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Chapter 1

Introduction

Online networks are complex distributed computer systems that involve potentially large
numbers of humans with their collective inputs and decisions. Typical examples of on-
line networks include email, Facebook, LinkedIn, Wikipedia, eBay, and BitTorrent-like
Peer-to-Peer (P2P) systems. They have become popular and powerful infrastructures for
communication and they provide various mechanisms for users to interact. For instance,
in Facebook, users post messages on each other’s walls and comment on each other’s
photos; in Wikipedia, users collectively edit articles in their areas of expertise; and in
BitTorrent, users upload to and download from each other to share the contents of their
common interests. As in these examples, online networks often rely on the cooperation
and the contribution of their users. Nevertheless, users inonline networks are often found
to be selfish, strategic, or even malicious, rather than cooperative, and therefore they need
to be incentivized for contributions. In this thesis, we aimto study the user behaviors and
the contribution incentives—two underpinnings—in onlinenetworks. Whereas computer
scientists often treat online networks purely as computer systems, in this thesis, we take
one step further and approach online networks as societies as well. With this approach,
we hope that on the one hand computer scientists will be motivated to think about the
similarities between their artificial computer systems andthe natural world, and on the
other hand, that people outside computer science will understand online networks better.

With the astounding growth of user activity in online networks, these systems have
deeply impacted and even changed the offline human society. For instance, online so-
cial networks like Facebook have provided a novel and often addicting context for people
to build up their social ties, online social media like Twitter have vastly accelerated the
information propagation to a level that can never be reachedby traditional media, and
P2P systems like BitTorrent have demonstrated a genuine andefficient method for shar-
ing contents that benefits both service providers and consumers. At the same time, if we
take a closer look we may find that online networks have also self-evolved intoonline
societies. They possess elementary components similar to the ones often observed in the
offline human societies. Users in online networks behave differently, just like the pop-
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ulation in human society is composed by people with various behaviors. Organizations
that maintain online networks play a similar role as governments and they face a variety
of concerns, for example, how to enhance reciprocity and howto reduce inequality. The
contribution and consumption of users in online networks form the supply and the de-
mand, and as in economies of societies, they need to be closely monitored and carefully
balanced. Particularly, with respect to the topic of this thesis—user behaviors and con-
tribution incentives—many attempts have been made to design incentive policies, which
range frombarter schemesto monetary schemes, leading online networks intobarter
economiesor money economies. Similar to the barter and money economies developed in
human society, in online networks they both have their own effectiveness and limitations.

In this thesis, we provide theoretical and practical insights into the correlation be-
tween user behaviors and contribution incentives in onlinenetworks. We demonstrate
user behaviors and their consequences at both the system andthe individual level, we an-
alyze barter schemes and their limitations in incentivizing users to contribute, we evaluate
monetary schemes and their risks in causing the collapse of the entire system, and we ex-
amine user interactions and their implications in inferring user relationships. We often use
BitTorrent and Facebook as case studies due to their popularity in today’s Internet. In the
end, the key research question we address is to create an understanding of the correlation
between user behaviors and contribution incentives that isboth generic and can be applied
to a wide range of online networks that rely on the cooperation and the contribution of
their participants.

1.1 A brief history of online networks

Online networks have emerged, developed, and proliferatedwith the Internet. Since the
mid 1990s, the Internet has had a tremendous impact on our daily lives: the near instant
communication supported by email and instant messaging hasnearly reformed our daily
contacts, online shopping sites have completely changed our purchase habits, online dis-
cussion forums have provided us with novel and interactive contexts for obtaining and
polishing knowledge, online social networks have assistedus in building up both online
and offline social ties, and online social media have accelerated the information propaga-
tion to a level that traditional media can never reach. Whilethese online networks bring
our lives to a whole new level, they often rely on central servers to provide resources
and services, for example, caching emails, streaming videos, and retrieving profiles of
online friends. With the astounding growth of online networks, service providers like
YouTube and Facebook are facing significant challenges in satisfying users with enor-
mous resources including bandwidth, storage space, and computing power.

As a more efficient way for obtaining and sharing resources, Peer-to-Peer (P2P) sys-
tems made their debut through the Napster file sharing system[75] in the late 1990s. Later,
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Kazaa [59], Gnutella [2], eDonkey [42], BitTorrent [19], and Tribler [84] have emerged
one after another, aiming to provide file sharing and streaming services with better per-
formance through designing effective contribution incentives. Besides content sharing,
P2P systems serve many other applications as well, such as Dalesa [23] for web caching,
Yacy [118] for searching, Spotify [100] for music distributing, and Bitcoin [8] for dig-
ital currency. P2P systems at various times serve hundreds of millions of users. They
are founded on the principle that the resources and servicesfrom each individual partic-
ipant can be leveraged for the good of others, and thus, release servers from tremendous
workloads and save service providers from immense expenses.

1.2 Grounding our work

In order to analyze user behaviors and contribution incentives in online networks, we
ground our work in three classes of online networks, one withP2P services that are op-
erated in a distributed manner, one with remarkable social features that rely on central
servers, and one that combines social network features within distributed operations. In
particular, we focus on three online networks, BitTorrent,Facebook, and Tribler. Below,
we give a brief overview of each of them in turn.

1.2.1 BitTorrent

In 2001, the BitTorrent file sharing protocol [19] was released together with the first Bit-
Torrent client. A BitTorrent network consists multipleswarms, each associated with a
file divided into smallchunksand with a number of users who are interested in this file.
Users are located to swarms and are introduced to each other by central servers named
trackers. Downloading in BitTorrent is not performed in a sequentialorder, so that users
in the same swarm may have different chunks of the file and theycan exchange what
they have with each other. In BitTorrent’s terminology, users who do not have all the
file chunks are calledleechersand users who already have the entire file and only stay to
serve others are calledseeders. Figure. 1.1 displays an overview of a BitTorrent network
with trackers, files, swarms, leechers, and seeders. By now,BitTorrent has become the
most popular P2P protocol, based on which hundreds of P2P clients have been developed,
for instance, uTorrent [105], Vuze [111], and Tribler [84].With their own extensions and
improvements, these clients serve hundreds of millions of users with various applications
ranging from the original file sharing to live streaming and video-on-demand.

BitTorrent does not provide content search service. Instead, the search function is
provided by BitTorrent websites or communities like the PirateBay [80] and TvTorrents
[104]. These communities also provide additional functions such as discussion forums
and content moderation. While some BitTorrent communities, for example, the PirateBay,
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Figure 1.1: Overview of a BitTorrent network with files divided into chunks, swarms,
leechers, seeders, and trackers.

are publicly available to all users,private BitTorrent communitiesrequire users to keep ac-
counts that sometimes can only be obtained through invitations [10,12,15,40,41,81,104].
These communities adopt community-level policies, such asSharing Ratio Enforcement
(SRE), to incentivize users to contribute. Under SRE, members are required to main-
tain their sharing ratios (the ratio between a user’s uploadand download amount) at least
equal to a threshold set by the community administrator, otherwise they are banned from
downloading or even expelled from the community. Accordingto a recent study, private
communities serve over 24 million active users combined, and are responsible for the
majority of the BitTorrent activity in the world [124].

BitTorrent communities are playing such an important role in today’s Internet that
they serve as ideal cases for studying user behaviors and contribution incentives. Par-
ticularly, the user-level identifications maintained in private BitTorrent communities, in
contrast to the IP-level identifications in public communities, allow us to study the real
userbehaviors, rather than the superficialpeerbehaviors compromised in most previous
works.

1.2.2 Facebook

Facebook is no doubt the most successful online social network in today’s Internet.
Founded in February, 2004, Facebook originally served as a social toolkit for only Har-
vard students, and eight years later, it has attracted over one billion users all over the
world. Facebook has had such a great influence on humans’ daily lives that researchers
from various backgrounds, for example, sociologists, psychologists, economists, physi-
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cist, and computer scientists, have spent tremendous effort in analyzing theFacebook
phenomenon[20,29,88,108,114].

In Facebook, each user maintains a profile with photos, social interests, education ex-
periences, and other personal information. Besides demonstrations through user profiles,
users in Facebook can communicate with friends and other users through private or public
messagesand achat feature. They can also create and join interest groups and vote like
pages, some of which are maintained by organizations as a means of advertising. Mul-
tiple users can be gathered together throughEventsandGames. And as one of the most
straightforward ways of sharing social lives, users can comment on the news, the photos,
the videos, and the essays posted by their online friends.

With its vast popularity, Facebook serves as an ideal case for studying user behaviors
and contribution (or participation) incentives. In addition, as mentioned above, Facebook
provides abundant opportunities for users to interact. User interaction is a key aspect of
user behavior. It is essential for inferring user relationships that can be further utilized for
security enhancement, for cooperation promotion, for itemrecommendation, and most
importantly, for contribution incentives.

1.2.3 Tribler

Tribler [84] is a fully distributed open-source online network for media and social appli-
cations like file sharing, live streaming, video-on-demand, content searching, voting, and
interest-based channels. It is the research vehicle for research in P2P related topics in the
Parallel and Distributed Systems group of TU Delft, where the research for this thesis has
been carried out. Since its first release in 2006, the Triblerclient has been downloaded
over a million times.

Tribler uses the BitTorrent protocol for P2P file sharing andthe Libswift protocol [77]
for P2P streaming. Libswift is an IETF (Internet Engineering Task Force) standard proto-
col proposed by the Tribler group. In addition, Tribler provides various advanced features
including a distributed reputation mechanism named BarterCast [71], a distributed service
for content discovery supported by a dissemination and database synchronization proto-
col named Dispersy [123], and an advanced user interface that psychologically motivates
users to contribute. Furthermore, a mechanism for estimating user interaction strength—
which is presented as part of this thesis—has been integrated into the Tribler client.

To identify users across sessions, Tribler assigns each user a permanent identifier
which, as in private BitTorrent communities, allows us to analyze the real user behaviors.
On the other hand, unlike private BitTorrent communities where file sharing is the only
service, Tribler provides socially enhanced applicationssuch as interest-based channels,
in which users can, in addition to upload and download, replyto other users’ comments,
vote the contents they like, and report suspicious contentssuch as spam. In other words,
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Tribler serves as an online social network and an online P2P file sharing network com-
bined, and thus, guarantees a promising enviroment for experimenting with user behaviors
and contribution incentives.

Based on the insights gained from high-level models and theories, various algorithms
have been designed, implemented, and deployed into Tribler. Particularly, Rahmanet
al. [90] have analyzed effort-based reciprocity and the sustainability of credit systems.
They have also proposed a Design Space Analysis (DSA) for modeling contribution in-
centives that provides a tractable analysis of competing protocol variants within a detailed
design space [91]. Capotǎet al. [11] have developed an analysis of present methods
for resource allocation in multimedia communities. D’Acunto et al. [21, 22] have ana-
lyzed strategies for the peer selection, the piece selection, and the bandwidth allocation
in BitTorrent-like Video-on-Demand systems. Zeilemakeret al. [122] have introduced
Open2Edit, an application with similar quality and activity as Wikipedia but implemented
without central servers. Meulpolderet al. have analyzed the bandwidth allocation in
BitTorrent [72] and proposed BarterCast [71], a decentralized reputation system, with
real world implementation. Delavizet al. have further proposed improvements on the
accuracy and the coverage of BarterCast [25] and have designed a sybil-resistant ap-
proach [26]. Gkorouet al. [34] have developed a scheme for reducing the amount of
history maintained in decentralized interaction-based reputation systems.

1.3 Research context: the Qlectives project

The research in this thesis has been carried out in the context of the European Frame-
work Program 7 projectQlectives[86]. QLectives is a project bringing together social
modelers, Peer-to-Peer engineers and physicists to understand, to experiment, to design,
and to build cooperative socially intelligent informationsystems. The aim of Qlectives
is to combine three recent trends within information systems. The first of these is social
networks, in which people link to others over the Internet togain value and facilitate col-
laboration (e.g., Facebook). The second is peer production, in which people collectively
produce informational products and experiences without traditional hierarchies or market
incentives (e.g., Wikipedia). The third is Peer-to-Peer systems, in which software clients
running on user machines distribute media and other information without a central server
or administrative control (e.g., BitTorrent).

For the past four years, researchers in Qlectives have put great effort into topics cov-
ered by Qlectives. Research has been carried out on a wide range of subjects. To name
a few examples, Medoet al. [68] have introduced a model for the growth of information
networks that produces various degree distributions including those that are observed in
important real systems such as scientific citation data or the World Wide Web. Wuet
al. [115] have adopted an evolutionary game-theoretical approach to study social norms



7

and social phenomena involving cooperation or conflict. They have shown that coopera-
tion is not such a strong social dilemma, and that it emerges and becomes stable over a
fairly large range of model parameters and implementation details. Rocaet al. [92, 93]
have developed and implemented models, applying dynamic social impact theory, on an-
alyzing the influence of trust and the emergence of cooperation.

1.4 User behaviors and contribution incentives in online
networks

Online networks often rely on the cooperation and the contribution of their users. Nev-
ertheless, users in online networks, like humans in human society, are often found to
be selfish, strategic, or even malicious, rather than cooperative, and therefore need to be
incentivized for contributions. Many attempts have been made to design incentive poli-
cies, which range frombarter schemesto monetary schemes. Below, we will give a brief
introduction on user behaviors and their consequences at both the system and the individ-
ual level, on barter schemes and their limitations in incentivizing users to contribute, on
monetary schemes and their risks in causing the collapse thewhole system, and on user
interactions and their implications in inferring user relationships.

1.4.1 User behaviors and their consequences

Users in online networks, like humans in human society, are not always cooperative. Thus,
without proper incentives, any system that requires the cooperation and the contribution of
its participants potentially faces theTragedy of the Commons, a social dilemma frequently
occurring in human society [38]. The Tragedy of the Commons refers to the depletion of a
shared resource, such as a public good, by individuals acting independently and rationally
according to their self-interests, despite their understanding that depleting the common
resource is contrary to the group’s long-term best interests.

While the Tragedy of the Commons describes a group-level social dilemma on co-
operation, thePrisoner’s Dilemma[82] scales it down to two individuals. It refers to a
situation in which two prisoners could cooperatively deny their crime and serve a mod-
erate amount of time in prison, but in the end, to avoid being betrayed and facing the
longest jail time alone, they both confess and serve the second longest time. Prisoner’s
Dilemma is now a canonical example of a game analyzed in game theory that shows why
two individuals might not cooperate, even if it appears to bein their best interest to do so.

Online networks face these dilemmas as well. Taking BitTorrent for example, users
are supposed to upload to and download from each other, and collectively achieve their
common goal of obtaining a file. As it turns out, besides beingcooperative, users in
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BitTorrent can be lazy, strategic, or even malicious. Lazy users follow the original Bit-
Torrent protocol, upload while downloading, but are reluctant to stay and to serve more
users once their downloads are finished [71]. Strategic users, on the other hand, explore
the protocol, tune parameters like the upload speed, or evenmodify the original protocol,
so as to download the file with contributions as small as possible [62]. Finally, there are
also malicious users aiming at destroying the whole system through, for example, spread-
ing broken or fake file chunks [27]. These non-cooperative user behaviors cause severe
consequences, ranging from the inefficiency to the fall of the whole system. There has
been a number of studies demonstrating non-cooperative user behavior in P2P systems,
from the early Gnutella network with nearly 70% users sharing nothing [95, 96], to Bit-
Torrent networks with more than 80% users going offline immediately after they finish
their downloads [83].

Online social networks also face potential manipulations from strategic or malicious
users, for example, through theSybil Attack[28, 109]. A large number of Sybil accounts
have been found in Facebook [33], Twitter [101], and Renren [119]. Under a Sybil At-
tack, the attacker first generates multiple sybils with fakeidentities. Then, together they
distribute false information to promote their status in theonline network. Finally, from
the forged reputation they gain undeserved advantages likebeing served without any con-
tribution, or perform unjust commercial promotions like spreading spam.

To maintain a sustainable system, policies to promote cooperation and contribution
are essential. While there are many previous work [27, 28, 55, 109, 120, 121] on analyz-
ing malicious user behaviors and enhancing security, in this thesis we focus on lazy and
strategic users, and we study mainly the schemes to incentivize them to contribute. To
date, there has been a great effort on proposing, analyzing,and improving contribution
incentives. These mechanisms range frombarter schemesto monetary schemes. Below,
we will discuss them in turn.

1.4.2 Barter schemes and their limitations

In human society, barter refers to a system of exchange by which goods or services are
exchanged for other goods or services without using a mediumof exchange such as
money [76]. Barters can be bilateral or multilateral. Bilateral barters imply direct ex-
changes of goods between two participants and therefore representdirect reciprocity.
Multilateral barters, on the other hand, involve multiple participants inindirect reci-
procity. Barters have several limitations, for instance, the need for the coincidence of
wants from participants and the lack of a standard value of the exchanged good.

A number of online networks utilize barter schemes, or reciprocity, to incentivize
users to contribute. For example, in P2P systems with no central service providers, users
barter their contributions with others so as to be served. Asin human society, barter
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schemes in online networks also have a number of limitations. BitTorrent incorporates
an incentive mechanism named Tit-For-Tat (TFT) that is based on bilateral barter-like
direct reciprocity. Under TFT, users prefer uploading to users who have contributed to
them in the past at the highest speeds. TFT works reasonably well in fostering barters, or
cooperations, among users that are downloading the same file. Nevertheless, TFT does
not provide incentives for users to remain in the system and to serve others after their
downloads are finished, since there is no coincidence of wants anymore. Therefore, users
are free to engage in “Hit and Run” behavior, leaving immediately upon completing their
downloads. Further, TFT in BitTorrent is not an exact bilateral barter strictly with a tit
for a tat. Instead, users barter with those that have reciprocated the most. Therefore, the
value for one “tit” is constantly changing, which leads to possible manipulations from
strategic users through, for example, only providing upload bandwidth high enough to
be uploaded to, but at the same time low enough to be the lowestamong all the chosen
users [62, 65, 78]. Last but not least, it has been shown that in BitTorrent systems, it is
unlikely that two users encounter each other often enough, and therefore TFT-like direct
reciprocity is not effective for long-term use [79].

To tackle these issues, various remedies have been proposedand the primary idea is
to include indirect reciprocity [60,71,79]. Indirect reciprocity occurs when, for example,
after user A contributes to user B who further contributes touser C, user C rewards user A
based on their indirect relationship. A major problem arising from indirect reciprocity is
thetrust issue [1,35]. It is obvious that, in the former example, if user A and user B collude
and exaggerate the maybe-not-existing contribution from Ato B, user A can potentially
get a reward from user C with no actual contributions. Similarly, if user B is malicious and
deliberately disguises user A’s contribution, user A may not get a reward from user C even
if he has contributed. As a consequence, contribution incentives with indirect reciprocity
often rely on instantaneous communications with a secure third party [79]. However, the
reliability of requiring a secure third party is questionable, and moreover, it runs counter
to the open membership that underlies the success of these systems in the first place.
Another approach to tackle the trust issue is to diminish theamount of potentially false
information [71], however, this often relies on algorithmswith high complexity that are
unrealistic to be used in real systems.

In this thesis, we provide a theoretical model for BitTorrent’s TFT incentive policy
and its variations, aiming to provide some insights into howusers in BitTorrent allocate
their bandwidth, i.e., make barters, with others.

1.4.3 Monetary schemes and their risks

In human society, a monetary system refers to a system of exchange by which goods or
services are exchanged using money as a medium [31]. In contrast to barters, monetary
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schemes do not require a coincidence of wants, and thereforetackle the problems of barter
schemes in both human society and online networks. Under a monetary scheme, through
contributions users earn credits, or more precisely, virtual money, that can be used in their
later consumptions. Thus, users are incentivized to contribute, so as to keep some reserve
for their future needs.

Monetary schemes are becoming prevalent in nowadays onlinenetworks, ranging
from the currencies used in online virtual worlds such as Second Life, to methods for
resource allocation in wireless sensor network [17] and filesharing [43]. Several mone-
tary schemes for contribution incentives have been proposed and analyzed in the litera-
ture [37, 39, 56, 73, 89, 107]. As in human society, measures are taken to avoid monetary
risks including inflation, deflation, and systemic risk thatmay cause the collapse of the
entire economic system [58]. For instance, Vishnumurthyet al. [107] have presented
a system involving a virtual currency named Karma, in which sets of bank nodes keep
transaction balance of users. Karma captures the amounts ofresources a user has con-
tributed and consumed. To avoid inflation and deflation, the level of per-capita Karma
in the system, i.e., the total Karma divided by the number of active users, is constantly
monitored and maintained. Several researchers [37, 56, 89]have further shown that, in a
similar scrip system where users can consume and produce services, both an abundance of
money supply and a shortage of it lead to inefficiency. An oversupply of money leads to a
crashin which users hold abundant money and are not willing to contribute. Conversely,
an undersupply of money leads to acrunchin which users go broke and cannot afford to
consume any services.

A good example of utilizing monetary schemes in distributedonline networks is pri-
vate BitTorrent communities that aim at providing incentives beyond BitTorrent’s original
Tit-For-Tat. To do so, these communities employ private trackers that maintain central-
ized accounts and record the download and upload activity ofeach user. They apply
community-level policies to incentivize good overall upload / download behavior. One
such policy is credit-based, in which each user is required to maintain a positive credit
(its upload amount minus its download amount). Another suchpolicy, as we introduced
earlier, is Sharing Ratio Enforcement (SRE), in which each user is required to keep his
sharing ratio at least equal to a threshold. Under both policies, community members who
cannot fulfill the requirements are banned from downloadingor even expelled from the
community. Thus, it is guaranteed that each user performs some contribution.

The credit-based policy is an obvious monetary scheme. SRE,though not quite at
first glance, only differs in that it allows users to have negative credit (i.e., their download
amounts larger than their upload amounts) and that when users do have negative credit, the
amount of credit circulated in the system is dynamic. Under both schemes, contributions
are strongly incentivized. Nevertheless, monetary schemes induce systemic risk that may
cause the collapse of the entire system. In this thesis, we explore both the system-level
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dynamics and the user-level performance in communities adopting such policies.

1.4.4 User interactions and their implications

User interaction is a key aspect of user behavior and is the underpinning of any contribu-
tion incentive in any online network, for without which the users cannot be “connected”
and the network cannot be “netted”.

Online networks provide various mechanisms for users to interact. For instance, in
Facebook, users maintain friendships, post messages on their friends’ walls, and comment
on their friends’ photos. In Wikipedia, users collectivelyedit articles in their areas of
expertise, and in BitTorrent, users upload to and download from each other to share the
contents of their common interests. The patterns and strengths of user interactions are
prominent, and they are useful for a variety of applications.

Previously, a number of applications [102, 103, 120, 121] leveragedonline friend-
shipsto incentivize users to contribute, to enhance security, topromote cooperation, to
improve item recommendation, etc. Nevertheless, it has long been observed that low-
interaction friendships, as exemplified by the “Familiar Stranger” [106], are prevalent,
and that the dynamics of user interactions is more representative for inferring user rela-
tionships [108,114] than simple, statically established “binary” friendships. Therefore, in
these applications, users will be much better off by estimating their interaction strengths
with others and by giving high ranks to the ones with whom theyhave interacted fre-
quently. As another example, in P2P systems, user interactions form the foundation for
designing incentive policies. Through estimating the interaction strengths between users
in terms of the amounts or durations of contributions, system designers can make users
favor the highly ranked users for future consumptions.

The importance of user interactions in online networks leads to the question:How can
we estimate user interaction strength?Previous work addressing this issue [18, 108, 114,
116] has focused only on online social networks like Facebook, and has only considered
binaryuser interactions, simply indicating whether a user has interacted with another user
or not. In contrast, we propose a User Interaction Strength Estimation scheme called UISE
that has a much more fine-grained notion of user interaction,that is applicable to a more
general category of online networks, and that can be easily applied to distributed systems
and therefore achieves a scalable design In the end, UISE serves as a general framework
for expressing user interactions and their strengths that is both generic and can be applied
to a wide range of online networks.
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1.5 Problem statement

The research problem that we address in this thesis is how user behaviors and contribution
incentives in online networks are correlated. The researchquestions we answer are as
follows:

What are the characteristics and principles behind BitTorrent’s Tit-For-Tat in-
centive policy and its variations?Tit-For-Tat was originally designed for sharing files in
resource-constrained scenarios. The currentBitTorrent ecosystem, however, is becoming
over-provisionedand is enriched with new applications like video streaming.When the
resource is abundant or when there are real time constrains,always enhancing reciprocity
is system-wide inefficient and therefore a balance between reciprocity and inequality is
necessary. To this end, it is important to understand the characteristics and the principles
behind BitTorrent’s Tit-For-Tat and its variations.

Is there a theoretical validation for the effectiveness of monetary schemes
such as Sharing Ratio Enforcement in incentivizing users tocontribute? Several
measurement studies have shown that SRE is very effective inboosting cooperation
[13, 64, 69, 124]. For instance, [69] reports seeder-to-leecher ratios that are at least 9
times higher than in public BT communities, while download speeds are measured to
be 3–5 higher. Therefore, it would be beneficial to analyzehow SRE actually provides
seeding incentives and to quantify the expected performance improvement in terms of the
download speed.

What are the risks of using monetary schemes as contributionincentives?Mon-
etary schemes such as SRE and credit-based policies have been proven in the real world
to be effective in incentivizing users to contribute. Nevertheless, they require delicate
designs without which, as in any monetary system, they induce systemic risks that may
cause the collapse of the entire system. To maintain a sustainable system, it is important
to analyze the system-level dynamics and the potential risks under such schemes. More-
over, even when systemic risks do not occur, this only ensures that the system is able to
function, but not how well it functions. Thus, a further analysis of user-level performance
under such schemes is essential.

How do users behave under contribution incentives?The dedication of users is
not the only behavioral change observed in communities withcontribution incentives.
The same incentive policy may trigger different or even opposite user behaviors. The
various reactions from users are good indicators for further improvements of incentive
policies. Therefore, it is necessary to explore user behaviors, to argue the reasons for these
behaviors, and to demonstrate both the positive and negative effects of these behaviors.

Can we find a generic framework for estimating user interaction strength? User
interaction is a key aspect of user behavior and is the underpinning for contribution in-
centives and many other applications. Therefore, it is beneficial to design a generic
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framework for estimating user interaction strength. A promising design should have a
fine-grained notion of user interactions and should be general enough to be applicable
in a large range of systems. Further, with the astounding growth of online networks—
with Facebook exceeding a billion users and BitTorrent serving hundreds of millions of
users—a scalable design in a distributed manner is preferred.

1.6 Contribution and thesis outline

The contributions of this thesis are as follows:
Balancing reciprocity and inequality in BitTorrent (Chapt er 2) We present a fluid

model of BitTorrent’s Tit-For-Tat incentive policy and itsvariations. Our model effec-
tively captures the bandwidth allocation between users under different incentive policies,
based on which we explore strategies that influence the balance between reciprocity and
equality among users. Our study shows that (i) reducing inequality leads to a better over-
all system performance, and (ii) the behavior of seeders influences whether reciprocity is
enhanced or inequality is reduced. This chapter is largely based on our paper [48]:

A.L. Jia, L. D’Acunto, M. Meulpolder, J.A. Pouwelse, and D.H.J. Epema. BitTor-
rent’s dilemma: Enhancing reciprocity or reducing inequity. In Proceedings of the 7th
IEEE Consumer Communications and Networking Conference (CCNC’11), 2011.

Modeling and analysis of Sharing Ratio Enforcement in private BitTorrent com-
munities (Chapter 3) We provide a theoretical model to analyze how Sharing Ratio En-
forcement (SRE) provides seeding incentives and how SRE influences the download per-
formance of users. Specifically, we study the influence of theSRE threshold and the band-
width heterogeneity of the users. Under the assumption thatusers are rational, i.e., they
seed only the minimum amount required by SRE, we show that thedownload speed as
predicted by our model represents a lower bound for the actual speed that can be reached
in the real world. This chapter is largely based on our paper [47]:

A.L. Jia, L. D’Acunto, M. Meulpolder, and J.A. Pouwelse. Modeling and analysis of
sharing ratio enforcement in private BitTorrent communities. InProceedings of the IEEE
International Communications Conference (ICC’11), 2011.

Monetary schemes as contribution incentives: systemic risk and user-level per-
formance (Chapter 4)We analyze the performance of online networks adopting mone-
tary schemes as contribution incentives from both the system-level and the user-level per-
spectives. We show that both credit-based and sharing ratioenforcement policies can lead
to system-widecrunchesor crasheswhere the system seizes completely due to too little
or to too much credit, respectively. We explore the conditions that lead to these system
pathologies, we present a theoretical model that predicts if a community will eventually
crunch or crash, and we design an adaptive credit system thatautomatically adjusts credit
policies to maintain the sustainability. We further analyze the user-level performance by
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studying the effects of oversupply. We show that although achieving an increase in the
average downloading speed, the phenomenon of oversupply has three undesired effects:
long seeding times, low upload capacity utilizations, and an unfair playing field for late
entrants into swarms. To alleviate these problems, we propose four different strategies
that have been inspired by ideas in social sciences and economics. We demonstrate their
effectiveness through simulations. This chapter is largely based on our papers [49,51]:

A.L. Jia, R. Rahman, T. Vinkó, J.A. Pouwelse, and D.H.J. Epema. Systemic risk and
user-Level performance in private P2P communities. InIEEE Transactions on Parallel
and Distributed Systems, online, 2012.

A.L. Jia, R. Rahman, T. Vinkó, J.A. Pouwelse, and D.H.J. Epema. Fast download but
eternal seeding: the reward and punishment of sharing ratioenforcement. InProceedings
of the 11th International Conference on Peer-to-Peer Computing (P2P’11), 2011.

