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Chapter 1

Introduction

Online networks are complex distributed computer systémasinvolve potentially large
numbers of humans with their collective inputs and deciiofypical examples of on-
line networks include email, Facebook, Linkedin, WikipgedeBay, and BitTorrent-like
Peer-to-Peer (P2P) systems. They have become popular eedfplinfrastructures for
communication and they provide various mechanisms forsuseinteract. For instance,
in Facebook, users post messages on each other’s walls amdesd on each other’s
photos; in Wikipedia, users collectively edit articles Ireir areas of expertise; and in
BitTorrent, users upload to and download from each otheh&westhe contents of their
common interests. As in these examples, online networlen attly on the cooperation
and the contribution of their users. Nevertheless, usavsline networks are often found
to be selfish, strategic, or even malicious, rather thaneative, and therefore they need
to be incentivized for contributions. In this thesis, we amstudy the user behaviors and
the contribution incentives—two underpinnings—in onlimetworks. Whereas computer
scientists often treat online networks purely as computstesns, in this thesis, we take
one step further and approach online networks as societiagelh With this approach,
we hope that on the one hand computer scientists will be @etilvto think about the
similarities between their artificial computer systems #mal natural world, and on the
other hand, that people outside computer science will wtaled online networks better.
With the astounding growth of user activity in online netk®rthese systems have
deeply impacted and even changed the offline human societyinstance, online so-
cial networks like Facebook have provided a novel and oftieliciing context for people
to build up their social ties, online social media like Twithave vastly accelerated the
information propagation to a level that can never be readfettaditional media, and
P2P systems like BitTorrent have demonstrated a genuineféingnt method for shar-
ing contents that benefits both service providers and coesimt the same time, if we
take a closer look we may find that online networks have alfeeselved intoonline
societies They possess elementary components similar to the ores a@fiserved in the
offline human societies. Users in online networks behavereiftly, just like the pop-



ulation in human society is composed by people with varicefsaiors. Organizations
that maintain online networks play a similar role as goveznta and they face a variety
of concerns, for example, how to enhance reciprocity and toawduce inequality. The
contribution and consumption of users in online networksnfohe supply and the de-
mand, and as in economies of societies, they need to be glosglitored and carefully
balanced. Particularly, with respect to the topic of thissis—user behaviors and con-
tribution incentives—many attempts have been made to desagntive policies, which
range frombarter schemeso monetary schemes$eading online networks intbarter
economie®r money economieSimilar to the barter and money economies developed in
human society, in online networks they both have their oecéif’eness and limitations.

In this thesis, we provide theoretical and practical inssghto the correlation be-
tween user behaviors and contribution incentives in onfiegvorks. We demonstrate
user behaviors and their consequences at both the systetineaimdlividual level, we an-
alyze barter schemes and their limitations in incentigzisers to contribute, we evaluate
monetary schemes and their risks in causing the collap$eddritire system, and we ex-
amine user interactions and their implications in infegnirser relationships. We often use
BitTorrent and Facebook as case studies due to their pagyutatoday’s Internet. In the
end, the key research question we address is to create arstamtgng of the correlation
between user behaviors and contribution incentives thwttis generic and can be applied
to a wide range of online networks that rely on the coopenatiod the contribution of
their participants.

1.1 A brief history of online networks

Online networks have emerged, developed, and prolifenattidthe Internet Since the
mid 1990s, the Internet has had a tremendous impact on dyrlidas: the near instant
communication supported by email and instant messagingéeasdy reformed our daily
contacts, online shopping sites have completely changepgwuahase habits, online dis-
cussion forums have provided us with novel and interactomtexts for obtaining and
polishing knowledge, online social networks have assiggeh building up both online
and offline social ties, and online social media have acatddrthe information propaga-
tion to a level that traditional media can never reach. Wih&se online networks bring
our lives to a whole new level, they often rely on central sesvto provide resources
and services, for example, caching emails, streaming sida&ad retrieving profiles of
online friends. With the astounding growth of online netksyrservice providers like
YouTube and Facebook are facing significant challengestisfgag users with enor-
mous resources including bandwidth, storage space, angutorg power.

As a more efficient way for obtaining and sharing resourcesyo-Peer (P2P) sys-
tems made their debut through the Napster file sharing sy} the late 1990s. Later,



Kazaa [59], Gnutella [2], eDonkey [42], BitTorrent [19],dfiribler [84] have emerged
one after another, aiming to provide file sharing and stragrservices with better per-
formance through designing effective contribution inoesg. Besides content sharing,
P2P systems serve many other applications as well, suchlasdja3] for web caching,
Yacy [118] for searching, Spotify [100] for music distrilug, and Bitcoin [8] for dig-
ital currency. P2P systems at various times serve hundreatsllioons of users. They
are founded on the principle that the resources and serfrm@seach individual partic-
ipant can be leveraged for the good of others, and thus,sekservers from tremendous
workloads and save service providers from immense expenses

1.2 Grounding our work

In order to analyze user behaviors and contribution ingeatin online networks, we
ground our work in three classes of online networks, one RRR services that are op-
erated in a distributed manner, one with remarkable soegtfes that rely on central
servers, and one that combines social network featuresrwdtbtributed operations. In
particular, we focus on three online networks, BitTorrér@cebook, and Tribler. Below,
we give a brief overview of each of them in turn.

1.2.1 BitTorrent

In 2001, the BitTorrent file sharing protocol [19] was releésogether with the first Bit-
Torrent client. A BitTorrent network consists multiptgvarms each associated with a
file divided into smalichunksand with a number of users who are interested in this file.
Users are located to swarms and are introduced to each otremitral servers named
trackers Downloading in BitTorrent is not performed in a sequenbiaer, so that users
in the same swarm may have different chunks of the file and tla@yexchange what
they have with each other. In BitTorrent’s terminology, nss&ho do not have all the
file chunks are calletbechersand users who already have the entire file and only stay to
serve others are callestedersFigure. 1.1 displays an overview of a BitTorrent network
with trackers, files, swarms, leechers, and seeders. By BibtWgrrent has become the
most popular P2P protocol, based on which hundreds of P@/tslhave been developed,
for instance, uTorrent [105], Vuze [111], and Tribler [8%ith their own extensions and
improvements, these clients serve hundreds of millionsefawith various applications
ranging from the original file sharing to live streaming amndieo-on-demand.

BitTorrent does not provide content search service. lastdae search function is
provided by BitTorrent websites or communities like theaRBay [80] and TvTorrents
[104]. These communities also provide additional fundisnch as discussion forums
and content moderation. While some BitTorrent communif@sxample, the PirateBay,
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Figure 1.1: Overview of a BitTorrent network with files died into chunks, swarms,
leechers, seeders, and trackers.

are publicly available to all usergrivate BitTorrent communitiegquire users to keep ac-
counts that sometimes can only be obtained through ineitagi10,12,15,40,41,81,104].
These communities adopt community-level policies, sucBleming Ratio Enforcement
(SRE), to incentivize users to contribute. Under SRE, membee required to main-

tain their sharing ratios (the ratio between a user’s upvatidownload amount) at least
equal to a threshold set by the community administratogmiise they are banned from
downloading or even expelled from the community. Accordim@ recent study, private

communities serve over 24 million active users combined, @ responsible for the

majority of the BitTorrent activity in the world [124].

BitTorrent communities are playing such an important rolédday’s Internet that
they serve as ideal cases for studying user behaviors andhtdion incentives. Par-
ticularly, the user-level identifications maintained invate BitTorrent communities, in
contrast to the IP-level identifications in public commiest allow us to study the real
userbehaviors, rather than the superfigigler behaviors compromised in most previous
works.

1.2.2 Facebook

Facebook is no doubt the most successful online social mktiwmotoday’s Internet.
Founded in February, 2004, Facebook originally served axialdoolkit for only Har-
vard students, and eight years later, it has attracted awerbdlion users all over the
world. Facebook has had such a great influence on humang’las$ that researchers
from various backgrounds, for example, sociologists, pelagists, economists, physi-



cist, and computer scientists, have spent tremendoug @ff@nalyzing theFacebook
phenomenofR0, 29, 88, 108, 114].

In Facebook, each user maintains a profile with photos, biote&ests, education ex-
periences, and other personal information. Besides demabiosis through user profiles,
users in Facebook can communicate with friends and othes tts®ugh private or public
messageand achatfeature. They can also create and join interest groups atedike
pages some of which are maintained by organizations as a meandveftsing. Mul-
tiple users can be gathered together throigbntsandGames And as one of the most
straightforward ways of sharing social lives, users canroemt on the news, the photos,
the videos, and the essays posted by their online friends.

With its vast popularity, Facebook serves as an ideal cassddying user behaviors
and contribution (or participation) incentives. In adaiitj as mentioned above, Facebook
provides abundant opportunities for users to interact.r Wderaction is a key aspect of
user behavior. It is essential for inferring user relatfops that can be further utilized for
security enhancement, for cooperation promotion, for itecommendation, and most
importantly, for contribution incentives.

1.2.3 Tribler

Tribler [84] is a fully distributed open-source online netk for media and social appli-
cations like file sharing, live streaming, video-on-demammhtent searching, voting, and
interest-based channels. It is the research vehicle feareb in P2P related topics in the
Parallel and Distributed Systems group of TU Delft, whereréssearch for this thesis has
been carried out. Since its first release in 2006, the Tritllent has been downloaded
over a million times.

Tribler uses the BitTorrent protocol for P2P file sharing #melLibswift protocol [77]
for P2P streaming. Libswift is an IETF (Internet Enginegrirask Force) standard proto-
col proposed by the Tribler group. In addition, Tribler pides various advanced features
including a distributed reputation mechanism named B@gst [71], a distributed service
for content discovery supported by a dissemination andodatasynchronization proto-
col named Dispersy [123], and an advanced user interfat@siyahologically motivates
users to contribute. Furthermore, a mechanism for estigaiser interaction strength—
which is presented as part of this thesis—has been integiratethe Tribler client.

To identify users across sessions, Tribler assigns eaahaupermanent identifier
which, as in private BitTorrent communities, allows us talgae the real user behaviors.
On the other hand, unlike private BitTorrent communitiesevehfile sharing is the only
service, Tribler provides socially enhanced applicatismsh as interest-based channels,
in which users can, in addition to upload and download, réplyther users’ comments,
vote the contents they like, and report suspicious contrik as spam. In other words,



Tribler serves as an online social network and an online H2RHiaring network com-
bined, and thus, guarantees a promising enviroment forgmpating with user behaviors
and contribution incentives.

Based on the insights gained from high-level models andriégovarious algorithms
have been designed, implemented, and deployed into Trilitarticularly, Rahmaret
al. [90] have analyzed effort-based reciprocity and the soatality of credit systems.
They have also proposed a Design Space Analysis (DSA) foetmgpcontribution in-
centives that provides a tractable analysis of competiatppol variants within a detailed
design space [91]. Capott al. [11] have developed an analysis of present methods
for resource allocation in multimedia communities. D’Atoiet al. [21, 22] have ana-
lyzed strategies for the peer selection, the piece sefectiod the bandwidth allocation
in BitTorrent-like Video-on-Demand systems. Zeilemakeial. [122] have introduced
Open2Edit, an application with similar quality and acthais Wikipedia but implemented
without central servers. Meulpoldet al. have analyzed the bandwidth allocation in
BitTorrent [72] and proposed BarterCast [71], a decerzealireputation system, with
real world implementation. Delaviet al. have further proposed improvements on the
accuracy and the coverage of BarterCast [25] and have debigrsybil-resistant ap-
proach [26]. Gkorowet al. [34] have developed a scheme for reducing the amount of
history maintained in decentralized interaction-basgdtaion systems.

1.3 Research context: the Qlectives project

The research in this thesis has been carried out in the dooftelke European Frame-
work Program 7 projedQlectives[86]. QLectives is a project bringing together social
modelers, Peer-to-Peer engineers and physicists to uaddrso experiment, to design,
and to build cooperative socially intelligent informatieyistems. The aim of Qlectives
is to combine three recent trends within information systeirhe first of these is social
networks, in which people link to others over the Internegam value and facilitate col-
laboration (e.g., Facebook). The second is peer produatiomhich people collectively
produce informational products and experiences withaulitional hierarchies or market
incentives (e.g., Wikipedia). The third is Peer-to-Peatamys, in which software clients
running on user machines distribute media and other infoomavithout a central server
or administrative control (e.g., BitTorrent).

For the past four years, researchers in Qlectives have pat gffort into topics cov-
ered by Qlectives. Research has been carried out on a wide mdrsubjects. To name
a few examples, Medet al. [68] have introduced a model for the growth of information
networks that produces various degree distributions dhotythose that are observed in
important real systems such as scientific citation data @World Wide Web. Wuet
al. [115] have adopted an evolutionary game-theoretical amgbrdo study social norms



and social phenomena involving cooperation or conflict.yTiave shown that coopera-
tion is not such a strong social dilemma, and that it emergdsbacomes stable over a
fairly large range of model parameters and implementatetaits. Roceet al. [92, 93]
have developed and implemented models, applying dynamialsmpact theory, on an-
alyzing the influence of trust and the emergence of coomerati

1.4 User behaviors and contribution incentives in online
networks

Online networks often rely on the cooperation and the cbuation of their users. Nev-
ertheless, users in online networks, like humans in humaretgp are often found to
be selfish, strategic, or even malicious, rather than c@diper and therefore need to be
incentivized for contributions. Many attempts have beenlent® design incentive poli-
cies, which range frorbarter schemeto monetary scheme8elow, we will give a brief
introduction on user behaviors and their consequencediath®system and the individ-
ual level, on barter schemes and their limitations in ine&ihg users to contribute, on
monetary schemes and their risks in causing the collapsehbee system, and on user
interactions and their implications in inferring user telaships.

1.4.1 User behaviors and their consequences

Users in online networks, like humans in human society, atralmays cooperative. Thus,
without proper incentives, any system that requires th@eragion and the contribution of
its participants potentially faces tieagedy of the Commona social dilemma frequently
occurring in human society [38]. The Tragedy of the Commeifexs to the depletion of a
shared resource, such as a public good, by individualsgictdependently and rationally
according to their self-interests, despite their undediteg that depleting the common
resource is contrary to the group’s long-term best intsrest

While the Tragedy of the Commons describes a group-levedkdidemma on co-
operation, thePrisoner’s Dilemmg82] scales it down to two individuals. It refers to a
situation in which two prisoners could cooperatively dengit crime and serve a mod-
erate amount of time in prison, but in the end, to avoid beiegdyed and facing the
longest jail time alone, they both confess and serve thenselomgest time. Prisoner’s
Dilemma is now a canonical example of a game analyzed in ghewgy that shows why
two individuals might not cooperate, even if it appears tandbeir best interest to do so.

Online networks face these dilemmas as well. Taking Bi@iorfor example, users
are supposed to upload to and download from each other, diedtoeely achieve their
common goal of obtaining a file. As it turns out, besides beiogperative, users in



BitTorrent can be lazy, strategic, or even malicious. Laggra follow the original Bit-
Torrent protocol, upload while downloading, but are redunttto stay and to serve more
users once their downloads are finished [71]. Strategicsuserthe other hand, explore
the protocol, tune parameters like the upload speed, ormweelify the original protocol,
so as to download the file with contributions as small as ptes§62]. Finally, there are
also malicious users aiming at destroying the whole systeaugh, for example, spread-
ing broken or fake file chunks [27]. These non-cooperativr bghaviors cause severe
consequences, ranging from the inefficiency to the fall efiilihole system. There has
been a number of studies demonstrating non-cooperativebebavior in P2P systems,
from the early Gnutella network with nearly 70% users shaniothing [95, 96], to Bit-
Torrent networks with more than 80% users going offline imiaedly after they finish
their downloads [83].

Online social networks also face potential manipulationsifstrategic or malicious
users, for example, through tlsybil Attack{28, 109]. A large number of Sybil accounts
have been found in Facebook [33], Twitter [101], and Renfed®]. Under a Sybil At-
tack, the attacker first generates multiple sybils with falentities. Then, together they
distribute false information to promote their status in timtine network. Finally, from
the forged reputation they gain undeserved advantageldikg served without any con-
tribution, or perform unjust commercial promotions likeespding spam.

To maintain a sustainable system, policies to promote aadipe and contribution
are essential. While there are many previous work [27, 28,@%, 120, 121] on analyz-
ing malicious user behaviors and enhancing security, mttiesis we focus on lazy and
strategic users, and we study mainly the schemes to intantivem to contribute. To
date, there has been a great effort on proposing, analyaimyjmproving contribution
incentives. These mechanisms range flmamter scheme monetary scheme®elow,
we will discuss them in turn.

1.4.2 Barter schemes and their limitations

In human society, barter refers to a system of exchange bghadgoods or services are
exchanged for other goods or services without using a mediftiexchange such as
money [76]. Barters can be bilateral or multilateral. Balatl barters imply direct ex-
changes of goods between two participants and thereforeseptdirect reciprocity
Multilateral barters, on the other hand, involve multiplercipants inindirect reci-
procity. Barters have several limitations, for instance, the needHe coincidence of
wants from participants and the lack of a standard valueséxthanged good.

A number of online networks utilize barter schemes, or medjy, to incentivize
users to contribute. For example, in P2P systems with noalesdrvice providers, users
barter their contributions with others so as to be served.inAsuman society, barter



schemes in online networks also have a number of limitati@islorrent incorporates
an incentive mechanism named Tit-For-Tat (TFT) that is Base bilateral barter-like
direct reciprocity. Under TFT, users prefer uploading terasvho have contributed to
them in the past at the highest speeds. TFT works reasonafilynviostering barters, or
cooperations, among users that are downloading the saméNfeertheless, TFT does
not provide incentives for users to remain in the system ansktve others after their
downloads are finished, since there is no coincidence ofsaamtmore. Therefore, users
are free to engage in “Hit and Run” behavior, leaving immesyaupon completing their
downloads. Further, TFT in BitTorrent is not an exact bilakdarter strictly with a tit
for a tat. Instead, users barter with those that have reciped the most. Therefore, the
value for one “tit” is constantly changing, which leads tesgible manipulations from
strategic users through, for example, only providing uglbandwidth high enough to
be uploaded to, but at the same time low enough to be the lameshg all the chosen
users [62, 65, 78]. Last but not least, it has been shown mhBttTorrent systems, it is
unlikely that two users encounter each other often enoughttzerefore TFT-like direct
reciprocity is not effective for long-term use [79].

To tackle these issues, various remedies have been propoddtie primary idea is
to include indirect reciprocity [60, 71, 79]. Indirect rpobcity occurs when, for example,
after user A contributes to user B who further contributesster C, user C rewards user A
based on their indirect relationship. A major problem agsirom indirect reciprocity is
thetrustissue [1,35]. Itis obvious that, in the former example, #u& and user B collude
and exaggerate the maybe-not-existing contribution froto B, user A can potentially
get areward from user C with no actual contributions. Siryijaf user B is malicious and
deliberately disguises user A's contribution, user A matyget a reward from user C even
if he has contributed. As a consequence, contribution imneswith indirect reciprocity
often rely on instantaneous communications with a secure party [79]. However, the
reliability of requiring a secure third party is questiofeggland moreover, it runs counter
to the open membership that underlies the success of thesansy in the first place.
Another approach to tackle the trust issue is to diminishatimeunt of potentially false
information [71], however, this often relies on algorithmgh high complexity that are
unrealistic to be used in real systems.

In this thesis, we provide a theoretical model for BitToti® AFT incentive policy
and its variations, aiming to provide some insights into ha&rs in BitTorrent allocate
their bandwidth, i.e., make barters, with others.

1.4.3 Monetary schemes and their risks

In human society, a monetary system refers to a system okegehby which goods or
services are exchanged using money as a medium [31]. Inasbrér barters, monetary
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schemes do not require a coincidence of wants, and theteftkie the problems of barter
schemes in both human society and online networks. Undemetay scheme, through
contributions users earn credits, or more precisely, &imuoney, that can be used in their
later consumptions. Thus, users are incentivized to dmrigj so as to keep some reserve
for their future needs.

Monetary schemes are becoming prevalent in nowadays onéhgorks, ranging
from the currencies used in online virtual worlds such asoBédd.ife, to methods for
resource allocation in wireless sensor network [17] andsfil@ring [43]. Several mone-
tary schemes for contribution incentives have been prapase analyzed in the litera-
ture [37,39,56, 73,89, 107]. As in human society, measwesaen to avoid monetary
risks including inflation, deflation, and systemic risk thaay cause the collapse of the
entire economic system [58]. For instance, Vishnumughwl. [107] have presented
a system involving a virtual currency named Karma, in whiets ©f bank nodes keep
transaction balance of users. Karma captures the amountsafirces a user has con-
tributed and consumed. To avoid inflation and deflation, éwvellof per-capita Karma
in the system, i.e., the total Karma divided by the numberativa users, is constantly
monitored and maintained. Several researchers [37, 56,@8&] further shown that, in a
similar scrip system where users can consume and produdeeseiboth an abundance of
money supply and a shortage of it lead to inefficiency. An supply of money leads to a
crashin which users hold abundant money and are not willing tordoutte. Conversely,
an undersupply of money leads te@munchin which users go broke and cannot afford to
consume any services.

A good example of utilizing monetary schemes in distribudatine networks is pri-
vate BitTorrent communities that aim at providing inceabeyond BitTorrent’s original
Tit-For-Tat. To do so, these communities employ privatekeas that maintain central-
ized accounts and record the download and upload activitgach user. They apply
community-level policies to incentivize good overall uptb/ download behavior. One
such policy is credit-based, in which each user is requioechdintain a positive credit
(its upload amount minus its download amount). Another sallty, as we introduced
earlier, is Sharing Ratio Enforcement (SRE), in which easér us required to keep his
sharing ratio at least equal to a threshold. Under both jgslicommunity members who
cannot fulfill the requirements are banned from downloadingven expelled from the
community. Thus, it is guaranteed that each user performe sontribution.

The credit-based policy is an obvious monetary scheme. 8REgh not quite at
first glance, only differs in that it allows users to have riegecredit (i.e., their download
amounts larger than their upload amounts) and that whes dedrave negative credit, the
amount of credit circulated in the system is dynamic. Unaehlschemes, contributions
are strongly incentivized. Nevertheless, monetary sckaentice systemic risk that may
cause the collapse of the entire system. In this thesis, wer®xboth the system-level
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dynamics and the user-level performance in communitieptatpsuch policies.

1.4.4 User interactions and their implications

User interaction is a key aspect of user behavior and is tdermpmning of any contribu-
tion incentive in any online network, for without which thears cannot be “connected”
and the network cannot be “netted”.

Online networks provide various mechanisms for users &rawat. For instance, in
Facebook, users maintain friendships, post messagesiofrignmals’ walls, and comment
on their friends’ photos. In Wikipedia, users collectivagit articles in their areas of
expertise, and in BitTorrent, users upload to and downloawh feach other to share the
contents of their common interests. The patterns and streraf user interactions are
prominent, and they are useful for a variety of applications

Previously, a number of applications [102, 103, 120, 12%¢dagedonline friend-
shipsto incentivize users to contribute, to enhance securitprtonote cooperation, to
improve item recommendation, etc. Nevertheless, it hag lween observed that low-
interaction friendships, as exemplified by the “FamiliaraBger” [106], are prevalent,
and that the dynamics of user interactions is more repraseatfor inferring user rela-
tionships [108,114] than simple, statically establisheid&ary” friendships. Therefore, in
these applications, users will be much better off by esiimgaheir interaction strengths
with others and by giving high ranks to the ones with whom thaye interacted fre-
quently. As another example, in P2P systems, user interectorm the foundation for
designing incentive policies. Through estimating therat&on strengths between users
in terms of the amounts or durations of contributions, systiesigners can make users
favor the highly ranked users for future consumptions.

The importance of user interactions in online networkssdadhe questiontow can
we estimate user interaction strengtRPevious work addressing this issue [18,108, 114,
116] has focused only on online social networks like Fack&band has only considered
binaryuser interactions, simply indicating whether a user hasaated with another user
or not. In contrast, we propose a User Interaction Strengtination scheme called UISE
that has a much more fine-grained notion of user interactiat,is applicable to a more
general category of online networks, and that can be egstijead to distributed systems
and therefore achieves a scalable design In the end, UISEssas a general framework
for expressing user interactions and their strengths sHath generic and can be applied
to a wide range of online networks.
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1.5 Problem statement

The research problem that we address in this thesis is havibakaviors and contribution
incentives in online networks are correlated. The resegqusstions we answer are as
follows:

What are the characteristics and principles behind BitTorrent’s Tit-For-Tat in-
centive policy and its variations?Tit-For-Tat was originally designed for sharing files in
resource-constrained scenarios. The curBtiorrent ecosystenmowever, is becoming
over-provisionedand is enriched with new applications like video streamivihen the
resource is abundant or when there are real time constedvwgys enhancing reciprocity
is system-wide inefficient and therefore a balance betweeipnocity and inequality is
necessary. To this end, it is important to understand theactexistics and the principles
behind BitTorrent’s Tit-For-Tat and its variations.

Is there a theoretical validation for the effectiveness of mnetary schemes
such as Sharing Ratio Enforcement in incentivizing users taontribute? Several
measurement studies have shown that SRE is very effectimasting cooperation
[13, 64, 69, 124]. For instance, [69] reports seeder-toHee ratios that are at least 9
times higher than in public BT communities, while downlogads are measured to
be 3-5 higher. Therefore, it would be beneficial to analyaes SRE actually provides
seeding incentives and to quantify the expected perforsmamprovement in terms of the
download speed.

What are the risks of using monetary schemes as contributiomcentives? Mon-
etary schemes such as SRE and credit-based policies havetmeen in the real world
to be effective in incentivizing users to contribute. Nekietess, they require delicate
designs without which, as in any monetary system, they iadystemic risks that may
cause the collapse of the entire system. To maintain a sasiai system, it is important
to analyze the system-level dynamics and the potentiad uskler such schemes. More-
over, even when systemic risks do not occur, this only erssiina the system is able to
function, but not how well it functions. Thus, a further aysa$ of user-level performance
under such schemes is essential.

How do users behave under contribution incentives?The dedication of users is
not the only behavioral change observed in communities wathtribution incentives.
The same incentive policy may trigger different or even ggjgouser behaviors. The
various reactions from users are good indicators for furitmprovements of incentive
policies. Therefore, itis necessary to explore user behnavio argue the reasons for these
behaviors, and to demonstrate both the positive and negeffiects of these behaviors.

Can we find a generic framework for estimating user interacton strength? User
interaction is a key aspect of user behavior and is the und@ny for contribution in-
centives and many other applications. Therefore, it is fiaeto design a generic
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framework for estimating user interaction strength. A piging design should have a
fine-grained notion of user interactions and should be ggregrough to be applicable
in a large range of systems. Further, with the astounding/tirof online networks—
with Facebook exceeding a billion users and BitTorrentisgriaundreds of millions of
users—a scalable design in a distributed manner is preferre

1.6 Contribution and thesis outline

The contributions of this thesis are as follows:

Balancing reciprocity and inequality in BitTorrent (Chapt er 2) We present a fluid
model of BitTorrent’s Tit-For-Tat incentive policy and i&riations. Our model effec-
tively captures the bandwidth allocation between usergudidferent incentive policies,
based on which we explore strategies that influence the talaetween reciprocity and
equality among users. Our study shows that (i) reducinguakty leads to a better over-
all system performance, and (ii) the behavior of seedersanties whether reciprocity is
enhanced or inequality is reduced. This chapter is largated on our paper [48]:

A.L. Jia, L. D’Acunto, M. Meulpolder, J.A. Pouwelse, and DJHEpema. BitTor-
rent’s dilemma: Enhancing reciprocity or reducing ineguiin Proceedings of the 7th
IEEE Consumer Communications and Networking ConferenG&N11), 2011.

Modeling and analysis of Sharing Ratio Enforcement in privae BitTorrent com-
munities (Chapter 3) We provide a theoretical model to analyze how Sharing Ratio E
forcement (SRE) provides seeding incentives and how SR&eindes the download per-
formance of users. Specifically, we study the influence oStIRE threshold and the band-
width heterogeneity of the users. Under the assumptionuets are rational, i.e., they
seed only the minimum amount required by SRE, we show thatloisnload speed as
predicted by our model represents a lower bound for the bspesed that can be reached
in the real world. This chapter is largely based on our pageéy. [

A.L. Jia, L. D’Acunto, M. Meulpolder, and J.A. Pouwelse. Maihg and analysis of
sharing ratio enforcement in private BitTorrent commustiinProceedings of the IEEE
International Communications Conference (ICC’'12011.

Monetary schemes as contribution incentives: systemic risand user-level per-
formance (Chapter 4) We analyze the performance of online networks adopting mone
tary schemes as contribution incentives from both the syd¢oel and the user-level per-
spectives. We show that both credit-based and sharingenattwcement policies can lead
to system-widerunchesor crasheswvhere the system seizes completely due to too little
or to too much credit, respectively. We explore the condgithat lead to these system
pathologies, we present a theoretical model that predietc€ommunity will eventually
crunch or crash, and we design an adaptive credit systemauk@natically adjusts credit
policies to maintain the sustainability. We further analyize user-level performance by
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studying the effects of oversupply. We show that althoudtiesing an increase in the
average downloading speed, the phenomenon of oversupplthfee undesired effects:
long seeding times, low upload capacity utilizations, andiafair playing field for late
entrants into swarms. To alleviate these problems, we p@paur different strategies
that have been inspired by ideas in social sciences and sscsnoWe demonstrate their
effectiveness through simulations. This chapter is |grgaked on our papers [49,51]:

A.L. Jia, R. Rahman, T. Vinké6, J.A. Pouwelse, and D.H.J.repeSystemic risk and
user-Level performance in private P2P communitiesIBEE Transactions on Parallel
and Distributed Systemenline, 2012.

