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A B S T R A C T

Immersed tunnels are positive buoyant structures during installation and negative buoyant after installation.
A tunnel is composed of sequential immersed elements that are coupled to each other in joints. Tunnel
elements consist of segments which are compressed to each other by longitudinal post-tensioning. After
immersion the tunnel is supported by the seabed and the longitudinal post-tension is cut at the joints between
segments. Therefore, the structure is a segmented lining which is sensitive for settlements due to non uniform
circumstances over the length of the tunnel. An uneven response of the bedding underneath the tunnel
introduce shear forces in joints of an immersed tunnel. Because immersed tunnels need to be buoyant during
installation, they have limitations on weight and geometry, the size and therefore the capacity of these shear
keys is limited because the height of the tunnel, as shear keys are applied in the walls of the tunnel. The
foundation response is influenced by many factors related to subsoil but also to construction and dredging
tolerances. The shear forces were derived as a function of different covariance lengths for subsoil stiffness
and dredging tolerances for different tunnel layouts. In reliability analyses, using two different probabilistic
methods, exceedance probabilities of maximum shear forces are derived for one lay out using Non Parametric
Bayesian Networks and Vine Copulas. The analyses give more insight in to the magnitude of the shear forces
in joints both in conditioned and unconditioned situations and this can be used for the design of immersed
tunnels.
1. Introduction

Immersed tunnels (IMT) are tunnels supported by soft soil and a
foundation layer acting as a bedding. The majority of this type of
tunnels is constructed using prefabricated elements immersed to a
trench in the seabed. After immersion and finalisation, the structure
behaves as a segmented lining with segments of a length with about
20 to 25 m, that are connected with joints. Using this approach, the
tunnel is less vulnerable for differential settlements as the segment
joints only transfer shear forces via shear key constructions and large
bending moments over the length of the structure are avoided. In the
most common current design approach, an alternating bedding scenario
(reduction of the stiffness on a single segment using a prescribed factor,
as defined by Dutch requirements (RWS, 2017) and adopted for many
tunnels worldwide) along the tunnel axis is used as a conservative
approach. However it does not account for spatial variability in both
the subsoil and the foundation of the tunnel. Instead, the current design
approach is geometrically orientated on the tunnel to find the largest
possible shear forces and not on the variability of the bedding support.

∗ Corresponding author at: TU Delft, Delft, The Netherlands.
E-mail address: c.m.p.thart@tudelft.nl (C.M.P.’t. Hart).

In this paper the authors present a method to find the variability of
forces in the shear key using Gaussian Random Fields (GRF), which are
parameterised by a covariance length. Next, the probability distribution
of the force in the shear key is found by using two different probabilistic
methods, Vine Copulas (VC) and Non Parametric Bayesian Networks
(NPBN), in which the covariance lengths for the subsoil and dredging
tolerances are related to the shear forces. Both methods differ but allow
both for conditioning. These probabilistic methods are valuable and can
be identified as scientific engineering, because they connect variability
in subsoil and construction to estimate the forces in the shear key in
both conditioned and unconditioned situations. Using these methods,
both the GRF as well as a multivariate probability distribution for
covariance lengths for (spatial variability of soil properties) and shear
forces, will result in a complete characterisation of the probabilistic
relation between support conditions and the shear forces in the tunnel
to be used in design. Secondly, more efficient and more robust designs
for immersed tunnels can be developed and can be identified as an
alternative for the current design approach.
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Nomenclature

𝛥𝑡𝑑𝑙 Dredging tolerance
𝛥𝑡𝑝𝑙 Gravel placement tolerance
𝜇 Mean value
𝛴 Covariance matrix
𝜎 Standard deviation
𝜎𝑎 Average contact pressure
𝜎𝑏 Bedding response
𝐴𝑏 Contact area underneath the tunnel
𝐴𝑏 Bedding-tunnel contact area
𝐹𝑖 Force at segment i
𝐹𝑘 Absolute force at shear key
ℎ𝑓 Foundation thickness
𝑘𝑏 Bedding stiffness
𝑘𝑓 Foundation material stiffness
𝑘𝑠 Soil stiffness
𝐿𝑐𝑜𝑣 Covariance length [m]
𝐿𝑖 Influence depth of the tunnel
𝑛𝑥 Number of points in 𝑥 direction
𝑛𝑦 Number of points in 𝑦 direction
𝑋 Location
𝑥𝑛 x-coordinate of point n [m]
𝑦𝑛 y-coordinate of point n [m]

The demonstrated model and method in this paper also has limi-
ations. For example, it assumes that the loads are uniform over the
unnel. Additionally, only 2 keys are considered per joint to transfer
he shear forces, while in practice could be more. On the other hand,
nly 3 variables are considered in the probabilistic methods. This
an be extended by other variables, such as spatial variability of the
ediment height on the tunnel site. Furthermore, this method clearly
iffers from the current design approach. To use this method in design
ractice, engineers should have a more than basic understanding of the
robabilistic tools employed.

After a brief literature overview, the paper handles first the concept
f immersed tunnels as tunnel structures in soft soil, a brief introduction
n GRF is given and the probabilistic concepts of VC and NPBN. The
xplanation of the method starts with the used model, its variations
nd specific conclusions on the relation between the covariance lengths
nd the force in the shear key. Based on the findings, the probabilistic
nalyses, using both methods, are conducted and the distribution of the
hear force is found for both unconditional as well as for conditional
ituations. The paper is closed with conclusions and discussions as well
s recommendations on follow-up research are given on improving and
o overcome the limitations.

. Literature overview

Different types of immersed tunnels (IMT) as well as their construc-
ion methods are discussed by Rasmussen (1997). A general description
f the IMT construction technique and a historical perspective is given
y de Wit and van Putten (2014) and design principles are described
y Grantz (1997). A description of the development over the years is
iven by Glerum (1992).

IMTs have traditionally a foundation of a gravel or a sandflow
oundation, both have their advantages and disadvantages, but differ-
nces between both methods were already described in 1978 by van
ongeren (1978) and scale model tests on sand-flow were performed
nd researched by Li et al. (2014). The sand-jetting or sand-flow,
as applied, for example on the Maastunnel in 1942 (Gravesen and
2

asmussen, 1993) and is highlighted by Glerum (1995). The gravel
foundation was applied to the Øresund link between Copenhagen and
Malmö.

Tunnels, not limited to IMT, rely on geotechnical as well as struc-
tural analysis. Random fields have been applied in a comparison study
by Cheng et al. (2019) of a pressurised tunnel face of a bored tunnel
and provides a practical design tool. Gong et al. (2018) presents a prob-
abilistic analysis based on a random field generation for a longitudinal
analysis for a bored tunnel. For a bored-tunnel section, a 2D plain strain
approach including a random field generation is presented by Yu et al.
(2019) in which the reliability of the tunnel lining is validated.

The application of spatial variability or (Gaussian) random fields
is yet uncommon in designs of IMT foundations. Random fields are
stochastic processes in space, or in other words, random functions over
a given domain Adler and Taylor (2009), Hristopulos (2020). Random
fields are used in many research areas, such as environmental engi-
neering, social sciences, finance, astronomy and many others. Liu et al.
(2019) shows the development in research of this random fields. Within
the research in the field of civil engineering the application of GRF
is frequently observed in geotechnical analysis for example for levees
and embankments (Hicks and Li, 2018), Li et al. (2017) . The spatial
variability of a soil continuum can be described using this method,
see for example (Papaioannou and Straub, 2015; Soubra et al., 2008;
Kasama and Zen, 2011). Besides the geotechnical applications, random
fields are also used in structural mechanical cases. Bucher (2006) shows
the application of it in material properties, such as the computation of
modulus of elasticity or strength as well as for geometrical properties,
like thickness in shell models. The application of random fields to
trusses is researched by Bocchini (2008) and discusses the application
in the reliability analysis of Cable Stayed bridges. In these examples
the concept of random fields in Finite Element analysis is used. A
description of this approach is given by (Vanmarcke et al., 1986).

