
Content Discovery from Composite Audio 

An unsupervised approach 
 
 
 
 
 

 

 

Proefschrift 

 
 
 
 

ter verkrijging van de graad van doctor 
aan de Technische Universiteit Delft, 

op gezag van de Rector Magnificus prof. dr. ir. J. T. Fokkema, 
voorzitter van het College voor Promoties, 

in het openbaar te verdedigen op woensdag 2 december 2009 om 12:30 uur 
 
 
 
 
 

door 
 

Lie LU 
 
 
 

Master of Science in Electrical Engineering, Shanghai Jiao Tong University, P.R. China 
geboren te Zhejing, P.R. China 



Dit proefschrift is goedgekeurd door de promotor: 
Prof. dr. ir. R. L. Lagendijk 
 
Copromotor: 
Dr. A. Hanjalic 

 

Samenstelling promotiecommissie: 

Rector Magnificus,    voorzitter 
Prof. dr. ir. R. L. Lagendijk, Technische Universiteit Delft, promotor 
Dr. A. Hanjalic,    Technische Universiteit Delft, copromotor 
Prof. dr. G. J. Houben,  Technische Universiteit Delft 
Prof. dr. ir. J. W. M. Bergmans, Technische Universiteit Eindhoven  
Prof. dr. ir. C. H. Slump,  Universiteit Twente 
Dr. H.-J. Zhang,    Microsoft Advanced Technology Center, Beijing, China 
Dr. A. Divakaran,    Sarnoff Corporation, Princeton, NJ, USA 
Prof. dr. ir. J. Biemond,  Technische Universiteit Delft, reservelid 
 
 
Microsoft Research Asia (MSRA) has provided substantial support in the preparation of 
this thesis. 
 
 
 
 
Content Discovery from Composite Audio: An unsupervised approach 

LU, Lie 

Thesis Delft University of Technology – With ref. – With summary in Dutch 

Published by TU Delft Mediamatica 

ISBN 978-90-813811-4-7 

 

Copyright  © 2009 by L. Lu 

 

All rights reserved. No part of this thesis may be reproduced or transmitted in any form or by any 
means, electronic, mechanical, photocopying, any information storage and retrieval system, or 
otherwise, without written permission from the copyright owner. 



i 

Contents 

 

1 Introduction  ..........................................................................................................1 

1.1 Multimedia Indexing through Content Analysis  .............................................3 

1.2 Thesis Focus: Content-based Audio Analysis ...................................................7 

1.3 Thesis Scope: Unsupervised Analysis of Composite Audio .............................8 

1.3.1 Composite Audio..................................................................................................... 8 

1.3.2 Audio Scene Detection and Grouping ................................................................... 9 

1.3.3 Unsupervised Semantic Inference ........................................................................ 10 

1.4 Thesis Contribution and Outline ..................................................................... 11 

 
2 Framework for Content Discovery from Composite Audio.................... 15 

2.1 Related Work .................................................................................................. 15 

2.1.1 Audio Segmentation .............................................................................................. 17 

2.1.2 Audio Classification .............................................................................................. 18 

2.1.3  Audio Retrieval ..................................................................................................... 28 

2.1.4 Other Relevant Previous Work............................................................................. 29 

2.2 What Can We Learn From The Past? .............................................................. 30 

2.3 Audio Content Discovery: An Unsupervised Approach ................................. 32 

2.3.1 Overview of the Proposed Framework ................................................................ 33 

2.3.2 Unsupervised Framework Implementation ......................................................... 35 

2.4 Summary .......................................................................................................... 37 

 
3 Feature Extraction ............................................................................................ 39 

3.1 An Overview of Audio Features ..................................................................... 40 

3.2 Frame-level Features ....................................................................................... 43 

3.2.1 Zero-Crossing Rate ............................................................................................... 44 

3.2.2 Short Time Energy and Sub-Band Energy Distribution ..................................... 44 



ii 

3.2.3 Brightness and Bandwidth .................................................................................... 45 

3.2.4 Mel-Frequency Cepstral Coefficient (MFCC) .................................................... 46 

3.2.5 Sub-band Partial Prominence and Harmonicity Prominence ............................. 46 

3.3 Window-level Features ................................................................................... 49 

3.3.1 High ZCR Ratio .................................................................................................... 50 

3.3.2 Low Short-time Energy Ratio .............................................................................. 51 

3.3.3 Spectrum Flux ....................................................................................................... 52 

3.3.4  Noise Frame Ratio................................................................................................. 53 

3.4 Feature Vector Generation .............................................................................. 54 

 
4 Audio Element Discovery and Key Audio Element Spotting  ................. 57 

4.1 Audio Element Discovery ............................................................................... 58 

4.1.1 Spectral Clustering ................................................................................................ 58 

4.1.2 Context-based Scaling Factors ............................................................................. 61 

4.1.3 Iterative Clustering ................................................................................................ 63 

4.1.4  Smoothing .............................................................................................................. 64 

4.1.5  Terminology .......................................................................................................... 64 

4.2 Key Audio Element Spotting: Single Document Case .................................... 65 

4.3 Key Audio Element Spotting: Multiple Document Case ................................ 68 

4.3.1 Evaluating Similarity of Audio Elements ............................................................ 69 

4.3.2 Audio Element Weighting Scheme ...................................................................... 71 

4.3.3 Number of Key Audio Elements .......................................................................... 74 

4.4  Experimental Evaluation ................................................................................. 74 

4.4.1 Audio Element Discovery..................................................................................... 75 

4.4.2 Single Document based Key Audio Element Spotting ....................................... 81 

4.4.3 TFIDF-based Audio Element Weighting............................................................. 85 

4.4.4 Discussion .............................................................................................................. 89 

 
5 Audio Scene Detection and Clustering ......................................................... 91 

5.1 Audio Scene Segmentation ............................................................................. 91 

5.1.1  Comparative Study ................................................................................................ 91 

5.1.2 Proposed Approach ............................................................................................... 94 



iii 

5.1.3 Semantic Affinity Measure ................................................................................... 95 

5.1.4 Segmentation Scheme ........................................................................................... 97 

5.2 Audio Scene Clustering ................................................................................... 98 

5.2.1 On Local Grouping Trends ................................................................................... 99 

5.2.2 Co-clustering of Audio Scenes and Audio Elements ........................................ 102 

5.3 Experimental Evaluation ............................................................................... 106 

5.3.1 Audio Scene Segmentation ................................................................................. 107 

5.3.2 Audio Scene Clustering ...................................................................................... 113 

5.3.3 Discussion ............................................................................................................ 119 

 
6 Towards a Broader Perspective ................................................................... 121 

6.1 Thesis Goal Revisited ................................................................................... 121 

6.2 On Combining a Supervised and Unsupervised Approach ........................... 123 

6.2.1 Using Clustering to Enhance Classification ...................................................... 124 

6.2.2 Using Partial Supervised Knowledge to Enhance Clustering .......................... 124 

6.2.3 Enhancing Supervised Approach by Unsupervised Components .................... 125 

6.3 On Audio Document Clustering and Retrieval ............................................. 125 

 

References ................................................................................................................ 131 

Summary .................................................................................................................. 141 

Samenvatting ........................................................................................................... 143 

Acknowledgements ................................................................................................. 147 

Curriculum Vitae  ................................................................................................... 149 

 

 



iv 



1 

Chapter 1 

Introduction 

 

 

 

 

In the age of information explosion, the amount of published information and available 
data is rapidly increasing. As the amount of available data grows, the problem of 
managing the information contained in this data becomes more and more difficult. 
Search – to quickly find and access the information of interest – is the most 
fundamental information management functionality. To maximize the effectiveness of 
this functionality, many information retrieval technologies and search engine systems 
(including Web search and desktop search engines, such as Google, Live search and 
Yahoo!) have been developed and achieved great successes in the past years. They 
have become a part of everyday life for many people. 

To make the data searchable, it should be indexed first. As the existing search 
engines focus on offering reliable and robust solutions for searching in text document 
collections, index terms are obtained by finding important words (keywords or key 
terms) that are extracted from the available text document resources, including the title, 
body text and anchor text (e.g. the text linked to this a document). For example, 
classical text information retrieval methods [Robertson and Sparc-Jones 1997] can be 
used to reveal the importance of individual words based on the frequency of their 
appearance and their uniqueness for a particular document. Moreover, the text layout 
can provide useful information for indexing as well. For instance, the parts of the text 
having a large font or being indicated in bold can be considered more descriptive to the 
corresponding document than other document sections. The indexed terms together 
with their importance indicators (i.e. weights) can then be used to measure the content 
relevance of a particular target document to the search query. Furthermore, content 
importance, i.e. the relative importance of a document, can be combined with content 
relevance to rank relevant documents. Content importance can usually be revealed by 
link analysis, for instance by using the PageRank algorithm [Brin and Page 1998] 
deployed in Web search. 
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Besides the text information, more and more multimedia data, including video, audio 
and images are available in various digital libraries and databases, and on the Internet. 
These multimedia data include movies, sports, news broadcasts, music, TV and radio 
programs, and tremendous amounts of photos. Similar to text collections, there is also 
increasing need to search for the information of interest in large multimedia data 
collections. For example, how to find a video lecture talking about ‘information 
retrieval’? How to find highlights or particular scenes of a soccer video? How could we 
find the sounds of applause and cheering from movies and reuse them when we are 
editing our own audio, video or podcast recordings? How could we identify the violent 
scenes from movies and prevent children from seeing these movies? Finally, how could 
we get music, video and photos recommended to us based on our general interest 
and/or our specific interest in a given use context? 

Just like in the case of a text database, a multimedia database can be made 
searchable through indexing. However, while a text database can be indexed using the 
basic database items (words) directly, indexing of a multimedia database needs to be 
done by assigning metadata (data about the data) to multimedia items (also referred to 
as multimedia documents). To obtain rich metadata for multimedia indexing, the most 
straightforward way is manual annotation of the multimedia content. For example, 
YouTube.com usually asks the users to insert some keywords to describe the video 
content they upload, and Pandora.com assigns each song up to 400 distinct musical 
characteristics obtained by trained music analysts to help users discover more music 
they like. Manual annotation is useful in some applications and can provide accurate 
description of the content due to the (professional) background of the annotators. 
However, there are also some critical disadvantages: manual annotations are subjective, 
and their generation is typically tedious, expensive and time consuming. More 
automation in metadata generation processes can be introduced in some application 
scenarios, like those involving Internet multimedia. If a multimedia document is 
published on a webpage, its surrounding text information could be used to describe its 
content, so that traditional text information retrieval technology could be employed for 
multimedia data search in such a case. Good examples are image search and video 
search mechanisms provided by some search engines (e.g. Google image search). 
However, as an image is worth more than a thousand words (and a video thus even 
more), the available surrounding text is usually insufficient to enable reliable 
multimedia search and retrieval in a general case.  
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Fig. 1.1 An illustration of the semantic gap between features and semantics. Interpretation of the 

data requires bridging of the gap, that is, a mapping between the features and semantic 

descriptors. 

 

1.1 Multimedia Indexing through Content Analysis  

A promising way of automatically generating rich sets of multimedia indexes is by 
applying the theory and algorithms of multimedia content analysis (MCA). By bringing 
together the fields of multimedia signal processing, pattern recognition, perception, 
psychology and linguistics, and by combining them into sophisticated knowledge 
inference mechanisms, the MCA attempts to reveal the meaning of data at various 
levels of abstraction and so to directly provide meaningful entries for database 
browsing and query. MCA has become one of the most challenging and most rapidly 
developing research directions in computer science. Many classes of MCA algorithms 
have emerged over the years to address the problems like multimedia content parsing, 
grouping (clustering), classification, summarization and highlighting [Hanjalic et al. 
2008].  

The biggest hurdle faced by an MCA algorithm is the semantic gap – the gap 
between the features extracted from data and the semantics of that data, as illustrated in 
Fig. 1.1. We refer to the process of bridging the semantic gap (the process of 
interpreting the data) as semantic inference, and to the results of the inference process 
as semantic descriptors. The features are used to represent the signal–level properties 
of the analyzed data, such as a color in an image, the energy of a sound, and the 
properties of the object or camera motion in a video. The semantic descriptors are 
meant to capture the meaning of the data as perceived by a human, and, as such, to 
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index the multimedia data for the purpose of search and retrieval. We therefore refer to 
these descriptors also as semantic indexes.  

Since the meaning of an image or a video clip can be defined at various abstraction 
levels, the same holds for inferring the semantic descriptors from data. We therefore 
distinguish among three main abstraction levels, at which semantic inference can be 
performed:  

- the affective level,  

- the level of semantic concepts, and  

- the level of semantic structure.  

At the affective level, an image, a video clip or a music piece is interpreted in terms of 
the affective response (i.e. a feeling or mood) they are expected to elicit from a human. 
Examples of such descriptors are those pointing to a “romantic” or an “exciting” scene 
[Hanjalic and Xu 2005]. Semantic concepts, also referred to as semantic classes, stand 
for meaningful visual objects (e.g. a “dog” shown in a picture) or temporal events (e.g. 
an “action scene” in a movie, or an “instrumental solo” in a music piece). Because 
some semantic concepts (e.g. visual objects) are often components of other semantic 
concepts (e.g. larger visual objects or temporal events), the inference of some concepts 
provides input into the inference of others. In this sense, various levels of semantic 
concepts and the corresponding semantic descriptors are often distinguished as well. 
Finally, the descriptors at the semantic structure level point to the meaningful breaks in 
the content flow (e.g. boundaries between two topics in a news video, the start of a 
commercial break), or guide the process of grouping together those multimedia 
documents that belong together in terms of their content (e.g. grouping all “dog” 
pictures together).    

While MCA algorithms aim at finding reliable mapping between the measured 
features and perceived semantics, obtaining such mapping is difficult in many practical 
cases. This problem can best be illustrated by the cases where two images of different 
semantic concepts have similar features, or where two images with the same semantic 
concepts have completely different features. Fig. 1.2(a) shows two images with very 
similar visual features (such as color and texture) but representing totally different 
semantic concepts (a “woman” and a “dog”), while the images in Fig. 1.2(b) both show 
dogs, but have very different visual features.   

The first intuitive step in bridging the semantic gap is to enrich the feature space that 
provides input into the MCA algorithms. To do this, optimal use of the available 
information channels of multimedia documents is required. Such information channels 
can be found in different modalities, such as  
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 (a)        (b) 

Fig. 1.2 Illustration of the semantic gap: (a) different semantics but similar features (b) same 

semantics but different features 

 

- visual modality, which includes three main categories: image, graphics and 
image sequence,  

- text modality, which includes the text describing a multimedia object, including 
the surrounding and overlaid text and closed captions. 

- audio modality, which also considers three main categories: speech, music and 
noise. We distinguish here between structured and unstructured noise. While 
unstructured (e.g. white) noise is typically disturbing and not interesting for 
search and retrieval tasks, the structured noise category includes various 
potentially interesting sounds that we will refer to as background or 
environmental sounds or audio effects. Examples of these are the sounds of 
stepping, laughter, applause, explosion, car engine and cheering.   

Many multimedia documents contain multiple modalities. For example, a Web site 
on a given topic usually contains illustrations, figures, photos, text describing the topic, 
and often also the related video clips. Furthermore, a video is typically referred to as a 
composite audio-visual data stream consisting of an image sequence, but also often 
containing an audio track, overlaid text and closed captions.  

To optimally combine the information from different modalities, two basic 
approaches could be deployed, as illustrated in Fig.1.3: feature-level fusion (early 
fusion) and decision-level fusion (late fusion) [Hall and Llinas 1997]. In the 
feature-level fusion scheme, a feature vector is extracted from each modality first. 
These feature vectors are then aligned and concatenated together into a single larger 
feature vector, which serves as input into a semantic inference mechanism based on, for  
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(b) 

Fig.1.3 An illustration of two basic multimodality fusion mechanisms: (a) feature-level fusion, (b) 

decision-level fusion 

 

instance, a support vector machine (SVM) or a clustering algorithm [Naphade et al. 
2001][Hua et al. 2005]. Compared to this, in a decision-level fusion scheme, the 
semantic inference is performed on each individual modality first based on its own 
feature vector. Then, all intermediate inference results, also referred to as mid-level 
semantic descriptors, are combined together to obtain the final decision regarding the 
semantic content of the analyzed data by using, for instance, heuristic rules or 
probabilistic inference mechanisms [Rui et al. 2000][Duan et al. 2003]. As an example, 
in the MCA approach developed for a sports video [Duan et al. 2003], some mid-level 
semantic descriptors, such as player close-up, field view, and audience view, are 
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obtained first from the visual modality. Furthermore, the information regarding the 
occurrence of applause, commentator speech, and whistling is obtained through an 
analysis of the audio modality. By integrating this multi-modal mid-level 
representation of the sports video content, high-level semantic descriptors can be 
inferred, such as In Play, Out-of-Play, Foul, Free Kick, and Penalty Kick. 

 

1.2 Thesis Focus: Content-based Audio Analysis  

Intuitively, the semantic inference from multimedia documents will benefit from an 
analysis of the issues playing a role in the inference process at each individual modality. 
Examples of such issues are the features to be selected per modality and the 
possibilities to bring these features in relation to semantic descriptors at various 
abstraction levels. As an integrated part of multimedia documents, audio usually plays 
an important role in MCA theory and algorithms, in particular if it is combined with an 
image sequence into an audio-visual data stream (video). However, compared to a 
relatively intensive research effort invested in semantic inference from text, images and 
image sequences, semantic inference from audio signals has received less attention in 
the MCA research community. This thesis focuses on the subset of MCA theory and 
algorithms addressing the audio modality only, and aims at exploring the possibilities 
and providing insights for developing robust solutions for the semantic inference from 
audio signals that we will also refer to as content-based audio analysis.  

A general scheme of content-based audio analysis can be represented by a black-box 
inference system shown in Fig. 1.4. There, the system outputs semantic index(es) for a 
given input audio signal based on pre-specified prior knowledge like, for instance, the 
type of semantic concepts or semantic structure expected to be found in the analyzed 
data, MCA model assumptions and training data used. Depending on the level at which 
prior knowledge is specified, this inference system can be realized by employing 
various approaches ranging from purely supervised to fully unsupervised ones. For 
example, if the scheme in Fig. 1.4 is seen as a speech recognition system, the prior 
knowledge, such as the labeled audio data, dictionary and grammar, need to be 
pre-collected to train both an acoustic model and a language model in a supervised 
fashion [Huang et al. 2001]. Similarly, trained models of the semantic concepts, such as 
car-racing, siren, gun-shot, and explosion, can be used to detect the occurrences of 
these concepts in movie soundtracks [Cheng et al. 2003]. Compared to these supervised 
realizations, an unsupervised approach can be employed to find “unusual” events in the 
sound track of a surveillance audio signal [Radhakrishnan et al. 2004], for which 
typically little prior knowledge can be collected. 
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Fig. 1.4 A general scheme of content-based audio analysis, specifying various possible types of 

input audio signals, prior knowledge and application context, the types of inference techniques 

and inference results  

 

In addition to different levels of prior knowledge, different types of inference 
techniques (e.g. supervised vs. unsupervised), and different corresponding types of 
inferred results (e.g. semantic concepts vs. semantic structure elements), practical cases 
also differ from each other regarding the type of audio signals serving as input. For 
example, in some cases, audio signals consisting of one category only (i.e. pure speech) 
are processed, while other deal with more complex audio signals resulting from a 
combination of several audio categories. In the remainder of this thesis we will refer to 
such compound audio signals as composite audio. 

 

1.3 Thesis Scope: Unsupervised Analysis of Composite Audio  

In this section we analyze in more detail the realization possibilities and applications of 
the scheme in Fig. 1.4, and explain the specific choices we make in this thesis, from 
which we expect to lead us towards a robust framework for content-based analysis of 
composite audio signals.  

 

1.3.1 Composite Audio 

In many applications and scenarios dealing with the audio-visual content of sports, 
broadcasts, movies, news, and radio programs, audio signals appearing therein contain 
not only speech and music, but also various audio effects, such as cheering and 
applauses. For instance, in a radio program, speech may be frequently interrupted by 
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music or sound effects, while in an action movie a much more complex sound track 
containing speech, music, and various sounds of explosion, gun-shots, car-chasing, and 
screaming can be found. These sounds are typically not only temporally interleaved 
(temporally composite), but often also spectrally mixed (spectrally composite) when 
occurring simultaneously. Therefore, to be able to support multimedia information 
retrieval in a general case, and to make the system in Fig. 1.4 less sensitive to 
unpredicted mixtures of different audio categories, we assume in this thesis that the 
input in Fig. 1.4 is a composite audio signal. Compared to this, pure audio categories, 
such as speech or music, can be considered as input when developing dedicated 
solutions for specific applications. The development of these solutions falls in the 
domain such as speech recognition or music information retrieval [Casey et al. 2008], 
and is beyond the scope of this thesis. 

 

1.3.2 Audio Scene Detection and Grouping  

In view of many aspects of audio content semantics, it is necessary to define which of 
these aspects we concentrate on in this thesis. This definition will help formulate a 
clear objective, based on which we can approach a specific realization of the general 
scheme in Fig. 1.4.  

Referring to the definition of the three main abstraction levels of semantic inference 
in Section 1.1, we address in this thesis the problem of inferring the semantic structure 
of a composite audio data stream. We first search for mechanisms to discover 
meaningful, semantically coherent structure elements of an input composite audio 
signal that we will further refer to as semantic segments or audio scenes. An audio 
scene can be seen as an equivalent of a text paragraph, or a logical story unit [Hanjalic 
et al. 1999] targeted by the algorithms for video content segmentation. Examples of 
audio scenes we aim at in this thesis are the segments in the video soundtracks 
corresponding to a movie scene, a news report or a particular event, like the applauding 
audience or the segment between the serve and the end of a game in a tennis match. We 
emphasize here that our goal is not to infer the meaning of a segment but solely its 
boundaries. In this sense, we also aim at developing a segmentation framework that is 
generic enough to handle various content genres (e.g. sports, movies, TV shows).  

While the classical approach to audio segmentation infers audio scenes based on a 
direct analysis of features, we consider in this thesis an alternative approach that builds 
on the analogy to the text document analysis. This approach requires an intermediate 
analysis step resulting in a first set of semantic descriptors, which are then used to 
facilitate the audio scene discovery step. As an analogy to the discussion in Section 1.1, 
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we again refer to these intermediate results as mid-level semantic descriptors, as 
opposed to the high-level descriptors that point to audio scene boundaries. We show in 
this thesis that our two-step segmentation approach can lead to a significant increase in 
segmentation robustness compared to the traditional approach.   

Once audio scenes are detected, we investigate the possibilities to automatically 
group them together into meaningful clusters to facilitate further steps in audio and 
multimedia content management. In the development of our clustering approach, we 
again rely on the same mid-level semantic descriptors that were applied in the 
segmentation step. This opens the possibility to deploy alternative clustering concepts, 
such as co-clustering, which is also likely to result in a considerable increase in 
performance compared to the classical clustering methods. Just like in the segmentation 
case, we like to emphasize that we are interested in detecting which audio scenes 
belong together in terms of their content, rather than in recognizing that content, which 
again implies that generic solutions are searched for.  

 

1.3.3 Unsupervised Semantic Inference  

To infer the semantic content of audio scenes from a composite audio signal, two 
general classes of approaches can be deployed: supervised or unsupervised approach.   

Existing works on content-based audio analysis have usually adopted supervised 
data analysis and classification methods. For instance, Gaussian mixture model 
(GMM), hidden Markov model (HMM), support vector machine (SVM), and Bayesian 
Network are often used to model and identify various aspects of audio content 
semantics. Examples can be found in [Cai et al. 2003a][Xu et al. 2003][Moncrieff et al. 
2001][Cheng et al. 2003]. Although the supervised approach has proved to be effective 
in many applications, it shows some critical limitations. First, the effectiveness of the 
supervised approach relies heavily on the quality of the training data. If the training 
data is insufficient or badly distributed, the system performance drops significantly. 
Second, in most real-life applications, like pervasive computing [Ellis and Lee 2004] 
and surveillance [Radhakrishnan et al. 2004], it is difficult to list all the semantic 
categories that could possibly be found in data. Thus it is impossible to collect training 
data and learn proper statistical models in these cases. 

In view of the described disadvantages of the supervised methods, some 
unsupervised techniques like clustering have emerged as an alternative to supervised 
content classification. The unsupervised approach has the advantage that it requires 
neither the predefined semantic categories nor the offline collected training data. 
However, the resulting wider application scope comes together with the disadvantage 
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that the unsupervised approach can only lead to meaningful data clusters but cannot 
automatically reveal the exact meaning of each cluster (e.g. class labels as links to the 
corresponding semantic concepts).  

In view of our goals defined earlier in this section, we choose for an unsupervised 
semantic inference approach to develop our realization of the scheme in Fig. 1.4. In 
addition to the fact that the unsupervised approach has been considered much less in 
recent literature than the supervised one, this choice is motivated mainly by our goal to 
develop theoretical foundations and a practical implementation of a robust 
content-based audio analysis method, where robustness is mainly searched in the 
capability of the analysis framework to effectively deal with a wide range of variations 
in signal combinations characterizing a composite audio data.  

As opposed to a supervised approach where the match is evaluated between a trained 
model of a semantic concept and the signal behavior in a given audio segment, the 
unsupervised approach requires mining or discovery of potentially meaningful patterns 
and structure elements in audio signals. To emphasize this, we will often refer to our 
approach also as content discovery from composite audio. 

 

1.4 Thesis Contribution and Outline 

We conclude this chapter by providing a brief summary of the thesis goal, objectives 
and contributions, and an overview of the material presented in the remainder of the 
thesis.  

The main goal of this thesis is to develop and assess a robust unsupervised 
framework for semantic inference from composite audio signals. Our semantic 
inference approach will focus on the detection of audio scenes and their grouping into 
meaningful clusters. To perform both the audio scene segmentation and grouping, we 
choose for a two-step approach involving mid-level semantic descriptors. The main 
contributions reported in this thesis and resulting from pursuing the abovementioned 
goal and objectives can be defined as follows: 

- Unraveling the problem of semantic inference from composite audio signals, by 
discussing both the supervised and unsupervised approach and addressing issues 
like reliability and scalability related to the application scope and inferred 
semantics,  

- Mapping the abovementioned problem onto the problem of text document 
analysis and drawing cross-domain parallels to the relevant measurements needed 
for semantic inference in the audio domain, 
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- Introducing and assessing generic, unsupervised methods for  

o extracting mid-level semantic descriptors from composite audio that 
correspond to the concept of (key)words in text document analysis, 

o segmenting a composite audio track into audio scenes based on mid-level 
semantic descriptors, 

o grouping audio scenes into clusters corresponding to semantically meaningful 
categories based on mid-level descriptors, 

- Unraveling the possibilities for combining supervised and unsupervised semantic 
inference from composite audio to benefit from the best of the two worlds, 

- Expanding the ideas mentioned above that are defined for a content-based 
analysis of a single audio document onto a broader problem of audio document 
matching and clustering.  

 

In view of the above, we first provide in Chapter 2 an overview of the related 
existing ideas and algorithms in the field of content-based audio analysis. This is 
followed by a general introduction of the main underlying idea of our envisioned 
realization of the scheme in Fig.1.4.  

Chapter 3 addresses the fundamental step in any content-based audio analysis 
approach, namely feature selection and extraction. The suitability of a feature is 
measured based on its capability to reveal mid-level semantic descriptors from a 
composite audio signal, and to enable meaningful comparison of these descriptors and 
the audio scene detection and grouping processes based there on.  

Chapter 4 presents our approach to the extraction of mid-level semantic descriptors, 
which follows the analogy to text document analysis. These descriptors are discovered 
in a similar way as the keywords are identified in a text document. In this way, an 
audio signal is divided into elements which can be intuitively explained as audio words 
and audio keywords. 

In Chapter 5 we again build on ideas from text document analysis as well as the 
proven concepts from video content segmentation to develop our approach to audio 
scene detection. This approach is based on a novel semantic affinity measure that 
evaluates the coherence of the audio content semantics over time based on the relative 
temporal distribution of mid-level semantic descriptors with respect to each other.  

After the audio scenes are detected, we use the approach introduced also in Chapter 
5 to group them into meaningful clusters. The approach is based on the concept of 
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co-clustering that effectively makes use of the same mid-level semantic descriptors as 
those used in the previous segmentation step.    

Chapter 6 revisits the goal of this thesis and the approach we proposed to reach this 
goal. Then, we present our views on the possibilities to expand the proposed approach 
in order to enable general audio search and management applications. We search for 
such possibilities by focusing on combining the unsupervised and supervised 
approaches, and on expanding the concept of document-specific audio onto a broader 
domain of audio document clustering and retrieval.  
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Chapter 2 * 

Framework for Content Discovery 
from Composite Audio 

 

 

 

 
In this chapter, we first discuss the previous work related to content-based analysis of 
composite audio, and analyze the advantages and disadvantages of the existing 
methods regarding their reliability and scalability in terms of the inferred semantics. 
Then, we propose our framework for content discovery from composite audio, position 
it with respect to the previous work, and present an implementation of this framework 
targeting the detection of audio scenes and grouping them into meaningful clusters.  

 

2.1 Related Work  

To infer the semantics from audio signals and bridge the semantic gap, considerable 
research effort has been invested in developing the theories and methods for 
content-based audio analysis. In general, most of these works can be located in one or 
more blocks indicated in Fig. 2.1, including the general processes of audio 
segmentation, audio classification, and audio retrieval.  

                                                                    

Parts of this chapter are based on the following publications (also to be found in the list of references):  

• Lu, L., Cai, R., Hanjalic, A. “Towards a Unified Framework for Content-based Audio Analysis,” Proc. 

30th Int’l Conf. on Acoustics, Speech, and Signal Processing, vol. II, 1069-1072, 2005 

• Cai, R., Lu, L., Hanjalic, A. “Unsupervised Content Discovery in Composite Audio,” Proc. 13th ACM 

Int’l Conf. on Multimedia, 628-637, 2005 

• Cai, R., Lu, L., Hanjalic, A., Zhang, H.-J., and Cai, L.-H. “A Flexible Framework for Key Audio Effects 

Detection and Auditory Context Inference,” IEEE Trans. on Audio, Speech and Language Processing, 

Vol. 14, No. 3, 1026 – 1039, 2006  
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Fig. 2.1. Block scheme representing the most prominent classes of content-based audio analysis 

algorithms. The arrows indicate the typical causal relations between the blocks. 

 

 

As indicated in the scheme in Fig. 2.1, audio segmentation provides inputs to all 
other blocks. We distinguish between two basic segmentation levels. At the first (low) 
level, an audio signal can be divided into elementary segments, also referred to as 
audio frames. Due to their short duration (typically around 10-50 ms) and the 
assumption that their signal properties can be considered stationary, audio frames 
provide a standard framework for feature extraction, that is, for feature-based 
representation of an audio signal. In case a compromise is required between the 
resolution of feature-based audio representation and the computational efficiency of the 
analysis processes based on this representation, longer segments (e.g. up to several 
seconds long) containing series of audio frames can be used as well. In that case, the 
feature vector of the longer segment can be inferred from the feature values measured 
within individual audio frames contained therein, and then adopted for the subsequent 
content-based audio analysis steps.  

