminate barley from rapeseed were identified to be P, and P, at C-band.
The partial probability plots of P, for barley and rapeseed given in Fig. 7a and b,
respectively, show separation between them.
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Table 8 Normalized MDA scores of the top 10 parameters for potato classification

C-band MDA scores L-band
loaHVV] 100 P,
Py 98.30 oy /ody
Py 97.06 Py
@y, 91.74 ofyv/ohn
A 73.55 oY ulody
ob /oY, 6839 @y,
T, 57.96 @y,
P 55.55 P
UIQIV/UI(?IH 52.90 T,
P 49.34 a
1
0.8
5 0.6
E
e
204
=¥
0.2
0 — —
P (dB)
1
0.8
2
=0.6
=
o
204
=9
0.2
0
=40 -30 20 -10 0
P_(dB)

MDA scores P-band MDA scores
100 P, 100
68.62 Py 87.10
64.48 D, 85.08
58.99 @y, 82.84
55.63 A 73.82
54.30 ol /od, | 73.66
53.57 ody/ad, | 73.54
52.91 oy /0%, 7159
48.79 P 66.75
46.14 Tiny 63.48

Probability
< N <o o
O

(=]

Probability
N o o
B [@)) oo

o
[}

0

—40

—20 —-10 0 10

(b)

=30 20 —10 0 10
P_(dB)

(d)

Fig. 7 Separation between barley and rapeseed using partial probability plots. (a) Barley C-band.
(b) Rapeseed C-band. (c¢) Barley C-band. (d) Rapeseed C-band

The presence of secondary stems in rapeseed also gives rise to complex multiple or
helical scattering thereby contributing to high P, as compared to barley. The partial
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Fig. 8 separation between sugarbeet and potato using partial probability plots. (a) Sugarbeet L-
band. (b) Potato L-band. (¢) Sugarbeet L-band. (d) Potato L-band

probability plots of P, for barley and rapeseed given in Fig. 7c and d, respectively,
show separation between them.

Further, the Frechet distance between the partial probability plots of P, at C-
band between barley and rapeseed was found to be 1.0, indicating high dissimilarity
between the curves. Furthermore, the Fréchet distance between the partial probabil-
ity plots of P. at C-band between barley and rapeseed was found to be 0.99.

4.2 Separation Among Short-Stem Broad-Leaf (SSBL) Crops

The RF parameter selection and the optimal dynamic range evaluation using the
partial probability plot was useful to discriminate sugarbeet from potatoes both
being short-stem broad-leaf category. It was observed that sugarbeet and potatoes
can be discriminated using A, and 02, ul 08‘, for L-band as shown in Fig. 8.
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From the partial probability plots, the 0191 H /08V peak was observed to be
more for sugarbeet as compared to potatoes at L-band as shown in Fig.8c and
d, respectively. Similar observation was reported by Skriver et al. [57]. This may
be due to the relatively smooth surface scattering from sugarbeet compared to the
rough surface scattering from potato. The anisotropy A for sugarbeet was reported
to be higher than potatoes in L-band [51] which was also observed in our study as
shown in Fig. 8a and b, respectively. Anisotropy can be effectively characterized for
random scatterers for which H > 0.7 [32]. In our study for L-band, sugarbeet and
potatoes were both observed to have H > 0.7. However, there was a difference
in their anisotropy. Anisotropy is high when there is a big difference between the
second and third scattering mechanisms. A = 0 implies that the second and the
third dominant scattering mechanisms are almost the same. So in case of potato
it seems that the second and third scattering mechanisms were equally dominant
while for sugarbeet the third scattering mechanism (mostly noise) was non-existent
as compared to the second dominant scattering mechanism.

The Frechet distance between the partial probability plots of A at L-band for
sugarbeet and potato was found to be 0.9. Additionally the Fréchet distance between
the partial probability plots of 01(_)1 o /0\9\/ at L-band for sugarbeet and potato was
found to be 1.