User behaviors under contribution incentives: a measurement study (Chapter 5)
Taking private BitTorrent communities as an example, we explore user behaviors under
contribution incentives. We argue the reasons for these behaviors and we demonstrate
both the positive and negative effects of these behaviors. We show that, as predicted by
our model, under SRE users seed for excessively long times tomaintain required sharing
ratios, though their seedings are often not very productive. And as users evolve in the
community, some become more attached in terms of higher ratios of the seeding and
the leeching time, and some game the system by keeping risky low sharing ratios while
leeching more often than seeding. Based on these observations, we analyze strategies
that alleviate the negative effects of these user behaviorsfrom both the user’s and the
community administrator’s perspective. This chapter is largely based on our papers [46,
50]:

A.L. Jia, X. Chen, X. Chu, J.A. Pouwelse, and D.H.J. Epema. How to survive and
thrive in a private BitTorrent community. InThe 14th International Conference on Dis-
tributed Computing and Networking (ICDCN’13), 2013.

A.L. Jia, X. Chen, X. Chu, J.A. Pouwelse, and D.H.J. Epema. User behaviors in
private BitTorrent communities.Under review.

Estimating user interaction strength in online networks (Chapter 6) To date, sev-
eral theoretical, centralized schemes for estimating userinteraction strength have been
proposed. Here we present the design, deployment, and analysis of the UISE scheme
for User Interaction Strength Estimation for both centralized and decentralized online
networks. Among the strong points of UISE is that it capturesdirect and indirect user
interactions, that it scales with only partial informationdissemination in decentralized
systems, and that it provides disincentives for malicious user behaviors. We apply UISE
to detect user interaction patterns based on wall posts in Facebook and we derive patterns
that resemble those observed in the offline human societies.We further apply UISE to on-
line time estimation based on rendezvous as user interactions in Tribler. We demonstrate
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the accuracy and scalability of UISE with different information dissemination protocols
and user behaviors using simulations, emulations, and a real-world deployment. This
chapter is largely based on our paper [52]:

A.L. Jia, B. Schoon, J.A. Pouwelse, and D.H.J. Epema. Estimating user interaction
strength in online networks.Under review.

Conclusions and future work (Chapter 7) In this chapter, we summarize our key
contributions and we provide suggestions for future work.
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Chapter 2

Balancing reciprocity and inequality in
BitTorrent

Enhancing reciprocity has been one of the primary motivations for the design of incentive
policies in BitTorrent-like P2P systems. Reciprocity implies that users need to contribute
their bandwidth to other users if they want to receive bandwidth in return. As we intro-
duced earlier, BitTorrent incorporates an incentive mechanism, Tit-For-Tat (TFT), based
on direct reciprocityto incentivize contributions, where users prefer uploading to others
who have contributed to them in the past at the highest speeds. This incentive mechanism
was designed to allow users to obtain their file of interest even in resource-constrained
scenarios, e.g., when only a few users exist that hold a complete copy of the file (seeders,
in BitTorrent terminology), or during flash-crowds.

However, theBitTorrent ecosystemis nowadays extremely diverse. For example, a
recent measurement study [69] has shown that most BitTorrent communities are over-
provisioned, i.e., there are significantly more seeders than downloaders. Also, the de-
sign of many next-generation P2P systems, such as those for the distribution of live and
on-demand streaming [53, 87, 110], has been inspired by the BitTorrent paradigm. The
real-time constraints of these systems require that all peers are provided with a certain
minimum download speed (in order to support the bitrate of the video) and that peers do
not earn more utility in downloading at rates much faster than that. These observations
suggest that it is not necessary to always enhance reciprocity; in some cases it is more ad-
visable to reduceinequalityamong peers, instead. One of the first studies of this trade-off
in BitTorrent-like systems was provided by Fanet al. [30].

In this chapter, we propose a theoretical model for BitTorrent and we analyzehowthe
incentive mechanism of the BitTorrent protocol can be tunedto enhance reciprocity or
reduce inequality. Furthermore, in our study we consider the implications of exchanging
BitTorrent’s standard incentive mechanism with one that isbased on effort rather than
speed. Finally, we also analyze the role of the seeders. Hence, we provide significant
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insights in the implications of the trade-off between enhancing reciprocity and reducing
inequality. Our contributions can be summarized as follows:

1. We provide an analytical model that characterizes the inherent relationship between
a peer’s performance and the design parameters of the BitTorrent protocol that are
responsible for its incentive mechanism (Section 2.2).

2. We use this model to analyze different strategies to enhance reciprocity or to reduce
inequality, and to understand the role of the seeders (Section 2.3).

3. We evaluate the impact of these strategies on the overall system performance (Sec-
tion 2.3).

Overall, our work in this chapter aids in informing the design choices that best fit the
requirements of a BitTorrent-like P2P system.

2.1 BitTorrent overview

In this section we provide an overview of the BitTorrent protocol with specific focus on
its Tit-For-Tat incentive policy.

2.1.1 The swarm

In BitTorrent, aswarm is consisted by peers1 who are interested in the same file and
sharing it with each other. Peers who partially hold the entire file are calledleechers: they
upload while downloading from each other. Peers who hold theentire file and only stay
to upload are calledseeders. In a BitTorrent swarm, peers are usually with various upload
and download bandwidths, i.e., the so-calledbandwidth-heterogeneous swarm

2.1.2 The Tit-For-Tat incentive policy

Incentive policies play a key role in BitTorrent-like systems, as they determine how peers
distribute their limited upload bandwidth to other peers. BitTorrent’s original incentive
policy is Tit-For-Tat (TFT), in which a peer favors other peers that have recently recip-
rocated at the highest rate. More specifically, every peer has a number of upload slots
available, which are divided into two categories,regular unchoke slotsand optimistic
unchoke slots. Leechers choose which peers will be allocated to regular unchoke slots
according to TFT. On the contrary, peers to be allocated to optimistic unchoke slots are
chosen randomly from the neighbors set. While regular unchoke slots are used to enhance

1From here, we useusersandpeersalternatively to refer to the individuals that participatein BitTorrent.
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reciprocity, optimistic unchoke slots serve the purpose of(1) potentially discovering new
faster peers and (2) allowing new peers to bootstrap (i.e., obtain their first pieces of the
file).

Due to the special role of seeders, i.e., they have a completecopy of the file and share
it without any direct benefit to do so, their uploading (or seeding) policies are different
from that of the leechers. In general, there are two popular seeding policies: (1)favoring
fast peers(FF): seeders allocate their regular upload slots to peers that downloaded at the
fastest rates and optimistic unchoke slots randomly; (2)random seeding(RS): seeders
have no preference and just choose peers randomly.

2.2 A Fluid Model for BitTorrent

In this section we introduce our model for a BitTorrent swam in which peers have het-
erogeneous bandwidths. We present a system of differentialequations that describe the
evolution of a BitTorrent swarm, based on which we analyze the performance of TFT
incentive policy. We illustrate the validation of our modelby means of a discrete-event
simulator.

2.2.1 The basic idea

In our approach we group peers intoN different classes according to their upload capac-
ities, with the peers in the same class having (roughly) the same upload capacities. We
follow a similar fluid modeling approach as in [72,85], wherea Markov model is used to
describe the arrival and departure of peers. The average download time is then derived
based on a continuous fluid approximation of the Markov modelunder the assumption
that there exits a steady state. By considering a bandwidth heterogeneous swarm, we ana-
lyze the dynamics of bandwidth allocation (1) within and between classes and (2) among
regular and optimistic unchoke slots, according to the BitTorrent TFT policy.

2.2.2 Model description

The notation we use is shown in Table 2.1. In our model, a peer in classi has the upload
capacity ofµi, the download capacity ofdi, and the number of unchoke slots ofui, with
u

(reg)
i andu

(op)
i for regular and optimistic unchoke slots respectively. Foreach classi,

the number of downloads completed within a unit of time (e.g., second) is determined
by the total upload bandwidth that classi receives from all classes in the swarm. Thus,
the evolution of the number of leechers,xi(t), and the number of seeders,yi(t), can be
described as follows:
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Notation Definition
F the size of the file shared in the swarm.
xi number of leechers in classi.
πi fraction of leechers in classi, πi = xi/

∑

i xi.
yi number of seeders in classi.
λi the arrival rate of leechers in classi.
γi the rate at which seeders in classi leave the system.
µi the upload capacity of a peer in classi.
di the download capacity of a peer in classi.
d

′

i the per connection download capacity of a peer in classi.
ui number of unchoke slots opened by a peer in classi,

u
(reg)
i andu

(op)
i for regular and optimistic unchoke slot.

ni the number of download slots opened by a classi leecher
αij the number of upload slots allocated by a leecher in classi

to a leecher in classj.
βij the number of upload slots allocated by a seeder in classi

to a leecher in classj.
ωij the fraction of upload capacity of leechers in classi allocated

to leechers in classj.
σij the fraction of upload capacity of seeders in classi allocated

to leechers in classj.
Uij the total upload capacity allocated from classi to classj.
Ti the average download time of peers in classi.
Di the average download speed of peers in classi.

Table 2.1: Notation of our BitTorrent model
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dxi(t)

dt
= λi −

∑

j Uji(t)

F
,

dyi(t)

dt
=

∑

j Uji(t)

F
− γiyi(t).

(2.1)

We assume that there exits a steady state in the system, i.e.,while peers are arriving
and departing, the total system population stays constant.In such a steady state, it holds
that:

dxi(t)

dt
=

dyi(t)

dt
≡ 0,

together with Eq.(2.1) we have:

λiF =
∑

j

Uji = γiyiF. (2.2)

Here, we denote the equilibrium values of the quantities in steady state byUji for Uji(t),
etc. As the arrival rate of leechers in a steady state is equalto the departure rate, i.e., the
rate they finish their download, letTi represent the average download time for peers in
classi, we can apply the Little’s Law to the number of leechers, i.e.:

xi = λiTi. (2.3)

The total upload bandwidth of classj allocated to classi consists of upload bandwidth
allocated by seeders and by leechers. Therefore, we have:

∑

j

Uji =
∑

j

(ωjixj + σjiyj)µj. (2.4)

Combining Eqs. 2.2, 2.3 and 2.4, the average download speed for leechers in classi
can be calculated as:

Di =
F

Ti

=
Fλi

xi

=
1

xi

∑

j

(ωjixj + σjiyj)µj. (2.5)

We discuss how to derive the upload bandwidth allocation (ωji andσji respectively)
in the following subsection.

2.2.3 Bandwidth allocation

Without loss of generality, we assume thatµ1 < µ2 < ... < µN .
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In BitTorrent, a leecher opens a number of regular and optimistic unchoke slots to
upload to other peers. In our model, we assume a leecher can always find enough other
leechers to be allocated into his unchoke slots. According to TFT, regular unchoke slots
are allocated to peers with the best reciprocity and optimistic unchoke slots are allocated
randomly. Therefore, high capacity peers (e.g., peers in classi) only unchoke low capacity
peers (e.g., peers in classj, i > j) in optimistic unchoke slots. Consequently, the number
of upload slots allocated from a peer in classi to a peer in classj is equal to:

αij = u
(op)
i πj i, j = 1, 2, ..., N, i > j.

Due to their faster upload speed, higher-capacity leecherswill get reciprocated when
they upload to lower-capacity leechers. As long as there areenough upload slots, on
average, the number of leechers in classi that a leecher in classj should reciprocate
equals to:

αijxi

xj

=
u

(op)
i πjxi

xj

=
u

(op)
i xi

∑

j xj

= u
(op)
i πi i, j = 1, 2, ..., N, i > j.

In case there are not enough upload slots, leechers in higherclasses are reciprocated
first, i.e.:

αji = min{u
(op)
i πi, u

(reg)
j −

∑

i<p≤N

αjp} + u
(op)
j πi i, j = 1, 2, ..., N, i > j..

Seeders adopt different upload strategies than leechers since they already have the
entire file and do not need to be reciprocated. For seeders whoadopt the FF (favoring
fast) policy, its regular unchoke slots are allocated to thefastest leechers, i.e., peers in
classN . And its optimistic unchoke slots are shared by leechers in all classes. Therefore,
we have:

βiN = u
(reg)
i + u

(op)
i πN ,

βij = u
(op)
i πj ∀i, j and j < N,

For seeders who adopt the RS (random seeding) policy, all unchoke slots are shared by
leechers in all classes, i.e.:

βij = uiπj .

As peers are unchoked based on their upload capacities, i.e., their classes, peers in the
same class receive similar services. Therefore, on average, the number of upload slots a
peer in classi receives, i.e., the number of download slots it opens, is equal to:



23

ni =

∑

j αjixj + βjiyj

xi

.

Consequently, the per connection download capacity of a peer in classi equals to:

d
′

i =
di

ni

.

BitTorrent uses TCP as transport layer protocol. TCP specifies that a peer’s upload
(download) capacity is equally divided over all connections, unless some of the connec-
tions have a bottleneck. When such a bottleneck exists, the leftover bandwidth is equally
divided over other connections with higher link capacities. Following this basic rule, we
calculate the fraction of the upload capacity of leechers inclassi allocated to leechers in
classj, i.e.,ωij, as follows.

First, we reorder the leechers according to their per connection download bottleneck
d

′

i in such a way thatd
′

1 < d
′

2 < ... < d
′

N . Then, we assume that the fraction of the upload
capacity of leechers in classi allocated to leechers in classp, i.e., ωip wherep < j, is
known. Therefore, the left upload bandwidth, i.e.,µi(1 −

∑

p<j ωip), should be equally
allocated among

∑

k≥j αik leechers in classk wherek ≥ j, as long as their per connection
download capacity is not saturated. Finally, the fraction of the upload capacity of leechers
in classi allocated to leechers in classj can be calculated as:

ωij =
min{

µi(1−
P

p<j ωip)
P

k≥j αik
, d

′

j} · αij

µi

. (2.6)

By calculatingωij in sequence, e.g.,ωi1, ωi2, ωi3 and so on, we can derive the upload
capacity allocation between any two classes. Replacingωij, αij with σij , βij respectively,
a seeder’s upload bandwidth allocation can be derived in a similar way.

2.2.4 Model Validation

We have validated our model by means of simulations using a discrete-event simulator that
simulates the behavior of BitTorrent at the level of piece transfers [72]. Fig. 2.1 illustrates
the simulation results against the model predictions for a system with two classes of peers,
fast and slow, from which we can make the following observations:

• the model predictions are close to the simulation results;

• the average download speed of both fast and slow peers increases when there are
more seeders;

• the model predictions become less accurate as the fractionof seeders grows. This
can be explained considering that, when a high fraction of peers are seeders (above
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Figure 2.1: The average download speeds of fast and slow peers in a system with 50 fast
peers and 50 slow peers, for different fraction of seeders. Fast peers are with infinite
download capacity and upload capacity of 1024 Kbps; and slowpeers are with upload
and download capacities of 512 Kbps and 1024 Kbps, respectively. Seeders use the FF
policy.

70 % in this case), fast leechers have a hard time in finding other fast leechers to
reciprocate with. While in our model we assume that, in a steady state, leechers can
always find enough other leechers.

2.3 Analysis

In this section, we analyze the balance between enhancing reciprocity and reducing in-
equality in BitTorrent. Specifically, we introduce four strategies: (1) fast peers opening
more regular unchoke slots, (2) all peers opening more optimistic unchoke slots, (3) re-
placing TFT with an effort-based incentive policy, and (4) seeders favoring fast peers
versus seeding randomly.

We evaluate the performance of the above strategies based onthe following three
performance metrics:

• Download speedis used to characterize performance.

• Sharing ratiois defined as the ratio between the total amount of data uploaded and
downloaded. It represents a fairness in relation to contribution to the system—a
sharing ratio equal to 1 for all peers means that all peers have contributed as much
data as they have consumed.

• Inequality coefficientis defined as the largest download speed divided by the small-
est download speed found among all peers. It indicates a fairness in relation to the
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bandwidth capacity that peers receive from the system.

Unless stated otherwise, we consider a system with two classes of peers, i.e., fast
peers with infinite download capacity and upload capacity of1024 Kbps; and slow peers
with upload and download capacities of 512 Kbps and 1024 Kbps, respectively. And the
default values for the number of optimistic and regular unchoke slots are set to 1 and 4,
respectively.

2.3.1 Enhancing reciprocity

A straightforward way to enhance reciprocity is to open moreregular unchoke slots. Re-
gardless of a peer’s class, opening more upload slots can help a peer to (1) find more
potential fast peers, or to (2) weaken another peer’s potential monopoly on its uploading
bandwidth since less bandwidth will be allocated to each upload slot. On the other hand,
opening too many slots is neither realistic nor reasonable,since too many TCP connec-
tions could deteriorate link performance. Also it would become harder for slow peers to
succeed in competing for reciprocity with faster peers.

Given the above considerations, fast peers have a stronger motivation to open more
slots than slow peers, since they may benefit from more extensive exploration, while
remaining competitive in TFT. Having fast peers open more regular upload slots is a way
to enhance reciprocity, as more bandwidth will be allocate to the regular unchoke slots.

In this experiment, we vary the number of regular unchoke slots of fast peers.
Fig. 2.2(a) shows that as the number of regular unchoke slotsof fast peers increases,
their download speed improves (we can observe a growth of 10%when the number of
regular unchoke slots goes from 2 to 9), while the average download speed of all peers
decreases (10% with the number of regular unchoke slots from2 to 9). This is due to
the increasing inequality (almost 50%) between the two classes of peers, as shown in
Fig. 2.2(c). On the other hand, we notice that the sharing ratio of fast peers decreases as
they open more regular unchoke slots, and that of slow peers increases (Fig. 2.2(b)). The
perfect reciprocity, i.e., sharing ratio equal to 1 for both fast and slow peers, is achieved
when fast peers open 4 regular unchoke slots.

In the following theorem we state the conditions necessary to achieve the perfect reci-
procity.

Theorem 2.1 In a BitTorrent system with two classes of peers, no seeders,and no down-
load bottleneck, where peers can fully utilize their uploadcapacities, perfect reciprocity
is achieved if and only if:

µfus

µsuf

=
u

(op)
f + u

(op)
s

u
(op)
f

. (2.7)
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Figure 2.2: The influence of the number of regular unchoke slot of fast leechers in a
system with 100 leechers and no seeders.
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Proof: We first show that for a system with perfect reciprocity, Eq.(2.7) holds. The
sharing ratio of a leecher in classi in a steady state is equal to the ratio of its upload and
download speed, i.e.:

µi

Di

=
µixi

F
∑

j∈{f,s} ωjixjµj

. (2.8)

where the download speedDi is calculated from Eq.(2.5).

Perfect reciprocity implies that leechers in different classes achieve the same sharing
ratio, i.e.:

µfxf
∑

j∈{f,s} ωjfxjµj

=
µsxs

∑

j∈{f,s} ωjsxjµj

. (2.9)

Following the model proposed in Section 2.2, fast peers onlyupload to slow peers
in optimistic unchoke slots and slow peers reciprocate those fast peers in their regular
unchoke slots. Therefore:

ωfs =
u

(op)
f πs

uf

= 1 − ωff ,

ωsf =
u

(op)
f πsxf

xsus

= 1 − ωss.

(2.10)

Taking Eq.(2.10) back to Eq.(2.9), it follows that Eq.(2.7)holds.

Next, we show that when Eq.(2.7) holds, perfect reciprocityis achieved. Substituting
Eq.(2.7) into Eq.(2.8), we get Eq.(2.9), which implies thatfast and slow leechers have the
same sharing ratio. It follows that perfect reciprocity is achieved.

From the above theorem it follows that, when we useµf = 1024, µs = 512 and
u

(op)
s = u

(op)
f = 1, a perfect reciprocity is obtained foru

(reg)
f = u

(reg)
s = 4.

2.3.2 Reducing inequality

In this section we evaluate two strategies for reducing inequality, namely TFT with more
optimistic unchoke slots and effort-based policy.

TFT with more optimistic unchoke slots

A straightforward way to reduce inequality is to open more optimistic unchoke slots. In
this section, we analyze the influence of having all peers open more optimistic unchoke
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Figure 2.3: The influence of the number of optimistic upload slot of peers in a system
with 100 leechers and no seeders.
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slots. While peers always open 5 unchoke slots in total, we let the number of their op-
timistic unchoke slots vary from 1 to 5. As we can see in Fig. 2.3(a), in this way the
download speed of slow leechers is improved by 40%, at the expense of the fast leech-
ers. Interestingly, the average download speed of the wholepopulation increases of 15%.
Moreover, we observe a 45% decrease of the inequality coefficient (Fig. 2.3(c)).

However, it should be noted that by having peers open more optimistic unchoke slots,
the effectiveness of TFT is reduced, as a peer with no contributions is chosen with the
same probability as a cooperative peer.

Effort-based incentives

Rahmanet al. [90] have recently proposed a novel incentive mechanism based on effort,
rather than speed. More specifically, under this effort-based mechanism, peers are not
rewarded based on the absolute amount of data they provided,but based on the relative
amount of bandwidth they make available (utilized or not). With this approach, a slow
peer offering all its bandwidth to the system is preferred over a fast peer offering 0.9 of
its total bandwidth.2

Consider that there are two types of peers in the system, i.e., fully cooperativepeers
that contribute all their upload bandwidth andpartially cooperativepeers that only con-
tribute a fraction of their upload bandwidth. Letnp represent the number of partially
cooperative peers, andnff andnfs represent the number of fully cooperative peers that
have a high and low upload capacity, respectively. Based on the effort-based mechanism,
each peer reciprocates fully cooperative peers by allocating regular unchoke slots to them,
and punishes partially cooperative peers by only optimistically unchoking them. Then, the
slot allocation for each class of peers can be calculated as:

αi(p) =
u

(op)
i np

nff + nfs + np

αi(ff) =
(ui − αi(p))nff

nff + nfs

αi(fs) =
(ui − αi(p))nfs

nff + nfs

∀i ∈ {p, ff, fs}.

(2.11)

Given Eq.(2.11), the upload bandwidth allocation can be calculated in a similar way
as in our earlier analysis.

The idea of this effort-based incentive scheme is to reduce inequality among the fully
cooperative peers while still punishing the partially cooperative peers. We first evaluate
its performance by considering a system with both fully and partially cooperative peers,

2 [97] provides a possible method to measure upload capacity of users in P2P systems.
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where we vary the fraction of partially cooperative peers from 0.1 to 0.9. Particularly, we
set partially cooperative peers to be fast peers, and we set half of the fully cooperative
peers to be fast and the other half to be slow. Results are shown in Fig. 2.3.2. We see
that this effort-based policy effectively eliminates the inequality in the system and the
partially cooperative peers are punished by achieving lower download speeds than fully
cooperative peers.

Next, we compare the effort-based policy with TFT. We consider a system in which all
peers are fully cooperative and we vary the fraction of fast peers among them. As shown
in Fig. 2.5(a), the effort-based scheme eliminates the system’s inequality and achieves a
better overall performance, in terms of a higher download speed averaged over all peers.
As a consequence, it reduces the reciprocity and leads to a higher disparity in sharing
ratios achieved by fast and slow peers (see Fig. 2.5(b)).

2.3.3 Seeding policies

The mainline BitTorrent client has been implemented with two different seeding strategies
in different releases. One is the favoring of fast peers. This strategy accelerates a fast
leecher’s ability to finish downloading, thereby potentially having it serve as fast seeder in
the system sooner. The other strategy is seeding randomly. The first strategy is resource-
constrained oriented, as it aims at increasing the serving capacity quickly. The second
strategy is more equality oriented, as all peers are treatedin the same way.

We have applied our model to analyze and compare these two strategies, where we
use the default parameter settings as specified at the beginning of Section 2.3. Fig. 2.6(a)
and Fig. 2.6(c) show that if seeders seed randomly, the system achieves a better overall
performance (in terms of a higher average download speed) and the inequality is reduced.
On the contrary, if seeders favor fast peers, the reciprocity is enhanced. As shown in
Fig. 2.6(b), both fast and slow peers achieve sharing ratioshigher than in a system where
seeders adopt random seeding.

2.4 Related work

There are a number of studies on modeling and improving BitTorrent’s incentive policies.
Some earlier work focuses only on homogeneous systems [36, 85, 117]. Liaoet al. [112]
have considered heterogeneous BitTorrent systems but onlywith two classes of peers. Fan
et al.[30] have developed a general heterogeneous model to evaluate the tradeoff between
performance and fairness. Meulpolderet al. [72] and Chowet al. [16] also provide mod-
els for heterogeneous BitTorrent systems, with which they analyze the clustering and data
distribution in BitTorrent swarms. While these works all focus on a particular design, we
analyze the performance of different incentive policies from a higher level: we consider
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different BitTorrent applications and stress that merely enhancing reciprocity is not suffi-
cient in the design of a good incentive policy. We furthermore identify several strategies
that can be used to enhance reciprocity or reduce inequality.

2.5 Conclusions

Inspired by the observations of nowadays BitTorrent applications such as over-
provisioned BitTorrent communities and P2P streaming withlowest rate constrained, in
this chapter, we have analyzed why an incentive policy should not only enhance reci-
procity but also reduce inequality. We have provided an analytical model for heteroge-
neous BitTorrent systems that captures the essence of BitTorrent’s incentive policy. Based
on our model, we have analyzed how TFT could enhance reciprocity or reduce inequality
by carefully tuning the number of regular and optimistic unchoke slots. We have also
compared TFT to an effort-based incentive policy, and have showed that a policy that
focuses on reducing inequality leads to a better overall performance in terms of a higher
upload speed averaged over all peers. Finally, we have analyzed different seeding policies
and our results show that, although seeders do not need to be reciprocated, they can still
be used to further enhance reciprocity or reduce inequalityamong leechers.
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Chapter 3

Modeling and analysis of Sharing Ratio
Enforcement

Sharing Ratio Enforcement (SRE) was first adopted in privateBitTorrent communities,
aiming at providing contribution incentives beyond BitTorrent’s original Tit-For-Tat. It is
a general contribution enforcement policy that can be easily applied to many online net-
works besides BitTorrent-like file sharing systems, by simply generalizing the metrics for
determining the sharing ratio from the upload and download amounts to any metrics rep-
resenting contribution and consumption. In this chapter, we propose a theoretical model,
based on which we demonstrate the effectiveness of SRE.

BitTorrent’s TFT incentive policy works reasonably well infostering cooperation
among leechers. However, similar to a bilateral barter in human society, TFT requires
the presence of the coincidence of wants of the participants, and therefore it does not pro-
vide any incentive for users to remain in the system after thedownload is complete, in
order toseedthe entire file to others. Furthermore, it has been shown thatTFT is vulner-
able to attacks such as thelarge view exploit[66], by means of which a user succeeds in
achieving a good download speed without uploading any data in return.

To overcome the above issues, in recent years, there has beena large proliferation of
so-calledprivateBitTorrent communities. These sites typically require users to register
accounts and then demand that their members maintain asharing ratio, i.e., the ratio
between a peer’s total upload and download amounts, above a particular threshold. This
mechanism is known under the name ofSharing Ratio Enforcement(SRE)1. Community
members whose sharing ratio drops below the threshold are warned and then banned from
downloading, or even expelled from the community. In this way, it is guaranteed that each
participant provides a certain level of contribution to thecommunity. Furthermore, since
it is normally difficult to obtain membership of a private BitTorrent community, the threat

1The sharing ratio is calculated and recorded by the trackersdeployed by each community.
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of thewhite-washing attack2 is very low. On the other hand, to make SRE realistic and
feasible, most private communities adopt some special rules. For example, new members
normally are provided with a bonus to get started (e.g., in HDChina [64] the first download
is for free).

Several measurement studies show that SRE is very effectivein boosting coopera-
tion [13, 64, 69, 124]. For instance, [69] reports seeder-to-leecher ratios that are at least 9
times higher than in public BT communities, while download speeds are measured to be
3–5 higher. Hence it would be beneficial to analyzehowSRE actually provides seeding
incentives and quantify the expected performance improvement, in terms of user down-
load speeds. In this chapter we focus on these aspects. Specifically, our contributions are
as follows:

1. We provide an analytical model for bandwidth-heterogeneous private communities,
which characterizes the inherent relationship between a peer’s performance and the
parameters of SRE. We apply our model both to a single swarm and across multiple
swarms, and we quantify the performance improvement/deterioration for peers with
different capacities, assuming rational user behavior (Section 3.1).

2. We analyze the factors that build up SRE’s influence, i.e.,the SRE threshold, and
the bandwidth heterogeneity of the peers in the system (Section 3.2).

3. We show that, due to the influence of irrational user behavior observed in real pri-
vate communities, i.e., some peers seed more than they need and achieve sharing
ratios (much) higher than the threshold [64], the expected download speeds derived
in our model represent alower boundfor the actual download speeds achievable
by peers. Hence, following our model, administrators of private communities can
predict the minimum performance level their systems will beable to reach. (Section
3.2).

3.1 A simple model for Sharing Ratio Enforcement

In this section, we introduce the assumptions and other details of our model.

3.1.1 Preliminary: rational user behavior

For the purpose of our analysis, we consider a user to be rational if it tries to maximize its
download speed and minimize its seeding work. This means that when SRE is adopted,

2White-washing refers to the action of a peer who repeatedly rejoins a system with a new identity in
order to get rid of a negative history.
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rational peers seed the minimum amount to meet the thresholdand, when SRE is not
adopted, peers immediately leave the system once their downloads are complete.

Furthermore, we assume that rational peers always upload attheir full capacity, since
a recent study [64] has shown that when using TFT, uploading at the full capacity is the
best strategy for peers to maximize their download speed. Finally, in accordance with
previous work [85], we do not consider the piece availability problem and assume that
peers can always find pieces that they are interested in at other peers.

3.1.2 The basic model

We consider a BitTorrent swarm in which peers are downloading and uploading pieces
of the same file. Similar to the model proposed in Chapter 2, weassume that the system
is in steady state: while peers are arriving and departing, the total size of the population
is constant. We group peers into different classes according to their upload capacities,
and assume that the upload bandwidth allocated to each classis equally shared by all the
leechers in that class. The notation used in our model is illustrated in Table 3.1.