A.L. Jia, R. Rahman, T. Vinko, J.A. Pouwelse, and D.H.J.repeFast download but
eternal seeding: the reward and punishment of sharingeatarcement. IfProceedings
of the 11th International Conference on Peer-to-Peer CamgyP2P’11) 2011.

User behaviors under contribution incentives: a measurem@ study (Chapter 5)
Taking private BitTorrent communities as an example, wedanepuser behaviors under
contribution incentives. We argue the reasons for thesawets and we demonstrate
both the positive and negative effects of these behavioesshéw that, as predicted by
our model, under SRE users seed for excessively long timesiatain required sharing
ratios, though their seedings are often not very productiAmed as users evolve in the
community, some become more attached in terms of higheysrati the seeding and
the leeching time, and some game the system by keeping nskgharing ratios while
leeching more often than seeding. Based on these obsersati@ analyze strategies
that alleviate the negative effects of these user behations both the user’s and the
community administrator’s perspective. This chapterigdty based on our papers [46,
50]:

A.L. Jia, X. Chen, X. Chu, J.A. Pouwelse, and D.H.J. Epemaw ltosurvive and
thrive in a private BitTorrent community. [he 14th International Conference on Dis-
tributed Computing and Networking (ICDCN’13013.

A.L. Jia, X. Chen, X. Chu, J.A. Pouwelse, and D.H.J. EpemaerU&haviors in
private BitTorrent communitiesJnder review

Estimating user interaction strength in online networks (Chapter 6) To date, sev-
eral theoretical, centralized schemes for estimating ungeraction strength have been
proposed. Here we present the design, deployment, andsaalythe UISE scheme
for User Interaction Strength Estimation for both cenbedi and decentralized online
networks. Among the strong points of UISE is that it captudigsct and indirect user
interactions, that it scales with only partial informatidissemination in decentralized
systems, and that it provides disincentives for malicicger bbehaviors. We apply UISE
to detect user interaction patterns based on wall postsdeldeamk and we derive patterns
that resemble those observed in the offline human socidiegurther apply UISE to on-
line time estimation based on rendezvous as user intenaatioTribler. We demonstrate
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the accuracy and scalability of UISE with different infofioa dissemination protocols
and user behaviors using simulations, emulations, and laveéd deployment. This
chapter is largely based on our paper [52]:

A.L. Jia, B. Schoon, J.A. Pouwelse, and D.H.J. Epema. Estgaser interaction
strength in online networksJnder review

Conclusions and future work (Chapter 7) In this chapter, we summarize our key
contributions and we provide suggestions for future work.
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Chapter 2

Balancing reciprocity and inequality in
BitTorrent

Enhancing reciprocity has been one of the primary motivatior the design of incentive
policies in BitTorrent-like P2P systems. Reciprocity imeglthat users need to contribute
their bandwidth to other users if they want to receive badthvin return. As we intro-
duced earlier, BitTorrent incorporates an incentive madm, Tit-For-Tat (TFT), based
on direct reciprocityto incentivize contributions, where users prefer uplogdmothers
who have contributed to them in the past at the highest sp@éasincentive mechanism
was designed to allow users to obtain their file of interesihew resource-constrained
scenarios, e.g., when only a few users exist that hold a ampbpy of the filegeeders

in BitTorrent terminology), or during flash-crowds.

However, theBitTorrent ecosystens nowadays extremely diverse. For example, a
recent measurement study [69] has shown that most BitToc@mmunities are over-
provisioned, i.e., there are significantly more seeders ttavnloaders. Also, the de-
sign of many next-generation P2P systems, such as thosesfalistribution of live and
on-demand streaming [53, 87, 110], has been inspired by itferBent paradigm. The
real-time constraints of these systems require that alispaes provided with a certain
minimum download speed (in order to support the bitrate efvildeo) and that peers do
not earn more utility in downloading at rates much fastentttat. These observations
suggest that it is not necessary to always enhance redigrocsome cases it is more ad-
visable to reduceequalityamong peers, instead. One of the first studies of this tréde-o
in BitTorrent-like systems was provided by Fanal.[30].

In this chapter, we propose a theoretical model for BitToreend we analyzhowthe
incentive mechanism of the BitTorrent protocol can be tuttednhance reciprocity or
reduce inequality. Furthermore, in our study we consideiitttiplications of exchanging
BitTorrent’s standard incentive mechanism with one thdiased on effort rather than
speed. Finally, we also analyze the role of the seeders. d1ene provide significant
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insights in the implications of the trade-off between erdiag reciprocity and reducing
inequality. Our contributions can be summarized as foltows

1. We provide an analytical model that characterizes thergtt relationship between
a peer’s performance and the design parameters of the BitTigorotocol that are
responsible for its incentive mechanism (Section 2.2).

2. We use this model to analyze different strategies to eséheatiprocity or to reduce
inequality, and to understand the role of the seeders (Be2tB).

3. We evaluate the impact of these strategies on the ovgstéim performance (Sec-
tion 2.3).

Overall, our work in this chapter aids in informing the desajoices that best fit the
requirements of a BitTorrent-like P2P system.

2.1 BitTorrent overview

In this section we provide an overview of the BitTorrent piadl with specific focus on
its Tit-For-Tat incentive policy.

2.1.1 The swarm

In BitTorrent, aswarmis consisted by peersvho are interested in the same file and
sharing it with each other. Peers who partially hold thereritie are calledeechersthey
upload while downloading from each other. Peers who holcetitge file and only stay
to upload are calledeedersin a BitTorrent swarm, peers are usually with various ugloa
and download bandwidths, i.e., the so-calieshdwidth-heterogeneous swarm

2.1.2 The Tit-For-Tat incentive policy

Incentive policies play a key role in BitTorrent-like systs, as they determine how peers
distribute their limited upload bandwidth to other peerstT&rent’s original incentive
policy is Tit-For-Tat (TFT), in which a peer favors other peers that have receetipr
rocated at the highest rate. More specifically, every pesrahaumber of upload slots
available, which are divided into two categoriesgular unchoke slotseind optimistic
unchoke slots Leechers choose which peers will be allocated to regulahake slots
according to TFT. On the contrary, peers to be allocated tonigtic unchoke slots are
chosen randomly from the neighbors set. While regular ukelstots are used to enhance

'From here, we usesersandpeersalternatively to refer to the individuals that participatéitTorrent.
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reciprocity, optimistic unchoke slots serve the purposg@.ppotentially discovering new
faster peers and (2) allowing new peers to bootstrap (iteaim their first pieces of the
file).

Due to the special role of seeders, i.e., they have a comgbeteof the file and share
it without any direct benefit to do so, their uploading (ordiag) policies are different
from that of the leechers. In general, there are two popeledisg policies: (1javoring
fast peerqFF): seeders allocate their regular upload slots to peetsibwnloaded at the
fastest rates and optimistic unchoke slots randomlyyrg@fdom seedingRS): seeders
have no preference and just choose peers randomly.

2.2 A Fluid Model for BitTorrent

In this section we introduce our model for a BitTorrent swamwhich peers have het-
erogeneous bandwidths. We present a system of differeagigdtions that describe the
evolution of a BitTorrent swarm, based on which we analyzegarformance of TFT
incentive policy. We illustrate the validation of our modsi means of a discrete-event
simulator.

2.2.1 The basic idea

In our approach we group peers imtbdifferent classes according to their upload capac-
ities, with the peers in the same class having (roughly) #mesupload capacities. We
follow a similar fluid modeling approach as in [72, 85], whar®arkov model is used to
describe the arrival and departure of peers. The averagaldad/time is then derived
based on a continuous fluid approximation of the Markov maaheler the assumption
that there exits a steady state. By considering a bandwetdrdgeneous swarm, we ana-
lyze the dynamics of bandwidth allocation (1) within andvibetn classes and (2) among
regular and optimistic unchoke slots, according to the®@idnt TFT policy.

2.2.2 Model description

The notation we use is shown in Table 2.1. In our model, a peelassi has the upload
capacity ofyu;, the download capacity af;, and the number of unchoke slots«f with
ugmw and u§°p> for regular and optimistic unchoke slots respectively. €ach class,
the number of downloads completed within a unit of time (esgcond) is determined
by the total upload bandwidth that classeceives from all classes in the swarm. Thus,
the evolution of the number of leechers(t), and the number of seedeis(t), can be
described as follows:
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Notation | Definition

F the size of the file shared in the swarm.

T number of leechers in class

T fraction of leechers in clagsm, = x;/ ), ;.

Yi number of seeders in clags

i the arrival rate of leechers in class

Vi the rate at which seeders in cladsave the system.

1bi the upload capacity of a peer in class

d; the download capacity of a peer in class

d; the per connection download capacity of a peer in class

U; number of unchoke slots opened by a peer in class
u"? andu!’? for regular and optimistic unchoke slot.

n; the number of download slots opened by a cldsgcher

Q;j the number of upload slots allocated by a leecher in alass
to a leecher in class

Bij the number of upload slots allocated by a seeder in ¢lass
to a leecher in class

Wij the fraction of upload capacity of leechers in clasfiocated
to leechers in clasg

Oij the fraction of upload capacity of seeders in clagocated
to leechers in clasg

Uij the total upload capacity allocated from class class;.

T; the average download time of peers in class

D; the average download speed of peers in class

Table 2.1: Notation of our BitTorrent model
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dt ! F
dyi(t) 22 Uji(t) 1)
dt = Ia — ViYi (t)

We assume that there exits a steady state in the systenwhite,peers are arriving
and departing, the total system population stays constiaistich a steady state, it holds
that:

. dt
together with Eq.(2.1) we have:

=0,

AN = Z Uji = vy F. (2.2)

J

Here, we denote the equilibrium values of the quantitieséady state by/;; for U;(t),

etc. As the arrival rate of leechers in a steady state is équbk departure rate, i.e., the
rate they finish their download, |18% represent the average download time for peers in
classi, we can apply the Little’s Law to the number of leechers; i.e.

z; = N (2.3)

The total upload bandwidth of clagsllocated to classconsists of upload bandwidth
allocated by seeders and by leechers. Therefore, we have:

Z Uj; = Z(wﬂl’j + 05y ;- (2.4)
J J

Combining Egs. 2.2, 2.3 and 2.4, the average download spedeechers in class
can be calculated as:

_F_F)\Z-
_Tz‘_ X

1
b

We discuss how to derive the upload bandwidth allocatign&ndo;; respectively)
in the following subsection.

2.2.3 Bandwidth allocation

Without loss of generality, we assume that< s < ... < uy.
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In BitTorrent, a leecher opens a number of regular and optimunchoke slots to
upload to other peers. In our model, we assume a leecher waysafind enough other
leechers to be allocated into his unchoke slots. AccordnBRT, regular unchoke slots
are allocated to peers with the best reciprocity and opticisichoke slots are allocated
randomly. Therefore, high capacity peers (e.g., peerassgjlonly unchoke low capacity
peers (e.g., peers in clagsi > j) in optimistic unchoke slots. Consequently, the number
of upload slots allocated from a peer in class a peer in clasg is equal to:

Q;j = u(Op)Wj 1,7=1,2,...., N,2 > J.

Due to their faster upload speed, higher-capacity leeclidrget reciprocated when
they upload to lower-capacity leechers. As long as thereeapeigh upload slots, on

average, the number of leechers in claghat a leecher in clasg should reciprocate
equals to:

(op) (op)
Oéijl'i Uu; iji U; "Xy (op) .. . .
— — :ui T Z,j:1,27...,N7Z>‘]-
T T Zj L

In case there are not enough upload slots, leechers in hitdeses are reciprocated
first, i.e.:

aj; = min{uEOp)m,uyeg) — Z ajpt + uﬁOp)Wi 1,j=1,2,...,N,i>j.
i<p<N

Seeders adopt different upload strategies than leechars Hiey already have the
entire file and do not need to be reciprocated. For seedersaabipt the FF (favoring
fast) policy, its regular unchoke slots are allocated tofttstest leechers, i.e., peers in
classN. And its optimistic unchoke slots are shared by leecherd olasses. Therefore,
we have:

Bin = uﬁ’”e“’) + uggp)ﬁ N

Bij = uggp)ﬁj Vi,j and j < N,

For seeders who adopt the RS (random seeding) policy, aliakecslots are shared by
leechers in all classes, i.e.:

Bij = uim;.
As peers are unchoked based on their upload capacitiesheg.classes, peers in the

same class receive similar services. Therefore, on avettag@umber of upload slots a
peer in class receives, i.e., the number of download slots it opens, iskgu
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20wy + By
€T; '

Consequently, the per connection download capacity of aipexdass; equals to:

i

BitTorrent uses TCP as transport layer protocol. TCP smactfiat a peer’s upload
(download) capacity is equally divided over all connecsionnless some of the connec-
tions have a bottleneck. When such a bottleneck existsettaver bandwidth is equally
divided over other connections with higher link capacitiesllowing this basic rule, we
calculate the fraction of the upload capacity of leecherdass: allocated to leechers in
classj, i.e.,w;;, as follows.

First, we reorder the leechers according to their per cdroredownload bottleneck
d; in such away thad, < d, < ... < dy. Then, we assume that the fraction of the upload
capacity of leechers in clagsallocated to leechers in clagsi.e.,w;, wherep < j, is
known. Therefore, the left upload bandwidth, i1 — >_ _;wi,), should be equally
allocated amon@kzj a;i, leechers in clasewherek > j, as long as their per connection
download capacity is not saturated. Finally, the fractibtihe upload capacity of leechers
in classi allocated to leechers in clag€an be calculated as:

min{ 1l 2p ip) d.} - oy

wzj = Zkzj ik L . (26)
Hi

By calculatingw;; in sequence, €.gw;1, wi2, w;3 and so on, we can derive the upload
capacity allocation between any two classes. Replacingy;; with o;;, 3;; respectively,
a seeder’s upload bandwidth allocation can be derived imdasiway.

2.2.4 Model Validation

We have validated our model by means of simulations usingaetie-event simulator that
simulates the behavior of BitTorrent at the level of pieems$fers [72]. Fig. 2.1 illustrates
the simulation results against the model predictions forséesn with two classes of peers,
fast and slow, from which we can make the following obseorai

» the model predictions are close to the simulation results;

 the average download speed of both fast and slow peersasesevhen there are
more seeders;

» the model predictions become less accurate as the fraatiseeders grows. This
can be explained considering that, when a high fraction efgare seeders (above
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Figure 2.1: The average download speeds of fast and slow pearsystem with 50 fast
peers and 50 slow peers, for different fraction of seedemst peers are with infinite
download capacity and upload capacity of 1024 Kbps; and glegrs are with upload
and download capacities of 512 Kbps and 1024 Kbps, respdgctiBeeders use the FF

policy.

70 % in this case), fast leechers have a hard time in findingrd#st leechers to
reciprocate with. While in our model we assume that, in atstestate, leechers can
always find enough other leechers.

2.3 Analysis

In this section, we analyze the balance between enhanamgroeity and reducing in-
equality in BitTorrent. Specifically, we introduce fourategies: (1) fast peers opening
more regular unchoke slots, (2) all peers opening more agticrunchoke slots, (3) re-
placing TFT with an effort-based incentive policy, and (égders favoring fast peers
versus seeding randomly.

We evaluate the performance of the above strategies bas#uedollowing three
performance metrics:

« Download speeds used to characterize performance.

» Sharing ratiois defined as the ratio between the total amount of data uptbadd
downloaded. It represents a fairness in relation to camiob to the system—a
sharing ratio equal to 1 for all peers means that all peers bawtributed as much
data as they have consumed.

 Inequality coefficients defined as the largest download speed divided by the small-
est download speed found among all peers. It indicates reefssrin relation to the
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bandwidth capacity that peers receive from the system.

Unless stated otherwise, we consider a system with two edagkpeers, i.e., fast
peers with infinite download capacity and upload capacityG#4 Kbps; and slow peers
with upload and download capacities of 512 Kbps and 1024 Kigspectively. And the
default values for the number of optimistic and regular wkehslots are set to 1 and 4,
respectively.

2.3.1 Enhancing reciprocity

A straightforward way to enhance reciprocity is to open nregalar unchoke slots. Re-
gardless of a peer’s class, opening more upload slots cg@gnahpéer to (1) find more
potential fast peers, or to (2) weaken another peer’s patenbnopoly on its uploading
bandwidth since less bandwidth will be allocated to eacloagbklot. On the other hand,
opening too many slots is neither realistic nor reasonaihee too many TCP connec-
tions could deteriorate link performance. Also it would e harder for slow peers to
succeed in competing for reciprocity with faster peers.

Given the above considerations, fast peers have a strongtaration to open more
slots than slow peers, since they may benefit from more extersploration, while
remaining competitive in TFT. Having fast peers open mogellie upload slots is a way
to enhance reciprocity, as more bandwidth will be allocatié regular unchoke slots.

In this experiment, we vary the number of regular unchokesstd fast peers.
Fig. 2.2(a) shows that as the number of regular unchoke elfotast peers increases,
their download speed improves (we can observe a growth of wesn the number of
regular unchoke slots goes from 2 to 9), while the averagenttad speed of all peers
decreases (10% with the number of regular unchoke slots #am9). This is due to
the increasing inequality (almost 50%) between the twoseaf peers, as shown in
Fig. 2.2(c). On the other hand, we notice that the sharirnig odtfast peers decreases as
they open more regular unchoke slots, and that of slow peersases (Fig. 2.2(b)). The
perfect reciprocityi.e., sharing ratio equal to 1 for both fast and slow peearachieved
when fast peers open 4 regular unchoke slots.

In the following theorem we state the conditions necessaaghieve the perfect reci-
procity.

Theorem 2.1 In a BitTorrent system with two classes of peers, no seedetsno down-
load bottleneck, where peers can fully utilize their upl@agacities, perfect reciprocity
is achieved if and only if:

[l ugf’p ) 4 P

= (2.7)
HsUy u;Op)
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Figure 2.2: The influence of the number of regular unchoke @lidast leechers in a
system with 100 leechers and no seeders.
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Proof: We first show that for a system with perfect reciprocity, B¢/} holds. The
sharing ratio of a leecher in clasf a steady state is equal to the ratio of its upload and
download speed, i.e.:

Hi iy
D F o (2.8)
i Zje{f,s} WjiljHy

where the download speéd is calculated from Eq.(2.5).
Perfect reciprocity implies that leechers in differentsskas achieve the same sharing

ratio, i.e.:

Dielfsh WirTil  Djeqs.sy WisTit
Following the model proposed in Section 2.2, fast peers aplgad to slow peers
in optimistic unchoke slots and slow peers reciprocatedtfast peers in their regular
unchoke slots. Therefore:

(2.10)

Taking EqQ.(2.10) back to Eq.(2.9), it follows that Eq.(2ho)ds.

Next, we show that when Eq.(2.7) holds, perfect reciprasitychieved. Substituting
Eq.(2.7) into Eq.(2.8), we get Eq.(2.9), which implies tfzest and slow leechers have the
same sharing ratio. It follows that perfect reciprocity ¢hi@ved.

From the above theorem it follows that, when we use= 1024, , = 512 and
ul® = ugf’p) — 1, a perfect reciprocity is obtained fuﬁﬁ"eg) = ul =4,

2.3.2 Reducing inequality

In this section we evaluate two strategies for reducinguaéity, namely TFT with more
optimistic unchoke slots and effort-based policy.

TFT with more optimistic unchoke slots

A straightforward way to reduce inequality is to open moré&nojstic unchoke slots. In
this section, we analyze the influence of having all peers @pere optimistic unchoke
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slots. While peers always open 5 unchoke slots in total, wiehéenumber of their op-
timistic unchoke slots vary from 1 to 5. As we can see in Fi§(&), in this way the
download speed of slow leechers is improved byc4@t the expense of the fast leech-
ers. Interestingly, the average download speed of the wiapelation increases of ¥4
Moreover, we observe a 45% decrease of the inequality ceeffi(Fig. 2.3(c)).

However, it should be noted that by having peers open mormgic unchoke slots,
the effectiveness of TFT is reduced, as a peer with no cauioibs is chosen with the
same probability as a cooperative peer.

Effort-based incentives

Rahmaret al.[90] have recently proposed a novel incentive mechanisracan effort,
rather than speed. More specifically, under this efforeddamechanism, peers are not
rewarded based on the absolute amount of data they proidétased on the relative
amount of bandwidth they make available (utilized or not)itithis approach, a slow
peer offering all its bandwidth to the system is preferredravfast peer offering 0.9 of
its total bandwidtl.

Consider that there are two types of peers in the systemfully. cooperativepeers
that contribute all their upload bandwidth apdrtially cooperativepeers that only con-
tribute a fraction of their upload bandwidth. Le} represent the number of partially
cooperative peers, ang; andng, represent the number of fully cooperative peers that
have a high and low upload capacity, respectively. Baseti®@effort-based mechanism,
each peer reciprocates fully cooperative peers by allegaéigular unchoke slots to them,
and punishes partially cooperative peers by only opticadir unchoking them. Then, the
slot allocation for each class of peers can be calculated as:

uz('op)np
a; =
P ngp g,
o _ (us — ai(p))nff (2.11)
i(ff) Nyp+ g
(Ui — ayp))ngs .

Qi tg) = Viedp, ff, s}

(fs) nr + g, {p, ff fs}

Given Eq.(2.11), the upload bandwidth allocation can beutated in a similar way
as in our earlier analysis.

The idea of this effort-based incentive scheme is to redueguality among the fully
cooperative peers while still punishing the partially cegiive peers. We first evaluate
its performance by considering a system with both fully aadiplly cooperative peers,

2[97] provides a possible method to measure upload capafityess in P2P systems.
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where we vary the fraction of partially cooperative peeosrfi0.1 to 0.9. Particularly, we
set partially cooperative peers to be fast peers, and weasfievtthe fully cooperative
peers to be fast and the other half to be slow. Results arershowig. 2.3.2. We see
that this effort-based policy effectively eliminates tmequality in the system and the
partially cooperative peers are punished by achieving i@ognload speeds than fully
cooperative peers.

Next, we compare the effort-based policy with TFT. We coesalsystem in which all
peers are fully cooperative and we vary the fraction of fagrp among them. As shown
in Fig. 2.5(a), the effort-based scheme eliminates theegystinequality and achieves a
better overall performance, in terms of a higher downloasedmveraged over all peers.
As a consequence, it reduces the reciprocity and leads tgheehdisparity in sharing
ratios achieved by fast and slow peers (see Fig. 2.5(b)).

2.3.3 Seeding policies

The mainline BitTorrent client has been implemented with tifferent seeding strategies
in different releases. One is the favoring of fast peers.s Biiategy accelerates a fast
leecher’s ability to finish downloading, thereby potenyiilaving it serve as fast seeder in
the system sooner. The other strategy is seeding randomméyfiist strategy is resource-
constrained oriented, as it aims at increasing the senapgaty quickly. The second
strategy is more equality oriented, as all peers are treatdd same way.

We have applied our model to analyze and compare these tategts, where we
use the default parameter settings as specified at the hegioihSection 2.3. Fig. 2.6(a)
and Fig. 2.6(c) show that if seeders seed randomly, therayathieves a better overall
performance (in terms of a higher average download speeddharinequality is reduced.
On the contrary, if seeders favor fast peers, the recipresienhanced. As shown in
Fig. 2.6(b), both fast and slow peers achieve sharing ratgizer than in a system where
seeders adopt random seeding.

2.4 Related work

There are a number of studies on modeling and improving Bi€fd’s incentive policies.
Some earlier work focuses only on homogeneous systems43618]. Liaoet al.[112]
have considered heterogeneous BitTorrent systems buwnathlywo classes of peers. Fan
et al.[30] have developed a general heterogeneous model to sv#hestradeoff between
performance and fairness. Meulpold#ral.[72] and Chowet al.[16] also provide mod-
els for heterogeneous BitTorrent systems, with which thmahee the clustering and data
distribution in BitTorrent swarms. While these works altfis on a particular design, we
analyze the performance of different incentive policiesrfra higher level: we consider
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different BitTorrent applications and stress that meralyancing reciprocity is not suffi-
cient in the design of a good incentive policy. We furtherenigientify several strategies
that can be used to enhance reciprocity or reduce inequality

2.5 Conclusions

Inspired by the observations of nowadays BitTorrent appilbims such as over-
provisioned BitTorrent communities and P2P streaming Vattest rate constrained, in
this chapter, we have analyzed why an incentive policy shook only enhance reci-
procity but also reduce inequality. We have provided anydital model for heteroge-

neous BitTorrent systems that captures the essence ofrBitilits incentive policy. Based
on our model, we have analyzed how TFT could enhance redipmcreduce inequality

by carefully tuning the number of regular and optimistic lnoke slots. We have also
compared TFT to an effort-based incentive policy, and hén@ved that a policy that
focuses on reducing inequality leads to a better overatbpmance in terms of a higher
upload speed averaged over all peers. Finally, we havezsthtlifferent seeding policies
and our results show that, although seeders do not need exipeacated, they can still
be used to further enhance reciprocity or reduce inequatitgng leechers.
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Chapter 3

Modeling and analysis of Sharing Ratio
Enforcement

Sharing Ratio Enforcement (SRE) was first adopted in prii&f€rrent communities,
aiming at providing contribution incentives beyond Bitient’s original Tit-For-Tat. It is
a general contribution enforcement policy that can be yagiplied to many online net-
works besides BitTorrent-like file sharing systems, by $yngeneralizing the metrics for
determining the sharing ratio from the upload and downloadumnts to any metrics rep-
resenting contribution and consumption. In this chapterpwpose a theoretical model,
based on which we demonstrate the effectiveness of SRE.

BitTorrent’'s TFT incentive policy works reasonably well fastering cooperation
among leechers. However, similar to a bilateral barter im& society, TFT requires
the presence of the coincidence of wants of the participantstherefore it does not pro-
vide any incentive for users to remain in the system afterdihvenload is complete, in
order toseedthe entire file to others. Furthermore, it has been shownTRatis vulner-
able to attacks such as tlege view exploi{66], by means of which a user succeeds in
achieving a good download speed without uploading any datetiirn.

To overcome the above issues, in recent years, there hasabarge proliferation of
so-calledprivate BitTorrent communities. These sites typically requirerage register
accounts and then demand that their members maintatlmeng ratiqg i.e., the ratio
between a peer’s total upload and download amounts, abosagiaypar threshold. This
mechanism is known under the nameStfaring Ratio Enforceme(8RE). Community
members whose sharing ratio drops below the threshold areed@and then banned from
downloading, or even expelled from the community. In thigvtas guaranteed that each
participant provides a certain level of contribution to tmenmunity. Furthermore, since
it is normally difficult to obtain membership of a private Birrent community, the threat

1The sharing ratio is calculated and recorded by the tradeptoyed by each community.
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of the white-washing attackis very low. On the other hand, to make SRE realistic and
feasible, most private communities adopt some specias rider example, new members
normally are provided with a bonus to get started (e.qg., irtiHDa [64] the first download

is for free).

Several measurement studies show that SRE is very effaatiigeosting coopera-
tion [13, 64,69, 124]. For instance, [69] reports seedde¢zher ratios that are at least 9
times higher than in public BT communities, while downlopeads are measured to be
3-5 higher. Hence it would be beneficial to analyisv SRE actually provides seeding
incentives and quantify the expected performance imprevemn terms of user down-
load speeds. In this chapter we focus on these aspectsfi§gggiour contributions are
as follows:

1. We provide an analytical model for bandwidth-heterogeserivate communities,
which characterizes the inherent relationship betweeredggerformance and the
parameters of SRE. We apply our model both to a single swadaermmss multiple
swarms, and we quantify the performance improvement/desgion for peers with
different capacities, assuming rational user behavioct(&e 3.1).

2. We analyze the factors that build up SRE’s influence, i, SRE threshold, and
the bandwidth heterogeneity of the peers in the systemi(®egi2).

3. We show that, due to the influence of irrational user befhraserved in real pri-
vate communities, i.e., some peers seed more than they neleachieve sharing
ratios (much) higher than the threshold [64], the expectednibad speeds derived
in our model represent lawer boundfor the actual download speeds achievable
by peers. Hence, following our model, administrators o¥ge communities can
predict the minimum performance level their systems wildbée to reach. (Section
3.2).

3.1 A simple model for Sharing Ratio Enforcement

In this section, we introduce the assumptions and otherslefeour model.

3.1.1 Preliminary: rational user behavior

For the purpose of our analysis, we consider a user to benadiiat tries to maximize its
download speed and minimize its seeding work. This mearisshen SRE is adopted,

2White-washing refers to the action of a peer who repeategjbins a system with a new identity in
order to get rid of a negative history.
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rational peers seed the minimum amount to meet the threstmald when SRE is not
adopted, peers immediately leave the system once theirldadsmare complete.

Furthermore, we assume that rational peers always uplaaéiafull capacity, since
a recent study [64] has shown that when using TFT, uploaditigeafull capacity is the
best strategy for peers to maximize their download speedalllyj in accordance with
previous work [85], we do not consider the piece availapiitoblem and assume that
peers can always find pieces that they are interested in &t pders.

