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Chapter 1

Introduction

In the age of information explosion, the amounpwoblished information and available
data is rapidly increasing. As the amount of awdéladata grows, the problem of
managing the information contained in this dataobezs more and more difficult.
Search — to quickly find and access the informatafninterest — is the most
fundamental information management functionality. aximize the effectiveness of
this functionality, many information retrieval tewiogies and search engine systems
(including Web search and desktop search engines$, as Google, Live search and
Yahoo!) have been developed and achieved greaesses in the past years. They
have become a part of everyday life for many people

To make the data searchable, it should be indekst As the existing search
engines focus on offering reliable and robust smhs for searching in text document
collections, index terms are obtained by findingoartant words (keywords or key
terms) that are extracted from the available textudhent resources, including the title,
body text and anchor text (e.g. the text linkedthis a document). For example,
classical text information retrieval methods [Rdben and Sparc-Jones 1997] can be
used to reveal the importance of individual wordsdal on the frequency of their
appearance and their uniqueness for a particulewrdent. Moreover, the text layout
can provide useful information for indexing as wélbr instance, the parts of the text
having a large font or being indicated in bold banconsidered more descriptive to the
corresponding document than other document sectibine indexed terms together
with their importance indicators (i.e. weights) daen be used to measure tmntent
relevanceof a particular target document to the search ygueuarthermorecontent
importance i.e. the relative importance of a document, carcbmbined with content
relevance to rank relevant documents. Content itapoe can usually be revealed by
link analysis, for instance by using the PageRalglordhm [Brin and Page 1998]
deployed in Web search.



Besides the text information, more and more multimelata, including video, audio
and images are available in various digital likearand databases, and on the Internet.
These multimedia data include movies, sports, newadcasts, music, TV and radio
programs, and tremendous amounts of photos. Sitailtext collections, there is also
increasing need to search for the information @ériest in large multimedia data
collections. For example, how to find a video leetualking about ‘information
retrieval’? How to find highlights or particularestes of a soccer video? How could we
find the sounds of applause and cheering from nsosi®d reuse them when we are
editing our own audio, video or podcast recordings® could we identify the violent
scenes from movies and prevent children from sethiege movies? Finally, how could
we get music, video and photos recommended to gedban our general interest
and/or our specific interest in a given use cortext

Just like in the case of a text database, a muliianelatabase can be made
searchable through indexing. However, while a tiatabase can be indexed using the
basic database items (words) directly, indexing afiultimedia database needs to be
done by assigningietadata(data about the data) to multimedia items (al$erred to
asmultimedia documentsTo obtain rich metadata for multimedia indexitige most
straightforward way is manual annotation of the tmédia content. For example,
YouTube.com usually asks the users to insert sogyavdrds to describe the video
content they upload, and Pandora.com assigns eamh 1§ to 400 distinct musical
characteristics obtained by trained music analistselp users discover more music
they like. Manual annotation is useful in some &gplons and can provide accurate
description of the content due to the (professipimackground of the annotators.
However, there are also some critical disadvantagasual annotations are subjective,
and their generation is typically tedious, expeesand time consuming. More
automation in metadata generation processes cantioeluced in some application
scenarios, like those involving Internet multimedlf a multimedia document is
published on a webpage, its surrounding text infdrom could be used to describe its
content, so that traditional text information retial technology could be employed for
multimedia data search in such a case. Good exangske image search and video
search mechanisms provided by some search engings Google image search).
However, as an image is worth more than a thousads (and a video thus even
more), the available surrounding text is usuallsuificient to enable reliable
multimedia search and retrieval in a general case.
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Fig. 1.1An illustration of the semantic gap between featiaed semantics. Interpretation of the
data requires bridging of the gap, that is, a mappbetween the features and semantic
descriptors.

1.1 Multimedia Indexing through Content Analysis

A promising way of automatically generating richtssef multimedia indexes is by
applying the theory and algorithmsmfiltimedia content analys{#CA). By bringing
together the fields of multimedia signal processipgttern recognition, perception,
psychology and linguistics, and by combining themo isophisticated knowledge
inference mechanisms, the MCA attempts to revealnteaning of data at various
levels of abstraction and so to directly provideamiagful entries for database
browsing and query. MCA has become one of the rdlealienging and most rapidly
developing research directions in computer scieMany classes of MCA algorithms
have emerged over the years to address the prolileensiultimedia content parsing,
grouping (clustering), classification, summarizatiand highlighting [Hanjalic et al.
2008].

The biggest hurdle faced by an MCA algorithm is #amantic gap- the gap
between thdeaturesextracted from data and teemanticf that data, as illustrated in
Fig. 1.1. We refer to the process of bridging thenantic gap (the process of
interpreting the data) aemantic inferengeand to the results of the inference process
assemantic descriptorsThe features are used to represent the signalH@eperties
of the analyzed data, such as a color in an imtge,energy of a sound, and the
properties of the object or camera motion in a @id€he semantic descriptorsire
meant to capture the meaning of the data as peatdly a human, and, as such, to



index the multimedia data for the purpose of searahretrieval. We therefore refer to
these descriptors also ssmantic indexes

Since the meaning of an image or a video clip canldéfined at various abstraction
levels, the same holds for inferring the semanéscdptors from data. We therefore
distinguish among three main abstraction levelsylith semantic inference can be
performed:

- theaffectivelevel,
- the level ofsemantic conceptsnd
- the level ofsemantic structure

At the affective level, an image, a video clip amasic piece is interpreted in terms of
the affective response (i.e. a feeling or moody #re expected to elicit from a human.
Examples of such descriptors are those pointirg ‘t@mantic” or an “exciting” scene
[Hanjalic and Xu 2005]. Semantic concepts, alsermrefl to asemantic classestand
for meaningful visual objects (e.g. a “dog” shownai picture) or temporal events (e.g.
an “action scene” in a movie, or an “instrumentallo% in a music piece). Because
some semantic concepts (e.g. visual objects) dem @omponents of other semantic
concepts (e.g. larger visual objects or temporahts), the inference of some concepts
provides input into the inference of others. InstBense, various levels of semantic
concepts and the corresponding semantic descripteroften distinguished as well.
Finally, the descriptors at the semantic structewvel point to the meaningful breaks in
the content flow (e.g. boundaries between two ®jica news video, the start of a
commercial break), or guide the process of groupiogether those multimedia
documents that belong together in terms of themtext (e.g. grouping all “dog”
pictures together).

While MCA algorithms aim at finding reliable mappgirbetween the measured
features and perceived semantics, obtaining sugpimgis difficult in many practical
cases. This problem can best be illustrated byc#ses where two images of different
semantic concepts have similar features, or wheoeirnages with the same semantic
concepts have completely different features. Fig(ad shows two images with very
similar visual features (such as color and texturaf) representing totally different
semantic concepts (a “woman” and a “dog”), while itmages in Fig. 1.2(b) both show
dogs, but have very different visual features.

The first intuitive step in bridging the semantepgs to enrich the feature space that
provides input into the MCA algorithms. To do thigptimal use of the available
information channels of multimedia documents isuresgl. Such information channels
can be found in differenhodalities such as



(b)

Fig. 1.2 lllustration of the semantic gap: (a) different setics but similar features (b) same
semantics but different features

- visual modality, which includes three main categories: image, lyjczp and
image sequence,

- text modality, which includes the text describing a multimedigeat, including
the surrounding and overlaid text and closed captio

- audio modality, which also considers three main categories: $peaasic and
noise. We distinguish here betwestiuctured and unstructurednoise. While
unstructured (e.g. white) noise is typically dising and not interesting for
search and retrieval tasks, the structured noigegoey includes various
potentially interesting sounds that we will refeo tas background or
environmental soundsr audio effects Examples of these are the sounds of
stepping, laughter, applause, explosion, car ergyigecheering.

Many multimedia documents contain multiple modaditi For example, a Web site
on a given topic usually contains illustrationgufies, photos, text describing the topic,
and often also the related video clips. Furthermareideo is typically referred to as a
composite audio-visual data stream consisting ofnaaige sequence, but also often
containing an audio track, overlaid text and closagtions.

To optimally combine the information from differemhodalities, two basic
approaches could be deployed, as illustrated in1Rg feature-level fusioneérly
fusion and decision-level fusionlaie fusion [Hall and Llinas 1997]. In the
feature-level fusion scheme, a feature vector isaeted from each modality first.
These feature vectors are then aligned and coratatérogether into a single larger
feature vector, which serves as input into a seimarference mechanism based on, for
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Fig.1.3An illustration of two basic multimodality fusionenhanisms: (a) feature-level fusion, (b)
decision-level fusion

instance, a support vector machine (SVM) or a ehirsgy algorithm [Naphade et al.
2001][Hua et al. 2005]. Compared to this, in a diecd-level fusion scheme, the
semantic inference is performed on each individualality first based on its own
feature vector. Then, all intermediate inferencaults, also referred to amid-level
semantic descriptorsare combined together to obtain the final deoigegarding the
semantic content of the analyzed data by using, ifistance, heuristic rules or
probabilistic inference mechanisms [Rui et al. A(ID0an et al. 2003]. As an example,
in the MCA approach developed for a sports videodDet al. 2003], some mid-level
semantic descriptors, such pfayer close-upfield view and audience view are



obtained first from the visual modality. Furthermmpthe information regarding the
occurrence ofapplause commentator speechand whistling is obtainedthrough an
analysis of the audio modality. By integrating thimulti-modal mid-level
representation of the sports video content, higkellesemantic descriptors can be
inferred, such ak Play, Out-of-Play Foul, Free Kick andPenalty Kick

1.2 Thesis Focus: Content-based Audio Analysis

Intuitively, the semantic inference from multimediacuments will benefit from an
analysis of the issues playing a role in the infeeeprocess at each individual modality.
Examples of such issues are the features to betsélgper modality and the
possibilities to bring these features in relatian demantic descriptors at various
abstraction levels. As an integrated part of mudtiia documents, audio usually plays
an important role in MCA theory and algorithms particular if it is combined with an
image sequence into an audio-visual data streadedyi However, compared to a
relatively intensive research effort invested imaatic inference from text, images and
image sequences, semantic inference from audi@lsidras received less attention in
the MCA research community. This thesis focuseshensubset of MCA theory and
algorithms addressing the audio modality only, aimds at exploring the possibilities
and providing insights for developing robust saos for the semantic inference from
audio signals that we will also refer toa@stent-based audio analysis

A general scheme of content-based audio analysibeaepresented by a black-box
inference system shown in Fig. 1.4. There, theesystutputs semantic index(es) for a
given input audio signal based on pre-specifiedrgthowledge like, for instance, the
type of semantic concepts or semantic structurearp to be found in the analyzed
data, MCA model assumptions and training data uSegending on the level at which
prior knowledge is specified, this inference systeam be realized by employing
various approaches ranging from purely supervigedully unsupervised ones. For
example, if the scheme in Fig. 1.4 is seen as acépescognition system, the prior
knowledge, such as the labeled audio data, diatyomad grammar, need to be
pre-collected to train both an acoustic model andnguage model in a supervised
fashion [Huang et al. 2001]. Similarly, trained retedof the semantic concepts, such as
car-racing, siren, gun-shot and explosion can be used to detect the occurrences of
these concepts in movie soundtracks [Cheng eD8B]2 Compared to these supervised
realizations, an unsupervised approach can be gagpko find “unusual” events in the
sound track of a surveillance audio signal [Radishkian et al. 2004], for which
typically little prior knowledge can be collected.
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Fig. 1.4A general scheme of content-based audio analyséxifging various possible types of
input audio signals, prior knowledge and applicationtext, the types of inference techniques
and inference results

In addition to different levels of prior knowledgeifferent types of inference
techniques (e.g. supervised vs. unsupervised), dififiekent corresponding types of
inferred results (e.g. semantic concepts vs. semstnticture elements), practical cases
also differ from each other regarding the type oflia signals serving as input. For
example, in some cases, audio signals consistiog@tategory only (i.e. pure speech)
are processed, while other deal with more compledicasignals resulting from a
combination of several audio categories. In theaiader of this thesis we will refer to
such compound audio signalsasnposite audio.

1.3 Thesis Scope: Unsupervised Analysis of Comedsiidio

In this section we analyze in more detail the meaion possibilities and applications of
the scheme in Fig. 1.4, and explain the specifiziacds we make in this thesis, from
which we expect to lead us towards a robust framleviar content-based analysis of
composite audio signals.

1.3.1 Composite Audio

In many applications and scenarios dealing with dhdio-visual content of sports,
broadcasts, movies, news, and radio programs, aigials appearing therein contain
not only speech and music, but also various auffiects, such as cheering and
applauses. For instance, in a radio program, speeghbe frequently interrupted by



music or sound effects, while in an action movimach more complex sound track
containing speech, music, and various sounds dbsigm, gun-shots, car-chasing, and
screaming can be found. These sounds are typinallyonly temporally interleaved
(temporally composide but often also spectrally mixedpectrally composijewhen
occurring simultaneously. Therefore, to be ablestpport multimedia information
retrieval in a general case, and to make the systerRig. 1.4 less sensitive to
unpredicted mixtures of different audio categoriee, assume in this thesis that the
input in Fig. 1.4 is a composite audio signal. Canegl to this, pure audio categories,
such as speech or music, can be considered as wipeh developing dedicated
solutions for specific applications. The developmeh these solutions falls in the
domain such aspeech recognitioor music information retrievalCasey et al. 2008],
and is beyond the scope of this thesis.

1.3.2 Audio Scene Detection and Grouping

In view of many aspects of audio content semanitiés,necessary to define which of
these aspects we concentrate on in this thesis. ddfinition will help formulate a

clear objective, based on which we can approagbeaific realization of the general
scheme in Fig. 1.4.

Referring to the definition of the three main aéstion levels of semantic inference
in Section 1.1, we address in this thesis the probdf inferring the semantic structure
of a composite audio data stream. We first seamh niechanisms to discover
meaningful, semantically coherent structure elesaft an input composite audio
signal that we will further refer to a®emantic segmenty audio scenesAn audio
scene can be seen as an equivalent of a text patggyr dogical story unitfHanjalic
et al. 1999] targeted by the algorithms for videmtent segmentation. Examples of
audio scenes we aim at in this thesis are the sstgnia the video soundtracks
corresponding to a movie scene, a hews reporipairticular event, like the applauding
audience or the segment between the serve andidhef @ game in a tennis match. We
emphasize here that our goal is not to infer thanmimg of a segment but solely its
boundaries. In this sense, we also aim at devejopisegmentation framework that is
generic enough to handle various content genrgsgports, movies, TV shows).

While the classical approach to audio segmentdtifers audio scenes based on a
direct analysis of features, we consider in thesth an alternative approach that builds
on the analogy to the text document analysis. @pisroach requires an intermediate
analysis step resulting in a first set of semadtscriptors, which are then used to
facilitate the audio scene discovery step. As atagy to the discussion in Section 1.1,
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we again refer to these intermediate results aslemiel semantic descriptors, as
opposed to theigh-level descriptorshat point to audio scene boundaries. We show in
this thesis that our two-step segmentation appreanohead to a significant increase in
segmentation robustness compared to the traditapioach.

Once audio scenes are detected, we investigat@dbsgbilities to automatically
group them together into meaningful clusters tdlifate further steps in audio and
multimedia content management. In the developmémtuo clustering approach, we
again rely on the same mid-level semantic desasptbat were applied in the
segmentation step. This opens the possibility majealternative clustering concepts,
such asco-clustering which is also likely to result in a considerabterease in
performance compared to the classical clusterinigpoas. Just like in the segmentation
case, we like to emphasize that we are interestedetecting which audio scenes
belong together in terms of their content, rathantin recognizing that content, which
again implies that generic solutions are searched f

1.3.3 Unsupervised Semantic Inference

To infer the semantic content of audio scenes febrmomposite audio signal, two
general classes of approaches can be deplsypérvisedr unsuperviseépproach.

Existing works on content-based audio analysis haswally adopted supervised
data analysis and classification methods. For mt&ta Gaussian mixture model
(GMM), hidden Markov model (HMM), support vector aene (SVM), and Bayesian
Network are often used to model and identify vasicaspects of audio content
semantics. Examples can be found in [Cai et al32[)Bu et al. 2003][Moncrieff et al.
2001][Cheng et al. 2003]. Although the supervisppraach has proved to be effective
in many applications, it shows some critical lititas. First, the effectiveness of the
supervised approach relies heavily on the qualitthe training data. If the training
data is insufficient or badly distributed, the syst performance drops significantly.
Second, in most real-life applications, like peivascomputing [Ellis and Lee 2004]
and surveillance [Radhakrishnan et al. 2004], itdii§icult to list all the semantic
categories that could possibly be found in dataisTihis impossible to collect training
data and learn proper statistical models in thases

In view of the described disadvantages of the sigped methods, some
unsupervised techniques like clustering have endeggean alternative to supervised
content classification. The unsupervised approazh the advantage that it requires
neither the predefined semantic categories nordfflne collected training data.
However, the resulting wider application scope cerugether with the disadvantage
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that the unsupervised approach can only lead tanimgfall data clusters but cannot
automatically reveal the exact meaning of eachtetu®.g. class labels as links to the
corresponding semantic concepts).

In view of our goals defined earlier in this sentiove choose for an unsupervised
semantic inference approach to develop our re@izaif the scheme in Fig. 1.4. In
addition to the fact that the unsupervised apprdash been considered much less in
recent literature than the supervised one, thiscehis motivated mainly by our goal to
develop theoretical foundations and a practical lementation of a robust
content-based audio analysis method, where rolastise mainly searched in the
capability of the analysis framework to effectivelgal with a wide range of variations
in signal combinations characterizing a composiigi@adata.

As opposed to a supervised approach where the nsatsialuated between a trained
model of a semantic concept and the signal behanmia given audio segment, the
unsupervised approach requires mining or discogépotentially meaningful patterns
and structure elements in audio signals. To empbabkis, we will often refer to our
approach also aontent discovery from composite audio

1.4 Thesis Contribution and Outline

We conclude this chapter by providing a brief sumnaf the thesis goal, objectives
and contributions, and an overview of the mateui@sented in the remainder of the
thesis.

The main goal of this thesis is to develop and ssss& robust unsupervised
framework for semantic inference from composite iaudignals. Our semantic
inference approach will focus on the detection udia scenes and their grouping into
meaningful clusters. To perform both the audio sceegmentation and grouping, we
choose for a two-step approach involving mid-leseiantic descriptors. The main
contributions reported in this thesis and resultirmn pursuing the abovementioned
goal and objectives can be defined as follows:

- Unraveling the problem of semantic inference froomposite audio signals, by
discussing both the supervised and unsupervisembagp and addressing issues
like reliability and scalability related to the djgption scope and inferred
semantics,

- Mapping the abovementioned problem onto the probkeimtext document
analysis and drawing cross-domain parallels taé¢levant measurements needed
for semantic inference in the audio domain,
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- Introducing and assessing generic, unsupervisedadstfor

0 extracting mid-level semantic descriptors from cosie audio that
correspond to the concept of (key)words in textgioent analysis,

0 segmenting a composite audio track into audio scdased on mid-level
semantic descriptors,

0 grouping audio scenes into clusters correspondirggmantically meaningful
categories based on mid-level descriptors,

- Unraveling the possibilities for combining supeedsand unsupervised semantic
inference from composite audio to benefit from lilest of the two worlds,

- Expanding the ideas mentioned above that are dkffoe a content-based
analysis of a single audio document onto a bropdablem of audio document
matching and clustering.

In view of the above, we first provide in Chaptera@ overview of the related
existing ideas and algorithms in the field of comieased audio analysis. This is
followed by a general introduction of the main umgag idea of our envisioned
realization of the scheme in Fig.1.4.

Chapter 3 addresses the fundamental step in anterddpased audio analysis
approach, namely feature selection and extractidre suitability of a feature is
measured based on its capability to reveal midHeemantic descriptors from a
composite audio signal, and to enable meaningfiparison of these descriptors and
the audio scene detection and grouping processesl ltlaere on.

Chapter 4 presents our approach to the extracfionidxlevel semantic descriptors,
which follows the analogy to text document analy3isese descriptors are discovered
in a similar way as the keywords are identifiedainext document. In this way, an
audio signal is divided into elements which carnrteitively explained asudio words
andaudio keywords

In Chapter 5 we again build on ideas from text doent analysis as well as the
proven concepts from video content segmentatiodeteelop our approach to audio
scene detection. This approach is based on a rsmrehntic affinity measure that
evaluates the coherence of the audio content sersaner time based on the relative
temporal distribution of mid-level semantic destwip with respect to each other.

After the audio scenes are detected, we use th@agipintroduced also in Chapter
5 to group them into meaningful clusters. The apphois based on the concept of
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co-clustering that effectively makes use of the esanid-level semantic descriptors as
those used in the previous segmentation step.

Chapter 6 revisits the goal of this thesis andajeroach we proposed to reach this
goal. Then, we present our views on the possislito expand the proposed approach
in order to enable general audio search and maregeapplications. We search for
such possibilities by focusing on combining the upevised and supervised
approaches, and on expanding the concept of dodtspenific audio onto a broader
domain of audio document clustering and retrieval.
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Chapter 2

Framework for Content Discovery
from Composite Audio

In this chapter, we first discuss the previous walated to content-based analysis of
composite audio, and analyze the advantages aratlvdistages of the existing
methods regarding their reliability and scalabilityterms of the inferred semantics.
Then, we propose our framework for content discp¥fiemm composite audio, position
it with respect to the previous work, and presentnaplementation of this framework
targeting the detection of audio scenes and grgughiem into meaningful clusters.

2.1 Related Work

To infer the semantics from audio signals and fritlge semantic gap, considerable
research effort has been invested in developing ttteories and methods for
content-based audio analysis. In general, modtede works can be located in one or
more blocks indicated in Fig. 2.1, including theneel processes ofudio
segmentatioyaudio classificationandaudio retrieval

Parts of this chapter are based on the followirtgipations (also to be found in the list of refezes):

e Lu, L., Cai, R., Hanjalic, A. “Towards a Unified &mnework for Content-based Audio Analysi®foc.
30th Int'l Conf. on Acoustics, Speech, and SigmatEssingvol. Il, 1069-1072, 2005

¢ Cai, R, Lu, L., Hanjalic, A. “Unsupervised Contddiscovery in Composite AudioProc. 13th ACM
Int'l Conf. on Multimedia628-637, 2005

¢ Cai, R, Lu, L., Hanjalic, A., Zhang, H.-J., andiQa-H. “A Flexible Framework for Key Audio Effest
Detection and Auditory Context InferencéEEE Trans. on Audio, Speech and Language Proagssin
Vol. 14, No. 3, 1026 — 1039, 2006
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High level

Low level

Segmentation > Classification R Retrieval

Fig. 2.1 Block scheme representing the most prominensetasf content-based audio analysis
algorithms. The arrows indicate the typical causkitions between the blocks.

As indicated in the scheme in Fig. 2aydio segmentatioprovides inputs to all
other blocks. We distinguish between two basic sayation levels. At the firsidw)
level, an audio signal can be divided into elemsntegments, also referred to as
audio frames Due to their short duration (typically around 3@®-ms) and the
assumption that their signal properties can be idersd stationary, audio frames
provide a standard framework for feature extragtitimat is, for feature-based
representation of an audio signal. In case a comise is required between the
resolution of feature-based audio representatiatia@ computational efficiency of the
analysis processes based on this representatingericsegments (e.g. up to several
seconds long) containing series of audio framesbeansed as well. In that case, the
feature vector of the longer segment can be indeim@m the feature values measured
within individual audio frames contained thereindahen adopted for the subsequent
content-based audio analysis steps.

At the secondhigh) level, we can divide an audio signal into meahihghat is,
self-consistent and semantically coherent segmidrtis can serve as the objects of
audio or multimedia retrieval. Referring to theidifons provided in Section 1.1, this
type of audio segmentation corresponds to the seenamference process at the
semantic structure level. While considerable efftas been invested in developing
methods for detecting meaningful segments in tBeeferman et al. 1999] and video
documents [Kender and Yeo 1998][Hanjalic et al. 999nuch less has been done
regarding the development of reliable high-levaliatsegmentation methods.

Audio classificationassociates semantic indexes (also referred tatedy with
audio signals. This association is typically inéetrat the level of semantic concepts
(classes). Audio classification, which can alsodefined asaudio indexing audio
categorizationor audio recognitioncan be performedt different content abstraction
and complexity levels. In this thesis we distinfjugnong three main levels, namely
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the basic mid- and highdevel. While the basic level covers the elementangio
categories, like speech and music, typical exampfesiid-level semantic concepts
include audio effects such asapplause cheering ball-hit, whistling, car engine
running siren gun-shotinstrumental solpguitar sequenceandexplosion High-level
concepts are characterized by even higher semalngitaction and signal complexity.
Examples of such concepts are audio scenestiien scenén a movie, or ggamein

a tennis match. Typically, a high-level semantieiaapt can be characterized by a
specific combination and sequence of mid-level epix [Baillie and Jose 2003][Lu et
al. 2005].

Content-based audio retrievalas the objective of providing access to a larg&a d
corpus based on an input query. The query is ysualla textual form (i.e.
query-by-text For example, a user may use the text term “asefato search for all
audio clips containing the corresponding sound.afye this retrieval strategy is
directly enabled by the results obtained from autlassification, as the text-based
search can be performed on the labels assigndgttaudio segments contained in the
collection. An alternative paradigm dgiery-by-examplewith an audio clip as a query.
For instance, one can search for applauses by dgingvian “applause” sound as
example to the system, or search for a song bylgisipging or humming its melody.

In the remainder of this section, we will addreasteblock in Fig. 2.1 in more detalil
regarding its realization possibilities and in viefithe previous work related to it.

2.1.1 Audio Segmentation

Early works on audio segmentation (e.g. [Saund@86][Zhang and Kuo 1999]) were
strongly related to audio classification. The pragh methods apply a sliding window
of a pre-specified length to obtain a set of basigments that can be further classified
individually into predefined classes (e.g. speexhsic). Then, the basic segments can
be concatenated into longer segments of a particldas (e.g. speech segments, music
segments), usually after smoothing out the outlierthe labeled segment sequence
first. More complex modeling and classificationastgies were applied in a number of
methods aiming at dividing speech streams into segsncorresponding to different
speakers. If a speaker was pre-registered, traditispeaker identification algorithms
[Brummer 1994] can be used for this purpose. Howedxenany applications, speakers
are unknownra priori. To deal with this problem, several approachesevwepposed
dealing with unsupervised speaker segmentationchrsiering. [Cohen and Lapidus
1996] studied the scenario of discriminating betwepeakers in a telephone-line
signal. They approached the problem using HiddemkMaModel (HMM) and by
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assuming that the number of speakers was limitdd/®o Opposed to this, [Wilcox et
al. 1994] used no knowledge about the speakers vgheposing an HMM-based
speaker segmentation algorithm based on an agghtinerclustering method. [Mori
and Nakagawa 2001] also addressed the problenmeaksp segmentation without prior
information on the speakers available. In [Gisfalet1l991][Siu et al. 1992], a system
was proposed to separate the traffic control speechpilot speech using a Gaussian
Mixture Model (GMM). Further, [Chen and Gopalakrsim 1998] presented an
approach to detect changes in speaker identityetisas in environmental and channel
conditions, by using the Bayesian information ciite (BIC). While these approaches
usually work offline and are computationally expgas attempts were also made to
design a real-time speaker segmentation approachrd Zhang 2002]

An alternative class of approaches relied on actiiomline analysis of features,
where longer audio segments were defined to caéneith a consistent feature
behavior. Examples are the method of [Venugopall.e1999] to segment an audio
stream in terms of gender, speech, music and speahke of [Sundaram and Chang
2000] for segmentation into “computable audio se&ne

The abovementioned approaches to audio segmentatieffective in identifying
basic audio categories (e.g. speech, music, arsgndidowever, these approaches are
not suitable for inferring higher-level semanticsdéptors, such as those marking the
logical story unitdHanjalic et al. 1999], which may be characteribgdcomplex and
strongly varying combinations of basic audio catego Since the mentioned
approaches are sensitive to such content divethigyr, deployment for segmentation at
a higher abstraction level typically results incuer-segmentation.

2.1.2 Audio Classification

Fig. 2.2 shows a general classification schemechvig typically composed of two
main stepssupervised learningndinference In the supervised learning step, a model
of each semantic class is built based on a setaofing data, and with a specific
learning scheme. Then, in the inference step, a, nmseen collection of data is
associated with a semantic label, the model of whiest resembles the properties of
the data. Various schemes and mechanisms havedmegloyed so far for realizing
both the learning and inference steps. These schémkide sets of heuristic rules,
vector quantization (VQ), k-nearest neighbor (kNdggcision tree, Bayesian network,
artificial neural network (ANN), Gaussian mixtureodel (GMM), support vector
machine (SVM), and hidden Markov model (HMM). Mdrdormation about these
schemes can be found in [Duda et al. 2000][Hasti. 001].



19

Training
data Learning t Models
A
Unseen
data » Inference Semantic Label

Fig.2.2 An illustration of a general classification sckeem

In the following, we briefly discuss the resultstbg efforts invested so far in the
field of audio classification to realize the scheimd-ig. 2.2 and for each of the three
abstraction and complexity levels identified in f@vious section to characterize a
semantic concept.

