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A B S T R A C T   

Pavement condition monitoring (PCM) systems are essential for making decisions on road maintenance and 
rehabilitation toward preserving roads and airports assets in a good performance for a longer time. Modern 
smartphones are equipped with adequate storage, computing and communication properties, besides built-in 
sensors that show an excellent capability to capture information about users and the environment around us. 
Therefore, it is worthy to be used for efficient and cost-effective PCM. This review aims to survey the researchers’ 
efforts on the application of smartphones for PCM, mapping the researchers’ views from the literature into 
coherent discussions and highlighting the motivations and challenges of using such technology for pavement 
defects detection. Based on the existing literature, it was found that the smartphone applications technology is 
feasible and accurate to some extent as an alternative for conventional technologies for rural, highways and 
airports PCM. However, this technology is still in the first stage and many factors, calibrations and standards 
need to be studied and developed in future research in different countries at the various environments and 
different smartphone features. For example, one of the shortcomings of using smartphone-based sensors tech-
nology is the collected data is not directly collected from the pavement surface but is inferred from the data that 
resulted from the interaction among the vehicle, driver and pavement. This data processing could create limi-
tations on the accuracy of such technology. It is also expected that data generated by sensors will vary according 
to the smartphone properties, sensor conditions, behavior of drivers, vehicle dynamics and conditions that lead 
to differences in recorded data. Therefore, such technology still needs further investigations and evaluations, 
especially in data collection accuracy. This review is expected to help in understanding the existing development, 
motivations, challenges, research gaps and future directions in the application of smartphones for PCM.   

1. Introduction 

The development of smart cities is one of the global technologies that 
are received high attention during the last few years [1–3]. It is expected 
to remain one of the most essential opportunities and challenges for 
researchers, technology providers, city managers and planners over the 
next few decades. Fig. 1a presents the key parameters that define smart 
cities, while Fig. 1b shows the architecture of smart cities in general. 
Over 26 cities in North America and Europe are expected to become 
smart cities in 2025 [4–6]. A smart city is a sustainable and modern city 
that integrates various services and infrastructures to ensure sustain-
ability and efficiency. This can be achieved by using intelligent devices 
that control and monitor these units. Smart cities aim to address a range 
of issues, such as the environment, public transportation, energy, 
healthcare, waste management [7,8]. The integration of information 

and communication technologies with smart infrastructure and the 
internet of things will be the main parameters that the next generations 
of smart cities will depend on [8–10]. The smartphones is one of the 
components of the smart communication that are critical for enabling 
such technology toward contributing to achieving the desired smart 
cities [4,11,12]. Smartphones are equipped with a variety of sensors 
along with on-board computing, communication and storage capabil-
ities. These characteristics allow them to become autonomous, scalable, 
intelligent and cost-effective for the next generations of civil engineering 
monitoring systems in the future smart cities [4]. The collection of 
multisensory information through smartphones using a crowdsourcing 
sensing method has the potential to be a valuable resource for making 
intelligent decisions in smart cities [4,13]. Smartphone applications can 
collect pavement conditions data and transmit it to central systems, 
allowing smart cities to better manage their infrastructure through 
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educated decisions on maintenance and repair. Smart highway and 
transportation infrastructure are one of the hottest topics of research 
under consideration these days, and developing smart pavement con-
dition monitoring systems is receiving special attention among re-
searchers, pavement industries and agencies [14–16]. The automated 
real-time data collection on the pavement conditions is considered of 
the most challenges that face the researchers and pavement agencies to 
develop such a smart system [4,17,18]. 

Overall there are three common pavement condition data collection 
methods including the manual technique (human-based), semi- 
automated (combination of machine and human) and automated 
(based on the machine) [19–21]. The semi-automated and automated 
methods are more reliable compared to the manual technique which is 
unsafe, prone to high errors, time-consuming and insufficient to depend 
on as inputs for machine learning-based pavement monitoring [19,20, 
22]. The automated and semi-automated methods utilize static or dy-
namic sensors that can record as much possible data and store them 
locally or transfer them to the main servers using internet technology to 
further processing and decision making [19,23]. Fig. 2 summarizes the 
different techniques used for data collection for pavement condition 
monitoring. It can be noted that the smartphone is one of the essential 
tools that are used for automated and semi-automated data collection. 
The operation cost of using the traditional techniques for pavement 
monitoring such as inertial and laser sensors is notably high [24–26]. 
Especially in developing countries where the need for pavement moni-
toring is increased due to the exponential increase in the vehicle 
numbers on the highways [24]. 

It was stated that about 67 billion USD is imposed on drivers every 
year as a result of the poor conditions of major roads in the USA. It was 
also claimed that vehicle owners will incur about 349 USD per year on 
rough highways compared to adequate smooth roads [4,27]. However, 
the continuous deteriorations of the pavement conditions over time due 
to the aging, traffic loading and environmental conditions need for the 
development of effective pavement monitoring solutions [28,29]. Even 
with the rapid increase of highway construction worldwide, the need for 
road maintenance has become more crucial and there is an urgent need 
for developing a cost-effective, rapid, easily implemented, an intelligent 
and technologies to detect the pavement surface failures [18,24,30,31]. 
In the last three decades, extensive research has been carried out to 
identify new technologies that can be used for the continuous assess-
ment of failure and integrity of civil engineering infrastructure, 
including pavement. In this regard, many techniques have been devel-
oped as a result of advances in information processing, sensor technol-
ogies and signal analysis [4,32–34]. For example, distributed fiber optic 
sensor technologies provide the potential to continuously measure 
external factors such as strain or temperatures along an optical fiber. 