At the second (high) level, we can divide an audio signal into meaningful, that is, 
self-consistent and semantically coherent segments that can serve as the objects of 
audio or multimedia retrieval. Referring to the definitions provided in Section 1.1, this 
type of audio segmentation corresponds to the semantic inference process at the 
semantic structure level. While considerable effort has been invested in developing 
methods for detecting meaningful segments in text [Beeferman et al. 1999] and video 
documents [Kender and Yeo 1998][Hanjalic et al. 1999], much less has been done 
regarding the development of reliable high-level audio segmentation methods.  

Audio classification associates semantic indexes (also referred to as labels) with 
audio signals. This association is typically inferred at the level of semantic concepts 
(classes). Audio classification, which can also be defined as audio indexing, audio 
categorization or audio recognition, can be performed at different content abstraction 
and complexity levels. In this thesis we distinguish among three main levels, namely 

High level 

Low level 
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the basic, mid- and high-level. While the basic level covers the elementary audio 
categories, like speech and music, typical examples of mid-level semantic concepts 
include audio effects, such as applause, cheering, ball-hit, whistling, car engine 
running, siren, gun-shot, instrumental solo, guitar sequence, and explosion. High-level 
concepts are characterized by even higher semantic abstraction and signal complexity. 
Examples of such concepts are audio scenes like action scene in a movie, or a game in 
a tennis match. Typically, a high-level semantic concept can be characterized by a 
specific combination and sequence of mid-level concepts [Baillie and Jose 2003][Lu et 
al. 2005].  

Content-based audio retrieval has the objective of providing access to a large data 
corpus based on an input query. The query is usually in a textual form (i.e. 
query-by-text). For example, a user may use the text term “applause” to search for all 
audio clips containing the corresponding sound. Clearly, this retrieval strategy is 
directly enabled by the results obtained from audio classification, as the text-based 
search can be performed on the labels assigned to the audio segments contained in the 
collection. An alternative paradigm is query-by-example, with an audio clip as a query. 
For instance, one can search for applauses by providing an “applause” sound as 
example to the system, or search for a song by simply singing or humming its melody.  

In the remainder of this section, we will address each block in Fig. 2.1 in more detail 
regarding its realization possibilities and in view of the previous work related to it.  

 

2.1.1 Audio Segmentation 

Early works on audio segmentation (e.g. [Saunders 1996][Zhang and Kuo 1999]) were 
strongly related to audio classification. The proposed methods apply a sliding window 
of a pre-specified length to obtain a set of basic segments that can be further classified 
individually into predefined classes (e.g. speech, music). Then, the basic segments can 
be concatenated into longer segments of a particular class (e.g. speech segments, music 
segments), usually after smoothing out the outliers in the labeled segment sequence 
first. More complex modeling and classification strategies were applied in a number of 
methods aiming at dividing speech streams into segments corresponding to different 
speakers. If a speaker was pre-registered, traditional speaker identification algorithms 
[Brummer 1994] can be used for this purpose. However, in many applications, speakers 
are unknown a priori. To deal with this problem, several approaches were proposed 
dealing with unsupervised speaker segmentation and clustering. [Cohen and Lapidus 
1996] studied the scenario of discriminating between speakers in a telephone-line 
signal. They approached the problem using Hidden Markov Model (HMM) and by 
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assuming that the number of speakers was limited to two. Opposed to this, [Wilcox et 
al. 1994] used no knowledge about the speakers when proposing an HMM-based 
speaker segmentation algorithm based on an agglomerative clustering method. [Mori 
and Nakagawa 2001] also addressed the problem of speaker segmentation without prior 
information on the speakers available. In [Gish et al. 1991][Siu et al. 1992], a system 
was proposed to separate the traffic control speech and pilot speech using a Gaussian 
Mixture Model (GMM). Further, [Chen and Gopalakrishnan 1998] presented an 
approach to detect changes in speaker identity, as well as in environmental and channel 
conditions, by using the Bayesian information criterion (BIC). While these approaches 
usually work offline and are computationally expensive, attempts were also made to 
design a real-time speaker segmentation approach [Lu and Zhang 2002].  

An alternative class of approaches relied on a direct online analysis of features, 
where longer audio segments were defined to coincide with a consistent feature 
behavior. Examples are the method of [Venugopal et al. 1999] to segment an audio 
stream in terms of gender, speech, music and speaker, and of [Sundaram and Chang 
2000] for segmentation into “computable audio scenes”.  

The abovementioned approaches to audio segmentation is effective in identifying 
basic audio categories (e.g. speech, music, and noise). However, these approaches are 
not suitable for inferring higher-level semantic descriptors, such as those marking the 
logical story units [Hanjalic et al. 1999], which may be characterized by complex and 
strongly varying combinations of basic audio categories. Since the mentioned 
approaches are sensitive to such content diversity, their deployment for segmentation at 
a higher abstraction level typically results in an over-segmentation.  

 

2.1.2 Audio Classification  

Fig. 2.2 shows a general classification scheme, which is typically composed of two 
main steps: supervised learning and inference. In the supervised learning step, a model 
of each semantic class is built based on a set of training data, and with a specific 
learning scheme. Then, in the inference step, a new, unseen collection of data is 
associated with a semantic label, the model of which best resembles the properties of 
the data. Various schemes and mechanisms have been employed so far for realizing 
both the learning and inference steps. These schemes include sets of heuristic rules, 
vector quantization (VQ), k-nearest neighbor (kNN), decision tree, Bayesian network, 
artificial neural network (ANN), Gaussian mixture model (GMM), support vector 
machine (SVM), and hidden Markov model (HMM). More information about these 
schemes can be found in [Duda et al. 2000][Hastie et al. 2001]. 
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Fig.2.2. An illustration of a general classification scheme  

 

In the following, we briefly discuss the results of the efforts invested so far in the 
field of audio classification to realize the scheme in Fig. 2.2 and for each of the three 
abstraction and complexity levels identified in the previous section to characterize a 
semantic concept. 

 

2.1.2.1 Basic Audio Classification 

Earliest audio classification attempts considered the distinction among basic audio 
types, such as speech, music and noise. In [Saunders 1996], a sliding-window based 
speech/music classifier for radio broadcast was presented. The authors reported the 
classification accuracy of up to 98%, obtained with a wide sliding window (2.4s). 
Working on the same problem, [Scheirer and Slaney 1997] introduced more features 
for audio representation and performed experiments with different classification 
methods, including GMM, kNN, and ANN. When using the same basic setting as in 
[Saunders 1996], the reported error rate was 1.4%. Then, [Kimber and Wilcox 1996] 
increased the number of classes and proposed a methodology based on HMM to 
classify audio recordings of meeting discussions into speech, silence, laughter, and 
non-speech sounds. In [Zhang and Kuo 1999], pitch tracking methods were introduced 
to divide audio recordings into songs and speech, based on a heuristic model that 
reached the accuracy of above 90%. [Srinivasan et al. 1999] proposed an approach to 
classify audio signals that consist of mixtures of speech, music and environmental 
sounds. The reported classification accuracy was above 80%. More recently, [Lu et al. 
2001] presented a hybrid method which combines VQ and a rule-based method with 
multiple classifying steps to distinguish among speech, music, environmental sound, and 
silence. The accuracy of above 96% was reported. [Lu et al. 2003] further expanded this 
work to consider more classes, such as pure-speech and noisy speech. 
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2.1.2.2 Mid-level Audio Classification  

One of the first attempts to audio classification at a higher abstraction level than the 
basic audio types was made by [Pfeiffer et al. 1996]. There, a method was presented to 
detect audio effects, such as gunshot, explosion and cry, in a given 30ms audio 
segment. [Xiong et al. 2003] also presented an approach to detecting both the basic 
audio types and some audio effects, such as applause, cheering, music, speech, and 
speech with music, for the purpose of highlights extraction from baseball, golf and 
soccer games. Other examples of methods targeting the extraction of various audio 
effects can be found in [Moncrieff et al. 2001][Xu et al. 2003][Cheng et al. 2003]. 

Several issues play a role in audio effect detection in audio signals, and need to be 
resolved in order to secure reliable classification. The most important issues can be 
described as follows: 

(1) Audio effect detection in a long, continuous audio signal is typically approached 
by applying a sliding window of a given length (e.g. 0.5 seconds) to the signal. 
The audio segment captured by the window at a given time stamp is then used as 
the basic unit to be associated with an audio effect. An important implicit 
assumption here is that each segment corresponds to one and only one semantic 
class. However, a sliding window is often either too short to capture one 
complete audio effect, which leads to over-segmentation, or too long and 
captures several audio effects within one segment.  

(2) The targeted audio effects are usually sparsely distributed over the signal, and 
there are plenty of non-target sounds that are to be rejected. Most existing 
approaches assume having a complete set of semantic classes available, and 
classify each audio segment into one of these classes. Other methods use 
thresholds to discard the sounds with low classification confidence [Cheng et al. 
2003]. However, the setting of thresholds required in such an approach becomes 
troublesome for a large number of effects. 

(3) Audio effects are usually related to each other. For example, some audio effects 
such as applause and laughter are likely to occur together in a sequence, while 
others are not. Taking into account the transition (co-occurrence) relationships 
between audio effects is therefore likely to improve the detection of each 
individual sound. 

To investigate the possibilities for effectively resolving and exploiting the 
abovementioned issues when designing algorithms for audio effect detection, we 
elaborate on our previous approach proposed in [Cai et al. 2006] as an example. In this 
hierarchical probabilistic framework, key audio effects are searched for.  
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Fig. 2.3 The hierarchical probabilistic framework for key audio effect detection, consisting of 

three main parts: key audio effect pool, background sound pool, and grammar network [Cai et al. 

2006] 

 

As illustrated in Fig. 2.3, an HMM model is first built for each key audio effect 
based on a complete set of audio samples, and the defined models compose the Key 
Audio Effect Pool. Then, comprehensive background models are also established to 
cover all non-target sounds that complement the targeted key effects. Thus, the 
non-target sounds would be detected as background sounds and excluded from the 
target audio effect sequence. Moreover, a higher-level probabilistic model is used to 
connect these individual models with a Grammar Network, in which the transition 
probabilities among various audio effects and background sounds are taken into 
account for finding the optimal audio effect sequence. Thus, for a given input audio 
stream, the optimal audio effect sequence is found among the candidate paths using the 
Viterbi algorithm, and the location and duration of each key audio effect in the stream 
are determined simultaneously, without the need for an initial pre-segmentation of the 
audio data stream. In the following, both the learning and inference step are discussed 
in more detail. 

 



22 

A. Classifier Learning 

We modeled each key audio effect and background sound using HMMs, since HMM 
provides a natural and flexible way for modeling time-varying process [Rabiner 1989]. 
The main issue that needs to be resolved for an HMM is the parameter selection, which 
includes i) the optimal model size (the number of states), ii) the number of Gaussian 
mixtures for each state, and iii) the topology of the model.  

To select the model size, one needs to balance the number of hidden states in the 
HMM and the computational complexity in the learning and inference processes. In 
general, a sufficient number of states are required to describe all the significant 
behavioral characteristics of a signal over time. However, when the number of states 
increases, the computational complexity grows dramatically and more training samples 
are required. Unlike speech modeling, in which the basic units such as tri-phones could 
be adopted to specify the number of states, general key audio effects lack such basic 
units. A clustering-based method was proposed in [Zhang and Kuo 1998][Reyes- 
Gomez and Ellis 2003] to estimate a reasonable number of states (model size) per 
audio effect. The clustering step was realized through an improved, unsupervised 
k-means algorithm, and the obtained number of clusters is taken as the model size.  

The number of Gaussian mixtures per state is usually determined experimentally. 
We adopt 32 Gaussian mixtures for each state in the HMM. This number is larger than 
those used in other related methods in order to secure a sufficient discriminative ability 
of the models to identify a large diversity of audio effects in general audio streams. 

The most popular HMM topology is the left-to-right or the fully connected one. The 
left-to-right structure only permits transitions between adjacent states, while the fully 
connected structure allows transitions between any states in the model. Different 
topologies can be used to model audio effects with different properties. For instance, 
for key audio effects with obvious time-progressive signal behavior, such as car-crash 
and explosion, the left-to-right structure should be adopted, while for audio effects 
without distinct evolution phases, such as applause and cheering, the fully connected 
structure is more suitable. 

Regarding the background sound modeling, a straightforward approach is to build a 
large HMM, and train it with as many samples as possible. However, background 
sounds are very complex and diverse, and their features are typically widely scattered 
in the feature space, so that both the number of states and the Gaussian mixtures per 
state of such a HMM must be exceptionally large to secure a representation of all 
possible background sounds. As an alternative, we modeled the background sounds as 
a set of subsets of basic audio classes, including speech, music, and noise, with 10 
states and 128 Gaussian mixtures per state for each subset model. In this way, the 
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training data for each subset model would be relatively limited, and the training time 
would be reduced. Another advantage of building these subset models is that they 
could provide additional useful information for semantic inference at higher abstraction 
levels. For example, music is usually used in the background of movies, and speech is 
the most dominant component in talk shows.  

The Grammar Network in Fig. 2.3 is an analogy to a language model in speech 
processing. It organizes all the HMM models for continuous recognition. Two models 
are connected in the Grammar Network if the corresponding sounds are likely to occur 
after each other, both within and between the key audio effect pool and the background 
sound pool. For each connection, the corresponding transition probability is taken into 
account when finding the optimal effect sequence from the input stream. 

The transition probabilities between two models can be statistically learned from a 
set of training data. If no sufficient training data are available, a heuristic approach can 
be deployed as an alternative. For instance, our approach in [Cai et al. 2006] is based 
on the concept of Audio Effect Groups, where an audio effect group can be seen as a set 
of audio effects that usually occur together. The approach is based on the assumptions 
that 1) only audio effects in the same group can occur subsequently, 2) there should be 
background sounds between any two key audio effects belonging to different groups, 
and 3) the transition probability is uniformly distributed per group. An example 
Grammar Network with audio effect groups indicated as G1-Gk is illustrated in Fig. 2.4 

 

B. Probabilistic Inference 

Based on the learned classification framework, the Viterbi algorithm can be used to 
obtain the optimal state sequence from the continuous audio stream, as: 

),|(Prmaxarg OMss
s

optimal = .     (2.1) 

Here, s is the candidate state sequence, M represents the hierarchical framework, and O 
is the observation vector sequence. In terms of practical realization of this classification 
scheme, the corresponding state and its log-probability are obtained first for each audio 
frame. Then, a complete audio effect or background sound can be detected by merging 
adjacent frames belonging to the same sound model. Before this merging step, a 
smoothing filter is applied to remove the classification outliers in the sequences of 
consecutive frames. The final classification confidence can be measured by averaging 
the log-probabilities of the classified audio frames. In addition, the starting time stamp 
and duration of each sound occurrence are obtained, by taking the starting and ending 
time stamp of the first and last audio frame in the sequence, respectively.  
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Fig. 2.4. An illustration of the Grammar Network with Audio Effect Groups, where Gk is the kth 

Effect Group and GB is the Background Sound Pool. For convenience, all key audio effect 

models are presented as 3-state left-to-right HMMs, and all the background models are denoted 

as 3-state fully connected HMMs. The dummy start and end states are used to link models [Cai et 

al. 2006] 

 
 

2.1.2.3 Towards a Hierarchy of Semantic Concepts 

Based on the obtained audio effect sequence, methods can be developed to perform 
audio classification at a higher abstraction level. While high-level semantic concepts 
can generally also be detected by directly working with the features as mentioned 
above, it has been shown that using audio effects as an intermediate classification level 
can lead to more effective indexing at higher abstraction levels [Lu et al. 2005]. 

Some example methods for inferring high-level audio semantics directly from the 
features include [Peltonen et al. 2002] and [Liu et al. 1998]. [Peltonen et al. 2002] built 
kNN and GMM classifiers to classify audio scenes into 26 pre-defined semantic 
categories. In [Liu et al. 1998], an ANN is developed to classify TV programs into five 
categories, namely commercials, basketball games, football games, news reports, and 
weather forecasts. However, the features may vary significantly among various audio 
samples belonging to the same semantic class, and thus may lead to unsatisfying 
detection/classification performance in practice.  
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The usability of audio effects to facilitate the semantic inference at the level of audio 
scenes can be derived from the fact that audio scenes with similar semantics are 
typically characterized by a number of same or similar audio effects. For instance, 
cheering and laughter are usually associated with humor scenes in comedies, and 
explosion and gun-shots often indicate violence scenes in action movies. Working in 
this direction, [Baillie and Jose 2003] presented an approach to event indexing in 
soccer broadcasts that first detects six content classes capturing various types and 
levels of crowd response during a soccer match. The audio patterns associated with 
each content class are modeled using a HMM model. Given a classified audio sequence, 
a simple rule-based decision process is developed to detect an event in each ‘event 
window’. [Rui et al. 2000] presented an approach to extract highlights from the sound 
track of a baseball match. To deal with a high complexity of such an audio track, first 
the speech endpoint detection in noisy environment was developed. Then, energy and 
pitch statistics are computed for each speech segment. Gaussian fitting, kNN, and SVM 
were applied to detect portions of excited speech. Finally, some sports-specific sounds, 
e.g., baseball hits, are also detected by developing a directional template matching 
approach based on the characteristics of sub-band energy features. The detected 
mid-level results are further probabilistically fused to obtain final highlighting 
segments. [Xu et al. 2003] also worked on soccer game indexing. In this work, SVMs 
are first built to detect audio effects, such as whistling and ball-hit, based on audio 
frames of 20 ms. Then, a set of heuristic rules are used to infer the events in soccer 
games. An example of such rules is "if double whistling, then Foul or Offside". 
[Moncrieff et al. 2001] presents an approach to movie indexing. They first detect 
several key audio effects, e.g., sirens, gun shots, etc., using classifiers like decision tree 
and SVM. Then they concentrate on the extraction of complex audio scenes that are 
meant to coincide with dramatic movie segments, such as car chase and violence. 
Experimental results on movie audio tracks showed a classification accuracy of 88.9%. 
Another approach with a similar objective was presented in [Cheng et al. 2003]. In this 
work, sounds like car-racing, siren, gun-shot, and explosion are first identified using 
HMMs. Then, GMMs are used to learn the relationships between the audio effects and 
the higher-level semantics of audio scenes, and so to identify violent scenes in action 
movies. 

Although the abovementioned and other related approaches actively employ audio 
effects as intermediate results for high-level semantic inference, the employed 
inference schemes usually do not reach beyond a set of relatively simple heuristic rules 
[Xu et al. 2003][Baillie and Jose 2003], or statistical classification [Moncrieff et al. 
2001] [Cheng et al. 2003]. Heuristic inference is straightforward and can be easily 
applied in practice. However, it is usually laborious to find a proper rule set if the 
situation is complex. For example, the rules usually involve many thresholds which are 
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difficult to set, some rules may be in conflict with others, and some cases may not be 
well-covered. People are used to designing rules from a positive view but ignoring 
negative instances, so that many false alarms are introduced although high recall can be 
achieved. In the classification-based methods that apply statistical learning, the 
inference performance relies highly on the completeness and the size of the training 
samples. Without sufficient data, a positive instance not included in the training set will 
usually be misclassified. Thus these approaches are usually prone to high precision but 
low recall. Further, it is inconvenient to combine prior knowledge into the 
classification process in these algorithms. 

To integrate the advantages of heuristic and statistical learning methods, we 
proposed a Bayesian network-based approach in [Cai et al. 2006]. A Bayesian network 
[Heckerman 1995] is a directed acyclic graphical model that encodes probabilistic 
relationships among nodes which denote random variables related to semantic 
concepts. A Bayesian network can handle situations where some data entries are 
missing, as well as avoid the overfitting of training data [Heckerman 1995]. Thus, it 
weakens the influence from unbalanced training samples. Furthermore, a Bayesian 
network can also integrate prior knowledge by specifying its graph structure. 

 

 

Semantic Context
Level 1

Semantic Context
Level 2

Key Audio 
Effects ...

...
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Fig. 2.5. An example of a Bayesian network for audio context inference: arcs are drawn from 

cause to effect. Following the convention, discrete variables are represented as squares while 

continuous variables are indicated as circles. Furthermore, observed variables are shaded, while 

hidden variables are not [Cai et al. 2006] 
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Fig. 2.5 illustrates the topology of an example Bayesian network with three layers. 
Nodes in the bottom layer are the observed audio effects. Nodes in higher layers denote 
high-level semantic categories, such as audio scenes, with increasing abstraction and 
complexity. In Fig. 2.5, the nodes in adjacent layers can be fully connected, or partially 
connected based on the prior knowledge of the application domain. For instance, if it is 
known a priori that some audio effects have no relationships with a semantic class the 
links from that class node to those effect nodes could be removed. A Bayesian network 
with a manually specified topology utilizes human knowledge in representing the 
conditional dependencies among nodes, thus it can describe some cases that are not 
covered in the training samples.  

The nodes in the upper layers are usually assumed to be discrete binaries, which 
represent the presence or absence of a corresponding semantic class, while the nodes in 
the bottom layer produce continuous values of a Gaussian distribution 

)1(),(~)|( NiNFp iiii ≤≤Σµpa      (2.2) 

where Fi is a 2-dimensional observation vector of the i th audio effect and is composed 
of its normalized duration and confidence in a given audio scene. The conditional 
argument pai denotes a possible assignment of values to the parent nodes of Fi, while µi 
and Σi are the mean and covariance of the corresponding Gaussian distribution. In the 
training phase, all these conditional probability distributions are uniformly initialized 
and then updated by maximum likelihood estimation using the EM algorithm. In the 
inference process, the junction tree algorithm [Huang and Darwiche 1996] can be used 
to calculate the occurrence probability of each semantic class. Here, given the 
information on audio effects in each audio scene in the form of posterior probabilities 
(2.2), an audio scene, being at a higher abstraction level, can be classified into the cth 
semantic class using the MAP criterion: 

},,,{        1     )|Pr(maxarg 21 Nj
j
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With this scheme, human knowledge and machine learning are effectively combined 
to perform high-level semantic inference. In other words, the topology of the network 
can be designed according to the prior knowledge of an application domain, and the 
optimized model parameters can then be estimated by statistical learning. 
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2.1.3  Audio Retrieval  

Audio retrieval aims at retrieving sound samples from a large corpus based on their 
relation to an input query. Depending on the type of a query, two general audio 
retrieval strategies can be distinguished. Using the first strategy based on a text query, a 
text label (e.g. “applause”) is submitted to find all audio clips in the corpus that are 
associated with that label. Clearly, this strategy relies on audio classification as the 
initial step to label the corpus and enable text-based audio retrieval. The other strategy, 
also referred to as query-by-example, uses an example sound as an input query. Then, 
based on the features extracted from the sounds in the corpus and from the query sound, 
as well as the similarity criteria employed, sounds from the corpus can be retrieved that 
best match the query sound. Since the realization possibilities of the first retrieval 
strategy have already been covered by the algorithms for audio classification in the 
previous section, we concentrate in this section on the query-by-example strategy and 
briefly review the most relevant previous work addressing this type of audio retrieval.  

In one of the earliest content-based audio retrieval systems called ‘Muscle Fish’ 
[Wold et al. 1996], a statistical model including a Gaussian and a histogram model is 
employed to build a feature-based representation of a sound clip, using which the 
similarity between two clips can efficiently be measured. In order to speed up the 
search in a large database, the authors also built an index of the sounds based on 
acoustic features. It allows to quickly retrieve the desired sounds by requesting all the 
sounds whose feature values fall in the corresponding range. 

In the audio search engine proposed in [Foote 1997], to be able to separate different 
sounds while remaining insensitive to unimportant variations, a tree-structured vector 
quantizer is built to divide the feature space into partitions (bins), optimally in the 
information-theoretical sense. Then, a “template” for each audio clip is built, which is 
actually a histogram indicating the vector counts in each bin. Euclidean or Cosine 
distances between the query template and corpus templates are employed, so that the 
audio clips in the corpus can be ranked correspondingly. Retrieval performance was 
evaluated on a corpus of simple sounds as well as a corpus of music excerpts. The best 
result is obtained with a supervised quantization tree with 500 bins and a cosine 
distance measure. 

[Smith et al. 1998] presented a new search scheme - “active search” - to quickly 
search through broadcast audio data and to retrieve known sounds using 120 reference 
templates. Active search reduces the number of candidate matches between a reference 
and the test template, while still providing optimal retrieval performance. The template 
is built based on a histogram of zero-crossing features, which is claimed to be robust 
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against digitization noise and white noise addition down to 20 dB SNR (signal-to-noise 
ratio).  

[Li 2000] presented a new method for audio classification and audio retrieval, called 
Nearest Feature Line (NFL). NFL interpolates or extrapolates each pair of prototypes 
(audio samples) belonging to the same class by using a linear model. The feature line 
that passes through two prototypes provides generalized information about the variants 
between these two sounds, i.e. possible sounds derived from the two prototypes. 
Opposite to the commonly used NN approach, in which classification is performed by 
comparing the query to each prototype individually, the NFL makes use of information 
provided by multiple prototypes per class. An evaluation on Muscle Fish audio 
database of 409 sounds shows that NFL outperforms both kNN and Nearest Center.  

[Li and Khokhar 2000] presented another approach to content-based audio 
information retrieval, which is based on the multi-resolution decomposition property of 
the discrete wavelet transform. The wavelet decomposition of an audio signal highly 
resembles its decomposition in sound octaves. A hierarchical indexing scheme is 
constructed using statistical properties of the wavelet coefficients at multiple scales. A 
variant of B-tree data structure is used as an indexing structure, where the height of the 
tree corresponds to number of sub-bands and the nodes of each level corresponds to 
clusters in the corresponding sub-band. The performance of the proposed systems is 
experimentally evaluated on 418 audio clips. The prototype system yields high recall 
ratios (higher than 70%) for sample queries with diverse audio characteristics.  

 

2.1.4 Other Relevant Previous Work  

Next to the approaches presented in the previous sections, a large number of other ideas 
and methods have been proposed in recent literature that do not directly fall into the 
scope of audio segmentation, classification or retrieval, but are closely related to them. 
A good example of such work is the one on computational audio scene analysis 
(CASA), which attempts to separate and represent a continuous sound mixture (a 
composite audio) as a set of independent sources, or to estimate a number of distinct 
events therein. As a fundamental work in this direction, [Bregman 1990] first reports a 
number of theoretical foundations and experimental investigations that addressed the 
psychoacoustic aspects of the human listening behavior. These experiments have 
inspired numerous efforts to build computational models for audio scene analysis 
mentioned before. These modeling approaches can be conceptually divided into two 
groups, namely the “data-driven” and “prediction-driven” ones. The “data-driven” 
approach is more frequently used. There, specific features (e.g. instantaneous 
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frequency, amplitude modulation, onsets and offsets) in the sound signal are extracted 
and then grouped into larger entities of perceptual events or sources, such as in 
[Westner 1998][Casey 1998]. However, data-driven approach usually interprets a given 
sound regardless of the context. As an alternative, a “prediction-driven” approach [Ellis 
1996] sees the analysis as a process of reconciliation between the observed features and 
the predictions of the sound in the future. More recent work on computational audio 
scene analysis can be found in [Wang and Brown 2006]. 

Other previous work related to the material presented in this thesis include [Hanjalic 
and Xu 2005] and [Ma et al. 2002]. [Hanjalic and Xu 2005] present a computational 
framework for affective audiovisual content representation and modeling, where the 
expected transitions from one human affective state to another are represented by a 
curve in a two-dimensional (intensity-valence) affect space. Audiovisual content is 
treated here in an integral fashion by combining the features from both the visual and 
audio track together into a joint affect model. [Ma et al. 2002] proposes a 
computational attention model, which models a viewer’s attention on a video sequence 
by integrating a set of visual, audio, and linguistic attention values, and subsequently 
assign an overall attention value to each video frame. With an application to video 
summarization, the video shots with high attention value, which are most likely to 
attract the viewer’s attention, are chosen. Moreover, speech is further segmented into 
sentences, so that each segment of the video summary contains one or several complete 
sentences without any interruption within a sentence.  

 

2.2 What Can We Learn From The Past?  

While the ideas and methods described in the previous sections have been invaluable 
for the rapid development of the theory and practice of content-based audio (and 
multimedia in general) analysis and retrieval in the past years, there are a number of 
issues that have not been sufficiently addressed yet, and that can be identified as an 
obstacle for a broad deployment of the obtained research results in real-life applications. 
We identify and briefly explain these issues in the following paragraphs. 

Insufficient scalability and narrow application scope: While the observable 
dominance of supervised learning approaches in the field has led to many exciting 
results of automatic semantic audio classification (Section 2.1.2), the applicability and 
scalability of such approaches in a realistic application scenario will likely be limited, 
not only because one has to work with pre-defined (and pre-trained) semantic concepts, 
but also because the upper performance limit of such approaches is defined by the 
capability of the training data to capture the entire content diversity of a particular 
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semantic concept. Regarding the former, in most real-life applications, it is difficult to 
list all audio elements and semantic categories that are possible to be found in data. For 
example, in the applications like pervasive computing and audio-supported 
surveillance, relevant audio effects are generally unknown in advance. Thus it is 
impossible to collect training data and learn proper statistical models in these cases. 
Regarding the latter, due to the high diversity and insufficient training data, the upper 
performance limits are regularly not high enough to provide a solution usable in 
general application domains. 

In view of the disadvantages of supervised methods, a few recent works introduced 
unsupervised approaches into multimedia content analysis. For example, an approach 
based on time series clustering is presented in [Radhakrishnan et al. 2004] to discover 
"unusual" events in audio streams. In [Ellis and Lee 2004], an unsupervised analysis of 
a personal audio archive is performed to create an "automatic diary". However, these 
existing methods are in general either designed for some specific applications [Ngo et 
al. 2001][Xie et al. 2003], or only address some isolated components of the content- 
based audio analysis process chain [Ellis and Lee 2004][Radhakrishnan et al. 2004]. 

In view of the above, there is a lack of approaches capable of addressing the full 
processing chain (illustrated in Fig. 2.6, Section 2.3), and also capable of dealing with a 
wide (and unpredictable) range of (composite) audio signals and related applications. 
The need for such complete and generic approaches is considerable due to a typically 
high variety of audio content and search/retrieval applications in a general consumer or 
professional context. To work well in such a context, a content-based audio analysis 
mechanism needs to be based on solid generic principles and show constant high 
robustness over the entire broad application scope. This is in contrast to the current 
sub-optimal and impractical possibilities that rely on combining together a large 
number of dedicated narrow-scope solutions in different ways to address different 
content types and search/retrieval scenarios. 

Insufficient coverage of the semantic space: The abovementioned dominance of 
supervised classification methods has led to an abundance of solutions targeting basic 
and mid-level semantic concepts, and most of them mainly established the more-or-less 
straightforward link between the features and the corresponding concepts. For instance, 
the audio effects such as explosion, cheering and laughter are directly modeled from 
the temporal and spectral signal properties [Cheng et al. 2003]. However, due to the 
difficulty of modeling higher-level concepts caused by high content diversity, these 
more challenging tasks have typically been approached in a rather simplistic fashion, 
like for instance, audio scene characterization solely based on the detection of a 
particular low- or mid-level semantic concept contained therein, without considering 
other effects present there and their relationship with respect to each other. As an 
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example, a highlight scene is usually detected if it contains sounds of excited speech, 
while a scene of foul or offside in soccer is detected if the sound of double whistling is 
found in the signal. More sophistication in inferring higher-level semantics can be 
introduced by applying hierarchical probabilistic approaches, like the one based on 
multijects and multinets [Naphade et al. 2001]. However, while this approach allows 
expansion of the analysis scope and compensates for detection uncertainties of 
individual semantic concepts, the links between the concepts still need to be modeled 
and trained a priori using supervised learning methods, which again brings us back to 
the issues discussed before.  

