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SOFTWARE Open Access

BCM: toolkit for Bayesian analysis of
Computational Models using samplers
Bram Thijssen1 , Tjeerd M. H. Dijkstra2,3, Tom Heskes4 and Lodewyk F. A. Wessels1,5*

Abstract

Background: Computational models in biology are characterized by a large degree of uncertainty. This uncertainty
can be analyzed with Bayesian statistics, however, the sampling algorithms that are frequently used for calculating
Bayesian statistical estimates are computationally demanding, and each algorithm has unique advantages and
disadvantages. It is typically unclear, before starting an analysis, which algorithm will perform well on a given
computational model.

Results: We present BCM, a toolkit for the Bayesian analysis of Computational Models using samplers. It provides
efficient, multithreaded implementations of eleven algorithms for sampling from posterior probability distributions
and for calculating marginal likelihoods. BCM includes tools to simplify the process of model specification and
scripts for visualizing the results. The flexible architecture allows it to be used on diverse types of biological
computational models. In an example inference task using a model of the cell cycle based on ordinary differential
equations, BCM is significantly more efficient than existing software packages, allowing more challenging inference
problems to be solved.

Conclusions: BCM represents an efficient one-stop-shop for computational modelers wishing to use sampler-based
Bayesian statistics.

Keywords: Bayesian statistics, Sampling, Markov chain Monte Carlo, Sequential Monte Carlo, Nested sampling

Background
There is an increasing interest in using Bayesian statis-
tics for the analysis of computational models in biology
[1–4]. With Bayesian statistics, the unknown parameters
of a computational model are assigned a probability
distribution describing their uncertainty. This distribu-
tion can be updated from prior information to give the
posterior probability distribution, using Bayes’ theorem:

P θjX;ℳð Þ ¼ P Xjθ;ℳð ÞP θjℳð Þ
P Xjℳð Þ ð1Þ

where Θ represents the parameters, X the measurement
data and ℳ the computational model. Furthermore,
the marginal likelihood, or evidence, can be used to

discriminate between different computational models.
It can be calculated by marginalizing the parameters:

P Xjℳð Þ ¼
Z

P Xjθ;ℳð ÞP θjℳð Þdθ ð2Þ

Typically, neither the posterior probability nor the
marginal likelihood can be calculated directly, but sam-
pling algorithms can be used to estimate them [5–16].
These sampling algorithms are computationally demand-
ing, especially when the number of parameters is large
and when the computational model is expensive to
simulate. Typical models in systems biology indeed carry
many parameters and are expensive to simulate [17].
Additionally, the posterior probability distributions arising
from such models are usually complex, containing mul-
tiple modes and ridges that are difficult to traverse [18].
Bayesian analysis of such systems biology models thus
requires the use of advanced sampling algorithms. Since
these sampling algorithms each have unique character-
istics and can be more or less suitable for a particular
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task, it would be beneficial to have various algorithm
easily available.
BCM, a toolkit for the Bayesian analysis of Compu-

tational Models using samplers, provides efficient,
multithreaded implementations of eleven algorithms
for calculating posterior probabilities and marginal
likelihoods.
The BCM toolkit focuses on computational models

that involve simulations or extensive calculations. Ex-
amples of such computational models are systems of
ordinary differential equations describing biochemical
reactions; or steady-state signaling networks, where the
activity levels may be calculated in diverse ways. These
computational models are in contrast to statistical
models that can be specified in the BUGS or Stan lan-
guages. For such statistical models, excellent software
packages already exist [19, 20]. For the computational
models that are targeted by BCM, several alternative
software packages also exist [5, 21–23]. However, each
of these packages implements only a single type of
sampling algorithm and most of them focus on one
particular type of computational model. In contrast,
with BCM the user can choose from eleven sampling
algorithms and the plugin architecture allows diverse
types of models. Thus, BCM represents a one-stop-
shop for Bayesian analysis of systems biology models,
where the user has a high chance of finding a suitable
algorithm for the analysis of the user-defined model.