These properties make these sensors particularly applicable for 
measuring and monitoring the performances of structures. The use of 
distributed fiber optic strain sensors is one of the reliable methods for 
collecting continuous strain data within engineering structures that are 
exposed to loads, however, pavement presents a challenging environ-
ment for optical fibers [35,36]. The utilization of in-situ sensors provides 
the detection of damages earlier than visual inspections, allowing road 
industries to optimize their maintenance plans and minimize the 
required cost toward maintaining pavement in good condition than to 
repair it once it has deteriorated [35]. The fiber optic sensors were also 
assessed to be resilient and appropriate for use in construction projects. 
A recent study utilized optical fibers with a strong cable covering to 
observe pavement strains. The strains were measured with high accu-
racy while an aircraft applied static loads on the monitored area in both 
cold and warm conditions [36]. The measurements provided in-depth 
information on the strain distribution in the loaded pavement section. 
It was also stated that optical fibers can potentially provide essential 
strain data to test innovative pavement materials, evaluate design 
techniques, and gauge the structural integrity of existing structures. The 
efficiency of embedded distributed fiber-optic sensors for gathering 
pavement condition data was also reported by Rabaiotti et al. [37]. 
Various types of fiber-optic strain sensors were implemented on an 
asphalt test track to assess the strains caused by aircraft loading. These 
sensors were able to precisely measure the strain field during operation 
and also facilitated the back-calculation of pavement material layer 
stiffness. 

On the other hand, traditional methods for measuring vehicle- 
induced vibration often depend on point sensors such as accelerome-
ters, which function appropriately in the frequency and time domains 
but have a limited measurement range in the space domain [38,39]. 
During tests, these expensive sensors are rarely inserted into the pave-
ment; instead, they are frequently fixed to the top of the pavement to 
allow for easy removal and reuse. To prevent damage, these sensors are 
rarely installed beneath a moving tire. As a result, this will affect the 
accuracy of measuring pavement vibrations. The installation and 
removal of the sensors multiple times to respond to the shifting position 
of the traffic load often takes a long time because the excitation position 
of a moving vehicle changes continually [39,40]. It was claimed that the 
traditional vibration-based technique is expensive and challenging to 
use because of the numerous accelerometers that need to be installed 
and removed [41]. Instead, distributed optical sensing technology is one 
of the most recent sensing techniques for extensive monitoring [37,42]. 
Among the applications for this technology, distributed optical vibration 
sensing (DOVS) is a new vibration detection approach that has been 
applied for a number of tasks, including pipeline leak detection and 
railroad distress monitoring [43,44]. The primary advantages of DOVS 

Fig. 1. (a) Key parameters defining smart cities [4], (b) Architecture of smart cities in general [6].  
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are its cost-effectiveness, capacity to measure on a large scale and ease of 
deployment. It is capable of collecting dispersed vibration responses 
from large-scale structures over distances of tens of kilometers, 
including concrete pavements [41,45]. Zeng et al. [41] conducted 
research to investigate the support conditions of concrete pavement 
under traffic loads utilizing DOVS technologies in order to overcome the 
limitations of traditional vibration-based approaches for detecting loss 
of support in concrete pavement. Using the same techniques, the effects 
of loading conditions, such as loading location and speed, were also 
investigated. Based on the computational simulation, experimental 
testing, and field validations, it was determined that the suggested 
method is more reliable for use in practice than the more traditional 
deflection-based methods. 

In contrast, other research claimed that conventional pavement 
monitoring tools including displacement sensors, fiber optic sensors, 
piezoelectric accelerometers and stress-strain sensors are incapable of 
processing data or communicating with one another [46]. Furthermore, 
it has been stated that the conventional techniques for collecting PCM 
data collection are ineffective because of their high cost and the sub-
stantial amount of energy required for the process [47]. Therefore, and 
in order to overcome this, several researchers developed more efficient 
sensors (e.g. MicroElectro-Mechanical Systems (MEMS)) and placed 
them on the pavement using a sectional pattern [48,49]. Due to its small 
size and high precision, MEMS technology is a promising tool for 
pavement monitoring. MEMS sensors can be embedded in the pavement 
to measure various parameters such as temperature, strain, and defor-
mation. Decisions regarding maintenance and repairs can be improved 
by the collected data from these sensors, which can give useful insights 
into the pavement condition. However, several issues still need to be 
addressed, such as sensor calibrations and durability. Furthermore, the 
density and size of the sensor arrays introduce an additional challenge. 
When the density is low, it is challenging to make sure there are suffi-
cient measuring points close to the driving tire to measure the integral 
traffic-induced vibration. However, if the density is high, it usually re-
sults in complicated networking and installation. [39,50]. 