In this study 2 different probabilistic methods are used, Non-
Parametric Bayesian Networks (NPBN) and Vine Copula (VC). Both
are graphical models and represent probabilistic dependence between
the nodes. NPBNs are well described by Hanea et al. (2015). The
NPBN in this research is implemented using the Python toolbox
BANSHEE (Paprotny et al., 2020; Koot et al., 2023). NPBNs have been
used in different fields of application such as hydrology (Paprotny
and Morales Napoles, 2017) and flood risk (Paprotny et al., 2021;
Couasnon et al., 2018). In order to assess of civil structures, NPBN
are applied in Mendoza-Lugo et al. (2022), Morales Napoles and tno
(2014), Morales-Nápoles and Steenbergen (2014) to model weight in
motion data as result of traffic load. An application of this weight in
motion model is used in Torres-Alves et al. (2022) in the reliability
assessment of an submerged floating tunnel and in Mendoza-Lugo et al.
(2019) to assess the reliability of bridges. VC can be used as a modelling
tool for complex probabilistic dependency and used in many fields of
application (Aas et al., 2009; Aas and Berg, 2009; Min and Czado, 2010;
Chollete et al., 2008; Pouliasis et al., 2021; Jäger and Nápoles, 2017).
Key in the application is to use a Regular Vine (RV) that represents
fairly the data. With the increase of the number of variables in a data-
set the number of possible unique Vine Copulas increases drastically
as shown in Morales Napoles (2016) and Morales Napoles (2010).
The combination of spatial variability and a probabilistic approach to
estimate the shear key forces in immersed tunnels is a topic which is
not addressed in literature.

3. Concepts

3.1. Immersed tunnels

Currently, the majority of IMTs are constructed using prefabricated
elements of 100 to 150 m in a dry dock situation. The elements
consist out of segments of 20 to 25 m which are compressed to each
other for transportation by a post-tensioning system. After casting and
post-tensioning the element, it is towed to the tunnel location and
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Fig. 3.1. Typical cross section of an immersed tunnel section.
Fig. 3.2. Typical longitudinal section of an immersed tunnel section.
immersed into a dredged trench and laterally locked at its horizontal
position using a back-fill and a protection layer (see Fig. 3.1). After
immersion temporary post-tension is deactivated by cutting the tendons
at the joints. As a result a continuous flexible system is created and at
the joints shear forces need to be transferred between segments (see
Fig. 3.2).

The shear keys, which connect the segments provide a vertical shear
capacity. The capacity is dependent on the size and material of the
key. Adjustment of the key has limitations. For example, as mentioned
before, the tunnel needs to be buoyant in the construction phase,
adding material like thickening the key will influence this process.
Furthermore, the key itself is limited by the height of the tunnel.
Considerations for other materials has financial consequences. At the
shear key location, a flexible joint is constructed. Flexible joints are
‘‘weak’’ points in terms of water tightness of the tunnel and its amount
should be limited. In the current design approach of alternating bedding
scenarios, longer distances between joints will increase the forces in the
shear key.

An optimal design would meet a segment length where the shear
key is loaded to its maximum capacity. The results presented in this
paper are based on an analysis of a rectangular tunnel section using a
gravel foundation, although the same approach as presented here can
be used for a sand-flow foundation. In current designs, a conservative
approach using a single reduction parameter on a segment foundation
is applied in an alternating bedding stiffness.

3.2. Gaussian random fields - spatial covariance

The spatial covariance indicates that a local value of a partic-
ular parameter is correlated with neighbouring values of the same
parameter depending on the spatial distance between locations. The
distance between two point dictates to what extent the values on the
two location will vary. In this research GRF are applied to simulate
the spatial variability. If a distance between 2 points increases, the
covariance (statistical correlation) decreases exponentially. The covari-
ance between two points in a grid is defined by the covariance length
(𝐿𝑐𝑜𝑣) as expressed in Eq. (1), in the example with 0.5, 1 and 2,
which shows these different covariances over the distance between
3

Table 3.1
Element characteristics.
Element length [m] varies

Element width [m] 30.0
# segments [–] 6
Segment length [–] 20

points. To illustrate this dependency, for 3 hypothetical situations,
three covariance length functions over distance have been plotted in
Fig. 3.3. The actual covariance between individual locations is dictated
by 𝐿𝑐𝑜𝑣. If the covariance length is halved, the covariance between two
points decreases faster; in contrast, if the covariance length is doubled,
the covariance between two points decreases more slowly. If a surface
is discretised to 𝑛𝑥 times 𝑛𝑦 in which 𝑛𝑥 is the number of points in the
longitudinal direction and 𝑛𝑦 in the lateral direction, the total number
of points 𝑛 is defined as 𝑛 = 𝑛𝑥 ⋅ 𝑛𝑦. The covariance matrix 𝛴 contains
the information regarding the covariance between all points within the
grid defined by 𝑛𝑥 and 𝑛𝑦. Factor 1

2

√

𝜋 in Eq. (1) is the scaling factor
can be adjusted for model representation.

If all distances between all points are available in a distance matrix,
the covariance matrix 𝛴 can be found in which for each connection
the covariance is defined. Using Eq. (2) a multivariate Gaussian distri-
bution be found and samples can be generated given 𝐿𝑐𝑜𝑣. A sample
of the field can then be transferred to any other distribution using
a quantile transformation in which the quantiles of the normalised
Gaussian distribution map to the quantiles of the target distribution.
For the generation of GRF in this research, the GSTools, a toolbox for
geostatistical modelling in Python is used (Müller et al., 2022).

The application of GRF is yet uncommon in designs of tunnel
foundations. By nature, the soil parameters will develop continuously
over the area. Special circumstances like faults and other exceptions
will give raise to discrete transitions, but are not considered in this
research. The trench is dredged to immerse the tunnel in it, by itself
the dredging process has a tolerance. After dredging, a layer of gravel
is applied to the required level. The soil variables, such as stiffness,
and the dredging level, which is directly related to the thickness of the
foundation layer (as presented in Fig. 4.2), are spatially correlated and
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can be described using GRF.

𝑐𝑜𝑣((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = 𝑒−
√

𝜋∕2
√

(𝑥2−𝑥1)2+(𝑦2−𝑦1)2
𝐿𝑐𝑜𝑣 (1)

𝑓𝑋 (𝑥1,… , 𝑥𝑛) =
𝑒−

1
2 (𝑥−𝜇)

𝑇𝛴−1(𝑥−𝜇)
√

(2𝜋)𝑛 |𝛴|

(2)

3.3. Probabilistic methods (Vine Copulas and non-parametric Bayesian
networks)

In this research two probabilistic methods are used. Both, Non-
Parametric Bayesian Network (NPBN) and Vine Copulas (VC), represent
multivariate distributions along with their dependence structure. Both
methods are quantified with a data-set which will be generated using
the structural model of Section 4. The multivariate distributions are
based on the 1-dimensional marginal distributions of individual vari-
ables and the interconnections between them describing probabilistic
dependence. The distributions can be used to derive distributions of
variables which on itself can be used for extreme value analysis.
Additionally, distributions of a certain variable can be found for specific
conditions on the other variables (so called conditional distributions)
(see Table 3.1).