Implementation
BCM consists of three components: an inference tool, a
model parsing tool and an R script for further analysis
and visualization (see Fig. 1a).
The inference tool (mdlinf ) is the main component of

BCM. It uses a specified sampling algorithm to generate
samples from the posterior probability distribution and
to calculate a marginal likelihood estimate. Error bounds
for the marginal likelihood estimate are also provided,
which are calculated directly from the samples using a
method suitable for the particular algorithm used to cal-
culate the marginal likelihood. As input, the inference
tool requires three parts: a configuration file, an XML
file specifying the prior, and a dynamic library that evalu-
ates the likelihood function. For constructing the dynamic
library that evaluates the likelihood function, BCM pro-
vides cross-platform boilerplate code, such that custom
model simulation code can be easily adapted for use with
BCM. Alternatively, the model parsing tool can be used as
described further below.
The inference tool implements three classes of sampling

algorithms: Markov chain Monte Carlo (MCMC) [6, 7],
sequential Monte Carlo (SMC) [8] and nested sampling
[9]. For each class of sampling algorithms, BCM includes
several options for proposal distributions, as well as ex-
tensions that can increase the sampling efficiency when
dealing with complex inference problems, giving a total
of eleven different sampling algorithms (Table 1).

Fig. 1 Overview of BCM. a The inference tool is the main component of BCM, providing three classes of algorithms for generating samples from
posterior probability distributions and calculating estimates of the marginal likelihood. The parsing tool can optionally be used to generate the
prior and likelihood files from a model description file and data. b Excerpt of a model description file. The model parsing tool can parse this file,
load the relevant data, and output C++ source code for a dynamic library that evaluates the likelihood function. In this example, the “Simulate()”
function still has to be implemented by the user with a desired simulation method
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Care has been taken to create efficient, multithreaded
implementations of each algorithm. Firstly, the inference
tool has been written in C++ and performance bottle-
necks have been profiled and optimized. Secondly, each
algorithm has been parallelized with a multithreading
strategy suitable for that algorithm: for MCMC, multiple
chains are distributed across threads, for SMC, particles
are distributed in batches across threads, and for nested
sampling, a batch of samples is generated at each iteration
by all threads which are then re-used in subsequent nested
sampling iterations.
The model parsing tool (mdlparse) is the second com-

ponent of BCM. It can be used to generate the prior and
likelihood files for the inference tool. The parsing tool
reads a model description file that specifies the model,
comprising the prior, likelihood and data references, and
it outputs C++ source code for a dynamic library that
evaluates the prior and likelihood function with the rele-
vant data. This C++ code can then be used as a basis for
further modification; or it can be directly compiled into a
dynamic library. The input model description file uses a
custom format with an easy-to-read syntax. An excerpt of
a model description file is shown in Fig. 1b. The use of the
model parsing tool is optional and it is meant as an aid in
model specification rather than as a comprehensive tool
capable of fully specifying all types of models.
Finally, a script is provided to load the output of the in-

ference tool into R for further analysis and for visualization
of the results. This script can be used to display kernel
density estimates of the posterior probability distribution
of the sampled variables, as well as to make plots for visual
posterior predictive checking; examples of both of these
are shown in Figs. 3 and 4. Basic functionality for con-
vergence diagnostics is included as well, including

autocorrelation functions and trace plots. Functions for
conversion of the results to CODA objects [24] and to
ggmcmc objects [25], two R packages for MCMC conver-
gence diagnostics and output analysis, are also provided.

Results
Analytically tractable example
To showcase BCM, and to explore how each class of algo-
rithms deals with increasing dimensionality and complex
distributions, we first analyzed a problem which is analyt-
ically tractable: the Gaussian shells problem described in
[5, 26]. While this example is not directly relevant for
systems biology, its likelihood function is multimodal
and ridge-shaped, resembling the likelihoods often en-
countered in systems biology models. The likelihood
function for this Gaussian shells problem is given by

P θð Þ ¼
X2
i¼1

1ffiffiffiffiffiffiffiffiffiffiffi
2πw2

p exp −
θ−cij j−rð Þ2
2w2

 !
ð3Þ

where r = 2, w = 0.1, and Θ and ci are n-dimensional vec-
tors. Θ is the vector of variables which are to be sampled
and ci are two constant vectors describing the centers
of the two peaks and are assigned the values c1,x = 3.5,
c2,x = −3.5 and 0 in the other dimensions. This likelihood
function is then composed of two narrow, well-separated,
ring-shaped peaks (Fig. 2a), which is a challenging sam-
pling problem.
We tested three sampling algorithms on this problem,