Given the above assumptions, we can derive that within a timeintervalT , there will
beT xi/ti leechers in classi who will have completed their downloads, whereti is their
average download time andxi is the number of leechers in classi in a steady state at any
given time. We assume thatT is long enough so that we can get an average performance
for peers in each class. The conservation law applied to the bandwidths implies that, in
this interval, the total download amount must be equal to thetotal upload amount, i.e.:

∑

i

T

ti
xiF =

∑

i

T

ti
xiµiTi, (3.1)

whereTi denotes the total length of time a peer has spent in the swarm (both as a leecher
and as a seeder).

For a swarm where peers do not seed (i.e.,Ti = ti), and considering that the download
speeddi of a peer in classi equalsF/ti, Eq.(3.1) becomes:

∑

i

xidi =
∑

i

xiµi. (3.2)

3.1.3 Within one swarm

We first analyze how SRE influences the system performance when it is applied within
one swarm. This mechanism is adopted in several private BitTorrent communities such
as BitHQ [9] and PolishTracker [81]. Under this situation, once a leecher’s sharing ratio
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Notation Definition
α the sharing ratio threshold of SRE.
F the size of the file being downloaded.
N the total number of classes of peers.
xi number of leechers in classi in a steady state.
µi the upload capacity of a peer in classi.
ωij the fraction of upload capacity of leechers in classi allocated

to leechers in classj in a steady state.
σij the fraction of upload capacity of seeders in classi allocated

to leechers in classj in a steady state.
di the average download speed of a peer in classi.
ti the average download time of a peer in classi.
Ti the time a peer in classi spent in the swarm,
ϕi the sharing ratio achieved by a peer in classi as a leecher.

Table 3.1: Notation of our BitTorrent model

drops below the threshold, its download process is halted immediately: it needs to upload
for a while until it gains enough sharing ratio to perform further downloading. When it
completes the download, the peer leaves the swarm immediately (henceTi = ti), with a
sharing ratio no less than the SRE thresholdα.

We callϕ◦
i the sharing ratio a leecher in classi would obtain in a swarm where SRE

is not applied. When SRE is applied, ifϕ◦
i < α, peers in classi will be banned for some

time during their downloads, so that their final sharing ratio ϕi will be exactly equal to
the threshold. While these peers are banned, their upload capacities will be allocated to
the other peers in classj, wherej ∈ {j, ϕ◦

j ≥ α}. Given the definition of sharing ratio as
ϕi = µiti/F = µi/di, from the conservation law in Eq.(3.2), we have:

∑

i,ϕ◦
i <α

xi

µi

α
+

∑

i,ϕ◦
i ≥α

xi

µi

ϕi

=
∑

i

xiµi. (3.3)

As an illustrative example, let us consider a swarm that consists of a class of slow
peers with upload bandwidthµs and a class of fast peers with upload bandwidthµf . We
assume that originally slow peers cannot achieve the SRE threshold when using only TFT.
Eq.(3.3) implies that:

xs

µs

α
+ xf

µf

ϕf

= xsµs + xfµf . (3.4)

It is easy to verify that whenα < 1 (which is the case in most private communities),
it will always hold thatϕf > 1. For example, whenxs = xf , µf = 4µs, andα = 0.9, we
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Figure 3.1: The fluid model for multiple swarms.

haveds = 10µs/9, df = 35µs/9, andϕf = 36/35 > 1. This implies that fast peers who
originally could achieve the SRE threshold will still be able to achieve it, though their
download speed is increased due to the extra bandwidth allocated to them.

3.1.4 Within multiple swarms

To avoid getting a worse performance, it is reasonable for a peer who cannot achieve the
SRE threshold while leeching, to seed for a while before starting another download. In
this way, it will gain some sharing ratio as deposit, and spend it for its next download.

We assume that in a BitTorrent community containing a numberof different files
(each associated with a different swarm), peers that are interested in multiple files will
download them one after another. We do not consider paralleldownloads, since a peer
who downloadsn files simultaneously can be considered as beingn different peers, each
having1/n of the original upload capacity. For the same reason, we do not consider
parallel seeding either.

The flow of peers within multiple swarms is shown in Fig. 3.1: if, after completing
its download in swarma, a leecher meets the SRE threshold (i.e.,ϕi ≥ α), it can directly
join another one (swarmb in the figure) if it wishes so. Otherwise (ϕi < α), to keep
its community membership, the peer needs to turn into a seeder, and seed for a while in
swarma. Its seeding amount should compensate its upload deficiency, i.e., the required
upload amount minus the actual upload amount:(α − ϕi)F .

For simplicity of presentation, we assume that all swarms are of an identical config-
uration, i.e., the files are of the same size (F ), the compositions of peers are the same3.
Within a long time periodT , in a particular swarm there will beT xi/ti leechers in class
i who have completed their downloads. Ifϕi < α, each of these leechers will turn into
a seeder and seed(α − ϕi)F amount of data. The conservation law implies that, in this
interval, the total download amount must be equal to the total upload amount, i.e.:

3It should be noted that we can perform the same analysis for swarms of different configurations by
simply adding a coefficient in our equations.
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∑

i

T

ti
xiF =

∑

i

T

ti
xiµiti +

∑

i,ϕi<α

T

ti
xi(α − ϕi)F, (3.5)

where the two terms on the right side account for the contributions of leechers and seeders,
respectively.

Let µ′
i = (α − ϕi)F/ti, then, similarly to Eq.(3.1), Eq.(3.5) can be simplified to:

∑

i

xidi =
∑

i

xiµi +
∑

i,ϕi<α

xiµ
′
i. (3.6)

To this end, given that the resource allocation is only determined by TFT, the average
download speed of a peer in classi can be calculated according to the model proposed in
Chapter 2, i.e.:

di =

∑

j ωjixjµj +
∑

j∈{j,ϕj<α} σjixjµ
′
j

xi

, i = 1, 2, ..., N, (3.7)

whereωji (σji) specifies the fraction of bandwidth allocated from a leecher (seeder) in
classj to leechers in classi in the BitTorrent protocol. The accuracy of this model has
been demonstrated through simulations [48].

Note that the term on the right side of Eq.(3.6) is equal to
∑

i,ϕi<α xi(µi + µ′
i) +

∑

i,ϕi≥α xiµi, which implies that the upload performed by a peer in classi (as a leecher
and later as a seeder), wherei ∈ {i, ϕi < α}, is equivalent to it uploading (only as a
leecher) at a speed equal toµi + µ′

i. In both cases it exactly achieves the SRE threshold.
Hence,(µi + µ′

i)/di = α, from which we can calculateµ′
i as:

µ′
i = αdi − µi, i ∈ {i, ϕi < α}, (3.8)

and solve the system of equations in Eq.(3.7).

As an illustrative example, let us consider again a system with two classes. Assuming
that the sharing ratio obtained by slow peers when using onlyTFT is below the SRE
threshold, from Eqs. 3.7 and 3.8 it follows that:











ds = ωssµs + ωfsµf
xf

xs
+ σssµ

′
s

df = ωsfµs
xs

xf
+ ωffµf + σsfµ

′
s

xs

xf

µ′
s = αds − µs

Here ωij and σij are determined by the design of TFT and network settings. We
use the default TFT settings as in the BitTorrent main client, i.e., peers open 5 upload
slots, among which one is used for optimistic unchoke, and seeders seed randomly [72].
Then, for the following network settings:xs = xf , µf = 4µs, α = 0.9, we have:
ωfs = 1 − ωff = 0.1, ωsf = 1 − ωss = 0.2, σss = 1 − σsf = 0.5. Solving the above
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system equations, we have:ds = 14µs/11, df = 213µs/55, andϕf = 220/213 > 1. We
see that, despite the extra seed supply provided by slow peers, fast peers can still meet the
SRE threshold.

3.2 Analysis

Based on our model, in this section we analyze the performance of SRE both when it is
applied to a single swarm and to multiple swarms. Unless stated otherwise, we assume
that each swarm in the steady state consists of two classes ofpeers, 50 fast peers with
an upload capacityµf equal to 2048 Kbps and 50 slow peers with an upload capacityµs

equal to 512 Kbps. We believe this simplified version of upload capacity setting is already
enough for our analysis, though more complicated capacity distribution can also be used.
By default, there is the same number of fast and slow peers, and the SRE thresholdα is
set to 0.9.

We use two metrics to evaluate SRE’s performance, i.e., the average download speed
and the sharing ratio, and we consider three factors influencing SRE’s performance, i.e.,
the SRE thresholdα, the fraction of fast peers, and the upload capacity ratio between fast
and slow peers.

3.2.1 One swarm

We first analyze the effects of using SRE within one swarm only. In Figs. 3.2, 3.3, and
3.4, TFT alone is compared to TFT with SRE. As expected, SRE helps in enhancing
reciprocity. In fact, the download speed of fast peers, who have a higher sharing ratio
than slow peers under all considered scenarios, is higher when sharing ratio is enforced,
as compared to the case when only TFT is applied. However we note that, for certain
settings, i.e., when the threshold is too low (Fig. 3.3) or when the upload capacity ratio
of the two classes of peers is small (Fig. 3.4), SRE has a limited influence on the perfor-
mance. Hence, knowing the capacity distribution of peers isimportant to make the use of
SRE most effective. Furthermore, in line with our previous results in Chapter 2, we note
from Figs. 3.2(a), 3.3(a), and 3.4(a) that enhancing reciprocity deteriorates the overall
download performance in the system.

These findings suggest that applying SRE within one swarm is avery strict way to
enhance reciprocity: the performance of a peer depends onlyon his upload capacity.
Hence, this method might be useful for administrators of private communities to exclude
low-capacity peers.
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Figure 3.2: SRE in one swarm: the influence of the fraction of fast peers.
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3.2.2 Multiple swarms

In this section, we analyze the effects of SRE’s when the sharing ratio of each peer is
calculated across multiple swarms. As we can observe in Figs. 3.5, 3.6, and 3.7, the
seeding work performed by peers in order to comply with the SRE threshold results in
a higher download speed for peers in all classes, as well as ina better overall download
performance in the system. Furthermore, this performance improvement is increased with
a higher SRE threshold, a higher fraction of fast peers, or a larger upload capacity ratio of
the two classes of peers.

Hence, applying SRE within multiple swarms translates intoseeding incentives for
those peers that cannot comply with the SRE threshold by onlyleeching. This represents
a win-win situation where all peers are provided with a better service due to the increased
bandwidth supply.

3.2.3 Comparison with the real world

In our model, we have only considered rational user behavior, i.e., peers only seed the
minimum amount they are required to. In a real private community, this is not always the
case. Several measurement studies [13,64] show that instead of following the enforcement
rationally, many users prefer to seed more than they need, and thus achieve sharing ratios
much higher than required. For example, in HDChina, a popular private community that
has over 18,000 registered users, over 90% of the users have a sharing ratio higher than
one [64]; while in another popular community, CHDBits, the top 250 users possess a
sharing ratio higher than 10 [13]. This suggests that the potential risk of being expelled
from a community due to an insufficient commitment psychologically manipulates users’
behavior.

Given the existence of this irrational user behavior, the results derived in our model
can be seen as alower boundfor the performance improvement provided by SRE, as we
formally prove now.

Theorem 3.1 In a BitTorrent swarm where SRE is used and where peers uploadat their
full capacities, the average download speedd′

i of a peer in classi is not lower thandi,
regardless of the user behavior:

d′
i ≥ di =

∑

j ωjixjµj +
∑

j∈{j,ϕj<α} σjixjµ
′
j

xi

. (3.9)

(The expression fordi comes from Eq.(3.7)).

Proof: Given the rational user behavior assumed in our model, the second term in the
numerator of Eq.(3.9) specifies the minimum bandwidth allocated from classj seeders to
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Figure 3.5: SRE in multiple swarms: the influence of the fraction of fast peers.
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Figure 3.6: SRE in multiple swarms: the influence of the threshold.
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the ratio is expressed in terms ofµf/µs and the average capacity of the population is
constant).



49

classi leechers, whereµ′
j = (α − ϕj)F/tj . Due to possible irrational user behavior, the

sharing ratios achieved by peers in a private community swarm might be much diverse but,
nevertheless, not less thanα. Let Bi = (Ai − ϕi)F/ti, whereAi is the average sharing
ratio achieved by a peer in classi, i.e., Ai ≥ α. Similarly to our analysis in Section
3.1.4, we calculate the average download speedd′

i in a swarm with possible irrational
user behavior as follows:

d′
i =

∑

j ωjixjµj +
∑

j σjixjBj

xi

. (3.10)

BecauseAi ≥ α, we haveBi ≥ µ′
i ≥ 0. Hence it follows thatd′

i ≥ di.

3.3 Related work

Most existing studies on BitTorrent incentive policies focus on TFT and its variations
[30], [72], [90], [48]. To date, only few works analyze private BitTorrent communities.
Andradeet al. [5] focus on the dynamics of resource demand and supply, and one of their
most interesting findings is that a small set of users contributes most of the resources,
but the users that provide more resources are also those thatdemand more. Rahmanet
al. [89] introduced and studied the credit crunch and crash problem, and they provide a
novel credit intervention mechanism that proactively stops the system seizing. Zhanget
al. [124] investigated hundreds of private trackers and depicted a broad and clear picture
of the private community landscape. Chenet al. [13] compared system behaviors among
13 private trackers and 2 public trackers, and they showed their differences regarding
user viscosity, single torrent evolution, user behaviors,and content distribution. While
these studies all focus on demonstrating the properties of private communities based on
measurements or simulations, we provide a theoretical model to analyze SRE’s influence
on the system performance. Liuet al. [64] developed a model to analyze SRE as well,
based on a game theory approach. While they show the existence of a Nash Equilibrium
and the conditions to achieve it, our model quantifies the lower bound of the performance
improvement when using SRE, and we further study the influence of the SRE threshold
and the bandwidth heterogeneity of the peers in the system.

3.4 Conclusions and future work

In this work, we have provided an analytical model that captures the essence of SRE
adopted by private BitTorrent communities. Due to the existence of “irrational” seeding
behavior observed in real private communities, our model represents a lower bound for the
average download speed that peers can achieve. Based on our model, we show that apply-
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ing SRE within a single swarm is a possible way for administrators of private communities
to enhance reciprocity, or to exclude low-capacity peers. On the other hand, applying SRE
across multiple swarms provides seeding incentives, and these seeding resources lead to a
better overall download performance. We furthermore show that the performance of SRE
is increased by 1) a higher fraction of high-capacity peers,2) a higher SRE threshold, and
3) a larger disparity in the upload capacity of peers.



Chapter 4

Monetary schemes as contribution
incentives: systemic risk and user-level
performance

Online networks often require the cooperation and the contribution of their users. Ef-
fective contribution incentives are essential for the sustainability of the system. Barter
schemes like Tit-For-Tat are based on reciprocity and have anumber of limitations in,
for example, the need for the coincidence of wants of the participants and the ineffective-
ness in the long-term use. To tackle these problems, monetary schemes in economics are
borrowed, modified, and utilized to design incentive policies. Under monetary schemes,
virtual currencies are issued and used as an exchange media for the contributions and
consumptions of users, implicitly or explicitly. In this way, users are incentivized to con-
tribute, so as to keep some reserve of the virtual currency for their future needs.

Monetary schemes are becoming prevalent in nowadays onlinenetworks, ranging
from the currencies used in online virtual worlds such as Second Life, to methods for re-
source allocation in wireless sensor network [17] and file sharing [43]. As one example,
in recent years there has been a proliferation of so-calledprivate BitTorrent communi-
ties aiming at providing contribution incentives beyond BitTorrent’s original TFT. These
communities employ privatetrackersthat maintain centralized accounts and record the
download and upload activity of each user. They apply policies to incentivize good over-
all upload / download behavior. One such well-known policy is thecredit-basedpolicy,
which requires each member to maintain a positivecredit (its total amount of upload mi-
nus its total amount of download). Another such policy isSharing Ratio Enforcement
(SRE), in which each member is required to keep itssharing ratio(the ratio between its
total amounts of upload and download) at least equal to a threshold called theSRE thresh-
old, which is set by the community administrator. The credit-based policy is an obvious
monetary scheme. SRE, though not quite at the first glance, only differs in that it allows
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a user to have negative credit (i.e., its download amount canbe larger than its upload
amount) and that when users do have negative credit, the amount of credit circulated in
the system is dynamic. Under both policies, community members that cannot fulfill the
requirements are first warned and then banned from downloading, or even expelled from
the community.

In this chapter, we explore both the system-level dynamics and the user-level perfor-
mance in communities adopting monetary schemes as contribution incentives. We use
private BitTorrent communities as an example, but our analysis is applicable to any on-
line network that adopts contribution enforcement policies, by generalizing the metrics
for determining the credit and the sharing ratio from the upload and download amounts in
a P2P file sharing system to any metrics representing contribution and consumption.

Considering a private community as an economic system, we analyze its system-level
dynamics by studying its potential systemic risk. In economics, systemic risk is the risk of
a collapse of an entire economic system or market [58]. We findthat in private communi-
ties, too much credit distributed too evenly leads to acrashin which peers hold abundant
credit and are not willing to contribute. Hence, the system seizes to zero throughput con-
taining only leechers. Conversely, too little credit distributed over the peers leads to a
crunchin which peers do not have enough credit to download, leadingto a seized system
containing only seeders.1.

Even when crashes or crunches do not occur, i.e., when the system issustainable, this
only ensures that the system is able to function, but not how well it functions. Though
many measurement studies [13, 64, 69, 124] have shown that the SRE-based and credit-
based policies are very effective in boosting contributionlevels in terms of high seeder-to-
leecher ratios and the corresponding high downloading speeds, we argue that the abundant
supply of bandwidth also has several negative effects such as excessively long seeding
times that are often unproductive. To explore this, we analyze the user-level performance
in sustainable private communities.

Our main contributions are as follows:

1. We demonstrate using simulations that in private communities credit crashes and
crunches can occur, and we identify the conditions that leadto these extreme out-
comes (Section 4.3);

2. We present a theoretical model that predicts whether a system will crash, crunch,
or be sustainable over a defined time horizon. Based on this model we propose an

1A real world example of the crash and crunch is the story of theCapitol Hill Baby Sitting Co-op [56],
which was a group of parents who agreed to cooperate to babysit. A crunch happened when most people
wanted to save up coupons: they looked for an opportunity to babysit but there was little demand. Later
when more coupons were issued a crash happened: most people felt they had enough coupons so they didn’t
want to babysit, leaving the system with huge demand but no supply.
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adaptive credit policy that helps the system to avoid crashes and crunches (Section
4.3);

3. We show that the users in sustainable private communities, while achieving high
system-wide downloading speeds, are forced to seed for excessively long times,
during which their upload capacity utilizations are quite low (Section 4.4). Further,
when the popularity of a swarm decreases over time, peers that join the swarm
not early enough will have to seed for much longer durations than peers who join
(strategically) at the beginning of the swarm (Section 4.5);

4. We propose and evaluate by means of simulations four new strategies that allevi-
ate these problems while still maintaining a reasonable system-wide downloading
speed (Sections 4.4 and 4.5).

4.1 Support from real world observations

To support our later analysis, we first present real world observations of two private com-
munities, CHDBits.org [12] and Bitsoup.org [10]. CHDBits and Bitsoup both require the
users to maintain sharing ratios larger than the threshold of 0.7. The trackers of CHD-
Bits collect information that is periodically reported by the BitTorrent clients of its users,
which is displayed in the form of HTML pages available to onlyits users. We crawled
these trackers in May 2011. For each user in CHDBits, we collected the information on
its user profile page including the upload and download amount, the seeding time, and the
sharing ratio. For each torrent, we collected the information of its published date, and its
numbers of seeders and leechers at the time of snapshot. In total, information on all the
31,547 registered users and 40,040 torrents was obtained. For Bitsoup, we use the traces
published in [5] that report the user activity of 84,007 users in 13,741 torrents during a
period of two months.

4.1.1 The existence of over-seeding behavior

A previous work from Tribler group [37] has shown that users who always seed can,
counter-intuitively, lead private communities to poor performance due to a credit crunch,
in which a few peers accumulate much of the credit and depriveothers of the opportunity
of downloading. This implies that the user behavior can significantly influence the system
performance. Inspired by this finding, we first demonstrate the user behavior as observed
in the real world, based on which we later analyze the system-level and user-level perfor-
mance of private communities.

In CHDBits, maintaining a sharing ratio equal to the SRE threshold is sufficient for a
user to start downloading a new file. However, we observe thatnot all the users behave
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Figure 4.1: Over-seeding behavior: the CDF of the sharing ratios of peers in CHDBits.org.

like this. As shown in Fig. 4.1, more than 95% of the users in CHDBits keep sharing
ratios higher than 0.7 and more than50% of the users keep them higher than 2. This
phenomenon of peers seeding more than required and achieving sharing ratios that are
(much) higher than the SRE threshold has also been observed in many other communities
[64].

From the above observation we abstract two user behaviors for our later analysis2,
lazy-seedingandover-seeding. Lazy-seeding peers seed the minimum amount required
by the enforcement policies. They represent the users who are download-oriented, i.e.,
who only seed enough to maintain adequate sharing ratios or credit to be able to start
new downloads. On the other hand, over-seeding peers are deposit-oriented, and always
maintain sharing ratios (much) higher than required. The behavior of such peers may be
triggered by various motivations such as altruism, a desireto be part of the rich elite of
the community, or a habit of storing credit for the future. Inline with the terminology
used in economics, over-seeding peers can be understood ashoardersas their behavior
essentially amounts to hoarding credit.

4.1.2 The oversupply

The main motivation for implementing credit or SRE policiesis to close the gap between
bandwidth demand and supply as observed in public BitTorrent communities, where there
is significantly more demand than supply [69]. However, the presence of over-seeding
peers completely reverses the situation and in private communities, swarms tend to be
extremely oversupplied.

At the time of the crawling, CHDBits had 33,041 active swarms(with at least one
leecher or one seeder), among which 26,402 swarms (79.9%) had no leechers at all. As
shown in Fig. 4.2(a),40% of the swarms with no leechers still had at least 5 seeders, and

2We use the abstracted behaviors instead of the real trace because we intend to identify what behavior
influences what performance.
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Figure 4.2: Oversupply in CHDBits swarms.
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Figure 4.3: Unproductive seeding: The CDF of the fraction ofidle seeding time of peers
with sharing ratios smaller than 1 in BitSoup.org.

5% of these swarms even had more than 20 seeders. For swarms withat least 1 leecher,
the seeder-to-leecher ratio(SLR) is quite high: as shown in Fig. 4.2(b),50% (5%) of
these swarms had anSLR of at least 6 (30). We see clearly that a majority of the swarms
are heavily oversupplied. In such swarms, intuitively it isdifficult for seeders to perform
any actual uploads due to the insufficient demand and unsatisfied supply. We validate our
speculation through the following observation.

4.1.3 Unproductive seeding

It is clear that in order to achieve high sharing ratios, peers need to spend considerable
amount of seeding time. In the case of over-seeding peers, long seeding times are to be
expected. However, we observe that even many peers with small sharing ratios suffer
from excessively long seeding times, and a significant part of their seeding time is spent
idle without being able to upload anything to others. As a consequence, they have to wait
for a long period until their sharing ratios are high enough to start new downloads.

Fig. 4.3 shows the CDF of the fraction of idle seeding time of peers with sharing ratios
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smaller than 1 in BitSoup. We see that10% of these peers spend at least half of their
seeding time idle. Note that Fig. 4.3 only shows the fractionof idle seeding time. It can
be conjectured that the fraction of seeding time that is not completely idle yet still yields
very low upload speed, would be much higher. We term this situation asunproductive
seedingand we hypothesize that it is due to the oversupply under credit-based or SRE-
based schemes.

Based on these observations, in later sections we analyze the system-level credit dy-
namics and user-level performance in private communities.Before that, we first introduce
the basic model in the following section.

4.2 Model description

In this section we will explain the credit-based and SRE-based incentive policies, and our
model of communities that employ one of these policies.

4.2.1 Credit-based versus SRE-based policies

The credit-based and SRE-based policies are essentially very similar, in a way that they
can be understood as variations of each other. The idea behind both policies is that every
peer has to maintain at all timest a certain relation between the total amountu(t) it has
uploaded and the total amountd(t) it has downloaded since it entered the community until
time t. The credit-based policy requires users to keep non-negative credit, i.e., to ensure
that u(t) − d(t) ≥ 0, while the SRE-based policy requires users to keep a minimum
sharing ratioSR(t) = u(t)/d(t), i.e., to ensure thatSR(t) ≥ α, whereα is the SRE
threshold3. Whenα = 1 in the SRE policy, the SRE-based and credit-based policies
coincide.

By enforcing non-negative credit in the credit-based policy, the exchanging of data
by peers does not generate new credit, and the total amount ofcredit in the community
is always equal to zero (or to the sum of the initial credits allocated to the peers by the
community administrator). In contrast, an SRE-based policy allows users to have negative
credit (i.e., to haveu(t)−d(t) < 0, which means thatSR(t) < 1). Holding negative credit
increases the amount of credit among the peers with positivecredit in the system—in other
words, by holding negative credit a user is essentially minting credit. More precisely, the
total credit minted by a user in an SRE-based community withSR(t) < 1 until time t is:

d(t) − u(t) = (1 − SR(t))d(t),

3Throughout this chapter we assumeα ≤ 1, as most private communities do [10,40]. It is not reasonable
to haveα > 1 since, given the conservation law, it is not possible for allusers to achieve sharing ratios lager
than one simultaneously.
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which is bounded by(1 − α)d(t). As the sharing ratios of peers fluctuate, SRE-based
communities hold a dynamic amount of credit circulating in the system.

4.2.2 The basic model

We consider a community that is either credit-based or SRE-based. The community com-
prises a set ofs swarms4 each associated with a file of sizeF (expressed in number of
pieces or units), and a set ofN peers each with upload capacityU .5 We assume no limit
on the download capacity of peers. The download model follows the TFT mechanism in
BitTorrent, with seeders uploading units to leechers and leechers exchanging units with
each other. In reality, a peer can participate in multiple swarms simultaneously, with its
bandwidth shared among all the swarms. However, since the sharing ratio is aggregated
over all the swarms, we assume that at any time a peer only participates in one swarm,
either as a leecher or a seeder.

The operation of the model is based oncyclesrepresenting units of time. In every
cycle, a peer either uploads and/or downloads data or is idle, and at the end of every
cycle, it may switch swarms. Peers attempt to download alls files in random order.

In a credit-based community, every peerp is initialized with an amountCp of credit,
and in an SRE-based community, every peer is initialized with a download amount equal
to F and a sharing ratio that is a uniformly random number between0 and 2. A peer can
and will only start leeching its next file if its credit or its sharing ratio is at least equal to
its target threshold, otherwise it continues seeding the current file.

Based on real-world observations, we implement two user behaviors: lazy-seeding
and over-seeding (see details in Section 4.1.1). The targetthreshold of a lazy-seeding
peer is an amountF of credit in a credit-based community (enough to start and complete
leeching a new file) and a sharing ratio equal to the SRE threshold in an SRE-based
community. The condition for a lazy-seeding peerp at timet to stop seeding iscp(t) ≥ 0,
with:

cp(t) =

{

up(t) − dp(t) + Cp − F credit-based,
up(t) − αdp(t) SRE-based,

(4.1)

whereup(t) and dp(t) represent the total amounts of upload and download of peerp.
Over-seeding peers behave in a similar way, but in both credit-based and SRE-based com-
munities they aim at large sharing ratios. Throughout this chapter we choose a sharing
ratio of 2 as the default target threshold for over-seeding peers6.

4We assume the number of swarms to be large enough that even with no injection of new swarms, users
still have enough swarms to download from.

5Bandwidth heterogeneity does not change whether a system will crash or crunch, but it does influ-
ence the user-level performance, for which we examine both bandwidth homogeneous and heterogeneous
systems in Section 4.4.2.

6We have run several tests using different values for the threshold and the results show that the tendency
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4.3 System-level performance: the systemic risk

In this section, we explore the systemic risk of monetary schemes. We start with simula-
tions to demonstrate the consequences of the systemic risk and we identify the conditions
that lead to these extreme outcomes. Then, we present a theoretical model that predicts
when it may happen. Finally, we propose an adaptive credit policy that helps the system
to avoid the systemic risk and to be sustainable.

4.3.1 The crash and crunch

In this section, we perform a number of simulations to explore the credit dynamics in
private communities, focusing on analyzing the conditionsunder which a community will
crash, crunch, or be sustainable. We define acrashas a situation in which due to credit
abundance, peers are not incentivized to contribute and thesystem completely seizes up,
providing no upload or download to any peers. We define acrunch as a situation in
which due to credit shortages, peers cannot afford new downloads and the system seizes
providing no upload or download to any peers. We define a community to besustainable
if it does not crash or crunch.

Experimental setup

We consider a closed system without new peer arrivals. Peer arrivals bring credit into the
system and make it difficult to identify whether the underlying credit dynamics is due to
the enforcement policy or to the new credit. In fact, in reality many private communities
are (nearly) closed [12, 40]. For example, CHDBits hardly has any open registration and
new members can only be admitted by extremely restricted invitation7.

The simulation is based on the basic model introduced in Section 4.2, withN =

1000, s = 100, F = 10 units8, andU = 4 units per cycle. We chooseα = 0.7 as the
default value of the SRE threshold9, as this value is used in many private communities,
e.g., [10, 40]. For each experiment we perform 10 independent runs, and each run is
executed for 2000 cycles.

of the problem is the same.
7As we will show later in this section and in Section 4.4.2, in aclosed private community with over-

seeding peers crunches easily happen and new peer arrivals bring credit, which alleviates the potential
systemic risk. We conjecture this is the reason why CHDBits,as well as other private communities, from
time to time (several times a year) accept a certain number ofopen registrations, instead of merely intending
to share their resources with a larger user base.

8The small file size means the simulation runs produce resultsat a large scale of granularity. We also
performed runs withF = 100 and found no significant difference in results.

9We have run several tests using different values forα. Results show that the tendency of the problem
stays the same, but with different speeds of entering crash or crunch.
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frac.of rich avg.throughput avg.frac.of final
at start (std.dev) seeders(std.dev) state

0.1 0.000 (0.000) 1.000 (0.000) crunch
0.3 0.218 (0.001) 0.953 (0.005) sustain
0.5 0.777 (0.002) 0.769 (0.018) sustain
0.7 0.968 (0.004) 0.506 (0.018) sustain
0.8 0.587 (0.478) 0.249 (0.204) sustain/crash
0.9 0.001 (0.000) 0.000 (0.000) crash

Table 4.1: Sustainability of the credit-based system.