The smartphone is also one of the technologies that showed to be 
critical due to its rapid growth during the last decade as evidenced by 
the massive increase of its users, which is expected to reach 7.296 billion 
users by 2025 as shown in Fig. 3. That is also due to the growing of the 
Internet access through the smartphone with the huge number of ap-
plications that make it accessible and easy to be used for different 

purposes by most people. The new generations of smartphones are 
equipped with a wide range of sensors including accelerometer, gyro-
scope, camera, proximity sensor, barometer, screen touch, magnetom-
eter and light sensor, besides the high on-board computing capabilities. 
Furthermore, smartphones are equipped with wireless communication 
and mobile operating system that can be utilized for field data collection 
and directly send real-time data to servers through different generations 
of Wi-Fi [4,51–53]. All aforementioned features indicate the importance 
of smartphones in current and future pavement condition monitoring. 
Therefore, this rapid improvement of smartphones during the last few 
years that resulted in about 10 built-in sensors that can be used for 
collecting information on the roads, users, and the environment around 
us. For example, some sensors are used to collect motion data (gyro-
scopes, accelerometers, rotational vector sensors and gravity sensors), 
position information (magnetometer and orientation) and environ-
mental (thermometer, barometer and photometer) [19,54,55]. The 

Fig. 2. Data collection techniques for pavement condition monitoring [19].  

Fig. 3. Number of smartphone users around the world 2016–2025 [57].  

A.M. Al-Sabaeei et al.                                                                                                                                                                                                                         



Construction and Building Materials 410 (2024) 134207

4

smartphone-based pavement monitoring is even further important in 
developing countries where there are limitations in terms of pavement 
condition monitoring technologies and the budget allocated for such 
regular pavement health monitoring [56]. 

The first major smartphone application was used for monitoring the 
pavement and traffic conditions is TrafficSense which was developed 
and sponsored by Microsoft Research Team in 2008 [58]. This research 
project mainly focused on the detection of potholes, bumps, honking and 
braking defects through the accelerometer, GPS, microphone and GSM 
radio sensors in smartphones, and the validation of the developed 
application to detect the aforementioned defects was evaluated on the 
highways of Bangalore, India. After that, in 2010, the Microsoft 
Research team extend the program by developing a Platform for Remote 
Sensing using Smartphones (PRISM) to enable real-time detection [59]. 
The PRISM architecture proposed by the Microsoft research team is 
presented in Fig. 4. After that, another study has been conducted in 
Poland to explore the feasibility of using data obtained from GPS and 
accelerometer sensors of smartphones to detect the different pavement 
surface irregularities including potholes [60]. A large number of anon-
ymous and individual vehicle drivers were considered in the study. The 
smartphones were mounted on the dashboard or kept in the pocket to 
record the acceleration data. It was concluded that the signal corre-
sponding to a poor-quality pavement surface has significantly higher 
energy compared to that for good quality pavement surface. It was also 
reported that smartphones installed in the pocket recorded a signal with 
a higher magnitude compared to the one installed in the dashboard. The 
study was verified through several new runs using various smartphones 
and cars. Researchers from MIT Concrete Sustainability Hub (CSHub) 
developed the Carbin app to enhance the quality of roads and reduce 
emissions [61]. Carbin uses a smartphone to guide users to their desti-
nation while measuring pavement conditions and their impact on fuel 
usage. The integrated GPS and accelerometers of smartphones were used 

in the development of the Carbin. The readings are subsequently 
transformed by the application into International Roughness Index (IRI) 
statistics, which are then calculated to demonstrate excessive fuel use 
and CO2 emissions. Another research was conducted by Mednis et al. 
[62] to explore the possibility of using Android smartphones with 
accelerometer sensors to introduce a real-time mobile sensing system for 
potholes detection on the pavement surface of the major roads of the city 
of Riga, Latvia. It was concluded that 90% of the potholes can be 
detected by the developed approach. 

Similar studies were conducted using built-in smartphone sensors 
such as GPS and accelerometer sensing systems from 2011 to 2022 in the 
USA [63–69], UK [70], China [71,72], Australia and New Zealand [73], 
Finland [74], Jordon [75,76], Brazil [54,56], Italy [77,78], Romania 
[79], India [80–83], Egypt [84], Taiwan [85] and Turkey [86] to detect 
the different pavement surface defects such as potholes, cracks, rutting, 
roughness, road humps, manholes, patch repair, etc. It can be said that 
the first initiative to explore the collection of road defect data through 
the GPS and accelerometer sensors was proposed by a research team at 
the Massachusetts Institute of Technology in 2008 [87] which is 
considered the base for all studies that came after that and used different 
smartphone-based applications and sensors for pavement surface 
monitoring. Other researchers introduced different smartphone-based 
applications for pavement surface monitoring will be discussed 
throughout the next subsections of this review based on the type of 
defect. 