one from each class of sampling algorithms: feedback-
optimized parallel-tempered Markov chain Monte Carlo
(FOPTMC) [12], sequential Monte Carlo (SMC) [8] with
the automated temperature schedule selection of [15]
but without using Approximate Bayesian Computation,
and MultiNest [5].
As shown in Table 2, all three algorithms give the cor-

rect estimate for the marginal likelihood within the error
bounds. When the number of dimensions is 10 or fewer,
MultiNest is extremely efficient: it requires the fewest
likelihood evaluations while achieving the tightest error
bound. When the number of dimensions is increased
beyond 10 however, MultiNest becomes very inefficient.
At this point the exponential scaling of the algorithm be-
comes apparent. In the higher-dimensional setting, the
SMC algorithm deals with this problem most efficiently.
FOPTMC is least efficient: it requires the largest number
of likelihood evaluations and has the largest error bound.
FOPTMC can still effectively explore the posterior dis-
tribution (as shown in Fig. 2b), however, the temperature
schedule of the parallel chains in FOPTMC is optimized
for exploration of the posterior rather than for estima-
tion of the marginal likelihood and as a result there is
an increasingly large error in the marginal likelihood
estimate at higher dimensionality.

Table 1 Sampling algorithms and extensions implemented in BCM

Sampling algorithm Reference

Markov Chain Monte Carlo [6, 7]

Parallel tempering [10]

Adaptive proposals [11]

Feedback-optimized temperatures [12]

Thermodynamic integration [13]

Automated parameter blocking [14]

Sequential Monte Carlo [8]

MCMC proposals [8]

Kernel density estimate proposals [8]

Automated temperature schedule [15]

Nested sampling [9]

MCMC proposals [9]

Ellipsoid proposals [16]

MultiNest [5]
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Kinetic ordinary differential equation model
Having explored the behavior of several sampling algo-
rithms in an analytically tractable example, we now il-
lustrate the use of BCM for analyzing biological
computational models. As an example of this, we in-
vestigated the inference of the parameters of a model
based on a system of ordinary differential equations
(ODEs). The 6-variable cell cycle model of Tyson [27] was
used, as downloaded from BioModels [17]. A graphical
representation of this model is shown in Fig. 3a.
To recreate a typical setting in biology, data was

generated from the model at six time points for two

observables with three replicates (see Additional file 1).
Then BCM was used to infer all 16 parameters of the
model (10 kinetic parameters and 6 initial conditions)
from these 36 data points. The priors for the kinetic pa-
rameters were set to a uniform distribution spanning an
order of magnitude on either side of the parameter
values that were used to generate the data, and the
priors for the initial conditions were set to a uniform
distribution between 0 and 1 (see blue curves in Fig. 3c).
The likelihood function was set equal to the one that
generated the data, that is, a normal distribution with
standard deviation 0.05.

Table 2 Performance of three sampling algorithms in calculating the marginal likelihood of an analytically tractable example

Dimensions Log marginal likelihood Likelihood evaluations (x1000)

Analytical FOPTMC SMC MultiNest FOPTMC SMC MultiNest

2 −1.75 −1.80 ± 0.68 −1.74 ± 0.39 −1.73 ± 0.29 147 79 18

5 −5.67 −5.98 ± 1.65 −5.66 ± 0.47 −5.73 ± 0.38 287 281 28

10 −14.59 −14.92 ± 3.34 −14.64 ± 0.62 −14.13 ± 0.63 969 521 95

30 −60.13 −61.11 ± 9.10 −59.85 ± 0.97 * 6420 1511 *

100 −255.62 −257.7 ± 24.8 −255.8 ± 1.54 * 96,251 4271 *

The following algorithms were used: FOPTMC feedback-optimized parallel-tempered Markov Chain Monte Carlo [12], SMC automated-temperature sequential
Monte Carlo but without ABC approximation [15], and MultiNest [5]. The column ‘Analytical’ gives the marginal likelihood value calculated analytically. (*) indicates that
the computation time exceeded the maximal time of 1 h; the other calculations required at most 5 min