We consider three performance metrics, namely the average throughput, the fraction
of seeders, and the state of the system at the end of the simulation. The throughput is
expressed as the total amounts of units of data exchanged in the system over an entire run,
normalized to the highest one observed in all the experiments. The state of the system
indicates whether the system crunches, crashes or sustains.

Credit-based: constant credit

As discussed in Section 4.2, the amount of credit in a credit-based community is always
equal to the initial credit allocated by the community administrators. In this experiment,
we vary the fraction of peers who are given an initial credit of F (and other peers are
given zero credit), which we call rich peers, thus generating different levels of credit in
the system.

Populations of lazy-seeding peers:We first show the results of the system containing
only lazy-seeding peers in Table 4.1. When the fraction of rich peers is initialized to
0.3, 0.5, and 0.7, we see sustainable outcomes10 with increasing throughput and a smaller
number of seeders at the end of the simulation. This is intuitive since as the amount of
credit in the system increases, fewer peers are poor, and hence more exchange of data can
occur.

In the crunch state, where only 10% of peers are initialized as rich, the system is com-
posed of all seeders by the end of the run, and hence, no exchange of data can occur.
Conversely, in the crash state, where 90% of peers are initialized as rich, all peers are
leechers by the end of the run, which again means no exchange of data. Inspection of in-
dividual runs shows that crunches and crashes happen quickly—within the first ten cycles
or so. This is reflected in the low (almost zero) throughput under crash and crunch states.

It is interesting to see that when the initial fraction of rich peers is set to 0.8, both sus-
tain and crash outcomes can occur. This is reflected in the high variance of the throughput.

10We have run extended runs up to 20,000 cycles and find that the sustainable outcomes are maintained.
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frac.ofover avg.throughput avg.frac.of final
-seeding peers (std.dev) seeders(std.dev) state

0.1 0.0093 (0.0012) 0.0000 (0.0000) crash
0.2 0.2046 (0.2103) 0.0037 (0.0082) crash/sustain
0.3 0.8910 (0.0041) 0.1487 (0.0141) sustain
0.4 0.9865 (0.0090) 0.4212 (0.0243) sustain
0.5 0.1436 (0.0083) 1.0000 (0.0000) crunch

Table 4.2: Sustainability of the SRE-based system.

Here we are very close to the threshold leading to a crash and we find path dependency
based on initial random conditions leading to either a high sustainable throughput, or a
sudden crash otherwise.

Populations containing over-seeding peers:We find that introducinganynumber of
over-seeding peers into the system eventually leads to a crunch, and the speed of the
crunch depends on the number of over-seeding peers. This is intuitive since in our experi-
ments, over-seeding peers seed (to hoard credit) until theyhave a sharing ratio larger than
2. This means that as the simulation progresses, the over-seeding peers eventually hold
all the credit in the system and a crunch is inevitable.

SRE-based: dynamic credit

As discussed above, a credit-based community keeps a delicate constant amount of credit
which, if not properly set, will lead the system to crunch or crash. On the other hand,
as stated in Section 4.2, an SRE-based system keeps dynamic credit by allowing peers
to have sharing ratios less than one, i.e., to have negative credits. Hence, essentially
lazy-seeding peers in an SRE-based community inject creditinto circulation, and as in a
credit-based community, over-seeding peers absorb creditfrom circulation.

Intuitively, an SRE-based system cannot be sustainable if all peers are lazy-seeding:
soon they will inject too much credit into circulation, which eventually leads the system
to a crash. However, as we have shown in Section 4.1.1, in private communities over-
seeding peers always exist and they absorb credit from circulation. Hence, in an SRE-
based system with over-seeding peers, the effect of credit-injecting by lazy-seeding peers
can be alleviated and the system might eventually be sustainable.

We run several simulations to validate the above hypotheses. We consider an SRE-
based system in which we vary the fraction of over-seeding peers to assess their influence
on the credit dynamics. Table 4.2 shows the simulation results. Consistent with our in-
tuition, a certain fraction of over-seeding peers (0.3 and 0.4 in our experimental settings)
does lead the SRE-based community to be sustainable. A too small or a too large frac-
tion of over-seeding peers (0.1 and 0.5 in our experimental settings), on the other hand,
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eventually leads the system to crash or crunch.

4.3.2 Predicting crashes and crunches

In this section, we will derive (approximate) conditions for predicting whether the system
will crunch or crash.

In the model introduced in Section 4.2, suppose that at timet, a swarm` hasx`(t)

leechers andy`(t) seeders. Denoting the fraction of the file that a leecherx`
i has already

downloaded byp`
i(t), x`

i needs to spend an amountα(1 − p`
i(t))F of credit to finish its

download. We defineL`
i(t) andR`

i(t) as the sets of peers that have fewer or more pieces
of the file than peeri, respectively (for a seedery`(t), L`

i(t) consists of all leechers and
R`

i(t) is empty). We assume that peeri only downloads from peers inR`
i(t), and only

uploads to peers inL`
i(t) (this is not quite true in BitTorrent, which makes the conditions

that we will derive approximations). We further assume thatthe credit paid by peeri is
equally shared by all peers inR`

i(t). Hence, if the situation (in terms ofLi(t) andRi(t))
does not change from timet onward, peeri can earn an amountQ`

i(t) of credit from the
peers inL`

i(t), where

Q`
i(t) :=

∑

j∈L`
i(t)

(1 − p`
j(t))F

|R`
j(t)|

.

Let X`(t) andY`(t) respectively represent the sets of leechers and seeders that, as-
suming that the situation does not change from timet, are able to achieve their target
thresholds and start new downloads. Together with Eq. (4.1), we have:

X`(t) :=
{

x`
i : cx`

i
(t) + Q`

i(t) − α(1 − p`
i(t))F ≥ 0

}

,

Y`(t) :=
{

y`
j : cy`

j
(t) + Q`

j(t) ≥ 0
}

.

Now we estimate the remaining download time of leechers and the remaining seeding
time of seeders for the current file. Here we assume that during the upload process,
leechers and seeders alike upload with their full capacityU and distribute their upload
capacity equally across all the leechers they are uploadingto. The estimated remaining
download timeT `

i (t) of leecherx`
i can be expressed as

Tx`
i(t)

:=
(1 − p`

i(t))F
∑

k∈R`
i(t)

U

|L`
k
(t)|

.

Similarly, the estimated remaining time for a seedery`
j to achieve its target threshold

and stop seeding is:
Ty`

j
(t) := max{0,−cy`

j
(t)}/U,
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where−cy`
j
(t) (if positive) represents the credity`

j still needs to earn to achieve its target
threshold.

We can now formulate thecondition for a crunchto happen in the system as the
condition that the setsX`(t) andY`(t) are both empty for all swarms̀at some timet,
because that no leechers or seeders are able to earn enough credit to leave their swarms.
As a consequence, by the time that the last leecher finishes its download, there will be no
exchange of credit in the whole system.

In order to formulate the condition for a crash to happen, letP`(t) := {x`
i : x`

i /∈

X`(t)} be the set of leechers in swarm̀who will need to seed after finishing their current
downloads in order to achieve their target thresholds. Thenthecondition for a crashto
happen is

|Y`(t)| = y`(t) and min
k∈P`(t)

Tx`
k
(t) > max

j∈Y`(t)
Ty`

j
(t),

for all swarms̀ at some timet. To see this, note that the system crashes if there are no
seeders. The first part of the condition above says that all the seeders in the system will
be able to earn enough credit to leave their swarms. If in addition none of the leechers in
P`(t) can finish its download before the last existing seeder leaves the swarm and if this
happens to all the swarms (the second part of the condition),then the whole system will
end up with no seeders and seize completely, i.e., a credit crash will occur.

4.3.3 Adaptive credit for sustainability

Based on the experimental and theoretical results of Sections 4.3.1 and 4.3.2, we have
designed a noveladaptive credit intervention mechanismto avoid crashes and crunches.
At each cycle, we check the conditions for crunches and crashes derived in Section 4.3.2,
thus obtaining early warnings for potential crunches or crashes. When we find that the
system is destined for a crunch, a new credit policy calledfreeleech11 will be applied.
As a consequence, leechers do not pay any credit for downloading, but seeders and other
uploaders are still credited for uploading. Hence, new credit is injected into the system.
Credit injection for stimulating the economy has often beenused successfully in real
world situations [98]. When we find that the system is destined for a crash, it applies a
freeseedpolicy in which seeding peers (and uploading leechers) do not receive any credit
for uploading, but leechers still pay credit for downloading. Hence, credit is removed
from the system.

We use the credit-based system as an example to evaluate our strategies, but the same
analysis can be applied to an SRE-based system. The experimental setup is the same as
in Section 4.3.1.

11Freeleech is sometimes also used in existing private communities such as CHDBits, but in a more
empirical manner.
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frac.of rich avg.throughput avg.frac.of final
at start (std.dev) seeders(std.dev) state

0.1 0.234 (0.026) 0.948 (0.012) sustain
0.3 0.311 (0.004) 0.941 (0.005) sustain
0.5 0.782 (0.002) 0.769 (0.009) sustain
0.7 0.968 (0.001) 0.512 (0.024) sustain
0.8 0.976 (0.001) 0.535 (0.015) sustain
0.9 0.995 (0.002) 0.575 (0.027) sustain

Table 4.3: System sustainability with adaptive credit.
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Figure 4.4: The normalized throughput and credit in the system with the adaptive credit
intervention mechanism.

Populations of lazy-seeding peers

Table 4.3 shows the performance of our adaptive credit intervention mechanism in a
credit-based system containing only lazy-seeding peers. All runs produce a sustainable
outcome, including those initialized with fractions of 0.1and 0.9 of rich peers, which
previously led to crunches and crashes when the mechanism isnot applied (see Section
4.3.1). This indicates that the model in Section 4.3.2 givesearly enough warning for the
adaptive credit policy to avoid crashes and crunches.

Fig. 4.4 shows the results of two runs initialized with fractions of 0.1 and 0.9 of rich
peers. A crunch is avoided in Fig. 4.4.(a) via the activationof freeleech at several cycles—
note the increase in credit over time. A crash is avoided in Fig. 4.4.(b) via the activation
of freeseed in the initial cycles—note the decreasing credit over time.

Populations containing over-seeding peers

As stated in Section 4.3.1, any number of over-seeding peersin a credit-based community
will eventually lead to a crunch, due to the increasing amounts of credit they hoard. In or-
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Figure 4.5: The normalized throughput with and without the adaptive credit intervention
mechanism (50% rich peers and 1% over-seeding peers).

der to test whether our adaptive credit intervention mechanism can deal with this extreme
condition, we ran several simulations in which a small subset (1%) of the population are
over-seeding peers.

Fig. 4.5 shows the throughput in the system with and without the adaptive credit in-
tervention mechanism. As can be seen, without the mechanism, the system eventually
crunches, whereas with the mechanism, the system is sustainable. However, the through-
put of the system in the latter case is still very low. Although new credit is injected each
time a crunch is predicted, this additional credit is eventually collected by the over-seeding
peers and the process repeats. We believe that this is due to the fact that the adaptive credit
intervention mechanism does not attempt to optimize the system, but rather only to avoid
a crunch. In later sections we provide a more thorough analysis on optimizing the system,
i.e., improving the user-level performance.

Discussion

The aim of adopting the freeleech and freeseed policies is toavoid crunches and crashes,
which is actually achieved, but at the potential cost that the original incentive for con-
tributions is temporarily suspended. It could be argued that this could lead to reduced
performance if users learn to game the system by only downloading during freeleech pe-
riods and not seeding during freeseed periods.

A refinement that will help preserve incentives even during freeseed and freeleech
periods, is to reduce the freeseed and freeleech “tax” amount. Then, rather than having
leechers not pay anything at all for downloading and seedersnot being credited for up-
loading, they can be charged or credited for a fraction, say 50%. Any value more than0%

still provides incentives for contribution. Furthermore,the taxation amount can also be
variable, and can be applied in a continuous fashion, ratherthan getting triggered at the
extreme conditions of crash and crunch. We explore this later in Section 4.4.3.

Until now, we have analyzed the sustainability of a P2P community that adopts a
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credit-based or SRE-based policy. However, the sustainability of the system only ensures
that the system is able to function, but does not guarantee itwill function well (recall
Fig. 4.5 for an example of a sustainable system with low performance). To explore this,
in the following sections we analyze and improve the user-level performance in sustain-
able P2P communities. There, we take sharing ratio enforcement as an example, but our
analysis is also applicable to the credit-based policy, since it is only a special case of SRE
with a threshold equal to one.

4.4 User-level performance: the positive and negative ef-
fects of SRE

In this section, we analyze the user-level performance in private communities. First, we
present a theoretical model that captures the bandwidth supply and demand in the com-
munity. Then, we show through simulations the positive and negative effects of SRE,
followed by a proposal of four remedies. Finally, we evaluate and demonstrate the effec-
tiveness of our strategies.

4.4.1 A simple model

From the two real world observations described in Section 4.1, in this section we propose
a fluid model to analyze the user-level performance in private BitTorrent communities.

We follow a similar fluid modeling approach as in [48,72,85] and extend it by includ-
ing SRE and considering multiple user behaviors derived from real world observations.
Throughout this chapter we assume that the SRE thresholdα ≤ 1, which is the case for
most private communities. Remember that whenα = 1, the system also represents the
one that adopts credit-based policy.

We divide peers intoN different classes according to their upload capacities. Let Ui

represent the upload capacity of peers in classi. Without loss of generality we assume
that the download capacity of peers is not a bottleneck. The notation we use is shown in
Table 4.4.

As mentioned earlier we consider two user behaviors: lazy-seeding and over-seeding.
To better understand the effect of SRE and the over-seeding behavior, we consider an
idealized scenario of a swarm, in which there aresi over-seeding peers in classi with an
infinite desired threshold for their sharing ratios. This implies that they stay in the swarm
as seeders indefinitely. Lazy-seeding peers in classi join the swarm as leechers with an
arrival rate equal toλi and sharing ratios equal to 0. After they finish their downloads,
they calculate the sharing ratios they have achieved and, ifnecessary, they seed in this
swarm until their sharing ratios reach the SRE thresholdα. Then they leave the swarm.
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Notation Definition
F the size of the file shared in a swarm.
α the SRE threshold.
λi the arrival rate of leechers in classi.
Ui the upload capacity of a peer in classi.
ui the average upload speed of a peer in classi.
si the number of over-seeding seeders in classi.
Ti the average seeding time for lazy-seeding peers in classi.

Table 4.4: Notation of our BitTorrent model

According to TFT, during the leeching process peers favor other peers who have re-
cently reciprocated to them most. In this way, peers are roughly clustered according to
their capacities, and peers with similar capacities have similar performance [48, 72]. Let
xi(t) andyi(t) represent the number of leechers and lazy-seeding seeders in classi at a
particular timet, and letTi represent the average seeding time of lazy-seeding peers in
classi, then the evolution ofxi(t) andyi(t) can be described as:

dxi(t)

dt
= λi −

xi(t)di(t)

F
,

dyi(t)

dt
=

xi(t)di(t)

F
−

yi(t)

Ti

, i = 1, 2, ..., N,

(4.2)

wheredi(t) represents the average downloading speed of peers in classi at timet. The
term xi(t)di(t)/F specifies the rate at which leechers in classi turn into lazy-seeding
seeders andyi(t)/Ti specifies the leaving rate of lazy-seeding seeders in classi. In a
steady state,dxi(t)/dt = dyi(t)/dt ≡ 0. Letting xi and yi represent the number of
leechers and lazy-seeding seeders in classi in a steady state, anddi represent the average
downloading speed of leechers in classi, from Eq.(4.2) we have:

λi =
yi

Ti

=
dixi

F
. (4.3)

Depending on the peers arrival rates (λi) and the number of over-seeding peers (si), a
steady state will be either one of the two cases described separately below.

Oversupplied

When there are a large number of seeders and a small number of leechers, and seed-
ers cannot always fully utilize their upload capacities, wecan characterize the swarm as
oversupplied. Oversupplied is a typical phase for swarms in private BitTorrent commu-
nities. Given the abundance of seeders, it is realistic to assume that in an oversupplied
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swarm seeders perform most of the uploads. Further considering thepiece availability
problem12, peers are more likely to download from seeders rather than other leechers. A
previous measurement study [69] shows that in two private communities where the over-
supplied situation exists, over90% of the data comes from seeders. Accordingly in our
model we assume that in an oversupplied steady state leechers do not contribute upload
capacities. The condition for a swarm to be in an oversupplied steady state is:

∑

i

λi∆F <
∑

i

(yi + si)Ui∆ =
∑

i

(yi + si)γiUN∆, (4.4)

which specifies that within a time interval∆ the total upload volume thatcanbe provided
by all seeders is larger than the total download volume required by the

∑

i λi∆ new leech-
ers arriving in the same interval. HereUi = γiUN is the upload capacity of peers in class
i.

In such a steady state, once a new peer joins, seeders upload to it with their full upload
capacities and its download will be finished quickly. After that, seeders will be idle and
wait for the next upload opportunity. Hence, on average seeders cannot fully utilize their
upload capacities, and because of the operation of TCP13 their average upload speeds will
be proportional to their upload capacities. Letui represent the average upload speed of a
peer in classi, then we haveui = γiuN and the total actual upload volume provided by
all seeders should be equal to the total download volume required by all leechers, i.e.:

∑

i

λi∆F =
∑

i

(yi + si)γiuN∆. (4.5)

After the download is finished, a lazy-seeding peer in classi seeds for a period of
lengthTi until it achieves the SRE threshold, i.e., untilα = Tiui/F . Substitutingyi =

λiTi from Eq.(4.3) into Eq.(4.5) we find

uN =
(1 − α)

∑

i λiF
∑

i siγi

. (4.6)

Then,

Ti =
αF

ui

=
αF

γiuN

=
α

∑

i siγi

(1 − α)γi

∑

i λi

. (4.7)

Given Eqs. (4.4) and (4.7), we can rephrase the condition fora swam to be in an
oversupplied steady state as:

12The piece availability problem specifies that two connectedleechers may not perform actual down-
load/upload, because they cannot find interesting pieces ateach other.

13BitTorrent uses TCP as the transport layer protocol.
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∑

i siγiUN
∑

i λiF
> 1 − α. (4.8)

In a private community where the SRE threshold equalsα, whensi, Ui, λi, andF

fulfill the condition of Eq.(4.8), we say that the swarm is in an oversupplied steady state.
With a relatively small peer arrival rate (λi) and a large number of over-seeding seeders
(si), peers will experience very low upload capacity utilizations and extremely long seed-
ing times. This situation gets even worse for peers with low capacities: the ratio between
the seeding times of two peers is inversely proportional to the ratio of their upload ca-
pacities (γi). Moreover, over-seeding peers with higher upload capacities have a stronger
influence (proportional toγi) on this situation: the seeding time incurred by one over-
seeding seeder in classi (i < N) is equal to that incurred byγi (γi > 1) over-seeding
seeders in classN .

Undersupplied

We recognize a swarm to be undersupplied if it is not oversupplied. We assume that in an
undersupplied swarm both leechers and seeders can fully utilize their upload capacities,
i.e., ui = Ui. This assumption has been validated by previous studies [48, 72]. In this
situation, within a time interval∆ the total upload volume thatcan be provided by all
peers should be no larger than the total download volume required by all

∑

i λi∆ new
peers, i.e.:

∑

i

λi∆F ≥
∑

i

(xi + yi + si)γiUN∆. (4.9)

Peers contribute their upload capacities, hence gain sharing ratios both in the leech-
ing and the seeding process. At the end, they achieve sharingratios equal to the SRE
threshold, i.e.:

α =
((F/di)Ui + TiUi)

F
⇒ Ti =

αF

Ui

−
F

di

, (4.10)

where(F/di)Ui represents the upload volume provided by a leecher in classi in its leech-
ing process.

With xi leechers,yi lazy-seeding seeders, andsi over-seeding seeders in classi in
a steady state, the average downloading speed of a peer in class i can be calculated by
solving the system of equations proposed in Chapter 2:

di =
(
∑

j ωjixj +
∑

j σji(yj + sj))Uj

xi

, (4.11)
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whereωji (σji) specifies the fraction of upload speed allocated from a leecher (seeder) in
classj to leechers in classi in the BitTorrent protocol.

From Eqs. (4.3), (4.10), and (4.11), we can deriveTi, xi, andyi accordingly. Simply
from Eq.(4.10) we already haveTi = αF/Ui − F/di < F/Ui. This implies that in an
undersupplied steady state, an upper bound for the seeding time of a peer is the ratio
between the size of the shared file and its upload capacity, which is much better than in
an oversupplied steady state (Eq.(4.7)).

Further applying Eqs. (4.10) and (4.11) to Eq.(4.9), we rephrase the condition for a
swarm to be in an undersupplied steady state as follows:

∑

i siγiUN
∑

i λiF
≤ 1 − α, (4.12)

which is exactly the reverse of Eq.(4.8).

4.4.2 The effects of SRE

In this section we show the user-level performance under SRE. Based on simulations
we examine the influence of several parameters and we exhibitthe main reasons for the
positive and negative effects of SRE.

Experimental setup

In Section 4.3.1 we have shown that in closed private communities crashes or crunches
easily happen. It is not worthwhile to analyze the user-level performance in an unsustain-
able system. Hence, in this section we consider an open system with peer arrivals. As
stated in Section 4.2.1 and 4.3.1, new peers bring credit into the system and the increase
of the credit level alleviates the potential systemic risk.In reality, there are many private
communities with open registration, e.g., BitSoup [10], and they can be considered as
open systems.

We use the same simulator and consider the same initial settings as in Section 4.2,
except that now we consider 100 initial peers and 5 swarms in the system. In each cycle,
new peers arrive according to a certain arrival rate and theyjoin a random swarm to down-
load. After the first download, they maintain a sharing ratioabove their target thresholds.
Each peer (with upload capacity 1 unit per cycle) attempts todownload all the 5 files (with
size of 10 units) in the system, in random order. We consider abandwidth-homogeneous
BitTorrent system unless otherwise indicated. We run the simulation for 2000 cycles and
keep a record of peers who finish downloading all the files by the end of the simulation.
The results represent the average of 5 runs.
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Figure 4.6: User-level performance under different fractions of lazy-seeding peers (LSP)
and over-seeding peers (OSP), and different peer arrival rates.

The imbalance of bandwidth supply and demand

In our first experiment we vary the fraction of over-seeding peers, thus generating dif-
ferent levels of oversupply. As shown in Fig. 4.6(a), with the fraction of over-seeding
peers increasing from 0.1 to 0.9, the average downloading speed is increased nearly 10
times. However, the average upload capacity utilization issignificantly deteriorated and
the seeding time is increased dramatically. With 50% over-seeding peers, on average each
peer can only utilize less than20% of its upload capacity (Fig. 4.6(b)). With this low up-
load capacity utilization, all peers have to stay for extremely long times (compared to their
downloading times) to achieve the sharing ratio required bySRE (Figs. 4.6(c) and 4.6(d)).
In our experiment with50% over-seeding peers, the seeding time of a lazy-seeding peer
is nearly 200 times more than its downloading time, and for over-seeding peers, it even
increases to over 400 times.

On the other hand, with a smaller peer arrival rate (which means a smaller demand)
the imbalance and hence the performance, are even worse. As shown in Fig. 4.6, when
the peer arrival rate decreases from 10 to 1 peer per cycle, with the same fraction of
over-seeding peers, the average upload capacity utilization is decreased 2-3 times and the
average seeding time is increased 2-5 times.



71

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

SRE thresholdA
vg

. u
pl

oa
d 

ca
pa

ci
ty

 u
til

iz
at

io
n

 

 

10% OSP
50% OSP

(a) Upload capacity utilization

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

500

1000

1500

2000

SRE threshold

A
vg

. s
ee

di
ng

 ti
m

e 
(c

yc
le

)

 

 

LSP; 10% OSP
LSP; 50% OSP

(b) Seeding time of LSP

Figure 4.7: Influence of the SRE threshold under different fractions of lazy-seeding peers
(LSP) and over-seeding peers (OSP).

Our simulation results show that, under SRE, the existence of over-seeding peers
makes the swarms oversupplied. As a consequence, with a relatively large fraction of
over-seeding peers and a small peer arrival rate, peers haveto seed for extremely long
times, though their seedings are not very productive. This is consistent with the theoreti-
cal model proposed in Section 4.4.1.

The influence of the SRE threshold

Many communities [10,40] use 0.7 as the default value of the SRE threshold, empirically
or intuitively. This section complements the necessary analysis behind the choice.

Fig. 4.7 shows that, which is consistent with our intuition,when the SRE threshold
is increased from 0.2 to 0.9, the upload capacity utilization decreases while the aver-
age seeding time is increases. Further, the effect SRE is limited when the fraction of
over-seeding peers is small. Surprisingly, in Fig. 4.7(a) we see that when there are 10%

over-seeding peers, the upload capacity utilization is increased when the SRE threshold
increases from 0.2 to 0.8, and then drops when it further increases to 0.9. We believe this
is due to, what we term as, theseeder’s dilemma: with either a very small or a very large
number of seeders, peers cannot well-utilize their upload capacities. The former case is
due to thepiece availability problem: When there are not enough seeders, leechers have
to exchange data with each other, which is not always possible since they only hold a part
of the entire file. The latter case is due to the insufficient download demand. Without
enough demand, though seeders have the will, they cannot findenough leechers to upload
to.

The discrimination against peers with limited capacities

In this subsection, we analyze SRE’s effects in bandwidth-heterogeneous systems. More
specifically, we simulate a system with two classes of peers,namely slow and fast peers.
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Figure 4.8: SRE’s discrimination under different fractions of over-seeding peers (OSP).

All the other settings are the same as in previous experiments, except that the upload
capacity of slow peers is 1 unit per cycle and for fast peers itis 4 units per cycle. We
consider two scenarios in our simulation, i.e., without andwith 30% over-seeding peers.
As we show previously,30% over-seeding peers is typical to demonstrate the effects of
SRE. We change the fraction of fast peers from 0.1 to 0.9 and the results are shown in
Fig. 4.8.

We see that when there is no over-seeding peers fast peers barely need to do any
seeding work, but their existence increases the seeding times of slow peers (Fig. 4.8(a)).
This result is consistent with the result derived from the theoretical model proposed in
Chapter 3, where we show that high-capacity peers manage to upload considerably more
during the leeching process, and thus need to seed for shorter times. When the fraction
of over-seeding peers is increased from 0 to30%, slow peers need to seed 200 to 500
cycles more than fast peers, while originally they only needed to seed 20 cycles more. In
general, slow peers need to seed 4 times as long as fast peers,which is the same as the
ratio between the upload capacity of a fast and a slow peer. This result is also consistent
with our previous theoretical results in Section 4.4.1.

Meanwhile, Fig. 4.8(b) shows that the upload capacity utilizations of both fast and
slow peers do not change much with the fraction of fast peers.However, when there is
no over-seeding peer, slow peers have better upload capacity utilizations. We believe this
is due to the fact that slow peers stay as seeders longer than fast peers. Normally seeders
can achieve better upload capacity utilizations, since they are not influenced by the piece
availability problem.

While fast and slow peers both put all their effort in participating in the community,
slow peers need to seed longer. We term this as SRE’sdiscriminationagainst low-capacity
peers. Clearly, the long seeding time, the low upload capacity utilization, and the dis-
crimination against low-capacity peers severely deteriorate the user-level performance in
private communities. In the following sections, we proposeseveral strategies to alleviate
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these problems.

4.4.3 Description of proposed strategies

Inspired by ideas in social sciences and economics, in this section we propose four strate-
gies aimed at alleviating the negative effects of incentivepolicies used in private BitTor-
rent communities, which require only a minor revision of those policies.

Negative taxation

The idea ofnegative taxationis that people earning below a certain amount receive sup-
plemental pay from the government [32]. We take inspirationfrom the concept of negative
taxation and devise a new strategy in which the upload amountof a peer is calculated as
its actual upload amount multiplied by coefficientT defined as:

T = max{min{1/SR, θ}, 1},

whereSR represents the sharing ratio of a peer andθ > 1 represents themaximum
negative taxation degree.

It is easy to see that a) whenSR ≥ 1, T = 1, b) when1/θ ≤ SR < 1, T = 1/SR >

1, and c) whenSR ≤ 1/θ, T = θ > 1. By using this new strategy, to gain the same
sharing ratio, poor peers (SR < 1) seed less and rich peers (SR ≥ 1) seed the same
amount as when using the original SRE. The maximum negative taxation degree controls
the maximum negative taxation a peer can get, which alleviates the threat of free-riding.

Welfare for the rich

The termwelfare for the richis used to describe the bestowal of grants and tax-breaks
to the wealthy [63]. Taking inspiration from this concept, we devise another strategy to
alleviate the long seeding time, i.e., accelerating the seeding process of an over-seeding
peer by giving welfare to it. The upload amount of a peer is calculated as its actual upload
amount multiplied by coefficientW defined as:

W = max{min{SR, ϕ}, 1},

whereϕ > 1 represents themaximum welfare degree.

By using this strategy, to gain the same sharing ratio, poor peers (SR < 1) seed the
same amount and rich peers (SR ≥ 1) seed less than when using the original SRE. The
maximum welfare degree controls the maximum welfare a peer can get, to prevent the
over-seeding seeders from achieving their desired sharingratios too quickly.
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Community administrators can choose different values forθ andϕ to have different
maximum negative taxation degrees and the maximum welfare degrees. In our simulation
we chooseθ = ϕ = 2.