3.1.2 The basic model

We consider a BitTorrent swarm in which peers are downlaadimd uploading pieces
of the same file. Similar to the model proposed in Chapter 2asgeime that the system
is in steady state: while peers are arriving and departheyidtal size of the population
is constant. We group peers into different classes acapriiriheir upload capacities,
and assume that the upload bandwidth allocated to eachislagsally shared by all the
leechers in that class. The notation used in our model istrtited in Table 3.1.

Given the above assumptions, we can derive that within aitweeval 7, there will
be 7 z;/t; leechers in classwho will have completed their downloads, wheyeés their
average download time and is the number of leechers in clasm a steady state at any
given time. We assume thd@tis long enough so that we can get an average performance
for peers in each class. The conservation law applied to dnewidths implies that, in
this interval, the total download amount must be equal tddted upload amount, i.e.:

T T
Z Z%F = Z t_il‘i,uiﬂa 3.1)
whereT; denotes the total length of time a peer has spent in the swaoth s a leecher
and as a seeder).

For a swarm where peers do not seed (L= t¢;), and considering that the download
speed/; of a peer in classequalsF'/t;, Eq.(3.1) becomes:

3.1.3 Within one swarm

We first analyze how SRE influences the system performance wihe applied within
one swarm. This mechanism is adopted in several privateoB#ht communities such
as BitHQ [9] and PolishTracker [81]. Under this situationce a leecher’s sharing ratio
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Notation | Definition

o the sharing ratio threshold of SRE.

F the size of the file being downloaded.

N the total number of classes of peers.

x; number of leechers in clagsn a steady state.

1hi the upload capacity of a peer in class

Wij the fraction of upload capacity of leechers in clasfiocated
to leechers in clasgin a steady state.

Oij the fraction of upload capacity of seeders in clagocated
to leechers in clasgin a steady state.

d; the average download speed of a peer in class

t; the average download time of a peer in class

T; the time a peer in clagsspent in the swarm,

i the sharing ratio achieved by a peer in claas a leecher.

Table 3.1: Notation of our BitTorrent model

drops below the threshold, its download process is haltedddiately: it needs to upload
for a while until it gains enough sharing ratio to performthar downloading. When it
completes the download, the peer leaves the swarm immbd{atenceT; = t;), with a
sharing ratio no less than the SRE threshald

We call ¢¢ the sharing ratio a leecher in claswould obtain in a swarm where SRE
is not applied. When SRE is applieddf < «, peers in classwill be banned for some
time during their downloads, so that their final sharingaratj will be exactly equal to
the threshold. While these peers are banned, their uplqaatitees will be allocated to
the other peers in clagswherej € {j, ¢ > a}. Given the definition of sharing ratio as
i = piti/F = p;/d;, from the conservation law in Eq.(3.2), we have:

Z l’z’% + Z ll?z% = Zl’zﬂz (3.3)

1,05 <a 1,05 >

As an illustrative example, let us consider a swarm that isteef a class of slow
peers with upload bandwidtla, and a class of fast peers with upload bandwjdth We
assume that originally slow peers cannot achieve the SREHbtd when using only TFT.
Eq.(3.3) implies that:

s I
Ts— + Tp—— = Tsfs + Tyfiy- 3.4
o T, (3.4)
It is easy to verify that when < 1 (which is the case in most private communities),

it will always hold thatp, > 1. For example, whem, = =, iy = 4415, anda = 0.9, we
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Figure 3.1: The fluid model for multiple swarms.

haved, = 10u,/9, d; = 35115/9, andy; = 36/35 > 1. This implies that fast peers who
originally could achieve the SRE threshold will still be alib achieve it, though their
download speed is increased due to the extra bandwidthrasdid¢o them.

3.1.4 Within multiple swarms

To avoid getting a worse performance, it is reasonable farea prho cannot achieve the
SRE threshold while leeching, to seed for a while befordisganother download. In
this way, it will gain some sharing ratio as deposit, and gigefor its next download.

We assume that in a BitTorrent community containing a nundedifferent files
(each associated with a different swarm), peers that aeeestied in multiple files will
download them one after another. We do not consider padehloads, since a peer
who downloads: files simultaneously can be considered as beilgferent peers, each
having 1/n of the original upload capacity. For the same reason, we daowsider
parallel seeding either.

The flow of peers within multiple swarms is shown in Fig. 3.fi:after completing
its download in swarna, a leecher meets the SRE threshold (ig.> «), it can directly
join another one (swarrh in the figure) if it wishes so. Otherwiseo{ < «), to keep
its community membership, the peer needs to turn into a seaale seed for a while in
swarma. Its seeding amount should compensate its upload defigiercythe required
upload amount minus the actual upload amouat:- ¢;) F'.

For simplicity of presentation, we assume that all swarnesodiran identical config-
uration, i.e., the files are of the same si#8,(the compositions of peers are the saine
Within a long time period’, in a particular swarm there will b&x; /t; leechers in class
i who have completed their downloads.df < «, each of these leechers will turn into
a seeder and se€d — ;) F' amount of data. The conservation law implies that, in this
interval, the total download amount must be equal to the tglmad amount, i.e.:

3|t should be noted that we can perform the same analysis farnswsof different configurations by
simply adding a coefficient in our equations.
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1

T T T
Z t—szzF = Z t—i%‘m‘tz‘ + Z ?xi(a — @) F, (3.5)
7 7 1, <
where the two terms on the right side account for the contiohs of leechers and seeders,
respectively.

Let i) = (v — ;) F'/t;, then, similarly to Eq.(3.1), Eq.(3.5) can be simplified to:

S =Y w3 (3.6)
i 7 1,0 <
To this end, given that the resource allocation is only aeteed by TFT, the average
download speed of a peer in classan be calculated according to the model proposed in
Chapter 2, i.e.:

/
B D5 Wil + D e g, <oy Tl
- 9

X

d; i=1,2,.. N, (3.7)

wherew;; (0;;) specifies the fraction of bandwidth allocated from a lee¢beeder) in
classj to leechers in classin the BitTorrent protocol. The accuracy of this model has
been demonstrated through simulations [48].

Note that the term on the right side of Eq.(3.6) is equabio, _, zi(u: + ;) +
ZWZ& x;14;, Which implies that the upload performed by a peer in cla@s a leecher
and later as a seeder), where {i,;, < «}, is equivalent to it uploading (only as a
leecher) at a speed equaliip+ ;. In both cases it exactly achieves the SRE threshold.
Hence,(u; + ;) /d; = «, from which we can calculate, as:

i = ad; — g, 1 € {i, 0 < a}, (3.8)

and solve the system of equations in Eq.(3.7).

As an illustrative example, let us consider again a systetim twio classes. Assuming
that the sharing ratio obtained by slow peers when using @Rl is below the SRE
threshold, from Eqgs. 3.7 and 3.8 it follows that:

dy = Weshls + Wrstf 55 + Ouspll

dp = Wsppts 3 +Wrsliy + OG5

py = ady — pug

Herew,;; ando;; are determined by the design of TFT and network settings. We

use the default TFT settings as in the BitTorrent main clieet, peers open 5 upload
slots, among which one is used for optimistic unchoke, ardees seed randomly [72].
Then, for the following network settingst, = x;, uy = 4ps, o = 0.9, we have:
wrs = 1 —wypr = 0.1, wep =1 —wss = 0.2, 05s = 1 — 05y = 0.5. Solving the above
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system equations, we havé; = 144,/11,d; = 213p,/55, andy; = 220/213 > 1. We
see that, despite the extra seed supply provided by slow dast peers can still meet the
SRE threshold.

3.2 Analysis

Based on our model, in this section we analyze the performah&RE both when it is
applied to a single swarm and to multiple swarms. Unlesgdtatherwise, we assume
that each swarm in the steady state consists of two clasgaeseo$, 50 fast peers with
an upload capacity ; equal to 2048 Kbps and 50 slow peers with an upload capagity
equal to 512 Kbps. We believe this simplified version of udloapacity setting is already
enough for our analysis, though more complicated capa@styiloution can also be used.
By default, there is the same number of fast and slow peedsirenSRE threshold is
setto 0.9.

We use two metrics to evaluate SRE’s performance, i.e.,ubmge download speed
and the sharing ratio, and we consider three factors inflngr8RE’s performance, i.e.,
the SRE threshold, the fraction of fast peers, and the upload capacity rativéen fast
and slow peers.

3.2.1 One swarm

We first analyze the effects of using SRE within one swarm.olmyFigs. 3.2, 3.3, and
3.4, TFT alone is compared to TFT with SRE. As expected, SRigsha enhancing
reciprocity. In fact, the download speed of fast peers, waeeha higher sharing ratio
than slow peers under all considered scenarios, is highenwharing ratio is enforced,
as compared to the case when only TFT is applied. However wethat, for certain
settings, i.e., when the threshold is too low (Fig. 3.3) oewlthe upload capacity ratio
of the two classes of peers is small (Fig. 3.4), SRE has admitfluence on the perfor-
mance. Hence, knowing the capacity distribution of peersportant to make the use of
SRE most effective. Furthermore, in line with our previoesults in Chapter 2, we note
from Figs. 3.2(a), 3.3(a), and 3.4(a) that enhancing recipy deteriorates the overall
download performance in the system.

These findings suggest that applying SRE within one swarmvesrya strict way to
enhance reciprocity: the performance of a peer dependsamlyis upload capacity.
Hence, this method might be useful for administrators ofgie communities to exclude
low-capacity peers.
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3.2.2 Multiple swarms

In this section, we analyze the effects of SRE’s when theispaatio of each peer is
calculated across multiple swarms. As we can observe in Bi@§s 3.6, and 3.7, the
seeding work performed by peers in order to comply with th& $iteshold results in
a higher download speed for peers in all classes, as well abetter overall download
performance in the system. Furthermore, this performanpeavement is increased with
a higher SRE threshold, a higher fraction of fast peers, argel upload capacity ratio of
the two classes of peers.

Hence, applying SRE within multiple swarms translates s#eding incentives for
those peers that cannot comply with the SRE threshold byleelyhing. This represents
a win-win situation where all peers are provided with a bretezvice due to the increased
bandwidth supply.

3.2.3 Comparison with the real world

In our model, we have only considered rational user behaver peers only seed the
minimum amount they are required to. In a real private comtyuihis is not always the
case. Several measurement studies [13,64] show thatdnstéalowing the enforcement
rationally, many users prefer to seed more than they needhas achieve sharing ratios
much higher than required. For example, in HDChina, a poguigate community that
has over 18,000 registered users, overl the users have a sharing ratio higher than
one [64]; while in another popular community, CHDBIts, tlog 250 users possess a
sharing ratio higher than 10 [13]. This suggests that theri@l risk of being expelled
from a community due to an insufficient commitment psychuaally manipulates users’
behavior.

Given the existence of this irrational user behavior, tteailte derived in our model
can be seen aslawer boundfor the performance improvement provided by SRE, as we
formally prove now.

Theorem 3.1 In a BitTorrent swarm where SRE is used and where peers ulbteeir
full capacities, the average download spe&df a peer in class is not lower thand;,
regardless of the user behavior:

!
25 Wity & 2 e (jp <ay TiTiH;
Z; )

d, >d; =

(3.9)

(The expression faf; comes from Eq.(3.7)).

Proof: Given the rational user behavior assumed in our model, tt@nskterm in the
numerator of Eq.(3.9) specifies the minimum bandwidth alled from clasg seeders to
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classi leechers, wherg, = (o — ;) F'/t;. Due to possible irrational user behavior, the
sharing ratios achieved by peers in a private communityrswaight be much diverse but,
nevertheless, not less than Let B, = (A; — ¢;)F/t;, whereA, is the average sharing
ratio achieved by a peer in classi.e., A; > «. Similarly to our analysis in Section
3.1.4, we calculate the average download spéeid a swarm with possible irrational
user behavior as follows:

D Wity £ 22, 056 B,
Z; '

Because4; > a, we have3; > n; > 0. Hence it follows thatl, > d;.

d (3.10)

3.3 Related work

Most existing studies on BitTorrent incentive policiesdscon TFT and its variations
[30], [72], [90], [48]. To date, only few works analyze priteaBitTorrent communities.
Andradeet al.[5] focus on the dynamics of resource demand and supply, aedttheir
most interesting findings is that a small set of users caui® most of the resources,
but the users that provide more resources are also thosdehwtnd more. Rahmaat

al. [89] introduced and studied the credit crunch and crashlpnopband they provide a
novel credit intervention mechanism that proactively ste system seizing. Zhamg

al. [124] investigated hundreds of private trackers and degiatbroad and clear picture
of the private community landscape. Chetral.[13] compared system behaviors among
13 private trackers and 2 public trackers, and they showel thifferences regarding
user viscosity, single torrent evolution, user behaviarg] content distribution. While
these studies all focus on demonstrating the propertiesidtp communities based on
measurements or simulations, we provide a theoretical hodmalyze SRE’s influence
on the system performance. Lat al.[64] developed a model to analyze SRE as well,
based on a game theory approach. While they show the exéstéracNash Equilibrium
and the conditions to achieve it, our model quantifies theetdvound of the performance
improvement when using SRE, and we further study the infleefi¢che SRE threshold
and the bandwidth heterogeneity of the peers in the system.

3.4 Conclusions and future work

In this work, we have provided an analytical model that ceggithe essence of SRE
adopted by private BitTorrent communities. Due to the exise of “irrational” seeding
behavior observed in real private communities, our mogeksents a lower bound for the
average download speed that peers can achieve. Based ondel;, me show that apply-
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ing SRE within a single swarm is a possible way for admintstieof private communities
to enhance reciprocity, or to exclude low-capacity peersth@ other hand, applying SRE
across multiple swarms provides seeding incentives, agktbeeding resources lead to a
better overall download performance. We furthermore shatthe performance of SRE
is increased by 1) a higher fraction of high-capacity pe®rs, higher SRE threshold, and
3) a larger disparity in the upload capacity of peers.



Chapter 4

Monetary schemes as contribution
Incentives: systemic risk and user-level
performance

Online networks often require the cooperation and the dmrtton of their users. Ef-
fective contribution incentives are essential for the @nstbility of the system. Barter
schemes like Tit-For-Tat are based on reciprocity and hawenaber of limitations in,
for example, the need for the coincidence of wants of thegyaaints and the ineffective-
ness in the long-term use. To tackle these problems, mgn&themes in economics are
borrowed, modified, and utilized to design incentive pekci Under monetary schemes,
virtual currencies are issued and used as an exchange nwedizefcontributions and
consumptions of users, implicitly or explicitly. In this wausers are incentivized to con-
tribute, so as to keep some reserve of the virtual currencghér future needs.

Monetary schemes are becoming prevalent in nowadays onéhgorks, ranging
from the currencies used in online virtual worlds such a®8dd.ife, to methods for re-
source allocation in wireless sensor network [17] and filerisiyg [43]. As one example,
in recent years there has been a proliferation of so-caliadite BitTorrent communi-
ties aiming at providing contribution incentives beyondTBirent’s original TFT. These
communities employ privatgackersthat maintain centralized accounts and record the
download and upload activity of each user. They apply pedi¢o incentivize good over-
all upload / download behavior. One such well-known polgyhecredit-basedolicy,
which requires each member to maintain a positreglit (its total amount of upload mi-
nus its total amount of download). Another such policysisaring Ratio Enforcement
(SRE), in which each member is required to keesitaring ratio(the ratio between its
total amounts of upload and download) at least equal to ahlotd called th&RE thresh-
old, which is set by the community administrator. The credgdzhpolicy is an obvious
monetary scheme. SRE, though not quite at the first glandg ddfers in that it allows
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a user to have negative credit (i.e., its download amountbealarger than its upload
amount) and that when users do have negative credit, thergrobaredit circulated in
the system is dynamic. Under both policies, community memtet cannot fulfill the
requirements are first warned and then banned from dowmgadr even expelled from
the community.

In this chapter, we explore both the system-level dynammcithe user-level perfor-
mance in communities adopting monetary schemes as catdnbimcentives. We use
private BitTorrent communities as an example, but our asislig applicable to any on-
line network that adopts contribution enforcement posciey generalizing the metrics
for determining the credit and the sharing ratio from theoagland download amounts in
a P2P file sharing system to any metrics representing caiitsiband consumption.

Considering a private community as an economic system, alyaaits system-level
dynamics by studying its potential systemic risk. In ecorosysystemic risk is the risk of
a collapse of an entire economic system or market [58]. Wetfiatin private communi-
ties, too much credit distributed too evenly leads twashin which peers hold abundant
credit and are not willing to contribute. Hence, the systeines to zero throughput con-
taining only leechers. Conversely, too little credit dlmited over the peers leads to a
crunchin which peers do not have enough credit to download, leatdiggseized system
containing only seeders.

Even when crashes or crunches do not occur, i.e., when thensyssustainablethis
only ensures that the system is able to function, but not heW vfunctions. Though
many measurement studies [13, 64, 69, 124] have shown th&R-based and credit-
based policies are very effective in boosting contributewels in terms of high seeder-to-
leecher ratios and the corresponding high downloadingdsp&ee argue that the abundant
supply of bandwidth also has several negative effects ssaaxeessively long seeding
times that are often unproductive. To explore this, we areatirie user-level performance
in sustainable private communities.

Our main contributions are as follows:

1. We demonstrate using simulations that in private comtiascredit crashes and
crunches can occur, and we identify the conditions that teddese extreme out-
comes (Section 4.3);

2. We present a theoretical model that predicts whether @msywill crash, crunch,
or be sustainable over a defined time horizon. Based on thiehwee propose an

A real world example of the crash and crunch is the story of2hpitol Hill Baby Sitting Co-op [56],
which was a group of parents who agreed to cooperate to baldysrunch happened when most people
wanted to save up coupons: they looked for an opportunityateysit but there was little demand. Later
when more coupons were issued a crash happened: most pelbtiiey had enough coupons so they didn'’t
want to babysit, leaving the system with huge demand but pplgu
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adaptive credit policy that helps the system to avoid cragimel crunches (Section
4.3);

3. We show that the users in sustainable private communitiege achieving high
system-wide downloading speeds, are forced to seed foisgxety long times,
during which their upload capacity utilizations are quae/l(Section 4.4). Further,
when the popularity of a swarm decreases over time, peetgdimathe swarm
not early enough will have to seed for much longer duratibias tpeers who join
(strategically) at the beginning of the swarm (Section;4.5)

4. We propose and evaluate by means of simulations four nmategtes that allevi-
ate these problems while still maintaining a reasonableesysvide downloading
speed (Sections 4.4 and 4.5).

4.1 Support from real world observations

To support our later analysis, we first present real worlceoleions of two private com-
munities, CHDBIts.org [12] and Bitsoup.org [10]. CHDBItschBitsoup both require the
users to maintain sharing ratios larger than the threshibld7o The trackers of CHD-
Bits collect information that is periodically reported thetBitTorrent clients of its users,
which is displayed in the form of HTML pages available to oif/users. We crawled
these trackers in May 2011. For each user in CHDBIts, we cigtethe information on
its user profile page including the upload and download armdle seeding time, and the
sharing ratio. For each torrent, we collected the infororatf its published date, and its
numbers of seeders and leechers at the time of snapshotalnindormation on all the
31,547 registered users and 40,040 torrents was obtaimeditSoup, we use the traces
published in [5] that report the user activity of 84,007 gser13,741 torrents during a
period of two months.

4.1.1 The existence of over-seeding behavior

A previous work from Tribler group [37] has shown that usetsovalways seed can,
counter-intuitively, lead private communities to poorfpemance due to a credit crunch,
in which a few peers accumulate much of the credit and deptivers of the opportunity
of downloading. This implies that the user behavior canifigantly influence the system
performance. Inspired by this finding, we first demonstrageuser behavior as observed
in the real world, based on which we later analyze the sysésel-and user-level perfor-
mance of private communities.
In CHDBIts, maintaining a sharing ratio equal to the SREshwdd is sufficient for a

user to start downloading a new file. However, we observertbaall the users behave
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Figure 4.1: Over-seeding behavior: the CDF of the sharitiggaf peers in CHDBIts.org.

like this. As shown in Fig. 4.1, more than %@%of the users in CHDBIts keep sharing
ratios higher than 0.7 and more thad% of the users keep them higher than 2. This
phenomenon of peers seeding more than required and adpiglvaring ratios that are
(much) higher than the SRE threshold has also been obserwearny other communities
[64].

From the above observation we abstract two user behaviorsuiolater analysis
lazy-seedin@ndover-seeding Lazy-seeding peers seed the minimum amount required
by the enforcement policies. They represent the users wdhhd@wnload-oriented, i.e.,
who only seed enough to maintain adequate sharing ratiogsedit¢o be able to start
new downloads. On the other hand, over-seeding peers aosittepiented, and always
maintain sharing ratios (much) higher than required. ThHeab®r of such peers may be
triggered by various motivations such as altruism, a desitee part of the rich elite of
the community, or a habit of storing credit for the future. lire with the terminology
used in economics, over-seeding peers can be understdomhedersas their behavior
essentially amounts to hoarding credit.

4.1.2 The oversupply

The main motivation for implementing credit or SRE policie$o close the gap between
bandwidth demand and supply as observed in public BitToo@mmunities, where there

is significantly more demand than supply [69]. However, thespnce of over-seeding
peers completely reverses the situation and in private aamitias, swarms tend to be
extremely oversupplied.

At the time of the crawling, CHDBIts had 33,041 active swar(wgh at least one

leecher or one seeder), among which 26,402 swarth8%) had no leechers at all. As
shown in Fig. 4.2(a}40% of the swarms with no leechers still had at least 5 seededs, an

2We use the abstracted behaviors instead of the real traceiseeve intend to identify what behavior
influences what performance.
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5% of these swarms even had more than 20 seeders. For swarmatwatst 1 leecher,
the seeder-to-leecher rati¢S LR) is quite high: as shown in Fig. 4.2(t)0% (5%) of
these swarms had &Y. R of at least 6 (30). We see clearly that a majority of the swarms
are heavily oversupplied. In such swarms, intuitively idiicult for seeders to perform
any actual uploads due to the insufficient demand and ufisdtsupply. We validate our
speculation through the following observation.

4.1.3 Unproductive seeding

It is clear that in order to achieve high sharing ratios, pewsed to spend considerable
amount of seeding time. In the case of over-seeding peerg,deeding times are to be
expected. However, we observe that even many peers witH sheaing ratios suffer
from excessively long seeding times, and a significant (fatier seeding time is spent
idle without being able to upload anything to others. As aseguence, they have to wait
for a long period until their sharing ratios are high enoughktart new downloads.

Fig. 4.3 shows the CDF of the fraction of idle seeding timeexns with sharing ratios
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smaller than 1 in BitSoup. We see thdl) of these peers spend at least half of their
seeding time idle. Note that Fig. 4.3 only shows the fractibidle seeding time. It can
be conjectured that the fraction of seeding time that is notgetely idle yet still yields
very low upload speed, would be much higher. We term thisasin asunproductive
seedingand we hypothesize that it is due to the oversupply undertebeded or SRE-
based schemes.

Based on these observations, in later sections we analgzg/gtem-level credit dy-
namics and user-level performance in private communiBe$ore that, we first introduce
the basic model in the following section.

4.2 Model description

In this section we will explain the credit-based and SREsdascentive policies, and our
model of communities that employ one of these policies.

4.2.1 Credit-based versus SRE-based policies

The credit-based and SRE-based policies are essentiajhysimailar, in a way that they
can be understood as variations of each other. The ideadbbth policies is that every
peer has to maintain at all timés certain relation between the total amouft) it has
uploaded and the total amoutit) it has downloaded since it entered the community until
timet. The credit-based policy requires users to keep non-negertedit, i.e., to ensure
thatu(t) — d(t) > 0, while the SRE-based policy requires users to keep a minimum
sharing ratioSR(t) = u(t)/d(t), i.e., to ensure tha¥ R(t) > «, wherea is the SRE
threshold. Whena = 1 in the SRE policy, the SRE-based and credit-based policies
coincide.

By enforcing non-negative credit in the credit-based polihe exchanging of data
by peers does not generate new credit, and the total amowneadi in the community
is always equal to zero (or to the sum of the initial creditecated to the peers by the
community administrator). In contrast, an SRE-based palilows users to have negative
credit (i.e., to have(t)—d(t) < 0, which means that R(¢) < 1). Holding negative credit
increases the amount of credit among the peers with positagbt in the system—in other
words, by holding negative credit a user is essentially imgn¢redit. More precisely, the
total credit minted by a user in an SRE-based community Witti) < 1 until timet is:

d(t) —u(t) = (1 = SR(t))d(t),

3Throughout this chapter we assume 1, as most private communities do [10,40]. It is not reasamabl
to havea > 1 since, given the conservation law, it is not possible fouadirs to achieve sharing ratios lager
than one simultaneously.
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which is bounded by1 — a)d(t). As the sharing ratios of peers fluctuate, SRE-based
communities hold a dynamic amount of credit circulatingha system.

4.2.2 The basic model

We consider a community that is either credit-based or S&Eed. The community com-
prises a set of swarm$ each associated with a file of siZze(expressed in number of
pieces or units), and a set &f peers each with upload capacity® We assume no limit
on the download capacity of peers. The download model falttve TFT mechanism in
BitTorrent, with seeders uploading units to leechers ardHers exchanging units with
each other. In reality, a peer can participate in multiplasmas simultaneously, with its
bandwidth shared among all the swarms. However, since #wénghratio is aggregated
over all the swarms, we assume that at any time a peer onligipates in one swarm,
either as a leecher or a seeder.

The operation of the model is based oytlesrepresenting units of time. In every
cycle, a peer either uploads and/or downloads data or is &fld at the end of every
cycle, it may switch swarms. Peers attempt to downloas flkés in random order.

In a credit-based community, every pees initialized with an amoun€’,, of credit,
and in an SRE-based community, every peer is initializetl @itlownload amount equal
to F and a sharing ratio that is a uniformly random number betvieand 2. A peer can
and will only start leeching its next file if its credit or itharing ratio is at least equal to
its target thresholdotherwise it continues seeding the current file.

Based on real-world observations, we implement two useaviels: lazy-seeding
and over-seeding (see details in Section 4.1.1). The téingeshold of a lazy-seeding
peer is an amounf’ of credit in a credit-based community (enough to start andpiete
leeching a new file) and a sharing ratio equal to the SRE tbidsh an SRE-based
community. The condition for a lazy-seeding pget timet to stop seeding is,(t) > 0,
with: _

o) = { u,(t) — dy(t) + C, — F credit-based, @.1)
up(t) — ady(t) SRE-based,

wherew,(t) andd,(t) represent the total amounts of upload and download of peer
Over-seeding peers behave in a similar way, but in both eledied and SRE-based com-
munities they aim at large sharing ratios. Throughout thi&pter we choose a sharing
ratio of 2 as the default target threshold for over-seediegy$.

“We assume the number of swarms to be large enough that evenavibjection of new swarms, users
still have enough swarms to download from.

5Bandwidth heterogeneity does not change whether a systénesragh or crunch, but it does influ-
ence the user-level performance, for which we examine batidWwidth homogeneous and heterogeneous
systems in Section 4.4.2.

5We have run several tests using different values for thestiwlel and the results show that the tendency
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4.3 System-level performance: the systemic risk

In this section, we explore the systemic risk of monetaryesods. We start with simula-
tions to demonstrate the consequences of the systemiaviske identify the conditions
that lead to these extreme outcomes. Then, we present a&titabmodel that predicts
when it may happen. Finally, we propose an adaptive crediitypthat helps the system
to avoid the systemic risk and to be sustainable.

4.3.1 The crash and crunch

In this section, we perform a number of simulations to explitre credit dynamics in
private communities, focusing on analyzing the conditimender which a community will
crash, crunch, or be sustainable. We defirmeashas a situation in which due to credit
abundance, peers are not incentivized to contribute anslygtem completely seizes up,
providing no upload or download to any peers. We defirumchas a situation in
which due to credit shortages, peers cannot afford new dmadsl and the system seizes
providing no upload or download to any peers. We define a comitynto besustainable

if it does not crash or crunch.

Experimental setup

We consider a closed system without new peer arrivals. Reeala bring credit into the
system and make it difficult to identify whether the underycredit dynamics is due to
the enforcement policy or to the new credit. In fact, in ngainany private communities
are (nearly) closed [12,40]. For example, CHDBIts hardly &ay open registration and
new members can only be admitted by extremely restricteithiinon’.

The simulation is based on the basic model introduced ini@edt2, with N =
1000, s = 100, F' = 10 units, andU = 4 units per cycle. We choose = 0.7 as the
default value of the SRE threshé)das this value is used in many private communities,
e.g., [10, 40]. For each experiment we perform 10 independers, and each run is
executed for 2000 cycles.

of the problem is the same.

’As we will show later in this section and in Section 4.4.2, iol@sed private community with over-
seeding peers crunches easily happen and new peer armiasdoedit, which alleviates the potential
systemic risk. We conjecture this is the reason why CHDBisswell as other private communities, from
time to time (several times a year) accept a certain numbapef registrations, instead of merely intending
to share their resources with a larger user base.

8The small file size means the simulation runs produce reatiisarge scale of granularity. We also
performed runs witlF" = 100 and found no significant difference in results.