Furthermore, previous approaches to content-based audio analysis target the 
detection of pre-selected semantic concepts only, and do not provide the possibility to 
obtain a complete description of the entire audio track. However, in some applications 
like pervasive computing, we may want to have the entire description (or a brief outline) 
of the audio track, and not just some selected temporal segments. In principle, complete 
information about the content of a given audio stream including the scene partitioning, 
their content semantics and interrelations, could be obtained by applying various 
supervised concept detectors together, provided that it is known a priori which 
concepts are likely to be found in the content. However, as discussed above, this 
approach is not practical and the required information is not available in a general case.  

Pre-segmentation issue: In order to apply semantic inference techniques on audio 
data, the data often needs to be divided into segments of consistent signal-level and 
semantic properties. The existing work on content-based audio analysis is largely based 
on the assumption that audio data is pre-segmented prior to applying classification and 
other semantic inference approaches. For example, [Saunders 1996] performed audio 
classification on audio segments of 2.4 seconds; and [Liu et al. 1998][Cai et al. 2005] 
also assumed that audio scenes are manually pre-segmented. The pre-segmentation 
assumption reduces the practical applicability of content-based analysis considerably as 
manual segmentation is expensive and inflexible. On the other hand, there are hardly 
any robust automated audio segmentation mechanisms available (see Section 2.1.1 for 
an overview).  

 

2.3 Audio Content Discovery: An Unsupervised Approach  

In view of the discussions in previous sections, we define in this section a framework 
for content-based analysis of composite audio, in which we take into account the 
deficiencies of the existing works in the field. Different components of the framework 
will be introduced and explained in more detail in the following chapters. 
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Fig. 2.6 Our proposed framework for content discovery from composite audio  

 

2.3.1 Overview of the Proposed Framework 

Recalling the discussion in Chapter 1, as opposed to a single-modal audio (e.g. pure 
music or speech), composite audio contains multiple audio categories such as speech, 
music and various noise sounds, which are either mixed together, or follow each other 
in a sequence. Because most of the audio data appearing in multimedia applications are 
composite, building a system for content-based composite audio analysis is likely to 
provide generic methods for semantic inference from audio data and support a wide 
variety of multimedia applications where this data plays a role. 

Based on the discussion in Section 2.2 about the disadvantages of previous 
approaches, the framework we aim at developing in this thesis should satisfy the 
following conditions:   

1) generalization and extensibility to support a wide variety of applications,  

2) effective semantic inference from composite audio, and  

3) sufficient coverage of the addressed semantic space to provide a complete 
description of the analyzed audio content.  

With this in mind, we propose a framework for content-based analysis of composite 
audio as illustrated in Fig. 2.6. 

In this framework, the input audio is first decomposed into audio elements. An audio 
element is a short temporal segment with coherent signal properties, such as speech, 
music, various audio effects and any combination of these. Then, key audio elements 
are selected, being the audio elements that are most indicative of the semantics (main 
underlying content) of the analyzed audio data segment. As an example, we could 
consider the audio clips containing the sounds of laughter and applause the key audio 
elements representing a humor scene in a typical situation comedy. Audio elements can 
be seen as analogies to words in text documents, and key audio elements are analog to 
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the keywords. According to the terminology convention we adopted in Chapter 1, we 
will refer to them as mid-level semantic descriptors.  

Also based on the initial explanation of the thesis scope and related definitions 
provided in Chapter 1, once the (key) audio elements are discovered, we will employ 
them to divide an audio document into audio scenes and group these scenes into 
meaningful clusters. We show in this thesis that these scenes can effectively be 
characterized, detected, and grouped based on the audio elements they contain, just as 
the paragraphs of a text document can be characterized, detected and grouped using a 
vector of words and their weights. As it will be shown later in the thesis, introducing 
these mid-level descriptors enables us to split the semantics inference process into two 
steps, which leads to more robustness compared to inferring the semantics from 
features directly. 

The semantic inference process described above is realized through the following 
main algorithmic modules: 

• Audio representation: In this module, features representing the temporal and 
spectral properties of audio signals are extracted. Audio features are usually 
required to have enough discrimination capability regarding audio element 
extraction and deployment in subsequent analysis steps. The possibilities and 
guidelines for realizing the audio representation module are explained in more 
detail in Chapter 3.     

• Audio element discovery: In this step, the input audio stream is decomposed into 
different audio elements. The data mining techniques and approaches deployed for 
this purpose are explained in detail in Chapter 4.    

• Key elements spotting: Using the pool of the detected audio elements as input, we 
develop a mechanism deployed in this module to select the key audio elements.. 
Combined with audio element discovery, the details on the realization of this 
module are given in Chapter 4.  

• Audio scene segmentation: The objective of this module is to detect boundaries 
between audio scenes. Compared to the mid-level semantic descriptors in the form 
of (key) audio elements, we consider the pointers to audio scene boundaries as 
high-level semantic descriptors. The theoretical fundamentals and realization details 
for the mechanism we developed for this module can be found in Chapter 5.  

• Semantic mining/clustering: In this final step, the audio scenes are clustered 
together based on the audio elements they contain. This step can be seen as an 
unsupervised counterpart of the supervised approaches, such as those proposed in 
[Moncrieff et al. 2001][Cheng et al. 2003], where audio segments are classified as 
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humor and violence scenes based on the fact that they contained the sounds 
classified as laughter, gun-shot, and explosion. In this step, we will also investigate 
the grouping tendency and semantic affinity between audio elements, in order to 
obtain a better similarity measure between two audio scenes. The theory and 
algorithms used to develop this module are also explained in Chapter 5.  

While the framework in Fig. 2.6 can be implemented in a supervised fashion, we 
choose in this thesis for an unsupervised approach to such realization, searching for the 
possibilities to compensate for the deficiencies of supervised methods and to provide a 
generic set of methodologies to support a variety of applications, as discussed in 
Section 1.3.3 and 2.2. Although there are a few unsupervised approaches to 
content-based audio analysis proposed in recent literature [Ellis and Lee 
2004][Radhakrishnan et al. 2004], these existing methods are not meant to provide 
generic content analysis solutions, as they are either designed for specific applications, 
or only address some aspects of the scheme in Fig. 2.6. 

 

2.3.2 Unsupervised Framework Implementation  

Aiming at an unsupervised realization of the generic framework in Fig. 2.6, a novel 
unsupervised approach to content discovery of composite audio is proposed in this 
thesis, to automatically mine the audio elements, audio scenes and the relationship 
between them. The detailed flowchart of the proposed approach is given in Fig. 2.7(a). 
It consists of two major steps: I) audio elements discovery and key audio element 
spotting, and II) audio scenes detection and clustering. Both steps are unsupervised and 
domain- or application- independent. The approach also facilitates audio content 
discovery at different semantic levels, such as (mid-level) audio elements and 
(high-level) audio scenes.  

The illustration of the proposed framework as given in Fig. 2.7(a) indicates the 
analogy to the standard scheme for topic-based text document categorization 
[Baeza-Yates and Ribeiro-Neto 1999] illustrated in Fig. 2.7 (b). In text analysis, a text 
document is first parsed to the sequence of words or phrases, which is similar to audio 
element discovery decomposing an audio document into audio elements. To indicate 
which words are more indicative of the semantics of the text document, the words are 
weighted based on their term frequency (TF) and inverse document frequency (IDF). 
Similarly, key audio elements can be detected in an audio signal by computing their 
importance relative to other audio elements detected in the signal. We therefore further 
refer to (key) audio elements also as audio (key)words. Subsequently, a text document 
can be segmented into smaller units (paragraphs) of consistent but unique content. This 
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step is similar to audio scene segmentation, where the discovered audio scenes can be 
seen as analogies to text paragraphs. Finally, each text document or each topic section 
can be represented by the words and keywords it contains, and the documents and 
sections can be clustered together based on their topics. This is again a direct analogy 
to audio scene clustering we aim at realizing in this thesis. 
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Fig. 2.7 (a) The flowchart of the proposed approach to unsupervised content-based audio 

analysis, which consists of two major parts: (I) audio element discovery and key element spotting; 

and (II) audio scene segmentation and clustering. (b) A comparable process of the topic-based 

text document categorization. 

 

Regarding the technical implementation of the scheme in Fig. 2.7(a), we start with 
the assumption that the input into the scheme is a general composite audio stream. 
After feature extraction, an iterative spectral clustering method is proposed to 
decompose the composite audio into audio elements. Using this method, the segments 
with similar features in the audio stream are grouped into clusters that we adopt as 
audio elements. Then, following the same rationale underlying the TF and IDF 
definitions in text document analysis, we introduce a number of importance measures 
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and employ them to filter the obtained set of audio elements and select the key audio 
elements. 

In the next step, the audio scenes are first detected by investigating the semantic 
affinity among various audio elements in the input audio. For this purpose, a novel 
semantic affinity measure is introduced. Then, the detected audio scenes are grouped 
into clusters by using an information-theoretic co-clustering algorithm, which exploits 
the relationships among various audio elements and audio scenes. Moreover, we 
propose a strategy based on the Bayesian Information Criterion (BIC) for selecting the 
optimal number of clusters for the co-clustering. 

 

2.4 Summary  

In this chapter we first discussed previous work related to composite audio analysis, 
and analyzed the issues that have not been sufficiently addressed yet. These issues are 
briefly summarized in the first column in Table 2.1. Based on these considerations, we 
proposed a framework for unsupervised content-based analysis of composite audio, 
which consists of five main components: audio representation, audio element discovery, 
key elements spotting, audio scene segmentation and scene clustering. While each of 
these components will be described in detail in the remaining chapters of this thesis, we 
summarize in the second column in Table 2.1 the main aspects of our approach helping 
us to optimally resolve the issues from the first column.  

 

Table 2.1 Disadvantages of previous approaches together with our proposed solutions 

Issues Approach 
insufficient scalability and 
narrow application scope 

no application-/domain-specific prior knowledge 
considered, unsupervised approach 

insufficient coverage of 
the semantic space 

two-step semantic inference approach via mid-level 
semantic descriptors (audio elements), application of 
co-clustering to optimally exploit co-occurrence 
statistics among audio elements 

pre-segmentation issue 
robust automated segmentation at the audio element 
and audio scene level 
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Chapter 3* 

Feature Extraction 

 

 

 

 

A fundamental step in content-based audio analysis is to obtain a representation of an 
audio signal in a feature space. In the context of this thesis, a feature set is considered 
suitable if it captures the temporal and spectral characteristics of individual elementary 
audio segments with a sufficient discriminative power to enable grouping of all 
segments belonging to a particular audio element, as well as the content discovery 
operations performed on the obtained audio elements, as described in Chapter 2.  

In this chapter we give an overview of the typical audio features proposed in 
literature, select the features that we consider suitable for the content-based audio 
analysis approach presented in this thesis, and also propose some new features to be 
likely to cover as much as possible of the semantic content variance of composite audio 
signals in a general case. Finally, we also address the feature normalization and 
selection steps that are necessary to form a reliable feature vector serving as input into 
subsequent audio content discovery steps. 

 

 

                                                                    

Parts of this chapter are based on the following publications (also to be found in the list of references):  

• Lu, L., Zhang, H.-J., and Jiang, H. “Content Analysis for Audio Classification and Segmentation,” IEEE 

Trans. Speech Audio Processing, 10(7), 504-516, 2002 

• Lu, L., Zhang, H.-J., and Li, S., “Content-based Audio Classification and Segmentation by Using 

Support Vector Machines,” ACM Multimedia Systems Journal, 8(6), 482-492, 2003 

• Cai, R., Lu, L., Zhang, H.-J., and Cai, L.-H. “Improve Audio Representation by Using Feature Structure 

Patterns,” Proc. 29th IEEE Int’l Conf. on Acoustics, Speech, and Signal Processing, vol. 4, 345-348, 

2004. 
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3.1 An Overview of Audio Features 

Table 3.1 gives an overview of the typical features employed in literature, and is based 
on 15 representative papers widely covering the fields of audio classification and audio 
retrieval. It should be noted that a number of these features are frequently used in 
various papers, and that regarding the terminology used there, the names of some 
features may be different in different papers. For example, the terms spectral centroid 
and brightness stand for one and the same feature, as well as the terms sub-band power 
and band-energy ratio.  

In general, the audio features listed in Table 3.1 can be divided into temporal and 
spectral features that capture the temporal and spectral characteristics of an audio 
signal, respectively. Good examples of temporal features are zero-crossing rate (ZCR) 
and energy, while mel-frequency cepstrum coefficients (MFCC) and spectral centroid 
are typical spectral features.  

Regarding the length of the audio segment from which features are extracted, a 
division into frame-level and window-level features can also be made. The features 
from the first class are extracted from individual audio frames. Some examples of 
frame-level features are ZCR, MFCC, and spectral centroid. The window-level features 
are extracted from a longer audio segment, comprising a number of consecutive frames 
and usually marked by applying a sliding window to the signal. While most audio 
features are extracted at the frame level, window-level features are mainly derived from 
the frame-level features by investigating their variation along the frames within the 
window, e.g., the mean, standard deviation, or other statistics derived from frame-level 
features. This expansion of the frame-level feature consideration from an individual 
frame to a series of consecutive frames proved to be useful in many applications, which 
indicates the importance of window-level features. Examples of this feature class are 
spectral flux and the features based on vocal contour and pitch contour [Liu et al. 
1998].  

Since the popularity of each feature may be seen as a first indication of its quality, 
and because the classification into frame-level and window-level features is 
particularly relevant for different steps in the content-based audio analysis approach 
discussed in this thesis, we reorganized the list of the features introduced in the 
previous table as shown in Table 3.2, and ranked them in a descending order depending 
on the number of times they are used in the representative set of 15 papers considered. 
There, for each feature we provide a “use score” indicating its popularity and a 
classification as either a frame-level or window-level feature. Multiple names indicated 
per row of the table stand for one and the same feature and/or its variants.  



41 

Table 3.1 An overview of typical audio features used in literature. The information in the table is 

based on 15 representative papers covering the most important aspects of content-based audio 

analysis and being indicative of the features typically employed for various approaches in the 

field.  

Representative Reference Features 
[Saunders 1996] zero crossing rate (ZCR), energy 

[Scheirer and Slaney 1997] 4Hz modulation energy, percentage of low-energy 
frames, spectral rolloff, spectral centroid, spectral 
flux, ZCR, cepstrum resynthesis residual magnitude, 
pulse metric 

[Zhang and Kuo 1999] short time energy (STE), short time ZCR, short time 
fundamental frequency, spectral peak 

[Tzanetakis and Cook 
2000] 

ZCR, root mean square (RMS), spectral rolloff, linear 
predictive coding (LPC), MFCC, harmonicity, pitch, 
spectral flux, spectral moments, spectral centroid 

[Srinivasan et al. 1999] ZCR, energy, sub-band energy, harmonic frequency 

[Wold et al. 1996] loudness, pitch, tone (brightness and bandwidth), 
cepstrum and derivatives 

[Foote 1997] MFCC, energy 

[Li 2000] total spectrum power, sub-band powers, brightness, 
bandwidth, pitch frequency, MFCC 

[Li and Khokhar 2000] wavelet decomposition 

[Peltonen et al. 2002] ZCR, energy, band-energy ratio (BER), spectral 
centroid, bandwidth, spectral rolloff, spectral flux, 
LPC, MFCC LPC-derived Cepstral coefficients 
(LPCC) 

[Liu et al. 1998] (1) nonsilence ratio, (2) volume standard deviation, 
(3) volume dynamic range, (4) frequency component 
of the volume contour around 4Hz, (5) pitch standard 
deviation, (6) voice-or-music ratio (VMR), (7) noise 
or unvoice ratio, (8) frequency centroid, (9) frequency 
bandwidth, (10–12) energy ratios of subbands 1–3  

[Baillie and Jose 2003] MFCC 

[Xu et al. 2003] ZCR, spectral power, MFCC, LPC, LPC-derived 
Cepstral coefficients (LPCC) 

[Cheng et al. 2003] volume, band-energy ratio, ZCR, frequency centroid, 
bandwidth, MFCC 

[Xiong et al. 2003] MFCC, MPEG-7 audio features 
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Table 3.2 An overview of features used in literature. The features from Table 3.1 are ranked 

according to their usage and are classified as either frame- or window level features. The last 

column indicates which of the features we considered in our approach, directly (“√”) or 

indirectly (“•”). Different names of the same feature are put together. 

Features #Usage Level Used 
short time energy, RMS, spectrum 
power, volume, loudness 

10 frame-level √ 

ZCR 8 frame-level √ 

MFCC 8 frame-level √ 

spectral centroid, brightness, 
frequency centroid 

7 frame-level √ 

bandwidth 5 frame-level √ 

sub-band energy (distribution), 
sub-band power, band-energy ratio 

5 frame-level √ 

short time fundamental frequency, 
pitch, harmonic frequency 

5 frame-level • 

LPCC or cepstrum 4 frame-level  

LPC 3 frame-level  
spectral rolloff 3 frame-level  

spectral peak 1 frame-level • 

spectral moments 1 frame-level  

harmonicity 1 frame-level • 

wavelet decomposition 1 frame-level  

MPEG-7 audio features 1 frame-level  

spectral flux 3 window-level √ 

percentage of low-energy frames 1 window-level √ 

clip-level features [Liu et al,1998] 1 window-level • 

4Hz modulation energy 1 window-level  

pulse metric 1 window-level  
 

To select the features to be used in the methods introduced in this thesis, an ideal 
approach would be through a general experiment investigating a suitability of a given 
feature in a general composite audio context. This approach is, however, not realistic 
without selecting a number of representative use cases, which would bring us back to a 
supervised approach. Instead, we choose to collect those robust, proven features, the 
effectiveness of which was shown in many different noisy, ambiguous use cases 
characteristic for unconstrained composite audio signals we address in this thesis.  
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To generate a good feature set, we first took the feature list from Table 3.2 as the 
basis and either eliminated those features which may be ineffective or inefficient to 
extract in our use context, or used them directly or indirectly, as we will illustrate by an 
example in the next section. The features we used directly or indirectly are indicated by 
a corresponding mark in the last column in Table 3.2. Then, we also added a number of 
features that complement those listed in Table 3.2. 

In Section 3.2 and 3.3, we present all features used in this thesis organized as either 
the frame- or window-level features. Then, in Section 3.4, we briefly explain a standard 
unsupervised method for selecting optimal feature set per use case based on the 
Principle Component Analysis.  

 

3.2 Frame-level Features 

Referring to the feature list from Table 3.2, our set of temporal frame-level features 
include short-time energy (STE) and zero-crossing rate (ZCR), while the spectral 
features include sub-band energy ratio (BER), brightness, bandwidth, and 
Mel-frequency cepstral coefficients (MFCC). Regarding other features listed in Table 
3.2, although LPC provides a good model for voiced speech and gives a good 
approximation to the vocal tract spectral envelope, it is less effective on those sounds 
which are not vocally produced, like music, noise, and various audio effects. Therefore, 
we did not use them in our approach. Moreover, there are also some features (as 
indicated by “•” in Table 3.2), which are not considered directly, but indirectly via a 
set of alternative features. For example, we do not use pitch or fundamental frequency 
directly, due to a large variation of pitch values within a given audio semantic class and 
the difficulty of multiple pitch detection in a polyphonic sound. Instead, we use the 
sub-band partial prominence and harmonicity prominence as alternative pitch-related 
features, for which the rationale and extraction method are explained in detail later in 
this section. Table 3.3 summarizes all temporal and spectral frame-level features used 
in our approach. 

 
Table 3.3 The list of frame-level features used in this thesis 

Feature Kind Feature list  
common 
features  

temporal ZCR, STE,  

spectral BER, brightness, bandwidth, MFCC 

proposed  spectral sub-band partial prominence, harmonicity prominence 
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Prior to frame-level feature extraction, a composite audio signal is first converted into 
a general format, described by the following parameters: 16 KHz, 16-bit, and 
mono-channel.  Then, it is pre-emphasized with parameter 0.98 (i.e. H(z) = 1 – 0.98z-1) 
to equalize the inherent spectral tilt, and is further divided into frames of 25ms with 50% 
overlap. For extracting spectral features, the spectral domain is equally divided into 8 
sub-bands in Mel-scale and then the sub-band features are extracted, including BER, 
MFCC, and sub-band partial prominence. All the above features are collected into a 
29-dimensional feature vector per audio frame. The following paragraphs provide a 
detailed description of each frame-level feature used in this thesis. 

 

3.2.1 Zero-Crossing Rate 

Zero-Crossing Rate (ZCR) is defined as the relative number of times the audio signal 
crosses the zero-line within a frame: 
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where sgn[] is a sign function, x(m) is the discrete audio signal, m = 1 … N, and N is the 
frame length. 

The ZCR is a computationally simple measure of the frequency content of a signal, 
and as such it is particularly useful in characterizing audio signals in terms of the voiced 
and unvoiced sound categories. For example, as speech signals are generally composed 
of alternating voiced and unvoiced sounds at the syllable rate, which is not the case in 
music signals, the variation in the ZCR values is expected to be larger for speech signals 
than for music signals. Due to its discriminative power in separating speech, music and 
various audio effects, ZCR is often employed in content-based audio analysis 
algorithms. 

 

3.2.2 Short Time Energy and Sub-Band Energy Distribution 

Short Time Energy (STE) is the total spectral power of a frame. In our approach, it is 
computed from the Discrete Fourier Transform (DFT) coefficients, as 
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Here, F(k) denotes the DFT coefficients, |F(k)|2 is the signal power at the discrete 
frequency k, and K is the order of DFT. In our approach, the logarithmic value of this 
power is computed to get a measure in (or similar to) decibels. 

Similar to ZCR, STE is also an effective feature for discriminating between speech 
and music signals. For example, there are more silence (or unvoiced) frames in speech 
than in music. As a result, the variation of STE in speech is in general much higher 
than in music. However, STE considers only the overall energy of one audio frame. To 
further exploit the energy information, the spectral energy distribution (SED) (i.e. band 
energy ratio (BER)) is computed. This distribution can be obtained by dividing the 
frequency spectrum into sub-bands, and by computing for each sub-band j the ratio Dj 
between the energy contained in that sub-band and the total spectral power of the 
frame,  
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where Lj and Hj are the lower and upper bound of sub-band j respectively.  

Since the spectrum characteristics are rather different for sounds produced by 
different sources (e.g. human voice, music, environmental noise), the STE and SED 
features have often been used for audio classification [Saunders 1996][Srinivasan et al. 
1999][Liu et al. 1998], and, in particular, for discriminating between different audio 
effects [Wold et al. 1996][Cai et al. 2003]. 

 

3.2.3 Brightness and Bandwidth   

Brightness and bandwidth are related to the first- and second-order statistics of the 
spectrum, respectively. The brightness is the centroid of the spectrum of a frame, and 
can be defined as: 
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Bandwidth is the square root of the power-weighted average of the squared 
difference between the spectral components and the frequency centroid: 
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Brightness and Bandwidth characterize the shape of the spectrum, and roughly 
indicate the timbre quality of a sound. From this perspective, brightness and bandwidth 
can serve as  good indicators for audio element discrimination, as already shown in 
many audio classification processes [Scheirer and Slaney 1997][Li 2000][Wold et al. 
1996][Fujinaga 1998][Rossignol et al. 1998]. 

 

3.2.4 Mel-Frequency Cepstral Coefficient (MFCC) 

The set of Mel-Frequency Cepstral Coefficients (MFCC) [Rabiner and Juang 1993] is a 
cepstral representation of the audio signal obtained based on the mel-scaled spectrum. 
The log spectral amplitudes are first mapped onto the perceptual, logarithmic 
mel-scale, using a triangular band-pass filter bank. Then, the output of the filter bank is 
transformed into MFCC using the discrete Cosine transform (DCT).  
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where cn is the n-th MFCC, K is the number of band-pass filters, Sk is the Mel-scaled 
spectrum after passing the k-th triangular band-pass filter, and L is the order of the 
cepstrum.  

MFCC is commonly used in speech recognition and speaker recognition systems. 
However, MFCC also proved to be useful in discriminating between speech and other 
sound classes, which explains its wide usage in the audio analysis and processing 
literature [Foote 1997][Moreno and Rifkin 2000][Kimber and Wilcox 1996][Pye 
2000]. Based on the suggestions made in literature, we use 8-order MFCC in our 
approach.  

 

3.2.5 Sub-band Partial Prominence and Harmonicity Prominence 

We now consider two further spectral characteristics of audio signals that can be 
associated with human identification of sounds [Gygi 2001]: i) presence of a prominent 
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harmonic frequency (i.e. a partial) at a certain spectral sub-band, and ii) the 
harmonicity of the sound. For example, a distinct difference between cheering and 
laughter is that laughter usually has prominent harmonic partials but cheering does not. 
The features described in previous sections are incapable of describing these 
characteristics. Brightness and bandwidth can only measure the global energy center 
and the deviation of the whole spectrum. Although BER and MFCC calculate the 
average energy in sub-bands, it is still hard to specify whether there are salient 
components in some sub-bands.  

Based on our previous works on audio representation [Cai et al. 2004], we propose 
two new spectral features, sub-band partial prominence (SBPP) and harmonicity 
prominence (HP), to address the abovementioned audio characteristics. The sub-band 
partial prominence (SBPP)1 is used to measure whether there are salient frequency 
components in a sub-band. In other words, the SBPP estimates the existence of 
prominent partials in sub-bands. It is computed by accumulating the variation between 
adjacent frequency bins in each sub-band, that is 
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Here, Li and Hi are the lower and upper boundaries of the i th sub-band respectively, and 
the value of Sp(i) indicates the corresponding prominence of salient partial components. 
The SBPP value for sub-bands containing salient partial components is expected to be 
large. To reduce the impact induced by the energy variation over time, the original 
DFT spectral coefficient vector F is first converted to the decibel scale and then 
constrained to the unit L2-norm, as suggested in [Casey 2001]:  
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If we now consider the property of an ideally harmonic sound (with one dominant 
fundamental frequency f0), its full spectrum energy is highly concentrated and precisely 
located at those predicted harmonic positions, which are the multiples of the 
fundamental frequency f0.  To detect this situation, the following three factors could be  

                                                                    
1 In our previous work [Cai et al. 2004] we referred to this as sub-band spectral flux. We rename it here since 

sub-band partial prominence is more suitable and straightforward to represent the meaning of the extracted 

feature. Sub-band spectral flux may be a little confusing in this context, since spectral flux, according to its 

traditional definition, is usually computed from two neighboring frames. 
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Fig. 3.1. Definition of harmonicity prominence. The horizontal axis represents the frequency, 

and the vertical axis denotes the energy. The harmonic contour is the segment between the 

adjacent valleys separating the harmonic peaks. Based on the harmonic contour, three factors, 

that is, the peak energy, energy centroid (brightness) and degree of concentration (bandwidth), 

are computed to estimate the harmonicity prominence, as illustrated at the second harmonic in 

this example. 

 

measured: i) the energy ratio between the detected harmonics and the whole spectrum, 
ii) the deviation between the detected harmonics and predicted positions, and iii) the 
concentration degree of the harmonic energy. The harmonicity prominence (HP) is 
proposed to take into account the above three factors and can be defined as 
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Here, E(n) is the energy of the detected nth harmonic contour in the range of [fn-f0/2, 
fn+f0/2] and the denominator E is the total spectral energy. The ratio between E(n) and E 
stands for the first of the three factors identified above. Further, fn is the nth predicted 
harmonic position and is defined as 
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where β is the inharmonicity modification factor set to 0.0005 following the 
discussions in [Fletcher and Rossing 1998]. B(n) 

r and B(n) 
w are the brightness and 

bandwidth of the nth harmonic contour, respectively. The brightness B(n) 
r is used instead 

of the detected harmonic peak in order to estimate the frequency center more accurately. 
The bandwidth B(n) 

w describes the concentration degree of the nth harmonic. It is 
normalized by the constant B, which is defined as the bandwidth of an instance where 
the energy is uniformly distributed in the search range. Thus, the components (1-|B(n) 

r

-fn|/0.5f0) and (1-B(n) 
w /B) in the numerator of (3.9) represent the second and the third 

factor defined above, respectively. An illustration of the definition of harmonicity 
prominence is given in Fig. 3.1. 

In our implementation, f0 is estimated by an autocorrelation-based approach. Only 
the first 4 harmonic partials are considered in the computation, since only these 
harmonic partials are sufficiently prominent in most cases. Furthermore, in the case 
where the fundamental frequency cannot be precisely predicted, f0 is varied in a 
pre-defined range first, and then the corresponding HP values are calculated, the 
maximum of which is chosen as the HP value for the frame. For a sound without pitch, 
Hp is set to zero. 

 

3.3 Window-level Features 

While the features from the previous section are extracted from one audio frame, in this 
section we choose to group audio frames into longer temporal audio segments of the 
length t, extract features at the segment level, and use these longer segments as the 
basis for the subsequent audio processing steps. This step will not only reduce the 
computational complexity in subsequent steps of content-based audio analysis, but also 
result in additional useful features, other than those extracted at the frame level. For 
example, as pointed out above, the variation (e.g. standard deviation) of ZCR and STE 
is more discriminative if measured over a longer audio interval than per frame. For this 
purpose, in our approach, a sliding window of 1.0 second with 0.5 seconds overlap is 
applied to the frame sequence. Future reference to an audio segment will relate to this 
one-second-long segment that will serve as the basic unit in further audio processing 
steps described in this thesis. The window and step length are selected to balance the 
detection resolution and the computational complexity. At each window position, the 
mean and standard deviation of the frame-level features are computed and used to 
represent the corresponding audio segment.   



50 

Table 3.4 The list of window-based features used in our approach  

Feature Kind Feature list  
basic statistics derived mean and standard deviation of the frame-based features 

window-level features HZCRR, LSTER, spectrum flux, noise frame ratio 
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Fig. 3.2. An illustration of a distribution of HZCRR values: (a) speech, and (b) music. 

 

In addition to computing the mean and standard deviation of the frame-level 
features, specific window-level features can be considered as well, such as those listed 
in Table 3.4, which have already shown their effectiveness in various audio analysis 
approaches. In the following sections we describe the models and computation of these 
features in more detail.  

 

3.3.1 High ZCR Ratio 

As mentioned above, the variation of ZCR is more discriminative than the exact value 

of ZCR. Although this variation is frequently modeled using the standard deviation of 

ZCR, the high zero-crossing rate ratio (HZCRR) can also be used for this purpose.  