Remuneration according to effort

In participatory economics, themaxim of remuneration according to efforthas been in-
troduced [3]. Under this scheme, people are paid according to the effort they put in rather
than the amount of contribution. Taking inspiration from this concept, we propose the
third strategy which takes into account the effort of users in terms of their seeding times.
Previous studies have shown that the effort-based incentive policy applied in the leeching
process improves the system-wide performance [90]. We expect the same improvement
when this effort-based methodology is applied in a private community.

More specifically, by applying SRE withcounting seeding time, a peer can start a new
download when either it has achieved the SRE threshold or it has seeded for a sufficiently
long time. In this way, peers that are stuck in long seeding process in oversupplied swarms
can leave and perform further downloads. The new demand generated by these peers helps
to balance the bandwidth demand and supply in the system.

Clearly, the definition of “a sufficiently long period” is quite vague. Community ad-
ministrators may choose various values, like 4 hours, 10 hours, or one day. In our simu-
lations, we simply assume that it equals the size of the shared file divided by the upload
capacity of a peer. Note that since over-seeding peers are deposit-oriented, they still start
new downloads only when they have achieved their desired sharing ratios.

Supply-based price

According to the law of supply and demand, if the demand remains constant and the sup-
ply increases, the price of an item decreases and vice versa.For an insightful discussion
of the relationship between supply, demand and price, we refer the reader to [7]. We take
inspiration from this insight to devise our fourth strategy, i.e., SRE withsupply-based
price. The basic idea is that the price a downloader needs to pay fordownloading one
unit of data should be inversely correlated with the supply in the swarm, i.e., the higher
the seeder-to-leecher ratio, the less a downloader should pay and vice versa. In this way,
in an oversupplied swarm, a leecher pays less and potentially achieves a higher sharing
ratio by the end of its leeching process. Hence it is less likely for it to have an insufficient
sharing ratio and thus stay as a seeder, which indirectly solves the oversupply problem
in this swarm. On the other hand, in an undersupplied swarm, aleecher pays more and
potentially achieves a smaller sharing ratio, which makes it stay as a seeder with a higher
possibility than using the original SRE. In this way, the undersupply problem is also alle-
viated indirectly.
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Here, we use theseeder-to-leecher ratio(SLR) as a metric to decide whether a swarm
is oversupplied or undersupplied. Community administrators can set differentSLR val-
ues as the threshold, but we simply assume that whenSLR ≥ 1 the swarm is oversupplied
and whenSLR < 1 the swarm is undersupplied. The download amount of a peer is cal-
culated as its actual download amount multiplied by coefficientP defined as:

P = max{1/SLR, φ},

whereφ represents thelowest pricefor downloading one unit of data, which is used to
alleviate the threat of free-riders. Community administrators can choose different values
for the lowest prices. In our simulation we chooseφ = 0.1.

Note that the free-leech strategy we proposed in Section 4.3.3 to solve credit crunch
is an extreme case of SRE with supply-based price, with priceequal to 0.

4.4.4 Strategy evaluation

In this section we evaluate the performance of the new strategies proposed in Section
4.4.3. The experimental setup is the same as in Section 4.4.2and results are shown in
Figs. 4.9 and 4.10.

Higher upload capacity utilization and shorter seeding time

From Fig. 4.9 we see that by using any of the new strategies, peers achieve higher upload
capacity utilizations, as well as smaller seeding times. Asshown in Fig. 4.9(a), when
there are40% over-seeding peers the upload capacity utilization is increased 2-3 times
compared to using the original SRE. While all other strategies have decreasing upload
capacity utilizations with an increasing fraction of over-seeding peers, SRE with supply-
based price performs stably. Given any fraction of over-seeding peers, on average peers
can utilize at least 40% of their total upload capacities while for the original SRE it drops
to less than1% when there are90% over-seeding peers.

With the improved upload capacity utilization, the averageseeding time is reduced
significantly. As shown in Figs. 4.9(b) and 4.9(c), when there are60% over-seeding peers,
SRE with welfare for the rich reduces at least10% of the original seeding time for both
lazy-seeding and over-seeding peers. SRE with negative taxation deals with lazy-seeding
peers directly, hence it achieves an even better performance in reducing the seeding time
of lazy-seeding peers, which is a50% improvement compared to that achieved by SRE
with welfare for the rich.

SRE with counting seeding time further relieves lazy-seeding peers from the long
seeding process in a more effective manner. As shown in Fig. 4.9(b), they only need
to seed for a negligible time compared to when using the original SRE, or either of the
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Figure 4.9: Strategy performance in alleviating the eternal seeding problem under differ-
ent fractions of lazy-seeding peers (LSP) and over-seedingpeers (OSP).

above two new strategies. Interestingly, by applying SRE with counting seeding time,
the seeding time of over-seeding peers is also decreased (Fig. 4.9(c)), even though they
still desire the high sharing ratios as when using the original SRE. We believe this is
due to the fact that with lazy-seeding peers finishing their seedings sooner, the upload
competition is reduced and over-seeding peers can achieve their desired threshold more
quickly. Meanwhile, when the lazy-seeding peers are released from the seeding process,
they join other swarms as new leechers, which indirectly alleviates the oversupply in those
swarms.

Finally, the best performance in reducing the seeding time for all peers is achieved
by SRE with supply-based price. The seeding time of both lazy-seeding and over-seeding
peers is reduced by three orders of magnitude. In our view themain reason for the success
of SRE with supply-based price is that it adaptively adjuststhe supply and demand in a
swarm. When the swarm is oversupplied, the price for downloading one unit of data
is lower and peers can finish downloads at less expense, whichdirectly reduces their
consequent seeding amount and hence avoids adding more seeders in this oversupplied
swarm. In this way, the imbalance of bandwidth supply and demand is mitigated, and the
strategy gives a way to escape out of the seeder’s dilemma as described in Section . A
similar argument can also be applied to an undersupplied swarm.
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Figure 4.10: Strategy performance in alleviating discrimination with30% over-seeding
peers (OSP).

Tradeoff: slightly decreased downloading speed

By adopting any of the new strategies, while the seeding timeis dramatically reduced, as
a trade-off, the average downloading speed is decreased (Fig. 4.9(d)), hence the down-
loading time is increased. However, given that in our simulations we consider files with
size equal to 10 units, the increase of the downloading time (tens of cycles) is negligible
compared to the decrease of the seeding time (hundreds or even thousands of cycles).

Reduced discrimination

To examine the effectiveness of the proposed strategies in alleviating SRE’s discrimina-
tion against peers with limited capacities, we repeat our experiments by further consid-
ering a bandwidth-heterogeneous system with two classes ofpeers, fast and slow. From
Fig. 4.10 we see thatall the proposed strategies effectively alleviate SRE’s discrimination
against low-capacity peers. With 30% over-seeding peers, originally slow peers need to
seed 200-500 cycles more than fast peers do. By applying any of the new strategies, this
difference is reduced to within tens of cycles.

4.5 Dynamic file popularity

So far, we have only considered scenarios in which all files have the same constant pop-
ularity. However, many measurement studies [5, 57] show that the popularity of a file
decreases quickly after it is first published. In this section, we analyze the effects of SRE
and evaluate our proposed strategies under dynamic file popularity.
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Figure 4.11: Individual average downloading speed.
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Figure 4.12: The number of peers in the system.

4.5.1 Experimental setup

We use the same simulator and consider the same initial settings as in Section 4.2, except
that to better abstract the effects of dynamic file popularity, we only consider one swarm
with decreasing popularity. The simulation starts with oneinjector, who stays in the
swarm as a permanent seeder. In successive cycles, new peersarrive according to an
exponentially decreasing arrival rate (λ(t) = λ0e

− t
τ ), a peer arrival pattern that has been

observed in many BitTorrent swarms [85]. Each peer joins theswarm with zero upload
and download amounts. After a peer finishes its download, it seeds, if necessary, until it
achieves its target threshold.

By default, we set 30% peers to be over-seeding. As shown in Section 4.4.2, this
percentage is typical for showing the effects of SRE. We chooseλ0 = 10 andτ = 300
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Figure 4.13: The average upload capacity utilization.

and we run the simulation for 2000 cycles. All together 3000 peers are included. We have
also tested different values forλ0 andτ , which give very similar results.

4.5.2 The effects of SRE under dynamic file popularity

We first demonstrate the effects of SRE under dynamic file popularity. Fig. 4.11 shows
each peer’s average download speed, where a smaller peer ID means an earlier arrival
time. We see that the first 200 peers experience download speeds similar to their upload
capacities (1 unit per cycle). From peer 200, the download speed increases quickly: with
file size equal to 10 units, it soon reaches the maximum, i.e.,10 units per cycle. This
means that new peers can finish their downloads within the same cycle that they join the
swarm.

The high downloading speed is due to the oversupply. As shownin Fig. 4.12, the
number of seeders increases quickly and after the first 30 cycles, the swarm is occupied
with hundreds of seeders but only with very few leechers. Thepresence of existing seeders
increases the difficulty for a new seeder to achieve its target threshold and leave the swarm,
and vice versa. We term this ascumulative seeder effect. As a consequence, the upload
capacity utilization decreases severely. As shown in Fig. 4.13, within the first 500 cycles,
both seeder’s and leecher’s upload capacity utilization decrease to less than 5%, with
seeders performing a little bit better than leechers as theydo not face the piece availability
problem.

With the above differences in instantaneous system performance, peers arriving at
different times achieve markedly different performance. As shown in Fig.4.14, arriving
earlier means higher upload speeds and hence larger upload amount during the leeching
process (Figs. 4.14(a) and 4.14(b)), as well as better upload capacity utilization during
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(a) Individual upload capacity utilization during leeching.
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(b) Individual upload amount during leeching.
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(c) Individual upload capacity utilization during seeding.

Figure 4.14: Individual upload activity.
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Figure 4.15: Individual seeding time.

10
0

10
1

10
2

10
30

100

200

300

400

500

Cycle

N
um

be
r 

of
 p

ee
r

 

 

leecher
seeder

(a) Instantaneous number of peers
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Figure 4.16: SRE with negative taxation under dynamic file popularity.
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Figure 4.17: SRE with welfare for the rich under dynamic file popularity.

the seeding process (Fig. 4.14(c)). Thus, peers that arriveearlier experience much smaller
seeding times. As shown in Fig. 4.15, to achieve the target thresholds, the first 500 peers
only need to seed tens of cycles. After this, the seeding timeincreases quickly to hundreds
or even thousands of cycles.

4.5.3 Proposed strategies under dynamic file popularity

We evaluate the performance of our proposed strategies under dynamic file popularity.
The results are shown in Figs. 4.16, 4.17, 4.18, and 4.19.

1) SRE with negative taxationand2) SRE with welfare for the rich: limited effect for
very low file popularity:As in swarms with constant file popularity, applying SRE with
negative taxation or SRE with welfare for the rich alleviates the oversupply. Comparing
Figs. 4.12, 4.16(a), and 4.17(a), we see that these two new strategies reduce the instan-
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Figure 4.18: SRE with counting seeding time under dynamic file popularity.

taneous number of seeders to around 80% of the case when the original SRE is adopted.
But their effects are limited with very low file popularity. As shown in Figs. 4.16(b) and
4.17(b), peers that arrive late still experience relatively long seeding times.

3) SRE with counting seeding time: strong effect in reducingthe seeding time:With
the hard SRE requirement replaced by seeding for a particular period, SRE with count-
ing seeding time dramatically alleviates the oversupply inthe swarm. As shown in
Fig. 4.18(a), except for the large number of seeders during the first 200 cycles, the instan-
taneous number of seeders is almost always under 100. Among these, we conjecture that
most are over-seeding peers, since lazy-seeding peers can leave the swarm once they’ve
seeded for a relatively short time, i.e., 10 cycles in our experiment. While these peers are
released from the endless seeding process, the seeding timeof over-seeding peers is also
dramatically decreased to less than 100 cycles.

4) SRE with supply-based price: effectively stabilize the supply: Among all the four



84

10
0

10
1

10
2

10
30

100

200

300

400

500

Cycle

N
um

be
r 

of
 p

ee
rs

 

 

Leecher
Seeder

(a) Instantaneous number of peers

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

Peer ID

S
ee

di
ng

 ti
m

e 
(c

yc
le

)

 

 

lazy−seeding peers
over−seeding peers

(b) Individual seeding time

Figure 4.19: SRE with supply-based price under dynamic file popularity.

new strategies, SRE with supply-based price stabilizes thesupply most effectively. As
shown in Fig. 4.19(a), the instantaneous number of seeders stays stable after 200 cycles.
With this constant supply (and not oversupply), peers experience relatively small seeding
times (Fig. 4.19(b)). When the number of new peers decreases, as a matter of course,
peers experience longer seeding times, but still much smaller compared to adopting the
original SRE. We believe this constant supply and small seeding time are due to the fact
that SRE with supply-based price is self-organized, and will adjust the demand and supply
automatically.

It should also be noted that when adopting SRE with supply-based price, the first 200
peers have relatively longer seeding times than peers arriving later. We believe this is due
to the fact that those peers arrive during the phase that the swarm is occupied with a large
number of leechers and a small number of seeders. Hence, the price for downloading is
higher and peers need to pay more to achieve their target thresholds.
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4.6 Discussion: The change of user behavior?

It could be argued that the new strategies proposed in this chapter may trigger a change in
user behavior. Specifically, users from the two classes thatwe defined, lazy-seeding and
over-seeding, might be incentivized to switch their classes under the new strategies. It
could be conjectured that as a consequence, the system performance might be adversely
affected.

However, we note that there is only a very small fraction of strategic users in Bit-
Torrent communities [4]. So the likelihood of peers changing behavior is quite small.
Especially regarding over-seeding peers, we argue that in general the possibility of such
peers changing to lazy-seeding peers is quite low. This is because we conjecture that the
behavior of over-seeding peers is motivated by either one ora combination of the follow-
ing three reasons: a) Over-seeding peers always want to be relatively more well-off in
terms of sharing ratio as compared to average users so that they can be among the “rich
elite” of the community and gain some potential benifits14; b) They are altruists who want
to help the community as much as they possibly can; and c) Theyare hoarders who de-
sire to conserve sharing ratio for “rainy days” i.e., those time periods when they feel they
might engage in heavy downloading activity and might as a result be expelled from the
community due to low sharing ratios.

Nevertheless, in this section we would like to analyze what happens if users do change
their behavior. We consider each proposed strategy in turn and discuss the possible effects
of the change in user behavior.

SRE with negative taxation and welfare for the rich:

Under SRE with negative taxation, peers with lower sharing ratios gain sharing ratio more
easily. Hence, lazy-seeding peers have no incentive to change their behaviors, while over-
seeding peers may change to lazy-seeding peers. Similarly,when SRE with welfare for
the rich is applied, strategic lazy-seeding peers could become over-seeding peers, while
over-seeding peers will not change their behaviors.

The worst case scenario of applying either of these two new strategies is that all peers
exhibit the same behavior, i.e., either all peers become lazy-seeding or all become over-
seeding. In the former case every member of the community would still be forced to
maintain a minimum sharing ratio required by SRE, i.e., every peer would continue to
provide a certain level of contribution. This outcome wouldstill be better than the situ-
ation in a public community where every peer has the option toleave immediately after
downloading. In the latter case, i.e., when all peers are over-seeding, it is less likely for
them to complain, since an over-seeding behavior, i.e., a desire for higher sharing ratios,

14Such as priority in downloading popular files, the possibility to send invitations to others, etc [10,40].
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automatically implies a long seeding time.

SRE with counting seeding time:

Under SRE with counting seeding time, users may set their upload speeds to zero and
pretend to be seeding. However, according to the TFT policy in BitTorrent, in an under-
supplied swarm the upload speed of a peer directly influencesits downloading speed. If
a user sets its upload speed to zero, it would hardly be able todownload at reasonable
speeds in undersupplied swarms, which are normally swarms providing new and popular
content.

Further, private community administrators could set another SRE threshold, which is
smaller than the original one, and stipulate that users who cannot achieve the original SRE
threshold must seed for a predefined time, as well as achieve the smaller SRE threshold.
In this case, the potential threat of free-riders is alleviated.

SRE with supply-based price:

By adopting SRE with swarm-based price, the only advantage that users could gain is
that they may opt to download files which have a lower price. However, this is unlikely
to happen, since the choice of file to download mainly dependson user’s interest in the
content, rather than the price. Even if some users might be tempted to download a file
simply based on its price, this would have little influence onthe performance of SRE with
swarm-based price, because this strategy is self-organizing and will adjust the balance of
supply and demand automatically.

4.7 Related work

This chapter is based on two previous papers [49, 89] with extensions including demon-
strating detailed measurement results, unifying the analysis of SRE-based and credit-
based private communities, analyzing the systemic risk of SRE-based private commu-
nities, as well as the influence of swarm popularity.

Many P2P incentive schemes based on credits have been proposed in the literature.
Vishnumurthyet al. [107] present a system involving a virtual currency calledKarma,
which is defined as the value capturing the amount of resources a peer has contributed
and consumed. The level of Karma (or credit) in the system is maintained and measures
are taken to avoid inflation and deflation that can occur when peers leave the system.
However, in avoiding inflation and deflation, the only aim of the paper is to maintain the
per-capita Karma, i.e., the total Karma divided by the number of active users.

Kashet al. [56] show that in a scrip system, where agents can consume andproduce
services, both an overabundance of money supply and its shortage lead to inefficiency.
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They also consider hoarders and how to optimize the credit supply. Our work is different
in that we focus not on a generic service exchange scenario but on a file sharing scenario
inspired by BitTorrent private communities. Also we apply multiple user behaviors rather
than focusing only on one that optimizes the utility. In addition we focus on detecting and
avoiding extreme crashes and crunches, where the entire system seizes. Last but not the
least, we also study the effects of such credit-based schemes from the perspective of user
level performance.

As stated, for grounding our work we chose the realm of private P2P file sharing
communities. To date, only few works have analyzed private communities. Zhanget
al. [124] investigate hundreds of private trackers and depict abroad and clear picture
of the private community landscape. Chenet al. [13] compare system behaviors among
13 private trackers and 2 public trackers, and they show their differences regarding user
viscosity, single torrent evolution, user behaviors, and content distribution. Liuet al. [64]
also perform measurement studies and further develop a model to show that SRE indeed
provides effective incentives, but is vulnerable to collusion.

While these studies all focus on demonstrating the high seeding level achieved by
private communities, there have been a few preliminary works that show the adverse
effects. Andradeet al.[5] focus on the dynamics of resource demand and supply, and they
show that users typically try to increase their contribution levels by seeding for longer and
not by providing more bandwidth to the system. However, our paper shows that providing
limited bandwidth is not the will of users, but it is a consequence of the oversupply in
private communities. Chenet al. [14] also notice the oversupply problem and provide a
model to identify the optimal stable SLR range. However, they didn’t propose strategies
to solve the problem of oversupply. Kashet al. [57] demonstrate that there are significant
disparities in the cost of new and old files in a private community named DIME, and
users compensate for the high cost of older files by downloading more copies of newer
files or by preferentially consuming older files during freeleech periods. Particularly,
they have shown that after a period of freeleech, there are more download activities in
the community. This is consistent with our theoretical result that during a pre-crunch
state, injecting credit will increase the system throughput. While these papers mainly
perform measurement-based studies to analyze the positiveand adverse effects of SRE-
like schemes on user-level performance, our paper is based on measurement, theoretical
model, as well as extensive simulations. Further we proposenew strategies to alleviate
SRE’s punishment, which are evaluated to be very effective through simulations.

4.8 Conclusion

In this chapter we have studied the effects of credit-based and SRE-based incentive poli-
cies employed in private P2P communities, from both the system-level and the user-level
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performance perspective.
Based on two user behaviors abstracted from real world observations, i.e., lazy-

seeding and over-seeding, we examine the system-level credit dynamics and show that
crunches and crashes can easily happen in private communities. Crunches and crashes
are due to credit shortage and credit abundance, respectively, and we apply a theoretical
analysis to characterize the conditions that lead to these extreme outcomes. We apply
the derived conditions to implement a noveladaptive credit intervention mechanismthat
proactively stops the system from seizing by temporarily changing the credit policies. A
system that is predicted to crunch allows freeleech, and conversely, a system that is pre-
dicted to crash imposes freeseed. Simulation results show that our mechanism is very
effective in avoiding crunches and crashes.

Given a private community that is sustainable, we further analyze its user-level perfor-
mance by analyzing the positive and negative effects of SRE.Our simulation results show
that with the existence of over-seeding peers, by adopting SRE, swarms tend to be ex-
tremely oversupplied. Although achieving an increase in the average downloading speed,
the oversupply induces undesired effects, including low upload capacity utilizations, ex-
tremely long seeding times, and an unfair playing field for late entrants into swarms. To
alleviate these problems, we propose four strategies and the simulation results show that
they are all very effective. Particularly,SRE with supply-based price, while maintaining
a system-wide high downloading speed, achieves very stablehigh upload capacity uti-
lization and reduces seeding durations by three orders of magnitude as compared to the
original SRE. When then the adaptive intervention mechanism is run in the background
to check the extreme conditions for crunches and crashes, the system is ensured to have a
high and sustainable performance.



Chapter 5

User behaviors under contribution
incentives: a measurement study

The primary goal for adopting contribution incentives in online networks is to trigger user
dedication, and they often work. Take private BitTorrent communities for example: it
has been demonstrated that their users are more dedicated than users in public BitTorrent
communities where credit-based or SRE-like incentives arenot adopted [13, 64, 69, 124].
Nevertheless, one may wonder, besides the universal dedication, are there other types of
user behavior triggered by contribution incentives? And besides an increased supply of
contributions, are there any other positive or even negative effects of these user behaviors?

To answer these questions, in this chapter, we take private communities as an example
to explore the user behaviors under contribution incentives. Private communities are ideal
case studies, for they maintain user-level identificationsand they keep a detailed tracking
of user activities that can be obtained by crawling their sites. We perform a measurement
study on three private communities. We classify their usersinto different groups based
on their sharing ratios, their ages, their levels of consumption, and theireffort ratios. The
effort ratio of a user is defined as the ratio between his seeding and leeching time. We
demonstrate the behavioral differences between users in different groups, we argue the
reasons for these differences, and we show the positive and negative effects of these be-
haviors based on metrics including the seeding time, the upload speed, and the evolution
of sharing ratio. In previous chapters we have analyzed the advantages and disadvantages
of SRE schemes based on theoretical models, simulations, and measurements. This chap-
ter complements these chapters by presenting observationsfrom real world communities
with a focus on the user behavior patterns.

The main contributions of this chapter are as follows:

1. We perform a measurement study of three private communities that provide user-
level information including the upload amount, the download amount, the seeding
time, the leeching time, and the sharing ratio ofeachindividual user. Among the
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dozens of existing communities we have examined, these are the only ones that
provide such detailed information. We use one of the three communities as an
example to explore the user behaviors (Section 5.1).

2. Based on the sharing ratio we classify users into therich, themiddle classand the
poor. We show that, to maintain adequate sharing ratios, all users have to seed
for excessively long times (compared to their downloading times), though most
of the time their seedings are not very productive and their long seeding times do
not necessarily lead to large upload amounts. For users who intend to increase
their sharing ratios, we find that seeding for longer durations is not as effective
as increasing the upload speed, which can be achieved by upgrading the internet
access, or as joining swarms in their early stages to avoid situations of oversupply
(Section 5.2).

3. Based on the age we classify users into thenewand theold. We find that old users
are more dedicated to the community, in terms of higher effort ratios, while new
users in general seed more productively (Section 5.3).

4. Based on the download amount we classify users into thebig and thesmall con-
sumers. We find that big consumers are often at the same time big contributors, and
are more active than small consumers in terms of both longer seeding times and
longer leeching times (Section 5.4).

5. Based on the effort ratio we classify users intogamers(with high effort ratios) and
dedicators(with low effort ratios). We find that gamers not only leech longer but
also seed shorter than dedicators, and at the same time they maintain lower sharing
ratios, which, however, are still high enough for them to stay in the community
(Section 5.5).

6. Based on the user behaviors we defined, we analyze strategies that alleviate the
negative effects of these user behaviors from both the users’ and the community
administrators’ perspective (Section 5.6).

5.1 Methodology

In order to obtain a better understanding of private BitTorrent communities it is critical
to be able to collect data on their operation. Over the years it has been proven to be a
challenge to obtain detailed traces of user behavior, due toa combination of technical
constraints and privacy concerns. For instance, prior workwas never able to capture
both detailed user profiles, content availability, and precise information on every user
download.
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To support our analysis, we have examined 38 elite private communities, out of which
we selected three communities, CHDBits [12], HDStar [41]),and ChinaHDTV [15], for
detailed regular deep crawling of HTML pages. These specificthree communities were
selected as they are the only ones that provide information detailed enough for our analy-
sis. We have obtained the following three datasets for each community:

1. Community-level user profile: in this dataset, we crawl the profile page ofeach
community user and obtain the information of his upload and download amount,
his seeding and leeching time, his sharing ratio at the time of snapshot, and the time
he joined the community.

It should be noted that the seeding time of each user recordedby the tracker is
swarm-based, i.e., simultaneously seeding in multiple swarms counts separately.
For instance, after a user has seeded in two swarms for 10 hours, 2 × 10 = 20

hours will be added to his seeding time. Similarly, the leeching time recorded by
the tracker is also swarm-based. In later sections, when we calculate the average
upload speed of a user, we calculate his per-swarm average upload speed, i.e., the
total upload amount divided by the swarm-based seeding time. In this way, we get a
rough estimation of a user’s seeding time and upload speed. Though more accurate
calculation of the seeding time and upload speed would be better, to the best of
our knowledge, until now no private communities provide this information and it
is also impossible to deploy a client and contact every user individually to get this
information.

2. Community-level torrent profile : in this dataset, we crawl the community trackers
and collect information ofeachtorrent, including the number of seeders and leech-
ers, the number of finished downloads at the time of the snapshot, and the time the
torrent was published.

3. Torrent-level user activity: the tracker records a user’s torrent-level action times,
such as the time of joining the swarm, the time of starting seeding, etc. The preci-
sion of the recorded action time decreases with time. For example, if a user started
to seed 10 hours ago, its action time will be “10 hours ago”. However, if a user
started to seed one month, 23 days, and 10 hours ago, its action time will only be
“one month and 23 days ago”.

In order to obtain the action times with precision in hours, for each community, we
examine all the torrents released within 24 hours. We followthese torrents for 7
days and record the activity ofeachuser who has participated or is participating
in one of them. The collected information includes each user’s per-swarm upload
amount, download amount, seeding time, and leeching time, as well as the time he
joins and leaves the swarm.
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Private communities often consist of tens of thousands of users and torrents, with to-
tal download amount in the order of petabytes. For instance,when we collected the data
in May, 2011, CHDBits had 24,633 registered users, 40,040 torrents, and a total down-
load amount of 24.3 PB. We have analyzed the measurements of the three communities
in detail. As we show later in Section 5.2, they demonstrate similar performance. For
simplicity of presentation, we only demonstrate the results of CHDBits in Sections 5.3
and 5.5 .

The detailed user behavior information allows us to explorethe user behavior in pri-
vate communities. User behavior directly decides a user’s basic movements including (1)
when to join the community, (2) how much to consume, and (3) how much to contribute,
from which it further decides (4) a user’s status in the community, in terms of the sharing
ratio he achieves. Based on these four metrics we classify users into different groups, we
demonstrate their behavioral differences, we argue the reasons for these differences, and
we show the positive and negative effects of these behaviors. We start from the sharing
ratio, since without a proper one a user cannot even stay in the community, which implies
its fundamental importance.

5.2 The rich and the poor: positive and negative effects
of SRE

In this section, we divide users into different groups basedon their sharing ratios. We ana-
lyze the reasons for some users to achieve low sharing ratios, from which we demonstrate
the positive and the negative effects of SRE.

5.2.1 A general view

We first show in Fig. 5.1 the cumulative distribution function (CDF) of the user sharing
ratio in CHDBits, in HDStar, and in ChinaHDTV, respectively(dataset 1). We see that
most users in these three communities achieve sharing ratios larger than the SRE thresh-
old, i.e., 0.7. Take users in CHDBits for example, around 15% users have sharing ratios
less than 1 (defined as thepoor), while around 18% users have sharing ratios larger than
5 (defined as therich). The rest that have sharing ratios between 1 and 5 are definedas
themiddle class. The behavior of accumulating a large sharing ratio may be triggered by
various motivations, such as altruism, a desire to be part ofthe rich elite of the commu-
nity, or a habit of saving sharing ratio for the future. The rich peers have little worry about
staying in the community, since their sharing ratios are farbeyond the SRE threshold. On
the other hand, poor peers are at the risk of being expelled from the community. As a
consequence, they need to be concerned a lot about their decisions: they may download
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Figure 5.1: The CDF of the user sharing ratio in CHDBits, in HDStar, and in ChinaHDTV.
The horizontal axis is in log scale.

new contents they really desire, but this might reduce theirsharing ratios to a more risky
level.

One may argue that the poor peers are free-riders, who intendto keep low and risky
sharing ratios that are just enough to stay in the community.However, the highly restricted
membership in private communities, especially in CHDBits and many other private com-
munities where new members can only join by a limited number of invitations, makes it
very difficult to get a new membership. Hence, we conjecture that not all poor peers are
strategic and psychologically strong enough to face being expelled from the community
due to insufficient sharing ratios. Interestingly, as we will show in the following sections,
the poverty is partially induced by the fact that the poor peers are not strategic enough.

5.2.2 Long seeding time, even for the poor

Many previous studies have shown that under SRE, users seed for long durations [13,
64, 69, 124]. They consider this as a positive effect of SRE since long seeding durations
lead to high download speeds. However, in this section we argue that the long seeding
durations can also be seen as a negative effect, especially for poor peers.

Figs. 5.2, 5.3, and 5.4 show the CDFs of the seeding time and the leeching time in
CHDBits, in HDStar, and in ChinaHDTV, respectively (dataset 1). Consistent with the
theoretical results of our previous work [49,51], in general the seeding time is much longer
than the leeching time in all these three communities. Take CHDBits for example, the
median leeching time is 70 days while the median seeding timeis 1,100 days. Remember
that the seeding and the leeching time of users are swarm-based, leading to very high
values.