%We have run several tests using different valuesfoResults show that the tendency of the problem
stays the same, but with different speeds of entering crastuach.



59

frac.ofrich | avgthroughput avg.frac.of final

at start (std.dev) seedergqstd.dev) state
0.1 0.000 (0.000) | 1.000 (0.000) crunch
0.3 0.218 (0.001) | 0.953(0.005) sustain
0.5 0.777(0.002) | 0.769(0.018) sustain
0.7 0.968 (0.004) | 0.506 (0.018) sustain
0.8 0.587 (0.478) 0.249 (0.204) | sustain/crash
0.9 0.001 (0.000) | 0.000 (0.000) crash

Table 4.1: Sustainability of the credit-based system.

We consider three performance metrics, namely the avehagaghput, the fraction
of seeders, and the state of the system at the end of the siomul& he throughput is
expressed as the total amounts of units of data exchangled gystem over an entire run,
normalized to the highest one observed in all the experisienhe state of the system
indicates whether the system crunches, crashes or sustains

Credit-based: constant credit

As discussed in Section 4.2, the amount of credit in a ctesbed community is always
equal to the initial credit allocated by the community adistirators. In this experiment,
we vary the fraction of peers who are given an initial credittFo(and other peers are
given zero credit), which we call rich peers, thus genegatiifferent levels of credit in

the system.

Populations of lazy-seeding peetsfe first show the results of the system containing
only lazy-seeding peers in Table 4.1. When the fraction ci peers is initialized to
0.3, 0.5, and 0.7, we see sustainable outcdfveish increasing throughput and a smaller
number of seeders at the end of the simulation. This is iaéugince as the amount of
credit in the system increases, fewer peers are poor, aroe Imeore exchange of data can
occur.

In the crunch state, where only 10% of peers are initializedch, the system is com-
posed of all seeders by the end of the run, and hence, no eyelwdrdata can occur.
Conversely, in the crash state, where 90% of peers arelirgtiaas rich, all peers are
leechers by the end of the run, which again means no exchdng¢zo Inspection of in-
dividual runs shows that crunches and crashes happen guigkthin the first ten cycles
or so. This is reflected in the low (almost zero) throughputarrcrash and crunch states.

It is interesting to see that when the initial fraction otrjgeers is set to 0.8, both sus-
tain and crash outcomes can occur. This is reflected in thevaigance of the throughput.

10we have run extended runs up to 20,000 cycles and find thatgtaisable outcomes are maintained.
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frac.ofover | avgthroughput avg.frac.of final
-seeding peers (std.dev) seedergqstd.dev) state
0.1 0.0093 (0.0012) 0.0000 (0.0000) crash
0.2 0.2046 (0.2103) 0.0037 (0.0082)| crash/sustain
0.3 0.8910 (0.0041) 0.1487 (0.0141)| sustain
0.4 0.9865 (0.0090) 0.4212 (0.0243)| sustain
0.5 0.1436 (0.0083) 1.0000 (0.0000) crunch

Table 4.2: Sustainability of the SRE-based system.

Here we are very close to the threshold leading to a crash anfthal path dependency
based on initial random conditions leading to either a higgtainable throughput, or a
sudden crash otherwise.

Populations containing over-seeding peeWe find that introducingny number of
over-seeding peers into the system eventually leads torleyiand the speed of the
crunch depends on the number of over-seeding peers. ThisliiBve since in our experi-
ments, over-seeding peers seed (to hoard credit) untilthey a sharing ratio larger than
2. This means that as the simulation progresses, the ogdirgepeers eventually hold
all the credit in the system and a crunch is inevitable.

SRE-based: dynamic credit

As discussed above, a credit-based community keeps at@atisastant amount of credit
which, if not properly set, will lead the system to crunch cash. On the other hand,
as stated in Section 4.2, an SRE-based system keeps dynadichy allowing peers
to have sharing ratios less than one, i.e., to have negatadite. Hence, essentially
lazy-seeding peers in an SRE-based community inject drgditirculation, and as in a
credit-based community, over-seeding peers absorb dreditcirculation.

Intuitively, an SRE-based system cannot be sustainablepkars are lazy-seeding:
soon they will inject too much credit into circulation, whieventually leads the system
to a crash. However, as we have shown in Section 4.1.1, imferecommunities over-
seeding peers always exist and they absorb credit fromlatron. Hence, in an SRE-
based system with over-seeding peers, the effect of cirgditting by lazy-seeding peers
can be alleviated and the system might eventually be sadtisin

We run several simulations to validate the above hypothea&sconsider an SRE-
based system in which we vary the fraction of over-seedirggi® assess their influence
on the credit dynamics. Table 4.2 shows the simulation t&s@onsistent with our in-
tuition, a certain fraction of over-seeding peers (0.3 addi® our experimental settings)
does lead the SRE-based community to be sustainable. A talh sna too large frac-
tion of over-seeding peers (0.1 and 0.5 in our experimeset#ihgs), on the other hand,
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eventually leads the system to crash or crunch.

4.3.2 Predicting crashes and crunches

In this section, we will derive (approximate) conditions fwedicting whether the system
will crunch or crash.

In the model introduced in Section 4.2, suppose that at tineeswarm¢ hasz‘(t)
leechers ang’(t) seeders. Denoting the fraction of the file that a leealidras already
downloaded by (t), = needs to spend an amountl — pf(¢))F of credit to finish its
download. We definé(t) and R:(t) as the sets of peers that have fewer or more pieces
of the file than peef, respectively (for a seedef(t), L‘(t) consists of all leechers and
RE(t) is empty). We assume that peeonly downloads from peers iR!(t), and only
uploads to peers in(¢) (this is not quite true in BitTorrent, which makes the coiudis
that we will derive approximations). We further assume thatcredit paid by peeris
equally shared by all peers i (¢). Hence, if the situation (in terms d@f;(¢) and R;(t))
does not change from timeonward, pee¥ can earn an amour}‘(¢) of credit from the
peers inL:(t), where

e (L B)F
Q;(t) = j@%ﬂ |R§(t)| )

Let X,(¢) andY,(t) respectively represent the sets of leechers and seedérasha
suming that the situation does not change from timare able to achieve their target
thresholds and start new downloads. Together with Eq.,(#wé have:

Xolt) = {af+ e (8) + QUt) — a1 — (1)) F > 0},
Yi(t) := {yf : cyf(t) + Qf(t) > 0}.

Now we estimate the remaining download time of leechers la@ddmaining seeding
time of seeders for the current file. Here we assume that giuha upload process,
leechers and seeders alike upload with their full capacitgnd distribute their upload
capacity equally across all the leechers they are uploadin@he estimated remaining
download timeTY (¢) of leecherz! can be expressed as

T . (1 B pf(t))F

Lp) = .

@ (t) S U
kER(t) |LE(0)]

Similarly, the estimated remaining time for a seegfeto achieve its target threshold
and stop seeding is:
T ¢(t) :== max{0, —Cyt (t)}/U,

Yj
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Where—cyf (t) (if positive) represents the creql)ij still needs to earn to achieve its target
threshold.

We can now formulate theondition for a crunchto happen in the system as the
condition that the setX,(¢) andY,(¢) are both empty for all swarm&at some time,
because that no leechers or seeders are able to earn eneddhateave their swarms.
As a consequence, by the time that the last leecher finishdsutnload, there will be no
exchange of credit in the whole system.

In order to formulate the condition for a crash to happen/¢t) := {z¢! : ¢ ¢
X,(t)} be the set of leechers in swafmwvho will need to seed after finishing their current
downloads in order to achieve their target thresholds. Thewrondition for a crasho
happen is

Y,(t)| = yi(t) and min T..(t) > T ot
Ye(t)] = y'(t) i 2 (1) max ye (1),

for all swarms/ at some time. To see this, note that the system crashes if there are no
seeders. The first part of the condition above says that@kéeders in the system will

be able to earn enough credit to leave their swarms. If intemhdnone of the leechers in
P,(t) can finish its download before the last existing seeder ktwe swarm and if this
happens to all the swarms (the second part of the conditioe), the whole system will
end up with no seeders and seize completely, i.e., a crediharill occur.

4.3.3 Adaptive credit for sustainability

Based on the experimental and theoretical results of Sex#d3.1 and 4.3.2, we have
designed a noveddaptive credit intervention mechanigmavoid crashes and crunches.
At each cycle, we check the conditions for crunches and esadhrived in Section 4.3.2,
thus obtaining early warnings for potential crunches oslees. When we find that the
system is destined for a crunch, a new credit policy caltedleech! will be applied.
As a consequence, leechers do not pay any credit for dowinipdalut seeders and other
uploaders are still credited for uploading. Hence, newitiednjected into the system.
Credit injection for stimulating the economy has often besed successfully in real
world situations [98]. When we find that the system is destifug a crash, it applies a
freeseegolicy in which seeding peers (and uploading leechers) doeoeive any credit
for uploading, but leechers still pay credit for downloaglirHence, credit is removed
from the system.

We use the credit-based system as an example to evaluateaiages, but the same
analysis can be applied to an SRE-based system. The expéginsetup is the same as
in Section 4.3.1.

Freeleech is sometimes also used in existing private coriti@sisuch as CHDBits, but in a more
empirical manner.
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frac.ofrich | avgthroughput avg.frac.of final
at start (std.dev) seedergqstd.dev)| state

0.1 0.234 (0.026) | 0.948(0.012) | sustain

0.3 0.311(0.004) | 0.941 (0.005) | sustain

0.5 0.782 (0.002) | 0.769 (0.009) | sustain

0.7 0.968 (0.001) | 0.512(0.024) | sustain

0.8 0.976 (0.001) 0.535 (0.015) | sustain

0.9 0.995 (0.002) | 0.575(0.027) | sustain

Table 4.3: System sustainability with adaptive credit.

1 \ \ \ \ 1
| --throughput (normalised)| |
08 —total credit (hormalised) 0'8\—\\
0.6r 1 0.6r
0.4t 104
0.2f
10 20 30 40 50 10 20 30 40 50
cycles cycles
(a) Initially 10% Rich Peers. (b) Initially 90% Rich Peers.

Figure 4.4: The normalized throughput and credit in theesystvith the adaptive credit
intervention mechanism.

Populations of lazy-seeding peers

Table 4.3 shows the performance of our adaptive creditvatgiron mechanism in a
credit-based system containing only lazy-seeding peelistcuAs produce a sustainable
outcome, including those initialized with fractions of Gahd 0.9 of rich peers, which
previously led to crunches and crashes when the mechanisat &pplied (see Section
4.3.1). This indicates that the model in Section 4.3.2 gaaty enough warning for the
adaptive credit policy to avoid crashes and crunches.

Fig. 4.4 shows the results of two runs initialized with fiaos of 0.1 and 0.9 of rich
peers. A crunch is avoided in Fig. 4.4.(a) via the activatibineeleech at several cycles—
note the increase in credit over time. A crash is avoided gn #i4.(b) via the activation
of freeseed in the initial cycles—note the decreasing t@air time.

Populations containing over-seeding peers

As stated in Section 4.3.1, any number of over-seeding pearsredit-based community
will eventually lead to a crunch, due to the increasing ant®ahcredit they hoard. In or-
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Figure 4.5: The normalized throughput with and without tbagive credit intervention
mechanism (50% rich peers and 1% over-seeding peers).

der to test whether our adaptive credit intervention meidmaigan deal with this extreme
condition, we ran several simulations in which a small sufE#) of the population are
over-seeding peers.

Fig. 4.5 shows the throughput in the system with and withbetadaptive credit in-
tervention mechanism. As can be seen, without the mechatlignsystem eventually
crunches, whereas with the mechanism, the system is saislairHowever, the through-
put of the system in the latter case is still very low. Althbugew credit is injected each
time a crunch is predicted, this additional credit is evalijcollected by the over-seeding
peers and the process repeats. We believe that this is duefect that the adaptive credit
intervention mechanism does not attempt to optimize theesysut rather only to avoid
a crunch. In later sections we provide a more thorough aisabysoptimizing the system,
I.e., improving the user-level performance.

Discussion

The aim of adopting the freeleech and freeseed policiesasda crunches and crashes,
which is actually achieved, but at the potential cost thatdhginal incentive for con-
tributions is temporarily suspended. It could be argued tiia could lead to reduced
performance if users learn to game the system by only dowlitigaduring freeleech pe-
riods and not seeding during freeseed periods.

A refinement that will help preserve incentives even durireg$eed and freeleech
periods, is to reduce the freeseed and freeleech “tax” atmduren, rather than having
leechers not pay anything at all for downloading and seedetr¥eing credited for up-
loading, they can be charged or credited for a fraction, €8%.5Any value more tha6%
still provides incentives for contribution. Furthermotile taxation amount can also be
variable, and can be applied in a continuous fashion, rdttaar getting triggered at the
extreme conditions of crash and crunch. We explore this iat8ection 4.4.3.

Until now, we have analyzed the sustainability of a P2P comitguhat adopts a
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credit-based or SRE-based policy. However, the sustdityadii the system only ensures
that the system is able to function, but does not guaranted!ifunction well (recall
Fig. 4.5 for an example of a sustainable system with low perémce). To explore this,
in the following sections we analyze and improve the usestiperformance in sustain-
able P2P communities. There, we take sharing ratio enfaneas an example, but our
analysis is also applicable to the credit-based policgesihis only a special case of SRE
with a threshold equal to one.

4.4 User-level performance: the positive and negative ef-
fects of SRE

In this section, we analyze the user-level performance ivafg communities. First, we

present a theoretical model that captures the bandwidghlsand demand in the com-
munity. Then, we show through simulations the positive aedative effects of SRE,

followed by a proposal of four remedies. Finally, we evaduahd demonstrate the effec-
tiveness of our strategies.

4.4.1 A simple model

From the two real world observations described in Sectidnid.this section we propose
a fluid model to analyze the user-level performance in peig&itTorrent communities.

We follow a similar fluid modeling approach as in [48, 72, 8Bfla&xtend it by includ-
ing SRE and considering multiple user behaviors derivethfreal world observations.
Throughout this chapter we assume that the SRE thresheldl, which is the case for
most private communities. Remember that wher- 1, the system also represents the
one that adopts credit-based policy.

We divide peers intaV different classes according to their upload capacities.lU;e
represent the upload capacity of peers in clasd/ithout loss of generality we assume
that the download capacity of peers is not a bottleneck. Thation we use is shown in
Table 4.4.

As mentioned earlier we consider two user behaviors: |l&agisg and over-seeding.
To better understand the effect of SRE and the over-seedihguor, we consider an
idealized scenario of a swarm, in which there @rever-seeding peers in classith an
infinite desired threshold for their sharing ratios. Thipiias that they stay in the swarm
as seeders indefinitely. Lazy-seeding peers in cl@si® the swarm as leechers with an
arrival rate equal to\; and sharing ratios equal to 0. After they finish their dowdka
they calculate the sharing ratios they have achieved amgcdéssary, they seed in this
swarm until their sharing ratios reach the SRE threshol@hen they leave the swarm.
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Notation | Definition

F the size of the file shared in a swarm.

o the SRE threshold.

i the arrival rate of leechers in class

U; the upload capacity of a peer in class

U the average upload speed of a peer in class

S; the number of over-seeding seeders in class

T; the average seeding time for lazy-seeding peers in ¢élass

Table 4.4: Notation of our BitTorrent model

According to TFT, during the leeching process peers favoeropeers who have re-
cently reciprocated to them most. In this way, peers arehlyugustered according to
their capacities, and peers with similar capacities havdlai performance [48, 72]. Let
x;(t) andy;(t) represent the number of leechers and lazy-seeding seedeess: at a
particular timet, and letT; represent the average seeding time of lazy-seeding peers in
classi, then the evolution of;(t) andy;(t) can be described as:

dzi(t) —\ M
dycfft) _ x:(t)di(t)F yi;t) 1o N (4.2)
dt o ja - T , v= 1,2, ..., IV,

whered;,(t) represents the average downloading speed of peers inicassnet. The
term z;(t)d;(t)/ F' specifies the rate at which leechers in classrn into lazy-seeding
seeders ang;(t)/T; specifies the leaving rate of lazy-seeding seeders in class a
steady statedz;(t)/dt = dy;(t)/dt = 0. Lettingz; andy; represent the number of
leechers and lazy-seeding seeders in cl@ss steady state, anf] represent the average
downloading speed of leechers in clasBom Eq.(4.2) we have:
Yi d;w;
A = T - F (4.3)

Depending on the peers arrival rates)(@nd the number of over-seeding peet$, @

steady state will be either one of the two cases describeatatety below.

Oversupplied

When there are a large number of seeders and a small nhumbeedfdrs, and seed-
ers cannot always fully utilize their upload capacities,c@@ characterize the swarm as
oversupplied Oversupplied is a typical phase for swarms in private Bitdiot commu-

nities. Given the abundance of seeders, it is realistic $arag that in an oversupplied
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swarm seeders perform most of the uploads. Further comsidtre piece availability
problent?, peers are more likely to download from seeders rather thizer teechers. A
previous measurement study [69] shows that in two privatercanities where the over-
supplied situation exists, oven% of the data comes from seeders. Accordingly in our
model we assume that in an oversupplied steady state lsedberot contribute upload
capacities. The condition for a swarm to be in an oversugieady state is:

SONAF < i+ s)UA =D (yi + si)nUnA, (4.4)

which specifies that within a time interval the total upload volume thaanbe provided
by all seeders is larger than the total download volume requiy the) . \;A new leech-
ers arriving in the same interval. Heltle = ~,Uy is the upload capacity of peers in class
1.

In such a steady state, once a new peer joins, seeders uplibadth their full upload
capacities and its download will be finished quickly. Afteat, seeders will be idle and
wait for the next upload opportunity. Hence, on average eeechnnot fully utilize their
upload capacities, and because of the operation of- YtBBir average upload speeds will
be proportional to their upload capacities. etrepresent the average upload speed of a
peer in class, then we have:;; = ~;uy and the total actual upload volume provided by
all seeders should be equal to the total download volumenestjby all leechers, i.e.:

D NAF =3 (yi+ si)nunA. (4.5)

After the download is finished, a lazy-seeding peer in classeds for a period of
length7; until it achieves the SRE threshold, i.e., until= T;u;/F. Substitutingy; =
A T; from Eq.(4.3) into Eq.(4.5) we find

= . . 4.6
o ZZ Si7i (4.6)

Then,
T, — aF  oF  a)lsi @.7)

up  Yun (I=a)yid ;N

Given Egs. (4.4) and (4.7), we can rephrase the conditiorafswam to be in an
oversupplied steady state as:

2The piece availability problem specifies that two connedéethers may not perform actual down-
load/upload, because they cannot find interesting piecescht other.
13BjtTorrent uses TCP as the transport layer protocol.
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In a private community where the SRE threshold equalsvhens;, U;, \;, and F’
fulfill the condition of Eq.(4.8), we say that the swarm is m@aversupplied steady state.
With a relatively small peer arrival rate,) and a large number of over-seeding seeders
(s;), peers will experience very low upload capacity utilivas and extremely long seed-
ing times. This situation gets even worse for peers with lapecities: the ratio between
the seeding times of two peers is inversely proportionahtoratio of their upload ca-
pacities €;). Moreover, over-seeding peers with higher upload cajegditave a stronger
influence (proportional ta;) on this situation: the seeding time incurred by one over-
seeding seeder in clasgi < N) is equal to that incurred by; (y; > 1) over-seeding
seeders in clasy'.

>1-a. (4.8)

Undersupplied

We recognize a swarm to be undersupplied if it is not overkegpWe assume that in an
undersupplied swarm both leechers and seeders can fulgeutieir upload capacities,
i.e., u; = U;. This assumption has been validated by previous studie¥#48 In this
situation, within a time interval\ the total upload volume thatan be provided by all
peers should be no larger than the total download volumeinesjiby all > . \; A new
peers, i.e.:

Peers contribute their upload capacities, hence gainrgheatios both in the leech-
ing and the seeding process. At the end, they achieve shaiiog equal to the SRE
threshold, i.e.:

a= I = T, = oo (4.10)
where(F'/d;)U; represents the upload volume provided by a leecher in ¢iasts leech-
ing process.

With z; leechersy; lazy-seeding seeders, argdover-seeding seeders in clasm
a steady state, the average downloading speed of a peerssy dan be calculated by
solving the system of equations proposed in Chapter 2:

4 — (D2, wiiwj + 225 05i(y; + $5))U; (4.11)

€
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wherew;; (c;;) specifies the fraction of upload speed allocated from ahieeseeder) in
classj to leechers in classin the BitTorrent protocol.

From Egs. (4.3), (4.10), and (4.11), we can deflyer;, andy; accordingly. Simply
from Eq.(4.10) we already have = «F/U; — F/d; < F/U;. This implies that in an
undersupplied steady state, an upper bound for the seaduegof a peer is the ratio
between the size of the shared file and its upload capacitghvwd much better than in
an oversupplied steady state (Eq.(4.7)).

Further applying Egs. (4.10) and (4.11) to Eq.(4.9), we raph the condition for a
swarm to be in an undersupplied steady state as follows:

ZZ‘ siviUn
2N

which is exactly the reverse of Eq.(4.8).

4.4.2 The effects of SRE

In this section we show the user-level performance under. 8Eed on simulations
we examine the influence of several parameters and we exidbihain reasons for the
positive and negative effects of SRE.

Experimental setup

In Section 4.3.1 we have shown that in closed private comtiesncrashes or crunches
easily happen. It is not worthwhile to analyze the userllpeeformance in an unsustain-
able system. Hence, in this section we consider an opennsysith peer arrivals. As
stated in Section 4.2.1 and 4.3.1, new peers bring creditih@ system and the increase
of the credit level alleviates the potential systemic riskreality, there are many private
communities with open registration, e.g., BitSoup [10]d @hey can be considered as
open systems.

We use the same simulator and consider the same initiahgetéis in Section 4.2,
except that now we consider 100 initial peers and 5 swarnfsasystem. In each cycle,
new peers arrive according to a certain arrival rate andjtheya random swarm to down-
load. After the first download, they maintain a sharing ratiove their target thresholds.
Each peer (with upload capacity 1 unit per cycle) attemptotonload all the 5 files (with
size of 10 units) in the system, in random order. We consideramwidth-homogeneous
BitTorrent system unless otherwise indicated. We run thrukdtion for 2000 cycles and
keep a record of peers who finish downloading all the files leyettid of the simulation.
The results represent the average of 5 runs.
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Figure 4.6: User-level performance under different fi@tsi of lazy-seeding peers (LSP)
and over-seeding peers (OSP), and different peer arrited.ra

The imbalance of bandwidth supply and demand

In our first experiment we vary the fraction of over-seediegns, thus generating dif-
ferent levels of oversupply. As shown in Fig. 4.6(a), witle finaction of over-seeding
peers increasing from 0.1 to 0.9, the average downloadiagdsys increased nearly 10
times. However, the average upload capacity utilizatiosigsificantly deteriorated and
the seeding time is increased dramatically. Withis@ver-seeding peers, on average each
peer can only utilize less thad% of its upload capacity (Fig. 4.6(b)). With this low up-
load capacity utilization, all peers have to stay for exegniong times (compared to their
downloading times) to achieve the sharing ratio require8R§ (Figs. 4.6(c) and 4.6(d)).
In our experiment witlh0% over-seeding peers, the seeding time of a lazy-seeding peer
is nearly 200 times more than its downloading time, and fareeeding peers, it even
increases to over 400 times.

On the other hand, with a smaller peer arrival rate (whichmaeasmaller demand)
the imbalance and hence the performance, are even worsenods sn Fig. 4.6, when
the peer arrival rate decreases from 10 to 1 peer per cycth, thee same fraction of
over-seeding peers, the average upload capacity utdizetidecreased 2-3 times and the
average seeding time is increased 2-5 times.
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Our simulation results show that, under SRE, the existefcaver-seeding peers
makes the swarms oversupplied. As a consequence, withtavebldarge fraction of
over-seeding peers and a small peer arrival rate, peerstbaeed for extremely long
times, though their seedings are not very productive. Ehe®nsistent with the theoreti-
cal model proposed in Section 4.4.1.

The influence of the SRE threshold

Many communities [10,40] use 0.7 as the default value of RE Sreshold, empirically
or intuitively. This section complements the necessaryyargbehind the choice.

Fig. 4.7 shows that, which is consistent with our intuitisrhen the SRE threshold
is increased from 0.2 to 0.9, the upload capacity utilizatiecreases while the aver-
age seeding time is increases. Further, the effect SRE igetimvhen the fraction of
over-seeding peers is small. Surprisingly, in Fig. 4.7(a)sse that when there are%.0
over-seeding peers, the upload capacity utilization issased when the SRE threshold
increases from 0.2 to 0.8, and then drops when it furtheeamsxs to 0.9. We believe this
is due to, what we term as, tiseeder’s dilemmawith either a very small or a very large
number of seeders, peers cannot well-utilize their upl@gmhcities. The former case is
due to thepiece availability problemWhen there are not enough seeders, leechers have
to exchange data with each other, which is not always passibte they only hold a part
of the entire file. The latter case is due to the insufficiewrload demand. Without
enough demand, though seeders have the will, they cannarimagh leechers to upload
to.

The discrimination against peers with limited capacities

In this subsection, we analyze SRE'’s effects in bandwidttetogeneous systems. More
specifically, we simulate a system with two classes of peensiely slow and fast peers.
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Figure 4.8: SRE’s discrimination under different fracsasf over-seeding peers (OSP).

All the other settings are the same as in previous expersnexcept that the upload
capacity of slow peers is 1 unit per cycle and for fast peeis 4t units per cycle. We
consider two scenarios in our simulation, i.e., without aitth 30% over-seeding peers.
As we show previously30% over-seeding peers is typical to demonstrate the effects of
SRE. We change the fraction of fast peers from 0.1 to 0.9 aaddbults are shown in
Fig. 4.8.

We see that when there is no over-seeding peers fast pealy baed to do any
seeding work, but their existence increases the seedirgs tohslow peers (Fig. 4.8(a)).
This result is consistent with the result derived from theotietical model proposed in
Chapter 3, where we show that high-capacity peers managadadiconsiderably more
during the leeching process, and thus need to seed for shiones. When the fraction
of over-seeding peers is increased from ®B®6o, slow peers need to seed 200 to 500
cycles more than fast peers, while originally they only rezeth seed 20 cycles more. In
general, slow peers need to seed 4 times as long as fast péeh, is the same as the
ratio between the upload capacity of a fast and a slow peeés.réhult is also consistent
with our previous theoretical results in Section 4.4.1.

Meanwhile, Fig. 4.8(b) shows that the upload capacity a#tlons of both fast and
slow peers do not change much with the fraction of fast pedmvever, when there is
no over-seeding peer, slow peers have better upload capditizations. We believe this
is due to the fact that slow peers stay as seeders longerdbbpders. Normally seeders
can achieve better upload capacity utilizations, sincg &ne not influenced by the piece
availability problem.

While fast and slow peers both put all their effort in pagating in the community,
slow peers need to seed longer. We term this as SéR&csiminationagainst low-capacity
peers. Clearly, the long seeding time, the low upload cé&padilization, and the dis-
crimination against low-capacity peers severely detatethe user-level performance in
private communities. In the following sections, we propseeeral strategies to alleviate
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these problems.

4.4.3 Description of proposed strategies

Inspired by ideas in social sciences and economics, in #cisos we propose four strate-
gies aimed at alleviating the negative effects of incenpiwkcies used in private BitTor-
rent communities, which require only a minor revision ofgbgolicies.

Negative taxation

The idea ohegative taxatiorns that people earning below a certain amount receive sup-
plemental pay from the government [32]. We take inspirafiiom the concept of negative
taxation and devise a new strategy in which the upload amafumpeer is calculated as
its actual upload amount multiplied by coefficiéhtdefined as:

7 = max{min{1/SR, 6}, 1},

where SR represents the sharing ratio of a peer @d- 1 represents thenaximum
negative taxation degree

Itis easy to see thata) wheétR > 1,7 = 1, b)whenl/0 < SR < 1,7 =1/SR >
1, and c) whenSR < 1/0, T = 6 > 1. By using this new strategy, to gain the same
sharing ratio, poor peersS < 1) seed less and rich peerSRK > 1) seed the same
amount as when using the original SRE. The maximum negatkatibn degree controls
the maximum negative taxation a peer can get, which allesitie threat of free-riding.

Welfare for the rich

The termwelfare for the richis used to describe the bestowal of grants and tax-breaks
to the wealthy [63]. Taking inspiration from this concepg devise another strategy to
alleviate the long seeding time, i.e., accelerating thelisgeprocess of an over-seeding
peer by giving welfare to it. The upload amount of a peer iswlated as its actual upload
amount multiplied by coefficienty defined as:

W = max{min{SR, ¢}, 1},

wherey > 1 represents themaximum welfare degree

By using this strategy, to gain the same sharing ratio, peerpSbR < 1) seed the
same amount and rich peerSK > 1) seed less than when using the original SRE. The
maximum welfare degree controls the maximum welfare a paerget, to prevent the
over-seeding seeders from achieving their desired sheatigs too quickly.
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Community administrators can choose different valueg/fand¢ to have different
maximum negative taxation degrees and the maximum weltsgeeds. In our simulation
we choosd = ¢ = 2.