HZCRR is defined as the fraction of frames in the analysis window, whose ZCR are 

at least 50% higher than the average ZCR computed in the window, that is 

∑ +−=
−

=

1

0
]1)5.1)([sgn(

2

1 N

n
avZCRnZCR

N
HZCRR        (3.11) 



51 

Here, n is the frame index, ZCR(n) is the zero-crossing rate at the n-th frame, N is the 

total number of frames, avZCR is the average ZCR in the analysis window, and sgn[] is 

a sign function. Using similar reasoning as in Section 3.2.1, the value of HZCRR is 

expected to be higher in speech signals than in music.  

Fig. 3.2 shows the distributions of HZCRR values computed for a large number of 

speech and music signals. It can be seen that the center of HZCRR distribution of 

speech segment is around 0.15, while HZCRR values of music segments mostly fall 

below 0.1, though there are significant overlaps between these two curves. If we use 

the cross-point of two displayed HZCRR curves as the threshold to discriminate speech 

from music, the expected classification error would be 19.36%. 
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Fig. 3.3. An illustration of a distribution of LSTER values: (a) speech, and (b) music 

 

3.3.2 Low Short-time Energy Ratio 

As an analogy for selecting HZCRR to model the variations of the ZCR within the 

analysis window, the low short-time energy ratio (LSTER) can be defined to model the 

variation of the STE in this window, as proposed in [Scheirer and Slaney 1997]. 

LSTER is the fraction of the frames within the analysis window, whose STE values are 

less than a half of the average STE in the window, that is, 
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where N is the total number of frames in the analysis window, STE(n) is the short time 

energy at the n-th frame, and avSTE is the average STE in the window. 

Similar to HZCRR, the LSTER measure of speech is expected to be much higher 

than that of music. This can be seen clearly from the distributions of LSTER values 

obtained for a large number of speech and music signals, as illustrated in the Fig. 3.3. It 

is shown that LSTER value of speech is around 0.15 to 0.5, while that of music is 

mostly less than 0.15. Based on Fig. 3.3, if we use the cross-point of two displayed 

LSTER curves as a threshold to discriminate between speech and music, the expected 

error rate would be only 8.27%.  
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Fig. 3.4. The spectrum flux curve of speech (0-200 seconds), music (201-350 seconds) and 

environmental sound (351-450 seconds) 

 

3.3.3 Spectrum Flux 

Spectrum Flux (SF) is defined as the average variation of the spectrum between adjacent 
two frames in the analysis window, that is, 
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where A(n, k) is the absolute value of the k-th DFT coefficient of the n-th frame, K is the 
order of DFT, δ  is a very small value to avoid computation overflow, and N is the total 
frame number in the analysis window.  
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Similar to HZCRR and LSTER, the SF of speech is expected to be larger than that of 
music. We also found that the spectrum flux of environmental sounds (or audio effects) 
is generally very high and changes more dynamically than for speech and music. To 
illustrate this, Fig. 3.4 shows the SF computed for an audio segment consisting of 
speech (0 to 200 seconds), music (201 to 350 seconds) and environmental sounds (351 
to 450 seconds). From this figure, it can be seen that the SF is a promising feature to 
discriminate between audio elements including speech, audio effects, and music.  
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Fig. 3.5. An illustration of a distribution of NFR values; (a) music and (b) environment sound. 

 

3.3.4  Noise Frame Ratio 

Noise frame ratio (NFR) is defined as the ratio of noise frames in a given audio clip. A 
frame is considered as a noise frame if the maximum local peak of its normalized 
correlation function is lower than a pre-set threshold. The NFR is usually used to 
discriminate environmental sounds from music and speech, and to detect noisy sounds. 
For example, the NFR value of a noise-like environmental sound is higher than that for 
music, because it contains many more noise frames. As can be observed in Fig. 3.5, 
considering NFR values can be helpful in separating these two classes of audio.  
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3.4 Feature Vector Generation 

Following up on the discussion from Section 3.1, the broad set of features that we 
select based on the previous work in the field of content-based audio analysis needs to 
be tuned for a given use case to form a suitable feature vector serving as input into 
further audio analysis steps. We briefly explain in this section how we proceeded with 
creating such case-optimal feature vectors. 

Since the values and dynamics of various extracted features may vary considerably 
over the feature set, simply concatenating them all into a long feature vector is not 
likely to lead to good results. Therefore, a normalization process needs to be performed 
on the features first to equalize their scales. The normalization (also called 
standardization or z-scores) is typically performed using the mean and standard 
deviation per feature, as 

 iiii xx σµ /)(' −=       (3.14) 

where xi is the i-th feature, and where the corresponding mean µi and standard deviation 
σi can be obtained from the analyzed data set.  

In addition to normalization, we follow a standard approach and employ the 
principle component analysis (PCA) to improve the effectiveness of the feature vector 
while minimizing its dimension. Technically, PCA is an orthogonal linear 
transformation that transforms the data to a new coordinate system, to reveal the main 
characteristics (principal components) of the data that contribute most to the variance 
in data, and therefore best explain the data. To perform PCA, we apply singular value 
decomposition (SVD) [Wall et al. 2003] to the M×N matrix X’ containing 
N-dimensional normalized feature vectors collected from M segments (usually M>>N). 
Each row corresponds to a feature vector of one audio segment. By applying the SVD, 
the matrix X’ can be written as 

TUSVX ='        (3.15) 

In terms of SVD, V and U are, respectively, an N×N and M×N matrix containing the 
right and left singular vectors, while the diagonal N×N matrix S = diag{λ1, …, λN,} 
contains singular values, with λ1≥ λ2≥…≥λn. In terms of PCA, singular vectors 
(columns) of the matrix V can be seen as principal components of X’, each of which has 
its corresponding singular value. The larger the singular value is, the more principal (or 
more important) the component is. Assuming that Vm is a matrix keeping the first m 
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principal components (by keeping the first m columns from V), the original feature set 
X’ can be replaced by a reduced, PCA-transformed feature set   

'' ' mX X V=       (3.16) 

which only preserves those features that are relevant to subsequent audio signal 
analysis, while leaving out the redundant and irrelevant (noisy) features. In our 
approach, the number m of principal components is determined using the following 
equation: 
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Based on initial experiments, we set the threshold η to 0.9, which means that 90% 
principle components are kept. After normalization and PCA, the resulting feature set 
is used to form the feature vector serving as input into the subsequent audio content 
discovery steps, as presented in the next chapters.  
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Chapter 4* 

Audio Element Discovery and              
Key Audio Element Spotting 

 

 

 

 

By building on the feature-based audio representation discussed in the previous 
chapter, we now aim at developing a methodology for extracting mid-level semantic 
descriptors from audio signals in the form of (key) audio elements. Referring to the 
discussion from Chapter 1, deployment of audio elements in content-based audio 
analysis divides the process of semantic inference into two steps: 1) audio elements 
discovery from features, and 2) semantic inference from audio elements. Our recent 
studies [Lu et al. 2005] have shown that the approaches to semantic parsing and 
classification of audio based on (key) audio elements outperform the “plain” 
feature-based approaches. This can be observed in particular on the increased precision 
in the obtained results. For instance, as will be shown on the case of audio scene 
segmentation in Chapter 5, audio-element based analysis inherently searches for 
high-level content breaks only, and neglects irrelevant variations in audio data due to 
which the feature-based approaches usually produce an over-segmentation.  

The scheme we propose for automatic audio element discovery builds on an iterative 
spectral clustering method. Using this method, we group audio segments (as defined in 
Chapter 3) with similar signal properties into clusters, and these obtained clusters are 
adopted as audio elements. To detect key audio elements from the obtained clusters, 
two cases are considered. In the first case, we assume that only one audio document is 
                                                                    

This chapter is based on the following publications (also to be found in the list of references):  

• Lu, L., and Hanjalic, A. “Towards Optimal Audio Keywords Detection for Audio Content Analysis and 

Discovery, " Proc. 14th ACM Int’l Conf. on Multimedia, 825-834, 2006  

• Lu, L., and Hanjalic, A. “Audio Keywords Discovery for Text-Like Audio Content Analysis and 

Retrieval,” IEEE Trans. on Multimedia, vol. 10, no. 1, 74-85, 2008 
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available for analysis. Then, a number of heuristic importance indicators are defined 
and deployed to select the key audio elements. In the second case, multiple audio 
documents are available. There, inspired by the effectiveness of the concepts of TF and 
IDF from text document analysis, and some similar measures used in video content 
analysis [Uchihashi et al. 1999], we see the possibility to apply these measures (or their 
equivalents) to audio documents to help the key audio elements detection in terms of 
robustness and level of automation. In particular, expected term frequency (ETF) and 
expected inverse document frequency (EIDF), which are equivalents to TF and IDF, 
respectively, are proposed. In addition, expected term duration (ETD) and expected 
inverse document duration (EIDD) are computed as well, which take into account the 
discriminative power of the overall duration of a particular audio element in an audio 
document in characterizing the semantics of that document. 

 

4.1 Audio Element Discovery 

Audio elements to be found in complex composite audio documents, such as sound 
tracks of movies, usually show complicated and irregular distributions in the feature 
space. However, traditional clustering algorithms such as K-means, are based on the 
assumption that the cluster distributions in the feature space are Gaussians [Duda 
2000], which is usually not satisfied in complex cases. Furthermore, the clustering 
results are usually affected by the initially selected centroids so that multiple restarts 
are needed to obtain the optimal results. As a promising alternative, spectral clustering 
[Ng et al. 2001] showed its effectiveness in a variety of complex applications, such as 
image segmentation [Yu and Shi 2003][Zelnik-Manor and Perona 2004] and the 
multimedia signal clustering [Ngo et al. 2001][Radhakrishnan et al. 2004]. We 
therefore choose to employ spectral clustering to decompose audio documents into 
audio elements. To further improve the robustness of the clustering process, we adopt 
the self-tuning strategy [Zelnik-Manor and Perona 2004] to set context-based scaling 
factors for different data densities, and build an iterative scheme to perform a 
hierarchical clustering of input data. 

 

4.1.1 Spectral Clustering  

Spectral clustering can be seen as an optimization problem of grouping together similar 
data samples based on eigenvectors of a (possibly normalized) affinity matrix that 
contains the similarity values measured between each pair of data samples. Like other 
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clustering methods, its basic idea is to keep together the data with similar features 
while separating the data with different features. For this purpose, and using the 
concepts from the graph theory, a complete undirected graph G(V,E) is first constructed 
from a data set. Here, V is the node set where each node represents one data sample, 
and E is the edge set. The weight of edge euv defines the similarity between data u and 
data v. This weight can be defined as 

22/),(),( σvudevuw −=       (4.1)  

where d(u,v) is a distance measure between data u and v, and σ is a scaling factor. 
W=[w] forms an affinity matrix for the graph G.  

Grouping the data into N clusters is now identical to partitioning the graph G(V,E) 
into N disjoint sets, simply by removing the edges connecting the sets. Taking the case 
N=2 as an example, the degree of dissimilarity between two sets, A and B, can be 
computed as the total weight of the edges that have been removed, that is, 
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The notation “cut” in (4.2) is adopted from the graph theory. From this perspective, 
obtaining the optimal partitioning of a graph could be seen as an optimization problem 
of minimizing the cut value. However, as shown in [Wu and Leahy 1993], this 
minimum cut approach tends to be biased towards cutting out unnaturally small sets of 
isolated graph nodes. To avoid this, [Shi and Malik 1997] proposed an alternative 
dissimilarity measure, referred to as normalized cut and defined as 
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Here, assoc(A,V) and assoc(B,V) are the total weights between each of the nodes in A 
or B, respectively, and all nodes in the graph.  

[Shi and Malik 1997] indicated that normalized cut can minimize the disassociation 
between the groups (inter-class distance) and simultaneously maximize the association 
within the groups (intra-class distance). This joint optimization of inter- and intra-class 
distance can be obtained by solving the generalized eigenvector system,  

yy DWD λ=− )(       (4.4) 

where y are the generalized eigenvectors, and D is a diagonal matrix with             
D(i, i) = ∑ j W(i, j). This generalized eigenvector system can further be transformed into 
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a standard eigensystem as 

zz λ=− −− 2/12/1 )( DWDD      (4.5) 

with z = D1/2y .  

The obtained eigenvectors can be used to do the partition. Each eigenvector 
indicates a segmentation possibility based on the value of its components, and multiple 
(k) eigenvectors stands for multiple (k) splits. While [Shi and Malik 1997] worked on 
2-cluster partition, [Ng et al. 2001] further proposed a spectral clustering method to use 
k eigenvectors simultaneously to partition the data into k clusters, following related 
ideas from [Shi and Malik 1997] and [Weiss 1999]. Spectral clustering has been 
successfully applied to a number of applications, and we therefore considered this 
algorithm as the basis of our clustering approach.  

We first assume that for a given audio document a set U = {u1, …, un} of feature 
vectors is obtained through the feature extraction process described in Chapter 3. There, 
each sample ui represents the feature vector of one audio segment, and n is the total 
number of audio segments in the audio document being analyzed. After specifying the 
search range [kmin, kmax] for the most likely number of audio elements existing in the 
document, the spectral clustering algorithm can be carried out as the following series of 
steps: 

 

Algorithm: Spectral_Clustering (U, kmin, kmax) 

1. Form an affinity matrix A defined by Aij = exp(-d(ui, uj)
2/2σ2) if i ≠ j, and Aii = 

0. Here, d(ui, uj) = ||ui - uj|| is the Euclidean distance between the feature vectors 
ui and uj, and σ is the scaling factor. The selection of σ will be discussed in the 
next Section. 

2. Obtain the diagonal matrix D, whose (i, i) element is the sum of A's i-th row, 
and construct the normalized affinity matrix L = D-1/2AD-1/2. 

3. If (x1, …, xkmax+1) are the kmax+1 largest eigenvectors of L, and (λ1, …, λkmax+1) are 

the corresponding eigenvalues, then the optimal cluster number k is estimated 
based on the eigen-gaps between adjacent eigenvalues as: 

)/1(maxarg 1],[ maxmin iikkik λλ +∈ −=      (4.6) 

Then, form the matrix X = [x1x2…xk] ∈ Rn×k by stacking the first k eigenvectors 
in columns. 
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4. Form the matrix Y by renormalizing each of X's rows to obtain unit length, that 
is: 

2/12 )/(∑= j ijijij XXY        (4.7) 

5. Treat the rows of Y as points in Rk, and cluster them into k clusters via the 
cosine-distance based K-means algorithm. The initial centers in the K-means 
are selected to be as orthogonal to each other as possible [Yu and Shi 2003]. 

6. Assign the original data point ui to cluster cj if and only if the row i of the 
matrix Y is assigned to cj. 

 

4.1.2 Context-based Scaling Factors 

Although reasonable results can be obtained based on the algorithm described above, 
the clustering performance is likely to improve if the scaling factor selection is 
considered more carefully. In the spectral clustering algorithm, the scaling factor σ 
affects how rapidly the similarity measure Aij decreases when the Euclidean distance 
d(ui, uj) increases. In this way, it actually controls the value of Aij at which two audio 
segments are considered similar. In the algorithm from [Ng et al. 2001], σ is set 
uniformly for all data points (for example, σ is set to the average Euclidean distance in 
the data), based on the assumption that each cluster in the input data has a similar 
distribution density in the feature space. However, such assumption is usually not 
satisfied in composite audio data, which often contain clusters with different cluster 
densities. Suppose there are two clusters, a dense and a sparse one, and the data of the 
sparse cluster is sparsely distributed around the dense cluster, the algorithm tends to 
either merge these two clusters into one, or split the cluster with sparse density into 
many smaller clusters.   

Fig. 4.1(a) illustrates an example affinity matrix of a 30-second audio clip composed 
of music (0-10s), music with applause (10-20s), and speech (20-30s), using a uniform 
scaling factor. From the figure, it can be noticed that the density of speech is sparser 
than the densities of other elements, while music and music with applause are close to 
each other and hard to separate. Thus, the “standard” spectral clustering cannot properly 
estimate the number of clusters using (4.6) and based on the eigenvalues and 
eigen-gaps shown at the bottom of Fig. 4.1(a). Actually, from the Fig. 4.1(a), the 
estimated number of clusters would be one. 
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Fig. 4.1. The affinity matrices with top 10 eigenvalues and the eigengaps, computed for a 

30-second audio clip consisting of music (0-10s), music with applause (10-20s), and speech 

(20-30s): (a) using a uniform scaling factor, (b) using the context-based scaling factors.  

 

To obtain a more reliable similarity measure and improve the clustering robustness, 
the scaling factor needs to be set in a more sophisticated (adaptive) way. An intuitive 
idea is that, if a cluster has a sparse density, the scaling factor should be large. 
Otherwise, the scaling factor could be set to a smaller value. According to this idea, in 
our approach, the self-tuning strategy [Zelnik-Manor and Perona 2004] is employed to 
select context-based scaling factors. That is, for each data point ui, the scaling factor is 
set adaptively based on its context data density as:  

bucloseu jii nuud
ij

/),(
)( ∑ ∈

=σ       (4.8) 

where close(ui) denotes the set containing nb nearest neighbors of ui. In our approach 
we experimentally set nb to 5. Accordingly, the affinity matrix can now be re-defined 
as:  

))2/(),(exp( 2
jijiij uudA σσ−=       (4.9) 
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Fig. 4.1(b) shows the corresponding affinity matrix computed using the 
context-based scaling factors. It can be noticed that the three blocks on the diagonal are 
more distinct than those in Fig. 4.1(a). In Fig. 4.1(b), the speech segment appears more 
concentrated in the affinity matrix, while better separation is achieved between music 
and music with applause. It can also be noted that the prominent eigen-gap between the 
3rd and 4th eigenvalue predicts the correct number of clusters. 

 

4.1.3 Iterative Clustering 

Another thing we need to consider is the purity of the obtained audio elements. In other 
words, we need to prevent audio segments belonging to different audio elements to be 
grouped into the same cluster. Impure audio elements are insufficiently representative 
(discriminative) with respect to the semantic content, and can be considered bad input 
into the semantic inference processes. 

In view of the above, we propose an iterative clustering scheme to verify whether a 
cluster can be partitioned any further. That is, at each iteration, every cluster obtained 
from the previous iteration is submitted again to the spectral clustering scheme. 
Although a cluster is inseparable in the (large scale) affinity matrix in the previous 
iteration, it may become separable in a new affinity matrix (small scale, only 
considering the cluster’s own data) during the next iteration. A cluster is considered 
inseparable if spectral clustering returns only one cluster. The iterative scheme can be 
described by the following pseudo code. 

 

Iterative_Clustering(U, kmin, kmax)  

{ 

    [k, {c1, …, ck}] = Spectral_Clustering(U, kmin, kmax); 

    if (k is equal to 1) return; 

    for (j = 1; j ≤ k; j++)  

       Iterative_Clustering(cj, 1, kmax); 

} 
 

It is important to note that iterative clustering may introduce over-segmentation, that 
is, one actual audio element can be spread over several clusters, each of which is then 
adopted as a different audio element. As this is typical for audio elements that appear 
with small variations at various time instances of an audio document, such 
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over-segmentation could generally be considered an analogy to distinguishing between 
the variations in text words, e.g., caused by different endings.  

Another type of over-segmentation may also be caused, however, due to the fact that 
we apply spectral clustering to a large audio document collection. In our approach, 
audio elements are extracted independently from different audio documents by 
applying iterative spectral clustering to each available audio document separately. 
Since some parts of different audio documents may have similar audio properties, it is 
expected that many audio elements obtained for different documents are actually 
belonging together into one and the same cluster. Intuitively, one could choose to 
combine all available audio documents together first, and then apply spectral clustering 
to the entire collection. However, combining audio tracks would make the affinity 
matrix too large and the SVD applied to this matrix computationally unaffordable. 
Ideas on how to deal with this type of over-segmentation will be introduced and 
explained in different contexts in later sections of this thesis.  

 

4.1.4  Smoothing  

The clustering process groups the audio segments together into clusters based on their 
feature similarity, but it does not take into account temporal sequencing of the 
segments. In order to avoid unrealistic discontinuities in the cluster assignment between 
consecutive audio segments, an extra smoothing step involving a median filter is 
performed after the clustering process. For example, if consecutive audio segments are 
assigned to clusters A and B as "A-A-B-A-A", this series of segments will be smoothed 
to "A-A-A-A-A" to remove unlikely discontinuities in the semantic content flow.  

 

4.1.5  Terminology 

Fig. 4.2 shows an example of an audio elements sequence after smoothing, where an 
audio clip is decomposed into 3 audio elements, e1, e2 and e3, as indicated by different 
gray-level values. Based on Fig 4.2, we now introduce the terminology that will be 
used in the subsequent sections. Each audio element has several occurrences along the 
data stream. Each occurrence of an audio element is actually a smoothed series of 
continuous audio segments that belong to the corresponding audio element cluster. For 
example, the blocks marked with 1-5 are five occurrences of audio element e1. 
Correspondingly, we refer to the duration of an audio element occurrence as the length 
of that occurrence. For example, l3 is the length of the 3rd occurrence of audio element 
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e1. We also refer to the sum of the lengths of all occurrences of an audio element as the 
(overall) duration of this audio element. Moreover, since we already realized that an 
over-segmentation may result in a number of semantically related audio elements, we 
refer to these audio elements jointly as an audio term.  

 

21 3 4 5 L

Audio Element 

l3

0 t

e1 e2 e3

smoothing

a series of continuous audio segments

 
Fig. 4.2.  An illustration of an audio element sequence. All blocks indicated by the same grey 

value represent the same audio element. The larger numbered blocks corresponding to the 

element e1 represent different occurrences of that audio element. An occurrence consists of a 

smoothed series of audio segments belonging to the same audio element cluster. 

 

4.2 Key Audio Element Spotting: Single Document Case 

To this end, we have discovered audio elements in audio documents, which we 
consider being analog to the words in text documents. In the next step, we aim at 
spotting those audio elements – the key audio elements - that are most representative 
for the behavior of an audio data stream at various time instances. Such audio elements 
would play similar role as the keywords in text, and could help us further perform 
content-based analysis and retrieval of audio documents using the proven theories and 
methods of text document analysis. Just like the words in text, different audio elements 
may have different importance in content-based audio analysis. For example, while an 
award ceremony typically contains the sounds like speech, music, applause, cheering 
and their different combinations, applause and cheering can be considered good 
representatives of the actual content of the ceremony.  
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To spot key audio elements, we can draw an analogy to keyword extraction in text 
document analysis, where the most commonly used criteria are TF and IDF. However, 
in content-based audio analysis, we may only have a single audio document available 
(the one to be analyzed) which prevent us from estimating the IDF values as normally 
done in text analysis based on a large training corpus. In this section, we propose some 
heuristic importance indicators for audio elements based on the analysis of a single 
audio document. Then, in the next section we assume that multiple audio documents 
are available, and present an audio element weighting scheme that follows the analogy 
to the TFIDF concept more closely than in the single document case.  

As a first heuristic importance indicator, we consider the occurrence frequency of an 
audio element, which is a direct analogy to TF in text analysis. However, just like in 
the text analysis, it is not necessarily the case that the higher occurrence frequency of 
an audio element implies its higher importance. This can be drawn from the following 
analysis. For example, the major part of the sound track of a typical action movie 
segment consists of "usual" audio elements, such as speech, music, speech mixed with 
music, etc., while the remaining smaller part includes audio elements that are typical 
for action, like gun-shots or explosions. As the usual audio elements can be found in 
any other (e.g. romantic) movie segment as well, it is clear that only this small set of 
specific audio elements is the most important to characterize the content of a particular 
movie segment. To compensate for this in text analysis, another measure, IDF, 
emphasizing relative uniqueness of a word in one document compared to other 
documents, is usually combined with TF to obtain a reliable weight for each word. 
However, in the case of single document, IDF cannot be calculated. To compensate for 
this, we apply a heuristic constraint to the occurrence frequency in the form of a naive 
(normalized) Gaussian model to compute the Element Frequency indicator efrq, that is, 

))2/()(exp(),( 22
std

nnnDeefrq avgii ⋅−−= α     (4.10) 

Here, ei is an audio element in audio document D, ni is the number of occurrences of ei, 
and navg and nstd are the corresponding mean and standard deviation of the numbers of 
occurrences of all audio elements. The factor α adjusts the expectation of how often the 
key elements will likely occur. Using this indicator, the audio elements that appear far 
more or far less frequently than the expectation α·navg are punished. In terms of TF and 
IDF, it can be said that the efrq indicator combines both in one measure.  

An important difference to the text case is in the fact that an audio element has 
duration information attached to each of its occurrences. In order to detect key audio 
elements accurately and robustly, we apply a similar reasoning as above to extend the 
"importance" measure by other two relevant indicators, the total duration and the 
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average occurrence length of an audio element, which are typically very different for 
various sounds in an audio document. Background sounds are usually majorities while 
key audio elements are minorities. For instance, in a situation comedy, both the total 
duration and the average length of the speech are considerably longer than that of the 
laughter or applause. Based on the above observations, another two heuristic 
importance indicators are designed to capture the observations made regarding the 
element duration. These indicators are defined as follows: 

Element Duration takes into account the total duration of audio element ei in the 
document:  

))2/()(exp(),( 22
std

dddDeedur avgii ⋅−−= β      (4.11) 

where di is the total duration of ei, and davg and dstd are the corresponding mean and 
standard deviation. The factor β adjusts the expectation of the duration of key audio 
elements, and has a similar effect as α. 

Average Element Length takes into account the average length of ei over all its 
occurrences, as: 

))2/()(exp(),( 22
std

lllDeelen avgii ⋅−−= γ     (4.12) 

where l i is the average occurrence length of ei, and lavg and lstd are the corresponding 
mean and standard deviation. The factor γ is similar to α and β and adjusts the 
expectation of the average occurrence length of key audio elements.  

The heuristic importance indicators defined above can be tuned adaptively for 
different applications, based on the available domain knowledge. For example, to 
detect unusual sounds in surveillance videos, factors α, β, and γ could be set relatively 
small, if such sounds are not expected to occur frequently and are of a relatively short 
duration.  

Based on these importance indicators and by realistically assuming that the above 
indicators are independent of each other, we measure the importance (or weight) of 
each audio element as, 

),(),(),(),( DeelenDeedurDeefrqDeW iiii ⋅⋅=     (4.13) 

To better explain the underlying idea of the product in (4.13), the weight W(ei, D) 
can be seen as an analogy to the posterior probability that ei is a key audio element, 
given the observations regarding the ni, di and l i. Further, each of the equations 
(4-10)-(4.12) can be seen as an analogy to the likelihood for each observation type (ni, 
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di or l i), given the key audio element hypothesis at ei. If the three observations are 
considered independent, then the posterior probability that ei is a key audio element is 
proportional to the product of the likelihoods.  

 

 
Fig. 4.3 The flowchart of the TFIDF-based audio elements weighting 

 

4.3 Key Audio Element Spotting: Multiple Document Case 

Inspired by the effectiveness of term frequency and inverse document frequency in text 
analysis, we see the possibility to apply these measures (or their equivalents) to 
improve key audio elements detection when multiple audio documents are available. 
To do this, the number of occurrences of a particular audio term in one document needs 
to be computed to estimate its TF value, while for computing its IDF value 
simultaneous analysis of multiple audio documents needs to be performed. Here, 
recalling the discussion on over-segmentation in Section 4.1.3 and the definition of 
audio term in Section 4.1.5, we first need to estimate the probability that an audio 
element belongs to a particular audio term.  

Fig 4.3 illustrates our TFIDF-based audio element weighting scheme. In this 
approach, the similarity between audio elements found in multiple audio documents is 
first computed based on dominant feature vectors (DFV), and then the similarity values 
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are used to compute the probability of the occurrence of one audio term in one and 
across multiple documents. Evaluating the DFV-based audio elements similarity can be 
considered an equivalent to identifying the matches between words in text that are 
semantically the same but, for instance, have different endings  

The obtained probability is further used to compute the equivalents of the standard 
TF and IDF measures, namely, the expected term frequency (ETF) and the expected 
inverse document frequency (EIDF). In addition, the expected term duration (ETD) and 
expected inverse document duration (EIDD) are computed as well, which again take 
into account the discriminative power of the duration of a particular audio element in 
characterizing the semantics of an audio document. Finally, the four measures are 
combined to give the final importance weight of an audio term, which is then assigned 
to all audio elements corresponding to this term. 

 

4.3.1 Evaluating Similarity of Audio Elements 

To take into account possible high-level variations of one and the same audio term, and 
judge which audio elements correspond to the same audio term, we introduce a 
procedure for measuring the similarity S(ei,ej) between audio elements ei and ej, which 
will be further used to get a reliable indication of audio term occurrence. To measure 
this similarity, a possible approach would be to represent each audio element using a 
standard method involving a Gaussian mixture model (GMM). However, as no 
assumptions about covariance matrices of GMMs can be made for a general case, 
computing the distance between GMMs is not likely to be easy. Besides, compared to 
the similarity computation between audio segments in the spectral clustering step, 
searching for similarity between audio elements needs to be done with respect to 
high-level signal descriptors, which will eliminate the influence of irrelevant 
(low-level) signal variations. We therefore choose for an alternative approach that 
employs Dominant Feature Vectors (DFVs).  

 

4.3.1.1 Dominant Feature Vectors 

Each audio element usually stands for a number of audio segments and thus a number 
of feature vectors, which typically have complex distributions and multiple salient 
characteristics. To represent the salient characteristics of an audio element we employ 
DFVs, which are the principle components in the feature space. Following the same 
general procedure that we already defined for feature selection in Chapter 3, the DFVs 
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are also computed via the singular value decomposition (SVD) on the feature space of 
an audio element, or in other words, on the N×M matrix X containing in each of its 
columns the N-dimensional feature vector of one of M audio segments belonging to the 
audio element considered (usually M>>N). Using SVD, the decomposition of X can be 
written as 

TUSVX =        (4.14) 

where in this case U={ u1, …, uN} is an N×N orthogonal matrix containing the spectral 
principle components, S = diag{λ1, …, λN} is an N×N diagonal matrix of singular values 
with λ1≥ λ2≥…≥λn, and V is an N×M matrix containing the temporal principle 
components. Those spectral principal components in U associated with large singular 
values represent the primary distributions of the audio element in the feature space, and 
can therefore be adopted as DFVs. The required number m of DFVs describing an 
audio element is related to the amount of feature variation, and in our approach, it is 
chosen using the similar expression (3.17) with the threshold η set again to 0.9. 

It should be noted that our approach to DFV extraction is different from traditional 
PCA applications. While PCA is traditionally used to remove the noisy feature 
dimensions, our method removes the noisy feature vectors, but preserves the dimension 
of each feature vector. Moreover, dominant feature vectors are extracted to form a 
signal subspace, which represents the most salient characteristics of an audio element. 
In contrast to this, PCA usually maps feature vectors into the principle feature 
subspace. 

 

4.3.1.2 Definition of Audio Element Similarity 

We now assume to have two audio elements e1 and e2, which contain m1 and m2 DFVs 
respectively. We denote their i-th and j-th DFV as qe1,i and qe2,j, and the corresponding 
singular values as λe1,i and λe2,j, respectively. To measure the similarity between e1 and 
e2, we first consider the similarity between each pair of their DFVs, qe1,i and qe2,j, which 
is usually defined as their inner-product, that is si,j =  || qe1,i

T qe2,j ||. 