To collect the reliable peer-reviewed articles that can be included in 
this review, well academic databases, such as Web of Science, Science-
Direct, Taylor and Francis, Springer, Scopus, ASCE Library and IEEE 
Explore were considered. Some of the keywords were used to ensure 
most of the relevant articles can be included, are "Smartphone", "Pave-
ment", "Transportation", "asphalt", "mobile", "pavement monitoring". 
The time span considered is from 2000 to 2022, which lead to 49 articles 

Fig. 4. PRISM architecture proposed by the Microsoft research team [59].  
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relevant to the scope of this review after the three rounds of screening 
based on the title, abstract and read the full article. Fig. 5a presents the 
trend of research over time. It can be observed that the highest number 
of studies have been carried out in 2022 and the trend goes up over time. 
This exhibits the high demand for further research, evaluations, in-
vestigations and development of new smartphone applications for 
pavement condition monitoring which is increasing over time and the 
next decade will show a significant advancement in such technology. 
Besides, Fig. 5b shows that several countries around the world are 
interested in smartphone applications for pavement failure detection 
technology. The USA, China and India are the three major countries 
interested in this research field. That may be due to the huge road net-
works in these three countries that need advanced technologies to 
mitigate the disadvantages of the conventional methods in collecting 
data for pavement condition monitoring. In addition, other countries 
such as Brazil, Italy, Jordon, Poland, etc. started investigating this 
technology and this research remains a hot topic that needs further 
studies to come up with an accurate, economic and sustainable detection 
system for different pavement failures in different countries based on 
data that is collected from smartphone applications toward totally 
replace the conventional techniques. 

Fig. 6a present the number of studies on the applications of smart-
phone for pavement surface performance detection versus databases. It 
can be noticed that the highest number of studies in this research field 
was published in one of the reputable databases (ScienceDirect), indi-
cating the quality of the studies that have been included in this research 
and the importance of such research area. Fig. 6b shows the distribution 
of included studies based on the type of pavement defect that has been 
investigated in the relevant studies. It can be seen that most of the 
studies have been conducted on the detection of roughness. It contrib-
utes to 38.78 % of the existing literature on applications of smartphone 
technology for pavement defect detection. Such highest percentage 
among other defects could be due to the importance and the high cost 
required for conducting a conventional evaluation for such distress. The 
general evaluation of irregularities (anomalies) comes after the rough-
ness in the second-highest studies (26.53 %) that received more atten-
tion. However very small or no existed body of research on using 
smartphones to detect other defects such as rutting, fatigue, thermal 
cracking and moisture damage and others. This indicates future studies 
are recommended to focus on defects that did not receive enough 
attention to come up with a comprehensive system that can detect all 
defects in the pavement surfaces. 

Fig. 7a and b display the mapping and density visualizations of 
VOSviewer for the smartphone applications for pavement condition 

monitoring. It should be noted that the two most frequent failures that 
have been looked into are pavement roughness and potholes. In contrast 
to other pavement failures that got little notice, further research is 
needed to fully understand this one. In addition, research indicates that 
the accelerometer sensor is the most often utilized smartphone sensor 
for tracking paving condition, with other sensors receiving less atten-
tion. In addition, deep learning is shown to be the machine learning 
method that has been utilized the most to create predictive models for 
various pavement defects using data from smartphones. In order to 
develop a thorough understanding of the uses of smartphone and ma-
chine learning technologies for pavement condition monitoring, it is 
obvious that more smartphone sensors and machine learning techniques 
should be included in extensive research. 

2. Overview’ studies on pavement condition monitoring using 
smartphone applications 

In this section, the studies that were conducted to propose prediction 
models, smartphone applications and validation of an existing applica-
tion on pavement condition monitoring, in general, were summarized. 
Besides, the available reviews on the applications that are related to the 
topic of this review were also briefed. 

2.1. Experimental and modeling studies on pavement condition 
monitoring 

The effectiveness of the road condition tool (RCT) smartphone 
application was investigated by Staniek [88] based on the data crowd-
sourcing collected through the smartphone users to diagnose pavement 
conditions in Poland. It was claimed that the application will be able to 
identify and assess pavement defects by analyzing the dynamic motion 
of vehicles in the road networks. The user with smartphones that are 
equipped with RCT application can record the vehicle speed, accelera-
tion and vehicle condition and automatically data sent to the main RCT 
server database to be analyzed and send back the estimation of road 
condition to users every 10 m long. The developed application was 
verified through the comparison with a set of reference data. Souza et al. 
[54] proposed the Asfault system as a road monitoring system to collect, 
process and analyses real-time smartphone data using machine learning 
techniques to evaluate the pavement conditions at a reasonable cost. A 
smartphone accelerometer, GPS and video sensors were used to collect 
the vehicle vibration data. The full cycle of the developed system from 
collecting data to feedback to users can be seen in Fig. 8. Different 
machine learning algorithms were used to extract the feature of the data 

Fig. 5. Applications of smartphone for pavement surface monitoring: (a) Over time, (b) Versus countries.  
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and develop detection models including support vector machine (SVM), 
Decision Tree (DT) and others. Besides, time cost and energy con-
sumption have been evaluated. The developed system is composed of an 
Android application and a web application. It was claimed that the 
developed system can be useful for all road users in order to plan better 
routes based on the comfort of travel and pavement quality detections 
by the system. It was also stated that however the low precision of data 
collected by smartphone sensors, machine learning was found to be able 

to overcome such differences in data. Other brands of vehicles and 
different machine learning algorithms were recommended to be used for 
new research to verify the developed system. 