Remuneration according to effort

In participatory economics, thmaxim of remuneration according to effdréas been in-
troduced [3]. Under this scheme, people are paid accorditigeteffort they put in rather
than the amount of contribution. Taking inspiration fronisthoncept, we propose the
third strategy which takes into account the effort of usererms of their seeding times.
Previous studies have shown that the effort-based in@eptiicy applied in the leeching
process improves the system-wide performance [90]. Weaxtpe same improvement
when this effort-based methodology is applied in a privataunity.

More specifically, by applying SRE wittbunting seeding timea peer can start a new
download when either it has achieved the SRE threshold asisbeded for a sufficiently
long time. In this way, peers that are stuck in long seedionggss in oversupplied swarms
can leave and perform further downloads. The new demandafendy these peers helps
to balance the bandwidth demand and supply in the system.

Clearly, the definition of “a sufficiently long period” is gaivague. Community ad-
ministrators may choose various values, like 4 hours, 10d)@r one day. In our simu-
lations, we simply assume that it equals the size of the dHdesdivided by the upload
capacity of a peer. Note that since over-seeding peers awsid@riented, they still start
new downloads only when they have achieved their desiredhghiatios.

Supply-based price

According to the law of supply and demand, if the demand ramednstant and the sup-
ply increases, the price of an item decreases and vice éosan insightful discussion
of the relationship between supply, demand and price, vez thé reader to [7]. We take
inspiration from this insight to devise our fourth strategg., SRE withsupply-based
price. The basic idea is that the price a downloader needs to pagoiwnloading one
unit of data should be inversely correlated with the supplthe swarm, i.e., the higher
the seeder-to-leecher ratio, the less a downloader shayldmd vice versa. In this way,
in an oversupplied swarm, a leecher pays less and potgrdietiieves a higher sharing
ratio by the end of its leeching process. Hence it is les$ike it to have an insufficient
sharing ratio and thus stay as a seeder, which indirectiyesdhe oversupply problem
in this swarm. On the other hand, in an undersupplied swaleecher pays more and
potentially achieves a smaller sharing ratio, which maketay as a seeder with a higher
possibility than using the original SRE. In this way, the ersdipply problem is also alle-
viated indirectly.
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Here, we use theeeder-to-leecher rati(h L R) as a metric to decide whether a swarm
is oversupplied or undersupplied. Community administeatan set differen$ LR val-
ues as the threshold, but we simply assume that v#tie? > 1 the swarm is oversupplied
and whenSLR < 1 the swarm is undersupplied. The download amount of a peail-s c
culated as its actual download amount multiplied by coefitP defined as:

P =max{1/SLR, ¢},

where¢ represents thieowest pricefor downloading one unit of data, which is used to
alleviate the threat of free-riders. Community adminisira can choose different values
for the lowest prices. In our simulation we choaese- 0.1.

Note that the free-leech strategy we proposed in Sectio #o03olve credit crunch
is an extreme case of SRE with supply-based price, with @aeel to 0.

4.4.4 Strategy evaluation

In this section we evaluate the performance of the new giieggoroposed in Section
4.4.3. The experimental setup is the same as in Section dnl2esults are shown in
Figs. 4.9 and 4.10.

Higher upload capacity utilization and shorter seeding tine

From Fig. 4.9 we see that by using any of the new strategiess @ehieve higher upload
capacity utilizations, as well as smaller seeding times.sAswn in Fig. 4.9(a), when
there aret0% over-seeding peers the upload capacity utilization iseiased 2-3 times
compared to using the original SRE. While all other straediave decreasing upload
capacity utilizations with an increasing fraction of owaeding peers, SRE with supply-
based price performs stably. Given any fraction of ovedsgppeers, on average peers
can utilize at least 48 of their total upload capacities while for the original SRErops

to less than % when there ar€0% over-seeding peers.

With the improved upload capacity utilization, the averageding time is reduced
significantly. As shown in Figs. 4.9(b) and 4.9(c), when ¢éhene60% over-seeding peers,
SRE with welfare for the rich reduces at least: of the original seeding time for both
lazy-seeding and over-seeding peers. SRE with negatiatidaxdeals with lazy-seeding
peers directly, hence it achieves an even better perforenameducing the seeding time
of lazy-seeding peers, which is58% improvement compared to that achieved by SRE
with welfare for the rich.

SRE with counting seeding time further relieves lazy-seggeers from the long
seeding process in a more effective manner. As shown in Fegby they only need
to seed for a negligible time compared to when using the maigbRE, or either of the
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Figure 4.9: Strategy performance in alleviating the etesaading problem under differ-
ent fractions of lazy-seeding peers (LSP) and over-sequbegs (OSP).

above two new strategies. Interestingly, by applying SR& wounting seeding time,
the seeding time of over-seeding peers is also decreasgd4(B{c)), even though they
still desire the high sharing ratios as when using the ocalgBRE. We believe this is
due to the fact that with lazy-seeding peers finishing thegdings sooner, the upload
competition is reduced and over-seeding peers can aclhewedesired threshold more
quickly. Meanwhile, when the lazy-seeding peers are rel@&®m the seeding process,
they join other swarms as new leechers, which indirectgvadtes the oversupply in those
swarms.

Finally, the best performance in reducing the seeding tioneall peers is achieved
by SRE with supply-based price. The seeding time of both-tsmding and over-seeding
peers is reduced by three orders of magnitude. In our viewtia reason for the success
of SRE with supply-based price is that it adaptively adjtisessupply and demand in a
swarm. When the swarm is oversupplied, the price for dowdit@aone unit of data
is lower and peers can finish downloads at less expense, wiiiebtly reduces their
consequent seeding amount and hence avoids adding moersaedhis oversupplied
swarm. In this way, the imbalance of bandwidth supply andateims mitigated, and the
strategy gives a way to escape out of the seeder’s dilemmasasilded in Section . A
similar argument can also be applied to an undersuppliedswa
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Tradeoff: slightly decreased downloading speed

By adopting any of the new strategies, while the seeding tsngeamatically reduced, as
a trade-off, the average downloading speed is decreasgd4Bi(d)), hence the down-
loading time is increased. However, given that in our simaoiles we consider files with
size equal to 10 units, the increase of the downloading tteres(of cycles) is negligible
compared to the decrease of the seeding time (hundredsmtlemgsands of cycles).

Reduced discrimination

To examine the effectiveness of the proposed strategidtewiating SRE'’s discrimina-
tion against peers with limited capacities, we repeat opedrents by further consid-
ering a bandwidth-heterogeneous system with two classpses, fast and slow. From
Fig. 4.10 we see thail the proposed strategies effectively alleviate SRE’s disoation
against low-capacity peers. With @0over-seeding peers, originally slow peers need to
seed 200-500 cycles more than fast peers do. By applyingfahg mew strategies, this
difference is reduced to within tens of cycles.

4.5 Dynamic file popularity

So far, we have only considered scenarios in which all file® lthe same constant pop-
ularity. However, many measurement studies [5, 57] showttke popularity of a file
decreases quickly after it is first published. In this settiwe analyze the effects of SRE
and evaluate our proposed strategies under dynamic filelgriyu
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4.5.1 Experimental setup

We use the same simulator and consider the same initiaigetis in Section 4.2, except
that to better abstract the effects of dynamic file popuytawe only consider one swarm
with decreasing popularity. The simulation starts with emector, who stays in the
swarm as a permanent seeder. In successive cycles, newgoaeesaccording to an
exponentially decreasing arrival ratg({) = \oe~+), a peer arrival pattern that has been
observed in many BitTorrent swarms [85]. Each peer joinssth@rm with zero upload
and download amounts. After a peer finishes its downloa@gitls, if necessary, until it
achieves its target threshold.

By default, we set 3@ peers to be over-seeding. As shown in Section 4.4.2, this
percentage is typical for showing the effects of SRE. We shog = 10 andT = 300
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and we run the simulation for 2000 cycles. All together 3086rp are included. We have
also tested different values fap andr, which give very similar results.

4.5.2 The effects of SRE under dynamic file popularity

We first demonstrate the effects of SRE under dynamic file jaoipyt Fig. 4.11 shows
each peer’s average download speed, where a smaller peeedidsnan earlier arrival
time. We see that the first 200 peers experience downloadispaailar to their upload
capacities (1 unit per cycle). From peer 200, the downloaggpncreases quickly: with
file size equal to 10 units, it soon reaches the maximum, i@ units per cycle. This
means that new peers can finish their downloads within the saieie that they join the
swarm.

The high downloading speed is due to the oversupply. As showng. 4.12, the
number of seeders increases quickly and after the first 3e@xythe swarm is occupied
with hundreds of seeders but only with very few leechers. greeence of existing seeders
increases the difficulty for a new seeder to achieve its taingeshold and leave the swarm,
and vice versa. We term this aamulative seeder effechs a consequence, the upload
capacity utilization decreases severely. As shown in FEii Avithin the first 500 cycles,
both seeder’'s and leecher’s upload capacity utilizatiocrekese to less tharfg with
seeders performing a little bit better than leechers asdbeot face the piece availability
problem.

With the above differences in instantaneous system pedocen peers arriving at
different times achieve markedly different performance shown in Fig.4.14, arriving
earlier means higher upload speeds and hence larger uptoaghé during the leeching
process (Figs. 4.14(a) and 4.14(b)), as well as better datapacity utilization during
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Figure 4.17: SRE with welfare for the rich under dynamic fibgplarity.

the seeding process (Fig. 4.14(c)). Thus, peers that aairier experience much smaller
seeding times. As shown in Fig. 4.15, to achieve the targeskolds, the first 500 peers
only need to seed tens of cycles. After this, the seedingitioreases quickly to hundreds
or even thousands of cycles.

4.5.3 Proposed strategies under dynamic file popularity

We evaluate the performance of our proposed strategies awiydamic file popularity.
The results are shown in Figs. 4.16, 4.17, 4.18, and 4.19.

1) SRE with negative taxatiaand2) SRE with welfare for the rich: limited effect for
very low file popularity:As in swarms with constant file popularity, applying SRE with
negative taxation or SRE with welfare for the rich allevsatiee oversupply. Comparing
Figs. 4.12, 4.16(a), and 4.17(a), we see that these two mategies reduce the instan-
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Figure 4.18: SRE with counting seeding time under dynanmegidpularity.

taneous number of seeders to arounth &0 the case when the original SRE is adopted.
But their effects are limited with very low file popularity.s&shown in Figs. 4.16(b) and
4.17(b), peers that arrive late still experience relayivehg seeding times.

3) SRE with counting seeding time: strong effect in redutimgseeding timeWith
the hard SRE requirement replaced by seeding for a pantipeldgod, SRE with count-
ing seeding time dramatically alleviates the oversupplyh@ swarm. As shown in
Fig. 4.18(a), except for the large number of seeders dunagitst 200 cycles, the instan-
taneous number of seeders is almost always under 100. Arhesg,twe conjecture that
most are over-seeding peers, since lazy-seeding peersaanthe swarm once they've
seeded for a relatively short time, i.e., 10 cycles in oureexpent. While these peers are
released from the endless seeding process, the seedingftover-seeding peers is also
dramatically decreased to less than 100 cycles.

4) SRE with supply-based price: effectively stabilize tiygs/: Among all the four
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Figure 4.19: SRE with supply-based price under dynamic bleutarity.

new strategies, SRE with supply-based price stabilizestlpply most effectively. As
shown in Fig. 4.19(a), the instantaneous number of seetirs stable after 200 cycles.
With this constant supply (and not oversupply), peers egpee relatively small seeding
times (Fig. 4.19(b)). When the number of new peers decreases matter of course,
peers experience longer seeding times, but still much smadimpared to adopting the
original SRE. We believe this constant supply and smallisgetime are due to the fact
that SRE with supply-based price is self-organized, andagjust the demand and supply
automatically.

It should also be noted that when adopting SRE with suppbebarice, the first 200
peers have relatively longer seeding times than peersragtiater. We believe this is due
to the fact that those peers arrive during the phase thattamsis occupied with a large
number of leechers and a small number of seeders. Henceriteefgr downloading is
higher and peers need to pay more to achieve their targestibics.
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4.6 Discussion: The change of user behavior?

It could be argued that the new strategies proposed in thigstehmay trigger a change in
user behavior. Specifically, users from the two classesabalefined, lazy-seeding and
over-seeding, might be incentivized to switch their classeder the new strategies. It
could be conjectured that as a consequence, the systenmanice might be adversely
affected.

However, we note that there is only a very small fraction ohtegic users in Bit-
Torrent communities [4]. So the likelihood of peers chagdiehavior is quite small.
Especially regarding over-seeding peers, we argue thagnergl the possibility of such
peers changing to lazy-seeding peers is quite low. Thisgause we conjecture that the
behavior of over-seeding peers is motivated by either orgecmmbination of the follow-
ing three reasons: a) Over-seeding peers always want toldieveey more well-off in
terms of sharing ratio as compared to average users so #atdm be among the “rich
elite” of the community and gain some potential benifits) They are altruists who want
to help the community as much as they possibly can; and c) arehoarders who de-
sire to conserve sharing ratio for “rainy days” i.e., thaseetperiods when they feel they
might engage in heavy downloading activity and might as alté® expelled from the
community due to low sharing ratios.

Nevertheless, in this section we would like to analyze wilagidens if users do change
their behavior. We consider each proposed strategy in tuatrdescuss the possible effects
of the change in user behavior.

SRE with negative taxation and welfare for the rich:

Under SRE with negative taxation, peers with lower sharatigps gain sharing ratio more
easily. Hence, lazy-seeding peers have no incentive tayehtdaeir behaviors, while over-
seeding peers may change to lazy-seeding peers. Simildrgn SRE with welfare for
the rich is applied, strategic lazy-seeding peers couldinecover-seeding peers, while
over-seeding peers will not change their behaviors.

The worst case scenario of applying either of these two neatesfies is that all peers
exhibit the same behavior, i.e., either all peers becomedaeding or all become over-
seeding. In the former case every member of the communitydnstill be forced to
maintain a minimum sharing ratio required by SRE, i.e., yy&er would continue to
provide a certain level of contribution. This outcome wostdl be better than the situ-
ation in a public community where every peer has the optidedge immediately after
downloading. In the latter case, i.e., when all peers are-sseding, it is less likely for
them to complain, since an over-seeding behavior, i.e.saal®or higher sharing ratios,

14Such as priority in downloading popular files, the possdipid send invitations to others, etc [10, 40].
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automatically implies a long seeding time.

SRE with counting seeding time:

Under SRE with counting seeding time, users may set theoagptpeeds to zero and
pretend to be seeding. However, according to the TFT patidiiTorrent, in an under-
supplied swarm the upload speed of a peer directly influense®wnloading speed. If
a user sets its upload speed to zero, it would hardly be abd#ewmload at reasonable
speeds in undersupplied swarms, which are normally swarawsding new and popular
content.

Further, private community administrators could set a@o8RE threshold, which is
smaller than the original one, and stipulate that users \@haoat achieve the original SRE
threshold must seed for a predefined time, as well as acthevenaller SRE threshold.
In this case, the potential threat of free-riders is all®da

SRE with supply-based price:

By adopting SRE with swarm-based price, the only advantageusers could gain is
that they may opt to download files which have a lower priceweleer, this is unlikely
to happen, since the choice of file to download mainly dep@mdgser’s interest in the
content, rather than the price. Even if some users mightinetexl to download a file
simply based on its price, this would have little influencelmmperformance of SRE with
swarm-based price, because this strategy is self-orgenéd will adjust the balance of
supply and demand automatically.

4.7 Related work

This chapter is based on two previous papers [49, 89] witbrestbns including demon-
strating detailed measurement results, unifying the amlgf SRE-based and credit-
based private communities, analyzing the systemic riskRE-Based private commu-
nities, as well as the influence of swarm popularity.

Many P2P incentive schemes based on credits have been ptbpothe literature.
Vishnumurthyet al. [107] present a system involving a virtual currency calkaima,
which is defined as the value capturing the amount of reseuageeer has contributed
and consumed. The level of Karma (or credit) in the systemamtained and measures
are taken to avoid inflation and deflation that can occur whesrpleave the system.
However, in avoiding inflation and deflation, the only aim loé tpaper is to maintain the
per-capita Karma, i.e., the total Karma divided by the nunab@ctive users.

Kashet al.[56] show that in a scrip system, where agents can consumpraddce
services, both an overabundance of money supply and itsagj@olead to inefficiency.
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They also consider hoarders and how to optimize the credplguOur work is different
in that we focus not on a generic service exchange scenarmnhafile sharing scenario
inspired by BitTorrent private communities. Also we applyltiple user behaviors rather
than focusing only on one that optimizes the utility. In dabsh we focus on detecting and
avoiding extreme crashes and crunches, where the enttensgeizes. Last but not the
least, we also study the effects of such credit-based schéora the perspective of user
level performance.

As stated, for grounding our work we chose the realm of pei@2P file sharing
communities. To date, only few works have analyzed privat@maunities. Zhanget
al. [124] investigate hundreds of private trackers and depiotcad and clear picture
of the private community landscape. Chetral. [13] compare system behaviors among
13 private trackers and 2 public trackers, and they show th#erences regarding user
viscosity, single torrent evolution, user behaviors, amtent distribution. Liet al.[64]
also perform measurement studies and further develop alnmsleow that SRE indeed
provides effective incentives, but is vulnerable to cabbas

While these studies all focus on demonstrating the highisgddvel achieved by
private communities, there have been a few preliminary wdhat show the adverse
effects. Andradet al.[5] focus on the dynamics of resource demand and supplyfeeyd t
show that users typically try to increase their contribatevels by seeding for longer and
not by providing more bandwidth to the system. However, @yogs shows that providing
limited bandwidth is not the will of users, but it is a conseqae of the oversupply in
private communities. Cheet al.[14] also notice the oversupply problem and provide a
model to identify the optimal stable SLR range. Howeveryttieln't propose strategies
to solve the problem of oversupply. Kashal.[57] demonstrate that there are significant
disparities in the cost of new and old files in a private comityunamed DIME, and
users compensate for the high cost of older files by downhgaiore copies of newer
files or by preferentially consuming older files during fessth periods. Particularly,
they have shown that after a period of freeleech, there ame wh@mvnload activities in
the community. This is consistent with our theoretical lethat during a pre-crunch
state, injecting credit will increase the system throughpihile these papers mainly
perform measurement-based studies to analyze the poaittv@dverse effects of SRE-
like schemes on user-level performance, our paper is baseteasurement, theoretical
model, as well as extensive simulations. Further we propesestrategies to alleviate
SRE’s punishment, which are evaluated to be very effectik@ugh simulations.

4.8 Conclusion

In this chapter we have studied the effects of credit-basddSRE-based incentive poli-
cies employed in private P2P communities, from both theesgdevel and the user-level
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performance perspective.

Based on two user behaviors abstracted from real world vatens, i.e., lazy-
seeding and over-seeding, we examine the system-levet dygthmics and show that
crunches and crashes can easily happen in private comesunfiirunches and crashes
are due to credit shortage and credit abundance, resggctinel we apply a theoretical
analysis to characterize the conditions that lead to thegerse outcomes. We apply
the derived conditions to implement a noeelaptive credit intervention mechanighat
proactively stops the system from seizing by temporarilgnging the credit policies. A
system that is predicted to crunch allows freeleech, andersely, a system that is pre-
dicted to crash imposes freeseed. Simulation results shatvour mechanism is very
effective in avoiding crunches and crashes.

Given a private community that is sustainable, we furthahae its user-level perfor-
mance by analyzing the positive and negative effects of SRIE simulation results show
that with the existence of over-seeding peers, by adoptiRE, Swarms tend to be ex-
tremely oversupplied. Although achieving an increase enaverage downloading speed,
the oversupply induces undesired effects, including loleagh capacity utilizations, ex-
tremely long seeding times, and an unfair playing field fée kntrants into swarms. To
alleviate these problems, we propose four strategies ansittulation results show that
they are all very effective. Particularl$RE with supply-based pricerhile maintaining
a system-wide high downloading speed, achieves very shagpleupload capacity uti-
lization and reduces seeding durations by three orders ghitumle as compared to the
original SRE. When then the adaptive intervention mecmarssrun in the background
to check the extreme conditions for crunches and crashesystem is ensured to have a
high and sustainable performance.



Chapter 5

User behaviors under contribution
Incentives: a measurement study

The primary goal for adopting contribution incentives inina networks is to trigger user
dedication, and they often work. Take private BitTorrenioounities for example: it
has been demonstrated that their users are more dedicateddérs in public BitTorrent
communities where credit-based or SRE-like incentivesiat@adopted [13, 64,69, 124].
Nevertheless, one may wonder, besides the universal diedicare there other types of
user behavior triggered by contribution incentives? Anslides an increased supply of
contributions, are there any other positive or even negafifects of these user behaviors?

To answer these questions, in this chapter, we take prieateinities as an example
to explore the user behaviors under contribution incestifAzivate communities are ideal
case studies, for they maintain user-level identificatenms they keep a detailed tracking
of user activities that can be obtained by crawling thegssitWe perform a measurement
study on three private communities. We classify their uggxs different groups based
on their sharing ratios, their ages, their levels of congionpand theireffort ratios The
effort ratio of a user is defined as the ratio between his sgeaind leeching time. We
demonstrate the behavioral differences between userdfaratit groups, we argue the
reasons for these differences, and we show the positive egpatine effects of these be-
haviors based on metrics including the seeding time, theagp$peed, and the evolution
of sharing ratio. In previous chapters we have analyzeddhardages and disadvantages
of SRE schemes based on theoretical models, simulatiodsnaasurements. This chap-
ter complements these chapters by presenting observéttoonseal world communities
with a focus on the user behavior patterns.

The main contributions of this chapter are as follows:

1. We perform a measurement study of three private comnegritiat provide user-
level information including the upload amount, the dowl@mnount, the seeding
time, the leeching time, and the sharing raticeathindividual user. Among the
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dozens of existing communities we have examined, theseharerly ones that
provide such detailed information. We use one of the threangonities as an
example to explore the user behaviors (Section 5.1).

2. Based on the sharing ratio we classify users intaittte themiddle classand the
poor. We show that, to maintain adequate sharing ratios, allsulsave to seed
for excessively long times (compared to their downloadinges), though most
of the time their seedings are not very productive and ttogig Iseeding times do
not necessarily lead to large upload amounts. For users mtead to increase
their sharing ratios, we find that seeding for longer duratis not as effective
as increasing the upload speed, which can be achieved bwdipgrthe internet
access, or as joining swarms in their early stages to avaidtgins of oversupply
(Section 5.2).

3. Based on the age we classify users intorte&and theold. We find that old users
are more dedicated to the community, in terms of higher efftros, while new
users in general seed more productively (Section 5.3).

4. Based on the download amount we classify users intdiheand thesmall con-
sumers We find that big consumers are often at the same time bigibatdrs, and
are more active than small consumers in terms of both longedisg times and
longer leeching times (Section 5.4).

5. Based on the effort ratio we classify users iggamers(with high effort ratios) and
dedicators(with low effort ratios). We find that gamers not only leecinder but
also seed shorter than dedicators, and at the same time tirtam lower sharing
ratios, which, however, are still high enough for them toystathe community
(Section 5.5).

6. Based on the user behaviors we defined, we analyze stattwgit alleviate the
negative effects of these user behaviors from both the 'ugsedsthe community
administrators’ perspective (Section 5.6).

5.1 Methodology

In order to obtain a better understanding of private Bitdotrcommunities it is critical
to be able to collect data on their operation. Over the yddras been proven to be a
challenge to obtain detailed traces of user behavior, duedombination of technical
constraints and privacy concerns. For instance, prior waeik never able to capture
both detailed user profiles, content availability, and @@enformation on every user
download.
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To support our analysis, we have examined 38 elite privateconities, out of which
we selected three communities, CHDBits [12], HDStar [4aid ChinaHDTYV [15], for
detailed regular deep crawling of HTML pages. These speitifiee communities were
selected as they are the only ones that provide informagtailéd enough for our analy-
sis. We have obtained the following three datasets for eaninwinity:

1. Community-level user profile: in this dataset, we crawl the profile pageeaich
community user and obtain the information of his upload aodrdoad amount,
his seeding and leeching time, his sharing ratio at the tinse@pshot, and the time
he joined the community.

It should be noted that the seeding time of each user recdrgetie tracker is
swarm-basedi.e., simultaneously seeding in multiple swarms counpassely.
For instance, after a user has seeded in two swarms for 16,Hbur 10 = 20
hours will be added to his seeding time. Similarly, the |&eghime recorded by
the tracker is also swarm-based. In later sections, whenaleellate the average
upload speed of a user, we calculate his per-swarm averdgadugpeed, i.e., the
total upload amount divided by the swarm-based seeding timtais way, we get a
rough estimation of a user’s seeding time and upload spdeuligh more accurate
calculation of the seeding time and upload speed would berbéd the best of
our knowledge, until now no private communities providestimformation and it
is also impossible to deploy a client and contact every us#vidually to get this
information.

2. Community-level torrent profile : in this dataset, we crawl the community trackers
and collect information oéachtorrent, including the number of seeders and leech-
ers, the number of finished downloads at the time of the smapshd the time the
torrent was published.

3. Torrent-level user activity: the tracker records a user’s torrent-level action times,
such as the time of joining the swarm, the time of startingiseg etc. The preci-
sion of the recorded action time decreases with time. Fanele, if a user started
to seed 10 hours ago, its action time will be “10 hours ago”weleer, if a user
started to seed one month, 23 days, and 10 hours ago, it gictie will only be
“one month and 23 days ago”.

In order to obtain the action times with precision in houos,dach community, we
examine all the torrents released within 24 hours. We follbase torrents for 7
days and record the activity @achuser who has participated or is participating
in one of them. The collected information includes each sigmr-swarm upload
amount, download amount, seeding time, and leeching timwe# as the time he
joins and leaves the swarm.
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Private communities often consist of tens of thousands efsuand torrents, with to-
tal download amount in the order of petabytes. For instanben we collected the data
in May, 2011, CHDBIts had 24,633 registered users, 40,04@rts, and a total down-
load amount of 24.3 PB. We have analyzed the measuremertie tfiree communities
in detail. As we show later in Section 5.2, they demonstratela performance. For
simplicity of presentation, we only demonstrate the resaft CHDBIts in Sections 5.3
and5.5.

The detailed user behavior information allows us to exptbesuser behavior in pri-
vate communities. User behavior directly decides a usesgcimovements including (1)
when to join the community, (2) how much to consume, and (8) imuch to contribute,
from which it further decides (4) a user’s status in the comityyin terms of the sharing
ratio he achieves. Based on these four metrics we clas®fg uisto different groups, we
demonstrate their behavioral differences, we argue theoresafor these differences, and
we show the positive and negative effects of these behawbesstart from the sharing
ratio, since without a proper one a user cannot even stagiodmmunity, which implies
its fundamental importance.

5.2 The rich and the poor: positive and negative effects
of SRE

In this section, we divide users into different groups basetheir sharing ratios. We ana-
lyze the reasons for some users to achieve low sharing r&tos which we demonstrate
the positive and the negative effects of SRE.

5.2.1 A general view

We first show in Fig. 5.1 the cumulative distribution functi@CDF) of the user sharing
ratio in CHDBIts, in HDStar, and in ChinaHDTYV, respectivéijataset 1). We see that
most users in these three communities achieve sharing fatiger than the SRE thresh-
old, i.e., 0.7. Take users in CHDBIts for example, arounty 1sers have sharing ratios
less than 1 (defined as tpeor), while around 1& users have sharing ratios larger than
5 (defined as thech). The rest that have sharing ratios between 1 and 5 are defshed
themiddle class The behavior of accumulating a large sharing ratio mayiggéred by
various motivations, such as altruism, a desire to be patiefich elite of the commu-
nity, or a habit of saving sharing ratio for the future. Trahrpeers have little worry about
staying in the community, since their sharing ratios ardé&yond the SRE threshold. On
the other hand, poor peers are at the risk of being expelted the community. As a
consequence, they need to be concerned a lot about thesiatexi they may download
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Figure 5.1: The CDF of the user sharing ratio in CHDBits, in&t&r, and in ChinaHDTYV.
The horizontal axis is in log scale.

new contents they really desire, but this might reduce gtearing ratios to a more risky
level.

One may argue that the poor peers are free-riders, who intekeep low and risky
sharing ratios that are just enough to stay in the commudiyvever, the highly restricted
membership in private communities, especially in CHDBItd enany other private com-
munities where new members can only join by a limited numibématations, makes it
very difficult to get a new membership. Hence, we conjectiat not all poor peers are
strategic and psychologically strong enough to face bexpgléeed from the community
due to insufficient sharing ratios. Interestingly, as we shbw in the following sections,
the poverty is partially induced by the fact that the poorpege not strategic enough.

5.2.2 Long seeding time, even for the poor

Many previous studies have shown that under SRE, users sedanfy durations [13,
64,69, 124]. They consider this as a positive effect of SRIEEesiong seeding durations
lead to high download speeds. However, in this section weeatlgat the long seeding
durations can also be seen as a negative effect, especiappbr peers.

Figs. 5.2, 5.3, and 5.4 show the CDFs of the seeding time ante#dthing time in
CHDBIts, in HDStar, and in ChinaHDTYV, respectively (datase Consistent with the
theoretical results of our previous work [49,51], in gehdra seeding time is much longer
than the leeching time in all these three communities. Tak®BIts for example, the
median leeching time is 70 days while the median seedingigrhd 00 days. Remember
that the seeding and the leeching time of users are swaredpbsading to very high
values.