2.1.2.1 Basic Audio Classification

Earliest audio classification attempts considerieel distinction among basic audio
types, such as speech, music and noise. In [Sal®96], a sliding-window based
speech/music classifier for radio broadcast wasgmted. The authors reported the
classification accuracy of up to 98%, obtained wattwide sliding window (2.4s).
Working on the same problem, [Scheirer and Slar@&7]Lintroduced more features
for audio representation and performed experimenith different classification
methods, including GMM, kNN, and ANN. When using tame basic setting as in
[Saunders 1996], the reported error rate was 19én, [Kimber and Wilcox 1996]
increased the number of classes and proposed aodwoéblgy based on HMM to
classify audio recordings of meeting discussiore ispeech, silence, laughter, and
non-speech sounds. In [Zhang and Kuo 1999], piatking methods were introduced
to divide audio recordings into songs and speeelsed on a heuristic model that
reached the accuracy of above 90%. [Srinivasah é989] proposed an approach to
classify audio signals that consist of mixturesspkech, music and environmental
sounds. The reported classification accuracy wasealB0%. More recently, [Lu et al.
2001] presented a hybrid method which combines Vi@ a rule-based method with
multiple classifying steps to distinguish amongexiie music, environmental sound, and
silence. The accuracy of above 96% was reportedeflal. 2003] further expanded this
work to consider more classes, such as pure-s@®thoisy speech.
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2.1.2.2 Mid-level Audio Classification

One of the first attempts to audio classificatiarahigher abstraction level than the
basic audio types was made by [Pfeiffer et al. 19BBere, a method was presented to
detect audio effects, such gsinshot explosionand cry, in a given 30ms audio
segment. [Xiong et al. 2003] also presented anaagmbr to detecting both the basic
audio types and some audio effects, sucla@dause cheering music speech and
speechwith music for the purpose of highlights extraction from dlaall, golf and
soccer games. Other examples of methods targetimgettraction of various audio
effects can be found in [Moncrieff et al. 2001][¥tial. 2003][Cheng et al. 2003].

Several issues play a role in audio effect detecitioaudio signals, and need to be
resolved in order to secure reliable classificatibhe most important issues can be
described as follows:

(1) Audio effect detection in a long, continuous ausiignal is typically approached
by applying a sliding window of a given length (e0g5 seconds) to the signal.
The audio segment captured by the window at a divea stamp is then used as
the basic unit to be associated with an audio effaa important implicit
assumption here is that each segment corresporaetand only one semantic
class. However, a sliding window is often eithep tshort to capture one
complete audio effect, which leads to over-segniemta or too long and
captures several audio effects within one segment.

(2) The targeted audio effects are usually sparselyiloised over the signal, and
there are plenty of non-target sounds that are eadpected. Most existing
approaches assume having a complete set of sendatises available, and
classify each audio segment into one of these etas®ther methods use
thresholds to discard the sounds with low clasdifim confidence [Cheng et al.
2003]. However, the setting of thresholds requireguch an approach becomes
troublesome for a large number of effects.

(3) Audio effects are usually related to each other.dxample, some audio effects
such asapplauseandlaughterare likely to occur together in a sequence, while
others are not. Taking into account the transi{omoccurrence) relationships
between audio effects is therefore likely to immrothe detection of each
individual sound.

To investigate the possibilities for effectively sodving and exploiting the
abovementioned issues when designing algorithmsatatio effect detection, we
elaborate on our previous approach proposed ing€Cal. 2006] as an example. In this
hierarchical probabilistic frameworkey audio effectare searched for.
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Fig. 2.3 The hierarchical probabilistitamework for key audio effect detection, consigtiof
three main parts: key audio effect pool, backgrosmehd pool, and grammar network [Cai et al.
2006]

As illustrated in Fig. 2.3an HMM model is first built for each key audio effe
based on a complete set of audio samples, andeffirted models compose tley
Audio Effect Pool Then, comprehensivieackgroundmodels are also established to
cover all non-target sounds that complement thgetad key effects. Thus, the
non-target sounds would be detected as backgrooudds and excluded from the
target audio effect sequence. Moreover, a highatlprobabilistic model is used to
connect these individual models withGrammar Networkin which the transition
probabilities among various audio effects and bemkgd sounds are taken into
account for finding the optimal audio effect sequeenThus, for a given input audio
stream, the optimal audio effect sequence is famdng the candidate paths using the
Viterbi algorithm, and the location and durationeaith key audio effect in the stream
are determined simultaneously, without the needafomitial pre-segmentation of the
audio data stream. In the following, both the lgagrand inference step are discussed
in more detail.
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A. Classifier Learning

We modeled each key audio effect and backgrounddsaging HMMs, since HMM
provides a natural and flexible way for modelinpéivarying process [Rabiner 1989].
The main issue that needs to be resolved for an H#litle parameter selection, which
includes i) the optimal model size (the number tates), ii) the number of Gaussian
mixtures for each state, and iii) the topologyrad tnodel.

To select the model size, one needs to balancauher of hidden states in the
HMM and the computational complexity in the leaiand inference processes. In
general, a sufficient number of states are requiredlescribe all the significant
behavioral characteristics of a signal over timewver, when the number of states
increases, the computational complexity grows dtexaléy and more training samples
are required. Unlike speech modeling, in whichlihsic units such as tri-phones could
be adopted to specify the number of states, geesabudio effects lack such basic
units. A clustering-based method was proposed imafig and Kuo 1998][Reyes-
Gomez and Ellis 2003] to estimate a reasonable eurnb states (model size) per
audio effect. The clustering step was realized uphoan improved, unsupervised
k-means algorithm, and the obtained number of alsis¢etaken as the model size.

The number of Gaussian mixtures per state is usugtermined experimentally.
We adopt 32 Gaussian mixtures for each state iti#1. This number is larger than
those used in other related methods in order toreex sufficient discriminative ability
of the models to identify a large diversity of audiffects in general audio streams.

The most popular HMM topology is the left-to-right the fully connected one. The
left-to-right structure only permits transitionstiveen adjacent states, while the fully
connected structure allows transitions between stayes in the model. Different
topologies can be used to model audio effects different properties. For instance,
for key audio effects with obvious time-progresssignal behavior, such asir-crash
and explosion the left-to-right structure should be adopted,leviior audio effects
without distinct evolution phases, suchaplauseandcheering the fully connected
structure is more suitable.

Regarding the background sound modeling, a strfaigidird approach is to build a
large HMM, and train it with as many samples assjiide. However, background
sounds are very complex and diverse, and theiufestare typically widely scattered
in the feature space, so that both the numberatéstand the Gaussian mixtures per
state of such a HMM must be exceptionally largeségure a representation of all
possible background sounds. As an alternative, weehed the background sounds as
a set of subsets of basic audio classes, incluspggch, music, and noise, with 10
states and 128 Gaussian mixtures per state for galgbet model. In this way, the
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training data for each subset model would be rathtilimited, and the training time
would be reduced. Another advantage of buildings¢heubset models is that they
could provide additional useful information for smtic inference at higher abstraction
levels. For examplenusicis usually used in the background of movies, speechis
the most dominant component in talk shows.

The Grammar Network in Fig. 2.3 is an analogy ttamguage model in speech
processing. It organizes all the HMM models for tommus recognition. Two models
are connected in the Grammar Network if the cowadmg sounds are likely to occur
after each other, both within and between the kedjaeffect pool and the background
sound pool. For each connection, the correspontargsition probability is taken into
account when finding the optimal effect sequenoefthe input stream.

The transition probabilities between two models banstatistically learned from a
set of training data. If no sufficient training dadre available, a heuristic approach can
be deployed as an alternative. For instance, opiroagh in [Cai et al. 2006] is based
on the concept dudio Effect Groupswhere an audio effect group can be seen as a set
of audio effects that usually occur together. Thpraach is based on the assumptions
that 1) only audio effects in the same group catuosubsequently, 2) there should be
background sounds between any two key audio effesdtsnging to different groups,
and 3) the transition probability is uniformly dibuted per group. An example
Grammar Network with audio effect groups indicads,-Gy is illustrated in Fig. 2.4

B. Probabilistic I nference

Based on the learned classification framework, \fiterbi algorithm can be used to
obtain the optimal state sequence from the contis@udio stream, as:

soptimal

=argmaxPr(s|M,0) , (2.1)

S
Here,sis the candidate state sequerdegpresents the hierarchical framework, &nd
is the observation vector sequence. In terms aftioed realization of this classification
scheme, the corresponding state and its log-priityadie obtained first for each audio
frame. Then, a complete audio effect or backgrasmehd can be detected by merging
adjacent frames belonging to the same sound md&idbre this merging step, a
smoothing filter is applied to remove the classifion outliers in the sequences of
consecutive frames. The final classification coerfide can be measured by averaging
the log-probabilities of the classified audio frank addition, the starting time stamp
and duration of each sound occurrence are obtamethking the starting and ending
time stamp of the first and last audio frame ingbquence, respectively.
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Fig. 2.4.An illustration of theGrammar Networkwith Audio Effect GroupsvhereG is thek™
Effect Groupand Gg is the Background Sound PaoFor convenience, all key audio effect
models are presented as 3-state left-to-right HMamg] all the background models are denoted
as 3-state fully connected HMMs. The dummy stadt emd states are used to link models [Cai et
al. 2006]

2.1.2.3 Towards a Hierarchy of Semantic Concepts

Based on the obtained audio effect sequence, metba be developed to perform
audio classification at a higher abstraction leV&hile high-level semantic concepts
can generally also be detected by directly workiith the features as mentioned
above, it has been shown that using audio effectmantermediate classification level
can lead to more effective indexing at higher awsion levels [Lu et al. 2005].

Some example methods for inferring high-level auskonantics directly from the
features include [Peltonen et al. 2002] and [LialetL998]. [Peltonen et al. 2002] built
kNN and GMM classifiers to classify audio scenet 26 pre-defined semantic
categories. In [Liu et al. 1998], an ANN is deveddpo classify TV programs into five
categories, namely commercials, basketball ganoetbdll games, news reports, and
weather forecasts. However, the features may ugnjfeantly among various audio
samples belonging to the same semantic class, lamgl may lead to unsatisfying
detection/classification performance in practice.
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The usability of audio effects to facilitate thersmtic inference at the level of audio
scenes can be derived from the fact that audioescavith similar semantics are
typically characterized by a number of same or Isimaudio effects. For instance,
cheering and laughter are usually associated with humor scenes in casedind
explosionand gun-shotsoften indicate violence scenes in action moviesrikivig in
this direction, [Baillie and Jose 2003] presentedapproach to event indexing in
soccer broadcasts that first detects six contemdsels capturing various types and
levels of crowd response during a soccer match. audo patterns associated with
each content class are modeled using a HMM modeén@ classified audio sequence,
a simple rule-based decision process is developatktect an event in each ‘event
window’. [Rui et al. 2000] presented an approaclextyract highlights from the sound
track of a baseball match. To deal with a high dexify of such an audio track, first
the speech endpoint detection in noisy environmeat developed. Then, energy and
pitch statistics are computed for each speech ssigiBaussian fitting, KNN, and SVM
were applied to detect portions of excited speEeatally, some sports-specific sounds,
e.g., baseball hits, are also detected by deveajopirdirectional template matching
approach based on the characteristics of sub-bamedgye features. The detected
mid-level results are further probabilistically &gk to obtain final highlighting
segments. [Xu et al. 2003] also worked on soccereggdexing. In this work, SVMs
are first built to detect audio effects, suchvasstling and ball-hit, based on audio
frames of 20 ms. Then, a set of heuristic rulesused to infer the events in soccer
games. An example of such rules is "if double Wihigt then Foul or Offside".
[Moncrieff et al. 2001] presents an approach to imdadexing. They first detect
several key audio effects, e.girens gun shotsetc., using classifiers like decision tree
and SVM. Then they concentrate on the extractiocarfiplex audio scenes that are
meant to coincide with dramatic movie segmentshsascar chaseand violence
Experimental results on movie audio tracks showeldssification accuracy of 88.9%.
Another approach with a similar objective was pnése in [Cheng et al. 2003]. In this
work, sounds likecar-racing, siren, gun-shot andexplosionare first identified using
HMMs. Then, GMMs are used to learn the relationsHtiptween the audio effects and
the higher-level semantics of audio scenes, ani sdentify violent scenes in action
movies.

Although the abovementioned and other related ambres actively employ audio
effects as intermediate results for high-level sinainference, the employed
inference schemes usually do not reach beyond ef selatively simple heuristic rules
[Xu et al. 2003][Baillie and Jose 2003], or statiak classification [Moncrieff et al.
2001] [Cheng et al. 2003]. Heuristic inference timightforward and can be easily
applied in practice. However, it is usually labaigoto find a proper rule set if the
situation is complex. For example, the rules ugualolve many thresholds which are
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difficult to set, some rules may be in conflict vibthers, and some cases may not be
well-covered. People are used to designing rules fa positive view but ignoring
negative instances, so that many false alarmsnauced although high recall can be
achieved. In the classification-based methods tigaly statistical learning, the
inference performance relies highly on the compless and the size of the training
samples. Without sufficient data, a positive instanot included in the training set will
usually be misclassified. Thus these approachessarally prone to high precision but
low recall. Further, it is inconvenient to combir@ior knowledge into the
classification process in these algorithms.

To integrate the advantages of heuristic and Statislearning methods, we
proposed a Bayesian network-based approach ingiCGai 2006]. A Bayesian network
[Heckerman 1995] is a directed acyclic graphicaldeiothat encodes probabilistic
relationships among nodes which denote random hlagarelated to semantic
concepts. A Bayesian network can handle situatiwhere some data entries are
missing, as well as avoid the overfitting of traipidata [Heckerman 1995]. Thus, it
weakens the influence from unbalanced training $esnpgFurthermore, a Bayesian
network can also integrate prior knowledge by dped its graph structure.

Semantic Context
Level 2

Semantic Context
Level 1

Fig. 2.5 An example of a Bayesian network for audio conteference: arcs are drawn from
cause to effect. Following the convention, discreaeiables are represented as squares while
continuous variables are indicated as circles.Heumore, observed variables are shaded, while
hidden variables are not [Cai et al. 2006]
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Fig. 2.5 illustrates the topology of an example &agn network with three layers.
Nodes in the bottom layer are the observed audéztst Nodes in higher layers denote
high-level semantic categories, such as audio scemi¢h increasing abstraction and
complexity. In Fig. 2.5, the nodes in adjacent taygan be fully connected, or partially
connected based on the prior knowledge of the egjpdin domain. For instance, if it is
knowna priori that some audio effects have no relationships wisemantic class the
links from that class node to those effect nodeddcbe removed. A Bayesian network
with a manually specified topology utilizes humanoWwledge in representing the
conditional dependencies among nodes, thus it escridbe some cases that are not
covered in the training samples.

The nodes in the upper layers are usually assumdgk tdiscrete binaries, which
represent the presence or absence of a corresjgosetimantic class, while the nodes in
the bottom layer produce continuous values of as&au distribution

p(Fi [pa;) ~ N(u;,L) (@L<i<N) (2.2)

whereF; is a 2-dimensional observation vector of tAaudio effect and is composed
of its normalized duration and confidence in a givaudio scene. The conditional
argumenpa; denotes a possible assignment of values to tlenpaodes oF;, while p;
andX; are the mean and covariance of the corresponding<gm distribution. In the
training phase, all these conditional probabilitgtidbutions are uniformly initialized
and then updated by maximum likelihood estimatising the EM algorithm. In the
inference process, the junction tree algorithm [fpand Darwiche 1996] can be used
to calculate the occurrence probability of each a#in class. Here, given the
information on audio effects in each audio scenth@enform of posterior probabilities
(2.2), an audio scene, being at a higher abstradticel, can be classified into tie8
semantic class using the MAP criterion:

c=argnaPr§; [F) 1<j<M where F={F,F,, - F} (2.3)
j

With this scheme, human knowledge and machine ileguare effectively combined
to perform high-level semantic inference. In otherds, the topology of the network
can be designed according to the prior knowledgamépplication domain, and the
optimized model parameters can then be estimatatiigtical learning.
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2.1.3 Audio Retrieval

Audio retrieval aims at retrieving sound sampleasrira large corpus based on their
relation to an input query. Depending on the tyfeaoquery, two general audio
retrieval strategies can be distinguished. Usirgfitlst strategy based on a text query, a
text label (e.g. “applause”) is submitted to fintl audio clips in the corpus that are
associated with that label. Clearly, this strateghes on audio classification as the
initial step to label the corpus and enable texelaaudio retrieval. The other strategy,
also referred to aguery-by-exampleuses an example sound as an input query. Then,
based on the features extracted from the sountfeinorpus and from the query sound,
as well as the similarity criteria employed, soufrdsn the corpus can be retrieved that
best match the query sound. Since the realizatmssipilities of the first retrieval
strategy have already been covered by the algasitfon audio classification in the
previous section, we concentrate in this sectiothenquery-by-example strategy and
briefly review the most relevant previous work agihing this type of audio retrieval.

In one of the earliest content-based audio retlieyatems called ‘Muscle Fish’
[Wold et al. 1996], a statistical model includingsaussian and a histogram model is
employed to build a feature-based representatiom sbund clip, using which the
similarity between two clips can efficiently be mseeged. In order to speed up the
search in a large database, the authors also dmiihdex of the sounds based on
acoustic features. It allows to quickly retrieve tthesired sounds by requesting all the
sounds whose feature values fall in the correspmndinge.

In the audio search engine proposed in [Foote 1987%je able to separate different
sounds while remaining insensitive to unimportaatiations, a tree-structured vector
quantizer is built to divide the feature space iptutitions (bins), optimally in the
information-theoretical sense. Then, a “templat@”dach audio clip is built, which is
actually a histogram indicating the vector coumtseach bin. Euclidean or Cosine
distances between the query template and corpysldtes are employed, so that the
audio clips in the corpus can be ranked correspgyi Retrieval performance was
evaluated on a corpus of simple sounds as wellcaspus of music excerpts. The best
result is obtained with a supervised quantizatiae twith 500 bins and a cosine
distance measure.

[Smith et al. 1998] presented a new search scheftaetive search” - to quickly
search through broadcast audio data and to retkiee®n sounds using 120 reference
templates. Active search reduces the number ofidatedmatches between a reference
and the test template, while still providing optimetrieval performance. The template
is built based on a histogram of zero-crossinguieat which is claimed to be robust
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against digitization noise and white noise additiomvn to 20 dB SNR (signal-to-noise
ratio).

[Li 2000] presented a new method for audio clasaifon and audio retrieval, called
Nearest Feature LinéNFL). NFL interpolates or extrapolates each diprototypes
(audio samples) belonging to the same class bygusiinear model. The feature line
that passes through two prototypes provides gemedainformation about the variants
between these two sounds, i.e. possible soundsedeffrom the two prototypes.
Opposite to the commonly used NN approach, in whleksification is performed by
comparing the query to each prototype individuatyg NFL makes use of information
provided by multiple prototypes per class. An eatibn on Muscle Fish audio
database of 409 sounds shows that NFL outperfoatiskNN and Nearest Center.

[Li and Khokhar 2000] presented another approachctmtent-based audio
information retrieval, which is based on the mudtsolution decomposition property of
the discrete wavelet transform. The wavelet decaitipa of an audio signal highly
resembles its decomposition in sound octaves. Aafdbical indexing scheme is
constructed using statistical properties of the eletvcoefficients at multiple scales. A
variant of B-tree data structure is used as anxindestructure, where the height of the
tree corresponds to number of sub-bands and thesnofdeach level corresponds to
clusters in the corresponding sub-band. The pedoo® of the proposed systems is
experimentally evaluated on 418 audio clips. Thatqgiype system yields high recall
ratios (higher than 70%) for sample queries witledse audio characteristics.

2.1.4 Other Relevant Previous Work

Next to the approaches presented in the previai®as, a large number of other ideas
and methods have been proposed in recent literéttatedo not directly fall into the

scope of audio segmentation, classification oieed, but are closely related to them.
A good example of such work is the one on compatati audio scene analysis
(CASA), which attempts to separate and represenbrdinuous sound mixture (a
composite audio) as a set of independent sourcds, @stimate a number of distinct
events therein. As a fundamental work in this diceg [Bregman 1990] first reports a
number of theoretical foundations and experimeimatstigations that addressed the
psychoacoustic aspects of the human listening hehaVhese experiments have
inspired numerous efforts to build computationaldels for audio scene analysis
mentioned before. These modeling approaches catomeeptually divided into two

groups, namely the “data-driven” and “predictioivdn” ones. The “data-driven”

approach is more frequently used. There, speci@atures (e.g. instantaneous
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frequency, amplitude modulation, onsets and offdatshe sound signal are extracted
and then grouped into larger entities of perceptants or sources, such as in
[Westner 1998][Casey 1998Jowever, data-driven approach usually interpregs/an
sound regardless of the context. As an alternaéivprediction-driven” approach [Ellis
1996] sees the analysis as a process of recorarlibetween the observed features and
the predictions of the sound in the future. Moreerg work on computational audio
scene analysis can be found in [Wang and Brown 2006

Other previous work related to the material presgbin this thesis include [Hanjalic
and Xu 2005] and [Ma et al. 2002]. [Hanjalic and X@05] present a computational
framework for affective audiovisual content repréaon and modeling, where the
expected transitions from one human affective statanother are represented by a
curve in a two-dimensional (intensity-valence) effspace. Audiovisual content is
treated here in an integral fashion by combinirg féatures from both the visual and
audio track together into a joint affect model. [Ma al. 2002] proposes a
computational attention model, which models a viesvattention on a video sequence
by integrating a set of visual, audio, and linguistttention values, and subsequently
assign an overall attention value to each videmé&aWith an application to video
summarization, the video shots with high attenti@bue, which are most likely to
attract the viewer’s attention, are chosen. Moreospeech is further segmented into
sentences, so that each segment of the video synomatains one or several complete
sentences without any interruption within a sen¢enc

2.2 What Can We Learn From The Past?

While the ideas and methods described in the pusviections have been invaluable
for the rapid development of the theory and practié content-based audio (and

multimedia in general) analysis and retrieval ie ffast years, there are a number of
issues that have not been sufficiently addresseédayel that can be identified as an

obstacle for a broad deployment of the obtainedanieh results in real-life applications.

We identify and briefly explain these issues infiblowing paragraphs.

Insufficient scalability and narrow application scgpe: While the observable
dominance of supervised learning approaches infighé has led to many exciting
results of automatic semantic audio classificafidaction 2.1.2), the applicability and
scalability of such approaches in a realistic agpion scenario will likely be limited,
not only because one has to work with pre-defirsed (pre-trained) semantic concepts,
but also because the upper performance limit of sagproaches is defined by the
capability of the training data to capture the renttontent diversity of a particular
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semantic concept. Regarding the former, in modtlifeaapplications, it is difficult to
list all audio elements and semantic categoriesatepossible to be found in data. For
example, in the applications like pervasive computiand audio-supported
surveillance, relevant audio effects are generatiknown in advance. Thus it is
impossible to collect training data and learn progtatistical models in these cases.
Regarding the latter, due to the high diversity amifficient training data, the upper
performance limits are regularly not high enoughprovide a solution usable in
general application domains.

In view of the disadvantages of supervised methadsw recent works introduced
unsupervised approaches into multimedia conterlysisa For example, an approach
based on time series clustering is presented idj&&aishnan et al. 2004] to discover
"unusual" events in audio streams. In [Ellis ané R@04], an unsupervised analysis of
a personal audio archive is performed to creatéaatomatic diary". However, these
existing methods are in general either designeddone specific applications [Ngo et
al. 2001][Xie et al. 2003], or only address sonmated components of the content-
based audio analysis process chain [Ellis and D8d]PRadhakrishnan et al. 2004].

In view of the above, there is a lack of approactegzable of addressing the full
processing chain (illustrated in Fig. 2.6, Sec®d®), and also capable of dealing with a
wide (and unpredictable) range of (composite) awifjimals and related applications.
The need for such complete and generic approashesnsiderable due to a typically
high variety of audio content and search/retrieygdlications in a general consumer or
professional context. To work well in such a cofitexcontent-based audio analysis
mechanism needs to be based on solid generic pléscend show constant high
robustness over the entire broad application scdpis. is in contrast to the current
sub-optimal and impractical possibilities that relp combining together a large
number of dedicated narrow-scope solutions in difie ways to address different
content types and search/retrieval scenarios.

Insufficient coverage of the semantic spacelhe abovementioned dominance of
supervised classification methods has led to am@dmce of solutions targeting basic
and mid-level semantic concepts, and most of thetimlynestablished the more-or-less
straightforward link between the features and threesponding concepts. For instance,
the audio effects such a&xplosion cheeringandlaughterare directly modeled from
the temporal and spectral signal properties [Chetngl. 2003]. However, due to the
difficulty of modeling higher-level concepts causey high content diversity, these
more challenging tasks have typically been appreédh a rather simplistic fashion,
like for instance, audio scene characterizatiorelgobased on the detection of a
particular low- or mid-level semantic concept coamta therein, without considering
other effects present there and their relationstifh respect to each other. As an
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example, a highlight scene is usually detected é¢bntains sounds of excited speech,
while a scene of foul or offside in soccer is dddf the sound of double whistling is
found in the signal. More sophistication in infegi higher-level semantics can be
introduced by applying hierarchical probabilistippeoaches, like the one based on
multijects and multinets [Naphade et al. 2001]. Idwer, while this approach allows
expansion of the analysis scope and compensategidtaction uncertainties of
individual semantic concepts, the links betweendbiecepts still need to be modeled
and traineda priori using supervised learning methods, which againgsrus back to
the issues discussed before.

Furthermore, previous approaches to content-basetio aanalysis target the
detection of pre-selected semantic concepts only,do not provide the possibility to
obtain a complete description of the entire authak. However, in some applications
like pervasive computing, we may want to have thté&e description (or a brief outline)
of the audio track, and not just some selected teatzegments. In principle, complete
information about the content of a given audioatrancluding the scene patrtitioning,
their content semantics and interrelations, coutd ditained by applying various
supervised concept detectors together, provided ithés known a priori which
concepts are likely to be found in the content. ey, as discussed above, this
approach is not practical and the required infoiomas not available in a general case.

Pre-segmentation issueln order to apply semantic inference techniquesodio
data, the data often needs to be divided into setgn& consistent signal-level and
semantic properties. The existing work on contexstelol audio analysis is largely based
on the assumption that audio data is pre-segmgmtedto applying classification and
other semantic inference approaches. For examPaynders 1996] performed audio
classification on audio segments of 2.4 seconds;[kiu et al. 1998][Cai et al. 2005]
also assumed that audio scenes are manually pnees¢gd. The pre-segmentation
assumption reduces the practical applicabilityaftent-based analysis considerably as
manual segmentation is expensive and inflexible.tli@nother hand, there are hardly
any robust automated audio segmentation mecharasaiable (see Section 2.1.1 for
an overview).

2.3 Audio Content Discovery: An Unsupervised Apmioa

In view of the discussions in previous sections,deéine in this section a framework
for content-based analysis of composite audio, hickv we take into account the
deficiencies of the existing works in the field.filerent components of the framework
will be introduced and explained in more detaithie following chapters.
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Fig. 2.6 Our proposed framework for content discovery frmamposite audio

2.3.1 Overview of the Proposed Framework

Recalling the discussion in Chapter 1, as opposed $ingle-modal audio (e.g. pure
music or speech), composite audio contains multpléio categories such as speech,
music and various noise sounds, which are eithgednfogether, or follow each other
in a sequence. Because most of the audio data pgp&amultimedia applications are
composite, building a system for content-based amitp audio analysis is likely to
provide generic methods for semantic inference feurdio data and support a wide
variety of multimedia applications where this dplkays a role.

Based on the discussion in Section 2.2 about tlsaddantages of previous
approaches, the framework we aim at developinghia thesis should satisfy the
following conditions:

1) generalization and extensibility to support a wideiety of applications,
2) effective semantic inference from composite audia)

3) sufficient coverage of the addressed semantic spacgerovide a complete
description of the analyzed audio content.

With this in mind, we propose a framework for cartbased analysis of composite
audio as illustrated in Fig. 2.6.

In this framework, the input audio is first decormpd intoaudio elementsAn audio
element is a short temporal segment with coherigniak properties, such as speech,
music, various audio effects and any combinatiothete. Thenkey audio elements
are selected, being the audio elements that ar¢ intisative of the semantics (main
underlying content) of the analyzed audio data ssgmAs an example, we could
consider the audio clips containing the soundRwghter andapplausethe key audio
elements representinghamorscene in a typical situation comedy. Audio elera@atn
be seen as analogies to words in text documentskey audio elements are analog to
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the keywords. According to the terminology conventive adopted in Chapter 1, we
will refer to them as mid-level semantic descriptor

Also based on the initial explanation of the thesi®pe and related definitions
provided in Chapter 1, once the (key) audio elemean¢ discovered, we will employ
them to divide an audio document into audio scesm®s$ group these scenes into
meaningful clusters. We show in this thesis thas¢h scenes can effectively be
characterized, detected, and grouped based orutlie elements they contain, just as
the paragraphs of a text document can be charaeteriletected and grouped using a
vector of words and their weights. As it will beogin later in the thesis, introducing
these mid-level descriptors enables us to splistdmaantics inference process into two
steps, which leads to more robustness comparedfésring the semantics from
features directly.

The semantic inference process described abovealized through the following
main algorithmic modules:

< Audio representation: In this module, features representing the temparal
spectral properties of audio signals are extractsudio features are usually
required to have enough discrimination capabiliggarding audio element
extraction and deployment in subsequent analyspsstThe possibilities and
guidelines for realizing the audio representatioadaoie are explained in more
detail in Chapter 3.

¢ Audio element discovery:ln this step, the input audio stream is decompasied
different audio elements. The data mining techrécared approaches deployed for
this purpose are explained in detail in Chapter 4.

« Key elements spotting:Using the pool of the detected audio elementsiistj we
develop a mechanism deployed in this module tocs¢he key audio elements..
Combined with audio element discovery, the detaits the realization of this
module are given in Chapter 4.

« Audio scene segmentationThe objective of this module is to detect bounekari
between audio scenes. Compared to the mid-leveaistirndescriptors in the form
of (key) audio elements, we consider the pointeraudio scene boundaries as
high-level semantic descriptors. The theoreticatiamentals and realization details
for the mechanism we developed for this modulebmafound in Chapter 5.

« Semantic mining/clustering: In this final step, the audio scenes are clustered
together based on the audio elements they cont#is. step can be seen as an
unsupervised counterpart of the supervised appesacuch as those proposed in
[Moncrieff et al. 2001][Cheng et al. 2003], whengdep segments are classified as
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humor and violence scenes based on the fact that they contained dbeds
classified asaughter, gun-shot andexplosion In this step, we will also investigate
the grouping tendency and semantic affinity betwaedio elements, in order to
obtain a better similarity measure between two @ustienes. The theory and
algorithms used to develop this module are alsdagngd in Chapter 5.