Since different DFVs have different importance, which is determined by their 
corresponding singular values, they should contribute differently to the audio element 
similarity measure. In order to take this into account, we define the similarity between 
two audio elements as the weighted sum of the similarity between every pair of their 
DFVs, that is 
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where the weight wi,j is determined based on the corresponding singular values, as  
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The weight is selected as such for the following two reasons: 

1. it needs to be proportional to the contributions of the corresponding DFVs, which 
are related to the singular values, λe1,i and λe2,j;  

2. the weighted sum should be equal to one, when two audio elements are the same.   

Based on the above, the similarity between two audio elements can now be defined 
as: 
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This similarity is symmetric as Sdfv(e1, e2) = Sdfv(e2, e1), and its value is in the range of 
[0, 1]. When the subspaces of e1 and e2 are aligned, their similarity is 1, and when they 
are orthogonal to each other, the value is 0. 

 

4.3.2 Audio Element Weighting Scheme  

To estimate TF and IDF of a given audio term, we have to check all reoccurrences of 
an audio term. We do this by searching for audio elements that are sufficiently similar 
to each other in terms of (4.17) and that can therefore be said to correspond to one and 
the same audio term. Due to the missing exact match between audio elements, we can 
only speak about the probability for reoccurrence of the term, where this probability 
depends on the value of the similarity measure (4.17). Based on this probability, the 
equivalents of standard TF and IDF, namely expected term frequency (ETF) and 
expected inverse document frequency (EIDF), can be computed.  

As mentioned in the previous section, the duration of the audio elements, which 
defines the amount of presence of the corresponding term in an audio document, is also 
a parameter that should be taken into account when computing the weight of the term. 
Further, it can realistically be assumed that the overall duration of a key term is larger 
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in its “own” document than in other documents. Therefore, we extend the weight 
computation scheme to include two additional indicators of term importance, namely 
expected term duration (ETD) and expected inverse document duration (EIDD).  

 

4.3.2.1 ETF and ETD 

ETF and ETD define the expected occurrence frequency and duration of an audio 
element in an audio document, respectively. Thus, to calculate ETF of audio element ei 
in audio document Dk, we first need to compute the probability P(ei =  ej) for all audio 
elements ej obtained from Dk. Then, the ETF can be obtained as the normalized 
weighted sum of the occurrence frequencies of all the audio elements ej in Dk, where 
the abovementioned probabilities serve as the weights:  
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Here, ETF(ei, Dk) is the expected term frequency of audio element ei in the audio 
document Dk. It is noted that Dk is not necessarily the document that ei is obtained 

from. Further, )|( kjji DeeeP ∈= is the probability that ei represents the same audio 

term as the audio element ej, and is computed using the similarity (4.17). Finally, nj is 
the number of occurrences of ej in the document Dk.  

Similarly, ETD(ei, Dk) can be defined as,  
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where dj is the total duration of ej in the document Dk.  

 

4.3.2.2 EIDF and EIDD 

Similar to IDF in text document analysis, EIDF of an audio element ei can be 
computed as the log of the number of all documents divided by the expected number of 
documents containing the audio element ei. That is,  
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where |D| is the number of documents, and where )( ki DeP ∈  is the probability that ei 

appears in the document Dk. This probability can be calculated as  
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It is easy to verify that 1)( =∈ DeP i  if the audio element ei is obtained from the 

document D. 

Similarly, the EIDD of audio element ei can be calculated as the log of the duration 
of all documents divided by the expected duration of audio element ei in all documents. 
As the expected duration of audio element ei in document Dk is obtained by ETD(ei, 
Dk), the EIDD can be approximated as,  
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where dDk
 is the total duration of audio document Dk. 

 

4.3.2.3 Final Weighting 

To integrate the defined four importance indicators into the definitive importance 
weight of an audio term, we realistically assume that four indicators are independent of 
each other. Also, following the analogy to the text document analysis case, where TF 
and IDF indicators are simply combined into a product, we follow the same procedure 
here to compute the overall weight of an audio element ei in the document Dk:  

)(),()(),(),( ikiikiki eEIDDDeETDeEIDFDeETFDeW ⋅⋅⋅=   (4.23) 
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4.3.3 Number of Key Audio Elements 

To this end, the first K audio elements with the highest weight (4.13) or (4.23) could be 
selected as key audio elements, and used to characterize an audio document in further 
content-based audio analysis steps. To determine the number K of key audio elements, 
an intuitive idea would be to set a threshold, and choose an audio element as a key 
audio element if its weight is larger than the threshold. An alternative method is 
presented in [Cai et al. 2005], where the number of key audio elements is chosen based 
on the total duration of the selected key audio elements, as: 

}{maxarg
1

'
D

k

i ik LdK ⋅≤= ∑ = η       (4.24) 

where d'
i denotes the duration of the i-th audio element on the list of audio elements 

ranked in the descending order based on the weighting score, LD is the total duration of 
audio document D, and η is a tuning parameter set experimentally to 0.25. This setting 
is based on the assumption that the key audio elements will not cover more than 25% 
of the entire audio document. 

However, these methods used thresholds which are usually hard to set and depend on 
specific applications. In this thesis, we follow the practice of text document analysis 
and decide not to set a heuristic threshold and make a hard decision on the number of 
key audio elements to be selected. Instead, we choose to consider all obtained audio 
elements and their corresponding weights in the further semantic inference steps.  

 

4.4  Experimental Evaluation  

In this section, the performance of the proposed unsupervised approach to audio 
element discovery and key element spotting is evaluated experimentally using a 
manually annotated representative test audio data set. As no wide benchmarking effort 
(e.g. a counterpart of TRECVID) exists in the field of content-based audio analysis, we 
invested considerable effort in optimizing the preparation of our data collection to 
maximize the reliability of the insights obtained through the experiments. The test 
audio documents (sound tracks) are extracted from various types of video, including 
sports, situation comedy, award ceremony and war/action movies, and in the total 
length of about 5 hours. These sound tracks contain an abundance of different audio 
elements, and are of different complexity, both in terms of content dynamics and the 
composite nature of audio signals, in order to provide a reliable base for evaluating the 
proposed approach under different conditions. For example, in the test dataset, the 
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sound track of the tennis game is relatively simple, as compared to far more complex 
sound tracks from the war/action movies “Band of Brothers – Carentan” and “Sword 
Fish”. 

 
Table 4.1. Information of the experimental audio data 

No. Video Category duration 

A1 Friends situation comedy 0:25:08 

A2 Tennis Game sports 0:59:41 

A3 59th Annual Golden Globe Awards award ceremony 1:39:47 

A4 Band of Brothers - Carentan war movie 1:05:19 

A5 Sword Fish Action movie 1:00:00 

 

Detailed information on the sound tracks we used is listed in Table 4.1. As already 
indicated in Chapter 3 and earlier in this chapter, all audio streams are in 16 KHz, 
16-bit and mono channel format, and are divided into frames of 25ms with 50% 
overlap for feature extraction. To balance the detection resolution and the 
computational complexity, audio frames are grouped into one-second-long audio 
segments with 0.5 seconds overlap, which are further used as basic units for audio 
element discovery. 

 

4.4.1 Audio Element Discovery 

In our spectral clustering approach to audio element discovery, the search range for 
selecting the cluster number is set experimentally as kmin=2 and kmax=20 for all sound 
tracks. Moreover, to illustrate the effectiveness of the utilized spectral clustering 
scheme with context-based scaling factors, we compare this scheme with the 
“standard” spectral clustering from [Ng et al. 2001]. 

Table 4.2 shows the detailed comparison results of the two spectral clustering 
algorithms on the example sound track of "Friends" (A1). In this sound track, we 
obtained 7 audio elements using the spectral clustering with context-based scaling 
factors, and only 5 audio elements using the “standard” spectral clustering. To enable a 
quantitative evaluation of the clustering performance, we established the ground truth 
by combining the results obtained by three unbiased persons who analyzed the content 
of the sound track and the obtained audio elements. This process resulted in 6 sound 
classes that we labeled as noise (N), speech (S), applause (A), laughter (L), music (M), 
and laughter with music (L&M).  In Table 4.2, each row represents one discovered 
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Table 4.2. Comparison of the results of the standard spectral clustering and the spectral 

clustering with context-based scaling factors on the sound track of "Friends" (A1) (unit: second) 

 No. N S A L L&M M precision  

S
pe

ct
ra

l c
lu

st
er

in
g 

w
ith

 

co
nt

ex
t-

ba
se

d 
sc

al
in

g 
fa

ct
or

s 

1 42 2  0.5   0.944 

2 7 1132.5 1 8   0.986 

3   5    1.000 

4 1 2  215   0.986 

5 3   8 31.5  0.741 

6 0.5     46.5 
0.980 

7 0.5     2.5 

recall 0.778 0.996 0.833 0.929 1.000 1.000 0.978 

S
ta

nd
ar

d 
sp

ec
tr

al
 

cl
us

te
rin

g 

1 50.5 43.5     0.537 

2 1.5 527.5  4 2  

0.977 3  290 6 2 1 7 

4  267  1.5   

5 2 8.5  224 28.5 42 0.734 

recall 0.935 0.954 0.000 0.968 0.000 0.000 0.901 

Abbr. noise (N), speech (S), applause (A), laughter (L ), and music (M ) 

 

audio element and contains the durations (in seconds) of its occurrences in view of the 
ground truth sound classes. We manually grouped those audio element occurrences 
associated to the same ground truth class (indicated by shaded fields in the table), and 
then calculated the precision, recall and accuracy (the duration percentage of the 
correctly assigned audio segments in the stream) based on the grouping results. These 
measures roughly represent the overall clustering performance. As shown in Table 4.2, 
the accuracies of the two algorithms for the sound track of "Friends" (A1) are in 
average 97.8% and 90.1%, respectively. We like to emphasize that these performance 
figures were obtained for the case where all audio segments are treated equally. While 
one may choose to compute the costs related to the clustering errors in a different way, 
like for instance weighting the clustering errors of more important (longer) audio 
elements stronger than those of the less important ones, we considered such adaptation 
application/domain specific and therefore beyond the scope of this thesis. 

Table 4.2 also shows that each class in the ground truth can be covered by the audio 
elements discovered using the spectral clustering with context-based scaling factors. In 
the standard spectral clustering, the sounds of applause (A), music (M) and laughter 
with music (L&M) were missed and falsely included into other clusters, while speech 
(S) is divided over three discovered audio elements. As demonstrated in Section 4.1.2, 
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this phenomenon is likely caused by the unharmonious distributions of various sound 
classes in the feature space. For instance, the feature distribution of speech (S) is 
relatively sparse and has large divergence (weaker cluster density), while those of 
music (M) and laughter with music (L&M) are more "tight". The influence of 
unharmonious sound distributions can be reduced by setting different scaling factors 
for different data densities, as done in our approach. 

 

Table 4.3. Performance comparison between the spectral clustering with and without 

context-based scaling factors for all test sound tracks 

No. #gc 
Standard spectral clustering 

Spectral clustering with 

context-based scaling factors 

#nc / #miss accuracy #nc / #miss accuracy 

A1 6 7 / 3 0.747 7 / 0 0.951 

A2 6 5 / 3 0.901 7 / 0 0.978 

A3 7 8 / 2 0.814 11 / 0 0.928 

A4 6 5 / 3 0.621 16 / 0 0.930 

A5 6 2 / 4 0.332 17 / 0 0.494 

Avr. 6.2 5.4 / 3 0.683 11.6 / 0 0.856 

 

Table 4.3 summarizes the performance of audio element discovery on all test sound 
tracks. The table shows the number of ground truth sounds (#gc), the number of 
discovered audio elements (#nc), the number of missed ground truth audio elements 
(#miss), and the overall accuracy. It can be seen that by using the standard spectral 
clustering algorithm, around 48% of sound classes in the ground truth are not properly 
discovered, and the average accuracy is only around 68%. The table also shows that the 
spectral clustering with context-based scaling factors performs better on all test sound 
tracks, and achieves an average accuracy of around 86%. In particular, no sound 
classes in the ground truth are missed in the obtained set of audio elements. Hence, the 
use of context-based scaling factors in spectral clustering of complex audio streams can 
notably improve the clustering performance. 

Detailed comparison results for the sound tracks A2-A5 are shown in Table 4.4-4.7, 
where we also manually grouped those audio elements associated with the same ground 
truth class and represented them by shaded fields. The results reported in these tables 
confirm that spectral clustering with context-based scaling factors can obtain better 
results, including a better estimate of the cluster number, better cluster purity, less 
missed clusters, and a higher recall and precision. 
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Table 4.4. Comparison of the results of the standard spectral clustering and the spectral 

clustering with context-based scaling factors on the sound track of "Tennis" (A2) (unit: second) 

 No. S A+S A Sil B M precision 

S
pe

ct
ra

l c
lu

st
er

in
g 

w
ith

 

co
nt

ex
t-

ba
se

d 
sc

al
in

g 
fa

ct
or

s 

1 1594 42 4 14 4  0.961 

2 21 279.5 40 0.5   0.820 

3    1.5  20.5 0.932 

4  9.5 298 12   0.933 

5    834.5 3  
0.997 

6    96.5   

7   3 22.5 282  0.917 

recall 0.987 0.844 0.864 0.949 0.976 1 0.951 

S
ta

nd
ar

d 
sp

ec
tr

al
 

cl
us

te
rin

g 

1 0 7 19 29.5 35 3 

0.534 2 0.5 15 7 47.5 76 3.5 

3 90 84 319 893.5 174 14 

4 692 25  7 4  
0.969 5 751   4   

6 69.5 8     

7 12 192     0.941 

recall 0.937 0.580 0 0.989 0 0 0.747 

Abbr. speech (S), applause (A), applause with speech (A+S), silence (Sil), ball-hit (B), and 

music (M ) 

 

Table 4.5. Comparison of the results of the standard spectral clustering and the spectral 

clustering with context-based scaling factors on the sound track of "59th Annual Golden Globe 

Awards" (A3) (unit: second) 

 No. S S+M M A+M A+S A N precision 

S
pe

ct
ra

l c
lu

st
er

in
g 

w
ith

 

co
nt

ex
t-

ba
se

d 
sc

al
in

g 
fa

ct
or

s 1 195.5 1    6  

0.953 2 27.5       

3 2755 18 4 8 38.5 52 18 

4  6 9 320 4 5 2 

0.898 5  1.5 2 155.5 7  2.5 

6  2 21 220 11  6 

7 6 807.5 15 32 3 28 9 0.897 

8  3 38.5 2   7 0.762 

9    2.5 475 8  0.978 

10 32   2 8.5 186 1 0.811 
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11 2.5    29 18 374 0.883 

recall 0.987 0.9625 0.43 0.937 0.825 0.614 0.892 0.928 

S
ta

nd
ar

d 
sp

ec
tr

al
 

cl
us

te
rin

g 

1 122.5 9.5 0.5  0.5 2 5.5 

0.193 
2 1091.5 36 2  5  44.5 

3 640.5 51 9.5 10 12 8 32 

4 1083    9  41.5 

5 57 11 56.5 138 526.5 148 227.5 0.452 

6 7 12 14 580 7 24 43 0.844 

7 5 9  2 13 118 21 0.702 

8 12 710.5 7 12 3 3 4.5 0.945 

recall 0.973 0.8468 0 0.782 0.914 0.389 0 0.814 

Abbr. speech (S), music (M ), speech with music (S+M), applause (A), applause with music 

(A+M ), applause with speech (A+S), and noise (N) 

 

Table 4.6. Comparison of the results of the standard spectral clustering and the spectral 

clustering with context-based scaling factors on the sound track of "Band of Brothers" (A4) (unit: 

second) 

 No. S NS Sil N G M precision 

S
pe

ct
ra

l c
lu

st
er

in
g 

w
ith

 c
on

te
xt

-b
as

ed
 s

ca
lin

g 
fa

ctor
s 

1 569 8     

0.963 
2 11.5   1.5   

3 181 8   3  

4 320 13.5    8 

5  55.5  4 2.5  

0.767 6 1 15  0.5   

7 12 107 16 11 7  

8   123 4   

0.934 9 1.5  161 14 1  

10   21.5   1 

11 1 2 0.5 17.5 2 1.5 
0.902 

12 5  21 461.5 12 7 

13 4 8 12 38 652  
0.916 

14  7  7.5 198 1 

15 1  8 15.5  710 
0.966 

16   1 1  43 

recall 0.977 0.792 0.839 0.832 0.969 0.976 0.930 
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S
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us

te
rin

g 
1   5  1 545.5 

0.987 
2  1.5    40.5 

3    12 628  
0.976 

4 3  3  115  

5 1104 222.5 356 564 133.5 185.5 0.430 

recall 0.9973 0 0 0 0.847 0.76 0.621 

Abbr. speech (S), noisy speech (NS), Silence (Sil), noise (N), gun-shot (G), and music (M ) 

 

Table 4.7. Comparison of the results of the standard spectral clustering and the spectral 

clustering with context-based scaling factors on the sound track of "Sword Fish" (A5) (unit: 

second) 

 No. S M B SBM F precision 

S
pe

ct
ra

l c
lu

st
er

in
g 

w
ith

 c
on

te
xt

-b
as

ed
 s

ca
lin

g 
fa

ctor
s 

1 223.5 20 111 129 19 

0.519 2 15 6.5 14 7.5 1 

3 567.5 18 183 226 11 

4 0 50.5 14.5 1 2.5 

0.626 5 0 169 128.5 6 8 

6 0.5 90.5 14.5 4 5.5 

7 70 47 218.5 92.5 21.5 

0.462 

8 28 41.5 91 53 28.5 

9 175.5 203 652 184.5 51.5 

10 13.5 37 102 60 5 

11 81.5 61.5 147.5 140.5 14 

12 25.5 9 37.5 40.5 2 
0.357 

13 21 26 67.5 75 19.5 

14 8.5 52 43 16.5 108 

0.516 
15 0 88 95.5 29 240.5 

16 2 7 19 27 74.5 

17 8.5 19 36 16 76 

recall 0.650 0.328 0.613 0.104 0.725 0.494 

 

1 1238 944.5 1964 1096.5 674.5 0.332 

2  2.5 1 11 11.5 13.5 0.342 

recall 0 0 0.994 0 0.020 0.332 

Abbr. speech (S), speech with background sound or music (SBM), Background sounds (B), 

fighting sounds (F), and music (M ) 
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It can also be seen that the iterative clustering scheme produces more audio elements 
than the number of the ground-truth clusters. In other words, over-segmentation is 
introduced. However, as mentioned before, related audio elements can be recognized as 
such using the DFV-based similarity metric; and furthermore, groups of related audio 
elements can also emerge from higher-level content analysis, such as the co-clustering 
process that we will elaborate on in Chapter 5. 

 

4.4.2 Single Document based Key Audio Element Spotting 

Single document based audio element weighting scheme (4.13) is employed when only 
one audio document is available, that is, we consider each test sound track indepen-
dently. If we assume that a key audio element has somewhat average occurrence 
frequency and duration, the model parameters in (4.10)-(4.12) can simply be set all to 
1. Our experiments showed that this assumption worked well in a general case. 
However, in order to investigate the effect of different parameter values, we also tuned 
the parameters differently for different soundtracks. This parameter tuning was not 
sophisticated, but simply realized through a rough sampling of the relevant parameter 
space using the parameter options from the set (0.5, 1.0, 1.5, 2.0). The results reported 
in this section are the best ones obtained for different parameter settings. The rationale 
behind this approach is that if our method is applied in a given domain or use case, 
general domain knowledge can be used to roughly set the model parameters. We 
wanted to provide an indication regarding the expected performance in such a case. 

The results of key elements spotting are listed for each test sound track in Table 4.8 - 
4.12, respectively, and summarized in Table 4.13. The semantic labels provided in 
these tables (and also in tables 4.14-4.19) are assigned manually to audio elements after 
these elements are obtained. These labels serve only to roughly describe the major 
content of an audio element, in order to be able to evaluate the meaningfulness of the 
obtained audio elements regarding the part of our test data set from which they are 
extracted. Furthermore, all audio segments belonging to one audio element cluster are 
characterized by one label only. If the composite nature of the sounds in this cluster is 
complex, we did our best to reveal this complexity when defining the label. For 
example, next to the audio elements simply defined as “speech”, we also identified 
audio elements that can best be described as “laughter with music” or “speech with 
background music”. Similarly, different audio elements may be characterized using 
variations of one and the same label (due to over-segmentation). For instance, we found 
that a large portion of speech segments is indeed likely to be grouped into the cluster 
adopted as the “speech” audio element. However, due to the fact that different speech 
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segments may have rather different signal characteristics, what we would consider 
speech might get spread over several audio element clusters that we then refer to as 
“speech 1” or “speech 2”. Each of these clusters is treated further as separate audio 
elements. Finally, the difference between “speech X” elements and the element “speech 
(with gunshot background)” is in the purity of the speech component, which is lower in 
the latter case due to the gunshot noise in the background. This is why we also labeled 
it in a different way.   

As an example, Table 4.9 shows the results of sound track "Tennis" (A2), with the 
best parameters α, β, and γ set to 1. For 7 discovered audio elements in the audio 
document, the table lists their total duration (dur), the occurrence times (occu), the 
average occurrence length (avgl), and the final importance score. Based on these 
scores, an "educated guess" can be made for the most likely key audio elements. For 
example, in this tennis soundtrack, the audio elements indicated by the shaded fields, 
including applause with speech, applause, and ball-hit, have the highest importance 
scores, and therefore can be taken as key audio elements.  

 

Table 4.8 Single document based audio element score on the track of "Friends" (A1) 

No. Description occu dur avgl score 

1 speech + noise 27 44.5 1.6481 0.642 

2 laughter 102 218.0 2.1373 0.890 

3 theme music 1 47.0 47 0.015 

4 laughter + music 9 42.5 4.7222 0.503 

5 speech 124 1148.5 9.2621 0.039 

6 applause + cheering 1 5.0 5 0.413 

7 TV music 1 3.0 3 0.407 

 

Table 4.9 Single document based audio element score on the track of "Tennis" (A2) 

No. Description occu dur avgl score 

1 clean speech 250 1658.0 6.632 0.020 

2 speech + applause 108 341.0 3.157 0.928 

3 music 1 22.0 22.00 0.008 

4 applause 106 319.5 3.014 0.908 

5 silence 173 837.5 4.841 0.633 

6 noisy silence 32 96.5 3.016 0.399 

7 ball-hit 145 307.5 2.121 0.820 
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Table 4.10 Single document based audio element score on the track of "Golden Global Awards" 

(A3) 

No Description occu dur avgl score 

1 speech 1 132 202.5 1.534 0.380 

2 speech 2 26 27.5 1.058 0.150 

3 music + applause 1 110 346 3.146 0.880 

4 music + applause 2 72 168.5 2.340 0.544 

5 music + speech 161 900.5 5.593 0.510 

6 music 22 50.5 2.296 0.366 

7 applause 143 485.5 3.395 0.959 

8 speech + applause 109 229.5 2.106 0.553 

9 background noise 211 423.5 2.007 0.470 

10 (dense) music + applause 68 260.0 3.824 0.819 

11 speech 3 487 2893.5 5.942 0.000 

 

Table 4.11 Single document based audio element score on the track of "Band of Brother" (A4) 

No Description occu dur avgl score 

1 speech 187 577 3.086 0.463 

2 speech (gun background) 25 62.0 2.48 0.122 

3 speech 1 13.0 13.0 0.069 

4 speech 72 192.0 2.667 0.316 

5 heavy noise 11 24.5 2.227 0.081 

6 silence (some noise) 44 127.0 2.886 0.212 

7 noise 143 506.5 3.542 0.662 

8 speech 122 341.5 2.799 0.529 

9 gunshot + speech 1 128 714.0 5.578 0.731 

10 gunshot + speech 2 85 213.5 2.512 0.35 

11 background sounds 51 177.5 3.480 0.297 

12 applause 3 16.5 5.50 0.120 

13 music 48 734.5 15.30 0.141 

14 music + speech 4 45.0 11.25 0.116 

15 noise + speech 86 153.0 1.780 0.251 

16 silence (with HF noise) 3 22.5 7.50 0.137 
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Table 4.12 Single document based audio element score on the track of "Sword Fish" (A5) 

No Description occu dur avgl score 

1 speech+ backgrounds  235 449.5 3.826 0.215 

2 fighting sounds 1 57 228.0 8.0 0.654 

3 fighting sounds 2 155 453.0 5.845 0.561 

4 speech + backgrounds 86 242.0 5.628 0.499 

5 speech 241 502.5 4.170 0.225 

6 mixed backgrounds  21 44.0 4.191 0.203 

7 speech 363 1005.5 5.540 0.026 

8 speech + backgrounds 73 114.5 3.137 0.212 

9 speech + backgrounds 121 209.0 3.455 0.275 

10 backgrounds 404 1266.5 6.270 0.004 

11 speech in repressive env. 67 129.5 3.866 0.265 

12 music 13 69.0 10.612 0.421 

13 fighting sounds  76 155.5 4.092 0.300 

14 backgrounds 102 217.5 4.265 0.355 

15 speech + backgrounds 247 445.0 3.603 0.182 

16 music 45 311.5 13.844 0.654 

17 music 23 115.0 10.0 0.503 

 

The importance scores obtained for all audio elements from all test sound tracks are 
summarized in Table 4.13. For each sound track, the number of audio elements (#ele), 
the parameter setting, and the description of each audio element with corresponding 
weighting score are listed in the descending order. The audio elements indicated in 
bold correspond to ground truth, which is established here again by combining the 
results obtained by three unbiased persons who analyzed the content of the test sound 
tracks and selected the most characteristic sounds or sound combinations. 

From the table, it can be noted that the performance on audio documents A2 and A3 
is satisfying. All the key elements manually picked are among the highest-ranked 
elements. On the other hand, in audio document A1, A4 and A5, some audio elements 
not included in the ground truth are also ranked high (that is, false alarms are 
introduced). For example, the speech with noise in A1 is falsely ranked as second 
important, since it has similar occurrence frequency and duration as the expected key 
elements. Similar cases are also found for the audio elements speech in A4 and music in 
A5. Also in A4, some key audio elements such as the gunshot with speech is not ranked 
high enough, since the characteristics of key elements in complex audio documents 
vary too much. These problems indicate that the proposed heuristic rules do not 
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perform entirely as expected in complex audio documents. However, the overall 
performance of key element spotting using the proposed rules on our test set is still 
acceptable. If we take the first four audio elements as key audio elements in each audio 
document, more than 85% (12 out of 14) of the key audio elements in the ground truth 
can be properly recalled. 

 

Table 4.13. Single document based weighting for audio elements obtained in all the sound tracks 

No. #ele. (α,β,γ) Discovered audio elements and corresponding weight 

A1 7 (2,1,1) 
laughter(0.89), speech + noise(0.642), laughter + music(0.503), applause 

+ cheering(0.413), TV music(0.407), speech(0.039), theme music(0.015) 

A2 7 (1,1,1) 
speech + applause(0.928), applause(0.908), ball-hit (0.82), silence(0.633), 

noisy silence(0.399), clean speech(0.02), music(0.008) 

A3 11 (1,1,1) 

applause(0.959), music + applause 1(0.88), (dense) music + 

applause(0.819), speech + applause(0.553), music + applause 2(0.544), 

music + speech(0.51), background noise(0.47), speech 1(0.38), 

music(0.366), speech 2(0.15), speech 3 (0.0) 

A4 16 (2,2,2) 

gunshot + speech 1(0.731), noise(0.662), speech(0.529), speech(0.463), 

gunshot + speech 2(0.35), speech(0.316), background sounds(0.297), noise 

+ speech(0.251), silence (some noise)(0.212), music(0.141), silence (with 

HF noise)(0.137), speech (gunshot background)(0.122), applause (0.12), 

music + speech(0.116), heavy noise(0.081), speech(0.069) 

A5 17 
(0.5, 

1.5,2) 

fighting sounds 1(0.654), music(0.654), fighting sounds 2(0.561), 

music(0.503), speech + backgrounds(0.499), music(0.421). 

backgrounds(0.355), fighting sounds (0.3), speech + backgrounds (0.275), 

speech in repressive env.(0.265), speech(0.225), speech+ backgrounds 

(0.215), speech + backgrounds(0.212), mixed backgrounds (0.203), speech + 

backgrounds(0.182), speech(0.026), backgrounds(0.004) 

 
 

4.4.3 TFIDF-based Audio Element Weighting 

In this experiment, we employ the whole test audio set to estimate the importance 
indicators from Section 4.3, and then use these indicators for audio element weighting.  
Table 4.14 - 4.18 show the results for each test sound track, respectively. In these 
tables, we not only list the total number of occurrences (occu) and total duration (dur) 
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of each audio element, but also the derived ETF, EIDF, ETD, EIDD values and the 
final importance weight.  

Based on the data collected in these tables, situations can be analyzed that led to a 
particular weight. For example, the 6th audio element applause with cheering in Table 
4.14, although occurring only once and lasting only 5 seconds in this track, occurs 
statistically even less in other audio tracks. This makes its EIDF (2.15), EIDD (2.135) 
and the final weight high. On the other hand, the 5th audio element music with speech 
and the 11th audio element speech in Table 4.16, although appearing many times and 
having long durations (161 times / 900.5 seconds, and 487 times / 2893.5 seconds, 
respectively), seem to appear often in other soundtracks as well. Thus, their EIDF, 
EIDD and the final weight are low. These results show that the TF and IDF concepts 
from text analysis are indeed applicable to general audio signals.  