Non parametric Bayesian networks
A Bayesian Network (BN) is a graphical model that represent a joint

distribution in a compact way. A BN consists of a directed a-cyclic graph
(DAG) whose nodes represent random variables and arcs represent
probabilistic dependence between the nodes. Here, we restrict ourselves
to the class of NPBNs (Hanea et al., 2015). These class of BNs are
based on copulas. A bi-variate copula 𝐶 is a bi-variate distribution
with uniform margins in [0,1]. More generally, a multivariate copula
is a multivariate distribution function with uniform margins in [0,1].
One attractive feature of copulas is that they allow to separate the
dependence from the influence of the margins. Many types of cop-
ulas are available and are described in detail in Joe (2014). In the
NPBN framework, bi-variate Gaussian copulas are used to assemble
the joint distribution. The bi-variate Gaussian copula is 𝐶𝜌(𝑢, 𝑣) =

𝜌
(

𝜙−1(𝑢), 𝜙−1(𝑣)
)

where (𝑢, 𝑣) ∈ R2, 𝜙−1 is the inverse standard
ormal distribution and 𝛷𝜌 is the bi-variate Gaussian distribution with
orrelation coefficient 𝜌.

A NPBN is a BN where nodes are associated with a (typically) con-
inuous random variable (𝑋𝑖) with an invertible distribution function.
iscrete random variables which preserve order may also be used in

ome cases. The direct predecessors of a particular node in the DAG
re the ‘‘parents’’ of the ‘‘child’’ node. Arcs are directed from parents to
hildren. The arcs of the BN are associated with (conditional) Gaussian
4

Fig. 3.4. Regular Vine with 3 nodes.

copulas which are parameterised by (conditional) Spearman’s rank cor-
relations. Spearman’s rank correlation coefficient is the usual Pearson’s
correlation coefficient computed with the ranks of the variates (instead
of original units). For every node 𝑋𝑖 with a non-empty, ordered set of
parents 𝑝𝑎(𝑋𝑖) = {𝑖1,… , 𝑖𝑝}, conditional rank correlations are assigned
according to the following equation (3).
{

𝑟𝑖,𝑖𝑝−𝑘 if , 𝑘 = 0

𝑟𝑖,𝑖𝑝−𝑘|𝑖𝑝 ,…,𝑖𝑝−𝑘+1 for , 1 ≤ 𝑘 ≤ 𝑝 − 1
(3)

Because of its construction, a rank correlation in [−1,1] can be
assigned to any of the arcs of a NPBN. This assignment will lead to a
valid rank correlation matrix. Once the NPBN has been setup, a unique
joint distribution is determined. Using this joint distribution, efficient
sampling is possible. Next to that, exact inference or conditioning
(analytical updating of the joint distribution) is also possible given the
copula assumption.

Vine Copulas
Equivalent to a NPBN a VC is also a graphical probabilistic model.

A Regular Vine (RV) 𝑉 on 𝑑 elements (edge or nodes) is a sequence of
trees 𝑇1,… , 𝑇𝑑−1 such that:

1. 𝑇1 is a tree with node set 𝑁1 = {1,… , 𝑑} and edge set 𝐸1,
2. For 𝑗 ≥ 2, 𝑇𝑗 is a tree with node set 𝑁𝑗 = 𝐸𝑗−1 and edge set 𝐸𝑗

3. For 𝑗 = 2,… , 𝑑 − 1 and {𝑎, 𝑏} ∈ 𝐸𝑗 it must hold that |𝑎 ∩ 𝑏| = 1.

Property 3 is often referred to as the proximity condition which ensures
that if there is an edge 𝑒 connecting nodes 𝑎 and 𝑏 in tree 𝑇𝑗 , 𝑗 ≥ 2, then
𝑎 and 𝑏 (which are edges in 𝑇𝑗−1) must share a common node in 𝑇𝑗−1.
Thus, a regular vine on 𝑑 elements is one in which two edges in tree 𝑗
are joined by an edge in tree 𝑗 + 1 only if these edges share a common
ode in tree 𝑗. For 𝑒 ∈ 𝐸𝑗 , 𝑗 ≤ 𝑑 − 1, the constraint set associated with

𝑒 is the complete union 𝑈∗
𝑒 of 𝑒, that is, the subset of 𝑁1 = {1,… , 𝑑}

eachable from 𝑒 by the membership relation.
For 𝑗 = 1,… , 𝑑 − 1, 𝑒 ∈ 𝐸 if 𝑒 = {𝑖, 𝑘} then the conditioning set

ssociated with 𝑒 is 𝐷𝑒 = {𝑈∗
𝑖 ∩ 𝑈∗

𝑘 } and the conditioned set associated
ith 𝑒 is {𝐶𝑒,𝑖, 𝐶𝑒,𝑘} = {𝑈∗

𝑖 ⧵ 𝐷𝑒, 𝑈∗
𝑘 ⧵ 𝐷𝑒}. Note that for 𝑒 ∈ 𝐸1, the

onditioning set is empty. Note as well that the order of an edge is the
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Fig. 4.1. Covariance length validation model - topview.
Fig. 4.2. Bedding definition (cross-section).
cardinality of its conditioning set. For 𝑒 ∈ 𝐸𝑗 , 𝑗 ≤ 𝑑 − 1, 𝑒 = {𝑖, 𝑘} we
have 𝑈∗

𝑒 = 𝑈𝑖 ∪ 𝑈∗
𝑘 . Thus, nodes of 𝑇1 reachable from a given edge via

the membership relation are elements of the constraint set of that edge.
When two edges in 𝑇𝑗 are joined by an edge in 𝑇𝑗+1, the intersection of
the respective constraint sets forms the conditioning set. The symmetric
difference of the constraint sets is the conditioned set of this edge. An
example of a RV with 3 nodes is presented in Fig. 3.4.

In this study, only three variables are used; Covariance length
for soil stiffness, covariance length for the dredging depth and the
maximum shear key force found. There are only 3 possible RV with 3
nodes. Hence, a brute-force method is used to find the best regular vine
to describe the data. The selection of best VC is based on the minimum
Akaike Information Criterium (AIC) score.

For the fit, only the copula families with one parameter are used,
including their rotated versions where applicable (Gaussian, Clayton,
Gumbel, Frank and Joe). For this analysis the package pyvinecop-
ula (Vatter and Nagler, 2022) is used, which is a Python interface to
a library for Copulas based on Eigen (Guennebaud et al., 2010) which
provides high performance implementation for inference algorithms for
vine copula and bi-variate copula models.

4. Model and analysis

In order to research the influence of the covariance length of both
the subsoil and the dredging depth, an artificial representative model
is constructed. An IMT is supported by a bedding, consisting out of a
subsoil and the foundation, and loaded with various loads acting on
the tunnel. These loads will result in a bedding reaction underneath
the IMT. The IMT is a concrete structure and has a significantly higher
stiffness than the soil bedding. As a result, the force distribution of
the tunnel segment itself will be insensitive to bedding variations.
Flexibility is induced to the tunnel in the longitudinal direction by the
segments joints and the immersion or element joints.

A base model of as a part of an IMT is used. The model has a
length of 120 m and a width of 30 m (as specified in Table 3.1. The
segments are equally distributed over the length of the element and
have individual segment lengths of 20 m (𝐿𝑠). A schematic overview is
presented in Fig. 4.1.
5

The six segments of the IMT are assumed to have a constant vertical
displacement over the length of the considered tunnel part. The seg-
ments are considered as rigid bodies and the joints as flexible. Fig. 4.3
shows the loading principle of the tunnel in the longitudinal direction.

The bedding is assumed to be elastic, but because of the spatial
variability not constant over the contact area of the tunnel. The linear
stiffness of the subsoil is derived by a geotechnical1 analysis and
the bedding stiffness is than based on the following parameters (see
Fig. 4.2):

• Thickness of the foundation material (ℎ𝑓 in m).
• Stiffness of the foundation material (𝑘𝑓 in N

m3 ).
• Dredging tolerance (𝛥𝑡𝑑 in m).
• Placement tolerance (𝛥𝑡𝑝 in m).
• Subsoil stiffness (𝑘𝑠 in N

m2 ).