Intuitively, longer seeding times than leeching times foh peers are to be expected,
since rich peers are saving sharing ratios by seeding. Haywee observe from Figs. 5.2,
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5.3, and 5.4 that, even poor users seed much longer tharegay. While intuitively poor

peers should be the ones that are not “hard-working” enounfi,do some of them seed
for long durations but still have low sharing ratios? In tbédwing section, we explore
the possible reasons.

As shown in Figs. 5.1 to 5.4, users in these three commuringbave similarly. For
simplicity of presentation, from now on we only show the testor CHDBIts, without
explicitly stating so. For the results shown in later sewidhe datasets of the other two
communities demonstrate similar performance as that of Bid}45].

5.2.3 Possible reasons?

One may argue that the long seeding times of poor peers aréodhe fact that even
though they contribute more, they also consume more. Heheg,seed for long dura-
tions but they still have low sharing ratios. This argumenpartially true. Andradet
al. [5] have shown and we also observe from our measurementfEgdataset 1) that
the individual upload amount (contribution) increaseshwite corresponding download
amount (consumption), with the Spearman’s rank correlatmefficient equal to 0.8110.
Spearman’s rank correlation coefficient assesses how kelielationship between two
variables can be described using a monotonic function [Bf®wever, this doesn’t nec-
essarily mean that heavy contributions induce long seettimgs, nor does it mean that
long seeding times lead to heavy contributions.

Quite counter-intuitively, as shown in Fig. 5.6(a), a peempload amount has little
relation to its seeding time: many peers seed for long duratbut only have uploaded
relatively small amounts of data, while other peers seeddlatively short durations but
have successfully achieved large upload amounts. The sayumant is also applicable
to poor peers (Fig. 5.6(b)). This interesting phenomengplies that for poor peers who
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Figure 5.7: The seeding time versus the upload speed (wihr8man’s rank correlation
coefficient equal to-0.6318).
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Figure 5.8: The oversupply in swarms.

intend to increase their upload amount to become rich, sgddr longer durations may
not be an effective method, even if intuitively it seems so.

Though there is no strict relationship between a peer’sisgadne and its upload
amount, we do observe that a peer’s seeding time is relatisl average upload speed,
regardless of its upload amount. As shown in Fig. 5.7, moste®fong seeding durations
happen to the peers with relatively small upload speeds,fangdeers who have high
upload speeds, the seeding times are normally short.

The most intuitive reason for a low upload speed is a limiteernet access. However,
we argue that this is not the only reason. From dataset 2eaintie when we crawled the
site, CHDBIts had 33,041 active swarms (with at least oneheeor one seeder), among
which 26,402 swarms70.9%) had no leechers at all. As shown in Fig. 5.8(a)%A46f
the swarms with no leechers still have at least 5 seedersS%@maf these swarms even
have more than 20 seeders. For swarms with at least 1 le¢dcbaeeder-to-leecher ratio
(SLR) is quite high: as shown in Fig. 5.8(b), B0f these swarms have as SLR larger
than 6, and % of these swarms even have as SLR larger than 30. We see dieairly
majority of the swarms in CHDBIts are heavily oversuppliéd.such swarms, seeders
are not able to perform any actual uploads due to the insefficlemand and unsatisfied
supply. We term this situatioanproductive seedingAs a consequence, users have to
seed for excessively long durations to achieve the shaaitig required by SRE.

While a low upload speed mainly leads to a long seeding tim#ea next section we
show its influence on a user’s status. We analyze the reaspttsfpoor being poor and
discusses strategies for users to become rich efficiently.

5.2.4 Why the poor are poor and how to become rich?

As the sharing ratio is defined as the ratio between a peddsad@and download amount,
two possible reasons for a peer being poor are that it hasldaded too much or has
uploaded not enough. The download amount depends on a uderssts in contents.
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We do not suggest users to download less so as to becomeirich,tBe fundamental

user experience that should be guaranteed by communitieatisisers should not need
to limit their download needs. Following this argument, histsection we focus on the
user upload activity and analyze why some users have upglaaoteenough (hence, are
poor) and how they can improve it (to become rich).

Community level

In Section 5.2.3 we have shown that the seeding time has ilittluence on the upload
amount but the upload speed does. The upload speed furthemoes whether a user is
rich or poor. As shown in Fig. 5.9 (dataset 1), in general pebrs § R > 5) have much
higher upload speeds than poor peef$ (< 1). For example, 8@ of the poor peers
upload at a speed less than 20 KB/s, while at 1¢a%t rich peers can upload at a speed
larger than 50 KB/s. Together with the result in Section&.2e conclude that instead
of seeding for longer durations, peers who intend to becacheshould seed with higher
upload speeds. And to seed with a higher upload speed, aaddrupgrade its internet
access or choose a swarm that is less oversupplied.

One may argue that the above analysis is based on commaewéyadctivities, which
only provide a macroscopic view that is not enough to showuthgerlying details. To
explore this, in the following subsection we focus on a nglvarm and demonstrate
the torrent-level user performance, and we discuss pessitztegies for users to become
rich.

Torrent level

Among all the CHDBIts swarms in dataset 3, we choose the otletive largest number
of participants as the example to show the torrent level bstaviors. In total, 3,776



99

CDF

GO 25 50 75 100 125 150 175 200
Upload amount (GB)

Figure 5.10: The CDF of the upload amount in one swarm.

300,

N
a
S
i

N

o

S
i

Upload amount (GB)
= [
o [$)]
2

50

100 150
Seeding time (hour)

Figure 5.11: The upload amount versus the seeding time iswaem.

300

N

al

o
T

I

Upload amount (GB)
I
=

400 600 800 1000
Average upload speed (KB/s)

Figure 5.12: The upload amount versus the upload speed iaveaien (with Spearman’s
rank correlation coefficient equal to 0.7876).



100

300r

250F -

N
o
2

Upload amount (GB)
&
=

TR0 100 150 200
Seeding start time (hours after the content is released)

Figure 5.13: The upload amount versus the time of startiegiag in one swarm (with
Spearman’s rank correlation coefficient equa-®.6491).

users are included.

Different individual upload amount in one swarm: Fig. 5.10 shows the CDF of the
user upload amount in a single swarm (dataset 3), from whielolserve that a small
fraction of users have uploaded considerably more than ther®s For example, 60
of the users have uploaded less than 10 GB, which is less bHemamount they have
downloaded (11.7 GB). On the other hantf; bf the users have uploaded more than 50
GB. Of course, the users who managed to upload more will beaarher. While these
users have participated in the very same swarm, why did scamage to gain a lot while
others didn’t?

Possible reasons and how to gain moreOne intuitive reason for a small upload
amount is a short seeding time. However, similar to the amaip Section 5.2.3, again
we find the counter-intuitive result that in one swarm a segpload amount is not related
to its seeding time (Fig. 5.11). On the other hand, it is eglab its upload speed. As
shown in Fig. 5.12, most of the small upload amounts happémetpeers with relatively
low upload speeds, and peers with high upload speeds ngrivale uploaded a large
amount.

When we organize the peers according to the time they stagdd, we find another
interesting phenomenon: peers that start to seed earlrenally have uploaded more
(Fig. 5.13). The same phenomenon has also been observedshyeal. in [57]. One
may argue that the peers who start to seed earlier can se&hfar durations, hence
they upload more. However, in Fig. 5.11 we already show tmaupload amount is not
related to the seeding time. Then why do peers that staretbearlier upload more?

As shown in Fig. 5.14(a), after the burst at the first two haimse the file was pub-
lished, the peer arrival rate decreases dramatically. @rother hand, the number of
seeders increases quickly at the first 60 hours, then desredth a much smaller rate
(Fig. 5.14(b)). In general, the number of leechers is ndgkgcompared to the number
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of seeders. As a consequence, peers who join late have toetemyh a large number
of seeders for uploading, which leads to a low upload spesdi hance a small upload
amount. Therefore, peers who intend to become richer shoalthe swarm in it's early
stage, when it is still not extremely oversupplied.

5.3 The old and the new: how users evolve

The first behavior of any user is to register as a member andhe community. In this
section, we explore the behavioral differences betweers ugelifferent ages.
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5.3.1 A general view

After joining the community, users gradually build up a brgtof uploads and downloads,
in terms of the amount they consume and contribute, andriettiey spend in leeching
and in seeding. Fig. 5.15 shows the scatter plot of the u@addhe download amount of
each user, with the users ranked in the reverse order ofages. We see that, in general,
the upload and the download amount of the first 20,000 userstable with their ages,
while the remaining ones demonstrate a decreasing trend Wieeage decreases. We
observe a similar correlation between the seeding and ¢ohileg time of users and their
ages, as shown in Fig. 5.16. With these clear behaviorardifices we divide users into
two groups, the first 20,000 users the old and the other ones dke new Next, we
explore more behavioral differences between these twopgrotiusers.

5.3.2 Level of commitment: on the way to become more committe

The most straightforward measure for a user’'s commitmehetgommunity is its upload
amount, which is exclusively decided by the seeding timethrdiverage upload speed.
As discussed in Section 5.2.4, the average upload speetiasimaple reflection of user’s
bandwidth, but an outcome of the swarm status like the nurobseeders and leechers
in the swarm. As it is difficult for users to control their asge upload speeds, we use
only the seeding time to reflect their level of dedicationrtker, to avoid the cumulative
effect of age, i.e., that older users have stayed in the camtynlonger and therefore
have higher opportunities to seed and leech longer, we es&atio between the seeding
and the leeching time, which is defined as é&firt ratio, as the metric to measure user
dedication to the community.

In Fig. 5.17 we show the CDF of the effort ratio of old and newrssrespectively. We
see that most users (both the old and the new) achieve vemyefffigrt ratios, indicating
that with SRE, users in private communities are highly cottedi(or forced to be). More
interestingly, in general, new users achieve lower effatios than old users, indicating
that as users evolve in the community, they become more ctietnwhich implies a
deeper (psychological) effect of SRE on the old users.

5.3.3 Average upload speed: the new have not yet suffered

Under SRE, users will be expelled if they cannot upload ehdagneet the SRE require-
ment. Intuitively, similar to the effect of Group Selectimnbiology, users with relatively
low bandwidth will gradually become extinct, leaving onhet“strong” ones to survive
in the community. Nevertheless, Fig. 5.18 shows the CDF efaerage upload speed
achieved by old and new users, respectively, from which \edlsa in general new users
achieve higher upload speeds. This counter-intuitive masien confirms our analysis in
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Section. 5.2.4 that a user’s average upload speed highbndepon the status of swarms
it has participated in. When a user with a high bandwidth dpéong time in unproduc-
tive seeding, it can achieve a very low upload speed. We haersin Fig. 5.17 that
new users are less dedicated to the community. Therefag atvoid long unproductive
seeding time and achieve higher upload speeds.

5.3.4 Sharing ratio: the spreading new and the conservativeld

As discussed in Section 5.2.4, there are both internal aredrex reasons for users being
poor or rich. In Fig. 5.19 we show the CDF of the sharing rathieved by new and
old users, respectively. We see that the line for new usem®re skewed, indicating that
new user achieve a larger range of sharing ratios than old.usbe lower end is due to
the fact that new users are often given start-up time to asg¢heir sharing ratios, while
the higher end is normally due to their small download amsu®n the other hand, old
users behave conservatively, without many risky sharitiggdelow the SRE threshold
or excessive sharing ratios requiring huge contributiahlatle consumption.

5.4 The big and the small consumer: active users active
in all

How much to consume is a fundamental user behavior in pro@t@nunities, since the
main goal for users to join is to download the contents theyiaterested in. In this
section, we explore the behavioral differences betweensusgh different download
amounts. As discussed in Section 5.3, a user’s age has aativa@ffect on his download
and upload amounts, and on his seeding and leeching timas.iriiplies that as users
evolve in the system, these four metrics gradually increale avoid this cumulative
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effect, we consider the daily values for these metrics.

Figs. 5.20 and 5.21 show the daily seeding time, the dailghieg time, and the daily
upload amount of each user, with users ranked accordingetdebreasing order of their
daily download amounts. We see a clear decreasing trencesétthree metrics when
the daily download amount is decreased, indicating thatsus#éh larger consumptions
normally contribute more, in terms of both the time and th@ant they contribute. This
also implies that active users are active in both downlaadimd uploading.

In Figs. 5.22 and 5.23 we show the sharing ratio and the agerpigad speed for each
user, with users again ranked according to the decreasdey of their daily download
amounts. This time we observe no clear correlation betweeset metrics, except that
some users at the right end achieve extremely large shadingr We believe this is due
to their extremely small daily download amount.
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5.5 The gamer and the dedicator: Gemini of the private
community

How much to contribute is an important choice users makeivafa communities. Based
on the level of contribution, a user can begamerwho games the system, explores
the potential benefits, and avoids providing much contigimytor adedicatorwho dedi-
cates himself to the system and provides high contributitwme-epposite user behaviors
evolved in the same private community, just like the Gemini.

The upload amount is often used to measure a user’s conbrdetel. Nevertheless,
while users can decide the time they contribute, they do ane full control of the upload
speed. Therefore, as in Section 5.3.2, we again use thd edfits as the metric for
deciding a user’s contribution level, and we define userb @fifort ratio less than one as
gamers and the rest as dedicators. Next, we explore moreibeddalifferences between
these two groups of users.

5.5.1 Seeding and leeching time: which decides a gamer?

The reasons for a low effort ratio could be a short seeding @md/or a long leeching
time. In Fig. 5.24 we show the CDFs of the seeding and the irgd¢ime of gamers and
dedicators, respectively. We see that, in general, garmect llonger while they also seed
shorter than dedicators, indicating that gamers not oniyrdmute less but also potentially
consume more.
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5.5.2 Sharing ratio: gamers seize the day

In Fig. 5.25 we show the CDF of the sharing ratio achieved byeya and dedicators,
respectively. We see that in general, gamers achieve mwuadr ksharing ratios. As the
sharing ratio in a private community serves as virtual ¢rédit can be spent in future
downloads, the difference in sharing ratio implies that gesrdo not hoard sharing ra-
tios for future downloads as much as dedicators do. In otleedsy they are more the
seize-the-day type: they keep sharing ratios that are pmigh for them to stay in the
community, so that they could explore the benefit of downilogdreflected by the long
leeching time) and in the mean time provide little contribat(reflected by the short
seeding time).

5.5.3 Average upload speed: gamers know the way

Though gamers achieve lower sharing ratios than dedicéatwey still need to meet the
SRE threshold to stay in the community. With the short segtiine and the long leeching
time, gamers have to increase their upload speed efficisathg to maintain their sharing
ratios above the SRE threshold. Consistent with our immjtthey do achieve higher
upload speed than dedicators. As shown in Fig. 5.26, apiyargamers can achieve
upload speeds an order of magnitude higher than dedicafsdiscussed in Section
5.2.4, achieving high upload speed often requires userg tatrategic such as joining
swarms early, which implies that gamers not only intend td,ddso know the way, to
game the system.
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5.6 Discussion

Though altruistic users always exist, we conjecture thattreers in private communi-
ties areselfish Their initial goal in a community is to download all the cents they
are interested in. To achieve this, they try to maintain gguired sharing ratio while
not limiting their download needs. The strategies they yapphinly optimize their own
benefit, without considering theocial welfare i.e., the performance of other users. For
example, users may seed all the files they have downloadedease the opportunity
of performing some actual uploading during seeding. Howewés directly increases
the bandwidth supply and makes the upload competition evae severe [70]. As we
discussed in Section 5.2.4, joining swarms earlier helgssugain sharing ratios more
efficiently. However, if a majority of users strategicaltyn a swarm immediately after a
new content is published, then 1) many users will downloadething they don’t want,
only for gaining sharing ratios; 2) the download speed inghedy stage of a swarm will
be very low, because a large number of strategic users gsimultaneously makes the
swarm heavilyflash-crowded and 3) it will be more difficult to perform any actual up-
loads after the early stage, since only a few non-stratesgcsuwill join the swarm during
that period.

Private community administrators that intend to adopttstii@s, or remedies, to al-
leviate the side-effects of SRE, should take the potentrategic user behaviors into
account. For example, some private communities try to &urthcentivize contribution
beyond SRE by giving rich peers priority to access newly ighield contents [10]. How-
ever, as discussed previously, joining early in a new swailirhelp the users, especially
the poor users, gain sharing ratios more efficiently. Byrgivpriority to rich peers, ad-
ministrators are basically taking the opportunities awayrf the poor peers for gaining

IWe refer a swarm to be flash-crowded when it has a sudden seieshe number of leechers.
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sharing ratios. Unless the administrators intend to letittebe richer and the poor be
poorer (which will lead to a more intense competition and teptal deterioration of
performance as discussed previously), we suggest adraiiois to remove these restric-
tions.

Another example of existing remedies for SRE adopted byapgigommunities would
be free-leechand seeding-bonusSome communities [12, 15, 41, 81] temporarily adopt
free-leech and/or seeding-bonus for certain swarms, whieans that a user can down-
load the file for free and/or get extra bonus for seeding. éedeech periods, users are
attracted to those swarms because of the low price for daaitig. In this way, the
bandwidth demand is increased and the oversupply in thermyst alleviated. Mean-
while, when free-leech is applied to a relatively old swatime, benefit of joining early is
also reduced. The same argument is also applicable to gebditus. In seeding-bonus
periods, peers are attracted to the swarms to seed. Henen,sgbding-bonus is applied
to old swarms, the file availability is improved. Howevemadistrators should be careful
and not adopt free-leech or seeding-bonus for a long tinheraise strategic users might
wait and not download anything until the files are for freepoly seed in swarms with
seeding bonus.

In our previous work [49], we propose a self-organizing telgg namedSRE with
supply-based pric¢hat prevents this potential manipulation of strategicsisénstead
of manually adopting free-leech (i.e., zero price), thiatelgy inversely relates the price
for downloading one unit of data to the seeder-to-leechiéo ia the swarm. With a
larger seeder-to-leecher ratio, i.e., an increasing SU¥IRE with supply-based price
automatically decreases the price. Once the supply gaasaagin, it will automatically
increase the price. In this way, the demand and supply amratically balanced and
reasonable downloading and seeding times are achieved.

5.7 Related work

To date, only few works have analyzed private communitiémnget al.[124] investigate
hundreds of private trackers and depict a broad and cletrpiof the private community
landscape. Cheet al.[13] compare system behaviors among 13 private trackerfand
public trackers, and they show their differences regardisgr viscosity, single torrent
evolution, user behaviors, and content distribution. etial. [64] also perform measure-
ment studies and further develop a model to show that SREethg@eovides effective
incentives, but is vulnerable to collusion.

While these studies all focus on demonstrating the highisgddvel achieved by
private communities, there have been a few preliminary wdhat show the adverse
effects. Andradet al.[5] focus on the dynamics of resource demand and supplyfeeyd t
show that users typically try to increase their contribaite@vels by seeding for longer and
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not by providing more bandwidth to the system. However, ocarkvgéhows that providing
limited bandwidth is not the will of users, but it is a conseqaoe of the oversupply in
private communities. Cheet al. [14] also notice the oversupply problem and provide a
model to identify the optimal stable SLR range. Howeveryttieln't analyze the reason
or propose strategies to solve the problem of oversupplhshieaal. [57] demonstrate
that there are significant disparities in the cost of new dddiles in a private community
named DIME, and users compensate for the high cost of ol@srlfif downloading more
copies of newer files or by preferentially consuming oldesflluring free-leech periods.
Particularly, they have shown that after a period of fresehe there are more download
activities in the community. This is consistent with ourukeshat during free-leech, there
is more demand and the oversupply is alleviated. Besiddgzang positive and negative
effects of SRE, we also extensively explore the user beh&dod argue the reasons
for these behaviors. Further, we analyze the performansgetifadopted community
strategies, their effects against strategic user behanorthe remedies we proposed.

5.8 Conclusion

While previous work only focuses on showing the effectismef SRE in incentivizing
users to contribute, in this chapter we provide a better kataleding of private communi-
ties by exploring the user behaviors and demonstrating thetpositive and the negative
effects of these behaviors. We show that swarms in privatexaanities are greatly over-
supplied. Users achieve very high download speeds, bugmifisant expense including
excessively long seeding times and very low upload spee@sanMhile, as users evolve
in the community, some users become more committed, in tefrhgher ratios of the
seeding and the leeching time, and some users game the dygtkeeping risky low
sharing ratios while they leech more often than they seed.users who intend to in-
crease their sharing ratios, we show that seeding for lothgi@tions is not as effective as
increasing the upload speed. If it is not realistic for usenspgrade their internet access,
we suggest them to join swarms early or to join undersupsheams.



Chapter 6

Estimating user interaction strength in
online networks

Online networks have become popular and powerful infrastnes for communication
and they provide various mechanisms for users to interacthi$ chapter, we present a
new view that seesser interactionsas the most basic underpinning of online networks
such as Facebook, Wikipedia, and BitTorrent. The key rebequestion we address is
whether we can devise a framework for expressing user gtiers and their strengths
that is both generic and can be applied to a wide range ofregsaed applications.

The patterns and strengths of user interactions in onlibgar&s are prominent. For
example, in BitTorrent, user interactions can be used adaiedation for designing
incentive policies to promote contribution. Through estiimg the interaction strengths
between users in terms of the amounts or durations of upleggtem designers can make
users favor the highly ranked users for future uploads. Adher example, a number of
applications [102, 103, 120, 121] leveragaline friendshipgo enhance security, to pro-
mote cooperation, to improve item recommendation, etc. é¥aw it has long been ob-
served that low-interaction friendships, as exemplifiedH®/“Familiar Stranger” [106],
are prevalent, and it has been shown that the dynamics ofntseactions is more rep-
resentative for inferring user relationships [108, 114rttsimple, statically established
“binary” friendships. Distributed systems often rely orpianting trust relationships from
social networks such as Facebook to improve security [12i3tead, users would be
much better off by estimating their interaction strengthhwthers and by trusting the
ones with whom they have interacted frequently. Last butewast, sociologists often rely
on user interactions for identifying social ties [54, 114}d therefore a proper estimation
of user interaction strength is essential.

The importance of user interactions in online networks $etadthe questionHow
can we estimate user interaction strengtRfevious work addressing this issue [18, 108,
114,116] has focused only on online social networks likeebaok, and has only con-
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sideredbinary anddirect user interactions, simply indicating whether a user hasctly
interacted with another user or not. To remedy this, in thiapter we propose a User
Interaction Strength Estimation scheme called UISE thatehenuch more fine-grained
notion of user interaction and that is applicable to a moreega category of online net-
works. Further, UISE can be easily applied to distributestesys and therefore achieves
a scalable design. Specifically, we make the following abuatrons.

1. As a model for representing user interaction histories,introduce thebitmap-
based user interaction graptlbased on which UISE estimates user interaction
strengths. UISE captures the frequencies of both directiragficect interactions,
provides disincentives for malicious user behaviors, ardlae easily incorporated
into distributed systems (Section 6.3).

2. We apply UISE to detect user interaction patterns in enfietworks. We take
Facebook as an example and we derive patterns resemblisg dfften observed in
the offline human society—users in Facebook tend to intéragtently and stably
with relatively small groups, occasionally with persongsie those groups, and
they make new friends while in the meantime losing touch wdme old friends
(Section 6.4).

3. We further apply UISE to derive a decentralized schemes$bimating the time
users are online, which is an important aspect of user actavid has yet not been
studied before. We have implemented this application ineéoTribler [84] online
network and we demonstrate the scalability and the accurfaoySE through sim-
ulations, emulations, and Internet deployment (Sectioch$5B).

As it turns out, UISE achieves accurate estimations evemwkers hold only %
of the global information related to user interactions.dctf in order to maintain the
accuracy of UISE, its requirement for the coverage of glaffakmation decreases
with the population size, thus allowing UISE to achieve gsodlability in a self-
organized manner. Furthermore, although a user only pessespartial view of
the system, with UISE he can derive a ranking of users aaegitdi his estimations
of their online time that highly resembles the ranking dedifrom the global view.
Thus, UISE achieves the most important application of estiimy user interaction
strength, i.e., differentiating users with different lvef activity.

6.1 User interactions

Online networks provide various mechanisms for users &rawt. In Facebook, users
exchange messages, post on each other’s walls, and commphbtos. In BitTorrent,
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where the main application is file sharing, users meet (ramales), and if possible, upload
to and download from each other. As users evolve in onlineords, they gradually build
up a long history of user interactions. Some of these intenas are directed, such as
uploads and downloads, while others are undirected, sudndgzvous and a chat over
a photo. Online networks provide abundant user interastiamich, however, change
rapidly over time: only 3@ of Facebook users consistently interact from one month to
the next [108], and in BitTorrent, users who directly dovaddrom each other for one
file rarely meet again—the so-callpdoblem of low rendezvous

Fortunately, users not only interact directly, but alsanectly. An indirect interaction
is formed when users are linked through a sequence of inienac such as in Facebook
when a user posts on another user’s wall who in turn postshurdauser’s wall, and so on,
or in BitTorrent when a user uploads to another user who éurtiploads to a third user,
and so forth. When direct interactions are relatively seasuch as in BitTorrent-like
P2P systems where the problem of low rendezvous existgertdnteractions provide
supplementary information for inferring user relationshi Moreover, a group of direct
and indirect interactions that happen within a short tinaene may be caused by offline
interactions. In the Facebook example, the correspondegsicould have participated
in some offline event together and are sharing their expeggn Indirect interactions
that happen widely apart in time, however, are of limited. User example, a user may
have exchanged messages with a high-school friend three gga and with a college
friend one hour ago—these interactions hardly indicateraegningful user relationships
between the user’s two friends.

To achieve a meaningful estimation of user interactionngfite the above aspects
of user interaction should be considered. In the followiagti®n, we give the problem
statement and discuss the challenges that need to be asftiress

6.2 Problem statement

User interaction strength is reflected by two aspects: thguiency of interactions and
the intensity of each interaction. In this chapter, we docurtsider the latter aspect in
order to avoid evaluating the strengths of words, such asc¢md which comment should
get a higher weight, “Happy birthday” or “You look nice”. R, in this chapter we
define user interaction strength as freyuency that two users interaend we propose
a model for estimating user interaction strength based igrdgfinition. In this context,
the following four issues are addressed.

Partial history versus full history of user interactions. A properly selected partial
history of user interactions is more suitable for estintatiser interaction strength than
a full history. First, as user interactions may change tgmger time, the stale ones are
no longer useful for inferring meaningful relationshipgcsndly, keeping a full history
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of user interactions induces a “glass ceiling” for new ustrsy will always be evaluated
as less active than old users who have already accumulatathahistory. When user
interaction strengths are used to decide on the servickday&er can get, such an unfair
playing field will discourage new users from joining and wewMentually decay the system.

Direct versus indirect interactions. As stated in Section 6.1, direct and indirect in-
teractions are both important and therefore should botmbtleded. In our model, we
provide two options to control the level of indirect intetiaas to be included in the esti-
mation of user interaction strength. The first idistance limitin terms of the number of
hops between interacting users. The second iligible period Only indirect interac-
tions that happened together with related direct intesastwithin this eligible period are
included, e.g., when a user exchanges messages with anstgrexho further exchanges
messages with a third user, the first and third users are iolklyd when these interactions
happened within, say one week. The distance limit and thgtheof the eligible period
are tunable parameters, so that our design will be appédatdifferent applications. For
example, researchers analyzing social ties can leveragdesign to include different
levels of indirect interactions in their models [54, 116].

Scalability. As an online network evolves, users involve in a huge numbenter-
actions. Somehow, user interaction records have to bectetleand analyzed to estimate
user interaction strengths, but doing so at central sermaysbe neither scalable nor prac-
tical. We propose a decentralized approach in which thecidin of interaction records
and the estimation of interaction strengths are perfornyeithé end users, where the es-
timations are actually used. When applied in such a diggtbway, the design should be
lightweight so that it will not impose a high computationa&dl on the end users.

Security. Online networks are subject to security concerns. When ingeraction
strengths are used to decide on the service level a user ¢camghcious users may
disseminate false information to be better off than otherg, through Sybil attacks. Tra-
ditional defenses against these attacks rely on trustediiigs provided by an authority
or automatically imported from some other online socialvoeks [55,121]. However,
requiring users to present trusted identities runs coutéhe open membership that
underlies the success of these systems in the first placanterdng trustworthy rela-
tionships purely from online friendships has been provebeansufficient [108, 114].
Without assuming secure super-nodes, we propose a designah malicious users that
disseminate false information will not gain any privileges., in which disincentives for
malicious user behaviors are provided.

6.3 Design description

In this section, we introduce UISE, a user interaction gftierestimation scheme that
addresses the issues listed in Section 6.2. In UISE, uskesitihie whole or parts of the
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(a) Undirected (b) Directed

Figure 6.1: Examples of user interaction graphs

interaction histories of other user pairs through centalexrs or distributed information
dissemination, based on which they estimate their useraictien strengths with other
users. UISE consists of four parts: representing the useraiction history, estimating
the user interaction strength, maintaining security agaimalicious user behaviors, and
incorporating it into distributed systems. In the follogisections, we discuss them in
turn.

6.3.1 Representing user interaction history

In UISE, the interaction histories received by a user arerpparated into itbitmap-based
user interaction graph{UIG), a model that we introduce to represent user relahiqss
based on their interactions. Different users build differglGs unless they can obtain
full knowledge of the system, for example, through centeavsrs. Therefore, a UIG
reflects a user’s local view of the system.