While the framework in Fig. 2.6 can be implemeniedh supervised fashion, we
choose in this thesis for an unsupervised apprtmshch realization, searching for the
possibilities to compensate for the deficienciesugervised methods and to provide a
generic set of methodologies to support a varidtyagplications, as discussed in
Section 1.3.3 and 2.2. Although there are a fewupessised approaches to
content-based audio analysis proposed in recerdralitre [Ellis and Lee
2004][Radhakrishnan et al. 2004], these existinghotds are not meant to provide
generic content analysis solutions, as they aheedesigned for specific applications,
or only address some aspects of the scheme i feig.

2.3.2 Unsupervised Framework Implementation

Aiming at an unsupervised realization of the geméamework in Fig. 2.6, a novel

unsupervised approach to content discovery of caitgp@udio is proposed in this

thesis, to automatically mine the audio elementslica scenes and the relationship
between them. The detailed flowchart of the progageproach is given in Fig. 2.7(a).

It consists of two major steps: |) audio elementcalvery and key audio element
spotting, and Il) audio scenes detection and alungieBoth steps are unsupervised and
domain- or application- independent. The approaldo dacilitates audio content

discovery at different semantic levels, such asd{lvel) audio elements and

(high-level) audio scenes.

The illustration of the proposed framework as givenFig. 2.7(a) indicates the
analogy to the standard scheme for topic-based t®dument categorization
[Baeza-Yates and Ribeiro-Neto 1999] illustratedrig. 2.7 (b). In text analysis, a text
document is first parsed to the sequence of worgdmases, which is similar to audio
element discovery decomposing an audio documeatdntio elements. To indicate
which words are more indicative of the semanticsheftext document, the words are
weighted based on theierm frequencyTF) andinverse document frequen¢yDF).
Similarly, key audio elements can be detected iraagio signal by computing their
importance relative to other audio elements deteicteéhe signal. We therefore further
refer to (key) audio elements alsoaaslio (key)wordsSubsequently, a text document
can be segmented into smaller units (paragraphsdrafistent but unique content. This
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step is similar to audio scene segmentation, wheraliscovered audio scenes can be
seen as analogies to text paragraphs. Finally, eatldocument or each topic section
can be represented by the words and keywords itaite and the documents and
sections can be clustered together based on t@ast This is again a direct analogy
to audio scene clustering we aim at realizing is thesis.

Documents /‘ Web Pages

;

‘ ‘ Word Parsing ‘ ‘

Audio itreams

(1)

Feature Extraction

v

Iterative Spectral

|
|
|
|
|
|
Clustering Scheme : Words
|
i I Indexierms

Importance . |

Mzasures '¢——— Audio Elements I Selection

| I

v |

Key Audio Elements | Kevaords
|
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Audio Scene Detection ]
|
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BIC-based Information-Theoretic Co- ] Categorization
Estimation of | [ » | clustering based Audio |
Cluster Number Scene Categorization | ‘
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@ ‘ (b) v

Audio Scene Groups Documents with Similar Topics

Fig. 2.7 (a) The flowchart of the proposed approach to pestsed content-based audio
analysis, which consists of two major parts: (Jliawelement discovery and key element spotting;
and (Il) audio scene segmentation and clusterimgA(comparable process of the topic-based
text document categorization.

Regarding the technical implementation of the sahémFig. 2.7(a), we start with
the assumption that the input into the scheme gereeral composite audio stream.
After feature extraction, an iterative spectral stining method is proposed to
decompose the composite audio into audio eleméisisag this method, the segments
with similar features in the audio stream are gemlto clusters that we adopt as
audio elements. Then, following the same rationatelerlying the TF and IDF
definitions in text document analysis, we introdi@caumber of importance measures
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and employ them to filter the obtained set of auelEments and select the key audio
elements.

In the next step, the audio scenes are first dedeby investigating the semantic
affinity among various audio elements in the inputio. For this purpose, a novel
semantic affinity measure is introduced. Then, dbtected audio scenes are grouped
into clusters by using an information-theoreticotastering algorithm, which exploits
the relationships among various audio elements aundio scenes. Moreover, we
propose a strategy based on the Bayesian Inform&tierion (BIC) for selecting the
optimal number of clusters for the co-clustering.

2.4 Summary

In this chapter we first discussed previous wollatesl to composite audio analysis,
and analyzed the issues that have not been sufficiaddressed yet. These issues are
briefly summarized in the first column in Table 2Based on these considerations, we
proposed a framework for unsupervised content-basedysis of composite audio,
which consists of five main components: audio repn¢ation, audio element discovery,
key elements spotting, audio scene segmentatiorsegge clustering. While each of
these components will be described in detail inrémeaining chapters of this thesis, we
summarize in the second column in Table 2.1 thenragpects of our approach helping
us to optimally resolve the issues from the fidumn.

Table 2.1Disadvantages of previous approaches togetherowitiproposed solutions

Issues Approach

insufficient scalability and | no application-/domain-specific prior knowledge
narrow application scope | considered, unsupervised approach

two-step semantic inference approach via mid-level
insufficient coverage of semantic descriptors (audio elements), applicaifon
the semantic space co-clustering to optimally exploit co-occurrence
statistics among audio elements

robust automated segmentation at the audio element
and audio scene level

pre-segmentation issue
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Chapter 3

Feature Extraction

A fundamental step in content-based audio analgdis obtain a representation of an
audio signal in a feature space. In the contexhigfthesis, a feature set is considered
suitable if it captures the temporal and spectnakacteristics of individual elementary
audio segments with a sufficient discriminative powo enable grouping of all
segments belonging to a particular audio elementwell as the content discovery
operations performed on the obtained audio elemastdescribed in Chapter 2.

In this chapter we give an overview of the typiealdio features proposed in
literature, select the features that we considéalse for the content-based audio
analysis approach presented in this thesis, amdpaspose some new features to be
likely to cover as much as possible of the semamttitent variance of composite audio
signals in a general case. Finally, we also addtessfeature normalization and
selection steps that are necessary to form a hkelfabture vector serving as input into
subsequent audio content discovery steps.

Parts of this chapter are based on the followirtgipations (also to be found in the list of refezes):

e Lu, L., Zhang, H.-J., and Jiang, H. “Content An&yfer Audio Classification and SegmentatiotFEE
Trans. Speech Audio Processid@(7), 504-516, 2002

¢ Lu, L, Zhang, H.-J., and Li, S., “Content-baseddu Classification and Segmentation by Using
Support Vector MachinesACM Multimedia Systems Journ&(6), 482-492, 2003

* Cai, R, Lu, L., Zhang, H.-J., and Cai, L.-H. “Inope Audio Representation by Using Feature Structure
Patterns,”Proc. 29th IEEE Int'l Conf. on Acoustics, Speechd &ignal Processingvol. 4, 345-348,
2004.
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3.1 An Overview of Audio Features

Table 3.1 gives an overview of the typical featueewployed in literature, and is based
on 15 representative papers widely covering tHedief audio classification and audio
retrieval. It should be noted that a number of ¢hématures are frequently used in
various papers, and that regarding the terminologgd there, the names of some
features may be different in different papers. &mmple, the termspectral centroid
andbrightnessstand for one and the same feature, as well a&thessub-band power
andband-energy ratio

In general, the audio features listed in Table & be divided intaemporaland
spectral features that capture the temporal and spectratacteristics of an audio
signal, respectively. Good examples of temporaiufes are zero-crossing rate (ZCR)
and energy, while mel-frequency cepstrum coeffisiMFCC) and spectral centroid
are typical spectral features.

Regarding the length of the audio segment from WwHeatures are extracted, a
division into frame-leveland window-levelfeatures can also be made. The features
from the first class are extracted from individ@aldio frames. Some examples of
frame-level features are ZCR, MFCC, and spectnatroa. The window-level features
are extracted from a longer audio segment, conmgrigsinumber of consecutive frames
and usually marked by applying a sliding windowthe signal. While most audio
features are extracted at the frame level, windevell features are mainly derived from
the frame-level features by investigating theiriatgon along the frames within the
window, e.g., the mean, standard deviation, orrattetistics derived from frame-level
features. This expansion of the frame-level featoesideration from an individual
frame to a series of consecutive frames provecttodeful in many applications, which
indicates the importance of window-level featufggsamples of this feature class are
spectral flux and the features based on vocal condmd pitch contour [Liu et al.
1998].

Since the popularity of each feature may be seem fast indication of its quality,
and because the classification into frame-level amihdow-level features is
particularly relevant for different steps in thentent-based audio analysis approach
discussed in this thesis, we reorganized the listhe features introduced in the
previous table as shown in Table 3.2, and rankeshtim a descending order depending
on the number of times they are used in the reptatee set of 15 papers considered.
There, for each feature we provide a “use scordicating its popularity and a
classification as either a frame-level or windowelefeature. Multiple names indicated
per row of the table stand for one and the samereand/or its variants.
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Table 3.1An overview of typical audio features used inrlitere. The information in the table is
based on 15 representative papers covering the impstrtant aspects of content-based audio
analysis and being indicative of the features tgihjcemployed for various approaches in the

field.

Representative Reference

Features

[Saunders 1996]

zero crossing rate (ZCR), energy

[Scheirer and Slaney 199]

]

4Hz modulation energycgntage of low-energy
frames, spectral rolloff, spectral centroid, spactr
flux, ZCR, cepstrum resynthesis residual magnitud
pulse metric

o

[Zzhang and Kuo 1999]

short time energy (STE), stioré ZCR, short time
fundamental frequency, spectral peak

[Tzanetakis and Cook
2000]

ZCR, root mean square (RMS), spectral rolloff, éing
predictive coding (LPC), MFCC, harmonicity, pitch
spectral flux, spectral moments, spectral centroid

[Srinivasan et al. 1999]

ZCR, energy, sub-bandgndrarmonic frequency

[Wold et al. 1996]

loudness, pitch, tone (brighthaad bandwidth),
cepstrum and derivatives

[Foote 1997]

MFCC, energy

[Li 2000]

total spectrum power, sub-band powersghiness,
bandwidth, pitch frequency, MFCC

[Li and Khokhar 2000]

wavelet decomposition

[Peltonen et al. 2002]

ZCR, energy, band-energyio rdBER), spectral
centroid, bandwidth, spectral rolloff, spectral xflu
LPC, MFCC LPC-derived Cepstral -coefficien
(LPCC)

ts

[Liu et al. 1998]

(1) nonsilence ratio, (2) volustandard deviation,
(3) volume dynamic range, (4) frequency compone
of the volume contour around 4Hz, (5) pitch stadds
deviation, (6) voice-or-music ratio (VMR), (7) neis
or unvoice ratio, (8) frequency centroid, (9) freqay
bandwidth, (10-12) energy ratios of subbands 1-3

\r

[Baillie and Jose 2003]

MFCC

[Xu et al. 2003]

ZCR, spectral power, MFCC, LPCQ-Berived
Cepstral coefficients (LPCC)

[Cheng et al. 2003]

volume, band-energy ratio, ZEE&uency centroid,
bandwidth, MFCC

[Xiong et al. 2003]

MFCC, MPEG-7 audio features
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Table 3.2 An overview of features used in literature. Thatfiees from Table 3.1 are ranked
according to their usage and are classified aerefitame- or window level features. The last
column indicates which of the features we considleire our approach, directly (*) or
indirectly (“*”). Different names of the same featare put together.

Features #Usage Level Used
short time energy, RMS, spectrum 10 frame-level v
power, volume, loudness
ZCR 8 frame-level v
MFCC 8 frame-level v
spectral centroid, brightness, 7 frame-level v
frequency centroid
bandwidth 5 frame-level v
sub-band energy (distribution), 5 frame-level v
sub-band power, band-energy ratjo
short time fundamental frequency| 5 frame-level o
pitch, harmonic frequency
LPCC or cepstrum 4 frame-leve
LPC 3 frame-level
spectral rolloff 3 frame-level
spectral peak 1 frame-leve .
spectral moments 1 frame-level
harmonicity 1 frame-level o
wavelet decomposition 1 frame-level
MPEG-7 audio features 1 frame-level
spectral flux 3 window-leve v
percentage of low-energy frames 1 window-level v
clip-level features [Liu et al,1998] 1 window-levgl o
4Hz modulation energy 1 window-level
pulse metric 1 window-level

To select the features to be used in the methddsdinced in this thesis, an ideal
approach would be through a general experimentstigeging a suitability of a given
feature in a general composite audio context. @pisroach is, however, not realistic
without selecting a number of representative usesavhich would bring us back to a
supervised approach. Instead, we choose to cdiese robust, proven features, the
effectiveness of which was shown in many differaoisy, ambiguous use cases
characteristic for unconstrained composite audjoas we address in this thesis.



43

To generate a good feature set, we first took gagufe list from Table 3.2 as the
basis and either eliminated those features whicli b&ineffective or inefficient to
extract in our use context, or used them direatlindirectly, as we will illustrate by an
example in the next section. The features we ugedtty or indirectly are indicated by
a corresponding mark in the last column in TabR Bhen, we also added a number of
features that complement those listed in Table 3.2.

In Section 3.2 and 3.3, we present all featuresd irs¢his thesis organized as either
the frame- or window-level features. Then, in SecB.4, we briefly explain a standard
unsupervised method for selecting optimal featust per use case based on the
Principle Component Analysis.

3.2 Frame-level Features

Referring to the feature list from Table 3.2, oet ef temporal frame-level features
include short-time energy (STE) and zero-crossiatg (ZCR), while the spectral
features include sub-band energy ratio (BER), hnigbs, bandwidth, and
Mel-frequency cepstral coefficients (MFCC). Regagibther features listed in Table
3.2, although LPC provides a good model for voicgmbech and gives a good
approximation to the vocal tract spectral enveldpis less effective on those sounds
which are not vocally produced, like music, noeseg various audio effects. Therefore,
we did not use them in our approach. Moreover,etteme also some features (as
indicated by %" in Table 3.2), which are not considered direcbyt indirectly via a
set of alternative features. For example, we dousetpitch or fundamental frequency
directly, due to a large variation of pitch valwéghin a given audio semantic class and
the difficulty of multiple pitch detection in a pghonic soundinstead, we use the
sub-band partial prominence and harmonicity promieeas alternative pitch-related
features, for which the rationale and extractionthoé are explained in detail later in
this section. Table 3.3 summarizes all temporal spettral frame-level features used
in our approach.

Table 3.3The list of frame-level features used in this ihes

Feature Kind Feature list
common temporal ZCR, STE,
features spectral BER, brightness, bandwidth, MFCC
proposed spectral sub-band partial prominencendwaicity prominence
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Prior to frame-level feature extraction, a compwmaiidio signal is first converted into
a general format, described by the following parmmse 16 KHz, 16-bit, and
mono-channel. Then, it is pre-emphasized withmpatar 0.98 (i.e. Hj = 1 — 0.98")
to equalize the inherent spectral tilt, and istfartdivided into frames of 25ms with 50%
overlap. For extracting spectral features, the tspledomain is equally divided into 8
sub-bands in Mel-scale and then the sub-band featare extracted, including BER,
MFCC, and sub-band partial prominence. All the &éeatures are collected into a
29-dimensional feature vector per audio frame. Tdlewing paragraphs provide a
detailed description of each frame-level featuredus this thesis.

3.2.1 Zero-Crossing Rate

Zero-Crossing Rate (ZCR) is defined as the relativmmber of times the audio signal
crosses the zero-line within a frame:

1 Nt _
CR= 2N T nEl|sgn[x(m+l)] sgnx(m)]| (3.1)

where sgn[] is a sign functior(m) is the discrete audio signat,=1 ... N andN is the
frame length.

The ZCR is a computationally simple measure offtguency content of a signal,
and as such it is particularly useful in charaeteg audio signals in terms of theiced
andunvoicedsound categories. For example, as speech sigratgenerally composed
of alternating voiced and unvoiced sounds at thlalglg rate, which is not the case in
music signals, the variation in the ZCR valuesjseeted to be larger for speech signals
than for music signals. Due to its discriminativemgr in separating speech, music and
various audio effects, ZCR is often employed in teattbased audio analysis
algorithms.

3.2.2 Short Time Energy and Sub-Band Energy Distioin

Short Time EnergyYSTE) is the total spectral power of a frame. Im approach, it is
computed from the Discrete Fourier Transfob#{) coefficients, as

K/2
STE= Y |F(k)[ (3.2)
k=0
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Here, F(k) denotes thDFT coefficients, F(k)f is the signal power at the discrete
frequencyk, andK is the order oDFT. In our approach, the logarithmic value of this
power is computed to get a measure in (or similpdécibels.

Similar to ZCR STE is also an effective feature for discriminatbefween speech
and music signals. For example, there are moracgléor unvoiced) frames in speech
than in music. As a result, the variation of STEspeech is in general much higher
than in music. HoweveSTE considers only the overall energy of one afidime. To
further exploit the energy information, the spdatreergy distributio(SED) (i.e. band
energy ratio(BER)) is computed. This distribution can be obtained bidithg the
frequency spectrum into sub-bands, and by comptitingach sub-banithe ratioD;
between the energy contained in that sub-band heddtal spectral power of the
frame,

1 4 )
D, =——> |F(k
! STEle (ol (33)

whereL; andH; are the lower and upper bound of sub-bare$pectively.

Since the spectrum characteristics are rather rdiffefor sounds produced by
different sources (e.g. human voice, music, enviremntal noise), the STRnd SED
features have often been used for audio classdicgBaunders 1996][Srinivasan et al.
1999][Liu et al. 1998], and, in particular, for disninating between different audio
effects [Wold et al. 1996][Cai et al. 2003].

3.2.3 Brightness and Bandwidth

Brightness and bandwidth are related to the fiastd second-order statistics of the
spectrum, respectively. The brightness is the oghwf the spectrum of a frame, and
can be defined as:

K/2 5
2 KIF(K)]
— k=0

K2 5
2IF®)]
k=0

We

(3.4)

Bandwidth is the square root of the power-weightagtrage of the squared
difference between the spectral components anfiegfaency centroid:
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K/2 ) )
2 (k= we)?|F (k)
k=0

B= K12 )
> |F ()|
k=0

(3.5)

Brightness and Bandwidth characterize the shapéhefspectrum, and roughly
indicate the timbre quality of a sound. From thésgpective, brightness and bandwidth
can serve as good indicators for audio elememtridighation, as already shown in
many audio classification processes [Scheirer dade$ 1997][Li 2000][Wold et al.
1996][Fujinaga 1998][Rossignol et al. 1998].

3.2.4 Mel-Frequency Cepstral Coefficient (MFCC)

The set oMel-Frequency Cepstral Coefficierl@lFCC) [Rabiner and Juang 1993] is a
cepstral representation of the audio signal obthbesed on the mel-scaled spectrum.
The log spectral amplitudes are first mapped orte perceptual, logarithmic
mel-scale using a triangular band-pass filter bank. Thiea,dutput of the filter bank is
transformed into MFCC using the discrete Cosinedfiam OCT).

n :\/%é(log&)cos[n(k— 05)77/K] n=1,..L  (3.6)

wherec, is then-th MFCC, K is the number of band-pass filte&,is the Mel-scaled
spectrum after passing theth triangular band-pass filter, andis the order of the
cepstrum.

MFCC is commonly used in speech recognition andaleperecognition systems.
However, MFCC also proved to be useful in discriatiimg between speech and other
sound classes, which explains its wide usage inatidio analysis and processing
literature [Foote 1997][Moreno and Rifkin 2000][Kioar and Wilcox 1996][Pye
2000]. Based on the suggestions made in literatwee,use 8-order MFCC in our
approach.

3.2.5 Sub-band Partial Prominence and Harmonicibyrhence

We now consider two further spectral charactedstié audio signals that can be
associated with human identification of sounds [B@D1]: i) presence of a prominent
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harmonic frequency (i.e. gartial) at a certain spectral sub-band, and ii) the
harmonicity of the sound. For example, a distinétecence betweertheeringand
laughteris thatlaughterusually has prominent harmonic partials thueeringdoes not.
The features described in previous sections arapmuae of describing these
characteristics. Brightness and bandwidth can omdasure the global energy center
and the deviation of the whole spectrum. AlthougRBand MFCC calculate the
average energy in sub-bands, it is still hard tecdg whether there are salient
components in some sub-bands.

Based on our previous works on audio representg@an et al. 2004], we propose
two new spectral featuresub-band partial prominencéSBPP) andharmonicity
prominence(HP), to address the abovementioned audio chaistatsr Thesub-band
partial prominencgSBPPJ is used to measure whether there are salient dreyu
components in a sub-band. In other words, the SBRfimates the existence of
prominent partials in sub-bands. It is computecabgumulating the variation between
adjacent frequency bins in each sub-band, that is

N = 1 Hi-1
S =T T

0 0
F(i +1)—F(J')‘ (3.7)

Here,L; andH; are the lower and upper boundaries ofithsub-band respectively, and
the value ofS(i) indicates the corresponding prominence of salpantial components.
The SBPP valuéor sub-bands containing salient partial componé&hexpected to be
large. To reduce the impact induced by the enemgyation over time, the original
DFT spectral coefficient vectoF is first converted to the decibel scale and then
constrained to the uni,-norm, as suggested in [Casey 2001]:

10log,,(F)

F=
[L0logyo(F))|

(3.8)
If we now consider the property of an ideally hanmicosound (with one dominant
fundamental frequendy), its full spectrum energy is highly concentratedl precisely

located at those predicted harmonic positions, Wwhaze the multiples of the
fundamental frequendy. To detect this situation, the following three fastoould be

 In our previous work [Cai et al. 2004] we refertedhis assub-band spectral flusVe rename it here since
sub-band partial prominends more suitable and straightforward to represeatmheaning of the extracted
feature.Sub-band spectral flumay be a little confusing in this context, singedtral flux according to its
traditional definition, is usually computed fromdweighboring frames.
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Fig. 3.1. Definition of harmonicity prominenceThe horizontal axis represents the frequency,
and the vertical axis denotes the energy. The haioncontour is the segment between the
adjacent valleys separating the harmonic peaksedBas the harmonic contour, three factors,
that is, the peak energy, energy centroid (brighkihend degree of concentration (bandwidth),
are computed to estimate tharmonicity prominenceas illustrated at the second harmonic in

this example.

measured: i) the energy ratio between the detdwenonics and the whole spectrum,
ii) the deviation between the detected harmonia$ @nedicted positions, and iii) the
concentration degree of the harmonic energy. laemonicity prominencéHP) is
proposed to take into account the above threeraetud can be defined as

_ILEMA-|B" - 1, /05f)a- B’ /B)

p =

= (3.9)

Here, E™ is the energy of the detectelf harmonic contour in the range df-fo/2,
f.+/2] and the denominatd is the total spectral energy. The ratio betwgShandE
stands for the first of the three factors identifebove. Furtherf, is then™ predicted
harmonic position and is defined as
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f, =nfyy1+ B(n2 -1) (3.10)

where g is the inharmonicity modification factorset to 0.0005 following the
discussions in [Fletcher and Rossing 199B{” and BY are the brightness and
bandwidthof then™ harmonic contour, respectively. The brightnB&ss used instead
of the detected harmonic peak in order to estirttegdrequency center more accurately.
The bandwidthB describes the concentration degree of ke harmonic. It is
normalized by the constaBt which is defined as the bandwidth of an instambere
the energy is uniformly distributed in the searahge. Thus, the components Bf%|
-f.)/0.50) and (1B/B) in the numerator of (3.9) represent the secand the third
factor defined above, respectively. An illustratioh the definition ofharmonicity
prominencds given in Fig. 3.1.

In our implementationf, is estimated by an autocorrelation-based appro@aty
the first 4 harmonic partials are considered in tmmputation, since only these
harmonic partials are sufficiently prominent in messes. Furthermore, in the case
where the fundamental frequency cannot be precipedgicted,f, is varied in a
pre-defined range first, and then the corresponditiyvalues are calculated, the
maximum of which is chosen as the HP value forftame. For a sound without pitch,
H, is set to zero.

3.3 Window-level Features

While the features from the previous section ateagted from one audio frame, in this
section we choose to group audio frames into longeporal audio segments of the
lengtht, extract features at the segment level, and ussetfonger segments as the
basis for the subsequent audio processing steps.siép will not only reduce the
computational complexity in subsequent steps ofartrbased audio analysis, but also
result in additional useful features, other thaosthextracted at the frame level. For
example, as pointed out above, the variation @andard deviation) of ZCR and STE
is more discriminative if measured over a longeatiaunterval than per frame. For this
purpose, in our approach, a sliding window of le6amd with 0.5 seconds overlap is
applied to the frame sequence. Future referenem tmdio segmenuill relate to this
one-second-long segment that will serve as thechasit in further audio processing
steps described in this thesis. The window and letiegth are selected to balance the
detection resolution and the computational compyexit each window position, the
mean and standard deviation of the frame-levelufeat are computed and used to
represent the corresponding audio segment.
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Table 3.4The list of window-based features used in our aagi

Feature Kind Feature list
basic statistics derived mean and standard dewmiafithe frame-based featurgs
window-level features HZCRR, LSTER, spectrum flogjse frame ratio

Probability
(e}
Do

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Fig. 3.2 An illustration of a distribution of HZCRRalues: (a) speech, and (b) music.

In addition to computing the mean and standard afiewi of the frame-level
features, specific window-level features can beswared as well, such as those listed
in Table 3.4, which have already shown their effectess in various audio analysis
approaches. In the following sections we desctilgenhodels and computation of these
features in more detail.

3.3.1 High ZCR Ratio

As mentioned above, the variation of ZCR is moszdininative than the exact value
of ZCR. Although this variation is frequently moddlusing the standard deviation of
ZCR, the high zero-crossing rate ratio (HZCRR) amo be used for this purpose.

HZCRR is defined as the fraction of frames in thalgsis window, whose ZCR are
at least 50% higher than the averdggRcomputed in the window, that is

N-1
HZCRR= % S [sgn@CRn) - 15avZCR +1] (3.11)
n=0
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Here,n is the frame indexZCR) is the zero-crossing rate at theh frame,N is the
total number of framesvZCRis the average ZCR in the analysis window, and]sgn
a sign function. Using similar reasoning as in BecB.2.1, the value of HZCRR is
expected to be higher in speech signals than inanus

Fig. 3.2 shows the distributions of HZCRR valuempated for a large number of
speech and music signals. It can be seen thatehercof HZCRR distribution of
speech segment is around 0.15, while HZCRR valfieausic segments mostly fall
below 0.1, though there are significant overlapsvben these two curves. If we use
the cross-point of two displayed HZCRR curves astliieshold to discriminate speech
from music, the expected classification error wduddl19.36%.

Probability

0 —
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig. 3.3.An illustration of a distribution of LSTER valug&) speech, and (b) music

3.3.2 Low Short-time Energy Ratio

As an analogy for selecting HZCRR to model the atiohs of the ZCR within the
analysis window, the low short-time energy rati®{IER) can be defined to model the
variation of the STHn this window, as proposed in [Scheirer and Slat897].
LSTER is the fraction of the frames within the as& window, whose STE values are
less than a half of the average STE in the windbat, is,

N-1
LSTER= % Y [sgn(05avSTE- STHN)) +1] (3.12)
n=0
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whereN is the total number of frames in the analysis WiRdSTEQ) is the short time
energy at the-th frame, an&vSTEis the average STE in the window.

Similar to HZCRR, the LSTER measure of speech is expectecttmich higher
than that of music. This can be seen clearly frbm distributions of LSTER/alues
obtained for a large number of speech and musiatsgas illustrated in the Fig. 3.3. It
is shown that LSTER value of speech is around @0l16.5, while that of music is
mostly less than 0.15. Based on Fig. 3.3, if we thgecross-point of two displayed
LSTER curves as a threshold to discriminate betwsggsech and music, the expected
error rate would be only 8.27%.

Spectrum Flux

0 50 100 150 200 250 300 350 400 450
Sample Index

Fig. 3.4. The spectrum flux curve of speech (0-200 seconmssic (201-350 seconds) and
environmental sound (351-450 seconds)

3.3.3 Spectrum Flux

Spectrum Flux (SF) is defined as the average vanatf the spectrum between adjacent
two frames in the analysis window, that is,

=1 5" log(Ank) +3)-log(AN-1K) +3)]?  (3.13
TINDK 1) iz i oA g (3.13)

whereA(n, k)is the absolute value of theth DFT coefficient of then-th frame K is the
order of DFT, ¢ is a very small value to avoid computation overflandN is the total
frame number in the analysis window.
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Similar to HZCRR and LSTER, the SF of speech iseigd to be larger than that of
music. We also found that the spectrum flux of emwinental sounds (or audio effects)
is generally very high and changes more dynamidaliy for speech and music. To
illustrate this, Fig. 3.4 shows the SF computed doraudio segment consisting of
speech (0 to 200 seconds), music (201 to 350 setamdl environmental sounds (351
to 450 seconds). From this figure, it can be skahthe SHs a promising feature to
discriminate between audio elements including dpesadio effects, and music.

0.1

0.08

[e]
S
(o))

0.04

Probability

0.02

0

0.05 0.2 0.35 0.5 0.65 0.8 0.95
Noise Frame Ratio

Fig. 3.5 An illustration of a distribution of NFR valug&@) music and (b) environment sound.

3.3.4 Noise Frame Ratio

Noise frame ratioFR) is defined as the ratio of noise frames iriverg audio clip. A
frame is considered as a noise frame if the maxinhral peak of its normalized
correlation function is lower than a pre-set thmdh The NFR is usually used to
discriminate environmental sounds from music areksh, and to detect noisy sounds.
For example, the NFR value of a noise-like envirental sound is higher than that for
music, because it contains many more noise frathgsan be observed in Fig. 3.5,
considering NFR values can be helpful in separatiege two classes of audio.
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3.4 Feature Vector Generation

Following up on the discussion from Section 3.% troad set of features that we
select based on the previous work in the fieldaftent-based audio analysis needs to
be tuned for a given use case to form a suitaldeufe vector serving as input into
further audio analysis steps. We briefly explainhis section how we proceeded with
creating such case-optimal feature vectors.