A real-time data-based smartphone approach was presented by 
Souza et al. [56] to constantly monitor and evaluate the condition of 
pavement surfaces. The three-axis accelerometer smartphone sensor 
through the Asfault Android application was used to collect the three 
different datasets that represent various scenarios of pavement 

Fig. 6. Distribution of the included studies: (a) Based on database, (b) Based on defects.  
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conditions. The data were classified based on the pavement type (flex-
ible, Cobblestone street or Dirt road). The collected data was analyzed as 
a time series classification problem with a combination of Longest 
Common Subsequence or Dynamic Time Warping with the Complexity 
Invariant Distance. It was reported that the proposed technique for the 
three evaluated problems showed classification accuracy of 80–98 %. 
The proposed method for the classification of asphalt pavement based on 
smartphones presented in the study is shown in Fig. 9. 

Furthermore, Cafiso et al. [89] conducted a study to identify key 
performance indicators (KPIs) and assessment of pavement conditions 
for bike and e-scooter users based on the data collected using smart-
phone sensors. The acceleration and position data were collected using 
an android application installed in a smartphone that was fixed on a bike 
and e-scooter. The results showed that there is a lack of correlation 
between the vibration data collected by bikes and e-scooters with 
pavement defects that were collected with car. However, it stated that 
bikes and e-scooters could be useful probe vehicles to be used for col-
lecting data for pavement surface condition evaluation. The road 
segment that has been considered for study was then classified into 

different sections and ranked between perfect to very poor based on the 
detection from data obtained by bikes, e-scooters, cars and the standard 
international roughness index (IRI). A similar study was carried out in 
Australia by Shtayat et al. [25] to develop a new technique for road 
surface monitoring based on vibration data and video records that were 
collected using smartphones fixed on e-bikes and private cars. Besides, 
Present Serviceability Rating (PSR) was applied as a pavement perfor-
mance indicator to identify the pavement condition and levels of 
degradation based on visual inspections. The results from the developed 
technique and PSR were compared to ensure the validity of the devel-
oped technique. It was concluded that e-bikes and private cars are 
appropriate and accurate vehicles to be used for road monitoring. 
However, the vehicle speed and number of iterations are significant 
factors to be taken into consideration for accurate data collection and 
accurate pavement monitoring. 

On the other hand, Chuang et al. [90] conducted research to propose 
a participatory system based on crowdsourcing spatiotemporal data to 
evaluate road surface monitoring a cross Taiwan roads network. The 
data was collected using a smartphone-based web application. The deep 

Fig. 7. VOSviewer of authors’ keyword analysis sources with a minimum of four occurences in an article (a) Mapping (b) Density visualization.  

Fig. 8. Asfault system architecture that was developed by Souza et al. [54].  
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neural network was used to analyze the data and identify the defects 
based on on-site images and a cross-check validation to ensure the 
reliability of the proposed system. The data collected from the road 
network of Taipei in Taiwan was used to validate the proposed system to 
ensure adequate accuracy for pavement conditions monitoring. It was 
concluded that the proposed system is promising and the accuracy of the 
system is shown to be 98%. Similarly, Abbondati et al. [91] studied the 
effectiveness of the crowdsensing-based SmartRoadSense mobile appli-
cation to detect pavement surface failures in Salerno, Italy. The data was 
collected from Highway SP2 over 21.6 km. The acceleration and loca-
tion were measured using accelerometer and GPS smartphone sensors 
that were fixed inside the vehicle. The 849 points of the road surface 
defects were recorded by the SmartRoadSense compared to 201 defects 
recorded by the operators for the same road segment under the inves-
tigation. It was stated that the SmartRoadSense is more sensitive to 
collecting detailed images of road surface failures. It was also claimed 
that such an application could be a cost-effective alternative to be 
adopted by the decision-maker for deciding on road maintenance and 
pavement surface condition monitoring. It was also concluded that 
SmartRoadSense is a limited application to identify specific road failures 
such as that low depth defects that may not be detected by acceleration 
data that depends on the dynamic vibration. It was recommended that 
developing a more reliable and robust road surface mentoring system to 
be able to identify different types of defects, and the integration of dy-
namic systems such as SmartRoadSense with other technologies such as 
laser scanning should be investigated in the future studies. 