In a UIG, a vertex represents a user and the edge between tiicegaepresent the
interaction history of the users it connects. The intecarchiistory of two connected users
is reflected by a label of the corresponding edge, which isiagstalled thenteraction
bitmap or simply bitmap To capture the interaction frequency, we abstract time int
cycles where one cycle represents a certain unit of time as@d minutes. We keep the
interaction history in a time-based (cycle-based) sligimgdow fashion, with the window
size being equal to the length of the kept history. When tveysisave directly interacted
in a particular cycle, the corresponding bit in their bitnigpet to 1 (otherwise it is set to
0). As time evolves, their interaction bitmap becomes aryis&ring and the number of
“1"s shows how frequently they have recently interacted.

Fig. 6.1 shows examples of UIGs for undirected and direcsst interactions, re-
spectively, with a window size of 4. For example, when Fid.(8) is derived from wall
posts in Facebook, it specifies that useand; have chatted on each other’s wall in cy-
cles 1 and 3. When the example is derived from the upload awdldad interactions in
BitTorrent, Fig. 6.1(b) specifies that usdnas uploaded to usérin cycles 2 and 4.
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Figure 6.2: Per-cycle user interaction graphs generated Fig. 6.1(a).

7 © 0o oo 0

cycle 1 cycle 4

Figure 6.3: Per-cycle user interaction graphs generated Fig. 6.1(b).

6.3.2 Estimating user interaction strength

To calculate the interaction strength, i.e., the frequehaytwo users interact (directly or
indirectly), we perform cycle by cycle examinations. FiestUIG is divided into a number
of per-cycleUIGs. Then, for each of these per-cycle UIGs, an algorithmfifading
connected components reachabilityis applied when the interactions are undirected or
directed, respectively: if two users are connected (or sneachable from the other)
in a per-cycle UIG, they are considered as having interaict¢dat cycle. Finally, the
ratio between the total number of these recognized cyclgsrewindow size gives their
interaction strength. In this way, UISE captures the freqyedf both direct and indirect
interactions.

Figs. 6.2 and 6.3 show the per-cycle UIGs derived from Figgaj and 6.1(b), respec-
tively. In Fig. 6.2, an algorithm for finding connected compats is applied. Here, users
¢ andj have interacted directly in cycles 1 and 3, and indirectlgyole 2. Therefore,
their user interaction strength is estimated to be 0.75.l&ily} in Fig. 6.3 an algorithm
for finding the reachability is applied and usgis reachable from useérin cycles 1, 2,
and 3. Therefore, the user interaction strength from us®y is estimated to be 0.75.

The requirement for being in the same connected componéeing reachable serves
two purposes. First, it specifies that only indirect intéiats that happened together with
related direct interactions within the same cycle are idetuin the estimation. Secondly,
when UISE is applied in a distributed system, it alleviatespotential manipulations of
malicious users, since users only trust the bitmaps thdtrdaback to themselves in their
UIGs. During the calculation of user interaction strengtl, also provide the option of
a distance limit in terms of the number of hops between ictarg users. This limit is
a tunable parameter for specifying the range of indire@ratttions to be included in the
calculation. With a limit of one hop, only direct interaat®are included.

The connected components in an undirected graph and thieatslty in a directed
graph can be computed in linear time (in terms of the numidareorertices and edges of
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the graph) using either breadth-first search or depth-gestch [74]. Thus, UISE achieves
linear time complexity for estimating user interactioresith.

6.3.3 Maintaining security

Through UISE a user can rank other users based on its intarattengths with them.
When some privilege is give to the high-ranked ones, malgigsers are incentivized to
spread false information to be better off than others. Oaegdent way to do so is through
a Sybil attack{28, 109]. Under a Sybil attack, the attacker generatesiphkybilswith
fake identities, and together they distribute false infation about strong interactions
among them. These forged interaction histories cause dalges to be added to the per-
cycle UIGs of other users, where the attacker manages toecbina its sybils and to
further connect to more users (victim users) through itslsyln this way, the attacker
potentially achieves higher estimated interaction stifengt victim users than without the
sybil attack. Nevertheless, the false edges not only cdrtheattacker and victim users,
but also victim users themselves (indirectly). Similathgy also potentially increase the
estimated user interaction strength between victim uSgsspreading false information
does not make the malicious users be better off than otherthid way, UISE actually
provides disincentives for malicious user behaviors.

Fig. 6.4 shows an example of a Sybil attack. Here, the attades its real identityj,
to interact with usef in cycles 1 and 3, and with usgiin cycle 2; it uses its fake identity,
m, to interact with usek in cycle 3. Further,; andm claim that they have interacted
in all 4 cycles. Because of the false edge added betwesmmd m (represented by the
dashed line), the attacker is connected to the victim ussar) through its Sybiln in
cycle 3 (Fig. 6.4(b)). As a consequence, usés considered to have interacted with the
attacker in cycles 2 and 3, while originally only in cycle 2n @e other hand, uséris
now connected to usér(another victim user) through in cycle 3. It is considered to
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(a) Global UIG (b) Local UIG of useri (c) Local UIG of userj (d) Local UIG of uselk

Figure 6.5: An example of the global and local user intecactjraphs (UIGS)

have interacted within cycles 2, 3 and 4, while originally only in cycles 2 and 4.

6.3.4 Incorporating into distributed systems

We now show how UISE can be incorporated into a distributesesy without central

servers, which comes down to the question of how a user abitati@raction histories of
other user pairs and builds its local UIG, and to what exteat & local UIG resembles
the global one.

We assume that in a distributed system, users can obtaimatmn through dissem-
ination. In UISE, after two users have directly interacteithveach other for the first
time in a particular cycle, they generateiateraction record and disseminate this record
into the system through the dissemination protocol pravioethe system. Based on the
interaction records obtained through dissemination, eseh builds its owrocal UIG,
which represents its local view of the system. Further dngd local UIG based on cy-
cles gives théocal per-cycleUIGs. A local UIG is a subset of thgdobal UIG, in terms of
the vertices, the edges, and the interaction bitmaps. TdbUIG can only be obtained
when the underlying dissemination protocol achieves &166verage. In this chapter,
the 100% coverage case is used as the baseline for performance #valiraSections
6.6, 6.7, and 6.8.

Fig. 6.5 shows an example of the global and local UIGs. Ndtie¢ user: did not
receive the interaction record betwegand k for cycle 3. Therefore, in its local UIG
(Fig. 6.5(b)), the interaction bitmap betwegandk is 0100, instead of the ground truth
0110. A similar loss of information also happengitfig. 6.5(c)) and: (Fig. 6.5(d)).

Until now, we have introduced the basic design of UISE. Infthlewing sections, we
demonstrate and evaluate two examples of its applicatioiikektion 6.4, we apply it to
detect user interaction patterns in Facebook, a centdatinéne social network. In Sec-
tions 6.5-6.8, we apply it to derive a decentralized schamedtimating the online times
of users and we evaluate its performance through simuktemulations, and Internet
deployment.



121

6.4 Interaction pattern detection

In this section, we apply UISE to detect user interactiotgoas in online networks. There
have been several works addressing this issue [18, 108116} ,but they only consider
direct and binary user interactions. Instead, UISE captthre frequency of both direct
and indirect interactions, and therefore provides a mayeotigh indication of the nature
of user interactions. We take Facebook as an example and pie G[SE to detect its
user interaction patterns. As a result, we have derive@patthat highly resemble the
ones often observed in the offline human society.

6.4.1 Applying to interaction pattern detection

We takewall postsin Facebook as the example of user interactions. In Facelszmh
user can post messages on the walls of his friends. Wall postgisible to others who
visit the user profiles. A previous measurement study [1@8fains a snapshot taken
on Jan 22, 2009, of the entire wall post histories of 60,2%rus the New Orleans
network. We select their data of the last year—from Jan 28820 Jan 22, 2009—as the
user behavior imported into our experiment. In total, 44,88ers and 876,993 posts are
included.

We set the cycle size to one week and we divide the data intpass: we take the
first 80% as the training data (weeks 1-43), and the |a2t&% as the testing data (weeks
44-54). When a message is posted on a wall in some week, thé&iemas involved
are considered as having directly interacted, and the soreding bit in their interac-
tion bitmap is set from 0 to 1. As Facebook is centralized, ae @btain the interaction
bitmaps of all user pairs. For every user pair, we evalua tiser interaction strength
(UIS) based on the two parts of the data, and we refer to thitsess UIS80 and UIS20,
respectively. We use UIS80 to demonstrate the user interggattern and we use the ra-
tio between UIS20 and UIS80 (represented as UIS20/UIS8f9raonstrate the evolution
of the user interaction. The results are shown in the folhgugection.

6.4.2 Results

We first show the UISs of a highly active and a medium active usth all users with
whom they have interacted, either directly or indirectiheThighly active user has been
active in 53 out of 54 weeks and has exchanged 2,083 messapg&bwf his friends; the
medium active user has been active in 26 out of 54 weeks anekichanged 84 messages
with 8 of his friends. For each of these users (called theuatelg user) we calculate his
UIS80 and UIS20 with all other users (called the evaluateats)sincluding the friends
he has interacted with directly. We group the evaluatedsusased on the value of their
uIS80.
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Figure 6.6: Interaction pattern of a highly active Facebuosé&r (the vertical axes are in

log-scale)

For the highly active user, we show in Fig. 6.6 the number efsiand the average
UIS20/UIS80 for each UIS80 group (represented by the blaakdles, we do not con-
sider a limit to the distance between interacting users)h@vaile this evaluating user has
only interacted directly with 25 friends, UISE links him tcone than one thousand users
through indirect interactions, among which, obvioushinferacts intensively with only a
small group: as shown in Fig. 6.6(a), the number of usersan 80 groups decreases
dramatically with increasing values of UIS80. A similar pbenenon is often observed in
human society where people tend to interact frequently veltftively small groups and
occasionally with the people outside those groups [67]. Srhall group could be friends,
with whom people interact directly, or friends of friendstfhwhom people build bonds
through, for example, sharing gossips with friends.

Another interesting observation is that, as shown in Fig(kg, the average value of
UIS20/UIS80 decreases with increasing values of UIS80 un880 equals 0.25, and
stays stable (at a little bit less than 1) afterwards. Thiiciates that (1) the interactions
between the evaluating user and the users with whom it h&sihigraction strengths in
the first80% of the year tend to stay stable, with slightly decreasedaetén strengths
in the latter20% of the year; and (2) the interactions between the evaluats®y and
the users with whom it has low interaction strengths in thst §6% of the year tend to
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become more intense. It can be conjectured that the samenityhalds in offline social
relationships.

To verify whether the above observations are due to indirgetactions linking too
many strangers to the evaluating user, we have also perfbi@sées where we consider a
limited distance in terms of the number of hops between aatarg users. For example,
for the result of “within 2 hops” as shown in Fig. 6.6, we havdyoconsidered the eval-
uating user’s friends and friends of friends. We show thaltedor different numbers of
hops, and we observe a similar tendency as for our origiragdevithout a hop limit.

For the medium active user we show in Fig. 6.7 the number abumed the average
UIS20/UIS80 for each UIS80 group. In general, this usereaas a similar interaction
pattern as the highly active user, except that his intevadirengths with other users are
always less than 0.4—indicating that he is indeed a usermtiium activity.

We have tested all users as in the above two examples and.i®.Bigve show the
minimum, the maximum, the median, and the 25th and 75th pakeg of the number of
evaluated users and of the average value of UIS20/UIS80 o$ais (there is no limit to
the distance between interacting users here). We find siosker interaction patterns in
these results as in the two examples we gave eatrlier.

6.5 Distributed online time estimation

In this section, we introduce another application of UISHial is distributed online
time estimation. Online time directly reflects user acyivand is therefore important for
online networks. A potential utilization in Facebook (espéy in a distributed version)
is evaluating user’s stickiness by estimating the timesispend being online. And in
BitTorrent, as users upload when they download, online tmies a user’s contribution
level and therefore can be used to design incentive polidis The advantage of online
time is that it is a metric with a ground truth—by comparing tieal and the estimated
online times, we can assess the accuracy of UISE. In thisoseate introduce how
to apply UISE to derive a decentralized scheme for online testimation, and how to
implement this application into Tribler. In Sections 6.8,6nve evaluate its performance
by means of simulation, emulation, and real world deploytmen

6.5.1 Applying to distributed online time estimation

Similarly as we previously took wall posts in Facebook as @kample of user inter-
actions, in this application we takendezvouss the example of user interactions. By
applying UISE, a user can now estimate the online time ofteraiser through calculat-
ing their interaction strength, i.e., the frequency of thigrect and indirect interactions.
Here, when two users meet (rendezvous) in a particular ciyedg generate an interaction
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Figure 6.9: The Tribler system.

record and disseminate it into the system. Based on thedgceceived through dissem-
ination, a usei builds its local per-cycle UIGs, which are undirected sineedezvous
is undirected, and if in any of these a ugds in the same connected component,as
recognizeg to be online in that cycle. The number of these recognizetesygives;’s
online time as estimated byand the user interaction strength betwéand; computed
as the number of these cycles divided by the length of theaot®n history, giveg’s
fraction of online time as estimated by

The requirement for being in the same connected compondat reaintaining the
security against malicious users, as in the example showigir6.4, which generates a
side effect of UISE—the accuracy of an evaluating userisnadions is limited by its own
online time: as we will see, the more active a user is, the ractarate his estimations of
the online times of others will be.

6.5.2 Implementing into Tribler

We have implemented the distributed online time estimagjoplication with UISE into
Tribler [84], which is a fully distributed open-source ordi network for media and so-
cial applications like file sharing, live streaming, viden-demand, content searching,
voting, and interest-based channels. Users in Tribleractan various ways including
rendezvous, upload, download, and additionally, commgntieplying, voting, and re-
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porting spam in the channels they join. Tribler serves welaaeneral framework for
implementing, testing, and analyzing user interactioatesl studies. It has been instru-
mented with monitoring capabilities to measure both systathcomponent specific per-
formance for design improvements. In this section we givaef bverview of the design
features of Tribler relevant for this chapter.

Fig. 6.9 shows the general architecture of the Tribler sysfEo capture user behavior
across sessions, Tribler assigns each user a permanetitiedeft uses the BitTorrent
protocol for P2P file sharing, and it uses the Libswift praide7], which is an IETF (In-
ternet Engineering Task Force) standard protocol for stieg proposed by the Tribler
group, for P2P streaming. We have implemented UISE intddiridis a separate compo-
nent for estimating user interaction strength. The estonatcan be fed back to appli-
cations for policy design, such as in file sharing to recipte@ctive users with priority
for future downloads; they can also be visualized in the ugerface to psychologically
motivate users to contribute.

Tribler uses the following protocol to discover new userd tmdisseminate interac-
tion records. Every 5 seconds, a useontacts one of its neighbors, for exampleFirst,

i andj generate an interaction record for this rendezvous. Sdgohohtroduces one of
its own neighbors ta for later contacts. Finally; sends a Bloom filter expressing the
interaction records it currently possesses and fetchestheit is missing fronj. In this
way, each Tribler user can build its local UIG and estimageahline time of other users.

6.6 Simulation

In order to evaluate the performance of UISE, we take disteith online time estimation
as the example and we address three questions: how well d&&s pérform for dif-
ferent information dissemination protocols; how well daeserform for different user
behaviors; and how well does it perform in the real world.

To answer the first question, in this section we run simutetiwith generic informa-
tion dissemination, which allow us to explore the accurany scalability of UISE under
different dissemination protocols by tuning the coveraigeanswer the second question,
in Section 6.7 we run emulations of UISE under various syitlaad real-world user be-
haviors. To answer the last question, in Section 6.8 we tepeasurement results derived
from the Internet-deployed Tribler system.

6.6.1 Basic simulation model

Synthetic user behavior: We consider synthetic user behavior in our simulation. At
any time, a peércan be either online or offline. When an online session endsaits

'From here, we useserandpeeralternatively to refer to the functioning agent in our expents.
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an offline session immediately, and vice versa. The onlire @ffline session lengths
follow exponential distributions, as observed in manyribsted systems [36]. We do
not consider population turnover in synthetic user behlraWstead, later in Sections 6.7
and 6.8 we use user behavior generated from measurements pdpilation turnover is

naturally included.

Let (Son, Sofr) represent the average online and offline session lengtescdnsider
two classes of peers: (i) active peers, class A, with (8, 2lesy and (ii) less active peers,
class B, with (2, 8) cycles.

Synthetic peer discovery and record disseminationtn our simulation, we abstract
peer discovery into a constant probabilify,, and we apply it in every cycle to spec-
ify the probability that any two online peers meet and geteeem interaction record.
Similarly, we abstract record dissemination into anotlugrstant probability/, and we
apply it in every cycle to specify the probability of an irdetion record being received
by a third peer. Real-world protocols are more complicated they normally result in
dynamic probabilities. Nevertheless, by assuming a cahgt@bability and setting dif-
ferent values to it, we can analyze the performance of UISHiféerent peer discovery
and dissemination protocols.

Simulation setup: We run each simulation for 336 cycles, i.e., 168 hours (7 Yays
when one cycle represents 30 minutes in the real implenientat Unless otherwise
stated, we consider 250 peers in class A and 250 in class ByaseétP; to 20% andP;,
to 50%.

Based on the synthetic user behavior and record disseminaach peer gradually
collects interaction records and builds its local UIG. A¢ #&nd of the simulation, it es-
timates its user interaction strength with every other pebich, as specified in Section
6.5.1, is equal to its estimation of the fraction of onlin@éi of another peer. By com-
paring this estimation with the real fraction of online timmee evaluate the accuracy and
scalability of UISE. The results are presented in the foilmasections.

6.6.2 Accuracy

We first show in Fig. 6.10 the comparison between the real atichated fractions of on-
line times, where the latter is represented by the useraatien strengths (UISs) between
the evaluating and evaluated peers. In Figs. 6.10(a) arti{l§,the evaluated peers are
ranked according to their UISs with an evaluating peer isgk and in class B, respec-
tively. We see that the estimation is improved when the etalg peer is more active:
the peer in class A achieves more accurate estimations llegmeer in class B. Peers in
class B only stay online fof}) /(SD + SZ; ;) = 20% of the time and therefore they meet
few peers to build their local views. As stated in SectionB.5his is a compromise for

2We will give the reason later in Section 6.7.3
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Figure 6.11: CDFs of the absolute accuracy, PCC, and SRCGim@aation with 500
peers.

maintaining the security.

Absolute accuracy: We define the absolute accuracy achieved by a peer as the ratio
between its estimation and the real online time of another, @&eraged over all evaluated
peers. In Fig. 6.11(a) we show the CDF of the absolute acasachieved by peers in
class A and in class B, respectively. In general, peers sscdaachieve better absolute
accuracies than peers in class B.

Relative accuracy: We use the Pearson Correlation Coefficient (PCC) [94] and the
Spearman Ranking Correlation Coefficient (SRCC) [99] teessshe relative accuracy
achieved by each peer. In brief, PCC and SRCC measure tlaa lmel the monotonic
dependence between two variables, respectively. For aathading peer, first, we rank
its evaluated peers based on its online-time estimationthém; then, we generate two
variables, a list of the real online times and a list of thermtime estimations, in the
order of this ranking; finally, we calculate the PCC and th&€S8Rf these two variables.

In this way, we can assess the correlation between the lacklaf peers at the evaluating
peer and the global rank of peers based on their real onhmesti For the two examples
shown in Figs. 6.10(a) and 6.10(b), the PCCs are 0.9848 &026, and the SRCCs are
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0.7968 and 0.7812, respectively. Figs. 6.11(b) and 6. Eh@) the CDFs of the PCC and
the SRCC achieved by peers in class A and in class B. We sepdbet achieve decent
relative accuracies, i.e., their local ranks of peers rédethe global one.

Absolute accuracy versus relative accuracy:One important application of online
time estimation is to differentiate users with differentdks of activity. Then, only the
rank of users is needed and a design with high relative acguike UISE, will be suit-
able. Further, as we will show in the next section, UISE gaesurate estimations even
under low coverages of peer discovery and information digsation.

6.6.3 Accuracy under partial information

To test the accuracy of UISE under partial information, wst frlary P, and P, in such a
way thatPc = P, x P, is constant (equal td0%). Pc represents the probability of es-
tablishing an edge between two peers in a local per-cycledfl&third peer. Intuitively,

it decides the third peer’s estimations for others. In Fi@26ve show the user interac-
tion strengths (estimated fractions of online time) avedagver the classes of evaluating
(“from” in the figure) and evaluated (“to” in the figure) peefd/e find that, consistent
with our intuition, the estimations stay stable for differ@alues ofP; and of P, while
P¢ is constant. This allows us to analyze the influencégfwithout exploring exten-
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sive combinations of’; and P,. We keepP; constant (equal to 1) and vaf in such a
way thatP. is decreased from 100to 0.1%. In Fig. 6.13 we show the user interaction
strengths averaged over classes. We find that wheis at least equal t6%, i.e., when
peers hold at least’ of the total information, the estimations stay stable. frerteduc-
ing Pc results in noticeable decreases of estimations, nevegfieUISE still achieves
decent relative accuracies: on average, peers in class éoamectly estimated as more
active than peers in class B.

6.6.4 Scalability

In this section we test the scalability of UISE under différ@opulations. LetN(t)
represent the number of online peers at cyclat the end of the simulation, for cycle
each peer will receivéV(t)(N(t) — 1)Pc records and will generat®'(¢)(N(t) — 1)Pc
edges inits local per-cycle UIG. To test the scalabilityewhhe population increases, we
decreasé”- in such a way thaiv(¢)(N(t) — 1) P is constant.

In UISE, an evaluating peer recognizes another peer to lieeosl cyclet if they are
in the same connected component in its local per-cycle Ul@&yolet. In graph theory,
for arandom graph with vertices to be connected, the expected number of edgestheede
is less tham In n [74]. Therefore, the basic condition for a peer to correlyognize all
the peers online at cycleas:

N(t)(N(t) —1)Po > N(t)In(N(t)) = Pc > INHE];W);

AslIn(N(t)) increases very slowly witiV(¢), the required value faP decreases strongly
with the population. Thus, UISE achieves good scalabititg self-organized manner.
The simulation result confirms the above analysis. Fig. 6Halvs the average user

interaction strengths (estimated fractions of online Jimi&e see that while we increase
the population and decrease accordingly, UISE achieves stable estimations.
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6.7 Emulation

In this section we evaluate the performance of UISE for diffit user behaviors. As we
have tested different dissemination protocols in Sectién\se now release the assump-
tion of a generic information dissemination and we test UlBHer Tribler’s dissemina-
tion protocol. As we intend to test different user behavibet we cannot control in real
world experiments, we use emulation in this section. Baseslyothetic user behaviors,
we test the performance of UISE for different online patterBased on user behaviors
generated from measurement traces, we test its perfornamnass different online net-
works.

6.7.1 Emulation setup

The emulation is performed on the DAS-4 supercomputer [24listributed six-cluster
system for computer science research. All our experimeatsia on the TUDelft cluster
that contains 23 nodes, each of which has two 2.4 Ghz quadmacessors and 24
GBytes of memory. The nodes are connected by a 10 Gb/s QD Rolafic interconnect.
Unless otherwise stated, we deploy 500 peers evenly on 28snddeers run Tribler’s
dissemination protocol: they meet, generate, and dissgminteraction records, and
store the records received from dissemination in theirl IB€iLite databases. At the end
of each emulation, they estimate their user interacticengtths with others, which give
their estimations of the fractions of online time of others.

We set the cycle size to 2 minutes and we run each emulatiatOftwours, resulting
in interaction bitmaps of0 x 60/2 = 300 bits. The small cycle size and short emulation
time are compromises for the time consumption of the clusidnis parameter setting
represents a running time of 7 days when the cycle size i9s#@ minutes in the real
world implementation.

6.7.2 Synthetic user behavior

In this section we evaluate the performance of UISE undderint mixtures of active
peers, less active peers, peers with heavy churn, and peg@ways stay online. Here,
we use the synthetic user behaviors as introduced in Se&#oh and we test four scenar-
ios in our emulation: (i) peers always online witho&( 0) and Bfo, 0); (ii) active peers
A(20, 5) versus less active peers B(5, 20); (iii) active pe®&20, 5) versus heavy churn
peers B(5, 5); and (iv) heavy churn peers with A(5, 5) and Bf5All the session lengths
are in minutes. The results are shown in Fig. 6.15.

Under scenario 1, peers have the highest chance to meet aod penerate a large
number of records. Fig. 6.15 shows that UISE achieves atestimations under this
scenario: on averag®3.33% of the online time is successfully identified. Under scemari
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Figure 6.16: Comparison between the original FileListérand our sample.

2, the active peers achieve higher accuracies than thed#gs peers. Interestingly, com-
paring scenarios 2 and 3, when the less active peers areathtingeers with heavy churn,
their estimations for active users (“from B to A’ in the figiileecome more accurate. Un-
der scenario 4, though peers are with heavy churn, they dhidsnbtify 0.4/0.6 = 67%
of the online time. These results indicate that the absalateracy depends on theail-
ability, i.e., the fraction of online time, of the evaluating peather than its churn pattern.

6.7.3 Trace-based user behavior

To test the performance of UISE across different online odta; we run emulations
based on measurement traces generated from the privat@ @t community FileList
[6]. These traces contain uptime and downtime of every usarwas online at least
once during the measurement period. In total, we capturgs83dusers in 7 days, from
which we randomly select 500 users for our emulations. Fig6 8hows the CDFs of
the average online session length and the total online tom#&h€ original trace and our
sample. We see that our sample represents the originalvesgavell. Further, a94%
of the online sessions are longer than one hour, we set tie sige to 30 minutes in the
real implementation, so as to capture most of the online@ess
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Fig. 6.17 shows four examples of comparisons between thanebestimated frac-
tions of online time, where the latter one is representechbyuser interaction strengths
between the evaluated and evaluating peers. In Figs. §,5/1&@(b), 6.17(c), and 6.17(d),
the evaluated peers are ranked based on their online tiniesag=d by a peer with an
availability of 100%, 90%, 50%, and10%, respectively. The first three peers achieve es-
timations very close to the real fractions of online timethnan SRCC equal to 0.9998,
0.9945, and 0.9388, respectively. We can see a clear deavé#se real fractions of on-
line time when the evaluated peers are ranked based on theaehs from these three
evaluating users, indicating that their local ranks of petwsely resemble the global one.

Evaluating peer 4 (Fig. 6.17(d)), however, only achieveSRECC equal to 0.6853.
The reason is that, as stated in Section 6.5.1, in UISE amiawvad) peer only trusts the
interaction records that can link back to itself (reflectgdoking in the same connected
component in a local UIG). Therefore, its estimation fortheo user in fact reflects their
concurrentonline time. As evaluating peer 4 is only online 16" of the time, it achieves
a low accuracy. Nevertheless, its estimation for another can be used to assess their
availability to each other—an important issue for disttdzlionline networks where users
collaborate and only the ones online simultaneously can é&th other. In Fig. 6.18 we
show evaluating peer 4’s estimations and its fraction otocorent online time with other
peers, where we observe very accurate estimations with &CS#gual to 0.9973.
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6.7.4 Preparing for the real world: strategies for reducingthe work-
load

As we found in Section 6.6.3, UISE achieves good estimatiwes with limited infor-
mation. This desirable feature allows us to introduce twacpcal strategiesandom-
generationandtargeted-generationto reduce the workload imposed on the system, in
terms of the number of interaction records to be dissemihate random-generation,
when two online peers meet for the first time in some cyclehwaiprobability P, they
generate an interaction record (in the original design thdyor sure generate a record).
In targeted-generation, for each cycle, a user only geeeratcords with théVs users
that it has observed to be online the longest during the/dasgcles, resulting a constant
number of records being generated per user per cycle.

We run emulations to test the performance of these two giestewhere we use the
same parameter settings as in Section 6.7.2. Figs. 6.19.20dl6ow the user interaction
strengths (estimated fractions of online time) averagest olasses for different values
of Py and N (we setM = 1 in our emulations). We see that UISE performs stably
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when P is decreased from 1 to 0.05 and wh&ndecreases from 10 to 1. This implies
that we can decrease the workload dramatically withoutribetging the accuracy of the
estimation.

6.8 Real-word deployment

We have implemented UISE into Tribler. In addition to its bigadéive impact on design,
Tribler's user community serves as the basis for our realdyoerformance evaluation.
In this section, we report measurements of the user behakmoverlay structure, the
performance of interaction record generation, and theracglof online time estimation.

6.8.1 Deployment techniques

In the real world deployment, the cycle size is set to 30 nr@saind the interaction history
is kept in a sliding window fashion with a window size of 7 dagesulting in interaction
bitmaps of7 x 24 x 60/30 = 336 bits. We adopt théargeted-generatiomersion of UISE
as introduced in Section 6.7.4, wit, = 5 andM = 1. In addition, we specify that two
users generate their first interaction record only untiy tha&e seen each other online for
at least two cycles. This effectively prevents “hit-andrrusers generating records that
are of limited use.