Fig. 2 Gaussian shells example. a Likelihood of the Gaussian shells problem in the 2-dimensional case. b Samples generated from the likelihood
by three sampling algorithms. In each case, the samples are well-distributed throughout each mode, and the two modes are sampled in approximately
equal proportions
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Fig. 3 Analysis of an ODE-based model of the cell cycle. a Graphical representation of the cell cycle model of Tyson [27]. b Posterior distribution
of the two observables; phosphorylated Cdc2 and the total amount of cyclin, and of two unobserved species, phosphorylated and unphosphorylated
cyclin. The black crosses represent the generated data which are used for the inference. The shaded blue area represents the posterior 95 %
confidence interval of the mean of the observables. c The prior and posterior probability distributions of each of the 16 parameters. The blue
lines indicate the prior, the red lines the estimated posterior, and the dashed grey lines indicate the values that were used to generate the
data. The densities are estimated from the posterior samples using kernel density estimation with Sheather-Jones bandwidth selection
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Despite the small size of the model, this inference
problem is challenging. Firstly, the ODE system is stiff,
and even with the use of an implicit ODE solver it is
costly to simulate. Secondly, there are multiple distinct
ways in which the model can fit the data, leading to
sub-optimal modes in the posterior distribution. Thus,
a sampler must be able to escape these local optima,
and it must be able to converge to the correct posterior
distribution with a limited number of likelihood evalua-
tions due to the computational cost of the simulations.
Four sampling algorithms were tested on this problem:

SMC, MultiNest, FOPTMC (now extended with auto-
mated parameter blocking [14]), and additionally nested
sampling with MCMC proposals (Nested-MCMC) was
added as an alternative nested sampling strategy. In this
inference task, FOPTMC with automated parameter
blocking was most efficient, requiring 14 h to generate
2000 samples from the posterior. SMC required 19 h,
while Nested-MCMC required 30 h and MultiNest had
to be discontinued as the acceptance rate quickly
dropped to essentially zero. The tests were performed
using 16 threads on an Intel Xeon E5-2680 processor.
The Bayesian estimates of the parameters and the

trajectories of the species can be used to study the un-
certainty in the model. Figure 3b shows the posterior
distribution of the two observables, as well as of two
inferred species for which no observable data was gen-
erated, as estimated by FOPTMC. We can see that the
data are sufficient to constrain the trajectories of the
observed species. For the unobserved species phos-
phorylated cyclin, the overall trajectory can also be
inferred. Nevertheless, for this unobserved species, the
second peak is more variable – here the data is insuffi-
cient to constrain the precise magnitude of the peak.
For the other unobserved species, unphosphorylated
cyclin, we see that there is greater uncertainty. The
posterior distribution indicates only that the average
levels are low, but the precise levels cannot be inferred
from these data.
Figure 3c shows the marginal posterior probability dis-

tributions of the parameters. It can be seen that for all
parameters, the values used to generate the data fall
within areas of non-zero probability of the posterior. In
most cases the data-generation values also have max-
imum posterior probability, but interestingly this is not
true for all parameters, such as for the activation and
deactivation of Cdc2. Furthermore, some parameters are
not identifiable, for example the rates of phosphorylation
and desphosphorylation of Cdc2 cannot be determined
from the data. In general, such lack of identifiability
could be for structural reasons, that is, the parameters
cannot be inferred in theory given the observed species,
due to a redundant parameterization. Alternatively, the
parameters may be identifiable in theory, but the data

may provide insufficient information to constrain the
parameters in practice.
Overall, the Bayesian estimates provide useful measures

of the uncertainty in parameter values, model fit and
model predictions.

Comparison with existing software packages
There are several software packages which can perform
Bayesian inference of the parameters of ODE-based
models: BioBayes [21], ABC-SysBio [22], SYSBIONS [23]
and Stan [20]. BioBayes uses parallel-tempered Markov
Chain Monte Carlo, ABC-SysBio uses sequential Monte
Carlo sampling in combination with Approximate Bayesian
Computation, SYSBIONS uses nested sampling, and Stan
uses Hamiltonian Monte Carlo and the No-U-Turn
sampler (NUTS).
To compare BCM with these software packages, a

simplified version of the previous inference problem was
used. Instead of inferring all 16 parameters, the initial
conditions and 4 of the 10 kinetic parameters were fixed
to the values used to generate the data, leaving 6 parame-
ters to be inferred. Figure 4a shows the marginal posterior
probability distributions of the simplified problem, as
estimated by BCM using FOPTMC (see Additional file
2: Figure S1 for the posteriors estimated by each algo-
rithm/software package). The other software packages
were optimized for this problem as much as possible to
give a fair comparison (see Additional file 1).
Figure 4b shows the time required to generate 1000