Since the values and dynamics of various extrafgatlires may vary considerably
over the feature set, simply concatenating theninédl a long feature vector is not
likely to lead to good results. Thereforen@malizationprocess needs to be performed
on the features first to equalize their scales. Twmalization (also called
standardization or z-scores) is typically performasing the mean and standard
deviation per feature, as

X =(% ~4)! o (3.14)

wherex; is thei-th feature, and where the corresponding mgamd standard deviation
o, can be obtained from the analyzed data set.

In addition to normalization, we follow a standaagpproach and employ the
principle component analysi®CA) to improve the effectiveness of the feature vecto
while minimizing its dimension. Technically, PCA isn orthogonal linear
transformation that transforms the data to a nesrdinate system, to reveal the main
characteristicspfrincipal componenjsof the data that contribute most to the variance
in data, and therefore best explain the data. Tiope PCA, we applyingular value
decomposition (SVD [Wall et al. 2003] to theMxN matrix X' containing
N-dimensional normalized feature vectors collectednfM segments (usugliM>>N).
Each row corresponds to a feature vector of onéaegfyment. By applying the SVD,
the matrixX' can be written as

X'=UsV' (3.15)

In terms of SVDYV andU are, respectively, aNxN andMxN matrix containing the
right and left singular vectors, while the diagoh&dN matrix S = diag{is, ..., An}
contains singular values, withy> 1,>..>4,. In terms of PCA, singular vectors
(columns) of the matri¥ can be seen as principal component&’pfach of which has
its corresponding singular value. The larger tingugiar value is, the more principal (or
more important) the component is. Assuming tatis a matrix keeping the firsh
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principal components (by keeping the finstcolumns fromV), the original feature set
X' can be replaced by a reducB€Atransformed feature set

X"= X"V, (3.16)

which only preserves those features that are retet@ subsequent audio signal
analysis, while leaving out the redundant and éwaht (noisy) features. In our
approach, the numben of principal components is determined using théofuing
equation:

m=argmin {3 A /LA >0} (3.17)

Based on initial experiments, we set the threshold 0.9, which means that 90%
principle components are kept. After normalizataord PCA, the resulting feature set
is used to form the feature vector serving as inptat the subsequent audio content
discovery steps, as presented in the next chapters.
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Chapter 4

Audio Element Discovery and
Key Audio Element Spotting

By building on the feature-based audio represamatiliscussed in the previous
chapter, we now aim at developing a methodologyefdracting mid-level semantic
descriptors from audio signals in the form of (keydio elements. Referring to the
discussion from Chapter 1, deployment of audio el in content-based audio
analysis divides the process of semantic inferente two steps: 1) audio elements
discovery from features, and 2) semantic inferefnoen audio elements. Our recent
studies [Lu et al. 2005] have shown that the apgres to semantic parsing and
classification of audio based on (key) audio elameautperform the “plain”
feature-based approaches. This can be observeattinydar on the increased precision
in the obtained results. For instance, as will hews on the case of audio scene
segmentation in Chapter 5, audio-element basedysisalnherently searches for
high-level content breaks only, and neglects iuaht variations in audio data due to
which the feature-based approaches usually progn@yer-segmentation.

The scheme we propose for automatic audio elemsobwkry builds on an iterative
spectral clustering method. Using this method, waug audio segments (as defined in
Chapter 3) with similar signal properties into ¢&rs, and these obtained clusters are
adopted as audio elements. To detect key audioeglsnfrom the obtained clusters,
two cases are considered. In the first case, werasshat only one audio document is

This chapter is based on the following publicati¢aiso to be found in the list of references):

e Lu, L., and Hanjalic, A. “Towards Optimal Audio Keprds Detection for Audio Content Analysis and
Discovery, "Proc. 14th ACM Int'| Conf. on Multimedi&25-834, 2006

e Lu, L, and Hanjalic, A. “Audio Keywords Discoverfpr Text-Like Audio Content Analysis and
Retrieval,”IEEE Trans. on Multimediajol. 10, no. 1, 74-85, 2008



58

available for analysis. Then, a number of heuristiportance indicators are defined
and deployed to select the key audio elementshénsecond case, multiple audio
documents are available. There, inspired by thectffeness of the concepts of TF and
IDF from text document analysis, and some simil&asures used in video content
analysis [Uchihashi et al. 1999], we see the pdigibo apply these measures (or their
equivalents) to audio documents to help the keyoaabbments detection in terms of
robustness and level of automation. In particidapected term frequen€TF) and
expected inverse document frequefiE}DF), which are equivalents to TF and IDF,
respectively, are proposed. In additi@xpected term duratio(ETD) and expected
inverse document duratiofiElDD) are computed as well, which take into account the
discriminative power of the overall duration of arficular audio element in an audio
document in characterizing the semantics of thatident.

4.1 Audio Element Discovery

Audio elements to be found in complex compositei@utbcuments, such as sound
tracks of movies, usually show complicated andginter distributions in the feature
space. However, traditional clustering algorithrashsas K-means, are based on the
assumption that the cluster distributions in thatfee space are Gaussians [Duda
2000], which is usually not satisfied in complexses. Furthermore, the clustering
results are usually affected by the initially sédelccentroids so that multiple restarts
are needed to obtain the optimal results. As a [miom alternative, spectral clustering
[Ng et al. 2001] showed its effectiveness in aetgriof complex applications, such as
image segmentation [Yu and Shi 2003][Zelnik-Manard aPerona 2004] and the
multimedia signal clustering [Ngo et al. 2001][Ra#llishnan et al. 2004]. We
therefore choose to employ spectral clustering éoothpose audio documents into
audio elements. To further improve the robustndégbe clustering process, we adopt
the self-tuning strategy [Zelnik-Manor and Pero®4] to set context-based scaling
factors for different data densities, and build isrative scheme to perform a
hierarchical clustering of input data.

4.1.1 Spectral Clustering

Spectral clustering can be seen as an optimizatioblem of grouping together similar
data samples based on eigenvectors of a (posstiyalized) affinity matrix that
contains the similarity values measured betweeh paa of data samples. Like other
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clustering methods, its basic idea is to keep togethe data with similar features
while separating the data with different featurEsr this purpose, and using the
concepts from the graph theory, a complete undicegtaphG(V,E)is first constructed
from a data set. Her&/ is the node set where each node represents oaesalaple,
andE is the edge set. The weight of edggdefines the similarity between datand
datav. This weight can be defined as

w(u,v) = e—d(u,v)/ZJz

(4.1)
whered(u,v) is a distance measure between datandv, ands is a scaling factor.
W=[w] forms an affinity matrix for the grap®.

Grouping the data intdl clusters is now identical to partitioning the gnap(V,E)
into N disjoint sets, simply by removing the edges cotingadhe sets. Taking the case
N=2 as an example, the degree of dissimilarity betwavo setsA and B, can be
computed as the total weight of the edges that baee removed, that is,

cut(A,B) = DAZVDV‘\;(U,V) (4.2)

The notation €ut’ in (4.2) is adopted from the graph theory. Frdms tperspective,
obtaining the optimal partitioning of a graph coblel seen as an optimization problem
of minimizing the cut value. However, as shown in [Wu and Leahy 199Bjs t
minimum cutapproach tends to be biased towards cutting ouaturally small sets of
isolated graph nodes. To avoid this, [Shi and Mdl807] proposed an alternative
dissimilarity measure, referred torsrmalized cuaind defined as

Cut(A, B) + cut(A, B)

Ncut(A, B) = asso¢AV) asso¢B,V)

(4.3)

Here,assoc(A,Vandassoc(B,V)re the total weights between each of the nodds in
or B, respectively, and all nodes in the graph.

[Shi and Malik 1997] indicated that normalized cah minimize the disassociation
between the groups (inter-class distance) and aamebusly maximize the association
within the groups (intra-class distance). This {aptimization of inter- and intra-class
distance can be obtained by solving the generatmgehvector system,

(D-W)y = ADy (4.4)

where y are the generalized eigenvectors, abdis a diagonal matrix with
D(i, i) =Y ; W(i, ). This generalized eigenvector system can fuleeiransformed into
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a standard eigensystem as
DVY*(D-W)D™"?z= )z (4.5)

with z=D"%y .

The obtained eigenvectors can be used to do thttiggar Each eigenvector
indicates a segmentation possibility based on #hgevof its components, and multiple
(K) eigenvectors stands for multipli) splits. While [Shi and Malik 1997] worked on
2-cluster partition, [Ng et al. 2001] further pregeal a spectral clustering method to use
k eigenvectors simultaneously to partition the data k clusters, following related
ideas from [Shi and Malik 1997] and [Weiss 1999pe&ral clustering has been
successfully applied to a number of applications] &ve therefore considered this
algorithm as the basis of our clustering approach.

We first assume that for a given audio documeng¢taJs= {u, ..., u,} of feature
vectorsis obtained through the feature extraction prodessribed in Chapter 3. There,
each sample; represents the feature vector of one audio segmaedin is the total
number of audio segments in the audio documentgbaialyzed. After specifying the
search rangekfin, kmad for the most likely number of audio elements &rig in the
document, the spectral clustering algorithm cawdréed out as the following series of
steps:

Algorithm: Spectral_Clustering (U, Kuin, Kmax)

1. Form an affinity matrixA defined byA; = exptd(u;, u)%20°) if i # j, andA; =
0. Here d(u;, u) = |l - u| is the Euclidean distance between the featwionse
u; andu;, ando is the scaling factor. The selectioncowill be discussed in the
next Section.

2. Obtain the diagonal matri®, whose {, i) element is the sum &'s i-th row,
and construct the normalized affinity mattix D*?AD™2.

3. I (X1, ooos Xenaer) are theknat1 largest eigenvectors bf and £, ..., A, +1) are
the corresponding eigenvalues, then the optimatetunumbek is estimated
based on the eigen-gaps between adjacent eiges\asue

min »

Then, form the matriX = [x%....%] 0 R™* by stacking the firsk eigenvectors
in columns.
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4. Form the matrixy by renormalizing each of's rows to obtain unit length, that
is:

Yy = X (0 X{) “.7)

5. Treat the rows off as points inR¥, and cluster them int& clusters via the
cosine-distance basdtfmeans algorithm. The initial centers in tkemeans
are selected to be as orthogonal to each othevssiiyte [Yu and Shi 2003].

6. Assign the original data poinf to clusterg if and only if the rowi of the
matrix Y is assigned tg;.

4.1.2 Context-based Scaling Factors

Although reasonable results can be obtained basdtieoalgorithm described above,
the clustering performance is likely to improve tife scaling factor selection is
considered more carefully. In the spectral clusteralgorithm, the scaling factor
affects how rapidly the similarity measufg decreases when the Euclidean distance
d(u, u) increases. In this way, it actually controls ttadue of A; at which two audio
segments are considered similar. In the algorithomf[Ng et al. 2001]0 is set
uniformly for all data points (for examplejs set to the average Euclidean distance in
the data), based on the assumption that each rclustbe input data has a similar
distribution density in the feature space. Howewarch assumption is usually not
satisfied in composite audio data, which often aontlusters with different cluster
densities. Suppose there are two clusters, a dersa sparse one, and the data of the
sparse cluster is sparsely distributed around #vesel cluster, the algorithm tends to
either merge these two clusters into one, or $pét cluster with sparse density into
many smaller clusters.

Fig. 4.1(a) illustrates an example affinity matoifka 30-second audio clip composed
of music(0-10s),music with applaus€10-20s), andpeech(20-30s), using a uniform
scaling factor. From the figure, it can be notitkdt the density o§peechis sparser
than the densities of other elements, whilesicandmusic with applausare close to
each other and hard to separate. Thus, the “stdihsigectral clustering cannot properly
estimate the number of clusters using (4.6) andedasn the eigenvalues and
eigen-gaps shown at the bottom of Fig. 4.1(a). &gy from the Fig. 4.1(a), the
estimated number of clusters would be one.
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Fig. 4.1. The affinity matrices with top 10 eigenvalues ahe& eigengaps, computed for a
30-second audio clip consisting ofusic (0-10s), music with applaus€10-20s), andspeech
(20-30s): (a) using a uniform scaling factor, (b)ng the context-based scaling factors.

To obtain a more reliable similarity measure angrione the clustering robustness,
the scaling factor needs to be set in a more sopdtisd (adaptive) way. An intuitive
idea is that, if a cluster has a sparse density, staling factor should be large.
Otherwise, the scaling factor could be set to allemealue. According to this idea, in
our approach, the self-tuning strategy [Zelnik-Maand Perona 2004] is employed to
select context-based scaling factors. That isefmh data point;, the scaling factor is
set adaptively based on its context data density as

O-i :ZuiDclose(ui)d(ui’uj)/nb (48)

whereclos€u;) denotes the set containimg nearest neighbors of. In our approach
we experimentally set, to 5. Accordingly, the affinity matrix can now lbe-defined
as:

A, =expd(u;,u; )2 I(20,0)) (4.9)
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Fig. 4.1(b) shows the corresponding affinity matroomputed using the
context-based scaling factors. It can be noticatttie three blocks on the diagonal are
more distinct than those in Fig. 4.1(a). In Fid.(B), thespeeclsegment appears more
concentrated in the affinity matrix, while bett@psaration is achieved betweptusic
andmusic with applausdt can also be noted that the prominent eigenbgaween the
3rd and 4th eigenvalue predicts the correct nurobelusters.

4.1.3 lterative Clustering

Another thing we need to consider is the purityhef obtained audio elements. In other
words, we need to prevent audio segments belortgidifferent audio elements to be
grouped into the same cluster. Impure audio elesnard insufficiently representative
(discriminative) with respect to the semantic cahtand can be considered bad input
into the semantic inference processes.

In view of the above, we propose an iterative ertsg scheme to verify whether a
cluster can be partitioned any further. That isgath iteration, every cluster obtained
from the previous iteration is submitted again be tspectral clustering scheme.
Although a cluster is inseparable in the (largdeycaffinity matrix in the previous
iteration, it may become separable in a new affimbatrix (small scale, only
considering the cluster's own data) during the ritedation. A cluster is considered
inseparable if spectral clustering returns only oluster. The iterative scheme can be
described by the following pseudo code.

Iterative_Clustering(U, Kmin, Kmax)

{
[k {ci, ..., c}] = Spectral_Clusterindd, Kmin, Kmax);
if (kis equal to 1) return;
for ( = 1;j <k j++)
Iterative_Clustering( 1, kmay);
}

It is important to note that iterative clusteringyrintroduce over-segmentation, that
is, one actual audio element can be spread overaesiusters, each of which is then
adopted as a different audio element. As this pgc) for audio elements that appear
with small variations at various time instances af audio document, such
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over-segmentation could generally be considerednatogy to distinguishing between
the variations in text words, e.g., caused by diffié endings.

Another type of over-segmentation may also be ahusawvever, due to the fact that
we apply spectral clustering to a large audio damnincollection. In our approach,
audio elements are extracted independently fronferdifit audio documents by
applying iterative spectral clustering to each ¢ audio document separately.
Since some parts of different audio documents na@aag Isimilar audio properties, it is
expected that many audio elements obtained foerdifit documents are actually
belonging together into one and the same clusteuitively, one could choose to
combine all available audio documents togethet, feisd then apply spectral clustering
to the entire collection. However, combining autliacks would make the affinity
matrix too large and the SVD applied to this matmputationally unaffordable.
Ideas on how to deal with this type of over-segmatom will be introduced and
explained in different contexts in later sectiofishis thesis.

4.1.4 Smoothing

The clustering process groups the audio segmegéther into clusters based on their
feature similarity, but it does not take into aatbduemporal sequencing of the
segments. In order to avoid unrealistic discontiesiin the cluster assignment between
consecutive audio segments, an extra smoothing istggving a median filter is
performed after the clustering process. For exampt®nsecutive audio segments are
assigned to clusters A and B as "A-A-B-A-A", thexies of segments will be smoothed
to "A-A-A-A-A" to remove unlikely discontinuitiesni the semantic content flow.

4.1.5 Terminology

Fig. 4.2 shows an example of an audio elementseseguafter smoothing, where an
audio clip is decomposed into 3 audio elemestse2 ande3 as indicated by different
gray-level values. Based on Fig 4.2, we now intoedthe terminology that will be
used in the subsequent sections. Each audio eldmasrgeverabccurrencesalong the
data stream. Each occurrence of an audio elemeattismlly a smoothed series of
continuous audio segments that belong to the quoreing audio element cluster. For
example, the blocks marked with 1-5 are five ocmures of audio elemerdgl
Correspondingly, we refer to the duration of aniawdement occurrence as tlemgth

of that occurrence. For examplgjs the length of the"3occurrence of audio element
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el We also refer to the sum of the lengths of atlusences of an audio element as the
(overall) duration of this audio element. Moreover, since we alresghtized that an
over-segmentation may result in a number of serahtirelated audio elements, we
refer to these audio elements jointly asaadio term

a series of continuous audio segments

ﬁ smoothing

Fig. 4.2. An illustration of an audio element sequence.dicks indicated by the same grey
value represent the same audio element. The largebered blocks corresponding to the
elementel represent differenbccurrences of that audio element. An occurrencesists of a
smoothed series of audio segments belonging teahe audio element cluster.

4.2 Key Audio Element Spotting: Single Documente&Cas

To this end, we have discovered audio elementsudioadocuments, which we
consider being analog to the words in text documelnt the next step, we aim at
spotting those audio elements — the key audio elesnethat are most representative
for the behavior of an audio data stream at varimns instances. Such audio elements
would play similar role as the keywords in textdacould help us further perform
content-based analysis and retrieval of audio decusnusing the proven theories and
methods of text document analysis. Just like theda/in text, different audio elements
may have different importance in content-basedaadilysis. For example, while an
award ceremony typically contains the sounds $keechmusic applause cheering
and their different combinationgpplause and cheering can be considered good
representatives of the actual content of the cengmo
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To spot key audio elements, we can draw an analmdyeyword extraction in text
document analysis, where the most commonly useerieriare TF and IDF. However,
in content-based audio analysis, we may only hasimgle audio document available
(the one to be analyzed) which prevent us fromregting the IDF values as normally
done in text analysis based on a large trainingu=rin this section, we propose some
heuristic importance indicators for audio elemdmsed on the analysis of a single
audio document. Then, in the next section we asghatemultiple audio documents
are available, and present an audio element waigistheme that follows the analogy
to the TFIDF concept more closely than in the €rdgpcument case.

As a first heuristic importance indicator, we caesitheoccurrence frequenayf an
audio element, which is a direct analogy to TFaxt tanalysis. However, just like in
the text analysis, it is not necessarily the chs¢ the higher occurrence frequency of
an audio element implies its higher importancesTdan be drawn from the following
analysis. For example, the major part of the souadk of a typical action movie
segment consists of "usual" audio elements, sudpeschmusic speech mixed with
music, etc., while the remaining smaller part idelsi audio elements that are typical
for action, likegun-shotsor explosions As the usual audio elements can be found in
any other (e.g. romantic) movie segment as well #@lear that only this small set of
specific audio elements is the most important taratterize the content of a particular
movie segment. To compensate for this in text aislyanother measure, IDF,
emphasizing relative uniqueness of a word in oneudmnt compared to other
documents, is usually combined with TF to obtairekable weight for each word.
However, in the case of single document, IDF caieotalculated. To compensate for
this, we apply a heuristic constraint to the oocenice frequency in the form of a naive
(normalized) Gaussian model to computeElement Frequencindicatorefrg, that is,

efrg(g, D) = expt(n, —a [hy,)* /(2n°)) (4.10)

Here,g is an audio element in audio documBnt; is the number of occurrencesaf
andn,,q andngg are the corresponding mean and standard deviatitme numbers of
occurrences of all audio elements. The faatadjusts the expectation of how often the
key elements will likely occur. Using this indicatéthe audio elements that appear far
more or far less frequently than the expectation,y are punished. In terms of TF and
IDF, it can be said that thedrq indicator combines both in one measure.

An important difference to the text case is in fhet that an audio element has
duration information attached to each of its ocences. In order to detect key audio
elements accurately and robustly, we apply a simdasoning as above to extend the
"importance" measure by other two relevant indirgtdhe total duration and the
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average occurrence length of an audio element,haéuie typically very different for
various sounds in an audio document. Backgrounddsoare usually majorities while
key audio elements are minorities. For instance Bituation comedy, both the total
duration and the average length of gpeechare considerably longer than that of the
laughter or applause Based on the above observations, another twoistieur
importance indicators are designed to capture theervations made regarding the
element duration. These indicators are definedlmAs:

Element Durationtakes into account the total duration of audiargete in the
document:

edur(g, D) = exp((d; — B, (2d2))) (4.11)

whered, is the total duration o, andd,, anddsy are the corresponding mean and
standard deviation. The fact@radjusts the expectation of the duration of keyi@ud
elements, and has a similar effecuas

Average Element Lengttakes into account the average lengtheobver all its
occurrences, as:

eler(e;, D) = expt(l; =y Dayg)* /(22))) (4.12)

wherel; is the average occurrence lengthegfandl,,q andlsqy are the corresponding
mean and standard deviation. The factois similar toa and g and adjusts the
expectation of the average occurrence length ofkeljo elements.

The heuristic importance indicators defined aboe®a be tuned adaptively for
different applications, based on the available donmaowledge. For example, to
detect unusual sounds in surveillance videos, faetgs, andy could be set relatively
small, if such sounds are not expected to occaguiatly and are of a relatively short
duration.

Based on these importance indicators and by realist assuming that the above
indicators are independent of each other, we meatha importance (or weight) of
each audio element as,

W(e,D) =efrqe, D) (édulg, D) (ler{g, D) (4.13)

To better explain the underlying idea of the pradunc(4.13), the weight\M(e, D)
can be seen as an analogy to the posterior prdlpathiét e is a key audio element,
given the observations regarding the d; and I;. Further, each of the equations
(4-10)-(4.12) can be seen as an analogy to théhdad for each observation type,,(
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d; or l;), given the key audio element hypothesissatf the three observations are
considered independent, then the posterior prababilat ¢ is a key audio element is
proportional to the product of the likelihoods.

Audio Document1 ... .. Audio Document N
v v
Audio Element : Audio Element
Discovery by ; Discovery by
Spectral Clustering : Spectral Clustering

I | }

Elements Similarity Measurement based on DFV Analysis

!

Estimation of ETF, EIDF, ETD, and EIDD

I

Term Weighting

Element Weighting
Fig. 4.3The flowchart of the TFIDF-based audio elementighting

4.3 Key Audio Element Spotting: Multiple Documera<e

Inspired by the effectiveness of term frequency iandrse document frequenirytext
analysis, we see the possibility to apply these smes (or their equivalents) to
improve key audio elements detection when multgleio documents are available.
To do this, the number of occurrences of a padicatdiotermin one document needs
to be computed to estimate its TF value, while @mmputing its IDF value
simultaneous analysis of multiple audio documergeds to be performed. Here,
recalling the discussion on over-segmentation ioti®e 4.1.3 and the definition of
audio term in Section 4.1.5, we first need to estenthe probability that an audio
element belongs to a particular audio term.

Fig 4.3 illustrates our TFIDF-based audio elemergigiting scheme. In this
approach, the similarity between audio elementsdan multiple audio documents is
first computed based aominant feature vecto®FV), and then the similarity values



69

are used to compute the probability of the occueeof one audio term in one and
across multiple documents. Evaluating BieV-based audio elements similarity can be
considered an equivalent to identifying the matchesveen words in text that are
semantically the same but, for instance, have rdiffeendings

The obtained probability is further used to comphie equivalents of the standard
TF andIDF measures, namely, tlexpected term frequeng€izTF) and theexpected
inverse document frequen(iyiDF). In addition, theexpected term duratiofETD) and
expected inverse document durati@DD) are computed as well, which again take
into account the discriminative power of the dumatbf a particular audio element in
characterizing the semantics of an audio docunieimally, the fourmeasures are
combined to give the final importance weight ofaamio term, which is then assigned
to all audio elements corresponding to this term.

4.3.1 Evaluating Similarity of Audio Elements

To take into account possible high-level variatiohene and the same audio term, and
judge which audio elements correspond to the sauotkoaterm, we introduce a
procedure for measuring the similariye,g) between audio elemengsandg, which

will be further used to get a reliable indicatiohamdio term occurrence. To measure
this similarity, a possible approach would be tpresent each audio element using a
standard method involving a Gaussian mixture mo@@&VM). However, as no
assumptions about covariance matricesGdMMs can be made for a general case,
computing the distance betwe&MMs is not likely to be easy. Besides, compared to
the similarity computation between audio segmentghie spectral clustering step,
searching for similarity between audio elementsdee® be done with respect to
high-level signal descriptors, which will eliminatthe influence of irrelevant
(low-level) signal variations. We therefore chodse an alternative approach that
employsDominant Feature Vectors (DFVS).

4.3.1.1 Dominant Feature Vectors

Each audio element usually stands for a numbeudibasegments and thus a number
of feature vectors, which typically have complestdbutions and multiple salient
characteristics. To represent the salient chalatitsr of an audio element we employ
DFVs which are the principle components in the feaspace. Following the same
general procedure that we already defined for feagelection in Chapter 3, tiE-Vs
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are also computed via the singular value decomipos{EVD on the feature space of
an audio element, or in other words, on MM matrix X containing in each of its
columns theN-dimensional feature vector of oneMfaudio segments belonging to the
audio element considered (usyaili>>N). UsingSVD, the decomposition of can be
written as

X =UsV' (4.14)

where in this cas&l={u, ..., W} is an NxN orthogonal matrix containing the spectral
principle componentss = diagfl,, ...,An} is anNxN diagonal matrix of singular values
with 4> 1,>..>4,, and V is an NxM matrix containing the temporal principle
components. Those spectral principal componentd associated with large singular
values represent the primary distributions of théi@element in the feature space, and
can therefore be adopted B§Vs The required numbem of DFVs describing an
audio element is related to the amount of featamation, and in our approach, it is
chosen using the similar expression (3.17) withtlineshold; set again to 0.9.

It should be noted that our approachDBV extraction is different from traditional
PCA applications.While PCA is traditionally used to remove the noisy feature
dimensions, our method removes the noisy featurtoxg but preserves the dimension
of each feature vector. Moreover, dominant featteetors are extracted to form a
signal subspacewhich represents the most salient characterisfies audio element.
In contrast to this,PCA usually maps feature vectors into the principdature
subspace

4.3.1.2 Definition of Audio Element Similarity

We now assume to have two audio elemeptnde,, which containm, andm, DFVs
respectively. We denote theith andj-th DFV asqe;; andge,; and the corresponding
singular values a&,; jandle, ) respectively. To measure the similarity betwegand
&, we first consider the similarity between eactr patheir DFVS, ge1; andge,; which
is usually defined as their inner-product, tha jis ||qel,iquz,j||.

Since differentDFVs have different importance, which is determined thegir
corresponding singular values, they should conteildifferently to the audio element
similarity measure. In order to take this into agup we define the similarity between
two audio elements as the weighted sum of the aiityilbetween every pair of their
DFVs that is
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m M
S=D D W, §; (4.15)

i=1 j=1
where the weightv;; is determined based on the corresponding singalaes, as
2 2
e:L| eZJ /\/Zn}l eli r'r?l €2, (416)

The weight is selected as such for the following teasons:

1. it needs to be proportional to the contributionshef correspondinBFVs which
are related to the singular valugs,i ande,;

2. the weighted sum should be equal to one, when twimalements are the same.

Based on the above, the similarity between two@etikments can now be defined
as:

Sdfv(e.l. eZ) ZZAGZLIAGZ] ”qel,l |]ZIeZJ ”/\/zn—llAil, "121Ai21 (417)

i=1j=1

This similarity is symmetric aSy(e1, &) = Sl &), and its value is in the range of
[0, 1]. When the subspaces@fande, are aligned, their similarity is 1, and when they
are orthogonal to each other, the value is 0.

4.3.2 Audio Element Weighting Scheme

To estimate TF and IDF of a given audio term, weehi@ check all reoccurrences of
an audio term. We do this by searching for audémneints that are sufficiently similar
to each other in terms of (4.17) and that can fbezebe said to correspond to one and
the same audio term. Due to the missing exact magtlueen audio elements, we can
only speak about the probability for reoccurrent¢he term, where this probability
depends on the value of the similarity measure7j4.Based on this probability, the
equivalents of standard TF and IDF, namekpected term frequendeTF) and
expected inverse document frequetieifpF), can be computed.

As mentioned in the previous section, the duratbrihe audio elements, which
defines the amount of presence of the corresportdimg in an audio document, is also
a parameter that should be taken into account wherputing the weight of the term.
Further, it can realistically be assumed that therall duration of a key term is larger
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in its “own” document than in other documents. Efiere, we extend the weight
computation scheme to include two additional inttics of term importance, namely
expected term duratiofETD) andexpected inverse document durat{&hDD).

4.3.2.1 ETFand ETD

ETF and ETD define the expected occurrence frequency and idoraif an audio
element in an audio document, respectively. TrusatculateETF of audio elemeng;

in audio documenb,, we first need to compute the probabilRyg = g) for all audio
elementsg obtained fromD,. Then, theETF can be obtained as the normalized
weighted sum of the occurrence frequencies oftaldudio elementg in Dy, where
the abovementioned probabilities serve as the waigh

Zjnip(q =e; |e; UDy) ZejDDk n; Sy (8 .€))
= (4.18)

Here, ETF(g, Dy) is the expected term frequency of audio elemenh the audio
documentD,. It is noted thatDy is not necessarily the document tleais obtained

ETFg,D,)=

from. Further, P(g =¢, |e; 0D, ) is the probability that represents the same audio

term as the audio elemegf and is computed using the similarity (4.17). Hat; is
the number of occurrences@in the documenD,

Similarly, ETD(g, D) can be defined as,
Z]djp(q :e] |e] DDk) ZGJDDkd]Sde(Q’e) ( )
- 4.19
2.9 20, i

whered; is the total duration o in the documenD.