Tribler is fully distributed, containing no central sersemnd hence no records of user
behaviors from the global view. To obtain the ground truthdar experiment, we de-
ploy log servers and every 5 minutes, each user reports litsecactivity to one of them,
including its identifier, its timestamp, the number of iatetion records it generated suc-
cessfully, and the updated information about interactecords of other user pairs it
received since last report. In total, for the first week oblgr's new release, we obtain
2,874 active users with unique identifiers, among whichelae 1,713 users that have



136

1 P
0.8*,-'::"" --week 1| 4
1 ---week 2
068 week 3|
é - 0.8 _..—"_"_‘.‘:‘:‘.‘:_‘:‘:‘.".T-'-------""""' week 4
O 0.6 .‘_.-_-_'; 255
0.4} i
0.4
0.2/ 0.2y
0 L L L L L
0O 1 2 3 4 5 6 7
0 L L

0 20 40 60 80 100 120 140 160 180
Online time (hour)

Figure 6.21: CDF of online time of Tribler users.

150r R

=

o

<
I

Online time (hour)

a
e

T o LA
[ RN T TR e e
1 2

=2Q
(=)

Cumulative node degree
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generated at least one interaction record. For weeks 2d34 amwe obtain 2,673, 2,905,

and 2,884 active users with unique identifiers, respegtivdke use the data from weeks
1-4 to analyze the evolution of Tribler user’s online timagdave use the data of week 1
to evaluate the overlay structure, the performance of cegeneration, and the accuracy
of online time estimation. Results are shown in the follayections.

6.8.2 Evaluation

Online time: The dashed blue line in Fig. 6.21 shows the CDF of online tioidsibler
users obtained from log servers during the first week. Aroliyd users are online for
more than 7 hours, resulting in an average of more than onegeswday. Nevertheless,
60% users are online for less than one hour in total. Comparigg.fd.21 and 6.16(b),
clearly users in FileList are more active than users in €ribFileList specifies that users
with high contribution levels will be rewarded with the peegnce for future downloads,
and therefore users are incentivized to stay online longerdo so, FileList constantly
monitors user activities through central servers—UISHea&s exactly the same goal,
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and moreover, is performed in a distributed manner. As aenaftfact, in the current
release of Tribler, users are educated with the fact that deévities will be evaluated
through a distributed algorithm (i.e., UISE). Though astimoment the estimated online
times are not utilized explicitly as in FileList, we can a@dy observe a gradual increase
of user’s online time from week 1 to week 4 (Fig. 6.21). Thiermising observation in-
dicates that, being aware of their activities being evaldatisers in Tribler are becoming
more committed—a behavioral change that has been obseyvedhby sociologist and
psychologists under similar circumstances in human sppid.

Overlay structure: When users are online, they gradually meet more users ama-gen
ate more interaction records. This effect is further angadifay targeted-generation where
users that stay online longer are preferred by other useagerierate interaction records
with. In Fig. 6.22 we show the scatter plot of each user’srentime and its cumulative
node degree, which is defined as the number of unique users ttzs generated inter-
action records with. We see a clear positive monotony trexteiéen them, achieving an
SRCC of 0.7883. In Fig. 6.23 we show the scatter plot of eaenssnline time and
the number of interaction records it generated succegsfuliere we observe a positive
monotony trend with an SRCC of 0.9312.

Interaction record generation: In Fig. 6.24 we show the CDF of record generation
success rate, which is defined as the ratio between the nuwhigenerated records and
the number of record generation attempts, for each user. e&/ahat in general0%
of the users achieve success rates larger than 0.7. Theefailbay come from several
circumstances including the churn of users, the recipibaisg saturated by requests,
and the NATs between users that prevent them to connect. @geargue that with the
preference to generate records with highly active useosgthisers can be fully occupied
and therefore resulting in low record generation succees.raNevertheless, we show
in Fig. 6.25 the scatter plot of each user’s online time asddtord generation success
rate. The corresponding SRCC is only -0.1591 and theretooe/s no correlation be-
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tween these two metrics. Particularly, a highly active tisat stays online for 151 hours
generates 2,410 records, achieving a success ratea%.

The accuracy: Fig. 6.26 shows the comparisons between the real and estirfrat-
tions of online time of each Tribler user, where the latteegresented by the user inter-
action strengths between the evaluating and the evaluatsd.un Figs. 6.26(a), 6.26(b),
and 6.26(c), the evaluated users are ranked based on teeinteraction strengths with
a user with an availability 090%, 50%, and 10%, respectively. Similar to the results
of Filelist trace relay in Section 6.7.3, the accuracy of éisémation is limited by the
availability of the evaluating user: the more active it i thore accurate its estimations
will be. In total, the three evaluating users have succégstlentified 976, 745, and 217
users to be online for at least one cycle; and the SRCCs betthe& estimations and
real online times are equal to 0.9325, 0.8635, and 0.6446erively. Though evaluat-
ing user 3 (Fig. 6.26(c)) achieves a low accuracy, it cantately estimate its concurrent
online time with other peers. In Fig. 6.27 we show its estiore (represented by user
interaction strengths) and its real fraction of concuraeiine time with others, where we
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observe very accurate estimations with an SRCC equal t@6.9Vhus, it can success-
fully identify the users with whom it is online simultanedys.e., the users with whom
it has been and potentially will be collaborating.

6.9 Related work

To date, a few works have focused on understanding useaatiens in online social
networks. Moonret al. [18] investigate the guestbook logs of Cyworld and they show
that interactions between friends are highly reciprocatédwanathet al. [108] study
the evolution of user interactions in Facebook and they twadl iser interactions change
rapidly over time. These observations provide the foutator designing UISE that
only considers recent user interactions. Wilsbal.[114] introduce an interaction graph.
They show that interaction links exhibit different propestthan social links (friendships)
and are more representative for inferring meaningful usktionships. Nevertheless,
their interaction graph is unweighted and does not take ritexaction frequency into
account as we do.

Another direction of related research is identifying sbties. Kahandaet al. [54]
propose an approach for identifying the weak and the striasg They focus on super-
vised learning models that require human annotation of sin&ngth such as top friend
nomination. Xianget al. [116] develop an unsupervised model that represents a range
of tie strengths based on user interactions and profile aiityil However, they consider
only direct and binary interactions, simply indicating wher a user has interacted with
another user or not. Instead, we propose UISE that captuedsdquency of both direct
and indirect interactions. Moreover, while all the aboviatexl works are centralized,
UISE is applicable in distributed systems.

There are also studies on leveraging user interactionssinaited online networks
for policy design. BitTorrent [19] clients constantly mtoritheir direct interactions (up-



141

loads) with others and reciprocate the ones from whom theynttad the fastest. How-
ever, in BitTorrent systems the problem of low rendezvoutsend direct interactions
are insufficient for inferring user relationships [49]. Migoideret al. introduce Barter-
Cast, a distributed reputation system that ranks usersllmastheir upload and download
activity in P2P file sharing. BarterCast captures both diaed indirect user interactions,
however, it adopts a MaxFlow-based algorithm with a heawpmexity. Instead, UISE
adopts an connect-component-based algorithm and achadimsar time complexity in
terms of the number of user pairs. We have also applied UlStetive a decentralized
scheme for online time estimation. To the best of our knogiegthis is the first work that
sheds lights on this topic.

6.10 Conclusion

User interaction is the most important underpinning of ma&lhetworks, in which hun-
dreds of millions of users communicate, interact, and skizge online lives. In this
chapter we propose UISE, a scalable scheme for estimatgrgnteraction strength in
both centralized and distributed online networks. We hamied UISE to detect user
interaction patterns in Facebook based on wall posts, andawe derived patterns that
resemble the ones often observed in the offline human sodtyhave further applied
UISE to design and deploy a decentralized scheme for onlme éstimation based on
rendezvous. In the latter application we shown that UISE&able and stable for dif-
ferent dissemination protocols and for different user befrta. We have incorporated
this application into Tribler, and we have shown through soe@aments that UISE effec-
tively differentiates users with different levels of adyyand thus, accomplishes the most
important goal of estimating user interaction strength.
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Chapter 7

Conclusion

In this thesis we have explored the correlation between loskaviors and contribution
incentives in online networks. In order to gain a systemeusight, we have investi-

gated both barter schemes and monetary schemes for caiatnilmcentives. We have
examined their limitations and risks, we have proposed déeseto revise them, and we
have proposed a general framework for estimating useractien strength that under-
pins a wide range of systems and applications includingritrtion incentives. Below

we present our conclusions and suggestions for future work.

7.1 Conclusions
The main conclusions of this thesis are as follows:

1. Enhancing reciprocity or reducing inequality is a keypiple in the design of Bit-
Torrent and its variations. Different applications oftequire different principles,
and therefore the balance between reciprocity and equaliggsential. Several
factors in the BitTorrent protocol have significant influea®n this balance. For
example, reciprocity is enhanced when users assign mooidih to theirregular
unchoke slotand when seeders favor the fast users. On the other handaiitgq
is reduced when users assign more bandwidth to tpimistic unchoke slotand
when seeders favor the relatively slow users. Overall,ciegduinequality leads to
a better system-wide performance in terms of a higher doathEpeed averaged
over all users (Chapter 2).

2. Sharing Ratio Enforcement (SRE), prevalently adoptqarivate BitTorrent com-
munities, has been demonstrated through measurementsetifebgve in incen-
tivizing contributions. Based on a fluid model, we have ted@oally proven its
effectiveness. By assuming that users are rational andhbgtonly upload the
minimum amount required by SRE, we have analyzed two tygicaharios where
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SRE is applied within one swarm and within multiple swarnespectively. As it
turns out, the former case induces enhanced reciprocigress the latter case im-
proves the system-wide performance. Above all, our modasliges a lower bound
of the download performance that would be achieved in thewedd (Chapter 3).

Due to a number of limitations induced by barter schemesatary schemes can
be used as effective alternatives for contribution incesti We have provided a
long-missing risk analysis of these monetary schemes. #sris out, under these
schemes, the supply and the demand of contributions nedatatddalance, with-
out which the system is prone to systemic risk that may causeallapse of the
entire system due to too little or, counter-intuitivelyptmuch contributions. Even
when these extreme situations do not occur, the user-levinmance can be de-
teriorated due to an oversupply or an undersupply of camiohs. To tackle these
problems, we propose four strategies that have been inldpyredeas in social sci-
ences and economics. The primary idea behind them is to iadlgpadjust the
supply and the demand based on the credit dynamics in thensy#ts the simu-
lation results show, all four strategies are very effectivalleviating the negative
effects of monetary schemes while still providing stronzgintives for contributions
(Chapter 4).

In online networks users do not always behave and cotiibincentives do not

always work well. Taking private BitTorrent communitiestae example, we have
explored the behaviors of their users and have found thaisusedication is not

universal. As users evolve in the community, some of thenoitmecmore com-

mitted, in terms of higher ratios of the seeding and the leectime, and some
game the system by keeping risky low sharing ratios whilg teech more often

than they seed. Meanwhile, even though swarms in privateraanities are greatly
oversupplied, users achieve very high download speedgaifisant expense in-
cluding excessively long seeding times and very low uplgeds. For users who
intend to increase their sharing ratios, we have shown #eatiag for longer dura-
tions is not as effective as increasing the upload speed.idfnot realistic for the

users to upgrade their internet access, we suggest thermtswarms early or to

join undersupplied swarms (Chapter 5).

. With the User Interaction Strength Estimation (UISE)esok that we have pre-

sented in this thesis, we have devised a general framewoexfessing user in-
teractions and their strengths that is both generic and eapplied to a wide range
of online networks. Among the strong points of UISE is thaiaptures direct and
indirect user interactions, that it scales with only partiéormation dissemination
in decentralized systems, and that it provides disinceatfer malicious user be-
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haviors. We have applied UISE to detect user interactiotepat based on wall
posts in Facebook and we have found patterns that resendse ttbserved in the
offline human society: users in Facebook tend to interaquieatly and stably with
relatively small groups, occasionally with persons owdditbse groups, and they
make new friends while in the meantime losing touch with satdefriends. We
have further applied UISE to online time estimation basedemalezvous as user
interactions in Tribler, and we have demonstrated the acguand scalability of
UISE with different information dissemination protocolsdauser behaviors using
simulations, emulations, and a real-world deployment.ti®darly, we have ob-
served a desired user behavioral change in the real-wopgtbglaent: with the
awareness that their interactions are being monitoredswme becoming more
committed. This observation indicates that UISE is effectn, among other appli-
cations, incentivizing contributions (Chapter 6).

7.2 Suggestions for future work

There are a number of promising directions for future wollatesl to the topic of this
thesis, including:

1. Our model for BitTorrent is based on its original Tit-Ftat. Since its first re-
lease, several strategic variations of BitTorrent havenljgeposed, for example
BitTyrant [78] and BitThief [65], which aim at maximizing ¢ir download speeds
while minimizing their contributions. It will be interesig) to apply our model to
these strategic variations and to investigate their effecbandwidth allocation, in
reciprocity enhancement, and in inequality reduction.

2. We have performed a measurement of user behaviors ing@B#orrent commu-
nities that adopt Sharing Ratio Enforcement (SRE). Theezesame private com-
munities that apply further policies to enhance the posigiifects and to alleviate
the negative effects of SRE, for example, the occasifvealleecrandfree-seedA
more detailed measurement of user behavioral changes threer special scenar-
ios will help community organizers to understand the pdssitanipulations from
users, which in turn will lead to better policy designs.

3. We have used models and simulations to provide a straigbdafd demonstration
of the effectiveness and risks of monetary schemes for iboriton incentives. In
this analysis, we have only considered static behaviors.ofemealistic approach
will be including dynamic behaviors where users can chahgg strategies given
the current situation of the system. For example, a gameylagproach, as the one
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often adopted in analyzing scrip systems [56], will provéd®ore theoretical foun-
dation and therefore more insights into the understandimgometary schemes.

4. The UISE scheme we propose is a general framework forgeptieg user relation-
ships with their interactions. It will be promising to combiit with social science
studies that evaluate how well online interaction represezal world relationships.

7.3 Epilogue

For decades, sociologists and psychologists have bedngatfort in analyzing human
behaviors, and particularly, in analyzing policies to miiéze humans to contribute and
cooperate. However, traditional offline approaches suduagys and controlled exper-
iments suffer from the common flaw that the data derived frbesé approaches were
comparably scarce and often of poor quality [61,113]. Thedee quantity and quality
of data on human societies was simply impossible to obtagmndc@dentally or naturally,
online networks arose, together with the societies formiginvthem.

With the similarities between online and offline societresearchers now are able to
collect behavior data and to evaluate their theories at ke skhat can never be reached
by traditional offline methods. This is what we have done is thesis. For example,
in this thesis we have, from a computer scientist’'s pointiefw explored thelragedy
of the Commonsand the strategies to avoid this tragedy in the context aebéased
BitTorrent with millions of users, we have evaluated cretjihamics and systemic risk
of monetary systems embedded in some P2P systems in whithisrearned and spent
through contributions and consumptions, we have demdesdti@n a user base of over
ten thousands that one single incentive policy can triggeargety of user behaviors in
the same online community, and with the detailed logs of bebaviors in Facebook and
Tribler, we have analyzed user interaction patterns and ave Imferred possible user
relationships.

From the large user base and the detailed records of useribetieat are made possi-
ble only by online networks, we have obtained several isterg and important insights
in user behaviors and contributions incentives. Above sathat users do not always
behave and contribution incentives do not always incezgivisers to contribute. As in
the real world, online users can be lazy, selfish, strategieven malicious. Moreover,
adaption is hardwired in human’s nature and this appliestme users as well. When
a certain incentive policy is designed and applied, usensland adapt fast, and devise
new strategies to exploit the policy. Thus, there is hardly static incentive policy that
is effective for all systems at all times. Instead, our asiglghows that policies that can
adapt to the context are preferable.

Another major insight is the universal tradeoff in systerd aolicy design. Barter-
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based incentive policies have their limitations in indin@ciprocity, but remedies dealing
with these limitations will introduce security concernsoivetary schemes are effective in
increasing the supply of contribution, but sometimes thay tead to a state of oversup-
ply that eventually crashes the entire system. In the coofexstimating user interaction
strength, excluding all indirect interactions surely fét@ut a large amount of useful in-
formation, but considering blindly all interactions indlng even the very remote ones
adds a lot of noise in the analysis. Thus, finding the critmaiht in the tradeoffs is
crucial for successful system and policy design, and thenatequires a thorough under-
standing of the system that can only be obtained throughhpetea exploration, design
space analysis, and user behavior modeling.

Above all, the human society has evolved for thousands afsyédmt there are still
many areas of human behavior left unknown or unexplored.h&m $ense, online so-
cieties that emerged only two decades ago are still in a pvienstate, yet with their
ever-improving technologies we have already obtained neaniting results. This points
the way to a promising future for the study of online netwonket only in analyzing
online behaviors, but also in cross reference with offlingetees.
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Summary

Online networks as societies: user behaviors and contribitn incentives

Online networks like Facebook and BitTorrent have beconmeula and powerful
infrastructures for users to communicate, to interact, targhare social lives with each
other. These networks often rely on the cooperation anddh&ibution of their users.
Nevertheless, users in online networks are often found teelifesh, lazy, or even ma-
licious, rather than cooperative, and therefore need tombentivized for contributions.
To date, great effort has been put into designing effectorgrdoution incentive policies,
which range frombarter scheme$o monetary schemesdn this thesis, we conduct an
analysis of user behaviors and contribution incentivesiiine networks. We approach
online networks as both computer systems and societiemddpat this approach will,
on the one hand, motivate computer scientists to think albewimilarities between their
artificial computer systems and the natural world, and onactinver hand, help people
outside the field understand online networks more smoothly.

In Chapter 2, we investigate the characteristics and giesiof BitTorrent’s Tit-For-
Tat incentive policy and its variations that are based otelsirWe propose a fluid model
that captures the bandwidth allocation in BitTorrent. Wplese several strategies that in-
fluence the balance between reciprocity and inequality.Sfudy shows that (i) reducing
inequality leads to a better overall system performancd,(Bnthe behavior of seeders
(i.e., users that hold a complete copy of the file and uplotat free) influences whether
reciprocity is enhanced or inequality is reduced.

In Chapter 3, we provide a theoretical model to analyze artaution incentive named
Sharing Ratio Enforcement (SRE). We aim to provide an unaeding of how SRE
provides contribution incentives and how SRE influencesditvenload performance in
the system. Specifically, we study the influence of the SRé&stiwld (i.e., the minimum
sharing ratio requirement) and the bandwidth heteroggméitisers in the system. In
our analysis, we assume users to be rational, i.e., they@dgdhe minimum amount
required by SRE, and we show that the download performanpeedgcted by our model
represents a lower bound for the actual performance thabearached in a BitTorrent
private community. Hence, following our model, communitnanistrators can predict
the minimum performance level their systems will be ablestach.

In Chapter 4, we analyze the performance of online netwdrks adopt monetary
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policies as contribution incentives, from both the systewel and the user-level per-
spectives. Taking private BitTorrent communities as amgda, we show that monetary
policies can lead to system-wideunchesor crashesvhere the system completely seizes
due to too little or to too much credit, respectively. We @xplthe conditions that lead to
these system pathologies and we present a theoretical thad@redicts if a system will
eventually crunch or crash. We apply this analysis to deaigadaptive monetary policy
to maintain the system sustainability. Given private comities that are sustainable, we
further analyze their user-level performance by studyigéffects of their oversupply,
in terms of excessively high seeder-to-leecher ratios. Ndsvghat although achieving
an increase in the average downloading speed, the phenaméowersupply has three
undesired effects: long seeding times, low upload capaditizations, and an unfair
playing field for late entrants into swarms. To tackle thesgblems, we propose four
different strategies, which have been inspired by ideasamssciences and economics.
We evaluate these strategies through simulations and deratatheir positive effects.

In Chapter 5, we explore the user behaviors in private Brffdrcommunities, we
argue the reasons for these behaviors, and we demonstthtthbgositive and the neg-
ative effects of these behaviors. We show that in these cariies, as predicted by our
model, users seed for excessively long times to maintamired sharing ratios, but that
their seedings are often not very productive (in terms oflpload speeds) and that their
long seeding times do not necessarily lead to large uploadiata. We find that as users
evolve in the community, some users become more committetbrims of increasing
ratios between their seeding and leeching times. In the riee) some users game the
system by keeping risky and low sharing ratios while leeghmore often than seeding.
Based on these observations, we analyze strategies teetagdl the negative effects of
these user behaviors from both the user’'s and the commuimtyngstrator’s perspective.

In Chapter 6, we present the design, deployment, and asalyshe UISE scheme
for User Interaction Strength Estimation for both cenbedi and decentralized online
networks. Among the strong points of UISE is that it captudigect and indirect user
interactions, that it scales with only partial informatidissemination in decentralized
systems, and that it provides disincentives for malicicaes behaviors. We apply UISE to
detect user interaction patterns based on wall posts irbéa&e and our results resemble
the patterns often observed in the offline human society.Uitedr apply UISE to online
time estimation based on rendezvous as user interactidigoler, an online network for
media and social applications like file sharing, streamamgl voting. We demonstrate the
accuracy and scalability of UISE with different informatidissemination protocols and
user behaviors using simulations, emulations, and a redwieployment.

To summarize, in this thesis we provide theoretical andtmacinsights into the
correlation between user behaviors and contribution itneesin online networks. We
demonstrate user behaviors and their consequences aheatiigtem and the individual
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level, we analyze barter schemes and their limitationsgemtivizing users to contribute,
we evaluate monetary schemes and their risks in causingtlag@se of the entire system,
and we examine user interactions and their implicationsiferiing user relationships.
Above all, unlike the offline human society that has evoh@dlfousands of years, online
networks only emerged two decades ago and are still in a forerstate. Yet with their
ever-improving technologies we have already obtained neaniting results. This points
the way to a promising future for the study of online netwonkst only in analyzing
online behaviors, but also in cross reference with offlingetes.
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Samenvatting

Online networks as societies: user behaviors and contribitn incentives

Onlinenetwerken zoals Facebook en BitTorrent zijn populaire exlige infrastruc-
turen geworden voor mensen die met elkaar willen commuanceontact willen hebben,
en hun sociale leven willen delen. Deze netwerken zijn vdla&rikelijk van de samen-
werking en de bijdragen van hun gebruikers. Echter, in pleat samenwerkend zijn ge-
bruikers inonlinenetwerken vaak egoistisch, lui of zelfs kwaadaardig, emala moeten
zij geprikkeld worden om bijdragen te leveren. Er is al veeleite gestoken in het ont-
werpen van effectieveoliciesom tot bijdragen te prikkelen, die lopen vamilhandel
tot monetairesystemen. In dit proefschrift voeren we een analyse uit \emgkersge-
drag en prikkels tot bijdragen ionline netwerken. We benader@mline netwerken als
computersystemen en als gemeenschappen, hopend dat dedeliey aan de ene kant
informatici kan motiveren om na te denken over de overeeskemtussen kunstmatige
computersystemen en de werkelijke wereld, en aan de andetariensen buiten dit on-
derzoeksveld gemakkelijkenline netwerken laat begrijpen.

In hoofdstuk 2 onderzoeken we de karakteristieken en gr&ascvan BitTorrent’s Tit-
For-Tat mechanisme en variaties daarop die op ruilhandshsperd zijn. We stellen
een vloeiend model voor waarmee de allocatie van bandlereedBitTorrent wordt
beschreven. We onderzoeken verschillende strategieedelbalans tussen wederke-
righeid en ongelijkheid beinvloeden. Onze studie toont@at (i) het verminderen van
ongelijkheid leidt tot betere algehele systeemprestaéeg(ii) het gedrag vaseeders
(d.w.z. gebruikers die een volledige kopie van het bestabtbén en dat gratis weggeven)
bepaalt of de wederkerigheid wordt versterkt of de ongledijd wordt gereduceerd.

In hoofdstuk 3 presenteren we een theoretisch model vo@radyseren vaBharing
Ratio Enforcemen{SRE) als prikkel tot bijdragen. Ons doel is om duidelijk taken
hoe SRE dergelijke prikkels levert en hoe SREdbevnloadprestaties in het systeem
beinvioedt. Meer in het bijzonder onderzoeken we de inVi@n de SRE-drempel (d.w.z.
de minimum vereistsharing ratig en van de heterogeniteit van de bandbreedte van ge-
bruikers in het systeem. In onze analyse gaan we uit vamedaaebruikers, wat wil
zeggen dat ze slechts de minimum-bijdrage geven die SREsyeza we laten zien dat
de downloadprestaties zoals voorspeld door ons model een ondergoeneen voor de
werkelijke prestaties die in een gesloten BitTorrent-gemsehap bereikt kunnen worden.
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Derhalve kunnen de beheerders van een gemeenschap op groadsymodel het mini-
male prestatieniveau van hun systeem voorspellen.

In hoofdstuk 4 analyseren we de prestaties woatine netwerken die monetaire
prikkels tot bijdragen gebruiken, vanuit zowel systeerma-gabruikersperspectief. Aan de
hand van gesloten BitTorrent-gemeenschappen laten welatenonetaire prikkels kun-
nen leiden tot systeemwijdgunchesof crasheswaarbij het systeem volledig vastloopt
door te weinig respectievelijk te veel krediet. We ondekemede omstandigheden die lei-
den tot deze systeempathologieén en presenteren eeetthelormodel dat voorspelt of
een systeem uiteindelijk zal vastlopen. We passen dezgsartale bij het ontwerp van een
adaptief monetair mechanisme om de bestendigheid van $teiesy te garanderen. Voor
gesloten gemeenschappen die bestendig zijn analyseremnyédstaties voor gebruikers
door de effecten van hun overaanbod in termen van uitzajdbdge seeder-leecher
verhoudingen te bestuderen. We tonen aan dat hoewel egimgtjan de gemiddelde
downloadsnelheid wordt bereikt, het fenomeen van overaanbod dgewenste effecten
heeft: langeseedingtijden, laag gebruik vanploadcapaciteit en een ongelijk speelveld
voor de late toetreders tot het systeem. Om deze problenmretegaakken, stellen we
vier verschillende strategieén voor die zijn geinspuleoor ideeén uit de sociale weten-
schappen en economie. We evalueren deze strategieén daaelman simulaties en
demonstreren hun positieve effecten.

In hoofdstuk 5 verkennen we het gedrag van gebruikers inotgsIBitTorrent-
gemeenschappen, gaan we de redenen voor dit gedrag na, ensieren we zowel
de positieve als de negatieve gevolgen van dit gedrag. &k a¢n dat in deze gemeen-
schappen, zoals voorspeld door ons model, gebruikers aege tijdseedtijden hebben
om de benodigdsharing ratiote behouden, maar dat deze tijd vaak niet erg productief
gebruikt wordt (in termen van laggploadsnelheden) en dat de langeedtijden niet
noodzakelijkerwijs leiden tot grote hoeveelheden onteandata. Onze bevinding is dat
naarmate gebruikers evolueren in een gemeenschap, somamdgeen meer toegewijd
worden in termen van het verhogen van de verhouding tussersded en leechtijd.
Tegelijkertijd zijn er ook gebruikers die het systeem bémpeloor een risicovolle, lage
sharing ratiote onderhouden door relatief meer daachingdan aanseedingte doen.
Gebaseerd op deze observaties analyseren we strateggeéda degatieve effecten van
dit gebruikersgedrag verlichten vanuit het perspectief zavel de gebruiker als de be-
heerder van de gemeenschap.

In Hoofdstuk 6 presenteren we het ontwerp, de implemenatiele analyse van
UISE voorUser Interaction Strength Estimatioroor zowel gecentraliseerde als gede-
centraliseerdenline netwerken. De sterke punten van UISE zijn dat het direct@eén i
recte interacties tussen gebruikers vangt, dat het scmadlslechts gedeeltelijke infor-
matieverspreiding in gedecentraliseerde systemen, ened&waadwillende gebruikers
ontmoedigt. We passen UISE toe om patronen van gebruikeraaties te detecteren op
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basis varwall-postsin Facebook, en de resultaten lijken op vaak waargenomearyeat
in de offline menselijke samenleving. Verder passen we UISE toe op hettechvan
deonlinetijden op basis van rendez-vous als gebruikersinterartiésbler, eenonline
netwerk voor media- en sociale toepassingen zidlalsharing streaming en stemmen.
Met behulp van simulaties, emulaties, en door het in heteteoe te passen tonen we
de nauwkeurigheid en schaalbaarheid van UISE aan ondehiéade protocollen voor
informatieverspreiding en verschillend gebruikersggdra

Samenvattend verschaffen we in dit proefschrift theocrk#sen praktische inzichten
in de relatie tussen gebruikersgedrag en prikkels tot dgen inonline netwerken. We
presenteren gebruikersgedrag en de consequenties daawahop systeem- als indi-
vidueel niveau, we analyseren ruilhandelmechanismen arbkperkingen om gebrui-
kers te prikkelen tot bijdragen, we evalueren monetaireh@eismen en hun risico’s om
de ineenstorting van het gehele systeem te veroorzakere enaerzoeken gebruikersin-
teracties en hun implicaties bij het afleiden van de relatissen gebruikers. Bovenal zijn
onlinenetwerken pas gedurende de laatste twee decennia opgekarnigmze nog in een
primitieve staat, in tegenstelling tot d&line menselijke samenleving die zich gedurende
duizenden jaren ontwikkeld heeft. Toch hebben we met huooalderbeterende tech-
nologieén al veel opwindende resultaten bereikt. Ditvdgsweg naar een veelbelovende
toekomst voor de studie vamline netwerken, niet alleen wat betreft het analyseren van
onlinegedrag, maar ook in vergelijking mefflinegemeenschappen.
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