Allouch et al. [92] developed a real-time Android application called 
"RoadSense" to automatically predict the road surface conditions based 

on data collected by GPS, accelerometer and gyroscope sensors. C4.5 
Decision tree algorithm was used to train the model to classify pavement 
segments and develop the predictive model. The developed model was 
validated with experimental data which showed an accuracy of 98.6 %. 
It was also stated that using a developed approach will provide a road 
quality map for the desired region, so constructive feedback for local 
authorities and drivers can be provided. Besides, decision-makers can 
depend on the developed system for regular evaluation of the road 
condition and quality. Another recent research was conducted by 
Kamranfar et al. [66] to propose a framework based on a combination of 
Pareto-optimized wavelet featurization and clustering unsupervised 
machine learning algorithms to detect the pavement distress. The data 
was collected using smartphone accelerometer sensors. Based on the 
experimental evaluation of the developed framework, it was stated that 
the pavement defects can be successfully detected and the different 
classes of defects can be distinguished. However, it was reported that 
based on the low-cost data collected by smartphones, it will not be able 
to accurately distinguish small characteristics of pavement failures. This 
was clear especially for cracking where the severity of cracks was not 
clustered properly. It was concluded that the proposed framework is 
cost-efficient and general. However further research was recommended 
on the improvement of the framework to automatically recognize the 
pavement failures based on low-cost and crowdsourcing data. 

A recent study was carried out to train and test supervised machine 
learning models using three-dimensional (3D) pavement data obtained 
from laser scanners to estimate pavement conditions using low-cost 
smartphone data [67]. The data obtained from both methods were 
registered first on a geographic information system (GIS) model of road 

Fig. 9. Proposed method for classification of pavement based on smartphone data [56].  
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networks. Then smartphone-based data was used as input and 3D 
pavement data to establish the labels to train recurrent neural networks 
(RNNs) with long short-term memory for predicting different pavement 
failures. The developed models were validated by comparing the pre-
dicted IRI and rut depth with the Georgia Department of Trans-
portation’s Pavement Condition Evaluation System (PACES) protocol as 
a reference. It was found that proposed models can estimate the IRI with 
0.61 m/km absolute error (AE) and rut depth with AE of 4.19 mm. On 
the other hand, the prediction of cracking, potholes and raveling was 
found to be unsatisfactory. Overall and based on the reviewed studies 
under this section, it can be stated that an essential effort has been paid 
by researchers and pavement industries on the use of smartphone-based 
data to detect pavement distress, however further studies still be needed 
to improve the accuracy of such technology to detect all pavement 
surface defects, focus on the specific defect, integrate different machine 
learning algorithms to enhance the prediction accuracy. 

2.2. Reviews that relevant to smartphone applications for pavement 
condition monitoring 

Surprisingly, no more review articles have been published in the 
literature related to the application of smartphone technology in pave-
ment condition monitoring. Such new technology should be introduced 
to spread the knowledge for other interested researchers, industries and 
governments to adopt such technology in road surface condition moni-
toring to assist in the decision making and cost-effective choices for 
maintenance and rehabilitation of roads and improve the integrity and 
comfort for road users. Sholevar et al. [19] have reviewed the applica-
tions of machine learning (ML) on pavement conditions evaluation. The 
review was mainly focused on how to collect and analyze data for 
pavement condition monitoring. Specifically, the application of ML 
techniques including object detection, image classification and seg-
mentation in pavement failures assessment were summarized. Besides, 
the road condition indices and automated data collection tools from the 
ML aspect were discussed. It was reported that deep learning models’ 
performance is more accurate, faster and flexible in analyzing road 
surface conditions compared to conventional approaches such as image 
processing. It was also stated that the overall accuracy of the developed 
ML models reported in the literature for the prediction of pavement 
defects was found to be above 90%. The authors concluded that however 
the overall trends for using ML algorithms for pavement condition 
monitoring, there are many limitations such as existing literature re-
ported only detection of a few types of pavement failures which required 
future research to explore and extend the applications of ML for a wide 
range of pavement distress and considering the severity of different 
distresses. In another recent study, Ranyal et al. [93] reviewed the 
relevant studies on the use of smart sensors for managing road condi-
tions. The study focused on data-collecting applications through ground 
robots, unmanned aerial vehicles (UAV), ground vehicles, and smart-
phones. Overall, it was reported that deep learning classification models 
outperform traditional computer vision methods in recognizing the 
presence or absence of various pavement distresses with extremely high 
accuracy. Only published works from 2017 to 2022 were included in the 
analysis. 

Another article reviewed the applications of deep convolutional 
neural network (DCNN) for pavement condition monitoring [94]. The 
current achievements and challenges in the application of DCNN to 
automated detecting pavement surface failures based on images were 
highlighted. The different software used to perform DCNN, networks 
architectures, involved parameters and the performance of defect 
detection were compared and summarized which could be an essential 
for future research as claimed by the authors. It was also claimed that 
DCNN showed to be the best ML technique in pavement image classifi-
cation in terms of achieved performance compared to other ML methods 
such as shallow networks. Data preprocessing is quite important for 
enhancing predictive accuracy. It was also concluded that further 