𝑘𝑏 =
1

1
𝑘𝑠

+ ℎ𝑓
𝑘𝑓

(4)

In the final situation, after immersion and after applying the soil
cover, an average compressing pressure is supplied to the foundation
underneath the tunnel (𝜎𝑎). The distributed load, on and in the tun-
nel, is adjustable by adding ballast weight and is based on vertical
stability requirements. These requirements specify the minimal total
resulting downward force to prevent floating up due to the buoyancy
force. Because the bedding stiffness varies underneath the tunnel, the
bedding response (𝜎𝑏) and therefore the load on the tunnel will vary as
presented in Fig. 4.4. In this study, the vertical position of the tunnel is
prescribed and adjusted in an iterative process until the average respon-
sive stresses over the contact area 𝐴𝑏 equals the load as described in
Eq. (5). It is assumed that the total element will have the same vertical
displacement and remain undeformed, this is a conservative approach.

1 A separate geotechnical analysis is required to derive the subsoil stiffness
based on the geological layers, the soil characteristics and the influence depth
of the tunnel.
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Fig. 4.3. Tunnel system.
Fig. 4.4. Tunnel response.
In reality, the tunnel will deform slightly by small rotations of the
segment and in the joints and, as a consequence, stresses will distribute
between segments. If the stresses will redistribute, consequently the
shear forces will reduce.

𝜎𝑎 =
∬ 𝜎𝑏(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝐴𝑏
(5)

The bedding response variation leads to different stress distributions
on the different segments. A shear force in a joint can be derived
between two segments. Assuming the stiff IMT, the stresses will not
redistribute between segments underneath the IMT and the maximum
shear forces between segments will be found. In this study an IMT with
a two shear key layout in the outer walls is assumed and each segment
has therefore four shear keys. The sequence to derive the shear forces
at a shear key after finding the equilibrium of the bedding response is
presented in Fig. 4.5 and is obtained by:

• Integration of stresses underneath each segment to get the total
force on a segment (𝐹𝑖).

• Find the centre of gravity of the total force (red dots).
• Distribute the force to the shear key locations linearly (green

dots).
• Define the shear key force as the absolute difference in forces

between segments at the shear key locations (𝐹𝑘,2−3 and 𝐹𝑘,1−4).
• Find the maximum shear key force of all shear keys.

In design, the maximum shear key force is used to compile a
reinforcement layout for the shear key. In Section 5 this sequence is
repeated for both different covariance lengths and different geometrical
tunnel layouts and is the covariance length related to the shear key
force. With this method, a spatial variability of the bedding stiffness
underneath the tunnel is considered. The variability not only differs in
longitudinal direction of the tunnel but also in the lateral direction. In
the presented model, only a spatial variation in subsoil stiffness and
dredging depth are considered, besides that, the model also considers
6

non spatial correlated variations such as variations in the top surface of
the gravel and in the gravel stiffness. More parameters, spatial or non
spatial variated can be considered in the model, such as settlements
over time and gravel placement equipment.

The model serves 2 different goals, the first one (Section 5.1) is
to present the influence of the covariance length on the shear forces
for different segment lengths. Secondly in Section 5.2, the structural
model is used to gather a data-set to create a NPBN and RV. With
these probabilistic models multivariate probabilistic analyses can be
conducted and interactions between variables can found. As a result,
probability distributions of variables, in this case the shear force, can
be found to conduct extreme value analyses.

5. Results

5.1. Spatial variability

In this section, Monte Carlo analyses (𝑛 = 1000) are conducted in
which the covariance lengths for both the soil stiffness as well as for the
trench dredging are considered to be equal and fixed in each analysis.
The generation of the variability of the subsoil stiffness and dredging
depth are independent. An even more stronger effect would have been
found if the same GRF was used for both parameters, but this was
considered as less realistic as independent generation. In reality not
only the variability will be independent but also the covariance lengths
of both parameters will be independent. However to find a relation
between covariance lengths and the shear key force, both are kept
equal. Using this approach the distribution of the shear force given the
covariance length. In Section 5.2, the covariance lengths are considered
independently. For the bedding variations the variable distributions as
described in Table 5.1 are used. These parameters are artificial and
based on experience in several designs of various tunnels. In order to
demonstrate the method, the quantity of the parameters is important
as long as they are representative. For each sample, GRF are generated
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Fig. 4.5. Force at shear-key.
Table 5.1
Parameters and distributions.
Item 𝜇 𝜎 Distribution Remarks

Gravel stiffness [kPa] 2000 300 Truncated Gaussian
uncorrelated
min = 1000
max = 3000

Soil stiffness [kPa] 5000 1600 Truncated Gaussian
min = 1800
max = 8200
𝐿𝑐𝑜𝑣 = varies

Trench dredging/Gravel thickness [m] 0.7 0.15 Truncated Gaussian
min = 0.35
max = 1.05
𝐿𝑐𝑜𝑣 = varies

Gravel placement tolerance [mm] 0 Triangular
uncorrelated
min = −10.0
max = 15.0
for both the subsoil stiffness as well as the thickness of the foundation
layer based on the considered covariance length. The size of the GRF
corresponds to the dimensions of the basemodel as shown in Fig. 4.1.
Using the sequence specified in Section 4, the maximum shear key force
can be found in each sample of the analysis and the total set result in a
distribution of the maximum shear key force for a specific covariance
length. The results are presented in Figs. 5.1–5.3. The following aspects
can be identified:

• The maximum shear key forces (up to 4.8 MN) can be found if
the covariance length is similar to the segment dimensions and
the variation is larger.

• If the covariance length is small or large compared to the segment
length, the maximum shear key force is small (with 1 to 1.5 MN)
and shows a low variation.

In Fig. 5.3 the relation between the shear key force at the 95th
percentile of the distribution and the covariance length is shown.
The 95th percentile is chosen as the characteristic design force (in
design considerations for ultimate limit state evaluation this value is
multiplied by a partial factor (European Committee for Standardization,
2002)).

In Fig. 5.1 the number of segments and the width of the tunnel
are considered to be constant. In Fig. 5.4 the segment length 𝐿𝑠 is
varied from 10 to 60 meter, while keeping the number of segments
7

equal to 6 (which changes the total element length), so the total contact
area under tunnel varies with the different segment length. On the
horizontal axis the covariance length is divided by the segment length
for comparison. The results are plotted for the covariance length over
the segment length and the shear key force found at the maximum
density as presented in Fig. 5.1. Fig. 5.5 shows the same figure as
Fig. 5.4, but for comparison, 𝐹𝑘 is divided by the contact area under
the segment. All individual graphs are presented in Appendix A. The
following observations can be identified from Fig. 5.4:

• 𝐹𝑘 increases with the segment length 𝐿𝑠. Larger integration areas,
due to the increase of 𝐿𝑠, underneath a segment will cause higher
shear forces which can exceed the capacity of a shear key.

• The maximum 𝐹𝑘 is found if the segment dimensions (length and
width) and 𝐿𝑐𝑜𝑣 are similar.

• If 𝐿𝑐𝑜𝑣 increases to larger values compared to 𝐿𝑠, the 𝐹𝑘 decreases.