 

Table 4.14. TFIDF based audio element weighting on the track of "Friends" (A1) 

No  Description occu. dur. ETF EIDF ETD EIDD weight 

1 speech + noise 27 44.5 0.59 0.588 0.691 1.046 0.251 

2 laughter 102 218.0 0.699 1.411 0.61 1.597 0.96 

3 theme music 1 47.0 0.236 1.466 0.501 1.582 0.274 

4 laughter + music 9 42.5 0.515 1.234 0.525 1.421 0.474 

5 speech 124 1148.5 0.785 0.674 0.897 0.967 0.459 

6 applause+cheering 1 5.0 0.496 2.15 0.392 2.135 0.892 

7 TV music 1 3.0 0.036 1.711 0.038 2.587 0.006 

 

Table 4.15. TFIDF based audio element weighting on the track of "Tennis" (A2) 

No Description occu. dur. EDF IDF EDD IDD weight 

1 clear speech 250 1658.0 0.576 0.177 0.66 0.639 0.043 

2 speech + applause 108 341.0 0.555 0.304 0.571 0.779 0.075 

3 music 1 22.0 0.431 0.651 0.409 1.135 0.13 

4 applause 106 319.5 0.42 1.194 0.358 1.464 0.262 

5 silence 173 837.5 0.533 0.934 0.491 1.262 0.308 

6 noisy silence 32 96.5 0.465 1.117 0.404 1.452 0.304 

7 ball-hit 145 307.5 0.641 0.54 0.598 0.92 0.19 
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Table 4.16. TFIDF based audio element weighting on the track of "Golden Global Awards" (A3) 

No  Description occu. dur. EDF IDF EDD IDD weight 

1 speech 1 132 202.5 0.646 0.249 0.705 0.81 0.092 

2 speech 2 26 27.5 0.607 0.304 0.669 0.91 0.112 

3 music + applause 1 110 346.0 0.713 0.395 0.691 0.767 0.149 

4 music + applause 2 72 168.5 0.681 0.45 0.654 0.832 0.167 

5 music + speech 161 900.5 0.752 0.158 0.795 0.543 0.051 

6 music 22 50.5 0.512 0.349 0.544 0.784 0.076 

7 applause 143 485.5 0.506 1.043 0.458 1.374 0.332 

8 speech + applause 109 229.5 0.705 0.358 0.708 0.802 0.143 

9 background noise 211 423.5 0.747 0.216 0.739 0.622 0.074 

10 
(dense) music  

+ applause 
68 260.0 0.622 0.363 0.623 0.814 0.114 

11 speech 3 487 2893.5 0.776 0.161 0.829 0.581 0.06 

 

 

Table 4.17. TFIDF based audio element weighting on the track of "Band of Brother" (A4) 

No. Description occu. dur. EDF IDF EDD IDD weight 

1 speech 187 577 0.684 0.132 0.621 0.568 0.032 

2 
speech (gun back- 

ground) 
25 62.0 0.624 0.188 0.588 0.591 0.041 

3 speech 1 13.0 0.157 1.446 0.151 2.108 0.072 

4 speech 72 192 0.662 0.119 0.601 0.529 0.025 

5 heavy noise 11 24.5 0.501 0.396 0.447 0.921 0.082 

6 silence (some noise) 44 127.0 0.438 0.636 0.37 1.173 0.121 

7 noise 143 506.5 0.648 0.218 0.579 0.609 0.05 

8 speech 122 341.5 0.667 0.125 0.611 0.541 0.027 

9 gunshot + speech 1 128 714.0 0.4 0.704 0.402 1.069 0.121 

10 gunshot + speech 2 85 213.5 0.279 1.225 0.291 1.381 0.137 

11 background sounds 51 177.5 0.452 0.607 0.384 1.208 0.127 

12 applause 3 16.5 0.263 0.912 0.239 1.493 0.085 

13 music 48 734.5 0.42 0.517 0.482 1.022 0.107 

14 music + speech 4 45.0 0.423 0.475 0.447 1.014 0.091 

15 noise + speech 86 153.0 0.706 0.158 0.658 0.544 0.04 

16 silence (w/ HF noise) 3 22.5 0.23 0.926 0.225 1.615 0.077 
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Table 4.18. TFIDF based audio element weighting on the track of "Sword Fish" (A5)  

No  Description occu. dur. EDF IDF EDD IDD weight 

1 speech+backgrounds 235 449.5 0.811 0.176 0.795 0.514 0.058 

2 fighting sounds 1 57 228.0 0.31 1.017 0.334 1.557 0.164 

3 fighting sounds 2 155 453.0 0.645 0.242 0.645 0.72 0.073 

4 speech+backgrounds 86 242.0 0.593 0.413 0.573 0.982 0.138 

5 speech 241 502.5 0.759 0.107 0.74 0.507 0.031 

6 mixed backgrounds  21 44.0 0.528 0.562 0.524 1.107 0.172 

7 speech 363 1005.5 0.793 0.115 0.771 0.531 0.037 

8 speech+backgrounds 73 114.5 0.782 0.101 0.763 0.534 0.032 

9 speech+backgrounds 121 209.0 0.692 0.197 0.67 0.585 0.053 

10 backgrounds 404 1266.5 0.737 0.222 0.725 0.587 0.07 

11 speech in repr. env. 67 129.5 0.413 0.566 0.401 1.042 0.098 

12 music 13 69.0 0.506 0.468 0.497 0.962 0.113 

13 fighting sounds 76 155.5 0.345 0.877 0.34 1.347 0.138 

14 backgrounds 102 217.5 0.604 0.448 0.588 0.929 0.148 

15 speech+backgrounds 247 445.0 0.818 0.16 0.799 0.559 0.058 

16 music 45 311.5 0.601 0.388 0.609 0.83 0.118 

17 music 23 115.0 0.394 0.653 0.402 1.248 0.129 

 

The final TFIDF-based importance scores for all test sound tracks are summarized in 
Table 4.19. This table also lists the number of audio elements (#ele), the description of 
each audio element and the corresponding weighting score sorted in the descending 
order, and with the collected ground truth indicated in bold. The table shows that most 
of key audio elements in the ground-truth are correctly ranked high, such as the 
laughter, applause with cheering, and laughter with music in A1, and the applause and 
music with applause in A3.  

If we also take the first four audio elements as key audio elements in each audio 
document, 11 out of 14 can be properly recalled. At first sight, this performance seems 
not as good as that based on heuristic rules. However, after further analysis, we find 
that other audio elements ranked high by TFIDF-based scheme are also quite 
representative to the audio document, although they are not included in the 
ground-truth. For example, two silence elements found in Tennis soundtrack (A2) are 
assigned the highest weights (the silence segments between every two ball-hits are 
clustered together). This is justifiable since silence periods are very representative for 
the game and also are not that pronounced in other sound tracks in the test set. Also, in 
the war and action movie (A4 and A5), some movie-specific background sounds, are 
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reasonably ranked high. These sounds are not selected as ground truth since test 
subjects tend to choose the highlights as representative sounds rather than background 
sounds. 

 

Table 4.19. TFIDF based weighting for audio elements obtained in all sound tracks 

No. #ele. Discovered audio elements and corresponding weight 

A1 7 
laughter(0.96), applause + cheering (0.892), laughter + music (0.474), speech 

(0.459), theme music (0.274), speech + noise (0.251), TV music (0.006) 

A2 7 
silence(0.308), noisy silence(0.304), applause(0.262), ball-hit( 0.19), music(0.13), 

speech + applause (0.075), clean speech(0.043) 

A3 11 

applause(0.332), music + applause 2(0.167), music + applause 1(0.149), speech + 

applause(0.143), (dense) music + applause(0.114), speech 2 (0.112), speech 1 

(0.092), music(0.076), background noise(0.074), speech 3 (0.06), music + 

speech(0.051) 

A4 16 

gunshot + speech 2(0.137), background sounds(0.127), silence (some noise)(0.121), 

gunshot + speech 1(0.121), music(0.107), music + speech(0.091), applause(0.085), 

heavy noise(0.082), silence (with HF noise)(0.077), speech(0.072), noise(0.05), 

speech (gunshot background)(0.041), noise + speech(0.04), speech(0.032), 

speech(0.027), speech(0.025) 

A5 17 

mixed backgrounds (0.172), fighting sounds 1(0.164), backgrounds(0.148), 

speech+backgrounds (0.138), fighting sounds 2(0.138), music(0.129), 

music(0.118), music(0.113), speech in repressive env.(0.098), fighting sounds 

2(0.073), backgrounds(0.07), speech+backgrounds (0.058), 

speech+backgrounds(0.058), speech+backgrounds(0.053), speech(0.037), 

speech+backgrounds(0.032), speech(0.031) 

 

4.4.4 Discussion  

Based on the obtained results, we find that both approaches (scheme (4.13) and scheme 
(4.23)) can achieve reasonable results. As also confirmed by our test panel consisting 
of three subjects, most of the high-weighted audio elements indeed correspond to the 
most important or representative sounds in the test sound tracks.  

The obtained results also indicate that two approaches of audio element weighting 
are biased in different way. The single document based weighting scheme (4.13) gives 
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high weights to those audio elements which satisfy some pre-defined criteria regarding 
signal behavior. It is therefore suitable for some specific applications relying on prior 
knowledge and contextual information. The TFIDF-based weighting scheme (4.23), on 
the other hand, usually gives high weights to document-specific elements, that is, the 
elements frequently appearing in their “own” document but hardly occurring in other 
documents. A good example here is the element speech with noise, which obtained the 
second highest score in “Friends” (A1) based on (4.13), since it satisfies the expected 
occurrence frequency and duration of a key audio element. However, if (4.23) is used, 
the low EIDF value pulls its weight down, and reveals that this element also appears 
frequently in other documents. Compared to this, a document-specific sound, applause 
with cheering has received the second highest score based on (4.23). This sound occurs 
statistically much less in other audio documents, which makes its EIDF, EIDD and the 
final weight high. While the nature of the TFIDF-based scheme makes it suitable for 
more generic applications than the scheme based on single-document analysis, we see 
an interesting challenge in combining the two schemes to improve the results even 
further. This new scheme could namely make use of the available prior knowledge and 
optimally combine it with the reliable statistics on audio signal behavior derived from 
the available multiple audio documents. 
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Chapter 5 

Audio Scene Detection and Clustering2 
 

 

 

 

Based on the discovered audio elements and their importance weights, we proceed in 
this chapter with the development of a method to parse an audio document into audio 
scenes and group these scenes into meaningful clusters. In our approach, audio scenes 
are characterized, detected, and grouped based on the audio elements they contain, just 
as the paragraphs of a text document can be characterized, detected and grouped using 
a vector of words and their weights. As we stated before, utilizing this mid-level audio 
content representation enables us to split the semantics inference process into two 
steps, which leads to more robustness compared to inferring the high-level semantics 
from the features directly. 

 

5.1 Audio Scene Segmentation  

5.1.1  Comparative Study 

In order to optimally position our proposed audio scene segmentation approach with 
respect to the previous work on the subject, we start this section by a comparative study 

                                                                    

This chapter is based on the following publications (also to be found in the list of references): 

• Lu, L, Cai, R. and Hanjalic, A. “Audio Elements based Auditory Scene Segmentation“. Proc. 31th Int’l 

Conf. on Acoustics, Speech, and Signal Processing, vol. V, 17-20, 14-19, 2006 

• Lu, L, and Alan Hanjalic. "Text-Like Segmentation of General Audio for Content-Based Retrieval", 

IEEE Trans. on Multimedia, vol. 11, no.4, 658-669, 2009 

• Cai, R. Lu, L, and Hanjalic, A. “Co-clustering for Auditory Scene Categorization,” IEEE Trans. on 

Multimedia, vol. 10, no. 4,596-606, 2008 
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considering feature-based approaches (e.g. [Venugopal et al. 1999][Sundaram and 
Chang 2000][Chen and Gopalakrishnan 1998]), our previous work involving key audio 
elements ([Lu et al. 2005][Cai et al. 2005]), and some related methods addressing the 
problem of video segmentation [Kender and Yeo 1998][Hanjalic et al. 1999]. For this 
purpose, we illustrated different classes of audio segmentation approaches in Fig. 5.1.  

Most previous works that aimed at extracting higher-level audio content semantics 
either assumed the audio scenes were manually pre-segmented [Cai et al. 2005][Cheng 
et al. 2003], or rely on a direct feature-based analysis to automate the segmentation step. 
There, audio segments are typically defined to coincide with a consistent feature 
behavior. For example, a method was introduced in [Venugopal et al. 1999] to segment 
an audio stream in terms of speech, music, speaker and gender based on the features 
like tonality, bandwidth, excitation patterns, tonal duration, and energy. In [Sundaram 
and Chang 2000], a segmentation method was presented that uses the features, such as 
cepstral and cochlear decomposition, combined with the listener model and various 
time scales. Finally, the method [Chen and Gopalakrishnan 1998], originally proposed 
for speaker segmentation in broadcast news speech and employing 
information-theoretic measurements of signal consistency across the control point 
within a sliding window, was adopted in [Ellis and Lee 2004] and applied to general 
audio data. A typical feature-based approach is illustrated in Fig. 5.1(a). There, the 
consistency of the feature behavior is measured within a sliding window W and across 
the control point at the time stamp t in the middle of the window. If the inconsistency is 
larger than a predefined threshold, a boundary is detected at the time stamp of the 
control point.  

These and similar approaches to audio parsing have proved effective for many 
applications, and in particular for those where knowledge about the presence and 
distribution of the basic audio modalities (speech, music, and noise) is critical. 
However, for other applications, like those where higher-level semantic concepts (e.g. 
audio scenes) become interesting, the feature-based approaches usually can not handle 
large content diversity of such semantic concepts, and therefore typically result in a 
(heavy) over-segmentation of an audio document. 

In [Lu et al. 2005], a simple segmentation scheme was presented that employs a 
pre-defined set of key audio elements. As shown in Fig. 5.1(b), two adjacent key audio 
elements are assumed to belong to different audio scenes if the time interval ∆t 
between them is longer than a prespecified threshold T. In this way, the boundaries of 
an audio scene are marked by the first and the last key audio element in a series of 
adjacent key audio elements following each other tightly over time. Clearly, the 
algorithm is naive and does not fully exploit the relationship between audio elements 
and audio scenes. To improve the detection performance, [Cai et al. 2005] introduced  
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Fig. 5.1 An illustration of different classes of previous approaches to audio scene segmentation, 

where the vertical lines symbolize scene boundaries or candidate boundaries (a) using feature 

behavior consistency within a sliding window, (b) using time interval between key audio 

elements, (c) using semantic affinity between neighboring key audio elements, and (d) 

investigating the relationship among the audio elements on a larger temporal scale. 

 

the notion of semantic affinity A between two contiguous key audio elements, as an 
exponential function of the time interval separating the elements. As shown in Fig. 
5.1(c), an audio scene boundary is found between two adjacent key audio elements if 
their semantic affinity is below a predefined threshold T. However, in both cases the 
real audio scene boundary falls somewhere between the two limiting key audio 
elements, which makes precise audio document segmentation not possible in a general 
case. 

It may be too strict to base the detection of audio scene boundaries on the 
comparison of two subsequent key audio elements only. A more intuitive approach 
would be to allow more flexibility in the ordering of key audio elements, as long as 
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their mutual distance remains acceptable, which is similar to some classical video scene 
segmentation approaches [Kender and Yeo 1998][Hanjalic et al. 1999]. As illustrated 
in Fig. 5.1(d), an approach in this direction would decide about the presence of a scene 
boundary at time stamp t based on an investigation of the semantic affinity A between 
(key) audio elements taken from a broader range and surrounding this time stamp. 
 

5.1.2 Proposed Approach 

The performance of the segmentation methods described above strongly depends on the 
definition of a key audio element and the reliability of its detection. Crisply defining 
key audio elements and detecting them in composite audio documents may be rather 
difficult due to various combinations of multiple superimposed audio modalities. 
Therefore, a more reliable solution would be to work with all audio elements instead, 
and rely on their importance weights obtained as explained in Chapter 4. In view of this 
and the abovementioned broader-range investigation, we propose a novel approach to 
audio scene segmentation, in which  

- we first revise the basic concept of semantic affinity [Cai et al. 2005] by 
working with all audio elements and their importance weights, and by 
considering the co-occurrence information for each pair of audio elements, and 

- we adapt the successful concept of content coherence known from video 
segmentation [Hanjalic 2004] to evaluate the semantic affinity values obtained 
along an audio document and to infer the presence of audio scene boundaries.  

We illustrate our proposed approach in Fig. 5.2 that shows an example audio 
element sequence. There, each block belongs to an audio element and different audio 
elements are represented by different grey values. Each time stamp separating two 
audio elements can now be considered a potential audio scene boundary, and the 
confidence of having an audio scene boundary at the observed time stamp can be 
obtained by computing the semantic affinity between the audio segments drawn from 
the left and right audio element “buffers” (indicated as L-Buf and R-Buf in Fig. 5.2) 
surrounding that time stamp. The two buffers jointly form the sliding window in which 
the analysis for the observed time stamp (middle of the window) is performed. 

In the following sections, we first define a new measure of semantic affinity between 
two audio segments. Then, an intuitive segmentation scheme is presented in which the 
proposed affinity measure is used to compute the confidence of having an audio scene 
boundary at a given time stamp in a composite audio data stream. 
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Fig. 5.2 An illustration of the proposed approach to audio element based audio scene 

segmentation, where si and sj are two audio segments, and ei and ej are their corresponding audio 

element identities  

 

5.1.3 Semantic Affinity Measure 

Semantic affinity is introduced as a mean to determine whether two audio segments are 
likely to belong to the same semantic scene. Following the idea of text document 
analysis, the measure for semantic affinity should not be based on the low-level 
similarity between two audio segments, but on their joint ability to mark a meaningful 
(semantically coherent) piece of audio. We measure this joint ability for two audio 
segments by observing the co-occurrence statistics and the importance weights of the 
audio elements contained therein and the time interval separating the segments. 
Inspired by the video segmentation approach from [Kender and Yeo 1998], our 
definition of semantic affinity is based on the following intuitive assumptions: 

1) there is a high affinity between two audio segments if the corresponding audio 
elements usually occur together; 

2) the larger the time interval between two audio segments, the lower is their 
semantic affinity, and  

3) the higher the importance weights of the corresponding audio elements, the more 
important is the role these elements will play in the segmentation process, and 
therefore the more significant the semantic affinity value computed between 
them will be.   

In view of the above assumptions, the semantic affinity between audio segments si 
and sj can be computed as a function consisting of three components, each of which 
reflects one of the assumptions stated above. We propose the following measure: 

),(),(),(),( /),(

kjki

TssT

jiji DeWDeWeeeCossA mji−=     (5.1)  
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Here, the notation ei and ej is used to indicate the audio element identities of the 
elementary audio segments si and sj, that is, to describe their content (e.g. speech, 
music, noise, or any combination of these). W(ei, Dk) and W(ej, Dk) are the importance 
weights of audio elements ei and ej in the audio document Dk. T(si, sj) is the time 
interval between the audio segments si and sj, and Tm is a scaling factor, the value of 
which is selected based on the discussions on human memory limit [Sundaram, and 
Chang 2000]. The exponential expression for T(si, sj) is inspired by the content 
coherence computation formula introduced in [Kender and Yeo 1998] to model the 
“content recall” in the context of video segmentation. Finally, Co(ei, ej) stands for the 
co-occurrence between two audio elements ei and ej in the audio document Dk.  

To estimate the co-occurrence between two audio elements, we rely on the average 
time interval between them as a reference. The shorter this average time interval, the 
higher is the co-occurrence probability. Inspired by this, the value Co(ei, ej) is 
estimated using the procedure that is summarized in the following three steps: 

1) We first compute Dij, the average time interval between audio elements ei and ej. 
This value is obtained by investigating the neighborhoods of the observed audio 
elements in the input audio stream. For each occurrence of audio element ei, the 
nearest occurrence of ej is found, and then Dij is obtained as the average 
temporal distance between these two occurrences. 

2) As an analogy to Dij, we also compute Dji. It is clear that Dij may not be equal to 
Dji in some cases;  

3) We then compute the co-occurrence value as 

D

jiij DD

ji eeeCo µ2),(

+
−

=       (5.2) 

where µD is the mean of all Dij and Dji values. The choice for an exponential 
formula in (5.2) is made to keep the influence of audio element co-occurrence on 
the overall semantic affinity comparable with the influence of the time interval 
between the audio segments (5.1). 

Having defined the semantic affinity (5.1), we can now compute the confidence of 
being within an audio scene at the time stamp t. To do this, we adopt the general idea 
of overlapping similarity links [Hanjalic 2004] introduced in various forms in previous 
works on video segmentation (e.g. [Kender and Yeo 1998][Hanjalic et al. 1999]). 
Based on this idea, the more similarity links can be established between audio 
segments surrounding a given time stamp t, and the stronger these links are, the higher 
is the confidence that this time stamp is within an audio scene. Therefore, we choose to  
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Fig. 5.3 An example of the smoothed confidence curve and the audio scene segmentation 

scheme, where S1~S5 are five obtained audio scenes and Th and Th2 are two thresholds.   

 

compute this confidence simply by averaging the semantic affinity values computed for 
all pairs of segments si and sj surrounding the t, that is, 
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where Nl and Nr are the numbers of audio segments considered on the left and right 
from the potential boundary (as captured by the intervals L-Buf and R-Buf in Fig. 5.2).  

  

5.1.4 Segmentation Scheme 

By combining the expressions (5.1) and (5.3), the confidence measure is written as,  
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Using this expression, a confidence curve can be obtained over the timeslots of 
potential boundaries, as illustrated in Fig. 5.3. The boundaries of audio scenes can now 
be obtained simply by searching for local minima of the curve. In our approach, we 
first smooth the curve by using a median filter and then find the audio scene boundaries 
at the places where the following criteria are fulfilled:   

ThtCtCtCtCtC <−<+< )();1()();1()(     (5.5) 
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Here, the first two conditions guarantee a local valley, while the last condition prevents 
high valleys from being detected. The threshold Th can be set experimentally (as will 
be discussed in the experimental section).  

The obtained confidence curve is likely to contain long sequences of low confidence 
values, as shown by the segment S3 in Fig. 5.3. These sequences typically consist of 
audio elements representing various background sounds, which are weakly related to 
each other and also have low importance weights. Since it is not reasonable to divide 
such a sequence into smaller segments, or to merge them into neighboring audio scenes, 
we choose to isolate these sequences by including all consecutive audio segments with 
low affinity values into a separate audio scene. Detecting such scenes is an analogy to 
detecting pauses in speech. Inspired by this, we set the corresponding threshold (Th2 in 
Fig. 5.3) by using an approach similar to background noise level detection in speech 
analysis [Wang et al. 2003]. 

 

5.2 Audio Scene Clustering  

Clustering theory [Jain and Dubes 1988] provides the most intuitive framework for 
grouping semantically similar scenes together in an unsupervised fashion. In traditional 
one-way (or one-directional) clustering algorithms such as K-means, the similarity 
between two scenes is estimated by measuring the distances among the relevant points 
in the feature space, and by assuming that each feature provides equal contribution to 
the distance measure. However, due to the likely grouping trends (co-occurrences) 
among the features, such assumption is not always satisfied in practice and usually 
leads to a suboptimal clustering performance,. In this section, we first investigate local 
grouping trends among audio elements, and then explain how such trends can 
positively affect the measurement of audio scene similarity. To employ these grouping 
trends to effectively group audio scenes, we propose an approach based on 
co-clustering. Co-clustering (also referred to as bi-clustering) is a simultaneously 
bidirectional clustering algorithm, which has already been employed successfully in 
other research fields like bioinformatics [Hanisch et al. 2002][Madeira and Oliveira 
2004] and text analysis [Dhillon 2001][Dhillon and Guan 2003][Dhillon et al. 2003], 
mostly acting as a tool for generating co-occurrence statistics. In this chapter, we show 
that co-clustering can lead to better audio scene grouping results than the traditional 
one-way clustering approaches. Moreover, while the cluster number in the existing 
co-clustering algorithms is assumed to be known beforehand, we introduce a method to 
automatically select the optimal cluster number by applying the Bayesian information 
criterion.  
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Fig. 5.4. Local feature grouping trend and its influence on the distance measure  

 

5.2.1 On Local Grouping Trends  

It is known from the field of pattern classification that different features (or feature 
combinations) may provide different contributions in distinguishing between the 
samples belonging to different classes. Various algorithms, such as the Bayesian 
structural EM [Friedman 1998], can be utilized to learn this information and estimate 
optimal models and parameters for improving classification accuracy. However, in the 
unsupervised case, the absence of training samples makes it difficult to discover such 
latent relations between features and data clusters, although these relations exist and 
also affect the clustering performance. Mapped onto the specific problem addressed in 
this section, this would mean that given the audio scenes and their representations in 
the form of audio elements, and with the absence of any deeper analysis, each 
individual audio element will contribute equally to the distance measure, what may not 
always be a reasonable approach in practice.  

In order to improve the reliability of scene clustering in a general case, we 
investigate how the relations among audio elements change locally depending on 
various potential audio scene clusters. We will refer to such relations further as the 
local grouping trends. In the remainder of this section, we will go deeper into the 
analysis of these trends and their influence on distance/similarity computation. We will 
first discuss the grouping tendency among the features as a general case. Then, we will 
map this discussion onto our work context and expand it towards local grouping trends 
among audio elements and their influence on unsupervised audio scene grouping. 
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5.2.1.1 Grouping Tendency at the Feature Level  

Fig. 5.4 illustrates an example of a local feature grouping trend and its influence on a 
distance measure. Fig. 5.4(a) shows three data points A, B, and C located on the x, y, 
and z axes of a 3-dimensional feature space, respectively, and all at the same distance 
from the origin o. If x, y, and z are independent of each other, then we have 
||AB||=||BC||=||CA||. Now, we assume that it has been known that in the data set there is 
a cluster whose data points lay on the x - y surface, as indicated by the region D in Fig. 
5.4(b), where A and B belong to cluster D while C does not. Then, in order to properly 
reveal the cluster D after clustering, the distance from the point C to each of the points 

A or B should be larger than the distance between A and B, i.e., ||AB||<||BC||=||CA||. In 
other words, we can say that the dimensions x and y are apt to be locally grouped or 
correlated given the distribution of data cluster D. Such local x - y grouping should be 
considered in the distance measure to properly reveal the cluster D. In the clustering 

practice, however, such local grouping trends among features cannot be analyzed in 
advance since data clusters like D are unknown. As a matter of fact, revealing such 

clusters is the purpose of clustering. 

 

5.2.1.2  Grouping Tendency among Audio Elements  

Recognizing and interpreting the grouping trends among audio elements can even be 
more intuitive than for the abstract case involving arbitrary features as discussed above. 
To show this, we consider the example illustrated in Fig. 5.5. This case involves 8 
audio scenes, each of which is described by the occurrence probabilities of four audio 
elements. The matrix of occurrence probabilities is normalized to 1. In a one-way 
clustering approach, all four audio elements are considered independently in computing 
the similarity measure between the scenes, which results in four scene categories 
indicated by (a)-(d). However, a manual analysis of the content in the scenes suggests 
that the above grouping leads to over-segmentation of the content, and that grouping 
the scenes into only two categories would be more appropriate. The first of these two 
categories, indicated as A, can be labeled as war, and consists of scene groups (a) and 
(c). The second one, the category B, represents humor and includes scene groups (b) 
and (d). Here, we can say that the dimensions of cheering and laughter are locally 
grouped (or co-occur) given the samples from the humor scene. To discover these 
relations automatically, an algorithm should learn that a gun-shot usually occurs 
together with explosion in war scenes, while cheering and laughter often co-occur in 
humor scenes. More generally, since there are combinations of audio elements that 
often explain the semantics of audio data much better than the elements taken 
individually, we need to develop an audio scene clustering mechanism that can 
effectively discover and exploit the grouping tendency among audio elements. 
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Fig. 5.5. An illustration of audio scene categorization based on audio elements  

 

5.2.1.3  Discussion  

Based on the analysis above, to achieve better clustering results, the local grouping 

trends among audio elements should be exploited to improve the audio scene similarity 

measurements. However, in order to reveal such local grouping trends from data, audio 

scene clusters should be known beforehand. In view of this, the grouping phenomena 

discussed above can optimally be exploited in the clustering process only by jointly 

pursuing the processes of clustering audio scenes and discovering the local grouping 

trends among audio elements. While this chicken-and-egg problem can be solved in a 

supervised learning context offline through an analysis of training data, finding a 

solution in an unsupervised context is difficult, especially if the traditional clustering 

mechanisms, like K-means, are deployed. Although one could think in the direction of 

some well-known statistical data pre-processing mechanisms, such as principal 

component analysis (PCA) [Shlens 2005] and independent component analysis (ICA) 

[Hyvarinen and Oja 2000] as possible means to approach a reasonable solution, we 

emphasize that PCA and ICA have an entirely different objective than the one defined 

in this chapter, and are not suitable for this purpose. They only search for global 

correlations among features and are used in general to reduce the dimensionality of the 

data set. 
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5.2.2 Co-clustering of Audio Scenes and Audio Elements 

As the local grouping trends depend on the audio element co-occurrence in the samples 

from various audio scene clusters, an intuitive solution to reveal such trends is to 

cluster audio elements based on their co-occurrence first. The revealed relations among 

the elements are then used to measure similarities among scene samples and to form 

audio scene clusters. Based on the obtained initial scene clusters, the group relations 

among elements can be refined and then employed in a second round to provide better 

scene clusters. However, for the above iterative clustering process the convergence is 

difficult to prove theoretically [El-Yaniv and Souroujon 2001], and there is no 

plausible criterion, based on which such iterative process can be stopped. 

In this thesis, we propose an alternative clustering approach based on the 

co-clustering idea. Co-clustering provides the possibility for a simultaneous clustering 

of audio elements and audio scenes, and it was already proved to converge toward a 

local minimum. Two different co-clustering approaches have been proposed in recent 

literature. One of them is based on spectral graph partitioning [Dhillon 2001], and the 

other one is an information-theoretic approach [Dhillon et al. 2003]. We choose to 

develop our co-clustering method based on the latter idea of information-theoretic 

co-clustering (ITCC), since it imposes fewer practical restrictions than the first 

approach3. While the cluster number in the ITCC approach are assumed to be known 

beforehand, in our approach we expand this approach by employing the Bayesian 

Information Criterion (BIC) [Kass and Wasserman 1995] to automatically select the 

optimal numbers of clusters for both audio scenes and audio elements. 

 

5.2.2.1  Information-Theoretic Co-Clustering 

The information-theoretic co-clustering [Dhillon et al. 2003] effectively exploits the 
relationships among various audio elements and audio scenes using the concept of 
mutual information. We now assume that there are m audio scenes to be clustered and 
that n audio elements are used to represent these scenes. Audio scenes can be 
considered as being generated by a discrete random variable S, whose value is taken 
from the set {S1, …, Sm}. Similarly, audio elements can be assumed generated by 
another discrete random variable E, whose value is taken from the set {e1, …, en}. Let 
p(S, E) denote the joint probability distribution between S and E. As S and E are both 
                                                                    

3 In spectral graph partition-based co-clustering, the numbers of clusters in both feature dimensions and 

samples should be the same. Such assumption is too strict in the context of our work. 
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discrete, p(S, E) is an m×n matrix, whose elements can be represented by p(S, e), 
which represents the co-occurrence probability of an audio element e and the audio 
scene S. Such a matrix is often called a two-dimensional contingency table or 
co-occurrence table. Fig. 5.5 shows an example of such a co-occurrence table. Now we 
also assume that S and E could be grouped into k and l disjoint clusters denoted as {S*

1, 
…, S*

k} and {e*
1, …, e*

l}, respectively. These clusters could also be regarded as being 
generated by two discrete random variables S* and E*. 

We start our approach by measuring the amount of information shared between S 
and E, that is, by computing the mutual information I(S; E): 

∑∑=
S e epSp

eSp
eSpI

)()(

),(
log),();( 2ES    (5.6) 

The mutual information is taken as a measurement of the original information of the 
data collection, controlled by latent relations between the variables S and E. The 
co-clustering criterion states that the mutual information (5.6) should not change too 
much during the clustering, as the objective of the clustering is just to reveal the latent 
relations between the two variables. Based on such assumption, it was shown in 
[Dhillon et al 2003] that the optimal co-clustering method should target the 
minimization of the loss of mutual information after the clustering, i.e., for the optimal 
clusters we can write, 

)};();({min)ˆ,ˆ( **

**
ESESES

E,S

** II −=      (5.7) 

The loss of mutual information can be represented as 

)),(),,(();();( ** ESESESES qpKLII =−    (5.8) 

where q(S,E) is also a distribution in the form of an m×n matrix, with each element 
defined as: 

****** , where ),|()|(),(),( eeSSeepSSpeSpeSq ∈∈=   (5.9) 

and where KL(f, g) denotes the Kullback-Leibler (K-L) divergence or relative entropy 
of two distributions f (x) and g(x): 
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As also shown in [Dhillon et al 2003], the K-L divergence in (5.8) can be further 
expressed in a symmetric manner: 

∑ ∑ ∈= * * ))|(),|(()(),( *
S SS

SqSpKLSpqpKL EE     (5.11) 

∑ ∑ ∈= * * ))|(),|(()(),( *
e ee

eqepKLepqpKL SS     (5.12) 

From (5.11) and (5.12), we can see that the loss of mutual information can be 
minimized by minimizing the K-L divergence between p(E | S) and q(E | S

*), as well as 
the divergence between p(S | e) and q(S | e

*). This leads to the following iterative 
four-step co-clustering algorithm: 

 

Algorithm  Co_Clustering (p(S, E), k, l):  

1. Initialization: Assign all audio scenes into k clusters, and audio elements into l 
clusters. Then compute the initial value of the q matrix. 