ETD(g,Dy) =

4.3.2.2 EIDF and EIDD

Similar to IDF in text document analysi€IDF of an audio elemeng can be
computed as the log of the number of all documeivisled by the expected number of
documents containing the audio elemgnthat is,
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EIDF(g) = Iog% (4.20)
k

where |D| is the number of documents, and whefe 0 D,) is the probability thag

appearsn the documenb,. This probability can be calculated as

P(e ODy)
=P(g =e; U g=e, O .. 0 g=¢y |ej1,...ejN ODy)
=1-[1,@-P(e =¢; |e;0Dy)) (4.21)

=1- HejDDk A-Sy(e.e)))

It is easy to verify thatP(g OD) =1 if the audio elemeng is obtained from the

documenD.

Similarly, theEIDD of audio elemeng can be calculated as the log of the duration
of all documents divided by the expected duratibaulio elemeng in all documents.
As the expected duration of audio elemenin documentDy is obtained byETD(e,
Dy), theEIDD can be approximated as,

2 9o,
2« ETD&.D,)

wheredp, is the total duration of audio documémnt

EIDD(g) =log (4.22)

4.3.2.3 Final Weighting

To integrate the defined four importance indicator® the definitive importance
weight of an audio term, we realistically assurnred four indicators are independent of
each other. Also, following the analogy to the tdatument analysis case, where TF
and IDF indicators are simply combined into a peaidwe follow the same procedure
here to compute the overall weight of an audio eletg in the documenby:

W(g,D,)=ETF(g,D,)EIDF (g ) ETD(g,D, ) (EIDD(g) (4.23)
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4.3.3 Number of Key Audio Elements

To this end, the firdK audio elements with the highest weight (4.13)4023) could be
selected as key audio elements, and used to characan audio document in further
content-based audio analysis steps. To determmeaumberK of key audio elements,
an intuitive idea would be to set a threshold, ahdose an audio element as a key
audio element if its weight is larger than the sfw@d. An alternative method is
presented in [Cai et al. 2005], where the numbdwegfaudio elements is chosen based
on the total duration of the selected key audimelats, as:

K =argmax {3 d; <7y} (4.24)

whered; denotes the duration of theh audio element on the list of audio elements
ranked in the descending order based on the weigktiorel is the total duration of
audio documenD, andy is a tuning parameter set experimentally to 0T28s setting

is based on the assumption that the key audio efsnvéll not cover more than 25%
of the entire audio document.

However, these methods used thresholds which ai@lydiard to set and depend on
specific applications. In this thesis, we followetpractice of text document analysis
and decide not to set a heuristic threshold andenaakard decision on the number of
key audio elements to be selected. Instead, wesehtm consider all obtained audio
elements and their corresponding weights in thinéursemantic inference steps.

4.4 Experimental Evaluation

In this section, the performance of the proposedupervised approach to audio
element discovery and key element spotting is etatl experimentally using a
manually annotated representative test audio aditaAs no wide benchmarking effort
(e.g. a counterpart of TRECVID) exists in the fiefdcontent-based audio analysis, we
invested considerable effort in optimizing the @egion of our data collection to
maximize the reliability of the insights obtaingardugh the experiments. The test
audio documents (sound tracks) are extracted frarows types of video, including
sports, situation comedy, award ceremony and w#rfagnovies, and in the total
length of about 5 hours. These sound tracks comtaiabundance of different audio
elements, and are of different complexity, bothtérms of content dynamics and the
composite nature of audio signals, in order to fgea reliable base for evaluating the
proposed approach under different conditions. Bample, in the test dataset, the
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sound track of the tennis game is relatively simpke compared to far more complex
sound tracks from the war/action movies “Band oftBers — Carentan” and “Sword
Fish”.

Table 4.1.Information of the experimental audio data

No. Video Category duration
As Friends situation comedy 0:25:08
A, Tennis Game sports 0:59:41
Az 59" Annual Golden Globe Awards award ceremony 1:39:47
A, Band of Brothers - Carentan war movie 1:05:19
As Sword Fish Action movie 1:00:00

Detailed information on the sound tracks we uselisied in Table 4.1. As already
indicated in Chapter 3 and earlier in this chapédraudio streams are in 16 KHz,
16-bit and mono channel format, and are divide@ iftames of 25ms with 50%
overlap for feature extraction. To balance the ci@e resolution and the
computational complexity, audio frames are groupei one-second-long audio
segments with 0.5 seconds overlap, which are furtised as basic units for audio
element discovery.

4.4.1 Audio Element Discovery

In our spectral clustering approach to audio elegntscovery, the search range for
selecting the cluster number is set experimentali»=2 andk,,=20 for all sound
tracks. Moreover, to illustrate the effectivenedstite utilized spectral clustering
scheme with context-based scaling factors, we coenpghis scheme with the
“standard” spectral clustering from [Ng et al. 2D01

Table 4.2 shows the detailed comparison resultsheftwo spectral clustering
algorithms on the example sound track of "Frien@;). In this sound track, we
obtained 7 audio elements using the spectral ciogtevith context-based scaling
factors, and only 5 audio elements using the “sdedidspectral clustering. To enable a
guantitative evaluation of thdustering performance, we established the grouuitth t
by combining the results obtained by three unbigsdons who analyzed the content
of the sound track and the obtained audio elemé8itiis. process resulted in 6 sound
classes that we labeled as noise (N), speechfawse (A), laughter (L), music (M),
and laughterwith music (L&M). In Table 4.2, eachrow representone discovered
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Table 4.2. Comparison of the results of the standard spedathadtering and the spectral
clustering with context-based scaling factors agbund track of "Friends" ¢A(unit: second)

" No. N S A L L&M M precision
< % 1 42 2 0.5 0.944
= 2 7 11325 1 8 0.986
2= 3 5 1.000
2 3 4 1 2 215 0.986
> O
ER: 5 8 315 0.741
g 3 6 05 465
S < 0.980
29 7 0.5 25

S | recall | 0.778 | 0996| 0833] 0924 1000 1.0d00.978
= 1 50.5 435 0.537
S 5 2 1.5 | 5275
o C
@ S 3 290 6 2 1 7 | 0977
- &
s 3 4 267 15
g ° 5 2 8.5 224 28.5 42 0.734
a recall | 0.935 | 0954| 0.000 0.964 0.00p  0.040 0.901

Abbr. noise (N), speech$), applauseX), laughter ), and music)

audio element and contains the durations (in sexjooidits occurrences in view of the
ground truth sound classes. We manually groupedettaudio element occurrences
associated to the same ground truth class (indidageshaded fields in the table), and
then calculated the precision, recall and accurdlbg duration percentage of the
correctly assigned audio segments in the streasgdan the grouping results. These
measures roughly represent the overall clustererppmance. As shown in Table 4.2,
the accuracies of the two algorithms for the sotnagk of "Friends" (A) are in
average 97.8% and 90.1%, respectively. We likemptesize that these performance
figures were obtained for the case where all agdgments are treated equally. While
one may choose to compute the costs related todkeering errors in a different way,
like for instance weighting the clustering errors more important (longer) audio
elements stronger than those of the less impoaiaes$, we considered such adaptation
application/domain specific and therefore beyoraldtope of this thesis.

Table 4.2 also shows that each class in the grawtid can be covered by the audio
elements discovered using the spectral clusteritiy aontext-based scaling factors. In
the standard spectral clustering, the sounds ofaape (A), music (M) and laughter
with music (L&M) were missed and falsely includeda other clusters, while speech
(S) is divided over three discovered audio elemeidsdemonstrated in Section 4.1.2,



77

this phenomenon is likely caused by the unharmentistributions of various sound
classes in the feature space. For instance, tharéedlistribution of speech (S) is
relatively sparse and has large divergence (weekester density), while those of
music (M) and laughter with music (L&M) are moreigtt". The influence of
unharmonious sound distributions can be reduceddtyng different scaling factors
for different data densities, as done in our apghoa

Table 4.3. Performance comparison between the spectral ciogtewith and without
context-based scaling factors for all test souadkis

. Spectral clustering with
Standard spectral clustering )
No. #gc context-based scaling factors
#nc [ #miss accuracy #nc/ #miss accuracy
Ay 6 7/3 0.747 710 0.951
A, 6 5/3 0.901 710 0.978
Az 7 8/2 0.814 11/0 0.928
Ay 6 5/3 0.621 16/0 0.930
Ag 6 2/4 0.332 17/0 0.494
Awr. 6.2 54/3 0.683 11.6/0 0.856

Table 4.3 summarizes the performance of audio eledliscovery on all test sound
tracks. The table shows the number of ground tedbnds #gc), the number of
discovered audio element#n€), the number of missed ground truth audio elements
(#miss), and the overall accuracy. It can be seen thatidigg the standard spectral
clustering algorithm, around 48% of sound claseabé ground truth are not properly
discovered, and the average accuracy is only ar68f@ The table also shows that the
spectral clustering with context-based scalingdiecperforms better on all test sound
tracks, and achieves an average accuracy of ar86fa In particular, no sound
classes in the ground truth are missed in the obdaset of audio elements. Hence, the
use of context-based scaling factors in spectusteting of complex audio streams can
notably improve the clustering performance.

Detailed comparison results for the sound track®\Aare shown in Table 4.4-4.7,
where we also manually grouped those audio elenasstsciated with the same ground
truth class and represented them by shaded fi€luks.results reported in these tables
confirm that spectral clustering with context-bassdling factors can obtain better
results, including a better estimate of the clustember, better cluster purity, less
missed clusters, and a higher recall and precision.
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Table 4.4. Comparison of the results of the standard spedathadtering and the spectral
clustering with context-based scaling factors agbund track ofTennig (A,) (unit: second)

" No. S A+S A Sil B M precisio
! 1 1594 42 4 14 4 0.961
s g 2 21 | 2795 40 0.5 0.820
2= 3 15 205 | 0932
2 3 4 9.5 298 12 0.933
33 5 8345 3
g § - 965 0.997
23 7 3 225 | 282 0.917
@ S | recall | 0987 | 0s844| o0864] o094d 0976 1| 0.951

1 0 7 19 295 | 35 3

= 2 0.5 15 7 475 | 76 35 | 0534
5 o 3 90 84 319 | 8935 174 14
= 4 692 25 7 4
E g 5 751 4 0.969
g ° 6 69.5 8
a 7 12 192 0.941

recall | 0.937 | 0.580 0 0.989 0 0 | 0.747

Abbr. speech $), applause &), applause with speeciA<{S), silence &il), ball-hit B), and
music (M)

Table 4.5. Comparison of the results of the standard spedathadtering and the spectral
clustering with context-based scaling factors am sbund track of59th Annual Golden Globe
Awards (As) (unit: second)

No. S S+M M A+M | A+S A N |precision
o 1 1955 1 6
< £ 2 | 275 0.953
s £ 3 | 2755 | 18 4 8 385 52 18
g £ 4 6 9 | 320 4 5 2
2 3 5 1.5 2 | 1555 | 7 2.5 | 0.898
33 6 2 21 | 220 | 11 6
‘_,g f:f 7 6 |8075| 15 32 3 28 9 | 0897
23 8 3 | 385 2 7 0.762
25 [ o 25 | 415 | 8 0.978
10 32 2 8.5 | 186 1 | o811
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1 | 25 29 | 18] 374 | 0883
recall | 0.987 | 0.9629 043 | 0.937| 0829 0614 08920928
1 | 1225] 95| o5 05| 2| 55
2 |10015] 36 | 2 5 445
= 0.193
g 3 |e405| 51| 95| 10| 12| 8| a2
2 2 4 | 1083 9 41.5
o & [ 5 | 57 | 11 | 565| 138] 5265 148 | 2275 0.453
82 | 6 7 | 12 | 14 | 580 | 7 | 24 | 43| o844
g 7 5 9 2 | 13| 118 | 21 | o702
8 | 12 |7105] 7 | 12| 3 3 | 45| o094
recall | 0.973] 0.8468 0 | 0.782| 0914 038 0| 0.814

Abbr. speech §), music M), speech with musicS+M), applauseX), applause with music
(A+M), applause with speechA+S), and noisel)

Table 4.6. Comparison of the results of the standard spedathadtering and the spectral
clustering with context-based scaling factors angbund track ofBand of Brothers§(A,) (unit:

second)
No. S NS Sil N G M precision
1 569 8

g 2 11.5 15
S 0.963
< 3 181 8 3
-TEU 4 320 13.5 8
@ 5 55.5 4 25
g 6 1 15 05 0.767
3 7 12 107 16 11 7
o) 8 123 4
§ 9 15 161 14 1 0.934
£ 10 215 1
i 11 1 2 05 17.5 2 15
c 0.902
s 12 5 21 | 4615 12 7
3 13 4 8 12 38 652
G 0.916
= 14 7 7.5 198 1
S 15 1 8 15.5 710
] 0.966
n 16 1 1 43

recall | 0.977 | 0.792| 0.839] 0.833 0.969  0.976 0.930
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= 1 5 1 | 5455
g 0.987
g o 2 15 405

& = 3 12 628

o & 0.976
g3 4 3 3 115

g ° 5 1104 | 2225| 356 564| 1335 1855  0.430
@ recall | 0.9973| 0 0 0 0.847| 0.76| 0.621

Abbr. speech$), noisy speechNS), Silence &il), noise N), gun-sho{G), and music (1)

Table 4.7. Comparison of the results of the standard specth@dtering and the spectral
clustering with context-based scaling factors oe sound track of Sword Fish (As) (unit:
second)

No. S M B SBM F precision
1 2235 20 111 129 19

" 2 15 6.5 14 75 1 0.519

5 3 567.5 18 183 226 11

= 4 0 50.5 145 1 2.5

El 5 0 169 1285 6 8 0.626

% 6 05 905 145 4 55

8 7 70 47 2185 92.5 21.5

o 8 28 415 91 53 28.5

% 9 1755 203 652 1845 515 | 0.462

° 10 135 37 102 60 5

S 11 815 615 | 1475 140.5 14

2 12 25.5 9 37.5 40.5 2

5 0.357

e 13 21 26 67.5 75 195

5 14 8.5 52 43 16,5 | 108

g 15 88 95.5 29 | 2405

§ 16 2 7 19 27 74.5 0-516

@ 17 8.5 19 36 16 76
recall | 0.650 | 0.328 0.613 0.104| 0729 0.494
1 1238 9445 | 1964 | 10965| 6745 0.332
2 2.5 1 11 115 | 135 0.342
recall 0 0 0.994 0 0.020 | 0.332

Abbr. speech $), speech with background sound or mus8§), Background soundsBj,
fighting soundgF), and music 1)
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It can also be seen that the iterative clusteratgme produces more audio elements
than the number of the ground-truth clusters. Ineotwords, over-segmentation is
introduced. However, as mentioned before, relatrticeelements can be recognized as
such using the DFV-based similarity metric; andHarmore, groups of related audio
elements can also emerge from higher-level corgralysis, such as the co-clustering
process that we will elaborate on in Chapter 5.

4.4.2 Single Document based Key Audio Element Spptt

Single document based audio element weighting sei{dm3) is employed when only
one audio document is available, that is, we carséhch test sound track indepen-
dently. If we assume that a key audio element lmsewhat average occurrence
frequency and duration, the model parameters 0§44.12) can simply be set all to
1. Our experiments showed that this assumption &brwell in a general case.
However, in order to investigate the effect of eliéint parameter values, we also tuned
the parameters differently for different soundtsacKhis parameter tuning was not
sophisticated, but simply realized through a rosgmpling of the relevant parameter
space using the parameter options from the set {05 1.5, 2.0). The results reported
in this section are the best ones obtained foexdfft parameter settings. The rationale
behind this approach is that if our method is aupiin a given domain or use case,
general domain knowledge can be used to roughlytreetmodel parameters. We
wanted to provide an indication regarding the etgeperformance in such a case.

The results of key elements spotting are listecemh test sound track in Table 4.8 -
4.12, respectively, and summarized in Table 4.18 $emantic labels provided in
these tables (and also in tables 4.14-4.19) aigrest manually to audio elements after
these elements are obtained. These labels seryet@nbughly describe the major
content of an audio element, in order to be ableviduate the meaningfulness of the
obtained audio elements regarding the part of esr data set from which they are
extracted. Furthermore, all audio segments belgntpnone audio element cluster are
characterized by one label only. If the composdture of the sounds in this cluster is
complex, we did our best to reveal this complexitien defining the label. For
example, next to the audio elements simply defiagd'speech”, we also identified
audio elements that can best be described as ‘tauglth music” or “speech with
background music”. Similarly, different audio elem® may be characterized using
variations of one and the same label (due to o#gmentation). For instance, we found
that a large portion of speech segments is indi&ety/Ito be grouped into the cluster
adopted as the “speech” audio element. However taltiee fact that different speech
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segments may have rather different signal chaiatitsy, what we would consider
speech might get spread over several audio eleotesiers that we then refer to as
“speech 1" or “speech 2”. Each of these clustersdated further as separate audio
elements. Finally, the difference between “speetkl¥ments and the element “speech
(with gunshot background)” is in the purity of thgeech component, which is lower in
the latter case due to the gunshot noise in thkgoaand. This is why we also labeled
it in a different way.

As an example, Table 4.9 shows the results of sorauk "Tennis" (A), with the
best parameters, , andy set to 1. For 7 discovered audio elements in ttdioau
document, the table lists their total durati@ur), the occurrence timeodcu), the
average occurrence lengthvgl), and the final importance score. Based on these
scores, an "educated guess" can be made for thelikelg key audio elements. For
example, in this tennis soundtrack, the audio etémindicated by the shaded fields,
including applause with speeglapplause and ball-hit, have the highest importance
scores, and therefore can be taken as key audieents.

Table 4.8Single document based audio element score onabk tf "Friends" (A)

No. Description occu dur avgl score
1 speech + noise 27 445 1.6481 0.642
2 laughter 102 218.0 2.1373 0.890
3 theme music 1 47.0 47 0.015
4 laughter + music 9 42.5 4.7222 0.503
5 speech 124 1148.5 9.2621 0.039
6 applause + cheering 1 5.0 5 0.413
7 TV music 1 3.0 3 0.407

Table 4.9Single document based audio element score onable &f "Tennis" (A)

No. Description occu dur avgl score
1 clean speech 250 1658.0 6.632 0.02
2 | speech + applause 108 341.0 3.157 0.928
3 | music 1 22.0 22.00 0.008
4 | applause 106 319.5 3.014 0.908
5 silence 173 837.5 4.841 0.633
6 noisy silence 32 96.5 3.016 0.399
7 ball-hit 145 307.5 2121 0.820




83

Table 4.10Single document based audio element score ondbk &f "Golden Global Awards"
(As3)

No Description occu dur avgl score

1 speech 1 132 202.5 1.534 0.380
2 speech 2 26 275 1.058 0.150
3 music + applause 1 110 346 3.146 0.880

4 music + applause 2 72 168.5 2.340 0.544
5 music + speech 161 900.5 5.593 0.51(
6 music 22 50.5 2.296 0.366
7 applause 143 485.5 3.395 0.959

8 speech + applause 109 2295 2.106 0.553

9 background noise 211 423.5 2.007 0.47(
10 | (dense) music + applause 68 260.0 3.824 0.819

11 | speech3 487 2893.5 5.942 0.000

Table 4.11Single document based audio element score onabk af "Band of Brother" (4

No Description occu dur avgl score

1 | speech 187 577 3.086 0.463

2 speech (gun background) 25 62.0 2.48 0.12p
3 speech 1 13.0 13.0 0.069
4 speech 72 192.0 2.667 0.316
5 heavy noise 11 24.5 2.227 0.081
6 silence (some noise) 44 127.0 2.886 0.212
7 noise 143 506.5 3.542 0.662

8 speech 122 3415 2.799 0.529

9 gunshot + speech 1 128 714.0 5.578 0.731

10 | gunshot + speech 2 85 2135 2.517 0.35
11 | background sounds 51 1775 3.48(Q 0.29y
12 | applause 3 16.5 5.50 0.120
13 | music 48 734.5 15.30 0.141
14 | music + speech 4 45.0 11.25 0.114
15 | noise + speech 86 153.0 1.780 0.251
16 | silence (with HF noise) 3 225 7.50 0.137
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Table 4.12Single document based audio element score onablk &f "Sword Fish" (A)

No Description occu dur avgl score

1 | speech+ backgrounds 235 449.5 3.826 0215
2 | fighting sounds 1 57 228.0 8.0 0.654

3 | fighting sounds 2 155 453.0 5.845 0.561

4 | speech + backgrounds 86 242.0 5.628 0.499
5 speech 241 502.6 4.170 0.2p5
6 | mixed backgrounds 21 4410 4.191 0.203
7 | speech 363 1005.5 5.540 0.0p6
8 | speech + backgrounds 73 1145 3.137 0.p12
9 | speech + backgrounds 121 209.0 3.455 0275
10 | backgrounds 404 12665 6.270 0.904
11 | speech in repressive env. 67 12p.5 3.866 0}265
12 | music 13 69.0 10.61p 0.421
13 | fighting sounds 76 1556 4.092 0.300
14 | backgrounds 102 2175 4.265 0.355
15 | speech + backgrounds 247 445.0 3.603 0/182
16 | music 45 3115 13.844 0.654

17 | music 23 115.0 10.0 0.503

The importance scores obtained for all audio eléesnom all test sound tracks are
summarized in Table 4.13. For each sound trackntimeber of audio elementgge),
the parameter setting, and the description of eaho element with corresponding
weighting score are listed in the descending ordilee audio elements indicated in
bold correspond to ground truth, which is estaklisthere again by combining the
results obtained by three unbiased persons whyzathlthe content of the test sound
tracks and selected the most characteristic somnsisund combinations.

From the table, it can be noted that the perforraantaudio documents,Aand A
is satisfying. All the key elements manually pickate among the highest-ranked
elements. On the other hand, in audio document®®a and A, some audio elements
not included in the ground truth are also rankedhhithat is, false alarms are
introduced). For example, thepeech with noisén A;is falsely ranked as second
important, since it has similar occurrence freqyeaicd duration as the expected key
elements. Similar cases are also found for thecagldimentspeechn A;andmusicin
As. Also in A, some key audio elements such asgilmeshot with speeds not ranked
high enough, since the characteristics of key etgsnén complex audio documents
vary too much. These problems indicate that thepgsed heuristic rules do not
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perform entirely as expected in complex audio domuisi However, the overall
performance of key element spotting using the psedorules on our test set is still
acceptable. If we take the first four audio eleraeast key audio elements in each audio
document, more than 85% (12 out of 14) of the kedi@elements in the ground truth
can be properly recalled.

Table 4.13.Single document based weighting for audio elemehtained in all the sound tracks

No.| #ele. |(a,8.) Discovered audio elements and corresponding weight

laughter(0.89), speech + noise(0.64Bughter + musid0.503),applause
+ cheering0.413), TV music(0.407), speech(0.039), theme of0h15)

speech + applaug@®.928),applaus€0.908),ball-hit (0.82), silence(0.633)
noisy silence(0.399), clean speech(0.02), musit@).0

Al 7 [(211)

Al 7 [(111)

applaus€0.959),music + applause (0.88),(dense) music +
applaus€0.819),speech + applaug®.553),music + applause 20.544),
music + speech(0.51), background noise(0.47), $p&(c38),
music(0.366), speech 2(0.15), speech 3 (0.0)

As| 11 | (1.1,1)

gunshot + speech (D.731), noise(0.662), speech(0.529), speech(0.463
gunshot + speech ®.35), speech(0.316), background sounds(0.29%er
A, 16 | (2,2,2)+ speech(0.251), silence (some noise)(0.212), rfiuditl), silence (with
HF noise)(0.137), speech (gunshot background)(Q, B2dlause (0.12),
music + speech(0.116), heavy noise(0.081), speSSgp

o

fighting sounds 0.654), music(0.654jighting sounds 20.561),
music(0.503), speech + backgrounds(0.499), mudiz{().

(0.5, |backgrounds(0.355), fighting sounds (0.3), speebhckgrounds (0.275),
1.5,2) |speech in repressive env.(0.265), speech(0.228¢ckp backgrounds
(0.215), speech + backgrmds(0.212), mixed backgrounds (0.203), spe¢
backgrounds(0.182), speech(0.026), background<{p.00

As| 17

4.4.3 TFIDF-based Audio Element Weighting

In this experiment, we employ the whole test auskb to estimate the importance
indicators from Section 4.3, and then use theseatars for audio element weighting.
Table 4.14 - 4.18 show the results for each teahddrack, respectively. In these
tables, we not only list the total number of ocenres gccu) and total durationd{r)
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of each audio element, but also the deritddr, EIDF, ETD, EIDD valuesand the
final importance weight.

Based on the data collected in these tables, wihsatan be analyzed that led to a
particular weight. For example, th& &udio elemenapplause with cheerinm Table
4.14, although occurring only once and lasting dhlgeconds in this track, occurs
statistically even less in other audio tracks. Thikes it<€IDF (2.15),EIDD (2.135)
and the final weight high. On the other hand, theaBidio elemenmusic with speech
and the 11 audio elemenspeechin Table 4.16, although appearing many times and
having long durations (161 times / 900.5 seconds, 487 times / 2893.5 seconds,
respectively), seem to appear often in other soaokié as well. Thus, thekEIDF,
EIDD and the final weightre low. These results show that e andIDF concepts
from text analysis are indeed applicable to gerauédio signals.

Table 4.14.TFIDF based audio element weighting on the trackoiends" (A)

No Description occu. dur. ETF EIDF ETD | EIDD | weight

1 | speech + noise 27 44 5 0.59 0.588 0.691 1.046 510)2

2 | laughter 102 218.0 | 0.699 | 1.411 0.61 1.597 0.96

3 | theme music 1 47.0 0.23p 1466 0501 1.582 0.274
4 | laughter + music 9 425 0.515 | 1.234 | 0.525 | 1.421 | 0.474

5 | speech 124 1148 0.786 0.674 0.897 0.967 0.459
6 | applause+cheerin 1 5.0 0.496 | 2.15 0.392 | 2.135 | 0.892

7 | TV music 1 3.0 0.036 1.711 0.03B 2.587 0.0p6

Table 4.15.TFIDF based audio element weighting on the trédckennis" (A)

No Description occu. dur. EDF IDF EDD IDD | weight

1 | clear speech 250 16580 0.576  0.1)7 0.66 0.6390430

2 | speech + applausg 108 34110 0.565 0.304 0.571 790.70.075

3 | music 1 22.0 0.431f 0.651 0409 1.135 0.13
4 | applause 106 3195 | 042 | 1.194 | 0.358 | 1.464 | 0.262

5 | silence 173 837.5 | 0.533 | 0.934 | 0.491 | 1.262 | 0.308

6 | noisy silence 32 96.5 | 0.465 | 1.117 | 0.404 | 1.452 | 0.304

7 | ball-hit 145 3075 | 0.641 | 054 | 0.598 | 0.92 0.19
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Table 4.16.TFIDF based audio element weighting on the trackGaflden Global Awards" (4

No Description occu. dur. EDF IDF EDD IDD | weight

1 | speech1 132 2025 0.646 0.249 0.705 0.81 0.p92

2 | speech 2 26 275 0.60f 0.304 0.669 0.91 0.112

3 | music + applause| 110 346.0 | 0.713 | 0.395 | 0.691 | 0.767 | 0.149

4 | music + applause 72 168.5 | 0.681 | 0.45 0.654 | 0.832 | 0.167

5 | music + speech 161 9005 0.792 0.1p8 0.795 0.54B051

6 | music 22 50.5 0.512 0.349 0544 0.784 0.076

7 | applause 143 485.5 | 0.506 | 1.043 | 0.458 | 1.374 | 0.332

8 | speech + applausq¢ 109 229.5 | 0.705 | 0.358 | 0.708 | 0.802 | 0.143

9 | background noise 211 4236 0747 0.216 0.139 20.620.074
(dense) music

10 68 260.0| 0.622| 0.363 0.623 0.814 0.114
+ applause

11 | speech3 487 28935 0.716 0.161 0.829 0.581 0.06

Table 4.17.TFIDF based audio element weighting on the trackBaind of Brother" (4)

No. Description occu. dur. EDF IDF EDD IDD | weight
1 | speech 187 577 0.684  0.132 0.621 0.568 0.p32
speech (gun back-
2 25 62.0 0.624| 0.183 0588 0.591 0.041
ground)
3 | speech 1 13.0 0.15¢Y 1.446 0.151 2.108 0.072
4 | speech 72 192 0.662 0.119 0.6p1 0.529 0.025
5 | heavy noise 11 24.5 0.501L 0.396 0.447 0.921 0.p82
6 | silence (some noisg 44 127.0 | 0.438 | 0.636 | 0.37 | 1.173 | 0.121
7 | noise 143 506.5 0.648 0.218 0.579 0.609 0.05
8 | speech 122 341.5 0.667 0.125 0.611 0.541 0.p27
9 | gunshot + speech 1| 128 714.0 0.4 0.704 | 0.402 | 1.069 | 0.121
10 | gunshot + speech 2| 85 2135 | 0.279 | 1.225 | 0.291 | 1.381 | 0.137
11 | background sounds| 51 1775 | 0.452 | 0.607 | 0.384 | 1.208 | 0.127
12 | applause 3 16.5 0.268 0.912 0.2B39 1.493 0.p85
13 | music 48 734.5 0.42 0.51f 0.482 1.0p2 0.107
14 | music + speech 4 45.0 0.423 0.475 0.447 1.0140910
15 | noise + speech 86 153/0 0.706 0.158 0.658 0.54@.04
16 | silence (w/ HF nois¢) 3 225 0.23 0.926| 0.22% 1.615 0.077
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Table 4.18.TFIDF based audio element weighting on the trackSeford Fish" (4)

No Description occu. dur. EDF IDF EDD IDD | weight

1 | speech+backgrounds 235 449.5| 0.811| 0.176 0.795 0514 0.058
2 | fighting sounds 1 57 228.0 | 0.31 1.017 | 0.334 | 1.557 | 0.164

3 | fighting sounds 2 155 453.0 0.645 0.242 0.645 207 0.073

4 | speech+backgrounds 86 242.0| 0.593| 0.413 0.5783 0.982 0.138
5 | speech 241 502.5 0.759 0.107 0.74 0.507 0.p31
6 | mixed backgrounds| 21 440 | 0.528 | 0.562 | 0.524 | 1.107 | 0.172

7 | speech 363 10055 0.793 0.115 0.7712 0.531 0.037
8 | speech+backgrounds 73 1145| 0.782| 0.101 0.7683 0.534 0.082
9 | speech+backgrounds 121 209.0| 0.692] 0.197 0.67 0.585 0.053
10 | backgrounds 404 1266|5 0.737 0.22 0.125 0.p87.07 Q

11 | speechinrepr. env 67 1295 0.413 0.566 0.401L.042 0.098

12 | music 13 69.0 0.506 0.468 0.497 0.9p2 0.113
13 | fighting sounds 76 155.5 | 0.345 | 0.877 | 0.34 | 1.347 | 0.138

14 | backgrounds 102 | 217.5| 0.604 | 0.448 | 0.588 | 0.929 | 0.148

15 | speech+backgrounds 247 445.0| 0.818 0.16 0.799 0.5839 0.058
16 | music 45 3115 0.601 0.388 0.609 0.83 0.118
17 | music 23 115.0f 0.394 0.653 0.402 1.248 0.129

The final TFIDF-based importance scores for all test sound trasksummarized in
Table 4.19. This table also lists the number ofi@atements#ele), the description of
each audio element and the corresponding weiglstooge sorted in the descending
order, and with the collected ground truth indidaite bold. The table shows that most
of key audio elements in the ground-truth are atlyeranked high, such as the
laughter, applause with cheeringandlaughter with musidin A;, and theapplauseand
music with applausi As.