Intuitively, longer seeding times than leeching times for rich peers are to be expected,
since rich peers are saving sharing ratios by seeding. However, we observe from Figs. 5.2,



94

10
0

10
2

10
40

0.2

0.4

0.6

0.8

1

Time (day)

C
D

F

 

 

leeching time, all users
leeching time, users with 0.7<SR<1
seeding time, users with 0.7<SR<1
seeding time, all users

Figure 5.2: The CDF of the seeding and the leeching time in CHDBits. The horizontal
axis is in log scale.
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Figure 5.3: The CDF of the seeding and the leeching time in HDStar. The horizontal axis
is in log scale.
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Figure 5.5: The upload amount versus the download amount (with Spearman’s rank cor-
relation coefficient equal to 0.8110). The horizontal axis is in log scale.

5.3, and 5.4 that, even poor users seed much longer than they leech. While intuitively poor
peers should be the ones that are not “hard-working” enough,why do some of them seed
for long durations but still have low sharing ratios? In the following section, we explore
the possible reasons.

As shown in Figs. 5.1 to 5.4, users in these three communitiesbehave similarly. For
simplicity of presentation, from now on we only show the results for CHDBits, without
explicitly stating so. For the results shown in later sections, the datasets of the other two
communities demonstrate similar performance as that of CHDBits [45].

5.2.3 Possible reasons?

One may argue that the long seeding times of poor peers are dueto the fact that even
though they contribute more, they also consume more. Hence,they seed for long dura-
tions but they still have low sharing ratios. This argument is partially true. Andradeet
al. [5] have shown and we also observe from our measurement (Fig.5.5, dataset 1) that
the individual upload amount (contribution) increases with the corresponding download
amount (consumption), with the Spearman’s rank correlation coefficient equal to 0.8110.
Spearman’s rank correlation coefficient assesses how well the relationship between two
variables can be described using a monotonic function [99].However, this doesn’t nec-
essarily mean that heavy contributions induce long seedingtimes, nor does it mean that
long seeding times lead to heavy contributions.

Quite counter-intuitively, as shown in Fig. 5.6(a), a peer’s upload amount has little
relation to its seeding time: many peers seed for long durations but only have uploaded
relatively small amounts of data, while other peers seed forrelatively short durations but
have successfully achieved large upload amounts. The same argument is also applicable
to poor peers (Fig. 5.6(b)). This interesting phenomenon implies that for poor peers who
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Figure 5.6: The seeding time versus the upload amount.
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Figure 5.7: The seeding time versus the upload speed (with Spearman’s rank correlation
coefficient equal to−0.6318).
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Figure 5.8: The oversupply in swarms.

intend to increase their upload amount to become rich, seeding for longer durations may
not be an effective method, even if intuitively it seems so.

Though there is no strict relationship between a peer’s seeding time and its upload
amount, we do observe that a peer’s seeding time is related toits average upload speed,
regardless of its upload amount. As shown in Fig. 5.7, most ofthe long seeding durations
happen to the peers with relatively small upload speeds, andfor peers who have high
upload speeds, the seeding times are normally short.

The most intuitive reason for a low upload speed is a limited internet access. However,
we argue that this is not the only reason. From dataset 2, at the time when we crawled the
site, CHDBits had 33,041 active swarms (with at least one leecher or one seeder), among
which 26,402 swarms (79.9%) had no leechers at all. As shown in Fig. 5.8(a), 40% of
the swarms with no leechers still have at least 5 seeders, and5% of these swarms even
have more than 20 seeders. For swarms with at least 1 leecher,the seeder-to-leecher ratio
(SLR) is quite high: as shown in Fig. 5.8(b), 50% of these swarms have as SLR larger
than 6, and 5% of these swarms even have as SLR larger than 30. We see clearlythat a
majority of the swarms in CHDBits are heavily oversupplied.In such swarms, seeders
are not able to perform any actual uploads due to the insufficient demand and unsatisfied
supply. We term this situationunproductive seeding. As a consequence, users have to
seed for excessively long durations to achieve the sharing ratio required by SRE.

While a low upload speed mainly leads to a long seeding time, in the next section we
show its influence on a user’s status. We analyze the reasons for the poor being poor and
discusses strategies for users to become rich efficiently.

5.2.4 Why the poor are poor and how to become rich?

As the sharing ratio is defined as the ratio between a peer’s upload and download amount,
two possible reasons for a peer being poor are that it has downloaded too much or has
uploaded not enough. The download amount depends on a user’sinterests in contents.



98

10
−1

10
0

10
1

10
2

10
30

0.2

0.4

0.6

0.8

1

Average upload speed (KB/s)

C
D

F

 

 

users with 0.7<SR<1
all users
users with SR>5

Figure 5.9: The CDF of the average upload speed. The horizontal axis is in log scale.

We do not suggest users to download less so as to become rich, since the fundamental
user experience that should be guaranteed by communities isthat users should not need
to limit their download needs. Following this argument, in this section we focus on the
user upload activity and analyze why some users have uploaded not enough (hence, are
poor) and how they can improve it (to become rich).

Community level

In Section 5.2.3 we have shown that the seeding time has little influence on the upload
amount but the upload speed does. The upload speed further influences whether a user is
rich or poor. As shown in Fig. 5.9 (dataset 1), in general richpeers (SR ≥ 5) have much
higher upload speeds than poor peers (SR ≤ 1). For example, 80% of the poor peers
upload at a speed less than 20 KB/s, while at least40% rich peers can upload at a speed
larger than 50 KB/s. Together with the result in Section 5.2.3, we conclude that instead
of seeding for longer durations, peers who intend to become rich should seed with higher
upload speeds. And to seed with a higher upload speed, a user could upgrade its internet
access or choose a swarm that is less oversupplied.

One may argue that the above analysis is based on community-level activities, which
only provide a macroscopic view that is not enough to show theunderlying details. To
explore this, in the following subsection we focus on a single swarm and demonstrate
the torrent-level user performance, and we discuss possible strategies for users to become
rich.

Torrent level

Among all the CHDBits swarms in dataset 3, we choose the one with the largest number
of participants as the example to show the torrent level userbehaviors. In total, 3,776
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Figure 5.10: The CDF of the upload amount in one swarm.
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Figure 5.11: The upload amount versus the seeding time in oneswarm.
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Figure 5.12: The upload amount versus the upload speed in oneswarm (with Spearman’s
rank correlation coefficient equal to 0.7876).
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Figure 5.13: The upload amount versus the time of starting seeding in one swarm (with
Spearman’s rank correlation coefficient equal to−0.6491).

users are included.
Different individual upload amount in one swarm: Fig. 5.10 shows the CDF of the

user upload amount in a single swarm (dataset 3), from which we observe that a small
fraction of users have uploaded considerably more than the others. For example, 60%
of the users have uploaded less than 10 GB, which is less than the amount they have
downloaded (11.7 GB). On the other hand, 5% of the users have uploaded more than 50
GB. Of course, the users who managed to upload more will become richer. While these
users have participated in the very same swarm, why did some manage to gain a lot while
others didn’t?

Possible reasons and how to gain more:One intuitive reason for a small upload
amount is a short seeding time. However, similar to the analysis in Section 5.2.3, again
we find the counter-intuitive result that in one swarm a peer’s upload amount is not related
to its seeding time (Fig. 5.11). On the other hand, it is related to its upload speed. As
shown in Fig. 5.12, most of the small upload amounts happen tothe peers with relatively
low upload speeds, and peers with high upload speeds normally have uploaded a large
amount.

When we organize the peers according to the time they start toseed, we find another
interesting phenomenon: peers that start to seed earlier normally have uploaded more
(Fig. 5.13). The same phenomenon has also been observed by Kashet al. in [57]. One
may argue that the peers who start to seed earlier can seed forlonger durations, hence
they upload more. However, in Fig. 5.11 we already show that the upload amount is not
related to the seeding time. Then why do peers that start to seed earlier upload more?

As shown in Fig. 5.14(a), after the burst at the first two hourssince the file was pub-
lished, the peer arrival rate decreases dramatically. On the other hand, the number of
seeders increases quickly at the first 60 hours, then decreases with a much smaller rate
(Fig. 5.14(b)). In general, the number of leechers is negligible compared to the number
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Figure 5.14: The performance in one swarm.
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Figure 5.15: The upload and the download amount versus the age. The vertical axis is in
log scale.
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Figure 5.16: The seeding and the leeching time versus the age. The vertical axis is in log
scale.

of seeders. As a consequence, peers who join late have to compete with a large number
of seeders for uploading, which leads to a low upload speed, and hence a small upload
amount. Therefore, peers who intend to become richer shouldjoin the swarm in it’s early
stage, when it is still not extremely oversupplied.

5.3 The old and the new: how users evolve

The first behavior of any user is to register as a member and join the community. In this
section, we explore the behavioral differences between users of different ages.
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5.3.1 A general view

After joining the community, users gradually build up a history of uploads and downloads,
in terms of the amount they consume and contribute, and the time they spend in leeching
and in seeding. Fig. 5.15 shows the scatter plot of the uploadand the download amount of
each user, with the users ranked in the reverse order of theirages. We see that, in general,
the upload and the download amount of the first 20,000 users are stable with their ages,
while the remaining ones demonstrate a decreasing trend when the age decreases. We
observe a similar correlation between the seeding and the leeching time of users and their
ages, as shown in Fig. 5.16. With these clear behavioral differences we divide users into
two groups, the first 20,000 users asthe old and the other ones asthe new. Next, we
explore more behavioral differences between these two groups of users.

5.3.2 Level of commitment: on the way to become more committed

The most straightforward measure for a user’s commitment tothe community is its upload
amount, which is exclusively decided by the seeding time andthe average upload speed.
As discussed in Section 5.2.4, the average upload speed is not a simple reflection of user’s
bandwidth, but an outcome of the swarm status like the numberof seeders and leechers
in the swarm. As it is difficult for users to control their average upload speeds, we use
only the seeding time to reflect their level of dedication. Further, to avoid the cumulative
effect of age, i.e., that older users have stayed in the community longer and therefore
have higher opportunities to seed and leech longer, we use the ratio between the seeding
and the leeching time, which is defined as theeffort ratio, as the metric to measure user
dedication to the community.

In Fig. 5.17 we show the CDF of the effort ratio of old and new users, respectively. We
see that most users (both the old and the new) achieve very high effort ratios, indicating
that with SRE, users in private communities are highly committed (or forced to be). More
interestingly, in general, new users achieve lower effort ratios than old users, indicating
that as users evolve in the community, they become more committed, which implies a
deeper (psychological) effect of SRE on the old users.

5.3.3 Average upload speed: the new have not yet suffered

Under SRE, users will be expelled if they cannot upload enough to meet the SRE require-
ment. Intuitively, similar to the effect of Group Selectionin biology, users with relatively
low bandwidth will gradually become extinct, leaving only the “strong” ones to survive
in the community. Nevertheless, Fig. 5.18 shows the CDF of the average upload speed
achieved by old and new users, respectively, from which we see that in general new users
achieve higher upload speeds. This counter-intuitive observation confirms our analysis in
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Figure 5.17: The CDF of the effort ratio of old and new users.
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Figure 5.18: The CDF of the average upload speed of old and newusers.
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Figure 5.19: The CDF of the sharing ratio of old and new users.

Section. 5.2.4 that a user’s average upload speed highly depends on the status of swarms
it has participated in. When a user with a high bandwidth spends long time in unproduc-
tive seeding, it can achieve a very low upload speed. We have shown in Fig. 5.17 that
new users are less dedicated to the community. Therefore, they avoid long unproductive
seeding time and achieve higher upload speeds.

5.3.4 Sharing ratio: the spreading new and the conservativeold

As discussed in Section 5.2.4, there are both internal and external reasons for users being
poor or rich. In Fig. 5.19 we show the CDF of the sharing ratio achieved by new and
old users, respectively. We see that the line for new users ismore skewed, indicating that
new user achieve a larger range of sharing ratios than old users. The lower end is due to
the fact that new users are often given start-up time to increase their sharing ratios, while
the higher end is normally due to their small download amounts. On the other hand, old
users behave conservatively, without many risky sharing ratios below the SRE threshold
or excessive sharing ratios requiring huge contribution and little consumption.

5.4 The big and the small consumer: active users active
in all

How much to consume is a fundamental user behavior in privatecommunities, since the
main goal for users to join is to download the contents they are interested in. In this
section, we explore the behavioral differences between users with different download
amounts. As discussed in Section 5.3, a user’s age has a cumulative effect on his download
and upload amounts, and on his seeding and leeching times. This implies that as users
evolve in the system, these four metrics gradually increase. To avoid this cumulative



106

0 0.5 1 1.5 2 2.5
x 10

4

10
−5

10
0

10
5

User rank (by decreasing daily download amount)

T
im

e 
(h

ou
r)

 

 

Daily leeching time
Daily seeding time

Figure 5.20: The daily seeding and leeching time versus the daily download amount. The
vertical axis is in log scale.
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Figure 5.21: The daily upload amount versus the daily download amount. The vertical
axis is in log scale.

effect, we consider the daily values for these metrics.

Figs. 5.20 and 5.21 show the daily seeding time, the daily leeching time, and the daily
upload amount of each user, with users ranked according to the decreasing order of their
daily download amounts. We see a clear decreasing trend of these three metrics when
the daily download amount is decreased, indicating that users with larger consumptions
normally contribute more, in terms of both the time and the amount they contribute. This
also implies that active users are active in both downloading and uploading.

In Figs. 5.22 and 5.23 we show the sharing ratio and the average upload speed for each
user, with users again ranked according to the decreasing order of their daily download
amounts. This time we observe no clear correlation between these metrics, except that
some users at the right end achieve extremely large sharing ratios. We believe this is due
to their extremely small daily download amount.
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Figure 5.22: The sharing ratio versus the daily download amount. The vertical axis is in
log scale.
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Figure 5.23: The average upload speed versus the daily download amount. The vertical
axis is in log scale.
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Figure 5.24: The CDFs of the seeding and the leeching time of gamers and dedicators.
The horizontal axis is in log scale.

5.5 The gamer and the dedicator: Gemini of the private
community

How much to contribute is an important choice users make in private communities. Based
on the level of contribution, a user can be agamer who games the system, explores
the potential benefits, and avoids providing much contribution, or adedicatorwho dedi-
cates himself to the system and provides high contribution—two opposite user behaviors
evolved in the same private community, just like the Gemini.

The upload amount is often used to measure a user’s contribution level. Nevertheless,
while users can decide the time they contribute, they do not have full control of the upload
speed. Therefore, as in Section 5.3.2, we again use the effort ratio as the metric for
deciding a user’s contribution level, and we define users with effort ratio less than one as
gamers and the rest as dedicators. Next, we explore more behavioral differences between
these two groups of users.

5.5.1 Seeding and leeching time: which decides a gamer?

The reasons for a low effort ratio could be a short seeding time and/or a long leeching
time. In Fig. 5.24 we show the CDFs of the seeding and the leeching time of gamers and
dedicators, respectively. We see that, in general, gamers leech longer while they also seed
shorter than dedicators, indicating that gamers not only contribute less but also potentially
consume more.
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Figure 5.25: The CDFs of the sharing ratio of gamers and dedicators. The horizontal axis
is in log scale.

5.5.2 Sharing ratio: gamers seize the day

In Fig. 5.25 we show the CDF of the sharing ratio achieved by gamers and dedicators,
respectively. We see that in general, gamers achieve much lower sharing ratios. As the
sharing ratio in a private community serves as virtual credit that can be spent in future
downloads, the difference in sharing ratio implies that gamers do not hoard sharing ra-
tios for future downloads as much as dedicators do. In other words, they are more the
seize-the-day type: they keep sharing ratios that are just enough for them to stay in the
community, so that they could explore the benefit of downloading (reflected by the long
leeching time) and in the mean time provide little contribution (reflected by the short
seeding time).

5.5.3 Average upload speed: gamers know the way

Though gamers achieve lower sharing ratios than dedicators, they still need to meet the
SRE threshold to stay in the community. With the short seeding time and the long leeching
time, gamers have to increase their upload speed efficientlyso as to maintain their sharing
ratios above the SRE threshold. Consistent with our intuition, they do achieve higher
upload speed than dedicators. As shown in Fig. 5.26, apparently, gamers can achieve
upload speeds an order of magnitude higher than dedicators.As discussed in Section
5.2.4, achieving high upload speed often requires users to be strategic such as joining
swarms early, which implies that gamers not only intend to, but also know the way, to
game the system.
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Figure 5.26: The CDFs of the average upload speed of gamers and dedicators. The hori-
zontal axis is in log scale.

5.6 Discussion

Though altruistic users always exist, we conjecture that most users in private communi-
ties areselfish. Their initial goal in a community is to download all the contents they
are interested in. To achieve this, they try to maintain the required sharing ratio while
not limiting their download needs. The strategies they apply mainly optimize their own
benefit, without considering thesocial welfare, i.e., the performance of other users. For
example, users may seed all the files they have downloaded to increase the opportunity
of performing some actual uploading during seeding. However, this directly increases
the bandwidth supply and makes the upload competition even more severe [70]. As we
discussed in Section 5.2.4, joining swarms earlier helps users gain sharing ratios more
efficiently. However, if a majority of users strategically join a swarm immediately after a
new content is published, then 1) many users will download something they don’t want,
only for gaining sharing ratios; 2) the download speed in theearly stage of a swarm will
be very low, because a large number of strategic users joining simultaneously makes the
swarm heavilyflash-crowded1; and 3) it will be more difficult to perform any actual up-
loads after the early stage, since only a few non-strategic users will join the swarm during
that period.

Private community administrators that intend to adopt strategies, or remedies, to al-
leviate the side-effects of SRE, should take the potential strategic user behaviors into
account. For example, some private communities try to further incentivize contribution
beyond SRE by giving rich peers priority to access newly published contents [10]. How-
ever, as discussed previously, joining early in a new swarm will help the users, especially
the poor users, gain sharing ratios more efficiently. By giving priority to rich peers, ad-
ministrators are basically taking the opportunities away from the poor peers for gaining

1We refer a swarm to be flash-crowded when it has a sudden increase in the number of leechers.
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sharing ratios. Unless the administrators intend to let therich be richer and the poor be
poorer (which will lead to a more intense competition and a potential deterioration of
performance as discussed previously), we suggest administrators to remove these restric-
tions.

Another example of existing remedies for SRE adopted by private communities would
be free-leechandseeding-bonus. Some communities [12, 15, 41, 81] temporarily adopt
free-leech and/or seeding-bonus for certain swarms, whichmeans that a user can down-
load the file for free and/or get extra bonus for seeding. In free-leech periods, users are
attracted to those swarms because of the low price for downloading. In this way, the
bandwidth demand is increased and the oversupply in the system is alleviated. Mean-
while, when free-leech is applied to a relatively old swarm,the benefit of joining early is
also reduced. The same argument is also applicable to seeding-bonus. In seeding-bonus
periods, peers are attracted to the swarms to seed. Hence, when seeding-bonus is applied
to old swarms, the file availability is improved. However, administrators should be careful
and not adopt free-leech or seeding-bonus for a long time, otherwise strategic users might
wait and not download anything until the files are for free, oronly seed in swarms with
seeding bonus.

In our previous work [49], we propose a self-organizing strategy namedSRE with
supply-based pricethat prevents this potential manipulation of strategic users. Instead
of manually adopting free-leech (i.e., zero price), this strategy inversely relates the price
for downloading one unit of data to the seeder-to-leecher ratio in the swarm. With a
larger seeder-to-leecher ratio, i.e., an increasing supply, SRE with supply-based price
automatically decreases the price. Once the supply goes tight again, it will automatically
increase the price. In this way, the demand and supply are automatically balanced and
reasonable downloading and seeding times are achieved.

5.7 Related work

To date, only few works have analyzed private communities. Zhanget al.[124] investigate
hundreds of private trackers and depict a broad and clear picture of the private community
landscape. Chenet al. [13] compare system behaviors among 13 private trackers and2
public trackers, and they show their differences regardinguser viscosity, single torrent
evolution, user behaviors, and content distribution. Liuet al. [64] also perform measure-
ment studies and further develop a model to show that SRE indeed provides effective
incentives, but is vulnerable to collusion.

While these studies all focus on demonstrating the high seeding level achieved by
private communities, there have been a few preliminary works that show the adverse
effects. Andradeet al.[5] focus on the dynamics of resource demand and supply, and they
show that users typically try to increase their contribution levels by seeding for longer and
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not by providing more bandwidth to the system. However, our work shows that providing
limited bandwidth is not the will of users, but it is a consequence of the oversupply in
private communities. Chenet al. [14] also notice the oversupply problem and provide a
model to identify the optimal stable SLR range. However, they didn’t analyze the reason
or propose strategies to solve the problem of oversupply. Kash et al. [57] demonstrate
that there are significant disparities in the cost of new and old files in a private community
named DIME, and users compensate for the high cost of older files by downloading more
copies of newer files or by preferentially consuming older files during free-leech periods.
Particularly, they have shown that after a period of free-leech, there are more download
activities in the community. This is consistent with our result that during free-leech, there
is more demand and the oversupply is alleviated. Besides analyzing positive and negative
effects of SRE, we also extensively explore the user behaviors and argue the reasons
for these behaviors. Further, we analyze the performance ofwell-adopted community
strategies, their effects against strategic user behavior, and the remedies we proposed.

5.8 Conclusion

While previous work only focuses on showing the effectiveness of SRE in incentivizing
users to contribute, in this chapter we provide a better understanding of private communi-
ties by exploring the user behaviors and demonstrating boththe positive and the negative
effects of these behaviors. We show that swarms in private communities are greatly over-
supplied. Users achieve very high download speeds, but at significant expense including
excessively long seeding times and very low upload speeds. Meanwhile, as users evolve
in the community, some users become more committed, in termsof higher ratios of the
seeding and the leeching time, and some users game the systemby keeping risky low
sharing ratios while they leech more often than they seed. For users who intend to in-
crease their sharing ratios, we show that seeding for longerdurations is not as effective as
increasing the upload speed. If it is not realistic for usersto upgrade their internet access,
we suggest them to join swarms early or to join undersuppliedswarms.



Chapter 6

Estimating user interaction strength in
online networks

Online networks have become popular and powerful infrastructures for communication
and they provide various mechanisms for users to interact. In this chapter, we present a
new view that seesuser interactionsas the most basic underpinning of online networks
such as Facebook, Wikipedia, and BitTorrent. The key research question we address is
whether we can devise a framework for expressing user interactions and their strengths
that is both generic and can be applied to a wide range of systems and applications.

The patterns and strengths of user interactions in online networks are prominent. For
example, in BitTorrent, user interactions can be used as thefoundation for designing
incentive policies to promote contribution. Through estimating the interaction strengths
between users in terms of the amounts or durations of uploads, system designers can make
users favor the highly ranked users for future uploads. As another example, a number of
applications [102, 103, 120, 121] leverageonline friendshipsto enhance security, to pro-
mote cooperation, to improve item recommendation, etc. However, it has long been ob-
served that low-interaction friendships, as exemplified bythe “Familiar Stranger” [106],
are prevalent, and it has been shown that the dynamics of userinteractions is more rep-
resentative for inferring user relationships [108, 114] than simple, statically established
“binary” friendships. Distributed systems often rely on importing trust relationships from
social networks such as Facebook to improve security [121].Instead, users would be
much better off by estimating their interaction strengths with others and by trusting the
ones with whom they have interacted frequently. Last but notleast, sociologists often rely
on user interactions for identifying social ties [54,116],and therefore a proper estimation
of user interaction strength is essential.

The importance of user interactions in online networks leads to the question:How
can we estimate user interaction strength?Previous work addressing this issue [18, 108,
114, 116] has focused only on online social networks like Facebook, and has only con-
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sideredbinary anddirect user interactions, simply indicating whether a user has directly
interacted with another user or not. To remedy this, in this chapter we propose a User
Interaction Strength Estimation scheme called UISE that has a much more fine-grained
notion of user interaction and that is applicable to a more general category of online net-
works. Further, UISE can be easily applied to distributed systems and therefore achieves
a scalable design. Specifically, we make the following contributions.

1. As a model for representing user interaction histories, we introduce thebitmap-
based user interaction graph, based on which UISE estimates user interaction
strengths. UISE captures the frequencies of both direct andindirect interactions,
provides disincentives for malicious user behaviors, and can be easily incorporated
into distributed systems (Section 6.3).

2. We apply UISE to detect user interaction patterns in online networks. We take
Facebook as an example and we derive patterns resembling those often observed in
the offline human society—users in Facebook tend to interactfrequently and stably
with relatively small groups, occasionally with persons outside those groups, and
they make new friends while in the meantime losing touch withsome old friends
(Section 6.4).

3. We further apply UISE to derive a decentralized scheme forestimating the time
users are online, which is an important aspect of user activity and has yet not been
studied before. We have implemented this application into the Tribler [84] online
network and we demonstrate the scalability and the accuracyof UISE through sim-
ulations, emulations, and Internet deployment (Sections 6.5-6.8).

As it turns out, UISE achieves accurate estimations even when users hold only5%

of the global information related to user interactions. In fact, in order to maintain the
accuracy of UISE, its requirement for the coverage of globalinformation decreases
with the population size, thus allowing UISE to achieve goodscalability in a self-
organized manner. Furthermore, although a user only possesses a partial view of
the system, with UISE he can derive a ranking of users according to his estimations
of their online time that highly resembles the ranking derived from the global view.
Thus, UISE achieves the most important application of estimating user interaction
strength, i.e., differentiating users with different levels of activity.

6.1 User interactions

Online networks provide various mechanisms for users to interact. In Facebook, users
exchange messages, post on each other’s walls, and comment on photos. In BitTorrent,
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where the main application is file sharing, users meet (rendezvous), and if possible, upload
to and download from each other. As users evolve in online networks, they gradually build
up a long history of user interactions. Some of these interactions are directed, such as
uploads and downloads, while others are undirected, such asrendezvous and a chat over
a photo. Online networks provide abundant user interactions, which, however, change
rapidly over time: only 30% of Facebook users consistently interact from one month to
the next [108], and in BitTorrent, users who directly download from each other for one
file rarely meet again—the so-calledproblem of low rendezvous.

Fortunately, users not only interact directly, but also indirectly. An indirect interaction
is formed when users are linked through a sequence of interactions, such as in Facebook
when a user posts on another user’s wall who in turn posts on a third user’s wall, and so on,
or in BitTorrent when a user uploads to another user who further uploads to a third user,
and so forth. When direct interactions are relatively scarce, such as in BitTorrent-like
P2P systems where the problem of low rendezvous exists, indirect interactions provide
supplementary information for inferring user relationships. Moreover, a group of direct
and indirect interactions that happen within a short time frame may be caused by offline
interactions. In the Facebook example, the corresponding users could have participated
in some offline event together and are sharing their experiences. Indirect interactions
that happen widely apart in time, however, are of limited use. For example, a user may
have exchanged messages with a high-school friend three years ago and with a college
friend one hour ago—these interactions hardly indicate anymeaningful user relationships
between the user’s two friends.

To achieve a meaningful estimation of user interaction strength, the above aspects
of user interaction should be considered. In the following section, we give the problem
statement and discuss the challenges that need to be addressed.

6.2 Problem statement

User interaction strength is reflected by two aspects: the frequency of interactions and
the intensity of each interaction. In this chapter, we do notconsider the latter aspect in
order to avoid evaluating the strengths of words, such as to decide which comment should
get a higher weight, “Happy birthday” or “You look nice”. Rather, in this chapter we
define user interaction strength as thefrequency that two users interact, and we propose
a model for estimating user interaction strength based on this definition. In this context,
the following four issues are addressed.

Partial history versus full history of user interactions. A properly selected partial
history of user interactions is more suitable for estimating user interaction strength than
a full history. First, as user interactions may change rapidly over time, the stale ones are
no longer useful for inferring meaningful relationships. Secondly, keeping a full history
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of user interactions induces a “glass ceiling” for new users: they will always be evaluated
as less active than old users who have already accumulated a long history. When user
interaction strengths are used to decide on the service level a user can get, such an unfair
playing field will discourage new users from joining and willeventually decay the system.

Direct versus indirect interactions. As stated in Section 6.1, direct and indirect in-
teractions are both important and therefore should both be included. In our model, we
provide two options to control the level of indirect interactions to be included in the esti-
mation of user interaction strength. The first is adistance limitin terms of the number of
hops between interacting users. The second is aneligible period. Only indirect interac-
tions that happened together with related direct interactions within this eligible period are
included, e.g., when a user exchanges messages with anotheruser who further exchanges
messages with a third user, the first and third users are only linked when these interactions
happened within, say one week. The distance limit and the length of the eligible period
are tunable parameters, so that our design will be applicable to different applications. For
example, researchers analyzing social ties can leverage our design to include different
levels of indirect interactions in their models [54,116].

Scalability. As an online network evolves, users involve in a huge number of inter-
actions. Somehow, user interaction records have to be collected and analyzed to estimate
user interaction strengths, but doing so at central serversmay be neither scalable nor prac-
tical. We propose a decentralized approach in which the collection of interaction records
and the estimation of interaction strengths are performed by the end users, where the es-
timations are actually used. When applied in such a distributed way, the design should be
lightweight so that it will not impose a high computational load on the end users.

Security. Online networks are subject to security concerns. When userinteraction
strengths are used to decide on the service level a user can get, malicious users may
disseminate false information to be better off than others,e.g., through Sybil attacks. Tra-
ditional defenses against these attacks rely on trusted identities provided by an authority
or automatically imported from some other online social networks [55, 121]. However,
requiring users to present trusted identities runs counterto the open membership that
underlies the success of these systems in the first place, andinferring trustworthy rela-
tionships purely from online friendships has been proven tobe insufficient [108, 114].
Without assuming secure super-nodes, we propose a design inwhich malicious users that
disseminate false information will not gain any privileges, i.e., in which disincentives for
malicious user behaviors are provided.