research is recommended on the applications of DCNN to not only detect 
pavement failures but to characterize the types, severity and extent of 
defects from 2D and 3D images. The end-to-end deep learning models for 
automated pavement defect detection based on the images should 
receive more attention in future studies. Meanwhile, an overview of the 
applications of smartphone technology for civil infrastructure moni-
toring was carried out by Alavi and Buttlar [4]. The challenges, limita-
tions and future directions of smartphone applications for civil 
infrastructure monitoring were discussed. Besides, a case study was 
conducted to prove the cost-effectiveness of smartphones as a tool for 
real-time data collection. It was stated that there is great research 
existing that focused on pavement condition assessment and should be 
extended to other civil engineering domains. In addition, most of the 
studies in the literature used only accelerometers and GPS sensors for 
data collection. The authors are recommended to use that different 
smartphone-based sensors in combination with external sensors to 
improve the efficiency of monitoring systems. It was concluded that the 
power of crowdsourced smartphone-based technology still needs to be 
further explored in future studies. A recent review was done by Yu et al. 
[95] to look at the body of knowledge about roughness measurement 
using smartphones. Data collecting speed, vehicle type, smartphone 
characteristics, and mounting arrangement were the main study areas 
that were expected to have an impact on the accuracy and roughness of 
smartphone-based approaches. For roughness index estimate (RIE) and 
anomaly detection, it was discovered that vertical axis acceleration is 
most frequently used. Additionally, it was mentioned that ML ap-
proaches were used to learn characteristics extracted from acceleration 
signals, but additional field testing is required to confirm their efficiency 
on data collected from actual driving scenarios. 

It can be said that few comprehensive detailed review articles have 
been reported in the literature, especially those directly relevant to the 
applications of smartphones for detecting different defects of pavement 
to propose the research gaps and weaknesses that need further research. 
That implies a wide knowledge gap in this technology is needed to be 
filled up. Therefore, this review was conducted trying to address this 
need. Through the survey of the literature, it was also noted that there is 
a need for conducting a comprehensive detailed review of the studies 
conducted on the state-of-the-art machine learning algorithms that are 
applied for analyzing the smartphone-based data for pavement surface 
monitoring to come up with the challenges and optimal algorithms that 
can be used for different conditions and different defects considering the 
perspective of information technology (IT) engineers. Besides, another 
review is suggested to be conducted with the collaboration of sensors 
engineers that could highlight the effects of different characteristics of 
smartphone sensors on the accuracy of data collection toward selecting 
the optimum sensors and characteristics can be recommended for better 
accuracy. Table 1 summarizes most of the studies reported in the liter-
ature on the applications of smartphones for pavement condition 
monitoring in general. The methods used for collection and analyzing 
the data and the main findings and recommendations were highlighted 
and briefed. It can be seen that most of the studies used accelerometer 
sensors of smartphones for collecting data, indicating that still there is a 
need for evaluating the possibility of using other sensors for collecting 
data that can help in improving the accuracy of pavement monitoring 
techniques. In addition, it can be noticed that most of the studies used 
machine leering approaches such as ANN, DNN, CNN and RNN which 
could reflect the appropriateness of such algorithms to model the 
pavement surface conditions with adequate accuracy. However, more 
than machine learning approaches can be integrated to come up with 
better accurate models. 

3. Focused studies on the applications of smartphone for 
pavement condition monitoring 

Based on the smartphone-based applications that have been used by 
several studies to evaluate the feasibility of such technology to assess 
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Table 1 
Summary of the findings from the overview literature on the applications of smartphones for pavement condition monitoring.  

Reference/ 
Country 

Objectives Data collection method Analysis Methods Results and Findings Remarks 

Eriksson et al. 
2008[87] / 
USA 

To detect potholes and other 
defects 

GPS and Three-axis 
Accelerometer 

Signal processing and 
Machine learning 
clustering-based 
approaches 

Developed Pothole Patrol (P2) 
that can be successfully used to 
detect potholes and other road 
surface defects 

Developed system was validated 
based on new data 

Mednis et al. 
2011[62] / 
Latvia 

To develop real-time 
pothole detection using 
Android smartphones 

Accelerometer Z-THRESH algorithm 
and Z-DIFF algorithm 

It was found that 90% of the 
potholes were detected by the 
developed application 

It was recommended that new 
research investigate using 
combinations of different 
algorithms to enhance the 
detection accuracy 

An et al. 2018 
[96] / Korea 

To detect potholes in road 
surface 

Smartphone camera Deep convolutional 
neural network 
approach 

All developed models showed 
more than 95% accuracy to 
detect the potholes 

It will be great to investigate if 
such techniques will be suitable 
for detecting other pavement 
surface defects 

Kyriakou et al. 
2019[97] / 
Cyprus 

To detect potholes in 
pavement surface 

GPS, accelerometers, 
gyroscopes and camera 
sensors of smartphone 
and OBD-II reader 

Artificial neural 
network 

Proposed models showed more 
than 90% accuracy. 

Various limitations were 
highlighted such as the 
smartphone properties, type of 
vehicle and driver’s behavior 

Lekshmipathy 
et al. 2021[98] 
/ India 

To evaluate the effects of 
combination algorithms on 
smartphone-based pothole 
detection 

AndroSenser application 
and extra tri-axis 
accelerometer 

Different combinations 
of algorithms 

The proposed combination of 
algorithms could solve the 
challenges of the accuracy in 
pothole detection 

It was recommended that the 
proposed algorithms should be 
validated with different vehicle 
speeds and different smartphone 
orientations 

Chen et al. 2021 
[72] / UK 

To develop model to detect 
pavement transverse cracks 

Smartphone 
accelerometers 

Time-frequency 
analysis and 
convolutional neural 
network 

Developed STFT-CNN and WT- 
CNN models showed 91.4% and 
97.2% accuracy, respectively. 