4.3 Separation Between SSBL and LS Crops

Short-stem broad-leaf (SSBL) crops can be realized as canopy consisting of disc like
scatterers. Unlike SSBL, the long-stem (LS) crops have predominantly cylindrical
scatterers [20, 61]. It is important to identify polarimetric parameters which separate
these two crop types. In this study we have determined a pair of polarimetric
parameters based on the highest difference of MDA scores from the parameters
selected by RF which best separate SSBL from LS crops. We first calculated the
normalized MDA score difference between the same pair of parameters for two
different crop types. The pair having the highest normalized MDA score difference
between the two crops was selected for separation among the crop types. A few pairs
of polarimetric parameters were thus identified which successfully separate SSBL
from LS crops.

From Fig. 9a, it can be seen that for L-band, rapeseed (LS crop) and sugarbeet
(SSBL crop) can be separated using o?, H/08V and P, and thus misclassification
is avoided between them. The separation is about 4.0 dB for 02 H/Ugv and about
10dB for P,. From Fig.9b, it can be seen that for L-band, barley (LS crop) and
potato (SSBL crop) can be separated successfully using the polarimetric parameter
pair of al(_)IV / 02 g and P,. The separation is about 4.0 dB for agv / ag y and about
10.1dB for P,. As can be seen from Tables 5 and 7, the parameters 0101 H /08‘,,
and P, are part of the top 10 parameters required for L-band classification of
rapeseed and sugarbeet, respectively, thus validating the RF parameter ranking and
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Fig. 9 Separation between small stem and broad-leaf crops at L-band. (a) Rapeseed-Sugarbeet.
(b) Barley-Potato

its contribution in crop classification. Also Ugv / 02, g and P, are part of the top 10
parameters required for L-band classification of barley and sugarbeet, respectively,
as seen from Tables 6 and 8.

From Fig. 10a, it can be seen that for P-band, rapeseed (LS crop) and sugarbeet
(SSBL crop) crop can be separated using GIO{V / 02 g and Py. The separation is about
2.5dB for agv / 02 g and about 6.0 dB for Py. From Fig. 10b, it can be seen that for
C-band, rapeseed (LS crop) and potato (BBSL crop) can be separated successfully
using the polarimetric parameter pair of Glgv / 02 g and P.. The separation is about
2.5dB for GQIV /ag g and about 4.0dB for P.. As can be seen from Tables 5 and
7, the parameters Ugv / 08‘,, and P, are part of the top 10 parameters required for
P-band classification of rapeseed and sugarbeet, respectively, thus validating the
RF parameter ranking and its contribution in crop classification. In fact they are
amongst the top 5 ranked parameters for both crops. Also 01(_)“, /02 g and P are
part of the top 10 parameters required for C-band classification of rapeseed and
potato, respectively, as seen from Tables 5 and 8.

4.4 Analyzing the Mixing Among Crop Classes

The RF classification accuracies were used to correlate the parameter ranking with
the underlying physical scattering mechanism related to crop targets. RF based
partial probability plots were used to study mixing among crop classes, since
these plots give the marginal effect of the parameter on the classification accuracy.
Analyzing partial probability plots to study mixing among crop classes helps us
validate the RF parameter ranking. This is because the amount of mixing among
crop classes is related to the more dominant parameters having similar partial
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Fig. 10 Separation between small stem and broad-leaf crops at (a) P- and (b) C-band

Table 9 Confusion matrix C Barley |Rapeseed | Potato | Sugarbeet
for the four crop classes at Badl 8454 0 0 o
C-band (%) arley - 27
Rapeseed | 0 91.99 0 0
Potato 0 0 78.84 0
Sugarbeet | 2.88 0.1 6.28 | 67.71
Table 10 Confusion matrix P Barley | Rapeseed | Potato | Sugar_beet
for the four crop classes at Bal 100 0 0 0
P-band (%) arley
Rapeseed 0 76.91 0 0.28
Potato 0 18.34 99.63 0
Sugar_beet 0 0 0 59.21

probability plots. Distinct partial probability plots imply low to no mixing among
crop classes.