There appears a strong relation between the covariance length and
the shear key force. Secondly, as a geometrical consequence of a lower
area below the segment, lower segment lengths show lower shear key
forces. An optimisation of the segment length could be discussed, as
joints are weaker spots in terms of water tightness. But in reality the
segment length depends on other factors as well, such as the casting
sequence, seasonal temperature loads introducing longitudinal effects
and so on. However, the conclusion gives useful input in the early stage
of the design of the geometry and structural solutions.
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Fig. 5.1. Distributions of the maximum shear key force for different covariance lengths.
Fig. 5.2. Exceedance probabilities of the maximum shear key force for different covariance lengths.
Fig. 5.3. Shear key force at 95th percentile as function of the covariance length.
5.2. Probabilistic analysis

Probabilistic models
Fig. 5.3 shows the relation between the shear key force and the

covariance length for a length segment of 20 m. The maximum shear
key force is found at a covariance length of about 15 m. From the figure,
it can be concluded that there is a positive correlation between the
covariance length and the shear key force up to a covariance length
of about 15 m and a negative correlation for covariance lengths larger
8

than 15 m. Rank correlations, which are often used to parameterise
multidimensional models in statistical analysis fail to capture non-
monotonic behaviour such as the one described in Fig. 5.3. Therefore,
the model is split up into two parts. The correlation length on which
the model is split is found by additional analyses between the interval
of 10 m to 24 m with an increment of 2 m. For this interval a quadratic
interpolation is derived to find the maximum value, which appears to
be 16.3 m, as presented in Fig. 5.6. The data-set is split into two parts
at this value an result into two separate data sets at the split value, the
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Fig. 5.4. Shear key force at 95th percentile as a function of the covariance length for different segment lengths.
Fig. 5.5. Relative shear key force at 95th percentile as a function of the covariance length for different segment lengths.
Fig. 5.6. Shear key force at 95th percentile as a function of the covariance length - splitted.
lower part (part 1) containing covariance lengths up to 16.3 m and the
upper part (part 2) containing covariance lengths of 16.3 m and larger.
Both parts show similar exceedance probability distributions. As this
probabilistic approach focus on the maximum shear key force, it can be
either conducted from part 1 and part 2. In Appendices B and C contain
the results for both parts, in this chapter only part 1 is presented as the
9

methods are equal for both parts.
The data for the Probabilistic analysis is generated using the base
model in a Monte Carlo simulation (𝑛 = 3000). The covariance lengths
were independently uniformly distributed between 0 m and 16.3 m and
the total data contains 3 variables: the both covariance lengths and
the maximum shear key force. The fitting is conducted by a Python
package SciPy (Virtanen et al., 2020) using the most common dis-
tributions. The best fitted distributions are selected based on lowest

sum of the square error between the observed value and the value
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Fig. 5.7. Cumulative distribution function of shear key force at 95th with the best fit for both parts.
Table 5.2
Empirical rank correlation matrix for part 1 (lower).

𝐿𝑐𝑜𝑣,𝑠𝑜𝑖𝑙 𝐿𝑐𝑜𝑣,𝑡𝑟𝑒𝑛𝑐ℎ 𝐹𝑘𝑒𝑦

𝐿𝑐𝑜𝑣,𝑠𝑜𝑖𝑙 1 0.006 0.355
𝐿𝑐𝑜𝑣,𝑡𝑟𝑒𝑛𝑐ℎ 0.006 1 0.426
𝐹𝑘𝑒𝑦 0.355 0.426 1

based on the distribution. For this analysis, the area of interest is at
the tail of the data and it appears that the log-normal distribution fits
best for part 1 (and the gamma distribution for part 2), as presented
in Fig. 5.7. The parametric distribution for the shear force will used
together with uniform distributions for the covariance lengths in the
simulations using the NPBN approach to find probability distributions.

A unique joint distribution between the covariance lengths (𝐿𝑐𝑜𝑣,𝑠𝑜𝑖𝑙
and 𝐿𝑐𝑜𝑣,𝑡𝑟𝑒𝑛𝑐ℎ) and the shear force is determined. In Table 5.2 the
empirical rank correlation matrix is presented. The matrix show only
a small correlation between covariance lengths as these are considered
independent. The correlation between the shear key force and the shear
key force are 0.36 to 0.43.

Using the rank correlations a NPBN is constructed with 3 nodes,
representing both covariance lengths and the shear force, and 2 arcs,
representing the correlation between the force to each of the correlation
length. The NPBN is presented in Fig. 5.8 and the conditional rank
correlation matrix is presented in Table B.2.

In order the validate whether the Gaussian copula represents the
bi-variate pairs closely, a diagnostic tool is used. Appendix B contains
the validation of the NPBN. The Cramèr-von Moses statistic, which
is related to the sum of square differences between the empirical
copulas and the parametric copulas is used. Fig. B.2 show the results of
this validation. The graphs indicate, by the relative small differences,
that the Gaussian copula (maximal 0.2) is a fair representation of the
bi-variate distribution.

Fig. B.3 present the empirical cumulative density of the d-calibration
scores, based on the Helliger distance (Morales-Nápoles et al., 2014).
The d-calculation scores are the distance between empirical and em-
pirical normal rank correlation, and the empirical normal and the
normal rank correlation matrices. If these matrices are equal, the d-
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calibration score is 1. For both parts, the d-calibration score is within
Table 5.3
Best fitted VC.
Tree 1: Copula Parameter

𝐿𝑐𝑜𝑣,𝑠𝑜𝑖𝑙 - Force Gaussian 0.37
𝐿𝑐𝑜𝑣,𝑠𝑜𝑖𝑙 - 𝐿𝑐𝑜𝑣,𝑡𝑟𝑒𝑛𝑐ℎ Joe 1.01
Tree 2:
𝐿𝑐𝑜𝑣,𝑡𝑟𝑒𝑛𝑐ℎ - Force | 𝐿𝑐𝑜𝑣,𝑠𝑜𝑖𝑙 Gumbel 180◦ 1.46

the uncertainty bounds if respectively 5000 and 25000 samples are
drawn.

The full output for the probabilistic approach using VC is presented
in Appendix C. For 3 nodes, only 3 different RV are applicable. The
differences in AIC between the three possible RV are small, less than 5.
The best fitted RV for part 1 is presented in 5.3 and has an AIC score of
−1261. In the overview in C.2 small tail dependency can be observed.

As stated, the VC approach uses different copulas and is able to
account for tail dependency. In Fig. C.2, the joint plot of the results
is presented. In this graph tail dependency is visible. In the VC with
the smallest AIC score for both parts, although the correlation is not
strong with 0.35 to 0.43, tail dependent copulas are found. Compared
to the NPBN approach, in which is concluded that the Gaussian copula
give confident predictions of the dependencies, it is also seen in the
CVM scores that the Gaussian copulas can be used, but that in some
cases the tail dependent copulas show a slightly better score. Based on
these findings and assumptions for both approaches, the VC approach
is better while the results are still comparable.

Conditioning
With the best found models for both NPBN and VC, simulations are

possible. A next step in the process is to condition the simulations.
If inference or conditioning is applied to the models, an uncertainty
distributions of remaining unknown nodes can be determined given a
condition on one or more of the remaining nodes. In practice this is
valuable, if a certain variable is deducted from field research such as
CPTs or by applying measures to reduce the tolerance on dredging,
the influence on the shear key force can be found and be accounted
for in the design or the design can be optimised based on these
findings or measures. It is also possible to use an opposite objective.

So, conditioning on the shear force in this matter is also possible. That
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Fig. 5.8. NPBN - part 1.
will give the engineer the distribution of the covariance lengths of the
soil stiffness and the dredging depth given a certain shear force.

In this research, the distributions are compared between the non-
conditional distribution and different conditional situations. For both
models, the lengths have been conditioned on different lengths. Next
to the conditioning of the lengths, also the shear force has been
conditioned, giving the following scenarios:

• Covariance length conditioned on 16.2 [m], 0.1 [m] from the split
value.

• Covariance length conditioned on 8.15 [m].
• Only one covariance length conditioned on 16.2 [m].
• Only one covariance length conditioned on 8.15 [m].

The outcome for the shear force of the simulations of the RV
is limited to the maximum value of the original data-set. However,
a difference between NPBN and VC is that in the NPBN the fitted
distribution functions have been applied while in the VC simulation, the
outcome is based on the simulation data. As a consequence, a dataset is
created using the best fitted RV (𝑛 = 1𝐸7) and a conditional dataset for
RV is conducted by specifying a small interval around the conditioned
variable (in this case 0.2 m) and select a sub-dataset from the total
simulation data based on this interval (or intervals if applicable, if
conditioned on more variables).