If we also take the first four audio elements ag &adio elements in each audio
document, 11 out of 14 can be properly recalledfir8t sight, this performance seems
not as good as that based on heuristic rules. Henvefter further analysis, we find
that other audio elements ranked high DFIDF-based scheme are also quite
representative to the audio document, although they not included in the
ground-truth. For example, twsilenceelements found iTennissoundtrack (4) are
assigned the highest weights (the silence segmmsttgeen every two ball-hits are
clustered together). This is justifiable sirgikenceperiods are very representative for
the game and also are not that pronounced in stherd tracks in the test set. Also, in
the war and action movie gand Aj), some movie-specifibackground soundsare
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reasonably ranked high. These sounds are not sdlexg ground truth since test
subjects tend to choose the highlights as reprateatsounds rather than background
sounds.

Table 4.19.TFIDF based weighting for audio elements obtaimedlli sound tracks

No.| #ele. Discovered audio elements and corresponding weight

A 7 laughter(0.96),applause + cheering0.892),laughter + music(0.474), speech
! (0.459), theme music (0.274), speech + noise (9,254 music (0.006)

A . silence(0.308), noisy silence(0.304pplaus€0.262),ball-hit(0.19), music(0.13),
2

speech + applaus€0.075), clean speech(0.043)

applaus€0.332),music + applause £0.167),music + applause 1§.149),speech 4
applause(0.143)(dense) music + applaug®.114), speech 2 (0.112), speech 1
(0.092), music(0.076), background noise(0.074)esphe (0.06), music +
speech(0.051)

As| 11

gunshot + speech ®.137), background sounds(0.127), silence (sonse}(0.121)
gunshot + speech (D.121), music(0.107), music + speech(0.091), ajge¢0.085),
A,| 16 |heavy noise(0.082), silence (with HF noise)(0.08pEech(0.072), noise(0.05),
speech (gunshot background)(0.041), noise + spe&zt)( speech(0.032),
speech(0.027), speech(0.025)

mixed backgrounds (0.17Z)ghting sounds X0.164), backgrounds(0.148),
speech+backgrounds (0.138%hting sounds Z0.138), music(0.129),
music(0.118), music(0.113), speech in repressivg@1998), fighting sounds
2(0.073), backgrounds(0.07), speech+backgrounasgp.
speech+backgrounds(0.058), speech+backgroundsjpspi®ch(0.037),
speech+backgrounds(0.032), speech(0.031)

As| 17

4.4.4 Discussion

Based on the obtained results, we find that bogitaaches (scheme (4.13) and scheme
(4.23)) can achieve reasonable results. As als@irowed by our test panel consisting
of three subjects, most of the high-weighted awadénents indeed correspond to the
most important or representative sounds in thestashd tracks.

The obtained results also indicate that two appgres®f audio element weighting
are biased in different way. The single documestbaneighting scheme (4.13) gives
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high weights to those audio elements which satisiyje pre-defined criteria regarding
signal behavior. It is therefore suitable for sospecific applications relying on prior
knowledge and contextual information. TREIDF-based weighting scheme (4.23), on
the other hand, usually gives high weights to doentrspecific elements, that is, the
elements frequently appearing in their “own” docunleut hardly occurring in other
documents. A good example here is the elerapatch with noisevhich obtained the
second highest score in “Friends” jfased on (4.13), since it satisfies the expected
occurrence frequency and duration of a key audimeht. However, if (4.23) is used,
the low EIDF value pulls its weight down, and reveals that #lEment also appears
frequently in other documents. Compared to thidpeument-specific soundpplause
with cheeringhas received the second highest score based @).(@tis sound occurs
statistically much less in other audio documentsictv makes it€IDF, EIDD and the
final weight high. While the nature of theg-IDF-based scheme makes it suitable for
more generic applications than the scheme basegihgte-document analysis, we see
an interesting challenge in combining the two sok®ro improve the results even
further. This new scheme could namely make usa@ttailable prior knowledge and
optimally combine it with the reliable statistica audio signal behavior derived from
the available multiple audio documents.
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Chapter 5

Audio SceneDetectionand Clustering

Based on the discovered audio elements and theioriance weights, we proceed in
this chapter with the development of a method teg@an audio document into audio
scenes and group these scenes into meaningfueidush our approach, audio scenes
are characterized, detected, and grouped basdttautio elements they contain, just
as the paragraphs of a text document can be charat, detected and grouped using
a vector of words and their weights. As we statefibte, utilizing this mid-level audio
content representation enables us to split the sirsainference process into two
steps, which leads to more robustness compareaféaing the high-level semantics
from the features directly.

5.1 Audio Scene Segmentation

5.1.1 Comparative Study

In order to optimally position our proposed audieree segmentation approach with
respect to the previous work on the subject, we 8t section by a comparative study

This chapter is based on the following publicati¢aiso to be found in the list of references):

. Lu, L, Cai, R. and Hanjalic, A. “Audio Elements kdsAuditory Scene Segmentatioftoc. 31th Int'l
Conf. on Acoustics, Speech, and Signal Processalgy, 17-20, 14-19, 2006

. Lu, L, and Alan Hanjalic. "Text-Like Segmentatioh @eneral Audio for Content-Based Retrieval",
IEEE Trans. on Multimedijavol. 11, no.4, 658-669, 2009

. Cai, R. Lu, L, and Hanjalic, A. “Co-clustering féwditory Scene Categorization|EEE Trans. on
Multimedig vol. 10, no. 4,596-606, 2008
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considering feature-based approaches (e.g. [Veralgelp al. 1999][Sundaram and
Chang 2000][Chen and Gopalakrishnan 1998]), owipus work involving key audio
elements ([Lu et al. 2005][Cai et al. 2005]), awmthe related methods addressing the
problem of video segmentation [Kender and Yeo 1@%&jjalic et al. 1999]. For this
purpose, we illustrated different classes of aséigmentation approaches in Fig. 5.1.

Most previous works that aimed at extracting higleeel audio content semantics
either assumed the audio scenes were manuallyegreented [Cai et al. 2005][Cheng
et al. 2003], or rely on a direct feature-basedysimato automate the segmentation step.
There, audio segments are typically defined to a@d with a consistent feature
behavior. For example, a method was introduce¥/@nfigopal et al. 1999] to segment
an audio stream in terms of speech, music, speaidigender based on the features
like tonality, bandwidth, excitation patterns, tbdaration, and energy. In [Sundaram
and Chang 2000], a segmentation method was presth#tuses the features, such as
cepstral and cochlear decomposition, combined with listener model and various
time scales. Finally, the method [Chen and Gopalhkan 1998], originally proposed
for speaker segmentation in broadcast news speechd @&mploying
information-theoretic measurements of signal cdesisy across the control point
within a sliding window, was adopted in [Ellis ahde 2004] and applied to general
audio data. A typical feature-based approach isstitated in Fig. 5.1(a). There, the
consistency of the feature behavior is measurekini sliding windowwW and across
the control point at the time starhjn the middle of the window. If the inconsistensy i
larger than a predefinethreshold, a boundary is detected at the time stafmihme
control point.

These and similar approaches to audio parsing lpaeeed effective for many
applications, and in particular for those where Wealge about the presence and
distribution of the basic audio modalities (speeamysic, and noise) is critical.
However, for other applications, like those wheighkr-level semantic concepts (e.qg.
audio scenes) become interesting, the feature-teggmwaches usually can not handle
large content diversity of such semantic concepts] therefore typically result in a
(heavy) over-segmentation of an audio document.

In [Lu et al. 2005], a simple segmentation schenas wresented that employs a
pre-defined set of key audio elements. As showrign 5.1(b), two adjacent key audio
elements are assumed to belong to different audames if the time intervaht
between them is longer than a prespecified thresholn this way, the boundaries of
an audio scene are marked by the first and thekmgstaudio element in a series of
adjacent key audio elements following each othghtly over time. Clearly, the
algorithm is naive and does not fully exploit theationship between audio elements
and audio scenes. To improve the detection perfocmgCai et al. 2005] introduced
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|:| Key Audio Element

t @)

(b)

Fig. 5.1 An illustration of different classes of previouspapaches to audio scene segmentation,
where the vertical lines symbolize scene boundasiesandidate boundaries (a) using feature
behavior consistency within a sliding window, (b3ing time interval between key audio
elements, (c) using semantic affinity between nleoging key audio elements, and (d)
investigating the relationship among the audio eletsion a larger temporal scale.

the notion ofsemantic affinityA between two contiguous key audio elements, as an
exponential function of the time interval separgtihe elements. As shown in Fig.
5.1(c), an audio scene boundary is found betweenatyacent key audio elements if
their semantic affinity is below a predefined thralsl T. However, in both cases the
real audio scene boundary falls somewhere betwhentwo limiting key audio
elements, which makes precise audio document segtimmnot possible in a general
case.

It may be too strict to base the detection of ausi®ne boundaries on the
comparison of two subsequent key audio elementg. gnlmore intuitive approach
would be to allow more flexibility in the orderingf key audio elements, as long as



94

their mutual distance remains acceptable, whignislar to some classical video scene
segmentation approaches [Kender and Yeo 1998][Hamtal. 1999]. As illustrated

in Fig. 5.1(d), an approach in this direction wodktide about the presence of a scene
boundary at time stantpbased on an investigation of the semantic affifityetween
(key) audio elements taken from a broader rangesarmdunding this time stamp.

5.1.2 Proposed Approach

The performance of the segmentation methods desteabove strongly depends on the
definition of a key audio element and the reliabibf its detection. Crisply defining
key audio elements and detecting them in compasitio documents may be rather
difficult due to various combinations of multipleigerimposed audio modalities.
Therefore, a more reliable solution would be to kvaith all audio elements instead,
and rely on their importance weights obtained gdagxed in Chapter 4. In view of this
and the abovementioned broader-range investigatienpropose a novel approach to
audio scene segmentation, in which

- we first revise the basic concept of semantic affifiCai et al. 2005] by
working with all audio elements and their importanweights, and by
considering the co-occurrence information for eaain of audio elements, and

- we adapt the successful concept aointent coherencé&nown from video
segmentation [Hanjalic 2004] to evaluate the seioaifinity values obtained
along an audio document and to infer the presehaadio scene boundaries.

We llustrate our proposed approach in Fig. 5.2t tflrows an example audio
element sequence. There, each block belongs tadio alement and different audio
elements are represented by different grey valkesh time stamp separating two
audio elements can now be considered a potentidib ascene boundary, and the
confidence of having an audio scene boundary atotieerved time stamp can be
obtained by computing the semantic affinity betwéssn audio segments drawn from
the left and right audio element “buffers” (indiedtasL-Buf and R-Bufin Fig. 5.2)
surrounding that time stamp. The two buffers jgifidrm the sliding window in which
the analysis for the observed time stamp (middidefwindow) is performed.

In the following sections, we first define a newasere of semantic affinity between
two audio segments. Then, an intuitive segmentatareme is presented in which the
proposed affinity measure is used to compute tididence of having an audio scene
boundary at a given time stamp in a composite addia stream.
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|:| |:| |:| Audio Element

Potential boundary

Fig. 5.2 An illustration of the proposed approach to audiement based audio scene
segmentation, wherg ands are two audio segments, agcinde are their corresponding audio
element identities

5.1.3 Semantic Affinity Measure

Semantic affinity is introduced as a mean to defteerwhether two audio segments are
likely to belong to the same semantic scene. Fatigwithe idea of text document
analysis, the measure for semantic affinity shootd be based on the low-level
similarity between two audio segments, but on tfait ability to mark a meaningful
(semantically coherent) piece of audio. We meashi® joint ability for two audio
segments by observing the co-occurrence statigtidsthe importance weights of the
audio elements contained therein and the time Jateseparating the segments.
Inspired by the video segmentation approach fronenfer and Yeo 1998], our
definition of semantic affinity is based on theldating intuitive assumptions:

1) there is a high affinity between two audio segmditee corresponding audio
elements usually occur together;

2) the larger the time interval between two audio seqs) the lower is their
semantic affinity, and

3) the higher the importance weights of the correspandudio elements, the more
important is the role these elements will playlie segmentation process, and
therefore the more significant the semantic affinfalue computed between
them will be.

In view of the above assumptions, the semantiaigffibetween audio segmergs
ands can be computed as a function consisting of tlemaponents, each of which
reflects one of the assumptions stated above. \Wgope the following measure:

A(s,s;) =Co(e e )e " *""W(e,D,)W(e,D,) (5.1)
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Here, the notatiore and g is used to indicate the audio element identitieghe
elementary audio segmengsands;, that is, to describe their content (e.g. speech,
music, noise, or any combination of thes&ffe, D) andW(g, D) are the importance
weights of audio elements and g in the audio documerd,. T(s, §) is the time
interval between the audio segmesgtands, andT,, is a scaling factor, the value of
which is selected based on the discussions on hunamnory limit [Sundaram, and
Chang 2000]. The exponential expression Tgs, §) is inspired by the content
coherence computation formula introduced in [Kended Yeo 1998] to model the
“content recall” in the context of video segmeruatiFinally,Co(e, g) stands for the
co-occurrence between two audio elemengsde in the audio documeim,.

To estimate the co-occurrence between two audimeries, we rely on the average
time interval between them as a reference. Thetahtitis average time interval, the
higher is the co-occurrence probability. Inspireg this, the valueCo(e, g) is
estimated using the procedure that is summarizéukifollowing three steps:

1) We first compute;, the average time interval between audio elemgmtsde.
This value is obtained by investigating the neighbods of the observed audio
elements in the input audio stream. For each oenue of audio elemest, the
nearest occurrence @& is found, and therD; is obtained as the average
temporal distance between these two occurrences.

2) As an analogy t®;, we also computB;. It is clear thaD; may not be equal to
D; in some cases;

3) We then compute the co-occurrence value as
B Djj +Dji

Co(e,e)=e 2P (5.2)

whereyp is the mean of alD; and D; values. The choice for an exponential
formulain (5.2) is made to keep the influence udia element co-occurrence on
the overall semantic affinity comparable with théiuience of the time interval
between the audio segments (5.1).

Having defined the semantic affinity (5.1), we gasw compute the confidence of
being within an audio scene at the time stamfo do this, we adopt the general idea
of overlapping similarity link§Hanjalic 2004] introduced in various forms in pi@is
works on video segmentation (e.g. [Kender and Y@68][Hanjalic et al. 1999]).
Based on this idea, the more similarity links cam dstablished between audio
segments surrounding a given time stagnd the stronger these links are, the higher
is the confidence that this time stamp is withinaadio scene. Therefore, we choose to
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Fig. 5.3 An example of the smoothed confidence curve ared g¢hdio scene segmentation
scheme, wher8,~S; are five obtained audio scenes didandTh, are two thresholds.

compute this confidence simply by averaging theasgio affinity values computed for
all pairs of segments ands surrounding thé, that is,

Ct) = —=

N| NI’

2.2 AGss)) (5.3)
| r i=lj=1

whereN, andN, are the numbers of audio segments considered etethand right
from the potential boundary (as captured by therualsL-Buf andR-Bufin Fig. 5.2).

5.1.4 Segmentation Scheme

By combining the expressions (5.1) and (5.3), thrfidence measure is written as,

C(t)= Ni%‘ i Co(e,e)e " ™W(e,D,)W(e,D,) (5.4)

(N i =L

Using this expression, a confidence curve can kaimdd over the timeslots of
potential boundaries, as illustrated in Fig. 5.8e Doundaries of audio scenes can now
be obtained simply by searching for local minimatkeé curve. In our approach, we
first smooth the curve by using a median filter &meh find the audio scene boundaries
at the places where the following criteria areifield:

Ct) <C(t+1); C(t)<C(t-1); C(t)<Th (5.5)
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Here, the first two conditions guarantee a locdleyawhile the last condition prevents
high valleys from being detected. The threshbidcan be set experimentally (as will
be discussed in the experimental section).

The obtained confidence curve is likely to contaimg sequences of low confidence
values, as shown by the segm&ntin Fig. 5.3. These sequences typically consist of
audio elements representing various backgrounddspumhich are weakly related to
each other and also have low importance weightgeSit is not reasonable to divide
such a sequence into smaller segments, or to nleege into neighboring audio scenes,
we choose to isolate these sequences by includlicgrassecutive audio segments with
low affinity values into a separate audio scendeBteng such scenes is an analogy to
detecting pauses in speech. Inspired by this, weheecorresponding thresholdhg in
Fig. 5.3) by using an approach similar to backgbuaoise level detection in speech
analysis [Wang et al. 2003].

5.2 Audio Scene Clustering

Clustering theory [Jain and Dubes 1988] provides tost intuitive framework for
grouping semantically similar scenes together insupervised fashion. In traditional
one-way (or one-directional) clustering algorithsisch as K-means, the similarity
between two scenes is estimated by measuring sh@ndies among the relevant points
in the feature space, and by assuming that eathwréeprovides equal contribution to
the distance measure. However, due to the likebugng trends (co-occurrences)
among the features, such assumption is not alwafysfied in practice and usually
leads to a suboptimal clustering performance,his $ection, we first investigate local
grouping trends among audio elements, and thenaixgiow such trends can
positively affect the measurement of audio scemelaiity. To employ these grouping
trends to effectively group audio scenes, we prepam approach based on
co-clustering Co-clustering (also referred to &é-clustering is a simultaneously
bidirectional clustering algorithm, which has altgabeen employed successfully in
other research fields like bioinformatics [Hanisehal. 2002][Madeira and Oliveira
2004] and text analysis [Dhillon 2001][Dhillon at&lian 2003][Dhillon et al. 2003],
mostly acting as a tool for generating co-occureestatistics. In this chapter, we show
that co-clustering can lead to better audio sceneping results than the traditional
one-way clustering approaches. Moreover, while ¢chester number in the existing
co-clustering algorithms is assumed to be knowwoiteéfand, we introduce a method to
automatically select the optimal cluster numberapplying the Bayesian information
criterion.
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Fig. 5.4.Local feature grouping trend and its influenceloa distance measure

5.2.1 On Local Grouping Trends

It is known from the field of pattern classificatidhat different features (or feature
combinations) may provide different contributions distinguishing between the
samples belonging to different classes. Variousorilyms, such as the Bayesian
structural EM [Friedman 1998], can be utilized ¢arh this information and estimate
optimal models and parameters for improving clésstifon accuracy. However, in the
unsupervised case, the absence of training sampé&ss it difficult to discover such
latent relations between features and data clysadtieough these relations exist and
also affect the clustering performance. Mapped dmeospecific problem addressed in
this section, this would mean that given the awgtienes and their representations in
the form of audio elements, and with the absencearof deeper analysis, each
individual audio element will contribute equallyttee distance measure, what may not
always be a reasonable approach in practice.

In order to improve the reliability of scene clugtg in a general case, we
investigate how the relations among audio elemehtnge locally depending on
various potential audio scene clusters. We wilerdb such relations further as the
local grouping trendsIn the remainder of this section, we will go deejnto the
analysis of these trends and their influence otadée/similarity computation. We will
first discuss the grouping tendency among the featas a general case. Then, we will
map this discussion onto our work context and edpatowards local grouping trends
among audio elements and their influence on unsigest audio scene grouping.
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5.2.1.1 Grouping Tendency at the Feature Level

Fig. 5.4 illustrates an example of a local featyr@uping trend and its influence on a
distance measure. Fig. 5.4(a) shows three datdaspdji, andC located on the, vy,
andz axes of a 3-dimensional feature space, respegtiged all at the same distance
from the origino. If x, y, and z are independent of each other, then we have
[IAB||=|BC||=|CAl|. Now, we assume that it has been known thdterdata set there is
a cluster whose data points lay on khey surface, as indicated by the reg®iin Fig.
5.4(b), whereA andB belong to clusteD while C does not. Then, in order to properly
reveal the cluste® after clustering, the distance from the pdinto each of the points
A or B should be larger than the distance betw&emdB, i.e., |AB||<|BC||=|CA]|. In
other words, we can say that the dimensiwrandy are apt to béocally groupedor
correlated given the distribution of data clugterSuch locak - y grouping should be
considered in the distance measure to properlyatebe clustem. In the clustering
practice, however, such local grouping trends anfergures cannot be analyzed in
advance since data clusters |Reare unknown. As a matter of fact, revealing such
clusters is the purpose of clustering.

5.2.1.2 Grouping Tendency among Audio Elements

Recognizing and interpreting the grouping trend®rmgnaudio elements can even be
more intuitive than for the abstract case involvambitrary features as discussed above.
To show this, we consider the example illustrated-ig. 5.5. This case involves 8
audio scenes, each of which is described by tharoace probabilities of four audio
elements. The matrix of occurrence probabilitiesmmdésmalized to 1. In a one-way
clustering approach, all four audio elements arsicered independently in computing
the similarity measure between the scenes, whishltee in four scene categories
indicated by (a)-(d). However, a manual analysishef content in the scenes suggests
that the above grouping leads to over-segmentaticdhe content, and that grouping
the scenes into only two categories would be mpmapriate. The first of these two
categories, indicated &s can be labeled agar, and consists of scene groups (a) and
(c). The second one, the categ&yrepresenthiumor and includes scene groups (b)
and (d). Here, we can say that the dimensionshekringand laughter are locally
grouped (or co-occur) given the samples from llenor scene. To discover these
relations automatically, an algorithm should ledhat a gun-shotusually occurs
together withexplosionin war scenes, whileheeringandlaughter often co-occur in
humor scenes. More generally, since there are combmatal audio elements that
often explain the semantics of audio data muchebethan the elements taken
individually, we need to develop an audio scenesteling mechanism that can
effectively discover and exploit the grouping temceamong audio elements.
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Audio Element Groups

N

gun-shot explosion cheer laughter

scene 1 0.100 0.025 0.000.000 !

scene 3 0.000 0.000 0.100.025 !
scene 4 0.000 0.000 0.109.020

E scene 5 0.025 0.100 0.000.000!
B (C)i scene 6 0.020 0.105 0.00(D).OOOE

Audio Scene Groups

Fig. 5.5.An illustration of audio scene categorization luhee audio elements

5.2.1.3 Discussion

Based on the analysis above, to achieve betteteding results, the local grouping
trends among audio elements should be exploitétipoove the audio scene similarity
measurements. However, in order to reveal such tpoaping trends from data, audio
scene clusters should be known beforehand. In wiethis, the grouping phenomena
discussed above can optimally be exploited in thstering process only by jointly

pursuing the processes of clustering audio scenésdescovering the local grouping
trends among audio elements. While this chickeneggl problem can be solved in a
supervised learning context offline through an gsial of training data, finding a

solution in an unsupervised context is difficulépecially if the traditional clustering

mechanisms, like K-means, are deployed. Although ayuld think in the direction of

some well-known statistical data pre-processing hraeisms, such as principal
component analysis (PCA) [Shlens 2005] and indepeindomponent analysis (ICA)

[Hyvarinen and Oja 2000] as possible means to ambr@ reasonable solution, we
emphasize that PCA and ICA have an entirely diffeabjective than the one defined
in this chapter, and are not suitable for this psg They only search for global
correlations among features and are used in geteeratuce the dimensionality of the
data set.
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5.2.2 Co-clustering of Audio Scenes and Audio Eletne

As the local grouping trends depend on the audimeht co-occurrence in the samples
from various audio scene clusters, an intuitiveusoh to reveal such trends is to

cluster audio elements based on their co-occurriirsteThe revealed relations among

the elements are then used to measure similadtiesng scene samples and to form
audio scene clusters. Based on the obtained isiti@he clusters, the group relations
among elements can be refined and then employadsetond round to provide better
scene clusters. However, for the above iteratiusteting process the convergence is
difficult to prove theoretically [El-Yaniv and Scawjon 2001], and there is no

plausible criterion, based on which such iteratixecess can be stopped.

In this thesis, we propose an alternative clusgerampproach based on the
co-clustering idea. Co-clustering provides the fmi&ty for a simultaneous clustering
of audio elements and audio scenes, and it waadlrproved to converge toward a
local minimum. Two different co-clustering approashhave been proposed in recent
literature. One of them is based on spectral ggptitioning [Dhillon 2001], and the
other one is an information-theoretic approach [Phiet al. 2003]. We choose to
develop our co-clustering method based on therlatkea of information-theoretic
co-clustering (ITCC), since it imposes fewer practical restdos than the first
approach While the cluster number in the ITCC approach assumed to be known
beforehand, in our approach we expand this apprdgclemploying the Bayesian
Information Criterion (BIC) [Kass and Wasserman 39 automatically select the
optimal numbers of clusters for both audio scemesaadio elements.

5.2.2.1 Information-Theoretic Co-Clustering

The information-theoretic co-clustering [Dhillon ak 2003] effectively exploits the
relationships among various audio elements andoasdénes using the concept of
mutual information We now assume that there aneaudio scenes to be clustered and
that n audio elements are used to represent these scAmef scenes can be
considered as being generated by a discrete ramdwisble S, whose value is taken
from the set §, ..., Si}. Similarly, audio elements can be assumed geedraly
another discrete random varialide whose value is taken from the set,{..., &}. Let
p(S, E) denote the joint probability distribution betweBmandE. As S andE are both

3 In spectral graph partition-based co-clusterimng, humbers of clusters in both feature dimensiors a
samples should be the same. Such assumption s$ricioin the context of our work.
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discrete,p(S, E) is anmxn matrix, whose elements can be representeg(Bye),
which represents the co-occurrence probability mfaadio elemené and the audio
sceneS Such a matrix is often called a two-dimensiomahtingency tableor
co-occurrence tablerig. 5.5 shows an example of such a co-occurrtaiide. Now we
also assume th&andE could be grouped intoand! disjoint clusters denoted aS'{,
..., Sy and {e, ..., e}, respectively. These clusters could also be me@ms being
generated by two discrete random varialsleandE".

We start our approach by measuring the amount fofrivation shared betwee®
andE, that is, by computing the mutual informati{f; E):

p(S.e)

I1(S;E) = S, o)l _
(SE)=2. 2. P59 55 0

(5.6)

The mutual information is taken as a measuremettheforiginal information of the
data collection, controlled by latent relationsvien the variable$ and E. The
co-clustering criterion states that the mutual iinfation (5.6) should not change too
much during the clustering, as the objective ofdhsstering is just to reveal the latent
relations between the two variables. Based on sasdumption, it was shown in
[Dhillon et al 2003] that the optimal co-clusteringethod should target the
minimization of theloss of mutual informatioafter the clustering, i.e., for the optimal
clusters we can write,

(S,E")= SrpiEr}{I(S;E)—I(S*;E*)} (5.7)
The loss of mutual information can be represenged a
I(S;E)=1(S";E") =KL(p(S,E), (S, E)) (5.8)

whereq(S,E) is also a distribution in the form of anxn matrix, with each element
defined as:

q(S.,e) = p(S',e)p(S|S ) p(e|e’ ), whereSOS el e (5.9)

and whereKL(f, g) denotes th&ullback-Leibler(K-L) divergence orelative entropy
of two distributiond () andg(x):

- f(x)
KL(f,g) =Y f(x)log,—— :
(f.9) ZX: (¥)log, a(x) (5.10)
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As also shown in [Dhillon et al 2003], theL divergence in (5.8) can be further
expressed in a symmetric manner:

KL(P,o) =Y ¢ Yo & PSKL(P(E|S),q(E|S)) (5.11)

KL(p.a) =Y > PEKL(p(S|e).a(S|e)) (5.12)

From (5.11) and (5.12), we can see that the lossnofual information can be
minimized by minimizing thé-L divergence betweep(E |S) andq(E |S), as well as

the divergence betweep(S|e) and q(S|e). This leads to the following iterative
four-step co-clustering algorithm:

Algorithm Co_Clustering (p(S, E), k, I):

1. Initialization: Assign all audio scenes intoclusters, and audio elements ihto
clusters. Then compute the initial value of thmatrix.

2. Updating audio scene clusteSor each audio scet®find its new cluster index
i as:

i =argmin, KL(p(E | S),q(E | S)) (5.13)
Thus theK-L divergence op(E |S) andq(E |S) decreases in this step. With new

cluster indices of audio scenes, updategth@atrix according to (5.10).

3. Updating audio element clusteBased on the updategdmatrix in step 2, find a
new cluster indekfor each audio elemeptas:

j = argmin, KL(p(S|€),a(S|q)) (5.14)

Thus theK-L divergence op(S|e) andq(S|e’) decreases in this step. With new
cluster indices of audio elements, updatectiheatrix again.