6.3 Design description

In this section, we introduce UISE, a user interaction strength estimation scheme that
addresses the issues listed in Section 6.2. In UISE, users collect the whole or parts of the
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(a) Undirected (b) Directed

Figure 6.1: Examples of user interaction graphs

interaction histories of other user pairs through central servers or distributed information
dissemination, based on which they estimate their user interaction strengths with other
users. UISE consists of four parts: representing the user interaction history, estimating
the user interaction strength, maintaining security against malicious user behaviors, and
incorporating it into distributed systems. In the following sections, we discuss them in
turn.

6.3.1 Representing user interaction history

In UISE, the interaction histories received by a user are incorporated into itsbitmap-based
user interaction graph(UIG), a model that we introduce to represent user relationships
based on their interactions. Different users build different UIGs unless they can obtain
full knowledge of the system, for example, through central servers. Therefore, a UIG
reflects a user’s local view of the system.

In a UIG, a vertex represents a user and the edge between two vertices represent the
interaction history of the users it connects. The interaction history of two connected users
is reflected by a label of the corresponding edge, which is a string called theinteraction
bitmap, or simply bitmap. To capture the interaction frequency, we abstract time into
cycles where one cycle represents a certain unit of time suchas 30 minutes. We keep the
interaction history in a time-based (cycle-based) slidingwindow fashion, with the window
size being equal to the length of the kept history. When two users have directly interacted
in a particular cycle, the corresponding bit in their bitmapis set to 1 (otherwise it is set to
0). As time evolves, their interaction bitmap becomes a binary string and the number of
“1”s shows how frequently they have recently interacted.

Fig. 6.1 shows examples of UIGs for undirected and directed user interactions, re-
spectively, with a window size of 4. For example, when Fig. 6.1(a) is derived from wall
posts in Facebook, it specifies that usersi andj have chatted on each other’s wall in cy-
cles 1 and 3. When the example is derived from the upload and download interactions in
BitTorrent, Fig. 6.1(b) specifies that useri has uploaded to userk in cycles 2 and 4.
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Figure 6.2: Per-cycle user interaction graphs generated from Fig. 6.1(a).

Figure 6.3: Per-cycle user interaction graphs generated from Fig. 6.1(b).

6.3.2 Estimating user interaction strength

To calculate the interaction strength, i.e., the frequencythat two users interact (directly or
indirectly), we perform cycle by cycle examinations. First, a UIG is divided into a number
of per-cycleUIGs. Then, for each of these per-cycle UIGs, an algorithm for finding
connected componentsor reachabilityis applied when the interactions are undirected or
directed, respectively: if two users are connected (or one is reachable from the other)
in a per-cycle UIG, they are considered as having interactedin that cycle. Finally, the
ratio between the total number of these recognized cycles and the window size gives their
interaction strength. In this way, UISE captures the frequency of both direct and indirect
interactions.

Figs. 6.2 and 6.3 show the per-cycle UIGs derived from Figs. 6.1(a) and 6.1(b), respec-
tively. In Fig. 6.2, an algorithm for finding connected components is applied. Here, users
i andj have interacted directly in cycles 1 and 3, and indirectly incycle 2. Therefore,
their user interaction strength is estimated to be 0.75. Similarly, in Fig. 6.3 an algorithm
for finding the reachability is applied and userj is reachable from useri in cycles 1, 2,
and 3. Therefore, the user interaction strength from useri to j is estimated to be 0.75.

The requirement for being in the same connected component orbeing reachable serves
two purposes. First, it specifies that only indirect interactions that happened together with
related direct interactions within the same cycle are included in the estimation. Secondly,
when UISE is applied in a distributed system, it alleviates the potential manipulations of
malicious users, since users only trust the bitmaps that canlink back to themselves in their
UIGs. During the calculation of user interaction strength,we also provide the option of
a distance limit in terms of the number of hops between interacting users. This limit is
a tunable parameter for specifying the range of indirect interactions to be included in the
calculation. With a limit of one hop, only direct interactions are included.

The connected components in an undirected graph and the reachability in a directed
graph can be computed in linear time (in terms of the numbers of the vertices and edges of
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(a) UIG

(b) Per-cycle UIGs

Figure 6.4: An example of user interaction graph (UIG) with false information from user
j and userm

the graph) using either breadth-first search or depth-first search [74]. Thus, UISE achieves
linear time complexity for estimating user interaction strength.

6.3.3 Maintaining security

Through UISE a user can rank other users based on its interaction strengths with them.
When some privilege is give to the high-ranked ones, malicious users are incentivized to
spread false information to be better off than others. One prevalent way to do so is through
a Sybil attack[28, 109]. Under a Sybil attack, the attacker generates multiple sybilswith
fake identities, and together they distribute false information about strong interactions
among them. These forged interaction histories cause falseedges to be added to the per-
cycle UIGs of other users, where the attacker manages to connect to its sybils and to
further connect to more users (victim users) through its sybils. In this way, the attacker
potentially achieves higher estimated interaction strengths at victim users than without the
sybil attack. Nevertheless, the false edges not only connect the attacker and victim users,
but also victim users themselves (indirectly). Similarly,they also potentially increase the
estimated user interaction strength between victim users.So, spreading false information
does not make the malicious users be better off than others. In this way, UISE actually
provides disincentives for malicious user behaviors.

Fig. 6.4 shows an example of a Sybil attack. Here, the attacker uses its real identity,j,
to interact with useri in cycles 1 and 3, and with userk in cycle 2; it uses its fake identity,
m, to interact with userk in cycle 3. Further,j andm claim that they have interacted
in all 4 cycles. Because of the false edge added betweenj andm (represented by the
dashed line), the attacker is connected to the victim user (userk) through its Sybilm in
cycle 3 (Fig. 6.4(b)). As a consequence, userk is considered to have interacted with the
attacker in cycles 2 and 3, while originally only in cycle 2. On the other hand, userk is
now connected to useri (another victim user) throughm in cycle 3. It is considered to
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(a) Global UIG (b) Local UIG of useri (c) Local UIG of userj (d) Local UIG of userk

Figure 6.5: An example of the global and local user interaction graphs (UIGs)

have interacted withi in cycles 2, 3 and 4, while originally only in cycles 2 and 4.

6.3.4 Incorporating into distributed systems

We now show how UISE can be incorporated into a distributed system without central
servers, which comes down to the question of how a user obtains interaction histories of
other user pairs and builds its local UIG, and to what extent that a local UIG resembles
the global one.

We assume that in a distributed system, users can obtain information through dissem-
ination. In UISE, after two users have directly interacted with each other for the first
time in a particular cycle, they generate aninteraction record, and disseminate this record
into the system through the dissemination protocol provided by the system. Based on the
interaction records obtained through dissemination, eachuser builds its ownlocal UIG,
which represents its local view of the system. Further dividing a local UIG based on cy-
cles gives thelocal per-cycleUIGs. A local UIG is a subset of theglobalUIG, in terms of
the vertices, the edges, and the interaction bitmaps. The global UIG can only be obtained
when the underlying dissemination protocol achieves a 100% coverage. In this chapter,
the 100% coverage case is used as the baseline for performance evaluation in Sections
6.6, 6.7, and 6.8.

Fig. 6.5 shows an example of the global and local UIGs. Noticethat useri did not
receive the interaction record betweenj andk for cycle 3. Therefore, in its local UIG
(Fig. 6.5(b)), the interaction bitmap betweenj andk is 0100, instead of the ground truth
0110. A similar loss of information also happens toj (Fig. 6.5(c)) andk (Fig. 6.5(d)).

Until now, we have introduced the basic design of UISE. In thefollowing sections, we
demonstrate and evaluate two examples of its application. In Section 6.4, we apply it to
detect user interaction patterns in Facebook, a centralized online social network. In Sec-
tions 6.5-6.8, we apply it to derive a decentralized scheme for estimating the online times
of users and we evaluate its performance through simulations, emulations, and Internet
deployment.
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6.4 Interaction pattern detection

In this section, we apply UISE to detect user interaction patterns in online networks. There
have been several works addressing this issue [18, 108, 114,116], but they only consider
direct and binary user interactions. Instead, UISE captures the frequency of both direct
and indirect interactions, and therefore provides a more thorough indication of the nature
of user interactions. We take Facebook as an example and we apply UISE to detect its
user interaction patterns. As a result, we have derived patterns that highly resemble the
ones often observed in the offline human society.

6.4.1 Applying to interaction pattern detection

We takewall postsin Facebook as the example of user interactions. In Facebook, each
user can post messages on the walls of his friends. Wall postsare visible to others who
visit the user profiles. A previous measurement study [108] contains a snapshot taken
on Jan 22, 2009, of the entire wall post histories of 60,290 users in the New Orleans
network. We select their data of the last year—from Jan 23, 2008 to Jan 22, 2009—as the
user behavior imported into our experiment. In total, 44,397 users and 876,993 posts are
included.

We set the cycle size to one week and we divide the data into twoparts: we take the
first 80% as the training data (weeks 1-43), and the latter20% as the testing data (weeks
44-54). When a message is posted on a wall in some week, the twofriends involved
are considered as having directly interacted, and the corresponding bit in their interac-
tion bitmap is set from 0 to 1. As Facebook is centralized, we can obtain the interaction
bitmaps of all user pairs. For every user pair, we evaluate their user interaction strength
(UIS) based on the two parts of the data, and we refer to the results as UIS80 and UIS20,
respectively. We use UIS80 to demonstrate the user interaction pattern and we use the ra-
tio between UIS20 and UIS80 (represented as UIS20/UIS80) todemonstrate the evolution
of the user interaction. The results are shown in the following section.

6.4.2 Results

We first show the UISs of a highly active and a medium active user with all users with
whom they have interacted, either directly or indirectly. The highly active user has been
active in 53 out of 54 weeks and has exchanged 2,083 messages with 25 of his friends; the
medium active user has been active in 26 out of 54 weeks and hasexchanged 84 messages
with 8 of his friends. For each of these users (called the evaluating user) we calculate his
UIS80 and UIS20 with all other users (called the evaluated users), including the friends
he has interacted with directly. We group the evaluated users based on the value of their
UIS80.
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Figure 6.6: Interaction pattern of a highly active Facebookuser (the vertical axes are in
log-scale)

For the highly active user, we show in Fig. 6.6 the number of users and the average
UIS20/UIS80 for each UIS80 group (represented by the black triangles, we do not con-
sider a limit to the distance between interacting users here). While this evaluating user has
only interacted directly with 25 friends, UISE links him to more than one thousand users
through indirect interactions, among which, obviously, itinteracts intensively with only a
small group: as shown in Fig. 6.6(a), the number of users in the UIS80 groups decreases
dramatically with increasing values of UIS80. A similar phenomenon is often observed in
human society where people tend to interact frequently withrelatively small groups and
occasionally with the people outside those groups [67]. Thesmall group could be friends,
with whom people interact directly, or friends of friends, with whom people build bonds
through, for example, sharing gossips with friends.

Another interesting observation is that, as shown in Fig. 6.6(b), the average value of
UIS20/UIS80 decreases with increasing values of UIS80 until UIS80 equals 0.25, and
stays stable (at a little bit less than 1) afterwards. This indicates that (1) the interactions
between the evaluating user and the users with whom it has high interaction strengths in
the first80% of the year tend to stay stable, with slightly decreased interaction strengths
in the latter20% of the year; and (2) the interactions between the evaluatinguser and
the users with whom it has low interaction strengths in the first 80% of the year tend to
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Figure 6.7: Interaction pattern of a medium active Facebookuser. The vertical axes are in
log-scale.
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Figure 6.8: Interaction pattern of all Facebook users. The vertical axes are in log-scale.
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become more intense. It can be conjectured that the same dynamic holds in offline social
relationships.

To verify whether the above observations are due to indirectinteractions linking too
many strangers to the evaluating user, we have also performed tests where we consider a
limited distance in terms of the number of hops between interacting users. For example,
for the result of “within 2 hops” as shown in Fig. 6.6, we have only considered the eval-
uating user’s friends and friends of friends. We show the results for different numbers of
hops, and we observe a similar tendency as for our original design without a hop limit.

For the medium active user we show in Fig. 6.7 the number of users and the average
UIS20/UIS80 for each UIS80 group. In general, this user achieves a similar interaction
pattern as the highly active user, except that his interaction strengths with other users are
always less than 0.4—indicating that he is indeed a user withmedium activity.

We have tested all users as in the above two examples and in Fig. 6.8 we show the
minimum, the maximum, the median, and the 25th and 75th percentiles of the number of
evaluated users and of the average value of UIS20/UIS80 of all users (there is no limit to
the distance between interacting users here). We find similar user interaction patterns in
these results as in the two examples we gave earlier.

6.5 Distributed online time estimation

In this section, we introduce another application of UISE, which is distributed online
time estimation. Online time directly reflects user activity and is therefore important for
online networks. A potential utilization in Facebook (especially in a distributed version)
is evaluating user’s stickiness by estimating the time users spend being online. And in
BitTorrent, as users upload when they download, online timeimplies a user’s contribution
level and therefore can be used to design incentive policies[49]. The advantage of online
time is that it is a metric with a ground truth—by comparing the real and the estimated
online times, we can assess the accuracy of UISE. In this section, we introduce how
to apply UISE to derive a decentralized scheme for online time estimation, and how to
implement this application into Tribler. In Sections 6.6-6.8, we evaluate its performance
by means of simulation, emulation, and real world deployment.

6.5.1 Applying to distributed online time estimation

Similarly as we previously took wall posts in Facebook as theexample of user inter-
actions, in this application we takerendezvousas the example of user interactions. By
applying UISE, a user can now estimate the online time of another user through calculat-
ing their interaction strength, i.e., the frequency of their direct and indirect interactions.
Here, when two users meet (rendezvous) in a particular cycle, they generate an interaction
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Figure 6.9: The Tribler system.

record and disseminate it into the system. Based on the records received through dissem-
ination, a useri builds its local per-cycle UIGs, which are undirected sincerendezvous
is undirected, and if in any of these a userj is in the same connected component asi, i

recognizesj to be online in that cycle. The number of these recognized cycles givesj’s
online time as estimated byi, and the user interaction strength betweeni andj computed
as the number of these cycles divided by the length of the interaction history, givesj’s
fraction of online time as estimated byi.

The requirement for being in the same connected component isfor maintaining the
security against malicious users, as in the example shown inFig. 6.4, which generates a
side effect of UISE—the accuracy of an evaluating user’s estimations is limited by its own
online time: as we will see, the more active a user is, the moreaccurate his estimations of
the online times of others will be.

6.5.2 Implementing into Tribler

We have implemented the distributed online time estimationapplication with UISE into
Tribler [84], which is a fully distributed open-source online network for media and so-
cial applications like file sharing, live streaming, video-on-demand, content searching,
voting, and interest-based channels. Users in Tribler interact in various ways including
rendezvous, upload, download, and additionally, commenting, replying, voting, and re-
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porting spam in the channels they join. Tribler serves well as a general framework for
implementing, testing, and analyzing user interaction related studies. It has been instru-
mented with monitoring capabilities to measure both systemand component specific per-
formance for design improvements. In this section we give a brief overview of the design
features of Tribler relevant for this chapter.

Fig. 6.9 shows the general architecture of the Tribler system. To capture user behavior
across sessions, Tribler assigns each user a permanent identifier. It uses the BitTorrent
protocol for P2P file sharing, and it uses the Libswift protocol [77], which is an IETF (In-
ternet Engineering Task Force) standard protocol for streaming proposed by the Tribler
group, for P2P streaming. We have implemented UISE into Tribler as a separate compo-
nent for estimating user interaction strength. The estimations can be fed back to appli-
cations for policy design, such as in file sharing to reciprocate active users with priority
for future downloads; they can also be visualized in the userinterface to psychologically
motivate users to contribute.

Tribler uses the following protocol to discover new users and to disseminate interac-
tion records. Every 5 seconds, a useri contacts one of its neighbors, for example,j. First,
i andj generate an interaction record for this rendezvous. Secondly, j introduces one of
its own neighbors toi for later contacts. Finally,i sends a Bloom filter expressing the
interaction records it currently possesses and fetches theones it is missing fromj. In this
way, each Tribler user can build its local UIG and estimate the online time of other users.

6.6 Simulation

In order to evaluate the performance of UISE, we take distributed online time estimation
as the example and we address three questions: how well does UISE perform for dif-
ferent information dissemination protocols; how well doesit perform for different user
behaviors; and how well does it perform in the real world.

To answer the first question, in this section we run simulations with generic informa-
tion dissemination, which allow us to explore the accuracy and scalability of UISE under
different dissemination protocols by tuning the coverage.To answer the second question,
in Section 6.7 we run emulations of UISE under various synthetic and real-world user be-
haviors. To answer the last question, in Section 6.8 we report measurement results derived
from the Internet-deployed Tribler system.

6.6.1 Basic simulation model

Synthetic user behavior: We consider synthetic user behavior in our simulation. At
any time, a peer1 can be either online or offline. When an online session ends, it starts

1From here, we useuserandpeeralternatively to refer to the functioning agent in our experiments.
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an offline session immediately, and vice versa. The online and offline session lengths
follow exponential distributions, as observed in many distributed systems [36]. We do
not consider population turnover in synthetic user behavior. Instead, later in Sections 6.7
and 6.8 we use user behavior generated from measurements where population turnover is
naturally included.

Let (Son, Soff ) represent the average online and offline session lengths. We consider
two classes of peers: (i) active peers, class A, with (8, 2) cycles, and (ii) less active peers,
class B, with (2, 8) cycles.

Synthetic peer discovery and record dissemination:In our simulation, we abstract
peer discovery into a constant probability,P1, and we apply it in every cycle to spec-
ify the probability that any two online peers meet and generate an interaction record.
Similarly, we abstract record dissemination into another constant probability,P2, and we
apply it in every cycle to specify the probability of an interaction record being received
by a third peer. Real-world protocols are more complicated and they normally result in
dynamic probabilities. Nevertheless, by assuming a constant probability and setting dif-
ferent values to it, we can analyze the performance of UISE for different peer discovery
and dissemination protocols.

Simulation setup: We run each simulation for 336 cycles, i.e., 168 hours (7 days)
when one cycle represents 30 minutes in the real implementation2. Unless otherwise
stated, we consider 250 peers in class A and 250 in class B, andwe setP1 to 20% andP2

to 50%.
Based on the synthetic user behavior and record dissemination, each peer gradually

collects interaction records and builds its local UIG. At the end of the simulation, it es-
timates its user interaction strength with every other peer, which, as specified in Section
6.5.1, is equal to its estimation of the fraction of online time of another peer. By com-
paring this estimation with the real fraction of online time, we evaluate the accuracy and
scalability of UISE. The results are presented in the following sections.

6.6.2 Accuracy

We first show in Fig. 6.10 the comparison between the real and estimated fractions of on-
line times, where the latter is represented by the user interaction strengths (UISs) between
the evaluating and evaluated peers. In Figs. 6.10(a) and 6.10(b), the evaluated peers are
ranked according to their UISs with an evaluating peer in class A and in class B, respec-
tively. We see that the estimation is improved when the evaluating peer is more active:
the peer in class A achieves more accurate estimations than the peer in class B. Peers in
class B only stay online forSB

on/(SB
on + SB

off ) = 20% of the time and therefore they meet
few peers to build their local views. As stated in Section 6.5.1, this is a compromise for

2We will give the reason later in Section 6.7.3
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Figure 6.10: Comparison between the real and estimated fractions of online time.
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Figure 6.11: CDFs of the absolute accuracy, PCC, and SRCC in asimulation with 500
peers.

maintaining the security.

Absolute accuracy: We define the absolute accuracy achieved by a peer as the ratio
between its estimation and the real online time of another peer, averaged over all evaluated
peers. In Fig. 6.11(a) we show the CDF of the absolute accuracies achieved by peers in
class A and in class B, respectively. In general, peers in class A achieve better absolute
accuracies than peers in class B.

Relative accuracy: We use the Pearson Correlation Coefficient (PCC) [94] and the
Spearman Ranking Correlation Coefficient (SRCC) [99] to assess the relative accuracy
achieved by each peer. In brief, PCC and SRCC measure the linear and the monotonic
dependence between two variables, respectively. For each evaluating peer, first, we rank
its evaluated peers based on its online-time estimations for them; then, we generate two
variables, a list of the real online times and a list of the online-time estimations, in the
order of this ranking; finally, we calculate the PCC and the SRCC of these two variables.
In this way, we can assess the correlation between the local rank of peers at the evaluating
peer and the global rank of peers based on their real online times. For the two examples
shown in Figs. 6.10(a) and 6.10(b), the PCCs are 0.9848 and 0.9026, and the SRCCs are
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Figure 6.12: Average user interaction strengths for different values ofP1 andP2.
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Figure 6.13: Average user interaction strengths for different values ofPC .

0.7968 and 0.7812, respectively. Figs. 6.11(b) and 6.11(c)show the CDFs of the PCC and
the SRCC achieved by peers in class A and in class B. We see thatpeers achieve decent
relative accuracies, i.e., their local ranks of peers resemble the global one.

Absolute accuracy versus relative accuracy:One important application of online
time estimation is to differentiate users with different levels of activity. Then, only the
rank of users is needed and a design with high relative accuracy, like UISE, will be suit-
able. Further, as we will show in the next section, UISE givesaccurate estimations even
under low coverages of peer discovery and information dissemination.

6.6.3 Accuracy under partial information

To test the accuracy of UISE under partial information, we first varyP1 andP2 in such a
way thatPC = P1 × P2 is constant (equal to10%). PC represents the probability of es-
tablishing an edge between two peers in a local per-cycle UIGof a third peer. Intuitively,
it decides the third peer’s estimations for others. In Fig. 6.12 we show the user interac-
tion strengths (estimated fractions of online time) averaged over the classes of evaluating
(“from” in the figure) and evaluated (“to” in the figure) peers. We find that, consistent
with our intuition, the estimations stay stable for different values ofP1 and ofP2 while
PC is constant. This allows us to analyze the influence ofPC without exploring exten-
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Figure 6.14: Average user interaction strengths for different populations and values of
PC .

sive combinations ofP1 andP2. We keepP1 constant (equal to 1) and varyP2 in such a
way thatPC is decreased from 100% to 0.1%. In Fig. 6.13 we show the user interaction
strengths averaged over classes. We find that whenPC is at least equal to5%, i.e., when
peers hold at least5% of the total information, the estimations stay stable. Further reduc-
ing PC results in noticeable decreases of estimations, nevertheless, UISE still achieves
decent relative accuracies: on average, peers in class A arecorrectly estimated as more
active than peers in class B.

6.6.4 Scalability

In this section we test the scalability of UISE under different populations. LetN(t)

represent the number of online peers at cyclet. At the end of the simulation, for cyclet,
each peer will receiveN(t)(N(t) − 1)PC records and will generateN(t)(N(t) − 1)PC

edges in its local per-cycle UIG. To test the scalability, when the population increases, we
decreasePC in such a way thatN(t)(N(t) − 1)PC is constant.

In UISE, an evaluating peer recognizes another peer to be online at cyclet if they are
in the same connected component in its local per-cycle UIG for cyclet. In graph theory,
for a random graph withn vertices to be connected, the expected number of edges needed
is less thann ln n [74]. Therefore, the basic condition for a peer to correctlyrecognize all
the peers online at cyclet is:

N(t)(N(t) − 1)PC ≥ N(t) ln(N(t)) ⇒ PC ≥
ln(N(t))

N(t) − 1
.

As ln(N(t)) increases very slowly withN(t), the required value forPC decreases strongly
with the population. Thus, UISE achieves good scalability in a self-organized manner.

The simulation result confirms the above analysis. Fig. 6.14shows the average user
interaction strengths (estimated fractions of online time). We see that while we increase
the population and decreasePC accordingly, UISE achieves stable estimations.
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6.7 Emulation

In this section we evaluate the performance of UISE for different user behaviors. As we
have tested different dissemination protocols in Section 6.6, we now release the assump-
tion of a generic information dissemination and we test UISEunder Tribler’s dissemina-
tion protocol. As we intend to test different user behaviorsthat we cannot control in real
world experiments, we use emulation in this section. Based on synthetic user behaviors,
we test the performance of UISE for different online patterns. Based on user behaviors
generated from measurement traces, we test its performanceacross different online net-
works.

6.7.1 Emulation setup

The emulation is performed on the DAS-4 supercomputer [24],a distributed six-cluster
system for computer science research. All our experiments are run on the TUDelft cluster
that contains 23 nodes, each of which has two 2.4 Ghz quad-core processors and 24
GBytes of memory. The nodes are connected by a 10 Gb/s QDR Infiniband interconnect.
Unless otherwise stated, we deploy 500 peers evenly on 20 nodes. Peers run Tribler’s
dissemination protocol: they meet, generate, and disseminate interaction records, and
store the records received from dissemination in their local SQLite databases. At the end
of each emulation, they estimate their user interaction strengths with others, which give
their estimations of the fractions of online time of others.

We set the cycle size to 2 minutes and we run each emulation for10 hours, resulting
in interaction bitmaps of10 × 60/2 = 300 bits. The small cycle size and short emulation
time are compromises for the time consumption of the cluster. This parameter setting
represents a running time of 7 days when the cycle size is set to 30 minutes in the real
world implementation.

6.7.2 Synthetic user behavior

In this section we evaluate the performance of UISE under different mixtures of active
peers, less active peers, peers with heavy churn, and peers that always stay online. Here,
we use the synthetic user behaviors as introduced in Section6.6.1 and we test four scenar-
ios in our emulation: (i) peers always online with A(∞, 0) and B(∞, 0); (ii) active peers
A(20, 5) versus less active peers B(5, 20); (iii) active peers A(20, 5) versus heavy churn
peers B(5, 5); and (iv) heavy churn peers with A(5, 5) and B(5,5). All the session lengths
are in minutes. The results are shown in Fig. 6.15.

Under scenario 1, peers have the highest chance to meet and hence generate a large
number of records. Fig. 6.15 shows that UISE achieves accurate estimations under this
scenario: on average,93.33% of the online time is successfully identified. Under scenario
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Figure 6.15: Comparison between real and estimated fractions of online time for different
churn patterns (Son, Soff ).
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Figure 6.16: Comparison between the original FileList trace and our sample.

2, the active peers achieve higher accuracies than the less active peers. Interestingly, com-
paring scenarios 2 and 3, when the less active peers are changed to peers with heavy churn,
their estimations for active users (“from B to A” in the figure) become more accurate. Un-
der scenario 4, though peers are with heavy churn, they can still identify 0.4/0.6 = 67%

of the online time. These results indicate that the absoluteaccuracy depends on theavail-
ability, i.e., the fraction of online time, of the evaluating peer, rather than its churn pattern.

6.7.3 Trace-based user behavior

To test the performance of UISE across different online networks, we run emulations
based on measurement traces generated from the private BitTorrent community FileList
[6]. These traces contain uptime and downtime of every user that was online at least
once during the measurement period. In total, we captured 63,548 users in 7 days, from
which we randomly select 500 users for our emulations. Fig. 6.16 shows the CDFs of
the average online session length and the total online time for the original trace and our
sample. We see that our sample represents the original tracevery well. Further, as94%

of the online sessions are longer than one hour, we set the cycle size to 30 minutes in the
real implementation, so as to capture most of the online sessions.
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(c) Evaluating peer with an availability of50%
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Figure 6.17: Comparison between real and estimated fractions of online time for FileList
trace.

Fig. 6.17 shows four examples of comparisons between the real and estimated frac-
tions of online time, where the latter one is represented by the user interaction strengths
between the evaluated and evaluating peers. In Figs. 6.17(a), 6.17(b), 6.17(c), and 6.17(d),
the evaluated peers are ranked based on their online times estimated by a peer with an
availability of 100%, 90%, 50%, and10%, respectively. The first three peers achieve es-
timations very close to the real fractions of online time, with an SRCC equal to 0.9998,
0.9945, and 0.9388, respectively. We can see a clear decrease of the real fractions of on-
line time when the evaluated peers are ranked based on the estimations from these three
evaluating users, indicating that their local ranks of peers closely resemble the global one.

Evaluating peer 4 (Fig. 6.17(d)), however, only achieves anSRCC equal to 0.6853.
The reason is that, as stated in Section 6.5.1, in UISE an evaluating peer only trusts the
interaction records that can link back to itself (reflected by being in the same connected
component in a local UIG). Therefore, its estimation for another user in fact reflects their
concurrentonline time. As evaluating peer 4 is only online for10% of the time, it achieves
a low accuracy. Nevertheless, its estimation for another user can be used to assess their
availability to each other—an important issue for distributed online networks where users
collaborate and only the ones online simultaneously can help each other. In Fig. 6.18 we
show evaluating peer 4’s estimations and its fraction of concurrent online time with other
peers, where we observe very accurate estimations with an SRCC equal to 0.9973.
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Figure 6.18: Comparison between fraction of concurrent online time and user interaction
strength.
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Figure 6.19: User interaction strength under random-generation for different values of
PG.

6.7.4 Preparing for the real world: strategies for reducingthe work-
load

As we found in Section 6.6.3, UISE achieves good estimationseven with limited infor-
mation. This desirable feature allows us to introduce two practical strategies,random-
generationand targeted-generation, to reduce the workload imposed on the system, in
terms of the number of interaction records to be disseminated. In random-generation,
when two online peers meet for the first time in some cycle, with a probabilityPG they
generate an interaction record (in the original design theywill for sure generate a record).
In targeted-generation, for each cycle, a user only generates records with theNG users
that it has observed to be online the longest during the pastM cycles, resulting a constant
number of records being generated per user per cycle.

We run emulations to test the performance of these two strategies, where we use the
same parameter settings as in Section 6.7.2. Figs. 6.19 and 6.20 show the user interaction
strengths (estimated fractions of online time) averaged over classes for different values
of PG andNG (we setM = 1 in our emulations). We see that UISE performs stably
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Figure 6.20: User interaction strength under targeted-generation for different values of
NG.

whenPG is decreased from 1 to 0.05 and whenN decreases from 10 to 1. This implies
that we can decrease the workload dramatically without deteriorating the accuracy of the
estimation.