samples from the posterior with each software package
and algorithm, using eight threads on an Intel Xeon
E5-2680 processor. It is clear that BCM is significantly
faster than the other software packages. In particular
the MultiNest algorithm in BCM is extremely efficient
in this low-dimensional setting, requiring only 75 s.
The other algorithms in BCM required between 25 and
50 min, except for ellipsoidal nested sampling which re-
quired three hours. From the other software packages,
only SYSBIONS and Stan were able to solve this infer-
ence problem in a reasonable amount of time. SYS-
BIONS required five hours using Nested-MCMC,
which is approximately six times longer than BCM with
the same algorithm. For Stan, using the NUTS algo-
rithm, the sampling with a chain does not always con-
verge as the NUTS algorithm does not have a means to
escape sub-optimal modes. This problem was addressed
by starting eight separate chains in parallel, in which
case most of the chains were sampling the correct,
optimal mode. In this case, Stan required approximately
six hours to generate the requested samples. BioBayes
was able to reach apparent convergence in 4.5 days. For
ABC-SysBio, and SYSBIONS using ellipsoidal sampling,
the samplers did not reach convergence in 7 days (see
Additional file 1).
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Conclusion
The BCM toolkit provides efficient, multithreaded imple-
mentations of eleven sampling algorithms for generating
posterior samples and calculating marginal likelihoods.
Additional tools are included which facilitate the process
of specifying models and visualizing the sampling output.
This toolkit can be used for analyzing the uncertainty in
the parameters and the predictions of computational
models using Bayesian statistics.
The examples show that it depends on the problem

which sampling algorithm will perform well. In the
Gaussian shells example, where the focus was on mar-
ginal likelihood estimation, MultiNest performed best in
a low-dimensional setting, and in the medium- to high
dimensional setting sequential Monte Carlo was most
efficient. In the cell cycle example, where the focus was
on parameter inference, parallel-tempered Markov chain
Monte Carlo was more efficient than sequential Monte
Carlo. There are various aspects of the posterior prob-
ability distribution which affect the performance of the
different algorithms; for example the number of modes,
how well the shapes of the modes are approximated by
the proposal distributions, and the location and volume
of the posterior modes with respect to the prior. These
features of the posterior probability distribution will
typically not be known for the problem of interest be-
fore starting the analysis, and it is then unclear which
algorithm might be most suitable. The availability of
various algorithms in BCM will therefore be useful in
the Bayesian analysis of diverse models.
In the second example, we have shown that BCM can

be used to infer the parameters of an ODE-based model
of the cell cycle. BCM is significantly more efficient in
this task than existing software packages. This increase
in efficiency was possible due to the parallelization of

the sampling algorithms in combination with the use of
optimized C++ as programming language. Due to the
higher efficiency, BCM allows the analysis of larger or
more challenging computational models than was pre-
viously feasible. In previous cases where Bayesian ana-
lysis of complex biological computational models was
done, such as in [3, 4, 28], sampling algorithms were
newly implemented for each project. The availability of
BCM as an efficient, reusable software package can help
in streamlining such projects in the future.

Availability and requirements
Project name: BCM – toolkit for Bayesian analysis of
Computational Models using samplers
Project home page: http://ccb.nki.nl/software/bcm/
Operating systems: Windows, Linux, Mac
Programming language: C++ and R
Dependencies: Boost C++ libraries (tested with version
1.55.0), CMake (version 3.2 or later).
License: Mozilla Public License 2.0

Additional files

Additional file 1: Supplementary Information. Description: Supplementary
information describing the methodological details and all settings that were
used for each inference. (DOCX 49 kb)

Additional file 2: Figure S1. Description: Overview of the sampling
results of each inference of the comparison with existing software
packages. (PDF 1 mb)

Abbreviations
ABC: Approximate Bayesian Computation; BCM: Toolkit for Bayesian analysis
of Computational Models using samplers; FOPTMC: Feedback-optimized
parallel-tempered Markov chain Monte Carlo; MCMC: Markov chain Monte
Carlo; NUTS: No-U-turn sampler; SMC: Sequential Monte Carlo

Fig. 4 Performance comparison of BCM with existing software packages. a Prior and posterior probability distributions of the 6 parameters of
the simplified inference problem. b Time required for generating 1000 samples from the posterior using BCM, SYSBIONS, BioBayes, ABC-SysBio
and Stan, with several different sampling algorithm. The sampling was terminated if it had not converged after 7 days
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