4. Re-calculating the loss of mutual informatidhthe change in the loss of mutual
information is smaller than a pre-defined threshalip the iteration process
and return the clustering results; otherwise gstép 2 to start a new iteration.

[Dhillon et al. 2003] proved that the above itevatiprocess results in a monotonic
decrease in the loss of mutual information and gdw@nverges to a local minimum.
In the implementation of the process, the “maxigédr-apart” criterion is used to
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select the initial cluster centers, and the loedrsh strategy is employed to increase
the quality of the local optimum [Dhillon and Gu&0D03]. The algorithm is
computationally efficient and its complexity @n-z- (k+1)), wheren is the number of
non-zeros ip(S, E) andr is the iteration number.

5.2.2.2 Estimating the Number of Clusters

In the co-clustering algorithm defined above, tlhwnbersk andl of audio scene and
audio element clusters, respectively, are assumetbet known. However, in an
unsupervised approach, it is difficult to specifie tcluster numbers beforehand. Thus,
an effective approach to estimate these numbeosratically is required.

While the loss of mutual information is used as ttréerion to evaluate the
clustering results, it is also possible to use thiterion to choose optimal numbers of
clusters. However, according to the definition, tbes of mutual information has its
inherent variation trend with the change of clusteimbers, that is, more mutual
information is reserved if more clusters are ugeat. example, whek and| are both
one, there is 100% of mutual information loss. Cameg to this, there is no mutual
informationloss if the cluster numbers are equal to the oaigimumbers of samples.
Therefore, we can not get reasonable numbers sfetkiif we only rely on the loss of
mutual information. However, from the viewpoint etatistics, clusters can be
considered as a model describing the data diskoibuT herefore, with more clusters,
the model complexity (the number of parameterdiarhodel) increases significantly.
From this viewpoint, we can use the criteria IB&yesian information criterio(BIC)
[Kass and Wasserman 1995] to select the optimatelunumbers by balancing the loss
of mutual information and model complexity. For tarsce, inK-means clustering
[Pelleg and Moore 2000], the BIC trades off theadkitelihood L with the model
complexity ®|. In practice, the former has a weighting factpwhile the latter is
modulated by the logarithm of the total numberarhplesT in the database. This leads
to the BIC formulation as

BIC:AL—%|®|Iog(F) (5.15)

In our co-clustering scheme, the implementatiorthef BIC criterion is somewhat
different from the one frequently used in one-whystering. First, given the values of
k andl, the data likelihood. could be approximated by the logarithm of theorati
between the mutual informatio(S; E’) after clustering and the original mutual
information I(S; E). It is assumed here that the model reserving nmorgual



106

information would have a higher "probability” ta the data. Second, as co-clustering
is a two-way clustering, the model complexity heheuld consist of two parts: the size
of audio scene clustersXk: k cluster centers of dimensionality, and the size of
audio element clustersnkl: | cluster centers of dimensionality). According to the
definition of BIC, these two parts are further miaded by the logarithm of the
numbers of audio scenes and audio elements, ge &nd log, respectively. This
brings us the following definition of the BIC to lieed in our co-clustering scheme:

I(SE") .nk

BIC(k,I) = Alog sn 2

mi
Iogm+7logn) (5.16)

In the implementationd is set experimentally asxn, which is the size of the
co-occurrence matrix. The algorithm searches oNékd) pairs in a pre-defined range,
and the model with the highest BIC score is cha@setihe optimal clustering result.

5.2.2.3 Construction of the Co-occurrence Matrix

To apply co-clustering on our obtained audio scemes first need to construct the
co-occurrence matrix (or contingency table) linkihg scene set and audio elements
set. While previous related approaches to audisteting mainly rely on key audio
elements to infer the semantics of audio scenesfoli@v the approach we already
introduced for audio scene segmentation and usauwalo elements to reveal the
natural audio cluster structure. Further, what wevk about the input audio track is the
presence and duration of discovered audio elememtseach detected audio scene.
Therefore, the occurrence probability of the awgl@mentg in the audio scen§ can
simply be approximated by the duration percentams; of g in S. If an audio element
does not occur in the scene, its duration percenitaget to zero. Finally, to satisfy the
requirement that the sum of the co-occurrence ibigton is equal to one, the
co-occurrence matrig(S, E) is normalized as:

P(S.€;) =occy /3,7, >0 ocey, (5.17)

5.3 Experimental Evaluation

In this section, the performance of the proposqat@h to audio scene segmentation
and clustering is evaluated based on the datactiolfe containing 5 hours of sound
tracks listed in Table 4.1 (Chapter 4) and theesponding audio elements discovered
therein.
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5.3.1 Audio Scene Segmentation

For evaluating the performance of audio scene setatien, we first created the set of
ground truth audio scene boundaries. For this task,employed a number of test
persons who are instructed on how to understanddheept of an audio scene. For the
situation comedy (A and movies (A and A), we linked the audio scenes to the
concept of video scenes, for which we adopted #fimition of an episode or a logical
story unit [Hanjalic et al. 1999], that is, a meagful segment related to a particular
action or event, location or time. As other twottesquences in our data set (award
ceremony and tennis) show the events taking placene location (i.e. the show stage
or the tennis court, respectively) and do not feli typical episode-based structure as
sitcoms or movies, a slightly different understaigdof an audio scene needed to be
adopted there. For instance, in the award cererfsg)ywe targeted the segments like
those where the host announces the nominees andirther, and where the winner
approaches the stage while the audience is applgudimilar event-based scene
concept was targeted for the Tennis sequencg, (#here, for instance, an event
starting with a serve and ending by the score ohacen be considered a scene
potentially interesting for retrieval, as well &g tscenes of a break characterized by the
speech of the anchorperson commenting the match.

As the instructions given to the annotators weregtiact, but only meant to help
them to approach the annotation problem at thet agtraction level, different audio
scene sets could be expected from different arorstaiVhile some of the audio scenes
were obvious and were detected by all annotatorauraber of boundaries were
proposed only by some of them. We refer in thisgpap these two sets of ground-truth
audio scene boundaries as tlrele and probable ones, respectively. Probable
boundaries appeared mainly at parts of our dataveete the semantic content flow
can be followed at different abstraction levelsr Egample, in the award ceremony,
the turns between the played excerpts of nominatedies were often marked as
additional audio scene boundaries. In total, weioled 295 true boundaries and 186
probable boundaries from five sound tracks.

In the following, we present and discuss the resaft two experiments that we
performed to evaluate the performance of our agdiene segmentation approach. In
the Experiment 1, we compare the segmentation peafiace of our approach based on
audio elements with the performance of typical deatbased approaches. To make the
results and the related discussions more completexperiment with several variants
of our approach, in which we investigate the impHdifferent design choices that we
introduced in Section 5.1.3, such as the choiceingfortance weights and the
assumptions underlying our definition of semanti€indy (5.1). While in this
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experiment we worked with the fixed length of thefers L-Buf and R-Buf (see Fig.
5.2), in the Experiment 2, we investigate the ieflae of this length on the
segmentation performance and justify the buffegiierused in the first experiment.

5.2.1.1 Experiment 1. A Comparative Analysis

The feature-based approach implemented as a retefenthe comparison follows the
general idea illustrated in Fig. 5.1(a), where Hegmentation is simply done by
investigating the feature consistency within aisltidwindow. In the first variant of the
feature-based approach, we simply use the medmedeature vectors to represent the
segments on the left and right from the candidaienbary, and then the feature
consistency is measured by a cosine distance:

cy=—1

= 5.18
If Qe (548

wheref, andf, are the average feature vectors on the left it from the candidate
boundary.

The other variant follows the approach proposeldEilis and Lee 2004], which uses
the Bayesian information criterion (BIC) [Kass aWhsserman 1995] to evaluate the
feature coherence across the candidate boundatyisth

L(s|M) )_i IM [llog(N, +N.) (5.19)

C(t) = BIC(t) = Iog(L($ IMOIG (M) 2

where s represents the entire set of elementary audio setgmwithin the sliding
window, ands and s are the segments on the left and right from thedickate
boundary. Furthermord,(sjM), L(s [M)) andL(s [M,) are the likelihoods of the data
setss, § ands, under the corresponding mod#ls M, andM,, respectively, which are
defined as Gaussian models in our implementatiorally, ||M|| refers to the number
of model parameters. As explained in [Ellis and P8@4],/ is a tuning constant that
can be used to regulate the (over-) segmentatiatetey of the method.

The two variants of the feature-based approachritbest above will be compared
with four variants of our proposed approach. Thstfiwo variants use the same
general formula for semantic affinity (5.1) and gentent coherence (5.3), but work
with a different or more limited amount of inforrr@t about audio elements and their
individual or joint behavior to compute the semar#ifinity. The first variant{arl)
does not use the importance weights of audio elesneor the information on their
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Table 5.1 A summary of six approaches (variants) in theegixpents

ID Approach (variant)

ml audio element based, with rule-based weights, €9.(5

m2 audio element based, with TFIDF-based weights5eb).(

m3 audio element baseWdr 2), without weights, , eq.(5.21)

m4 audio element baseWdr 1), without co-occurrence, eq.(5.20)
m5 feature-based, with BIC approach, eq. (5.19)

m6 feature-based, with COS similarity, eq. (5.18)

co-occurrence, but relies on their features to omeashe similarity between two

segments. In fact, this variant of our approacfediffrom the traditional feature-based
approach only in that it searches for audio scementharies between audio element
blocks (see Fig. 5.2) and not on a continuous tivede. Therefore, it can be also
considered as another feature-based method. lsdkesthe semantic affinity becomes,

-T(s,8))/Tm

A(s;,s;) = Sim(s;, s))e (5.20)
where the feature-based similari§im(s, s) is also computed using (5.18). To
explicitly evaluate the influence of the importangeights of audio elements on the
parsing performance, we also define a second wafianr2) of our method that relies
on co-occurrence between audio elements but daeskeinto account the weighting
of each audio element. In this case, the semafiitiityabecomes
ITm

A'(s..s;)=Co(g e )e &

(5.21)

Further two variants of our proposed approach hath the semantic affinity as
defined in (5.1), but differ in the way the imparta weights are computed (i.e.
rule-based vs. TFIDF-based). The six segmentati@hods described above are
summarized in Table 5.1. We will further referrtd-m3 as the audio-element based
methods, and tm4-m6 as the feature-based methods.

In methodsml-m4, the value of the buffers L-Buf and R-Buf is s&tl6 seconds,
based on the results of the Experiment 2. In otdgyerform a fair comparison with
methodsm5 andmg6, we set the length of the sliding window there3® seconds,
which is equivalent to having the buffers L-Buf aReBuf of 16 seconds surrounding
the control point (candidate boundary) positionethe middle of the window.



110

== ml

——m2

w3

Precision

——m4

——mb5

Mk

0 01 02 0.3 04 05 06 07 08 09 1
Recall

(@)

== ml

—4—m2

e 3

il M

—i—m5

0.3 —+=mb

6] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

(b)
Fig. 5.5. Precision-Recall curve obtained for all six metha@hd for (a) true, and (b) both true
and probable boundaries considered as groundiinuthdaries

In order to investigate the segmentation performanith respect to both true and
probable boundaries, we define two experimentalpseta strict and a loose one. The
strict setup considers only the true boundariegrasind-truth boundaries, and the
probable ones — if detected — are considered ss &éarms. In the loose setup, we treat
both the true and probable boundaries as ground-traundaries. Moreover, in our
approach, the confidence curve obtained by (5.4irgs linearly normalized to [0,1]
based on the maximum and minimum value in the ¢ureéore employing (5.5) for
boundary detection. In this way, the curves frofifedent audio tracks are normalized
into the same value scale, so that a consiSientan be used across different audio
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tracks. Finally, a detected boundary is associatigd an annotated boundary if they
are mutually closest to each other, based on wthieliecall and precision of boundary
detection are calculated.

Fig. 5.5(a-b) shows the precision and recall cunlg@ained for the six methods from
Table 5.1, obtained by varying threshdil in (5.5) (in the range [0,1]), and for two
different setups described above. Based on thesdtsein addition to the expected
structural increase in precision if both the trae arobable boundaries are considered,
the most significant result supporting the ratienakhind the approach presented in
this chapter is that the segmentation based oroaldments performs better than the
one using traditional feature-based approachess Tifference in performance
becomes visible if one compares the curves clusiem2andm3with the clustem4,
m5andm6. Especially in the relevant parts of the precigiecall curves, that is, those
with sufficiently high recall values (e.g. above6)). the dominance of the
audio-element based methods becomes clearly visible

Regarding the feature-based methodgtn6), a generally lower performance in
terms of precision can be traced back to the di&oensn Section 5.1.1, in which we
addressed the incapability of these methods tauoaphe entire content diversity of a
high-level semantic concept. This results in awgtienes that are typically short, at the
level of basic audio modalities (e.g. speech, musiise) and of no higher (semantic)
meaning. If we compare the performance of the nusthod, m5andm6 we observe
that the more sophisticated metho8 indeed performs structurally better than a simp-
ler methodmé6. Further, compared to the methad$ and mé6 that check for the pres-
ence of an audio scene boundary between every tdin degments, the method4
focuses on the boundaries between audio elememt&h(Fig. 5.2) as the candidates
for an audio scene boundary. This focus may neglgtiinfluence the segmentation
performance in terms of recall, which is partlyibis from the comparison with
methodm5. However, this focus may also help de-noise th@saudio scene bounda-
ries, which is visible in particular when the simphethodm6is taken as a reference.

To investigate the impact of various design chomeshe segmentation performance,
we focus in the analysis of the audio-element basetthodsnl, m2andm3on each of
these choices separately. Regarding the audio atemeighting mechanism (i.e.
rule-based vs. TFIDF-based), a comparison of thfopeance of methodsi1 andm?2
shows that both weighting mechanisms lead to aerathmilar performance, with a
slight dominance of the rule-based weights in higleeall value ranges. The positive
impact of audio element co-occurrence on the setatien performance is clearly
visible from the comparison of methoa8 andm4. The same conclusion, although not
as obvious as in the case of co-occurrence, cairdwen regarding the impact of the
importance weights. It is namely interesting toevle that methoch3, which does not
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use weights, works better than methodkandm2 at some parts, especially at lower
recall value ranges (Fig. 5.5(a)). However, forphactically relevant recall values (e.g.
above 0.6), a better performancenuf andm2 becomes visible. The different behavior
of the precision-recall curve of the method in Fig. 5.5(a) and Fig. 5.5(b) relative to
methodsml1 andmz2 can be explained by the treatment of probable thaxies in each
of these two cases. We observed namely that moteple boundaries are detected by
m1andmz2than bym3 which can lead to the conclusion that the probdlgdundaries
identified by our annotators are generally surrathdy relatively high-weighted
(background) sounds. This conclusion is intuitiae,the changes in the audio content
in terms of characteristic sounds are what moveatfgotator to recognize a scene
break in the first place. As in the setup in Figh(&) the probable boundaries are
treated as false ones, the precisiom@fandm2reduces compared 03 This changes,
however, in favor of the methodsl andmz2if probable boundaries are also considered
as the true ones (Fig. 5.5(b)). By further incnegdhe thresholdh to obtain higher
recall values, the sophistication of the semantfinity models becomes more and
more important in order to avoid spurious vallepsthe confidence curve (5.4).
Therefore, as expected, the missing de-noisingcef®é the importance weights is
likely to have negative influence on the relativeqgision of methoan3in higher recall
value ranges. This is indicated by the precisioopdof the methodn3 both in Fig.
5.5(a) and Fig. 5.5(b).

We also observed that the audio element based agipes seldom achieves recall
values higher than 0.7. This might be an indicatidrthe changes of audio signal
characteristics across those undiscovered bousdaeeg too small. An argument
supporting a conclusion in this direction could that the feature-based approach
results in a rapid drop in the precision when tbeall achieves more than 0.8.
Specifically, for the methodsil, m2 m3 andm4, we found that the upper limit for
recall values for these methods is influenced ke léngth of the buffers L-buf and
R-buf, over which the pair-wise semantic affinitglves are averaged to compute the
confidence value (5.4). We discuss this in the Erpent 2.

5.2.1.2 Experiment 2: Investigating the Effect off@& Length

In order to investigate the effect of the lengthttué buffers L-Buf and R-Buf on the
segmentation performance, we designed an experiimewhich we use methaul as
the reference, where we consider both true andamtebboundaries as ground-truth
boundaries, and in which we vary the buffer lenmthr the values 4s, 8s, 12s, 16s, 24s
and 32s. For each of the buffer values, we comthaeprecision-recall curve. The
results of this experiment are shown in Fig. 5.6.
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Fig. 5.6 Precision-Recall curves obtained for methodl for different lengths of the buffers
R-Buf and L-Buf, and considering both true and tale boundaries as ground-truth boundaries

Our first observation is that increasing the buffamgth in general has a positive
impact on the segmentation performance (from 424), and this in particular for
higher recall values. Our second observation i #emalready stated before, different
maximum recall values appear for different precisiecall curves. Even more, the
reduction in this upper limit directly follows thiacrease in the buffer length: the
maximum reachable recall of around 0.8 is posdii¢he shortest buffers only, while
the longest buffer length of 32s leads to the sssalleachable recall of around 0.5. Our
search for the buffer length that is likely to l¢adhe best segmentation performance,
but also provide the maximum possible recall valmge led to the buffer of 16s that
we adopted in the Experiment 1.

5.3.2 Audio Scene Clustering

As the original scheme for content-based audio yarslintroduced in Chapter 2
implies that the co-clustering method will takeamatically obtained audio scenes as
input, we choose here to evaluate the actual clogt@erformance based on the best
input we could obtain from the automated segmemtaitep. As indicated in Fig. 5.5,
this is the case for the segmentation method usimjo elements and rule-based
importance weights. We again employed three personganually group the obtained
scenes into a number of semantic categories. Basethis manual grouping, we
established the ground truth for further evaluation
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To demonstrate the effectiveness of the co-clusjegipproach, we first compare it
with a traditional one-way clustering algorithm. reletheX-means algorithm [Pelleg
and Moore 2000], in which the BIC is also used stineate the number of clusters, is
adopted for the comparison. Assuming that the maminpossible number of audio
scene clusters is 10, we search in both clustevptgpns for the proper number of
scene clusters in the range of 1 to 10. In additfon the co-clustering option, we

search for the optimal number of audio element gsdn the range of 1 to, wheren

is the number of audio elements in the correspgnsiaund track.

Table 5.2.Detailed results of the comparison betweenXtreeans clustering and our proposed

co-clustering method applied to audio scenes o$thmd track “Friends” (A

No. S S prec. No. S S prec.
> 1 34 1.00 1 7
£ 2 2 1.00 | @ 2 3
@ | recal | 100 | 100 [ 100 | 8| 3 3 1.00
© 0
e = 4 12
© 5 9
6 2 1.00
recall | 1.00 1.00 | 1.00

Note: (S)) scenes of dialodS,) scenes of music

Table 5.3.Detailed results of the comparison betweenXtreeans clustering and our proposed

co-clustering method applied to audio scenes ofthund track "Tennis" (A

No. S S, S S | prec. No. S S, S S | prec.
o 1 1 17 4 1 0.74 1 2] 12 10 1 0.48
£l 2 9 1.00| @ 2 4 1.00
2 @
| 3 1 2 14 o| 3 1 8
= =
| 4 1 21 085 || 4 18
Q 0.70
O| 5 2 11 5 1 8
recall| 0.69 | 0.77| 0.92 0.00 0.84 6 5 2 6
recall| 0.31| 0.55| 0.80 0.00 0.65

Note: (S,) scenes of anchorperson talking during the brégly;scenes of anchorperson talking

and with audience applauding (with little ball-hits in long play break){(S;) scenes of
anchorperson talking and players playi(f) others
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Table 5.4.Detailed results of the comparison betweenXtmeans clustering and our proposed
co-clustering method applied to audio scenes ofsiend track "58 Annual Golden Globe

Awards" (Ag)
No.| S| S| S| S | S |prec. No.| S| S| S| S| S [prec.
1 19 4 0.83 1 5 5
2 4 10 0.71 2 12 8 0.58
3 9 2 3 | 0.64 3 5 3
a7 14 0| 4 2 | 040
o) 0.63| §
3 5 1 2 5 g 5 8 1 1 | 0.80Q
‘é’ 6 38| 4 ]090| 6 4 8 0.60
O |recall 0.63| 0.67| 0.90| 0.90| 0.73| 0.77 7 1 3 4 '
8 12 | 1
9 16 | 3 |0.84
10 1| 10 2
recall 0.73| 0.27| 0.80| 0.86| 0.46| 0.68

Note: (S) scenes of hosts or winners coming to or leavirgdtage; $,) scenes of audience
congratulating and applauding to the winngiS;) scenes of hosts announcing nominees or
winner candidateqS,) scenes of winners or hosts’ speg@) others

Table 5.5.Detailed results of the comparison betweenXtmeans clustering and our proposed
co-clustering method applied to audio scenes ofthmd track "Band of Brother" (A

No. S S, S; S, | prec No. S S, S; S, | prec.
1 8 0 0 0 1 10 0 0 0
1.00
2 10 0 0 0 2 3 0 0 0 | 1.00
2 3 0 0 8 3 | 073 m 3 4 0 0 0
E 4 0 11 1 0 S| 4 0 0 7 3 0.70
é 5 11 0 0 0.94% 5 1 2 0 0
Sl s 9 [ o] o s ol 9| 1] o
recall| 0.95| 1.00/ 0.89 0.0 0.9p 7 1 9 0 0 0.89
8 0 10 1 0
9 0 1 0 0
recall| 0.89 | 1.00| 0.78§ 0.0 0.8p

Note: (S)) scenes of battleS{) scenes of dialog in noisy backgrourf8;) scenes of dialog in

music backgroundS,;) scenes of music
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Table 5.6.Detailed results of the comparison betweenXtmeans clustering and our proposed
co-clustering method applied to audio scenes ofthmd track "Sword Fish" g\

No.| S| S| S| S| S |prec. No.| S| S| S| S| S [prec.
1] 3 1.00 1 7 2
2 18| 5| 2| 2 2 18
3 44 0.87 3 1 | 2
2| 4 35| 1 4 ol 4 18 0.83
gl s 6 100/ g| 5 11| 2] 1
3| 6 1|13 | 2 |08Y€E| 6 17
sl 7711 1] 4 0.67 %[ 7 15 2| 2
recall 0.75| 1.00| 0.43| 0.89| 0.00| 0.87 8 | 2 3 0.60
9 | 1 1] 5
10| 1 1|11 0.80
recalll 0.00( 1.00| 0.21| 0.84| 0.00| 0.82

Note: (S) movie end-scenes with music them8&;)(scenes of dialogs with music or other
sounds in the backgrounds;) scenes of dialogs with strong music in the backgdo (S,)
scenes of actions, usually with strong music intthekground(S,) others

Table 5.7. Performance comparison between the X-means andthclustering on all audio
tracks, with automatically obtained audio scenasthe audio elements found therein

No. # Labeled X-means Co-clustering
Semantic Groupg  # Group Accuracy # Group Accuracy

Ay 2 6 1.00 2 1.00
A, 4 6 0.65 5 0.84
As 5 10 0.68 6 0.77
A4 4 9 0.89 6 0.92
As 5 10 0.82 7 0.87
Avr. 4 8.2 0.80 5.2 0.88

Table 5.2-5.6 shows the detailed comparison resfiltise two clustering algorithms
on the five test sound tracks. Taking the souncktrd the "58' Annual Golden Globe
Awards" (A) and Table 5.4 as an example, we can observelttiatscenes were
detected, which are manually classified into 5 sdginaategories: 1) scenes of hosts or
winners coming to or leaving the stage)(Svhich are mainly composed applause
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and music 2) scenes of audience congratulating and appigutdi the winners 3
which are mainly composed ofiusic applauseand cheering 3) scenes of hosts
announcing nominees or winner candidateg), (%hich are mainly composed of
applauseandspeech4) scenes of winners’ or hosts’ speeche}, (8hich are mainly
composed oBpeechand 5) others which are hard to assign to anmhefabove four
scenes (§. Our experiments resulted in 6 categories of asdienes when using the
information-theoretic co-clustering, and 10 scelagegories ifX-means is used. In
Table 5.4, each row represents one obtained clastgrthe distribution of the audio
scenes contained therein across the ground triglgades. As indicated by the shaded
fields, we assign an obtained cluster to a grounthtcluster if the corresponding
ground truth scenes form the majority in this custn case there are multiple obtained
clusters that get associated to the same grouttd ¢tuster, we manually group these
clusters and then compute the precision and reullcluster group. The obtained
results show that the co-clustering algorithmkelly to perform better than a one-way
clustering.

Table 5.7 summarizes the comparison results olatdirmen all the sound tracks in
our test data set. The results in this table contlie conclusion we draw based on the
example in Table 5.4. The number of audio categooletained by co-clustering is
closer to the number of ground truth categories ithahe case of one-way clustering.
In other words, co-clustering can provide a moracexapproximation of the natural
cluster structure present in the data. For examntplere are in average 4 semantic
groups per sequence in the test data set. Theustedhg approach obtains 5.2 groups
in average, whileX-means obtains 8.2 groups. Furthermore, co-clugideads to a
higher precision and recall. In average, around 88%the scenes are correctly
clustered with the co-clustering algorithm, white taccuracy of th¥-means is 80%.

In addition to the comparison of different clusteritechniques, we also compared
different ways of representing audio scenes (eatures vs. audio elements) when
deploying our co-clustering algorithm. In order tonplement feature-based
co-clustering, we need to form a co-occurrence imgi(S, f;) which is slightly
different from the one defined in Section 5.2.25B1ce acoustic features usually have
varying value dynamics, they are first normalizeibpto the construction of the
co-occurrence matrix. That is, fgsth feature, its value in theth audio scene is
re-scaled according to the following expression:

f.i - (fji _ fjmin)/(fjmax _ .I:jmin) (522)

J

where f™ =max(f/ 1<i<m) and f™ =min(f/, 1<i<m).
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Table 5.8 Performance of co-clustering on all audio tradkased on automatically obtained
audio scenes and their corresponding features

Co-clustering
# Labeled . .
No. ) (automatic, audio scenes and features)
Semantic Grou
# Group Accuracy
A 2 5 0.97
A, 4 5 0.63
Ag 5 6 0.62
A, 4 4 0.77
As 5 6 0.80
Avr. 4 5.2 0.76

With this procedure, the values of each featuralliscene samples are brought into
the range of [0, 1], and can now be used to apprabé the occurrence probability of
the related feature in a given audio scene. Asxample of the relation searched here,
the larger the value of the “short-time energy thigher is the probability of “high
volume” in a given audio scene. In the final courtence matrix, each elementp{,

f)) is further normalized to ensure the sum of th@ceourrence distribution is one, that
is

p(s.f)=f /30>, 1) (5.23)

Table 5.8 summarizes the clustering results whéi@gi features to represent each
audio scene. Compared to Table 5.7, using theresatlirectly leads to a 12% decrease
in average accuracy. Similarly to the results ol#difor audio scene segmentation, this
again confirms that using audio elements as midHegpresentation improves the
performance of high-level semantic inference.

Furthermore, we make a comparison between co-clngtasing automatically and
manually segmented scenes. Table 5.9 shows thmebdteesults. While the clustering
based on manual segmentation performs — as expeslaghtly better, the clustering
based on automatically segmented audio sceneseslillts in acceptable performance
figures. Implicitly, these results also provide additional indication of a good
performance of our automatic audio scene segmentatethod.

Finally, as shown in Table 5.10, our (audio elenteaged) co-clustering algorithm
also suggests several audio element groups for saahd track. These groups
realistically reveal the grouping (co-occurrenadency among the audio elements,
as explained in Section 5.2.1. For example, in'#9¥ Annual Golden Globe Awards"
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Table 5.9 Performance of co-clustering on all audio tradiesed on manually segmented audio
scenes and the audio elements found therein

Co-clustering
# Labeled . .
No. . (manual segmentation and audio elements)
Semantic Grouy
# Group Accuracy

A 2 2 1.00

A, 4 5 0.91

Ag 5 5 0.83
A, 4 5 0.92
As 5 4 0.89
Avr. 4 4.2 0.91

ceremony (A), we observed that the soundsapplause with musiandapplause with
dense-musiasually occur together in the scenes of "the hostsinners coming to or
leaving the stage”, and they are also correctlyped together using the co-clustering
algorithm. This audio element grouping processalan help compensate for possible
over-segmentation problem during audio elementodisig, as mentioned in Chapter 4.
If we again take the sound track of "58nnual Golden Globe Awards" ceremonys)JA

as example, although the audio element detectiooess has spread the occurrences of
the term Speech over several audio elements indicated speechl speech? and
speech3these elements were grouped together again asHatustering.

5.3.3 Discussion

Extensive experimental evaluation reported in poasi sections confirmed the
superiority of the two-step audio semantic infeeeapproach we adopted in this thesis.
The way we deployed the joint behavior of audiaredats in the inference process at
the audio scene level led to a considerable impneve of the segmentation and
clustering performance, compared to the approaotlgsg on the features directly.
Next to the dedicated experiments designed to atalthe performance of the audio
scene segmentation algorithm, an additional inginabf the algorithm quality was
obtained through the evaluation of the co-clustgradgorithm. The co-clustering
performance namely decreased only for 3% in the edsen automatically detected
audio scenes served as input and compared to g where manually segmented
scenes were adopted. The proposed co-clusteringthlg proved to be superior to the
classical one-way clustering approach, which empbaghe importance of exploiting



120

Table 5.10.The audio element groups obtained using co-clusgeri

No. | #G Audio Element Groups
A 3 {speech + noise}; {laughter, laughter + music};
' {TV music, theme music, speech, applause + chegring
A 3 {clean speech, noisy silence}; { speech + applansssic};
2

{applause, silence, ball-hit}

{speechl, speech2, speech3 }; {background noisappfause, speech +
Az | 5 |applause }; {music + applause 1, music + applaygdehse) music + applause }};
{music + speech, music };

{speech, silence (some noise), background souiidsce (with HF noise)};
{speech (gunshot background), speech, heavy ngiseshot + speech 1, gunshot

5
A + speech 2}; {speech, noise + speech, speech, @ppla{music, music +
speech }; {noise}
{speech, speech, speech + backgrounds, speectkgrbands}; {speech +
A 5 backgrounds, speech + backgrounds, backgroundsgtmamds}; {fighting
5

sounds 1, music, music}; {mixed backgrounds, musffighting sounds 2,
speech + backgrounds, speech in repressive efminfigsounds}

local grouping tendencies of audio elements inghecess of audio scene grouping.
Finally, an additional value was created by theckstering algorithm regarding the
problem of handling over-segmentation in the auglement detection process. The
co-clustering algorithm namely not only grouped #uadio scenes in meaningful
clusters but also suggested groups of audio elanehich belong together in terms of
their meaning but were separated due to the vanmigin audio signal properties.