In Appendix B.2 and B.4 conditional exceedance probabilities are
presented together with the unconditioned results for the NPBN and in
Appendix C.2 and C.4 the equivalent results for VC are presented.
11
In general, the results slightly differ between the NPBN and the
VC. Main differences in the approaches of both methods are already
specified in the previous sections. In Table 5.4 the uncertainty distri-
bution for the forces have been derived based on fitted distributions. If
the conditioning of one of the covariance lengths is 16.2 m, the shear
forces increase compared to the original dataset and when the lengths
are conditioned to 8.15 m the forces decrease. If the conditioning for
the 16.2 m cases are compared, it can be observed that in case both
lengths are conditioned, the forces are larger than when only one length
is conditioned. Both observations are validated by the findings in 5.1.
The difference between the covariance length for the subsoil and for the
trench are compared, the forces are higher in case the covariance length
for subsoil is conditioned. It can be concluded that the influence of
subsoil stiffness on the bedding is larger trench depth (and the related
thickness of the foundation layer). However, this is case specific, if the
thickness of the layer differs and the stiffness of the subsoil stiffness
differs, the conclusion can be otherwise.

Additionally, for NPBN also conditioning have been conducted on
the forces. Using approach, the probability distributions for the covari-
ance lengths can be derived. The method is equal as for the condition-
ing on the covariance lengths, as described previously. Fig. B.7 show
the probability diagram for the covariance lengths when the shear force
is conditioned. The black line in the diagrams show the distribution
from the original sample, the other lines show the distributions for a
conditioned shear force of 2.0 MN (blue), 5.0 MN (green) and 7.0 MN
(red). In all graphs the blue line is below the black line, which indicates
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Table 5.4
Shear forces in [MN] for different conditions.

O
riginal

dataset

Conditioned
on

2
lengths

L
=

16.2
[m

]

Conditioned
on

2
lengths

L
=

8.15
[m

]

Conditioned
on

𝐿
𝑐𝑜𝑣,𝑠𝑜𝑖𝑙

=
16.2

[m
]

Conditioned
on

𝐿
𝑐𝑜𝑣,𝑠𝑜𝑖𝑙

=
8.15

[m
]

Conditioned
on

𝐿
𝑐𝑜𝑣,𝑡𝑟𝑒𝑛𝑐ℎ

=
16.2

[m
]

Conditioned
on

𝐿
𝑐𝑜𝑣,𝑡𝑟𝑒𝑛𝑐ℎ

=
8.15

[m
]

NPBN VC NPBN VC NPBN VC NPBN VC NPBN VC NPBN VC

1.00E−02 4.70 7.35 6.90 4.14 4.05 6.07 5.93 4.32 4.45 5.73 5.67 4.47 4.40
1.00E−03 5.89 8.73 8.05 4.98 4.84 7.34 7.12 5.24 5.49 6.92 6.83 5.46 5.35
1.00E−04 7.03 10.02 9.09 5.73 5.56 8.53 8.20 6.07 6.48 8.00 7.87 6.37 6.22
1.00E−05 8.15 11.27 10.06 6.43 6.23 9.69 9.21 6.85 7.45 9.01 8.84 7.22 7.04
1.00E−06 9.27 12.49 10.98 7.09 6.87 10.84 10.17 7.59 8.41 9.98 9.77 8.03 7.82
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hat the probability of the covariance length is not close to the split
alue. In contrast, the green and red lines are above the black line. The
robability that the covariance length is closer to split value is higher
han in the original sample. The red lines indicates that when a shear
orce of 7.0 MN is conditioned, a covariance length closer to the split
ength is more probable than in case of a shear force of 5.0 MN (green
ine). With this perspective, the designer has an option of a different
bjective and use the capacity of the shear key as a starting point. If the
ovariance lengths of subsoil can be derived, the design can be adjusted
o the circumstances.

. Relation to traditional design

In the more traditional design approach with the alternating bed-
ing, the stiffness is considered uniform underneath a segment and
segmented beam on an elastic foundation is used to describe the
odel behaviour. To account for torsional effects and consequently

arying shear forces in the keys in one joint a factor is used which
sually is taken as 20% to 25%. Variation of the bedding along the
unnel is accounted by an alternating bedding which is specified by a
actor depending on the foundation method. In the alternating bedding
pproach, no spatial variation in the subsoil is considered and is inde-
endent of the dredging method. In reality, this will vary by method
nd consequently by the marine environment and depth.

The method presented in this paper varies substantially from the
urrent design approach. In that approach, the tunnel is modelled in
2D space. Both methods require soil investigation and interpretation

f these results. If the soil investigation is intensified, both models will
ave an increasing accuracy but only on the subsoil stiffness. Never-
heless, if a covariance length or an interval of covariance lengths can
e derived, subsequently a distribution of shear forces can be derived
sing conditioning on this extended knowledge. In case the covariance
ength cannot be derived based on the available soil investigations, an
pper bound for the covariance lengths can be found in estimation of
he split value of the covariance length. Conditioning on an interval on
his value will give an upper bound distribution of shear forces.

In Eurocode (European Committee for Standardization, 2002) and
he ROK (RWS, 2017), the design is based on the Load Resistance
actor Method (LRFM). In short, in this method, the probability on
oth forces as well as that of the resistance are accounted for by
artial factors. For the service limit state (SLS) the loads are applied in
requent combinations and for the ultimate limit state (ULS) the loads
re combined and multiplied by a partial load-factor. These load-factors
iffer for different load cases. The limits states together will result in
12

‘‘frequent’’ load and a maximum considered load. These are in fact 2 c
uantiles in a load distribution. Where the SLS can be considered as the
ean value and a characteristic value at the tail of the distribution. In

he presented method using representative loading, a distribution of the
hear force is found, which can be equivalently considered. For the SLS,
hich focuses on durability in design, the mean or 50th quantile of the
istribution can be used. In ULS design, which focus on the structural
apacity, the force can be found by selecting the quantile which relates
o the required reliability index for the tunnel.

. Conclusion and discussion

In this research a method is presented to establish a relation be-
ween spatial variation of subsoil and dredging parameters and the
hear key forces in IMT and find exceedance probabilities using Non-
arametric Bayesian Networks and Vine Copulas. Considering the re-
ation between the covariance lengths and the shear key forces, the
ollowing conclusions can be drawn:

• If the covariance length is in the same order as segment length of
the tunnel, the largest shear forces will be found.

• The absolute shear key force increases with the segment length.

he latter conclusion is obvious, the area of a segment over which
he stresses are integrated is larger and will lead to larger forces.
ased on these conclusions, the design of the segment length can
e optimised if the covariant lengths are known or estimated within
imits, for example by more intensive soil investigation using CPT or
uality measures and monitoring of the dredging process. If possible,
t should be avoided in the design to have comparable segment lengths
s the covariant lengths. However, the segment length is not only
ependent on the shear force in the shear key only. If both lengths
re comparable, the design should anticipate for higher shear forces.
stimation of a covariance length can be based on site investigations
nd CPTs, DeGroot and Baecher (1993) presents a method for this.
he thickness of the foundation material is based on the dredging
olerance. One could think of extending the quality measures or the
redging method to improve the dredging accuracy, because it would
ead to a more constant thickness and stiffness and therefor a lower
ariability on the stiffness of the foundation layer. However in daily
ractice, the selection of the dredging method is depending on marine
onditions and geology. The dredging method is also dictating the
redging tolerance. As an extra option, by changing the thickness of the
oundation layer, the influence of the subsoil stiffness on the bedding
tiffness can be decreased.

In case covariance lengths are unknown, exceedance probabilities

an be found for the shear forces using NPBN and VC. There is an small
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difference between NPBN and VC, where the VC is more appropriate in
case of tail dependencies as in this situation. Using these methods, also
conditional probabilities can be derived to simulate different possible
scenarios.