2. Updating audio scene clusters: For each audio scene S, find its new cluster index 
i as: 

))|(),|((minarg *
kk SqSpKLi EE=     (5.13) 

Thus the K-L divergence of p(E | S) and q(E | S
*) decreases in this step. With new 

cluster indices of audio scenes, update the q matrix according to (5.10).  

3. Updating audio element clusters: Based on the updated q matrix in step 2, find a 
new cluster index j for each audio element e as: 

))|(),|((minarg *
ll eqepKLj SS=     (5.14) 

 Thus the K-L divergence of p(S | e) and q(S | e
*) decreases in this step. With new 

cluster indices of audio elements, update the q matrix again.   

4. Re-calculating the loss of mutual information. If the change in the loss of mutual 
information is smaller than a pre-defined threshold, stop the iteration process 
and return the clustering results; otherwise go to step 2 to start a new iteration.  

  

[Dhillon et al. 2003] proved that the above iteration process results in a monotonic 
decrease in the loss of mutual information and always converges to a local minimum. 
In the implementation of the process, the “maximally-far-apart” criterion is used to 
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select the initial cluster centers, and the local search strategy is employed to increase 
the quality of the local optimum [Dhillon and Guan 2003]. The algorithm is 
computationally efficient and its complexity is O(n·τ·(k+l)), where n is the number of 
non-zeros in p(S, E) and τ is the iteration number. 

 

5.2.2.2  Estimating the Number of Clusters 

In the co-clustering algorithm defined above, the numbers k and l of audio scene and 
audio element clusters, respectively, are assumed to be known. However, in an 
unsupervised approach, it is difficult to specify the cluster numbers beforehand. Thus, 
an effective approach to estimate these numbers automatically is required. 

While the loss of mutual information is used as the criterion to evaluate the 
clustering results, it is also possible to use this criterion to choose optimal numbers of 
clusters. However, according to the definition, the loss of mutual information has its 
inherent variation trend with the change of cluster numbers, that is, more mutual 
information is reserved if more clusters are used. For example, when k and l are both 
one, there is 100% of mutual information loss. Compared to this, there is no mutual 
information loss if the cluster numbers are equal to the original numbers of samples. 
Therefore, we can not get reasonable numbers of clusters if we only rely on the loss of 
mutual information. However, from the viewpoint of statistics, clusters can be 
considered as a model describing the data distribution. Therefore, with more clusters, 
the model complexity (the number of parameters in the model) increases significantly. 
From this viewpoint, we can use the criteria like Bayesian information criterion (BIC) 
[Kass and Wasserman 1995] to select the optimal cluster numbers by balancing the loss 
of mutual information and model complexity. For instance, in K-means clustering 
[Pelleg and Moore 2000], the BIC trades off the data likelihood L with the model 
complexity |Θ|. In practice, the former has a weighting factor λ, while the latter is 
modulated by the logarithm of the total number of samples T in the database. This leads 
to the BIC formulation as 

)log(||
2

1
TLBIC Θ−= λ  (5.15) 

In our co-clustering scheme, the implementation of the BIC criterion is somewhat 
different from the one frequently used in one-way clustering. First, given the values of 
k and l, the data likelihood L could be approximated by the logarithm of the ratio 
between the mutual information I(S*; E*) after clustering and the original mutual 
information I(S; E). It is assumed here that the model reserving more mutual 
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information would have a higher "probability" to fit the data. Second, as co-clustering 
is a two-way clustering, the model complexity here should consist of two parts: the size 
of audio scene clusters (n×k: k cluster centers of dimensionality n), and the size of 
audio element clusters (m×l: l cluster centers of dimensionality m). According to the 
definition of BIC, these two parts are further modulated by the logarithm of the 
numbers of audio scenes and audio elements, i.e. logm and logn, respectively. This 
brings us the following definition of the BIC to be used in our co-clustering scheme: 
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In the implementation, λ is set experimentally as m×n, which is the size of the 
co-occurrence matrix. The algorithm searches over all (k, l) pairs in a pre-defined range, 
and the model with the highest BIC score is chosen as the optimal clustering result. 

 

5.2.2.3  Construction of the Co-occurrence Matrix 

To apply co-clustering on our obtained audio scenes, we first need to construct the 
co-occurrence matrix (or contingency table) linking the scene set and audio elements 
set. While previous related approaches to audio clustering mainly rely on key audio 
elements to infer the semantics of audio scenes, we follow the approach we already 
introduced for audio scene segmentation and use all audio elements to reveal the 
natural audio cluster structure. Further, what we know about the input audio track is the 
presence and duration of discovered audio elements per each detected audio scene. 
Therefore, the occurrence probability of the audio element ej in the audio scene Si can 
simply be approximated by the duration percentage occrij of ej in Si. If an audio element 
does not occur in the scene, its duration percentage is set to zero. Finally, to satisfy the 
requirement that the sum of the co-occurrence distribution is equal to one, the 
co-occurrence matrix p(S, E) is normalized as: 

∑ ∑= == m
i

n
j ijijji occroccreSp 1 1/),(     (5.17) 

 

5.3 Experimental Evaluation  

In this section, the performance of the proposed approach to audio scene segmentation 
and clustering is evaluated based on the data collection containing 5 hours of sound 
tracks listed in Table 4.1 (Chapter 4) and the corresponding audio elements discovered 
therein.   
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5.3.1 Audio Scene Segmentation  

For evaluating the performance of audio scene segmentation, we first created the set of 
ground truth audio scene boundaries. For this task, we employed a number of test 
persons who are instructed on how to understand the concept of an audio scene. For the 
situation comedy (A1) and movies (A4 and A5), we linked the audio scenes to the 
concept of video scenes, for which we adopted the definition of an episode or a logical 
story unit [Hanjalic et al. 1999], that is, a meaningful segment related to a particular 
action or event, location or time. As other two test sequences in our data set (award 
ceremony and tennis) show the events taking place on one location (i.e. the show stage 
or the tennis court, respectively) and do not follow a typical episode-based structure as 
sitcoms or movies, a slightly different understanding of an audio scene needed to be 
adopted there. For instance, in the award ceremony (A3) we targeted the segments like 
those where the host announces the nominees and the winner, and where the winner 
approaches the stage while the audience is applauding. Similar event-based scene 
concept was targeted for the Tennis sequence (A2), where, for instance, an event 
starting with a serve and ending by the score change can be considered a scene 
potentially interesting for retrieval, as well as the scenes of a break characterized by the 
speech of the anchorperson commenting the match.  

As the instructions given to the annotators were not strict, but only meant to help 
them to approach the annotation problem at the right abstraction level, different audio 
scene sets could be expected from different annotators. While some of the audio scenes 
were obvious and were detected by all annotators, a number of boundaries were 
proposed only by some of them. We refer in this paper to these two sets of ground-truth 
audio scene boundaries as the true and probable ones, respectively. Probable 
boundaries appeared mainly at parts of our data set where the semantic content flow 
can be followed at different abstraction levels. For example, in the award ceremony, 
the turns between the played excerpts of nominated movies were often marked as 
additional audio scene boundaries. In total, we obtained 295 true boundaries and 186 
probable boundaries from five sound tracks. 

In the following, we present and discuss the results of two experiments that we 
performed to evaluate the performance of our audio scene segmentation approach. In 
the Experiment 1, we compare the segmentation performance of our approach based on 
audio elements with the performance of typical feature-based approaches. To make the 
results and the related discussions more complete, we experiment with several variants 
of our approach, in which we investigate the impact of different design choices that we 
introduced in Section 5.1.3, such as the choice of importance weights and the 
assumptions underlying our definition of semantic affinity (5.1). While in this 
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experiment we worked with the fixed length of the buffers L-Buf and R-Buf (see Fig. 
5.2), in the Experiment 2, we investigate the influence of this length on the 
segmentation performance and justify the buffer length used in the first experiment. 

 

5.2.1.1 Experiment 1: A Comparative Analysis  

The feature-based approach implemented as a reference for the comparison follows the 
general idea illustrated in Fig. 5.1(a), where the segmentation is simply done by 
investigating the feature consistency within a sliding window. In the first variant of the 
feature-based approach, we simply use the mean of the feature vectors to represent the 
segments on the left and right from the candidate boundary, and then the feature 
consistency is measured by a cosine distance:  
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⋅=       (5.18) 

where fl and fr are the average feature vectors on the left and right from the candidate 
boundary.  

The other variant follows the approach proposed in [Ellis and Lee 2004], which uses 
the Bayesian information criterion (BIC) [Kass and Wasserman 1995] to evaluate the 
feature coherence across the candidate boundary, that is,  
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where s represents the entire set of elementary audio segments within the sliding 
window, and sl and sr are the segments on the left and right from the candidate 
boundary. Furthermore, L(s|M), L(sl |Ml) and L(sr |Mr) are the likelihoods of the data 
sets s, sl and sr under the corresponding models M, Ml and Mr, respectively, which are 
defined as Gaussian models in our implementation. Finally, ||M|| refers to the number 
of model parameters. As explained in [Ellis and Lee 2004], λ is a tuning constant that 
can be used to regulate the (over-) segmentation tendency of the method. 

The two variants of the feature-based approach described above will be compared 
with four variants of our proposed approach. The first two variants use the same 
general formula for semantic affinity (5.1) and the content coherence (5.3), but work 
with a different or more limited amount of information about audio elements and their 
individual or joint behavior to compute the semantic affinity. The first variant (Var1) 
does not use the importance weights of audio elements nor the information on their 
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Table 5.1. A summary of six approaches (variants) in the experiments  

ID Approach (variant) 

m1 audio element based, with rule-based weights, eq.(5.1) 

m2 audio element based, with TFIDF-based weights, eq.(5.1) 

m3 audio element based (Var 2), without weights, , eq.(5.21) 

m4 audio element based (Var 1), without co-occurrence, eq.(5.20) 

m5 feature-based, with BIC approach, eq. (5.19) 

m6 feature-based, with COS similarity, eq. (5.18)  

 

co-occurrence, but relies on their features to measure the similarity between two 
segments. In fact, this variant of our approach differs from the traditional feature-based 
approach only in that it searches for audio scene boundaries between audio element 
blocks (see Fig. 5.2) and not on a continuous time scale. Therefore, it can be also 
considered as another feature-based method. In this case the semantic affinity becomes,  

mji TssT
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−=     (5.20)  

where the feature-based similarity Sim(si, sj) is also computed using (5.18). To 
explicitly evaluate the influence of the importance weights of audio elements on the 
parsing performance, we also define a second variant (Var2) of our method that relies 
on co-occurrence between audio elements but does not take into account the weighting 
of each audio element. In this case, the semantic affinity becomes 

mji TssT
jiji eeeCossA
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Further two variants of our proposed approach both use the semantic affinity as 
defined in (5.1), but differ in the way the importance weights are computed (i.e. 
rule-based vs. TFIDF-based). The six segmentation methods described above are 
summarized in Table 5.1. We will further refer to m1-m3 as the audio-element based 
methods, and to m4-m6 as the feature-based methods. 

In methods m1-m4, the value of the buffers L-Buf and R-Buf is set to 16 seconds, 
based on the results of the Experiment 2. In order to perform a fair comparison with 
methods m5 and m6, we set the length of the sliding window there to 32 seconds, 
which is equivalent to having the buffers L-Buf and R-Buf of 16 seconds surrounding 
the control point (candidate boundary) positioned in the middle of the window.  



110 

 
(a) 

 
(b) 

Fig. 5.5. Precision-Recall curve obtained for all six methods and for (a) true, and (b) both true 

and probable boundaries considered as ground-truth boundaries 

 

In order to investigate the segmentation performance with respect to both true and 
probable boundaries, we define two experimental setups, a strict and a loose one. The 
strict setup considers only the true boundaries as ground-truth boundaries, and the 
probable ones – if detected – are considered as false alarms. In the loose setup, we treat 
both the true and probable boundaries as ground-truth boundaries. Moreover, in our 
approach, the confidence curve obtained by (5.4) is first linearly normalized to [0,1] 
based on the maximum and minimum value in the curve, before employing (5.5) for 
boundary detection. In this way, the curves from different audio tracks are normalized 
into the same value scale, so that a consistent Th can be used across different audio 
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tracks. Finally, a detected boundary is associated with an annotated boundary if they 
are mutually closest to each other, based on which the recall and precision of boundary 
detection are calculated.  

Fig. 5.5(a-b) shows the precision and recall curves obtained for the six methods from 
Table 5.1, obtained by varying threshold Th in (5.5) (in the range [0,1]), and for two 
different setups described above. Based on these results, in addition to the expected 
structural increase in precision if both the true and probable boundaries are considered, 
the most significant result supporting the rationale behind the approach presented in 
this chapter is that the segmentation based on audio elements performs better than the 
one using traditional feature-based approaches. This difference in performance 
becomes visible if one compares the curves cluster m1, m2 and m3 with the cluster m4, 
m5 and m6. Especially in the relevant parts of the precision-recall curves, that is, those 
with sufficiently high recall values (e.g. above 0.6), the dominance of the 
audio-element based methods becomes clearly visible. 

Regarding the feature-based methods (m4-m6), a generally lower performance in 
terms of precision can be traced back to the discussion in Section 5.1.1, in which we 
addressed the incapability of these methods to capture the entire content diversity of a 
high-level semantic concept. This results in audio scenes that are typically short, at the 
level of basic audio modalities (e.g. speech, music, noise) and of no higher (semantic) 
meaning. If we compare the performance of the methods m4, m5 and m6, we observe 
that the more sophisticated method m5 indeed performs structurally better than a simp-
ler method m6. Further, compared to the methods m5 and m6 that check for the pres-
ence of an audio scene boundary between every two audio segments, the method m4 
focuses on the boundaries between audio elements blocks (Fig. 5.2) as the candidates 
for an audio scene boundary. This focus may negatively influence the segmentation 
performance in terms of recall, which is partly visible from the comparison with 
method m5. However, this focus may also help de-noise the set of audio scene bounda-
ries, which is visible in particular when the simple method m6 is taken as a reference.  

To investigate the impact of various design choices on the segmentation performance, 
we focus in the analysis of the audio-element based methods m1, m2 and m3 on each of 
these choices separately. Regarding the audio element weighting mechanism (i.e. 
rule-based vs. TFIDF-based), a comparison of the performance of methods m1 and m2 
shows that both weighting mechanisms lead to a rather similar performance, with a 
slight dominance of the rule-based weights in higher recall value ranges. The positive 
impact of audio element co-occurrence on the segmentation performance is clearly 
visible from the comparison of methods m3 and m4. The same conclusion, although not 
as obvious as in the case of co-occurrence, can be drawn regarding the impact of the 
importance weights. It is namely interesting to observe that method m3, which does not 
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use weights, works better than methods m1 and m2 at some parts, especially at lower 
recall value ranges (Fig. 5.5(a)). However, for the practically relevant recall values (e.g. 
above 0.6), a better performance of m1 and m2 becomes visible. The different behavior 
of the precision-recall curve of the method m3 in Fig. 5.5(a) and Fig. 5.5(b) relative to 
methods m1 and m2 can be explained by the treatment of probable boundaries in each 
of these two cases. We observed namely that more probable boundaries are detected by 
m1 and m2 than by m3, which can lead to the conclusion that the probable boundaries 
identified by our annotators are generally surrounded by relatively high-weighted 
(background) sounds. This conclusion is intuitive, as the changes in the audio content 
in terms of characteristic sounds are what move the annotator to recognize a scene 
break in the first place. As in the setup in Fig. 5.5(a) the probable boundaries are 
treated as false ones, the precision of m1 and m2 reduces compared to m3. This changes, 
however, in favor of the methods m1 and m2 if probable boundaries are also considered 
as the true ones (Fig. 5.5(b)). By further increasing the threshold Th to obtain higher 
recall values, the sophistication of the semantic affinity models becomes more and 
more important in order to avoid spurious valleys in the confidence curve (5.4). 
Therefore, as expected, the missing de-noising effect of the importance weights is 
likely to have negative influence on the relative precision of method m3 in higher recall 
value ranges. This is indicated by the precision drop of the method m3 both in Fig. 
5.5(a) and Fig. 5.5(b). 

We also observed that the audio element based approaches seldom achieves recall 
values higher than 0.7. This might be an indication of the changes of audio signal 
characteristics across those undiscovered boundaries being too small. An argument 
supporting a conclusion in this direction could be that the feature-based approach 
results in a rapid drop in the precision when the recall achieves more than 0.8. 
Specifically, for the methods m1, m2, m3 and m4, we found that the upper limit for 
recall values for these methods is influenced by the length of the buffers L-buf and 
R-buf, over which the pair-wise semantic affinity values are averaged to compute the 
confidence value (5.4). We discuss this in the Experiment 2.  

 

5.2.1.2 Experiment 2: Investigating the Effect of Buffer Length  

In order to investigate the effect of the length of the buffers L-Buf and R-Buf on the 
segmentation performance, we designed an experiment, in which we use method m1 as 
the reference, where we consider both true and probable boundaries as ground-truth 
boundaries, and in which we vary the buffer length over the values 4s, 8s, 12s, 16s, 24s 
and 32s. For each of the buffer values, we compute the precision-recall curve. The 
results of this experiment are shown in Fig. 5.6.  
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Fig. 5.6. Precision-Recall curves obtained for method m1, for different lengths of the buffers 

R-Buf and L-Buf, and considering both true and probable boundaries as ground-truth boundaries 

 

Our first observation is that increasing the buffer length in general has a positive 
impact on the segmentation performance (from 4s to 24s), and this in particular for 
higher recall values. Our second observation is that, as already stated before, different 
maximum recall values appear for different precision-recall curves. Even more, the 
reduction in this upper limit directly follows the increase in the buffer length: the 
maximum reachable recall of around 0.8 is possible for the shortest buffers only, while 
the longest buffer length of 32s leads to the smallest reachable recall of around 0.5. Our 
search for the buffer length that is likely to lead to the best segmentation performance, 
but also provide the maximum possible recall value range led to the buffer of 16s that 
we adopted in the Experiment 1. 

 

5.3.2 Audio Scene Clustering  

As the original scheme for content-based audio analysis introduced in Chapter 2 
implies that the co-clustering method will take automatically obtained audio scenes as 
input, we choose here to evaluate the actual clustering performance based on the best 
input we could obtain from the automated segmentation step. As indicated in Fig. 5.5, 
this is the case for the segmentation method using audio elements and rule-based 
importance weights. We again employed three persons to manually group the obtained 
scenes into a number of semantic categories. Based on this manual grouping, we 
established the ground truth for further evaluation. 
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To demonstrate the effectiveness of the co-clustering approach, we first compare it 
with a traditional one-way clustering algorithm. Here, the X-means algorithm [Pelleg 
and Moore 2000], in which the BIC is also used to estimate the number of clusters, is 
adopted for the comparison. Assuming that the maximum possible number of audio 
scene clusters is 10, we search in both clustering options for the proper number of 
scene clusters in the range of 1 to 10. In addition, for the co-clustering option, we 
search for the optimal number of audio element groups in the range of 1 to n, where n 
is the number of audio elements in the corresponding sound track. 

 

Table 5.2. Detailed results of the comparison between the X-means clustering and our proposed 

co-clustering method applied to audio scenes of the sound track “Friends” (A1) 

C
o-

cl
us

te
rin

g 

No. S1 S2 prec. 

X
-m

ea
ns

 

No. S1 S2 prec. 

1 34  1.00 1 7  

1.00 

2  2 1.00 2 3  

recall 1.00 1.00 1.00 3 3  

 4 12  

5 9  

6  2 1.00 

recall 1.00 1.00 1.00 

Note: (S1) scenes of dialog; (S2) scenes of music   

 

Table 5.3. Detailed results of the comparison between the X-means clustering and our proposed 

co-clustering method applied to audio scenes of the sound track "Tennis" (A2) 

C
o-

cl
us

te
rin

g 

No. S1 S2 S3 S0 prec. 

X
-m

ea
ns

 

No. S1 S2 S3 S0 prec. 

1 1 17 4 1 0.74 1 2 12 10 1 0.48 

2 9    1.00 2 4    1.00 

3 1 2 14  

0.85 

3 1 1 8  

0.70 
4  1 21  4  7 18  

5 2 2 11  5 1  8  

recall 0.69 0.77 0.92 0.00 0.84 6 5 2 6  

 recall 0.31 0.55 0.80 0.00 0.65 

Note: (S1) scenes of anchorperson talking during the break; (S2) scenes of anchorperson talking 

and with audience applauding (with little ball-hits or in long play break); (S3) scenes of 

anchorperson talking and players playing; (S0) others 
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Table 5.4. Detailed results of the comparison between the X-means clustering and our proposed 

co-clustering method applied to audio scenes of the sound track "59th Annual Golden Globe 

Awards" (A3) 

C
o-

cl
us

te
rin

g 

No. S1 S2 S3 S4 S0 prec. 

X
-m

ea
ns

 

No. S1 S2 S3 S4 S0 prec. 

1 19 4    0.83 1 5    5 

0.58 2 4 10    0.71 2 12 8    

3   9 2 3 0.64 3 5 3    

4 7 1   14 
0.63 

4 4 4   2 0.40 

5   1 2 5 5   8 1 1 0.80 

6    38 4 0.90 6 4    8 
0.60 

recall 0.63 0.67 0.90 0.90 0.73 0.77 7   1 3 4 

 8    12 1 

0.84 9    16 3 

10   1 10 2 

recall 0.73 0.27 0.80 0.86 0.46 0.68 

Note: (S1) scenes of hosts or winners coming to or leaving the stage; (S2) scenes of audience 

congratulating and applauding to the winners; (S3) scenes of hosts announcing nominees or 

winner candidates; (S4) scenes of winners or hosts’ speech; (S0) others  

 

Table 5.5. Detailed results of the comparison between the X-means clustering and our proposed 

co-clustering method applied to audio scenes of the sound track "Band of Brother" (A4) 

C
o-

cl
us

te
rin

g 

No. S1 S2 S3 S4 prec. 

X
-m

ea
ns

 

No. S1 S2 S3 S4 prec. 

1 8 0 0 0 
1.00 

1 10 0 0 0 

1.00 2 10 0 0 0 2 3 0 0 0 

3 0 0 8 3 0.73 3 4 0 0 0 

4 0 11 1 0 

0.94 

4 0 0 7 3 0.70 

5 1 11 0 0 5 1 2 0 0 

0.89 

6 0 9 0 0 6 0 9 1 0 

recall 0.95 1.00 0.89 0.00 0.92 7 1 9 0 0 

 8 0 10 1 0 

9 0 1 0 0 

recall 0.89 1.00 0.78 0.00 0.89 

Note: (S1) scenes of battle; (S2) scenes of dialog in noisy background; (S3) scenes of dialog in 

music background; (S4) scenes of music  
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Table 5.6. Detailed results of the comparison between the X-means clustering and our proposed 

co-clustering method applied to audio scenes of the sound track "Sword Fish" (A5) 

C
o-

cl
us

te
rin

g 

No. S1 S2 S3 S4 S0 prec. 

X
-m

ea
ns

 

No. S1 S2 S3 S4 S0 prec. 

1 3     1.00 1  7   2 

0.83 

2  18 5 2 2 

0.87 

2  18    

3  44    3  11 2   

4  35 1  4 4  18    

5   6   1.00 5  11 2 1 3 

6   1 13 2 0.81 6  17 5  1 

7 1  1 4  0.67 7  15  2 2 

recall 0.75 1.00 0.43 0.89 0.00 0.87 8 2  3   0.60 

 

9 1  1 5  
0.80 

10 1  1 11  

recall 0.00 1.00 0.21 0.84 0.00 0.82 

Note: (S1) movie end-scenes with music theme; (S2) scenes of dialogs with music or other 

sounds in the background; (S3) scenes of dialogs with strong music in the background; (S4) 

scenes of actions, usually with strong music in the background; (S0) others  

 

Table 5.7. Performance comparison between the X-means and the Co-clustering on all audio 

tracks, with automatically obtained audio scenes and the audio elements found therein  

No. 
# Labeled 

Semantic Group 

X-means Co-clustering  

# Group Accuracy # Group Accuracy 

A1 2 6 1.00 2 1.00 

A2 4 6 0.65 5 0.84 

A3 5 10 0.68 6 0.77 

A4 4 9 0.89 6 0.92 

A5 5 10 0.82 7 0.87 

Avr. 4 8.2 0.80 5.2 0.88 

 

Table 5.2-5.6 shows the detailed comparison results of the two clustering algorithms 
on the five test sound tracks. Taking the sound track of the "59th Annual Golden Globe 
Awards" (A3) and Table 5.4 as an example, we can observe that 115 scenes were 
detected, which are manually classified into 5 semantic categories: 1) scenes of hosts or 
winners coming to or leaving the stage (S1), which are mainly composed of applause 



117 

and music, 2) scenes of audience congratulating and applauding to the winners (S2), 
which are mainly composed of music, applause and cheering, 3) scenes of hosts 
announcing nominees or winner candidates (S3), which are mainly composed of 
applause and speech, 4) scenes of winners’ or hosts’ speeches (S4), which are mainly 
composed of speech, and 5) others which are hard to assign to any of the above four 
scenes (S0). Our experiments resulted in 6 categories of audio scenes when using the 
information-theoretic co-clustering, and 10 scene categories if X-means is used. In 
Table 5.4, each row represents one obtained cluster and the distribution of the audio 
scenes contained therein across the ground truth categories. As indicated by the shaded 
fields, we assign an obtained cluster to a ground truth cluster if the corresponding 
ground truth scenes form the majority in this cluster. In case there are multiple obtained 
clusters that get associated to the same ground truth cluster, we manually group these 
clusters and then compute the precision and recall per cluster group. The obtained 
results show that the co-clustering algorithm is likely to perform better than a one-way 
clustering. 

Table 5.7 summarizes the comparison results obtained from all the sound tracks in 
our test data set. The results in this table confirm the conclusion we draw based on the 
example in Table 5.4. The number of audio categories obtained by co-clustering is 
closer to the number of ground truth categories than in the case of one-way clustering. 
In other words, co-clustering can provide a more exact approximation of the natural 
cluster structure present in the data. For example, there are in average 4 semantic 
groups per sequence in the test data set. The co-clustering approach obtains 5.2 groups 
in average, while X-means obtains 8.2 groups. Furthermore, co-clustering leads to a 
higher precision and recall. In average, around 88% of the scenes are correctly 
clustered with the co-clustering algorithm, while the accuracy of the X-means is 80%.  

In addition to the comparison of different clustering techniques, we also compared 
different ways of representing audio scenes (i.e. features vs. audio elements) when 
deploying our co-clustering algorithm. In order to implement feature-based 
co-clustering, we need to form a co-occurrence matrix p(Si, fj) which is slightly 
different from the one defined in Section 5.2.2.3. Since acoustic features usually have 
varying value dynamics, they are first normalized prior to the construction of the 
co-occurrence matrix. That is, for j-th feature, its value in the i-th audio scene is 
re-scaled according to the following expression: 

)/()(ˆ minmaxmin

jjj

i

j

i

j fffff −−=     (5.22) 

where )1,max(max miff i

jj ≤≤=  and )1,min(min miff i

jj ≤≤= . 
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Table 5.8. Performance of co-clustering on all audio tracks, based on automatically obtained 

audio scenes and their corresponding features  

No. 
# Labeled 

Semantic Group 

Co-clustering  

(automatic, audio scenes and features) 

# Group Accuracy 

A1 2 5 0.97 

A2 4 5 0.63 

A3 5 6 0.62 

A4 4 4 0.77 

A5 5 6 0.80 

Avr. 4 5.2 0.76 

 

With this procedure, the values of each feature in all scene samples are brought into 
the range of [0, 1], and can now be used to approximate the occurrence probability of 
the related feature in a given audio scene. As an example of the relation searched here, 
the larger the value of the “short-time energy,” the higher is the probability of “high 
volume” in a given audio scene. In the final co-occurrence matrix, each element of p(Si, 
fj) is further normalized to ensure the sum of the co-occurrence distribution is one, that 
is 

∑ ∑= == m

i

n

j

i

j

i

jji fffSp 1 1
ˆ/ˆ),(      (5.23) 

Table 5.8 summarizes the clustering results while using features to represent each 
audio scene. Compared to Table 5.7, using the features directly leads to a 12% decrease 
in average accuracy. Similarly to the results obtained for audio scene segmentation, this 
again confirms that using audio elements as mid-level representation improves the 
performance of high-level semantic inference.  

Furthermore, we make a comparison between co-clustering using automatically and 
manually segmented scenes. Table 5.9 shows the obtained results. While the clustering 
based on manual segmentation performs – as expected - slightly better, the clustering 
based on automatically segmented audio scenes still results in acceptable performance 
figures. Implicitly, these results also provide an additional indication of a good 
performance of our automatic audio scene segmentation method. 

Finally, as shown in Table 5.10, our (audio element based) co-clustering algorithm 
also suggests several audio element groups for each sound track. These groups 
realistically reveal the grouping (co-occurrence) tendency among the audio elements, 
as explained in Section 5.2.1. For example, in the "59th Annual Golden Globe Awards"  
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Table 5.9. Performance of co-clustering on all audio tracks, based on manually segmented audio 

scenes and the audio elements found therein  

No. 
# Labeled 

Semantic Group 

Co-clustering  

(manual segmentation and audio elements) 

# Group Accuracy 

A1 2 2 1.00 

A2 4 5 0.91 

A3 5 5 0.83 

A4 4 5 0.92 

A5 5 4 0.89 

Avr. 4 4.2 0.91 

 

ceremony (A3), we observed that the sounds of applause with music and applause with 
dense-music usually occur together in the scenes of "the hosts or winners coming to or 
leaving the stage", and they are also correctly grouped together using the co-clustering 
algorithm. This audio element grouping process can also help compensate for possible 
over-segmentation problem during audio element discovery, as mentioned in Chapter 4. 
If we again take the sound track of "59th Annual Golden Globe Awards" ceremony (A3) 
as example, although the audio element detection process has spread the occurrences of 
the term “speech” over several audio elements indicated as speech1, speech2, and 
speech3, these elements were grouped together again using co-clustering. 