The way the audio scene clustering was evaluateyl Ibea arguable, since we
allowed multiple (obtained) clusters to get assteciavith one ground truth cluster for
precision and recall computation (Table 5.2-5.6hother possibility to perform this
evaluation could be to associate only the mostagleobtained cluster (the one with
the largest overlap) to each ground truth clustetually, this evaluation strategy
would even further emphasize the benefits of outhow since the number of scene
groups obtained in the X-means based approachlydeats to be larger (thus more
false alarms are introduced).
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Chapter 6

Towards a Broader Perspective

In this chapter, we first revisit the original gaal this thesis and the approach we
proposed to reach this goal. Then, we make an pttenenvision a possible expansion
of the proposed approach towards an applicatiopesbooader than the one considered
in this thesis.

6.1 Thesis Goal Revisited

As discussed in Chapter 1, the goal of the resemmbrted in this thesis is to build a
generic and flexible framework for content discgvéom composite audio. Towards
this goal, and in view of the discussion about lih@tations of the related previous
work on the subject in Chapter 2, we propose a Inapproach to unsupervised
semantic inference from composite audio that iethamn the following main design
choices:

Unsupervised Mining In order to maximize the generic applicability ofir
envisioned content-based audio analysis solutioa, clwoose for an unsupervised
approach. The design of this approach was insgisedinsupervised text document
analysis, recent works on video scene segmentatiahthe idea of co-clustering.

Parts of this chapter are based on the followirtgipation (also to be found in the list of referesg
* Lu, L., and Hanjalic, A. “Unsupervised Anchor Spa8eneration for Similarity Measure of General
Audio,” Proc. 33th Int'l Conf. on Acoustics, Speech, argh8li Processing53-56, 2008
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Two-step knowledge discovery:Introducing mid-level content descriptors and
considering them in the content analysis procesables us to split the semantic
inference process into two steps, which prove@#a lto more robustness, compared to
the case where semantics is inferred from the festdirectly.

Although the proposed approach obtained promisasglts on a representative test
data set, it still leaves room for further inveatign and improvement. While the
possibilities for this improvement were discussedaious instances in the previous
chapters of this thesis, we dedicate this chapteeftect upon the main design aspects
of our approach with the objective to identify pb#ies for expanding its
applicability scope.

Unsupervised mining has the advantage that it reguieither manual annotation of
semantic categories nor offline collection of tharting data. In this sense, it is likely
to have a wide application scope and to be suitphhécularly in those application
scenarios where obtaining manual annotations aige lmaining data sets is difficult.
However, what about the situations in which relaptior knowledge at various levels
is available to help the semantic inference? Igtioposed approach flexible enough to
accommodate and optimally exploit such knowledgedther words, what are the
possibilities to enhance the proposed unsuperviggheric) approach with the
knowledge generated through supervised processespimve semantic inference in
specific domains?

In our approach, audio elements are extracted &@iven audio document and used
as mid-level semantic descriptors to infer highesel semantic concepts in that
document, like audio scenes, and to group themdetoantically meaningful clusters.
However, what about the case where audio contemitasity needs to be computed at
even a higher abstraction level, namely across nulifigrent audio documents, for
instance for the purpose of management and retriefdarge audio document
collections? How to obtain an effective audio doeuinrepresentation that would
enable us to compare and group together large aladioments in the same way as we
group audio scenes? Can we simply apply the santeon@ogy as introduced in
Chapter 4, or are there adjustments required?

In view of the questions posed above, we now ptes@nviews on the possibilities
to expand the proposed approach in order to engbleeral audio search and
management applications. We will search for suchsibdities by focusing 1) on
combining the unsupervised and supervised appreadmed 2) on expanding the
concept of document-specific audio elements to radher space representing a large
collection of long audio documents.
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6.2 On Combining a Supervised and Unsupervised @gubr

As discussed in the previous section, an unsupEthwsntent discovery approach can
be enhanced by prior knowledge available in a gegplication scenario. On the other
hand, the results obtained using unsupervised obmiiscovery can also benefit a
supervised classification-based approach. In tleigtien, we will discuss how to

interchangeably use supervised and unsupervisetertodiscovery components in
different scenarios to maximize their mutual bemnefi

(1.1)) (1.2)) (1.3) (1.4

Audio Key Audio Element Pre- Semantic

ised i
supervise Classification * Specification $ Segmentation ﬂ\ Classification
y \ y
(a) \‘(C) ‘\‘(d) € ) 0 (b)

(2.1)) ““‘ (2.2) (2.3) (2.4)

unsupervised Audio Element gy Key Audio Element jy Audio Scene 47 Semantic

Discovery Spotting Segmentation Clustering

Fig. 6.1 Collaboration between supervised and unsupervisetpbonents in a combined audio
content discovery approach, where some interesliiregtions for the transfer of the results from
one component to another one are indicated byrtoava

Fig. 6.1 illustrates an example of a combined aumbatent discovery approach
integrating the components of an unsupervised cordescovery approach and its
supervised counterpart. While supervised semamtferénce can be realized in
different ways, the term “supervised counterpagfers here to a supervised inference
process that best resembles our unsupervised abprath respect to the processing
steps involved. The components of the supervisegindbr are realized using
classification techniques or manual effort, inchgli audio classification (e.g.
classification of audio segments into audio elemerkey audio element specification
(e.g. learning the weights of audio elements ddfloy analyzing a training data set, or
specifying the weights manually), pre-segmentaiemy. training a boundary model
offline, or manually dividing an audio documentanaudio scenes), and semantic
classification (e.g. assigning audio scenes taédisemantic categories).

Each component in the scheme in Fig. 6.1 is nundbterdacilitate later reference.
Here, the notation.(k) stands for the componekin the approach (1 for supervised
approach and 2 for unsupervised approach). Thetdateconnections (also numbered)
represent some interesting possibilities for a agapion of the results between two
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components. For example, (12{2.2) means that the results of component (1.1) can
be used for component (2.2). The marked connectiehween the components of the
unsupervised and supervised approach can lead touraber of interesting
combinations of the supervised and unsupervisetaph. We will elaborate on some
of these combinations in the next three sections.

6.2.1 Using Clustering to Enhance Classification

We first consider the case where (unsuperviseddtefing results can be used to
enhance supervised categorization. This case resepted by the arrows (a) and (b).
After grouping audio segments into clusters, edabter can be considered as a sample
to be assigned to a class label in a supervisedoapp. Compared to the typical
classification practice assigning labels to indiidtaudio segments, this cluster-based
approach is likely to improve the classificatiofi@éncy, but also the accuracy due to
a “denoising” effect of the clustering process:. empjority vote can be applied to
classify a set of segments to correct the “noisgSults obtained per segment. A
potential problem here is that a segment mightdstgaed to a wrong cluster, which
may harm the subsequent classification step. Homvélre impact of clustering errors
onto the classification result can be possibly oedy for instance, by using
multiple-instance learning (MIL) techniques [Marand Lozano-Pérez 1998].

6.2.2 Using Partial Supervised Knowledge to Enhaficstering

In this case, the knowledge generated in a sughigshion is incorporated in the
unsupervised approach as indicated by the arroyédjcand (e).

Regarding the connection (c), if trained statidticendels for audio elements are
available, we can follow the process (PA2.2)>(2.3)>(2.4). That is, audio elements
can be detected in a supervised fashion, and trewolitained results can be used for
unsupervised content discovery at higher abstmadweels, including audio element
importance estimation, audio scene segmentation duostering. The alternative
processes involving the connections (d) and (dédviothe same general idea and differ
from (c) in the amount of knowledge that the sufse process branch supplies into
the unsupervised one. For instance, if we considdre process
(1.1>(1.2>(2.3)>(2.4), not only the audio elements but also theipartance
weights are learned in a supervised fashion andh tbmployed in remaining
unsupervised knowledge discovery steps.
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Combining the supervised and unsupervised compsranéxplained in this section
can enhance the semantic inference in well-deforeglartially-defined domains, such
as, for instancetennisandfootball. In these domains, it is relatively easy to idignti
and train a priori the sets of characteristic awigaments, while it not easy to predefine
higher level semantic entities like scenes. Theegfeupervised classification can
successfully be applied for audio element detectiwhile higher-level semantic
inference can best be approached through unsupdrvigning. Promising results
following such a combined approach were alreadgntep in [Cai et al. 2005].

6.2.3 Enhancing Supervised Approach by Unsuperv@@adponents

The arrow (f), in combination with arrows (c) amt,(is particularly useful in realizing
the process paths (12) (2.2)>(2.3>(1.4) or (1.1»(1.2>(2.3)>(1.4). In these
two cases, audio elements and audio scenes asffieldsn a supervised fashion using
trained statistical models, while the unsuperviseddule is employed to perform
automatic scene segmentation instead of (typicatighual pre-segmentation. In this
way, the connection (f) leads to a considerableictdn of the manual effort in audio
database indexing processes. While collecting itrgirdata and learning statistical
models is a 6netimé’ cost, manual annotation of scene boundaries i8adlrtime’
cost, as it is required for each audio documenrarseely.

6.3 On Audio Document Clustering and Retrieval

While in the context of this thesis we addressedptoblem of clustering so far mainly
at the level of audio scenes and within a singldi@document, we now consider the
case where an audio document as a whole needs ¢onygared with another audio
document for the purpose of audio document clusgest retrieval. Just like in the case
of audio scene clustering, a fundamental step taioing meaningful clusters of audio
documents is document representation. While fostehing short audio clips (e.g. for
clustering audio segments into speech, music amk)yjcsuch representation can be
obtained at the feature level, this is not likebywork in the case of longer audio
documents due to the richness of signal mixtured stnong variations in signal
properties over time. Clearly, a more sophisticaggatesentation scheme needs to be
found for clustering long audio documents, whickieads their high-level similarity
and neglects irrelevant signal variations.



126

O =~ N W h OO N ©© ©

gg_03
te_01
te_02

-
o
o

=
.0

=
E

gg_01
gg_01

Fig. 6.2Hierarchical agglomerative clustering of 10 audicaments

Similar to audio scene representation, an audiomeat can also be represented by
a vector containing all the audio elements andrtloirresponding occurrence
probability. Directly building on the audio elemes#ts obtained per audio document
using the methodology explained in Chapter 4, vaeadpreliminary test to investigate
audio document clustering performance, in which simply combined all the
document-specific audio elements into an integuali@ element set. For this test we
used the data from Chapter 4 and 5. To have acwirffinumber of audio documents,
we manually split each test audio track into sdveaats, each with about 30-minutes
in length, which resulted in 10 audio documentse Buthe fact that several documents
stem from the same original audio data stream, emzument had one or more
documents semantically similar to it. Thereforee femantic category of the original
audio data stream can be taken as ground trutlatbeting the audio documents. Also,
a “good” clustering process should first cluster #udio documents stemming from the
same original source and the same original category

We applied a hierarchical agglomerative clusterahgorithm to the obtained 10
audio documents, as shown in Fig. 6.2. Each audioiment initially represented one
cluster and at each iteration (indicated on thexig)atwo most similar clusters were
merged together. Also the abbreviations of the dwmmnt names were used in the leaves
of the graph. For exampléhb_ 01" is the first 30-min part from “Band of Brother”,
and ‘sf_02 is the second 30-min part from “Sword Fish”.
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The figure shows that most documents were clusteoeetctly. For examplesf 01
andsf 02 gg_01 gg_02 andgg_03 te_0landte_02are grouped together within the
first four iterations, since they belong to the samniginal sound track. One exception
is bb_01 which is first clustered witlsf 01 andsf 02 and then withbb_02 This
becomes understandable if one realizes that thegments are all from action/war
movies, and the corresponding audio elements arg sigmilar in these audio
documents. These preliminary results indicate thataudio document representation
obtained by simply integrating document-specifidiatelement sets and their weights
is likely to lead to good audio document clusteriggults in the cases structured
similarly as in our test.

However, with the increasing number of audio docot®ebeing considered, the
approach tested above is likely to become lesstdfée This is because separately
extracting audio elements from different audio doents and simply combining them
together can lead to a large number of differemiicaglements in the integral set that
all correspond to (conceptually) one and the samu@d combination. Due to so many
“synonyms”, the integral set is likely to becomeatceptably large and impractical.

As an alternative, we may also choose to simultasigdouild a common set i
audio elements for the entire collection of audmcwments. This set can also be
referred asanchor spacgwith each anchor representing an eigen audio elereen,
each audio document could be represented bi-dimensional vector, where each
dimension indicates the occurrence probabilityaetio element in that document. An
anchor space can be generated either in a supgreiseinsupervised fashion. A
supervised approach usually reaches high accuratyakows control of the semantic
level at which anchors are defined. As shown inr@Beweig and Ellis 2003], the
selection of anchor in the case of music clasgificaand similarity computation can
be done even at the level as high as artist namesnaisic genres. Having available a
set of pre-defined semantic classes and suffiaieatually labeled training data (a
development data set), a number of supervisedifeatachniques can be used to train
the semantic class of an anchor. These technigquobsde SVM, HMM, GMM, and
neural networks. However, as addressed in Chaptehel supervised approach is
infeasible if processing an unknown composite awtboument, or if audio content
semantics is too complex (diverse) to easily selppropriate anchors.

With the objective of expanding the applicabilifiytbe anchor space concept onto a
general audio content analysis case, we proposssupervised method for building
an anchor space, which follows the analogy to Er@ach to audio element discovery
from a single document, as explained in ChapteAg.this approach is based on
spectral clustering of audio segments, a pracissale to be resolved when expanding
to a large audio document collection is the siz¢hefaffinity matrix, on which a SVD
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is performed to extract the eigenvectors and map thiginal data into a
low-dimensional space that can be easily clust¢sed Chapter 4). If there are 300
audio clips in the development data set, and ihedip has 3 minutes (i.e. around 360
elementary audio segments), the size of the affiagrix will be around (300*366)
*4B > 40GB (each value in the matrix is a 4-byteat). Such a matrix is impractical to
handle and slows down the SVD considerably. Tolvesthis, a simplification scheme
is employed: Instead of using all feature vectoss represent each audio document by
the mean vector only (averaging the feature vedtoesein), and then apply spectral
clustering on the set of the mean vectors compiatethe entire development data set.
The obtained clusters are then adopted as audineals (anchors). Regarding the
number of clusters to be formed, spectral clustepgroposes an estimation approach
based on the eigen-gap. However, in our experirheetap, we manually set various
cluster numbers to investigate its effect on thalfsimilarity measure.

With the obtained set of anchoG,(C,, ..., C,), the mapping of an audio document
onto this anchor space can be represented by therve

[p(C,1d), p(C,1d), ... p(C,Id)] (6.1)

Here,p(C; |d) represents the membership (posterior probabitifyhe audio document
d with respect to the anch@;. The probabilityp(C; |d) can be further calculated as
following, assuming that the prip(C, ) is uniformly distributed:

_ __Pp(d|G)
P(C; [d) = p(d|C;)p(C;)/ p(d) =S p@[Cy) (6.2)
where the likelihoogh(d |Cy) is calculated as
N
p(d|Ci) = p(sp,--sn 1G) =[] P(sc |Ci) (6.3)
k=1

Here,s; is thek-th audio segment in the audio documéni is the segment number,
andp(s¢|C) is the segment likelihood given the anctar

Compared to the above “document-level normalizatioormalization ofp(d|C)
according to (6.2)), we can also employ “segmemtll@ormalization”, that is, we can
first map each audio segment onto an anchor, themalize the likelihood vectg(s|
C) for each audio segment, and finally obtain thdi@@ocument representation by
averaging the memberships of all the audio segnptanchor, that is,

N
PC, 1) T > PLC I (6.4)
k=1
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where p(C, |s,) - _PSIC) is the posterior probability of each audio segnveitth
Zi p(sc 1C;)

respect to anchdt;. Independent of which normalization approach ipleyed, the

representation vector (6.1) makes it possible tpleynKL Divergencefor computing

the distance between two audio documents. The rsiondar the mappings of two

documents, the more similar they are.

To test the proposed unsupervised anchor spaceageneidea, we formed a large
dataset including 3000 audio documents that weteaged as sound tracks of the
video clips from MSN Video. Each audio documentd&s5 minutes, and is associated
with a category (also obtained from MSN Video). fhare in total 15 categories,
including Autos BusinessEntertainmentGamesLive Music Sports Weathersand so
on. To compare the proposed unsupervised appro#bhawsupervised one, we also
implemented a supervised approach in which eachcaris modeled as a GMM. To
learn the model, we randomly chose 300 documentésdevelopment data set to build
mid-level content representation. The rest of idi@documents are used as a test set.
For the sake of completeness, we also includedebdts obtained by computing the
feature-based similarity of audio documents. Oineefeatures are extracted from an
audio document per audio frame, we either repredentdocument by averaging the
feature vectors over all frames, or model the feastatistics in the document using a
GMM [Lu and Hanjalic 2008b].

For the evaluation strategy, we apply a leave-arteapproach, that is, we select
each audio document in the test set as a queey, aftich all other audio documents
are ranked based on their similarity. The documbalsnging to the same category are
assumed similar in our experimentdean average precisioimAP, a common metric
in information retrieval, is employed to quantifetretrieval performance. TmeAPis
actually the mean value of the average precisid®) computed for each query
separately. To obtain thAP value for a particular query, the precision istfitomputed
at each relevant document retrieved, and then tphemgsions are averaged over the
entire test data set. Clearly, the more relevaunents occur higher in the ranked
document list, the higher th&P. The AP value per query can be computed using the
expression,

AP=%P(r)xrel(r) (6.5)

r=1

wherer is the rankM is the size of the test segl(r) is a binary function indicating the
relevance of the audio document at rankith respect to the query, am{r) is the
precision at top returned documents.
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Table 6.1 Comparison of the audio-element based and feaba®sd audio document
representation. In the feature based approachp al@iument is either represented as a mean
vector or as a Gaussian model. In audio-elemergcbagproach, various configurations are tried,
comparing the supervised approach (sup) vs. uneigpdr anchor space building (unsup);
segment-level normalization (segl) vs. documenéll@ormalization (docl); and various cluster
numbers (as the first number in the first colunticates)

Audio Doc. Rep. mAP mAP25 mMAP50 mAP100
Mean 41.4 71.9 66.8 61.2
Gaussian 43.3 72.6 67.6 62.1
[10, unsup, docl] 44.0 62.1 58.3 54.7
[10, unsup, sedl] 45.0 65.6 61.7 57.8
[16, unsup, docl] 46.0 65.4 61.5 57.7
[16, unsup, segl] 48.5 70.6 66.7 62.7
[20, unsup, sedl] 49.7 71.4 67.6 63.9
[24, unsup, sedl] 50.7 72.5 68.8 65.1
[28, unsup, segl] 50.4 73.0 69.2 65.2
[15. sup, docl] 61.3 73.2 71.4 69.3
[15. sup, seql] 58.7 77.3 74.3 71.2

Next to themAP, themAP@Nis also evaluated, which represents the mean geera
precision at the topl ranks (similar to (6.5), but with a fixéd replacingM). The latter
metric may be practically useful since the useesusually ready to review only the
first N retrieved documents and do not want to check titieeedata set.

Table 6.1 shows the audio document retrieval perdoice comparing the
audio-element based audio document representatidfieature-based audio document
representation. In audio element based approaclguganumbers of audio elements
are tried, including 10, 16, 20, 24, and 28. Thst AP (50.7%) is achieved by the
audio element based approach with the cluster nur@eand with segment-level
normalization. This corresponds to absolute impnoset of 7% compared to the
feature-based approach. However, the best restainglal using a supervised approach
resulted in 10% accuracy improvement, compared With unsupervised approach.
This shows that there is still considerable roomifioprovement of the unsupervised
approach.
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Summary

In this thesis, we developed and assessed a nolvestr and unsupervised framework
for semantic inference from composite audio signéle focused on the problem of

detecting audio scenes and grouping them into mgauli clusters. Our approach

addressed all major steps in a general processomipasite audio analysis, from

low-level signal processing (feature extractionip wnid-level content representation
(audio element extraction and weighting), to highel semantic inference (audio scene
detection and clustering). We showed experiment#tigt our proposed content

discovery scheme involving mid-level semantic digsors as an intermediate

inference result can lead to more robustness, cadpa the classical content-based
audio indexing approach, where the semantics &riedl from the features directly. To

the best of our knowledge, this is the first pradosxploring the possibilities for a

realization of an entirely unsupervised audio contdiscovery system aiming at

high-level semantic inference results.

The first major algorithmic contribution of the #i®e consists of an unsupervised
approach to decompose an audio stream into (kedipalements, based on a set of
extracted audio signal features. Similar to speechgnition that transcribes a speech
signal into text words, our proposed approach 4caibes” a composite audio signal
into audio “words”, where each word corresponds tehort temporal segment with
coherent signal properties (e.g. music, speeclsenmi any combination of these). We
refer to these audio words as audio elements. Tmaexaudio elements, we deployed
an iterative spectral clustering method with cottiependent scaling factors. In this
process, the elementary audio segments with sifi@iures are grouped together into
clusters. Then, all audio segments belonging tostimae cluster are said to represent
the same audio element. We now see an audio saga concatenation of audio
segments corresponding to different audio elememtd,develop an approach similar
to those known from the text document segmentdiigld to divide the signal into
meaningful longer segments. We refer to these setpres audio scenes. To develop
such an approach, we computed the weights indigdlia potential of each obtained
audio element to help detect an audio scene boyn@iarcompute these weights, again
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the concepts from text information retrieval haveet adopted, such as the term
frequency (TF) and inverse document frequency (J@sed on which a number of
their equivalents in the audio segmentation corttexe been introduced.

As the second major algorithmic contribution of tihesis, we presented a novel
approach to audio scene segmentation and clustéfegfirst proposed a semantic
affinity measure to determine whether two audionsexgts are likely to belong to the
same audio scene. This measure considers the eledi@nts contained in the analyzed
segments, their importance weights and their cehoeoce statistics. Then, the
presence of an audio scene boundary at a givendiamp is investigated by jointly
considering the values of the semantic affinity poibed for a representative number of
segment pairs surrounding the observed time st@mpe the audio scenes are detected,
a scheme based on the co-clustering concept wdsyaepto exploit the grouping
tendency among audio elements when searching fonalpaudio scene clusters. Here
a method based on the Bayesian information critefiiC) was adopted to select the
numbers of clusters in the co-clustering process.

Experimental evaluations on a large and represeetatidio data set have shown
that the proposed approach can achieve encoureggngis and outperform the existing
related approaches. The obtained results showativedly high purity of the obtained
audio elements. The number of the obtained elemén@type of sounds they represent
and the importance weights assigned to them werersho largely correspond to the
judgment of our test user panel. Moreover, for awstiene segmentation and clustering,
we obtained a 70% recall of audio scene boundaiittisa 80% precision, based on the
ground-truth annotation obtained using a panelushdn annotators. Our co-clustering
based approach achieved better performance thamaditiadnal one-directional
clustering, regarding both the clustering accumany cluster number estimation.

We completed the thesis by making an attempt tasemva possible expansion of
the proposed approach towards an application soagsler than the one considered in
the thesis. We first considered the applicationeretdomain knowledge is available.
For such an application we investigated the pd#s#isito combine our unsupervised
approach with a supervised one to benefit fromatlaglable domain knowledge and so
improve the content discovery performance for thanhain. Then, we also performed
preliminary experiments to extrapolate the appliidstof the proposed approach from
a single document context to a collection of (loagflio documents. This involved a
shift from the concept of document-specific audienents to an anchor space
representing a large collection of audio documents.
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Samenvatting

Dit proefschrift beschrijft een robuust, automéatisysteem voor het extraheren van
semantisch relevante informatie (ook wel “conteriscavery” genoemd) uit

audiosignalen in multimediale databanken. Typisclo®rbeelden van dergelijke
audiosignalen zijn de “soundtracks” van TV showgcuinentaires en films.

Kenmerkend voor deze signalen is dat ze uit eemerging van muziek, ruis en
spraak bestaan en dat de onderlinge verhoudingesseriu de verschillende
audiomodaliteiten niet voorspelbaar zijn.

Het ontwikkelde systeem concentreert zich op adlete het detecteren van
betekenisvolle “audio scenes”, en vervolgens heaieggren van deze scenes in
thematische clusters. Deze clusters zijn potentmdelant tijdens het doorzoeken van
de multimediale databank op basis van semantiscbkcrteria. De gekozen content
discovery aanpak dekt alle belangrijke stappendraddiosignaalanalyse, beginnend
met kenmerkextractie tot het detecteren van autBaes en hun onderliggende relaties,
maar onderscheidt zich van de bestaande methodeor d@dds basis de
audiosignaalrepresentatie op het niveau van “aeldiments” (ook wel “audio words”
genoemd) te gebruiken. We laten experimenteel dinhet voorgestelde systeem
robuuster is dan de conventionele aanpak waarinoascknes direct gedetecteerd
worden op basis van signaaleigenschappen. Vergelelet de bestaande methoden
behoeft het detecteren en groeperen van audio sgema supervisie en wordt daarom
“unsupervised” genoemd.

De eerste bijdrage van dit proefschrift is een md¢h voor het automatisch
detecteren van audio elements. Vergelijkbaar metadherkenning, waar spraak naar
een tekstdocument vertaald wordt, vertaalt onzenouet een audiosignaal naar een
opeenvolging van audio words. Hierbij correspomdedk “woord” met een stuk
signaal dat gekenmerkt wordt door bepaalde sigitgaischappen en gerelateerd aan
een specifieke vermenging van muziek, spraak es 1@m de audio elements te
kunnen extraheren, werd een iteratieve clusteritigote ontwikkeld, die gebruik
maakt van contextafhankelijke schaalfactoren. Bgzeal methode worden de
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basissegmenten van het audiosignaal van elk ééondeclang die dezelfde
signhaaleigenschappen hebben bij elkaar gevoegdddtieworden “clusters” gevormd.
Alle audio segmenten die zich binnen hetzelfdetelubevinden worden gezien als
vertegenwoordigers van één en hetzelfde audio eleme

De tweede bijdrage van dit proefschrift is een atge dat hetzelfde probeert te
bereiken als in de tekst documentanalyse, namdlgk audiosignaal in langere,
betekenisvolle “paragrafen” te verdelen (audio ssgren vervolgens deze scenes in
thematische clusters te groeperen. Dit algoritmelgtvohet basisidee van
tekstsegmentatie, namelijk het representeren vem webord door een weegfactor dat
de relevantie van het woord weergeeft voor het leepgan paragraafgrenzen. Om
deze weegfactoren te berekenen werden de bekemdepten van “term frequency”
(TF) en de “inverse document frequency” (IDF) varde tekstanalyse gebruikt om de
geschikte alternatieven in het audio domain te ikkislen. De scene segmentatie
zelf is gebaseerd op een zogenaamde “semantidgtyaffireasure”. Dit is een maat
waarmee de relatie tussen twee paragrafen op meansisch niveau geschat kan
worden. De maat wordt berekend op het niveau vdioalements in de paragrafen en
met gebruik van hun weegfactoren en de statistagk het gezamenlijk optreden van
twee audio elements. De maat wordt toegepast ojo aldmenten ter linker en
rechterzijde van het tijdspunt waarvoor de aanwesd) van een audio scene
begrenzing wordt geévalueerd. De kans op de saems gvordt groter naar mate meer
audio element combinaties een hogere waarde vomedwntic affinity laten zien.
Nadat de scenes gedetecteerd zijn, wordt co-cingtéwegepast om de scene clusters
te vormen. Het aantal clusters wordt automatisdtiygt met behulp van het Bayesian
Information criterion (BIC).

Uitgebreide experimentele evaluatie van de vooedgstmethoden en algoritmen op
representatieve data collecties laten zien dategoesultaten bereikt worden, die beter
Zijn dan die van de bestaande methoden. De verkregsultaten worden vooral
gekenmerkt door een relatief hoge nauwkeurigheid de gedetecteerde audio
elements. Het aantal en type van gedetecteerdeeternijn goed in overeenkomst met
het oordeel van een gebruikerspanel. In vergelijkimet de “ground truth” verkregen
door dit panel, heeft onze methode voor audio es@@gmentatie en clustering de
waarde van “precision” en “recall” bereikt van respevelijk 80% en 70%. De
co-clustering aanpak die we gekozen hebben préstegrsistent beter dan het
klassieke één-richting clustering zowel voor de [kei van de clusters als voor de
schatting van het aantal clusters.

In het laatste hoofdsuk van dit proefschrift besaten we de mogelijkheden om de
toepassingsmogelijkheden van de voorgestelde methed algorithmen te vergroten.
Ten eerste hebben we de toepassingen geanalyssaardvoldoende domeinkennis
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beschikbaar is. In zulke toepassingen hebben wenagelijkheden onderzocht om
onze unsupervised aanpak te combineren met eemviaguestap en zo de prestaties
van content discovery voor deze domeinen te kuwegbeteren. Ten tweede passen
we de voorgestelde methoden en algoritmen toe opce#ectie van lange audio
“documenten” en vergelijken de resultaten met oodginele aanpak die voor een
enkelvoudig audio document ontworpen was. Om diutenen doen werd het concept
van document-specifieke audio elements gegeneeatiséchting een “anchor space”
dat representatief is voor een grote collectieataatio documenten.
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