In this research, only covariance lengths for the soil stiffness and
dredging depth are considered and both lengths are considered as
independent parameters. The latter could be topic of discussion, if
the top part of the soil influences the dredging process, a correlation
between both could appear. However, if the soil consist out of a multi-
layer profile, this influence of the top layer on the total stiffness of the
soil will reduce. In order to use this method in the design process for
tunnels and even parts of the method can be used. The GRF model can
be used to derive bedding stiffness to adopt in longitudinal analyses
and transverse analyses. When the subsoil stiffness and the thickness
of the foundation layer are inputted including their covariance lengths,
or the most conservative covariance lengths (close to the segment
dimensions), distributions of average bedding stiffness per segment can
be derived. Using the 5% and 95% of these distributions as design
values for the stiffness for an alternating bedding approach. More
advanced would be the derivement of the maximum shear force using
the full method. When the covariance lengths are unknown or only a
know as a bandwidth, the probabilistic methods will be valuable. As
conditioning can decrease the variation on the shear forces.

In reality, the soil will vary also over the support area of the
tunnel. The application of the method needs adjustment, where the
applicable distribution of the soil parameters develop over the area.
Usually different CPTS are taken over the area. Different stiffness
subsoil characterisations can be found over the support area. It is up to
the designer how to account for these difference as the characterisation
of the subsoil stiffness can be assumed continuous or with discrete tran-
sitions. Both options can be served using the quantile transformation to
the quantiles of the local subsoil distribution.

In this method demonstration, the shear force is transferred over 2
keys. In this way, the distribution of the shear key force is statically
defined. However, tunnel can be supplied with more shear keys, if
needed. To account for a distribution, a design can assume that the
tunnel segment will remain undeformed and that the shear forces will
linearly distribute between 2 segments. If the support conditions on the
segments are assumed as springs, a contribution from the segment to
the shear keys can be derived. Subtracting the forces from two segments
will lead to the individual shear forces for each shear key. A general
assumption here is that the segments will behave independently. This
assumption is valid as long as the segments will behave similarly, if the
stiffness between bedding differs substantially between segments as for
example at faults or at the transition to cut & cover sections this cannot
be assumed.

As a recommendation for further research, more parameters should
be part of the scope. Additional, the parameters used in this study are
all based on a distribution with a fixed set of parameters. This could
represent a single situation, however to draw more robust conclusions
it is recommended to extend further research with, but not limited to:

• Multiple layers of subsoil
• Settlements
• Dredging scenarios or methods
• Non uniform loading
• Variation of IMT geometry
• Different segment lengths over the tunnel length
• More than 2 keys in the segment joint
• Interaction between 2 elements

Summarising, in order to apply the method in design, if no covari-
nce is known, the split value (the covariance length where maximum
hear key forces are to be found) for can be found based on the
istributions for the various parameters found for soil stiffness and for
redging parameters. Conditioning on covariant lengths close to the
plit value, will result in a probability distribution for the maximum
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shear force. A design can be optimised in terms of reduction of the
number of joints. If field research results in a covariance length of
the subsoil stiffness or the dredging process is supplied with quality
measures, a better understanding of the shear key force can be obtained
than by application of the alternating bedding approach. An extension
of this research, such as non uniform loading and more than 2 keys,
will be very beneficial to the current design practice. In general, the
variation of the bedding support will be based on real site variation
of CPTs and an upperbound of the shear force can be found by using a
conservative 𝐿𝑐𝑜𝑣 for different parameters instead of a single parameter
in an alternating bedding scenario. In the hypothetical presentation of
this research, the load is considered uniform as well as the subsoil stiff-
ness characterisation. Both situations can be served using this method
already and can be used in current design practice. However, when
interaction between segments will occur, in case there is a significant
stiffness between segments, a more sophisticated approach will be
needed. The variability of the subsoil stiffness and foundation layer
is still applicable, but the structural interaction behaviour should be
accounted for. This analysis approach should be the ambition on short
term, however there will always a balance between computer capacity
in terms and more advanced analyses including several scenarios.
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Appendix A. Densities for different segment lengths

See Figs. A.1–A.6.

Appendix B. Non parametric Bayesian network

B.1. Part 1: Network setup

See Figs. B.1–B.3 and Tables B.1 and B.2.

B.2. Part 1: Conditioning
See Figs. B.4–B.8 and Table B.3.
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Fig. A.1. Densities for segment length 𝐿𝑠𝑒𝑔 = 10 m.

Fig. A.2. Densities for segment length 𝐿𝑠𝑒𝑔 = 15 m.

Fig. A.3. Densities for segment length 𝐿𝑠𝑒𝑔 = 20 m.

Fig. A.4. Densities for segment length 𝐿𝑠𝑒𝑔 = 30 m.
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Fig. A.5. Densities for segment length 𝐿𝑠𝑒𝑔 = 40 m.

Fig. A.6. Densities for segment length 𝐿𝑠𝑒𝑔 = 60 m.

Fig. B.1. Bayesian network - part 1.



Tunnelling and Underground Space Technology incorporating Trenchless Technology Research 147 (2024) 105624C.M.P.’t. Hart et al.
Fig. B.2. Cramer von Mises statistics - part 1.
Table B.1
Empirical rank correlation matrix for part 1.

𝐿𝑐𝑜𝑣,𝑠𝑜𝑖𝑙 𝐿𝑐𝑜𝑣,𝑡𝑟𝑒𝑛𝑐ℎ 𝐹𝑘𝑒𝑦

𝐿𝑐𝑜𝑣,𝑠𝑜𝑖𝑙 1 0.006 0.355
𝐿𝑐𝑜𝑣,𝑡𝑟𝑒𝑛𝑐ℎ 0.006 1 0.426
𝐹𝑘𝑒𝑦 0.355 0.426 1

Table B.2
Conditional normal rank correlation matrix for part 1.

𝐿𝑐𝑜𝑣,𝑠𝑜𝑖𝑙 𝐿𝑐𝑜𝑣,𝑡𝑟𝑒𝑛𝑐ℎ 𝐹𝑘𝑒𝑦

𝐿𝑐𝑜𝑣,𝑠𝑜𝑖𝑙 1 0 0.355
𝐿𝑐𝑜𝑣,𝑡𝑟𝑒𝑛𝑐ℎ 0 1 0.424
𝐹𝑘𝑒𝑦 0.355 0.424 1

B.3. Part 2: Network setup

See Figs. B.9–B.11 and Table B.4.
16
Table B.3
Empirical rank correlation matrix for part 2.

𝐿𝑐𝑜𝑣,𝑠𝑜𝑖𝑙 𝐿𝑐𝑜𝑣,𝑡𝑟𝑒𝑛𝑐ℎ 𝐹𝑘𝑒𝑦

𝐿𝑐𝑜𝑣,𝑠𝑜𝑖𝑙 1 −0.015 −0.230
𝐿𝑐𝑜𝑣,𝑡𝑟𝑒𝑛𝑐ℎ −0.015 1 −0.303
𝐹𝑘𝑒𝑦 −0.230 −0.303 1

Table B.4
Conditional normal rank correlation matrix for part 2.

𝐿𝑐𝑜𝑣,𝑠𝑜𝑖𝑙 𝐿𝑐𝑜𝑣,𝑡𝑟𝑒𝑛𝑐ℎ 𝐹𝑘𝑒𝑦

𝐿𝑐𝑜𝑣,𝑠𝑜𝑖𝑙 1 0 −0.230
𝐿𝑐𝑜𝑣,𝑡𝑟𝑒𝑛𝑐ℎ 0 1 −0.307
𝐹𝑘𝑒𝑦 −0.230 −0.307 1

B.4. Part 2: Conditioning

See Figs. B.12–B.16.
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Fig. B.3. Gaussian distance (d-score) - part 1.