 

5.3.3 Discussion 

Extensive experimental evaluation reported in previous sections confirmed the 
superiority of the two-step audio semantic inference approach we adopted in this thesis. 
The way we deployed the joint behavior of audio elements in the inference process at 
the audio scene level led to a considerable improvement of the segmentation and 
clustering performance, compared to the approaches relying on the features directly. 
Next to the dedicated experiments designed to evaluate the performance of the audio 
scene segmentation algorithm, an additional indication of the algorithm quality was 
obtained through the evaluation of the co-clustering algorithm. The co-clustering 
performance namely decreased only for 3% in the case when automatically detected 
audio scenes served as input and compared to the case where manually segmented 
scenes were adopted. The proposed co-clustering algorithm proved to be superior to the 
classical one-way clustering approach, which emphasizes the importance of exploiting  
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Table 5.10. The audio element groups obtained using co-clustering 

No. #G Audio Element Groups 

A1 3 
{speech + noise}; {laughter, laughter + music}; 

{TV music, theme music, speech, applause + cheering} 

A2 3 
{clean speech, noisy silence}; { speech + applause, music}; 

{applause, silence, ball-hit} 

A3 5 

{speech1, speech2, speech3 }; {background noise}; {applause, speech + 

applause }; {music + applause 1, music + applause 2, (dense) music + applause }; 

{music + speech, music };  

A4 5 

{speech, silence (some noise), background sounds, silence (with HF noise)}; 

{speech (gunshot background), speech, heavy noise, gunshot + speech 1, gunshot 

+ speech 2}; {speech, noise + speech, speech, applause }; {music, music + 

speech }; {noise} 

A5 5 

{speech, speech, speech + backgrounds, speech + backgrounds}; {speech + 

backgrounds, speech + backgrounds, backgrounds, backgrounds}; {fighting 

sounds 1, music, music}; {mixed backgrounds, music}; {fighting sounds 2, 

speech + backgrounds, speech in repressive env, fighting sounds} 

 

 

local grouping tendencies of audio elements in the process of audio scene grouping. 
Finally, an additional value was created by the co-clustering algorithm regarding the 
problem of handling over-segmentation in the audio element detection process. The 
co-clustering algorithm namely not only grouped the audio scenes in meaningful 
clusters but also suggested groups of audio elements, which belong together in terms of 
their meaning but were separated due to the variations in audio signal properties.   

The way the audio scene clustering was evaluated may be arguable, since we 
allowed multiple (obtained) clusters to get associated with one ground truth cluster for 
precision and recall computation (Table 5.2-5.6). Another possibility to perform this 
evaluation could be to associate only the most relevant obtained cluster (the one with 
the largest overlap) to each ground truth cluster. Actually, this evaluation strategy 
would even further emphasize the benefits of our method, since the number of scene 
groups obtained in the X-means based approach usually tends to be larger (thus more 
false alarms are introduced). 
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Chapter 6 

Towards a Broader Perspective* 

 

 

 

 

In this chapter, we first revisit the original goal of this thesis and the approach we 
proposed to reach this goal. Then, we make an attempt to envision a possible expansion 
of the proposed approach towards an application scope broader than the one considered 
in this thesis.  

 

6.1 Thesis Goal Revisited  

As discussed in Chapter 1, the goal of the research reported in this thesis is to build a 
generic and flexible framework for content discovery from composite audio. Towards 
this goal, and in view of the discussion about the limitations of the related previous 
work on the subject in Chapter 2, we propose a novel approach to unsupervised 
semantic inference from composite audio that is based on the following main design 
choices:   

Unsupervised Mining: In order to maximize the generic applicability of our 
envisioned content-based audio analysis solution, we choose for an unsupervised 
approach. The design of this approach was inspired by unsupervised text document 
analysis, recent works on video scene segmentation, and the idea of co-clustering.   

 

                                                                    

Parts of this chapter are based on the following publication (also to be found in the list of references):  

• Lu, L., and Hanjalic, A. “Unsupervised Anchor Space Generation for Similarity Measure of General 

Audio,” Proc. 33th Int’l Conf. on Acoustics, Speech, and Signal Processing, 53-56, 2008 
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Two–step knowledge discovery: Introducing mid-level content descriptors and 
considering them in the content analysis process enables us to split the semantic 
inference process into two steps, which proved to lead to more robustness, compared to 
the case where semantics is inferred from the features directly.  

Although the proposed approach obtained promising results on a representative test 
data set, it still leaves room for further investigation and improvement. While the 
possibilities for this improvement were discussed at various instances in the previous 
chapters of this thesis, we dedicate this chapter to reflect upon the main design aspects 
of our approach with the objective to identify possibilities for expanding its 
applicability scope.  

Unsupervised mining has the advantage that it requires neither manual annotation of 
semantic categories nor offline collection of the training data. In this sense, it is likely 
to have a wide application scope and to be suitable particularly in those application 
scenarios where obtaining manual annotations and large training data sets is difficult. 
However, what about the situations in which reliable prior knowledge at various levels 
is available to help the semantic inference? Is the proposed approach flexible enough to 
accommodate and optimally exploit such knowledge? In other words, what are the 
possibilities to enhance the proposed unsupervised (generic) approach with the 
knowledge generated through supervised processes to improve semantic inference in 
specific domains?    

In our approach, audio elements are extracted from a given audio document and used 
as mid-level semantic descriptors to infer higher-level semantic concepts in that 
document, like audio scenes, and to group them into semantically meaningful clusters. 
However, what about the case where audio content similarity needs to be computed at 
even a higher abstraction level, namely across many different audio documents, for 
instance for the purpose of management and retrieval of large audio document 
collections? How to obtain an effective audio document representation that would 
enable us to compare and group together large audio documents in the same way as we 
group audio scenes? Can we simply apply the same methodology as introduced in 
Chapter 4, or are there adjustments required?  

In view of the questions posed above, we now present our views on the possibilities 
to expand the proposed approach in order to enable general audio search and 
management applications. We will search for such possibilities by focusing 1) on 
combining the unsupervised and supervised approaches, and 2) on expanding the 
concept of document-specific audio elements to an anchor space representing a large 
collection of long audio documents. 
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6.2 On Combining a Supervised and Unsupervised Approach  

As discussed in the previous section, an unsupervised content discovery approach can 
be enhanced by prior knowledge available in a given application scenario. On the other 
hand, the results obtained using unsupervised content discovery can also benefit a 
supervised classification-based approach. In this section, we will discuss how to 
interchangeably use supervised and unsupervised content discovery components in 
different scenarios to maximize their mutual benefit.  

 

Key Audio Element 

Spotting

Semantic

Classification 

Audio

Classification

Pre-

Segmentation
supervised

Key Audio Element 

Specification

Semantic

Clustering

Audio Element 

Discovery

Audio Scene

Segmentation

unsupervised

(1.1) (1.2) (1.4)(1.3)

(2.1) (2.2) (2.4)(2.3)

(a) (b)
(c) (d) (e) (f)

 

Fig. 6.1 Collaboration between supervised and unsupervised components in a combined audio 

content discovery approach, where some interesting directions for the transfer of the results from 

one component to another one are indicated by the arrows 

 

Fig. 6.1 illustrates an example of a combined audio content discovery approach 
integrating the components of an unsupervised content discovery approach and its 
supervised counterpart. While supervised semantic inference can be realized in 
different ways, the term “supervised counterpart” refers here to a supervised inference 
process that best resembles our unsupervised approach with respect to the processing 
steps involved. The components of the supervised branch are realized using 
classification techniques or manual effort, including audio classification (e.g. 
classification of audio segments into audio elements), key audio element specification 
(e.g. learning the weights of audio elements offline by analyzing a training data set, or 
specifying the weights manually), pre-segmentation (e.g. training a boundary model 
offline, or manually dividing an audio document into audio scenes), and semantic 
classification (e.g. assigning audio scenes to trained semantic categories).  

Each component in the scheme in Fig. 6.1 is numbered to facilitate later reference. 
Here, the notation (j. k) stands for the component k in the approach j (1 for supervised 
approach and 2 for unsupervised approach). The directed connections (also numbered) 
represent some interesting possibilities for a propagation of the results between two 
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components. For example, (1.1)�(2.2) means that the results of component (1.1) can 
be used for component (2.2). The marked connections between the components of the 
unsupervised and supervised approach can lead to a number of interesting 
combinations of the supervised and unsupervised approach. We will elaborate on some 
of these combinations in the next three sections.  

 

6.2.1 Using Clustering to Enhance Classification 

We first consider the case where (unsupervised) clustering results can be used to 
enhance supervised categorization. This case is represented by the arrows (a) and (b). 
After grouping audio segments into clusters, each cluster can be considered as a sample 
to be assigned to a class label in a supervised approach. Compared to the typical 
classification practice assigning labels to individual audio segments, this cluster-based 
approach is likely to improve the classification efficiency, but also the accuracy due to 
a “denoising” effect of the clustering process: e.g. majority vote can be applied to 
classify a set of segments to correct the “noisy” results obtained per segment. A 
potential problem here is that a segment might be assigned to a wrong cluster, which 
may harm the subsequent classification step. However, the impact of clustering errors 
onto the classification result can be possibly reduced, for instance, by using 
multiple-instance learning (MIL) techniques [Maron and Lozano-Pérez 1998].  

 

6.2.2 Using Partial Supervised Knowledge to Enhance Clustering 

In this case, the knowledge generated in a supervised fashion is incorporated in the 
unsupervised approach as indicated by the arrows (c), (d) and (e). 

Regarding the connection (c), if trained statistical models for audio elements are 
available, we can follow the process (1.1)�(2.2)�(2.3)�(2.4). That is, audio elements 
can be detected in a supervised fashion, and then the obtained results can be used for 
unsupervised content discovery at higher abstraction levels, including audio element 
importance estimation, audio scene segmentation and clustering. The alternative 
processes involving the connections (d) and (e) follow the same general idea and differ 
from (c) in the amount of knowledge that the supervised process branch supplies into 
the unsupervised one. For instance, if we consider the process 
(1.1)�(1.2)�(2.3)�(2.4), not only the audio elements but also their importance 
weights are learned in a supervised fashion and then employed in remaining 
unsupervised knowledge discovery steps.  
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Combining the supervised and unsupervised components as explained in this section 
can enhance the semantic inference in well-defined or partially-defined domains, such 
as, for instance, tennis and football. In these domains, it is relatively easy to identify 
and train a priori the sets of characteristic audio elements, while it not easy to predefine 
higher level semantic entities like scenes. Therefore, supervised classification can 
successfully be applied for audio element detection, while higher-level semantic 
inference can best be approached through unsupervised mining. Promising results 
following such a combined approach were already reported in [Cai et al. 2005].  

 

6.2.3 Enhancing Supervised Approach by Unsupervised Components 

The arrow (f), in combination with arrows (c) and (d), is particularly useful in realizing 
the process paths (1.1)� (2.2)�(2.3)�(1.4) or (1.1)�(1.2)�(2.3)�(1.4). In these 
two cases, audio elements and audio scenes are classified in a supervised fashion using 
trained statistical models, while the unsupervised module is employed to perform 
automatic scene segmentation instead of (typically) manual pre-segmentation. In this 
way, the connection (f) leads to a considerable reduction of the manual effort in audio 
database indexing processes. While collecting training data and learning statistical 
models is a “one-time” cost, manual annotation of scene boundaries is an “all-time” 
cost, as it is required for each audio document separately. 

 

6.3 On Audio Document Clustering and Retrieval 

While in the context of this thesis we addressed the problem of clustering so far mainly 
at the level of audio scenes and within a single audio document, we now consider the 
case where an audio document as a whole needs to be compared with another audio 
document for the purpose of audio document clustering or retrieval. Just like in the case 
of audio scene clustering, a fundamental step in obtaining meaningful clusters of audio 
documents is document representation. While for clustering short audio clips (e.g. for 
clustering audio segments into speech, music and noise), such representation can be 
obtained at the feature level, this is not likely to work in the case of longer audio 
documents due to the richness of signal mixtures and strong variations in signal 
properties over time. Clearly, a more sophisticated representation scheme needs to be 
found for clustering long audio documents, which reveals their high-level similarity 
and neglects irrelevant signal variations.  
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Fig. 6.2 Hierarchical agglomerative clustering of 10 audio documents 

 

Similar to audio scene representation, an audio document can also be represented by 
a vector containing all the audio elements and their corresponding occurrence 
probability. Directly building on the audio element sets obtained per audio document 
using the methodology explained in Chapter 4, we did a preliminary test to investigate 
audio document clustering performance, in which we simply combined all the 
document-specific audio elements into an integral audio element set. For this test we 
used the data from Chapter 4 and 5. To have a sufficient number of audio documents, 
we manually split each test audio track into several parts, each with about 30-minutes 
in length, which resulted in 10 audio documents. Due to the fact that several documents 
stem from the same original audio data stream, each document had one or more 
documents semantically similar to it. Therefore, the semantic category of the original 
audio data stream can be taken as ground truth for labeling the audio documents. Also, 
a “good” clustering process should first cluster the audio documents stemming from the 
same original source and the same original category. 

We applied a hierarchical agglomerative clustering algorithm to the obtained 10 
audio documents, as shown in Fig. 6.2. Each audio document initially represented one 
cluster and at each iteration (indicated on the Y-axis) two most similar clusters were 
merged together. Also the abbreviations of the document names were used in the leaves 
of the graph. For example, “bb_01” is the first 30-min part from “Band of Brother”, 
and “sf_02” is the second 30-min part from “Sword Fish”. 
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The figure shows that most documents were clustered correctly. For example, sf_01 
and sf_02, gg_01, gg_02, and gg_03, te_01 and te_02 are grouped together within the 
first four iterations, since they belong to the same original sound track. One exception 
is bb_01, which is first clustered with sf_01 and sf_02, and then with bb_02. This 
becomes understandable if one realizes that these segments are all from action/war 
movies, and the corresponding audio elements are very similar in these audio 
documents. These preliminary results indicate that the audio document representation 
obtained by simply integrating document-specific audio element sets and their weights 
is likely to lead to good audio document clustering results in the cases structured 
similarly as in our test.  

However, with the increasing number of audio documents being considered, the 
approach tested above is likely to become less effective. This is because separately 
extracting audio elements from different audio documents and simply combining them 
together can lead to a large number of different audio elements in the integral set that 
all correspond to (conceptually) one and the same sound combination. Due to so many 
“synonyms”, the integral set is likely to become unacceptably large and impractical.  

As an alternative, we may also choose to simultaneously build a common set of N 
audio elements for the entire collection of audio documents. This set can also be 
referred as anchor space, with each anchor representing an eigen audio element. Then, 
each audio document could be represented by an N-dimensional vector, where each 
dimension indicates the occurrence probability per audio element in that document. An 
anchor space can be generated either in a supervised or unsupervised fashion. A 
supervised approach usually reaches high accuracy and allows control of the semantic 
level at which anchors are defined. As shown in [Berenzweig and Ellis 2003], the 
selection of anchor in the case of music classification and similarity computation can 
be done even at the level as high as artist names and music genres. Having available a 
set of pre-defined semantic classes and sufficient manually labeled training data (a 
development data set), a number of supervised learning techniques can be used to train 
the semantic class of an anchor. These techniques include SVM, HMM, GMM, and 
neural networks. However, as addressed in Chapter 1, the supervised approach is 
infeasible if processing an unknown composite audio document, or if audio content 
semantics is too complex (diverse) to easily select appropriate anchors.  

With the objective of expanding the applicability of the anchor space concept onto a 
general audio content analysis case, we propose an unsupervised method for building 
an anchor space, which follows the analogy to the approach to audio element discovery 
from a single document, as explained in Chapter 4. As this approach is based on 
spectral clustering of audio segments, a practical issue to be resolved when expanding 
to a large audio document collection is the size of the affinity matrix, on which a SVD 
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is performed to extract the eigenvectors and map the original data into a 
low-dimensional space that can be easily clustered (see Chapter 4). If there are 300 
audio clips in the development data set, and if each clip has 3 minutes (i.e. around 360 
elementary audio segments), the size of the affine matrix will be around (300*360)2 
*4B > 40GB (each value in the matrix is a 4-byte float). Such a matrix is impractical to 
handle and slows down the SVD considerably. To resolve this, a simplification scheme 
is employed: Instead of using all feature vectors, we represent each audio document by 
the mean vector only (averaging the feature vectors therein), and then apply spectral 
clustering on the set of the mean vectors computed for the entire development data set. 
The obtained clusters are then adopted as audio elements (anchors). Regarding the 
number of clusters to be formed, spectral clustering proposes an estimation approach 
based on the eigen-gap. However, in our experimental setup, we manually set various 
cluster numbers to investigate its effect on the final similarity measure.  

With the obtained set of anchors (C1, C2, …, Cn), the mapping of an audio document 
onto this anchor space can be represented by the vector  

[ ])|(...,),|(),|( 21 dCpdCpdCp n    (6.1) 

Here, p(Ci | d) represents the membership (posterior probability) of the audio document 
d with respect to the anchor Ci. The probability p(Ci | d) can be further calculated as 
following, assuming that the prior p(Ci ) is uniformly distributed: 
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Here, sk is the k-th audio segment in the audio document d, N is the segment number, 
and p(sk | Ci) is the segment likelihood given the anchor Ci.  

Compared to the above “document-level normalization” (normalization of p(d | Ci) 
according to (6.2)), we can also employ “segment-level normalization”, that is, we can 
first map each audio segment onto an anchor, then normalize the likelihood vector p(sk | 
Ci) for each audio segment, and finally obtain the audio document representation by 
averaging the memberships of all the audio segments per anchor, that is,  

∑
=

∝
N

k
kii sCp

N
dCp

1

)|(
1

)|(       (6.4) 



129 

where 
∑
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sCp

)|(

)|(
)|(  is the posterior probability of each audio segment with 

respect to anchor Ci. Independent of which normalization approach is employed, the 
representation vector (6.1) makes it possible to employ KL Divergence for computing 
the distance between two audio documents. The more similar the mappings of two 
documents, the more similar they are.  

To test the proposed unsupervised anchor space generation idea, we formed a large 
dataset including 3000 audio documents that were extracted as sound tracks of the 
video clips from MSN Video. Each audio document lasts 2-5 minutes, and is associated 
with a category (also obtained from MSN Video). There are in total 15 categories, 
including Autos, Business, Entertainment, Games, Live Music, Sports, Weathers, and so 
on. To compare the proposed unsupervised approach with a supervised one, we also 
implemented a supervised approach in which each anchor is modeled as a GMM. To 
learn the model, we randomly chose 300 documents as a development data set to build 
mid-level content representation. The rest of the audio documents are used as a test set. 
For the sake of completeness, we also included the results obtained by computing the 
feature-based similarity of audio documents. Once the features are extracted from an 
audio document per audio frame, we either represent the document by averaging the 
feature vectors over all frames, or model the feature statistics in the document using a 
GMM [Lu and Hanjalic 2008b]. 

For the evaluation strategy, we apply a leave-one-out approach, that is, we select 
each audio document in the test set as a query, after which all other audio documents 
are ranked based on their similarity. The documents belonging to the same category are 
assumed similar in our experiments. Mean average precision (mAP), a common metric 
in information retrieval, is employed to quantify the retrieval performance. The mAP is 
actually the mean value of the average precisions (AP) computed for each query 
separately. To obtain the AP value for a particular query, the precision is first computed 
at each relevant document retrieved, and then these precisions are averaged over the 
entire test data set. Clearly, the more relevant documents occur higher in the ranked 
document list, the higher the AP. The AP value per query can be computed using the 
expression,  

∑
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)()(       (6.5) 

where r is the rank, M is the size of the test set, rel(r) is a binary function indicating the 
relevance of the audio document at rank r with respect to the query, and P(r) is the 
precision at top r returned documents. 
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Table 6.1 Comparison of the audio-element based and features-based audio document 

representation. In the feature based approach, audio document is either represented as a mean 

vector or as a Gaussian model. In audio-element based approach, various configurations are tried, 

comparing the supervised approach (sup) vs. unsupervised anchor space building (unsup); 

segment-level normalization (segl) vs. document-level normalization (docl); and various cluster 

numbers (as the first number in the first column indicates) 

Audio Doc. Rep. mAP mAP25 mAP50 mAP100 

Mean 41.4 71.9 66.8 61.2 

Gaussian 43.3 72.6 67.6 62.1 

[10, unsup, docl] 44.0 62.1 58.3 54.7 

[10, unsup, segl] 45.0 65.6 61.7 57.8 

[16, unsup, docl] 46.0 65.4 61.5 57.7 

[16, unsup, segl] 48.5 70.6 66.7 62.7 

[20, unsup, segl] 49.7 71.4 67.6 63.9 

[24, unsup, segl] 50.7 72.5 68.8 65.1 

[28, unsup, segl] 50.4 73.0 69.2 65.2 

[15. sup, docl] 61.3 73.2 71.4 69.3 

[15. sup, segl] 58.7 77.3 74.3 71.2 

 

Next to the mAP, the mAP@N is also evaluated, which represents the mean average 
precision at the top N ranks (similar to (6.5), but with a fixed N replacing M). The latter 
metric may be practically useful since the users are usually ready to review only the 
first N retrieved documents and do not want to check the entire data set.  

Table 6.1 shows the audio document retrieval performance comparing the 
audio-element based audio document representation and feature-based audio document 
representation. In audio element based approach, various numbers of audio elements 
are tried, including 10, 16, 20, 24, and 28. The best mAP (50.7%) is achieved by the 
audio element based approach with the cluster number 24 and with segment-level 
normalization. This corresponds to absolute improvement of 7% compared to the 
feature-based approach. However, the best result obtained using a supervised approach 
resulted in 10% accuracy improvement, compared with the unsupervised approach. 
This shows that there is still considerable room for improvement of the unsupervised 
approach. 
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Summary 

 

 

 

 

In this thesis, we developed and assessed a novel robust and unsupervised framework 
for semantic inference from composite audio signals. We focused on the problem of 
detecting audio scenes and grouping them into meaningful clusters. Our approach 
addressed all major steps in a general process of composite audio analysis, from 
low-level signal processing (feature extraction), via mid-level content representation 
(audio element extraction and weighting), to high-level semantic inference (audio scene 
detection and clustering). We showed experimentally that our proposed content 
discovery scheme involving mid-level semantic descriptors as an intermediate 
inference result can lead to more robustness, compared to the classical content-based 
audio indexing approach, where the semantics is inferred from the features directly. To 
the best of our knowledge, this is the first proposal exploring the possibilities for a 
realization of an entirely unsupervised audio content discovery system aiming at 
high-level semantic inference results. 

The first major algorithmic contribution of the thesis consists of an unsupervised 
approach to decompose an audio stream into (key) audio elements, based on a set of 
extracted audio signal features. Similar to speech recognition that transcribes a speech 
signal into text words, our proposed approach “transcribes” a composite audio signal 
into audio “words”, where each word corresponds to a short temporal segment with 
coherent signal properties (e.g. music, speech, noise or any combination of these). We 
refer to these audio words as audio elements. To extract audio elements, we deployed 
an iterative spectral clustering method with context-dependent scaling factors. In this 
process, the elementary audio segments with similar features are grouped together into 
clusters. Then, all audio segments belonging to the same cluster are said to represent 
the same audio element. We now see an audio signal as a concatenation of audio 
segments corresponding to different audio elements, and develop an approach similar 
to those known from the text document segmentation field to divide the signal into 
meaningful longer segments. We refer to these segments as audio scenes. To develop 
such an approach, we computed the weights indicating the potential of each obtained 
audio element to help detect an audio scene boundary. To compute these weights, again 
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the concepts from text information retrieval have been adopted, such as the term 
frequency (TF) and inverse document frequency (IDF), based on which a number of 
their equivalents in the audio segmentation context have been introduced.   

As the second major algorithmic contribution of the thesis, we presented a novel 
approach to audio scene segmentation and clustering. We first proposed a semantic 
affinity measure to determine whether two audio segments are likely to belong to the 
same audio scene. This measure considers the audio elements contained in the analyzed 
segments, their importance weights and their co-occurrence statistics. Then, the 
presence of an audio scene boundary at a given time stamp is investigated by jointly 
considering the values of the semantic affinity computed for a representative number of 
segment pairs surrounding the observed time stamp. Once the audio scenes are detected, 
a scheme based on the co-clustering concept was deployed to exploit the grouping 
tendency among audio elements when searching for optimal audio scene clusters. Here 
a method based on the Bayesian information criterion (BIC) was adopted to select the 
numbers of clusters in the co-clustering process. 

Experimental evaluations on a large and representative audio data set have shown 
that the proposed approach can achieve encouraging results and outperform the existing 
related approaches. The obtained results show a relatively high purity of the obtained 
audio elements. The number of the obtained elements, the type of sounds they represent 
and the importance weights assigned to them were shown to largely correspond to the 
judgment of our test user panel. Moreover, for audio scene segmentation and clustering, 
we obtained a 70% recall of audio scene boundaries with a 80% precision, based on the 
ground-truth annotation obtained using a panel of human annotators. Our co-clustering 
based approach achieved better performance than a traditional one-directional 
clustering, regarding both the clustering accuracy and cluster number estimation. 

We completed the thesis by making an attempt to envision a possible expansion of 
the proposed approach towards an application scope broader than the one considered in 
the thesis. We first considered the applications where domain knowledge is available. 
For such an application we investigated the possibilities to combine our unsupervised 
approach with a supervised one to benefit from the available domain knowledge and so 
improve the content discovery performance for that domain. Then, we also performed 
preliminary experiments to extrapolate the applicability of the proposed approach from 
a single document context to a collection of (long) audio documents. This involved a 
shift from the concept of document-specific audio elements to an anchor space 
representing a large collection of audio documents.   
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Samenvatting  

 

 

 

 

Dit proefschrift beschrijft een robuust, automatisch systeem voor het extraheren van 
semantisch relevante informatie (ook wel “content discovery” genoemd) uit 
audiosignalen in multimediale databanken. Typische voorbeelden van dergelijke 
audiosignalen zijn de “soundtracks” van TV shows, documentaires en films. 
Kenmerkend voor deze signalen is dat ze uit een vermenging van muziek, ruis en 
spraak bestaan en dat de onderlinge verhoudingen tussen de verschillende 
audiomodaliteiten niet voorspelbaar zijn.  

Het ontwikkelde systeem concentreert zich op allereerst het detecteren van 
betekenisvolle “audio scenes”, en vervolgens het groeperen van deze scenes in 
thematische clusters. Deze clusters zijn potentieel relevant tijdens het doorzoeken van 
de multimediale databank op basis van semantische zoekcriteria. De gekozen content 
discovery aanpak dekt alle belangrijke stappen in de audiosignaalanalyse, beginnend 
met kenmerkextractie tot het detecteren van audio scenes en hun onderliggende relaties, 
maar onderscheidt zich van de bestaande methoden door als basis de 
audiosignaalrepresentatie op het niveau van “audio elements” (ook wel “audio words” 
genoemd) te gebruiken. We laten experimenteel zien dat het voorgestelde systeem 
robuuster is dan de conventionele aanpak waarin audio scenes direct gedetecteerd 
worden op basis van signaaleigenschappen. Vergeleken met de bestaande methoden 
behoeft het detecteren en groeperen van audio scenes geen supervisie en wordt daarom 
“unsupervised” genoemd. 

De eerste bijdrage van dit proefschrift is een methode voor het automatisch 
detecteren van audio elements. Vergelijkbaar met spraakherkenning, waar spraak naar 
een tekstdocument vertaald wordt, vertaalt onze methode een audiosignaal naar een 
opeenvolging  van audio words. Hierbij correspondeert elk “woord” met een stuk 
signaal dat gekenmerkt wordt door bepaalde signaaleigenschappen en gerelateerd aan 
een specifieke vermenging van muziek, spraak en ruis. Om de audio elements te 
kunnen extraheren, werd een iteratieve clusteringmethode ontwikkeld, die gebruik 
maakt van contextafhankelijke schaalfactoren. Bij deze methode worden de 
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basissegmenten van het audiosignaal van elk één seconde lang die dezelfde 
signaaleigenschappen hebben bij elkaar gevoegd. Hierdoor worden “clusters” gevormd. 
Alle audio segmenten die zich binnen hetzelfde cluster bevinden worden gezien als 
vertegenwoordigers van één en hetzelfde audio element.  

De tweede bijdrage van dit proefschrift is een algoritme dat hetzelfde probeert te 
bereiken als in de tekst documentanalyse, namelijk het audiosignaal in langere, 
betekenisvolle “paragrafen” te verdelen (audio scenes) en vervolgens deze scenes in 
thematische clusters te groeperen. Dit algoritme volgt het basisidee van 
tekstsegmentatie, namelijk het representeren van elke woord door een weegfactor dat 
de relevantie van het woord weergeeft voor het bepalen van paragraafgrenzen. Om 
deze weegfactoren te berekenen werden de bekende concepten van “term frequency” 
(TF) en de “inverse document frequency” (IDF) vanuit de tekstanalyse gebruikt om de 
geschikte alternatieven in het audio domain te ontwikkelen.  De scene segmentatie 
zelf is gebaseerd op een zogenaamde “semantic affinity measure”. Dit is een maat 
waarmee de relatie tussen twee paragrafen op het semantisch niveau geschat kan 
worden. De maat wordt berekend op het niveau van audio elements in de paragrafen en 
met gebruik van hun weegfactoren en de statistiek van het gezamenlijk optreden van 
twee audio elements. De maat wordt toegepast op audio elementen ter linker en 
rechterzijde van het tijdspunt waarvoor de aanwezigheid van een audio scene 
begrenzing wordt geëvalueerd. De kans op de scene grens wordt groter naar mate meer 
audio element combinaties een hogere waarde voor de semantic affinity laten zien. 
Nadat de scenes gedetecteerd zijn, wordt co-clustering toegepast om de scene clusters 
te vormen. Het aantal clusters wordt automatisch geschat met behulp van het Bayesian 
Information criterion (BIC).  

Uitgebreide experimentele evaluatie van de voorgestelde methoden en algoritmen op 
representatieve data collecties laten zien dat goede resultaten bereikt worden, die beter 
zijn dan die van de bestaande methoden. De verkregen resultaten worden vooral 
gekenmerkt door een relatief hoge nauwkeurigheid van de gedetecteerde audio 
elements. Het aantal en type van gedetecteerde elements zijn goed in overeenkomst met 
het oordeel van een gebruikerspanel. In vergelijking met de “ground truth” verkregen 
door dit panel,  heeft onze methode voor audio scene segmentatie en clustering de 
waarde van “precision” en “recall” bereikt van respectievelijk 80% en 70%. De 
co-clustering aanpak die we gekozen hebben presteert consistent beter dan het 
klassieke één-richting clustering zowel voor de kwaliteit van de clusters als voor de 
schatting van het aantal clusters. 

In het laatste hoofdsuk van dit proefschrift beschouwen we de mogelijkheden om de 
toepassingsmogelijkheden van de voorgestelde methoden en algorithmen te vergroten. 
Ten eerste hebben we de toepassingen geanalyseeerd waar voldoende domeinkennis 
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beschikbaar is. In zulke toepassingen hebben we de mogelijkheden onderzocht om 
onze unsupervised aanpak te combineren met een supervised stap en zo de prestaties 
van content discovery voor deze domeinen te kunnen verbeteren. Ten tweede  passen 
we de voorgestelde methoden en algoritmen toe op een collectie van lange audio 
“documenten” en vergelijken de resultaten met onze originele aanpak die voor een 
enkelvoudig audio document ontworpen was. Om dit te kunnen doen werd het concept 
van document-specifieke audio elements gegeneraliseerd richting een “anchor space” 
dat representatief is voor een grote collectie van audio documenten.   
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