In the confusion matrix (Table 9), it was observed that 6.28% of potato was
misclassified as sugarbeet at C-band. The odd-bounce scattering power P; (ranked
7 and 10 for sugarbeet and potato, respectively) had similar partial probability plots
(Fréchet distance = 0.18) shown in Fig. 11a and b, respectively. This may be due
to the fact that both potato and sugarbeet, being short-stem broad-leaf crops exhibit
single bounce scattering from the wide leaf of the crop. Again from Table 10, in
P-band, high mixing of 18.34% was observed among rapeseed and potato classes.
The volume scattering power P, is dominant for crops with ramified stems and was
observed to be Rank 1 for both rapeseed and potato, respectively. P, was observed
to have relatively similar partial probability plots (Frechet distance = 0.32) as shown
in Fig. 12a and b, respectively.

In contrast to C and P-band, significant mixing was not observed among the four
crops in L-band. This means the relevant parameters chosen by RF all have distinct
partial probability plots at L-band. It was observed that barley and rapeseed crop
classes did not have any intermixing among each other at all frequencies. Hence,
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Fig. 12 Mixing among rapeseed and potato classes at P-band. (a) Rapeseed. (b) Potato

it is interesting to note that the top parameters selected by RF have distinct partial
probability plots for barley and rapeseed at all frequencies. The partial probability
plots of ‘7191\/ / O’IO{ g (ranked 1 and 5 for barley and rapeseed, respectively) at L-band
is shown in Fig. 13a and b. The Fréchet distance between them was observed to be
0.97 indicating distinct plots. It is to be noted that the confusion matrix given in
Tables 9 and 10 do not sum up to 100%, since only classification accuracies of 4
selected crops have been included out of the total 12 crop classes in the Flevoland
study area.
Some notable insights from the above study:

* When top ranked parameters of different crops have similar partial probability
plots, the crop classes can be easily mixed.

* Mixing among crop classes reduces as the rankings get lowered for parameters
with similar partial probability plots. For instance, 18.34% mixing was observed
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Fig. 13 Distinct partial probability plots of selected parameters for barley and rapeseed (L-band).
(a) Barley. (b) Rapeseed

among crops classes for top ranked parameters (rank 1-3) while only 6.28%
mixing for bottom ranked parameters (rank 7—10).

¢ Crop classes which do not mix, their top ranked parameters mostly have distinct
partial probability plots.

5 Summary

In this study we utilized polarimetric target decomposition and non-decomposition
parameters for crop analysis. It was observed that the model-based decomposition
powers along with the ratio of the backscattering coefficients were important
for crop classification. Moreover the Eigenvalue/Eigenvector based decomposition
parameters were useful for critical analysis of crops in some cases. It was observed
that similar crop types have different scattering properties which was evident from
the partial probability plots of the important polarimetric parameters. The parameter
selection by RF and the evaluated normalized MDA scores for multi-frequency
data was thus useful for crop analysis. Separation between Long-stem and short-
stem broad-leaf crops at different frequencies was made possible using a pair
of polarimetric parameters having the highest normalized MDA score difference
between the crop types. It was seen that the crops which were separated physically
by the polarimetric parameter ranges were also the ones having the highest
difference between their normalized MDA scores. This was helpful in validating
the RF parameter ranking at multiple frequencies.

This study can be extended by incorporating parameters from multiple sources,
for example: Leaf Area Index (LAI), Normalized Difference Vegetation Index
(NDVI), soil moisture, temperature, etc., in addition to polarimetric parameters.
The ranking of these parameters from multiple sources can be useful for diverse
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crop analysis studies. The partial probability plots which evaluate optimal dynamic
ranges can be useful for further analysis like crop yield, annual crop growth
monitoring, etc. Multi-temporal analysis in addition to multi-frequency can be of
an added advantage for crop studies. Evaluation of optimal dynamic ranges for crop
parameters over the entire growth stage for multi-temporal datasets will be very
useful for agriculture studies like crop planning and harvest.
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