Fig. B.4. Conditioned on 2 lengths.

Fig. B.5. Conditioned on 𝐿𝑐𝑜𝑣,𝑠𝑜𝑖𝑙 .
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Fig. B.6. Conditioned on 𝐿𝑐𝑜𝑣,𝑡𝑟𝑒𝑛𝑐ℎ.

Fig. B.7. Covariance length Trench, Conditioned on Force.
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Fig. B.8. Covariance length Soil, Conditioned on Force.

Fig. B.9. Bayesian network - part 2.
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Fig. B.10. Cramer von Mises statistics - part 2.

Fig. B.11. Gaussian distance (d-score) - part 2.
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Fig. B.12. Conditioned on 2 lengths.

Fig. B.13. Conditioned on 𝐿𝑐𝑜𝑣,𝑠𝑜𝑖𝑙 .

Fig. B.14. Conditioned on 𝐿𝑐𝑜𝑣,𝑡𝑟𝑒𝑛𝑐ℎ.
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Fig. B.15. Covariance length Trench, Conditioned on Force.
Fig. B.16. Covariance length Soil, Conditioned on Force.
Table C.1
Correlation matrix Part 1.

𝐿𝑐𝑜𝑣;𝑠𝑜𝑖𝑙 𝐿𝑐𝑜𝑣;𝑡𝑟𝑒𝑛𝑐ℎ Shear force

𝐿𝑐𝑜𝑣;𝑠𝑜𝑖𝑙 1.0 0.01 0.36
𝐿𝑐𝑜𝑣;𝑡𝑟𝑒𝑛𝑐ℎ 0.01 1.0 0.44
Shear Force 0.36 0.44 1.0

Appendix C. Vine copulas

C.1. Part 1: Data

See Tables C.1 and C.2.

C.1.1. Matrix based on 3-1-2 - part 1

𝑀 =
⎡

⎢

⎢

⎣

1 1 1
2 2 0
3 0 0

⎤

⎥

⎥

⎦

Trees - Trace
∗∗ 𝑇 𝑟𝑒𝑒 ∶ 0
3, 1 < − > 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 0.371329
22
2, 1 < − > 𝐽𝑜𝑒, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 1.00767
∗∗ 𝑇 𝑟𝑒𝑒 ∶ 1
3, 2|1 < − > 𝐺𝑢𝑚𝑏𝑒𝑙180◦, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 1.46212
AIC score: -1260.5

C.1.2. Matrix based on 2-3-1 - part 1

𝑀 =
⎡

⎢

⎢

⎣

3 3 3
1 1 0
2 0 0

⎤

⎥

⎥

⎦

Trees - Trace
∗∗ 𝑇 𝑟𝑒𝑒 ∶ 0
2, 3 < − > 𝐺𝑢𝑚𝑏𝑒𝑙180◦, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 1.38855
1, 3 < − > 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 0.371329
∗∗ 𝑇 𝑟𝑒𝑒 ∶ 1
2, 1|3 < − > 𝐹𝑟𝑎𝑛𝑘, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = −1.4251
AIC score: -1255.2

C.1.3. Matrix based on 1-2-3 - part 1

𝑀 =
⎡

⎢

⎢

2 2 2
3 3 0

⎤

⎥

⎥

⎣1 0 0⎦
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Fig. C.1. Data overview.
Table C.2
Correlation matrix Part 2.

𝐿𝑐𝑜𝑣;𝑠𝑜𝑖𝑙 𝐿𝑐𝑜𝑣;𝑡𝑟𝑒𝑛𝑐ℎ Shear force

𝐿𝑐𝑜𝑣;𝑠𝑜𝑖𝑙 1.0 –0.02 –0.24
𝐿𝑐𝑜𝑣;𝑡𝑟𝑒𝑛𝑐ℎ –0.02 1.0 –0.31
Shear Force –0.24 –0.31 1.0

Trees - Trace
∗∗ 𝑇 𝑟𝑒𝑒 ∶ 0
1, 2 < − > 𝐽𝑜𝑒, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 1.00767
3, 2 < − > 𝐺𝑢𝑚𝑏𝑒𝑙180◦, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 1.38855
∗∗ 𝑇 𝑟𝑒𝑒 ∶ 1
1, 3|2 < − > 𝐹𝑟𝑎𝑛𝑘, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 2.79775
AIC score: -1254.9

C.2. Part 1: Conditioning - vines

C.3. Part 2: Data

C.3.1. Matrix based on 3-1-2 - part 2

𝑀 =
⎡

⎢

⎢

⎣

1 1 1
2 2 0
3 0 0

⎤

⎥

⎥

⎦

Trees - Trace ∗∗ 𝑇 𝑟𝑒𝑒 ∶ 0 3, 1 < − > 𝐹𝑟𝑎𝑛𝑘, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = −1.48861
2, 1 < − > 𝐹𝑟𝑎𝑛𝑘, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = −0.1289 ∗∗ 𝑇 𝑟𝑒𝑒 ∶ 1 3, 2|1 < − >
𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = −0.331021
23
AIC score: -520.3

C.3.2. Matrix based on 2-3-1 - part 2

𝑀 =
⎡

⎢

⎢

⎣

3 3 3
1 1 0
2 0 0

⎤

⎥

⎥

⎦

Trees - Trace
∗∗ 𝑇 𝑟𝑒𝑒 ∶ 0 2, 3 < − > 𝐹𝑟𝑎𝑛𝑘, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = −1.99834 1, 3 <

− > 𝐹𝑟𝑎𝑛𝑘, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = −1.48861 ∗∗ 𝑇 𝑟𝑒𝑒 ∶ 1 2, 1|3 < − >
𝐹𝑟𝑎𝑛𝑘, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = −0.614899

AIC score: -521.4 (see Fig. C.1).

C.3.3. Matrix based on 1-2-3 - part 2

𝑀 =
⎡

⎢

⎢

⎣

2 2 2
3 3 0
1 0 0

⎤

⎥

⎥

⎦

Trees - Trace ∗∗ 𝑇 𝑟𝑒𝑒 ∶ 0 1, 2 < − > 𝐹𝑟𝑎𝑛𝑘, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = −0.1289
3, 2 < − > 𝐹𝑟𝑎𝑛𝑘, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = −1.99834 ∗∗ 𝑇 𝑟𝑒𝑒 ∶ 1 1, 3|2 < − >
𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = −0.260272

AIC score: -519.9 (see Figs. C.3–C.9).

C.4. Part 2: Conditioning - Vines

See Figs. C.10–C.16.
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Fig. C.2. Data overview - in [0,1].
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Fig. C.3. Sampling - matrix 3-1-2 - Part 1.
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Fig. C.4. Sampling - matrix 2-3-1 - Part 1.
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Fig. C.5. Sampling - matrix 1-2-3 - Part 1.

Fig. C.6. Conditioned on 2 lengths.
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Fig. C.7. Conditioned on 𝐿𝑐𝑜𝑣,𝑠𝑜𝑖𝑙 .

Fig. C.8. Conditioned on 𝐿𝑐𝑜𝑣,𝑡𝑟𝑒𝑛𝑐ℎ.
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Fig. C.9. Data overview.
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Fig. C.10. Data overview - in [0,1].
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Fig. C.11. Sampling - matrix 3-1-2 - Part 2.
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Fig. C.12. Sampling - matrix 2-3-1 - Part 2.
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Fig. C.13. Sampling - matrix 1-2-3 - Part 2.

Fig. C.14. Conditioned on 2 lengths.
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Fig. C.15. Conditioned on 𝐿𝑐𝑜𝑣,𝑠𝑜𝑖𝑙 .
Fig. C.16. Conditioned on 𝐿𝑐𝑜𝑣,𝑡𝑟𝑒𝑛𝑐ℎ.
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