6.8 Real-word deployment

We have implemented UISE into Tribler. In addition to its qualitative impact on design,
Tribler’s user community serves as the basis for our real-world performance evaluation.
In this section, we report measurements of the user behavior, the overlay structure, the
performance of interaction record generation, and the accuracy of online time estimation.

6.8.1 Deployment techniques

In the real world deployment, the cycle size is set to 30 minutes and the interaction history
is kept in a sliding window fashion with a window size of 7 days, resulting in interaction
bitmaps of7×24×60/30 = 336 bits. We adopt thetargeted-generationversion of UISE
as introduced in Section 6.7.4, withNG = 5 andM = 1. In addition, we specify that two
users generate their first interaction record only until they have seen each other online for
at least two cycles. This effectively prevents “hit-and-run” users generating records that
are of limited use.

Tribler is fully distributed, containing no central servers and hence no records of user
behaviors from the global view. To obtain the ground truth for our experiment, we de-
ploy log servers and every 5 minutes, each user reports its online activity to one of them,
including its identifier, its timestamp, the number of interaction records it generated suc-
cessfully, and the updated information about interaction records of other user pairs it
received since last report. In total, for the first week of Tribler’s new release, we obtain
2,874 active users with unique identifiers, among which there are 1,713 users that have
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Figure 6.21: CDF of online time of Tribler users.
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Figure 6.22: Online time versus cumulative node degree.

generated at least one interaction record. For weeks 2, 3, and 4, we obtain 2,673, 2,905,
and 2,884 active users with unique identifiers, respectively. We use the data from weeks
1-4 to analyze the evolution of Tribler user’s online time; and we use the data of week 1
to evaluate the overlay structure, the performance of record generation, and the accuracy
of online time estimation. Results are shown in the following sections.

6.8.2 Evaluation

Online time: The dashed blue line in Fig. 6.21 shows the CDF of online timesof Tribler
users obtained from log servers during the first week. Around15% users are online for
more than 7 hours, resulting in an average of more than one hour per day. Nevertheless,
60% users are online for less than one hour in total. Comparing Figs. 6.21 and 6.16(b),
clearly users in FileList are more active than users in Tribler. FileList specifies that users
with high contribution levels will be rewarded with the preference for future downloads,
and therefore users are incentivized to stay online longer.To do so, FileList constantly
monitors user activities through central servers—UISE achieves exactly the same goal,
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Figure 6.23: Online time versus the number of generated records.

and moreover, is performed in a distributed manner. As a matter of fact, in the current
release of Tribler, users are educated with the fact that their activities will be evaluated
through a distributed algorithm (i.e., UISE). Though at this moment the estimated online
times are not utilized explicitly as in FileList, we can already observe a gradual increase
of user’s online time from week 1 to week 4 (Fig. 6.21). This promising observation in-
dicates that, being aware of their activities being evaluated, users in Tribler are becoming
more committed—a behavioral change that has been observed by many sociologist and
psychologists under similar circumstances in human society [44].

Overlay structure: When users are online, they gradually meet more users and gener-
ate more interaction records. This effect is further amplified by targeted-generation where
users that stay online longer are preferred by other users togenerate interaction records
with. In Fig. 6.22 we show the scatter plot of each user’s online time and its cumulative
node degree, which is defined as the number of unique users that it has generated inter-
action records with. We see a clear positive monotony trend between them, achieving an
SRCC of 0.7883. In Fig. 6.23 we show the scatter plot of each user’s online time and
the number of interaction records it generated successfully, where we observe a positive
monotony trend with an SRCC of 0.9312.

Interaction record generation: In Fig. 6.24 we show the CDF of record generation
success rate, which is defined as the ratio between the numberof generated records and
the number of record generation attempts, for each user. We see that in general,80%

of the users achieve success rates larger than 0.7. The failures may come from several
circumstances including the churn of users, the recipientsbeing saturated by requests,
and the NATs between users that prevent them to connect. One may argue that with the
preference to generate records with highly active users, those users can be fully occupied
and therefore resulting in low record generation success rates. Nevertheless, we show
in Fig. 6.25 the scatter plot of each user’s online time and its record generation success
rate. The corresponding SRCC is only -0.1591 and therefore shows no correlation be-
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Figure 6.25: Online time versus record generation success rate.

tween these two metrics. Particularly, a highly active userthat stays online for 151 hours
generates 2,410 records, achieving a success rate of85.92%.

The accuracy: Fig. 6.26 shows the comparisons between the real and estimated frac-
tions of online time of each Tribler user, where the latter isrepresented by the user inter-
action strengths between the evaluating and the evaluated users. In Figs. 6.26(a), 6.26(b),
and 6.26(c), the evaluated users are ranked based on their user interaction strengths with
a user with an availability of90%, 50%, and10%, respectively. Similar to the results
of Filelist trace relay in Section 6.7.3, the accuracy of theestimation is limited by the
availability of the evaluating user: the more active it is, the more accurate its estimations
will be. In total, the three evaluating users have successfully identified 976, 745, and 217
users to be online for at least one cycle; and the SRCCs between their estimations and
real online times are equal to 0.9325, 0.8635, and 0.6446, respectively. Though evaluat-
ing user 3 (Fig. 6.26(c)) achieves a low accuracy, it can accurately estimate its concurrent
online time with other peers. In Fig. 6.27 we show its estimations (represented by user
interaction strengths) and its real fraction of concurrentonline time with others, where we
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Figure 6.26: Comparison between real and estimated fractions of online time.
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Figure 6.27: Fraction of concurrent online time versus userinteraction strength.

observe very accurate estimations with an SRCC equal to 0.9785. Thus, it can success-
fully identify the users with whom it is online simultaneously, i.e., the users with whom
it has been and potentially will be collaborating.

6.9 Related work

To date, a few works have focused on understanding user interactions in online social
networks. Moonet al. [18] investigate the guestbook logs of Cyworld and they show
that interactions between friends are highly reciprocated. Viswanathet al. [108] study
the evolution of user interactions in Facebook and they find that user interactions change
rapidly over time. These observations provide the foundation for designing UISE that
only considers recent user interactions. Wilsonet al.[114] introduce an interaction graph.
They show that interaction links exhibit different properties than social links (friendships)
and are more representative for inferring meaningful user relationships. Nevertheless,
their interaction graph is unweighted and does not take the interaction frequency into
account as we do.

Another direction of related research is identifying social ties. Kahandaet al. [54]
propose an approach for identifying the weak and the strong ties. They focus on super-
vised learning models that require human annotation of linkstrength such as top friend
nomination. Xianget al. [116] develop an unsupervised model that represents a range
of tie strengths based on user interactions and profile similarity. However, they consider
only direct and binary interactions, simply indicating whether a user has interacted with
another user or not. Instead, we propose UISE that captures the frequency of both direct
and indirect interactions. Moreover, while all the above related works are centralized,
UISE is applicable in distributed systems.

There are also studies on leveraging user interactions in distributed online networks
for policy design. BitTorrent [19] clients constantly monitor their direct interactions (up-
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loads) with others and reciprocate the ones from whom they download the fastest. How-
ever, in BitTorrent systems the problem of low rendezvous exits and direct interactions
are insufficient for inferring user relationships [49]. Meulpolderet al. introduce Barter-
Cast, a distributed reputation system that ranks users based on their upload and download
activity in P2P file sharing. BarterCast captures both direct and indirect user interactions,
however, it adopts a MaxFlow-based algorithm with a heavy complexity. Instead, UISE
adopts an connect-component-based algorithm and achievesa linear time complexity in
terms of the number of user pairs. We have also applied UISE toderive a decentralized
scheme for online time estimation. To the best of our knowledge, this is the first work that
sheds lights on this topic.

6.10 Conclusion

User interaction is the most important underpinning of online networks, in which hun-
dreds of millions of users communicate, interact, and sharetheir online lives. In this
chapter we propose UISE, a scalable scheme for estimating user interaction strength in
both centralized and distributed online networks. We have applied UISE to detect user
interaction patterns in Facebook based on wall posts, and wehave derived patterns that
resemble the ones often observed in the offline human society. We have further applied
UISE to design and deploy a decentralized scheme for online time estimation based on
rendezvous. In the latter application we shown that UISE is scalable and stable for dif-
ferent dissemination protocols and for different user behaviors. We have incorporated
this application into Tribler, and we have shown through measurements that UISE effec-
tively differentiates users with different levels of activity, and thus, accomplishes the most
important goal of estimating user interaction strength.
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Chapter 7

Conclusion

In this thesis we have explored the correlation between userbehaviors and contribution
incentives in online networks. In order to gain a systematicinsight, we have investi-
gated both barter schemes and monetary schemes for contribution incentives. We have
examined their limitations and risks, we have proposed remedies to revise them, and we
have proposed a general framework for estimating user interaction strength that under-
pins a wide range of systems and applications including contribution incentives. Below
we present our conclusions and suggestions for future work.

7.1 Conclusions

The main conclusions of this thesis are as follows:

1. Enhancing reciprocity or reducing inequality is a key principle in the design of Bit-
Torrent and its variations. Different applications often require different principles,
and therefore the balance between reciprocity and equalityis essential. Several
factors in the BitTorrent protocol have significant influences on this balance. For
example, reciprocity is enhanced when users assign more bandwidth to theirregular
unchoke slotsand when seeders favor the fast users. On the other hand, inequality
is reduced when users assign more bandwidth to theiroptimistic unchoke slotsand
when seeders favor the relatively slow users. Overall, reducing inequality leads to
a better system-wide performance in terms of a higher download speed averaged
over all users (Chapter 2).

2. Sharing Ratio Enforcement (SRE), prevalently adopted inprivate BitTorrent com-
munities, has been demonstrated through measurements to beeffective in incen-
tivizing contributions. Based on a fluid model, we have theoretically proven its
effectiveness. By assuming that users are rational and thatthey only upload the
minimum amount required by SRE, we have analyzed two typicalscenarios where
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SRE is applied within one swarm and within multiple swarms, respectively. As it
turns out, the former case induces enhanced reciprocity, whereas the latter case im-
proves the system-wide performance. Above all, our model provides a lower bound
of the download performance that would be achieved in the real world (Chapter 3).

3. Due to a number of limitations induced by barter schemes, monetary schemes can
be used as effective alternatives for contribution incentives. We have provided a
long-missing risk analysis of these monetary schemes. As itturns out, under these
schemes, the supply and the demand of contributions need a delicate balance, with-
out which the system is prone to systemic risk that may cause the collapse of the
entire system due to too little or, counter-intuitively, too much contributions. Even
when these extreme situations do not occur, the user-level performance can be de-
teriorated due to an oversupply or an undersupply of contributions. To tackle these
problems, we propose four strategies that have been inspired by ideas in social sci-
ences and economics. The primary idea behind them is to adaptively adjust the
supply and the demand based on the credit dynamics in the system. As the simu-
lation results show, all four strategies are very effectivein alleviating the negative
effects of monetary schemes while still providing strong incentives for contributions
(Chapter 4).

4. In online networks users do not always behave and contribution incentives do not
always work well. Taking private BitTorrent communities asthe example, we have
explored the behaviors of their users and have found that user’s dedication is not
universal. As users evolve in the community, some of them become more com-
mitted, in terms of higher ratios of the seeding and the leeching time, and some
game the system by keeping risky low sharing ratios while they leech more often
than they seed. Meanwhile, even though swarms in private communities are greatly
oversupplied, users achieve very high download speeds at significant expense in-
cluding excessively long seeding times and very low upload speeds. For users who
intend to increase their sharing ratios, we have shown that seeding for longer dura-
tions is not as effective as increasing the upload speed. If it is not realistic for the
users to upgrade their internet access, we suggest them to join swarms early or to
join undersupplied swarms (Chapter 5).

5. With the User Interaction Strength Estimation (UISE) scheme that we have pre-
sented in this thesis, we have devised a general framework for expressing user in-
teractions and their strengths that is both generic and can be applied to a wide range
of online networks. Among the strong points of UISE is that itcaptures direct and
indirect user interactions, that it scales with only partial information dissemination
in decentralized systems, and that it provides disincentives for malicious user be-
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haviors. We have applied UISE to detect user interaction patterns based on wall
posts in Facebook and we have found patterns that resemble those observed in the
offline human society: users in Facebook tend to interact frequently and stably with
relatively small groups, occasionally with persons outside those groups, and they
make new friends while in the meantime losing touch with someold friends. We
have further applied UISE to online time estimation based onrendezvous as user
interactions in Tribler, and we have demonstrated the accuracy and scalability of
UISE with different information dissemination protocols and user behaviors using
simulations, emulations, and a real-world deployment. Particularly, we have ob-
served a desired user behavioral change in the real-world deployment: with the
awareness that their interactions are being monitored, users are becoming more
committed. This observation indicates that UISE is effective in, among other appli-
cations, incentivizing contributions (Chapter 6).

7.2 Suggestions for future work

There are a number of promising directions for future work related to the topic of this
thesis, including:

1. Our model for BitTorrent is based on its original Tit-For-Tat. Since its first re-
lease, several strategic variations of BitTorrent have been proposed, for example
BitTyrant [78] and BitThief [65], which aim at maximizing their download speeds
while minimizing their contributions. It will be interesting to apply our model to
these strategic variations and to investigate their effects in bandwidth allocation, in
reciprocity enhancement, and in inequality reduction.

2. We have performed a measurement of user behaviors in private BitTorrent commu-
nities that adopt Sharing Ratio Enforcement (SRE). There are some private com-
munities that apply further policies to enhance the positive effects and to alleviate
the negative effects of SRE, for example, the occasionalfree-leechandfree-seed. A
more detailed measurement of user behavioral changes underthese special scenar-
ios will help community organizers to understand the possible manipulations from
users, which in turn will lead to better policy designs.

3. We have used models and simulations to provide a straightforward demonstration
of the effectiveness and risks of monetary schemes for contribution incentives. In
this analysis, we have only considered static behaviors. A more realistic approach
will be including dynamic behaviors where users can change their strategies given
the current situation of the system. For example, a game theory approach, as the one
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often adopted in analyzing scrip systems [56], will providea more theoretical foun-
dation and therefore more insights into the understanding of monetary schemes.

4. The UISE scheme we propose is a general framework for representing user relation-
ships with their interactions. It will be promising to combine it with social science
studies that evaluate how well online interaction represents real world relationships.

7.3 Epilogue

For decades, sociologists and psychologists have been putting effort in analyzing human
behaviors, and particularly, in analyzing policies to incentivize humans to contribute and
cooperate. However, traditional offline approaches such assurveys and controlled exper-
iments suffer from the common flaw that the data derived from these approaches were
comparably scarce and often of poor quality [61, 113]. The needed quantity and quality
of data on human societies was simply impossible to obtain. Coincidentally or naturally,
online networks arose, together with the societies formed within them.

With the similarities between online and offline societies,researchers now are able to
collect behavior data and to evaluate their theories at a scale that can never be reached
by traditional offline methods. This is what we have done in this thesis. For example,
in this thesis we have, from a computer scientist’s point of view, explored theTragedy
of the Commonsand the strategies to avoid this tragedy in the context of barter-based
BitTorrent with millions of users, we have evaluated creditdynamics and systemic risk
of monetary systems embedded in some P2P systems in which credit is earned and spent
through contributions and consumptions, we have demonstrated on a user base of over
ten thousands that one single incentive policy can trigger avariety of user behaviors in
the same online community, and with the detailed logs of userbehaviors in Facebook and
Tribler, we have analyzed user interaction patterns and we have inferred possible user
relationships.

From the large user base and the detailed records of user behavior that are made possi-
ble only by online networks, we have obtained several interesting and important insights
in user behaviors and contributions incentives. Above all is that users do not always
behave and contribution incentives do not always incentivize users to contribute. As in
the real world, online users can be lazy, selfish, strategic,or even malicious. Moreover,
adaption is hardwired in human’s nature and this applies to online users as well. When
a certain incentive policy is designed and applied, users learn and adapt fast, and devise
new strategies to exploit the policy. Thus, there is hardly any static incentive policy that
is effective for all systems at all times. Instead, our analysis shows that policies that can
adapt to the context are preferable.

Another major insight is the universal tradeoff in system and policy design. Barter-
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based incentive policies have their limitations in indirect reciprocity, but remedies dealing
with these limitations will introduce security concerns. Monetary schemes are effective in
increasing the supply of contribution, but sometimes they may lead to a state of oversup-
ply that eventually crashes the entire system. In the context of estimating user interaction
strength, excluding all indirect interactions surely filters out a large amount of useful in-
formation, but considering blindly all interactions including even the very remote ones
adds a lot of noise in the analysis. Thus, finding the criticalpoint in the tradeoffs is
crucial for successful system and policy design, and this often requires a thorough under-
standing of the system that can only be obtained through parameter exploration, design
space analysis, and user behavior modeling.

Above all, the human society has evolved for thousands of years, but there are still
many areas of human behavior left unknown or unexplored. In that sense, online so-
cieties that emerged only two decades ago are still in a primitive state, yet with their
ever-improving technologies we have already obtained manyexciting results. This points
the way to a promising future for the study of online networks, not only in analyzing
online behaviors, but also in cross reference with offline societies.
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Summary
Online networks as societies: user behaviors and contribution incentives

Online networks like Facebook and BitTorrent have become popular and powerful
infrastructures for users to communicate, to interact, andto share social lives with each
other. These networks often rely on the cooperation and the contribution of their users.
Nevertheless, users in online networks are often found to beselfish, lazy, or even ma-
licious, rather than cooperative, and therefore need to be incentivized for contributions.
To date, great effort has been put into designing effective contribution incentive policies,
which range frombarter schemesto monetary schemes. In this thesis, we conduct an
analysis of user behaviors and contribution incentives in online networks. We approach
online networks as both computer systems and societies, hoping that this approach will,
on the one hand, motivate computer scientists to think aboutthe similarities between their
artificial computer systems and the natural world, and on theother hand, help people
outside the field understand online networks more smoothly.

In Chapter 2, we investigate the characteristics and principles of BitTorrent’s Tit-For-
Tat incentive policy and its variations that are based on barters. We propose a fluid model
that captures the bandwidth allocation in BitTorrent. We explore several strategies that in-
fluence the balance between reciprocity and inequality. Ourstudy shows that (i) reducing
inequality leads to a better overall system performance, and (ii) the behavior of seeders
(i.e., users that hold a complete copy of the file and upload itfor free) influences whether
reciprocity is enhanced or inequality is reduced.

In Chapter 3, we provide a theoretical model to analyze a contribution incentive named
Sharing Ratio Enforcement (SRE). We aim to provide an understanding of how SRE
provides contribution incentives and how SRE influences thedownload performance in
the system. Specifically, we study the influence of the SRE threshold (i.e., the minimum
sharing ratio requirement) and the bandwidth heterogeneity of users in the system. In
our analysis, we assume users to be rational, i.e., they seedonly the minimum amount
required by SRE, and we show that the download performance aspredicted by our model
represents a lower bound for the actual performance that canbe reached in a BitTorrent
private community. Hence, following our model, community administrators can predict
the minimum performance level their systems will be able to reach.

In Chapter 4, we analyze the performance of online networks that adopt monetary
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policies as contribution incentives, from both the system-level and the user-level per-
spectives. Taking private BitTorrent communities as an example, we show that monetary
policies can lead to system-widecrunchesor crasheswhere the system completely seizes
due to too little or to too much credit, respectively. We explore the conditions that lead to
these system pathologies and we present a theoretical modelthat predicts if a system will
eventually crunch or crash. We apply this analysis to designan adaptive monetary policy
to maintain the system sustainability. Given private communities that are sustainable, we
further analyze their user-level performance by studying the effects of their oversupply,
in terms of excessively high seeder-to-leecher ratios. We show that although achieving
an increase in the average downloading speed, the phenomenon of oversupply has three
undesired effects: long seeding times, low upload capacityutilizations, and an unfair
playing field for late entrants into swarms. To tackle these problems, we propose four
different strategies, which have been inspired by ideas in social sciences and economics.
We evaluate these strategies through simulations and demonstrate their positive effects.

In Chapter 5, we explore the user behaviors in private BitTorrent communities, we
argue the reasons for these behaviors, and we demonstrate both the positive and the neg-
ative effects of these behaviors. We show that in these communities, as predicted by our
model, users seed for excessively long times to maintain required sharing ratios, but that
their seedings are often not very productive (in terms of lowupload speeds) and that their
long seeding times do not necessarily lead to large upload amounts. We find that as users
evolve in the community, some users become more committed, in terms of increasing
ratios between their seeding and leeching times. In the meantime, some users game the
system by keeping risky and low sharing ratios while leeching more often than seeding.
Based on these observations, we analyze strategies that alleviate the negative effects of
these user behaviors from both the user’s and the community administrator’s perspective.

In Chapter 6, we present the design, deployment, and analysis of the UISE scheme
for User Interaction Strength Estimation for both centralized and decentralized online
networks. Among the strong points of UISE is that it capturesdirect and indirect user
interactions, that it scales with only partial informationdissemination in decentralized
systems, and that it provides disincentives for malicious user behaviors. We apply UISE to
detect user interaction patterns based on wall posts in Facebook, and our results resemble
the patterns often observed in the offline human society. We further apply UISE to online
time estimation based on rendezvous as user interactions inTribler, an online network for
media and social applications like file sharing, streaming,and voting. We demonstrate the
accuracy and scalability of UISE with different information dissemination protocols and
user behaviors using simulations, emulations, and a real-world deployment.

To summarize, in this thesis we provide theoretical and practical insights into the
correlation between user behaviors and contribution incentives in online networks. We
demonstrate user behaviors and their consequences at both the system and the individual
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level, we analyze barter schemes and their limitations in incentivizing users to contribute,
we evaluate monetary schemes and their risks in causing the collapse of the entire system,
and we examine user interactions and their implications in inferring user relationships.
Above all, unlike the offline human society that has evolved for thousands of years, online
networks only emerged two decades ago and are still in a primitive state. Yet with their
ever-improving technologies we have already obtained manyexciting results. This points
the way to a promising future for the study of online networks, not only in analyzing
online behaviors, but also in cross reference with offline societies.
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Samenvatting
Online networks as societies: user behaviors and contribution incentives

Onlinenetwerken zoals Facebook en BitTorrent zijn populaire en krachtige infrastruc-
turen geworden voor mensen die met elkaar willen communiceren, contact willen hebben,
en hun sociale leven willen delen. Deze netwerken zijn vaak afhankelijk van de samen-
werking en de bijdragen van hun gebruikers. Echter, in plaats van samenwerkend zijn ge-
bruikers inonlinenetwerken vaak egoı̈stisch, lui of zelfs kwaadaardig, en daarom moeten
zij geprikkeld worden om bijdragen te leveren. Er is al veel moeite gestoken in het ont-
werpen van effectievepoliciesom tot bijdragen te prikkelen, die lopen vanruilhandel
tot monetairesystemen. In dit proefschrift voeren we een analyse uit van gebruikersge-
drag en prikkels tot bijdragen inonlinenetwerken. We benaderenonlinenetwerken als
computersystemen en als gemeenschappen, hopend dat deze benadering aan de ene kant
informatici kan motiveren om na te denken over de overeenkomsten tussen kunstmatige
computersystemen en de werkelijke wereld, en aan de andere kant mensen buiten dit on-
derzoeksveld gemakkelijkeronlinenetwerken laat begrijpen.

In hoofdstuk 2 onderzoeken we de karakteristieken en principes van BitTorrent’s Tit-
For-Tat mechanisme en variaties daarop die op ruilhandel gebaseerd zijn. We stellen
een vloeiend model voor waarmee de allocatie van bandbreedte in BitTorrent wordt
beschreven. We onderzoeken verschillende strategieën die de balans tussen wederke-
righeid en ongelijkheid beı̈nvloeden. Onze studie toont aan dat (i) het verminderen van
ongelijkheid leidt tot betere algehele systeemprestaties, en (ii) het gedrag vanseeders
(d.w.z. gebruikers die een volledige kopie van het bestand hebben en dat gratis weggeven)
bepaalt of de wederkerigheid wordt versterkt of de ongelijkheid wordt gereduceerd.

In hoofdstuk 3 presenteren we een theoretisch model voor hetanalyseren vanSharing
Ratio Enforcement(SRE) als prikkel tot bijdragen. Ons doel is om duidelijk te maken
hoe SRE dergelijke prikkels levert en hoe SRE dedownload-prestaties in het systeem
beı̈nvloedt. Meer in het bijzonder onderzoeken we de invloed van de SRE-drempel (d.w.z.
de minimum vereistesharing ratio) en van de heterogeniteit van de bandbreedte van ge-
bruikers in het systeem. In onze analyse gaan we uit van rationele gebruikers, wat wil
zeggen dat ze slechts de minimum-bijdrage geven die SRE vereist, en we laten zien dat
dedownload-prestaties zoals voorspeld door ons model een ondergrens vormen voor de
werkelijke prestaties die in een gesloten BitTorrent-gemeenschap bereikt kunnen worden.
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Derhalve kunnen de beheerders van een gemeenschap op grond van ons model het mini-
male prestatieniveau van hun systeem voorspellen.

In hoofdstuk 4 analyseren we de prestaties vanonline netwerken die monetaire
prikkels tot bijdragen gebruiken, vanuit zowel systeem- als gebruikersperspectief. Aan de
hand van gesloten BitTorrent-gemeenschappen laten we ziendat monetaire prikkels kun-
nen leiden tot systeemwijdecrunchesof crasheswaarbij het systeem volledig vastloopt
door te weinig respectievelijk te veel krediet. We onderzoeken de omstandigheden die lei-
den tot deze systeempathologieën en presenteren een theoretisch model dat voorspelt of
een systeem uiteindelijk zal vastlopen. We passen deze analyse toe bij het ontwerp van een
adaptief monetair mechanisme om de bestendigheid van het systeem te garanderen. Voor
gesloten gemeenschappen die bestendig zijn analyseren we hun prestaties voor gebruikers
door de effecten van hun overaanbod in termen van uitzonderlijk hoge seeder-leecher
verhoudingen te bestuderen. We tonen aan dat hoewel een stijging van de gemiddelde
download-snelheid wordt bereikt, het fenomeen van overaanbod drie ongewenste effecten
heeft: langeseeding-tijden, laag gebruik vanupload-capaciteit en een ongelijk speelveld
voor de late toetreders tot het systeem. Om deze problemen aan te pakken, stellen we
vier verschillende strategieën voor die zijn geı̈nspireerd door ideeën uit de sociale weten-
schappen en economie. We evalueren deze strategieën door middel van simulaties en
demonstreren hun positieve effecten.

In hoofdstuk 5 verkennen we het gedrag van gebruikers in gesloten BitTorrent-
gemeenschappen, gaan we de redenen voor dit gedrag na, en demonstreren we zowel
de positieve als de negatieve gevolgen van dit gedrag. We laten zien dat in deze gemeen-
schappen, zoals voorspeld door ons model, gebruikers zeer lange tijdseed-tijden hebben
om de benodigdesharing ratiote behouden, maar dat deze tijd vaak niet erg productief
gebruikt wordt (in termen van lageupload-snelheden) en dat de langeseed-tijden niet
noodzakelijkerwijs leiden tot grote hoeveelheden ontvangen data. Onze bevinding is dat
naarmate gebruikers evolueren in een gemeenschap, sommigevan hen meer toegewijd
worden in termen van het verhogen van de verhouding tussen hun seed- en leech-tijd.
Tegelijkertijd zijn er ook gebruikers die het systeem bespelen door een risicovolle, lage
sharing ratio te onderhouden door relatief meer aanleechingdan aanseedingte doen.
Gebaseerd op deze observaties analyseren we strategieën die de negatieve effecten van
dit gebruikersgedrag verlichten vanuit het perspectief van zowel de gebruiker als de be-
heerder van de gemeenschap.

In Hoofdstuk 6 presenteren we het ontwerp, de implementatieen de analyse van
UISE voorUser Interaction Strength Estimationvoor zowel gecentraliseerde als gede-
centraliseerdeonlinenetwerken. De sterke punten van UISE zijn dat het directe en indi-
recte interacties tussen gebruikers vangt, dat het schaaltmet slechts gedeeltelijke infor-
matieverspreiding in gedecentraliseerde systemen, en dathet kwaadwillende gebruikers
ontmoedigt. We passen UISE toe om patronen van gebruikersinteracties te detecteren op
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basis vanwall-postsin Facebook, en de resultaten lijken op vaak waargenomen patronen
in de offline menselijke samenleving. Verder passen we UISE toe op het schatten van
deonline tijden op basis van rendez-vous als gebruikersinteractiesin Tribler, eenonline
netwerk voor media- en sociale toepassingen zoalsfile sharing, streaming, en stemmen.
Met behulp van simulaties, emulaties, en door het in het Internet toe te passen tonen we
de nauwkeurigheid en schaalbaarheid van UISE aan onder verschillende protocollen voor
informatieverspreiding en verschillend gebruikersgedrag.

Samenvattend verschaffen we in dit proefschrift theoretische en praktische inzichten
in de relatie tussen gebruikersgedrag en prikkels tot bijdragen inonlinenetwerken. We
presenteren gebruikersgedrag en de consequenties daarvanzowel op systeem- als indi-
vidueel niveau, we analyseren ruilhandelmechanismen en hun beperkingen om gebrui-
kers te prikkelen tot bijdragen, we evalueren monetaire mechanismen en hun risico’s om
de ineenstorting van het gehele systeem te veroorzaken, en we onderzoeken gebruikersin-
teracties en hun implicaties bij het afleiden van de relatiestussen gebruikers. Bovenal zijn
onlinenetwerken pas gedurende de laatste twee decennia opgekomenen zijn ze nog in een
primitieve staat, in tegenstelling tot deofflinemenselijke samenleving die zich gedurende
duizenden jaren ontwikkeld heeft. Toch hebben we met hun aldoor verbeterende tech-
nologieën al veel opwindende resultaten bereikt. Dit wijst de weg naar een veelbelovende
toekomst voor de studie vanonlinenetwerken, niet alleen wat betreft het analyseren van
onlinegedrag, maar ook in vergelijking metofflinegemeenschappen.
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