It was recommended that wider 
range of vehicles, pavement and 
driving conditions should be used 
for future studies 

Staniek 2021 
[88] / Poland 

To study the effectiveness of 
develop Road Condition 
Tool (RCT) smartphone 
application 

Smartphones and RCT 
application 

Binary classifiers It was found that RCT is a 
potential to detect the pavement 
defects 

The developed application is 
promising to be applied in a wide 
range without intervention from 
drivers 

Souza et al. 2018 
[54] / Brazil 

To develop Asfault system 
(Combination of Anroid and 
web applications) to detect 
asphalt pavement 
conditions 

Accelerometer, GPS and 
video 

Different machine 
learning algorithms, 
including SVM, 
Decision Trees 

It was claimed that the proposed 
system is effective to predict the 
road condition successfully with 
lower cost compared to available 
applications 

Different vehicles brands and 
machine learning algorithms 
were recommended to be used for 
future research 

Souza et al. 2018 
[56] / Brazil 

To develop an approach for 
pavement classification 
based on smartphone data 

GPS and accelerometer 
using Asfault application 

Time series 
classifications 

The developed method exhibited 
an adequate capability to classify 
the pavements with 80–98% 
accuracy. 

The proposed approach needs to 
be further evaluated with data 
from different pavement quality 
using more data that should be 
collected from different vehicles 

Cafiso et al. 2022 
[89] / Italy 

To assess urban road 
pavement conditions and 
evaluate bikes and e-scooter 
as probe vehicle. 

Smartphone, bike, e- 
scooter, car 

Root mean square and 
weighted frequency 

Pavement surface condition was 
classified from perfect to very 
poor based on data collected 
from different vehicles (bike, e- 
scooter and car) 

There is no correlation between 
the vibration data that collected 
by bike and e-scooter and that 
collected by car 

Shtayat et al. 
2022[25] 
/Australia 

To develop new technique 
based on data collected by 
e-bikes and private cars to 
detect road surface defects 

e-bikes, private cars, 
smartphone, visual 
inspections 

Present serviceability 
rating (PSR) as a 
pavement performance 
indicator 

Results obtained from proposed 
technique were compared to 
results from visual inspection 
and found that new technique is 
accurate and suitable method.  

Chuang et al. 
2019[90] / 
Taiwan 

To propose participatory 
system to conduct pavement 
performance monitoring 

Crowdsourcing 
spatiotemporal data from 
web-based smartphone 
application 

Deep neural network The accuracy of the developed 
system found to be 98%. 

In future studies, On-site images 
should be taken for known 
control points to assess and 
ensure about the collected 
position of defects. 

Abbondati et al. 
2021[91] / 
Italy 

To study the effectiveness of 
SmartRoadSense for 
detecting road surface 
failures 

SmartRoadSense 
smartphone application 

Machine learning 
algorithms 

It was reported that the 
SmartRoadSense is a cost- 
effective tool to monitor the road 
surface, however cannot detect 
all types of failures 

Further studies should be 
conducted to developed 
integrated system based on 
acceleration vibration-based 
system and other technologies 
such as laser scanning 

Allouch et al. 
2017[92] / 
Tunisia 

To develop RoadSense 
smartphone application for 
pavement condition 
monitoring 

Accelerometer, GPS and 
Gyroscope 

Decision Tree classifiers Developed system can detect 
road surface defects with 98. 6% 
accuracy 

It was recommended that 
different types of decision tree 
classifiers rather than that used in 
the study should be used toward 
improving the system to detect all 
pavement defects 

Kamranfar et al. 
2022[66] / 
USA 

To propose a framework for 
road detecting pavement 
surface distress 

Smartphone 
accelerometer 

Pareto-optimized 
wavelet featurization 
and clustering 
unsupervised machine 
learning algorithms 

The proposed framework showed 
to be cost-efficient to predict the 
pavement surface distress, 
however cannot distinguish very 
small detailed 

Future research was 
recommended to enhance the 
automatically identification of 
distress by the proposed 
framework 

(continued on next page) 
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pavement conditions, it can be classified pavement conditions by the 
type of defect in the pavement surface that influences the road users’ 
safety and comfort. These defects may be in form of roughness, rutting, 
cracks, potholes, or others that lead to deterioration of pavement or even 
full damage. 

3.1. Roughness 

Roughness is one of the most important characteristics of the pave-
ment due to its direct effects on road safety, users’ comfort and the 
operation cost of vehicles [99]. It is very important besides other distress 
that is taken into consideration by pavement management groups to 
conduct maintenance and rehabilitation [68]. Significant resources are 
spent to perform the roughness measurements using the conventional 
methods, thus transportation agencies usually do not collect the 
roughness for entire road networks for the high financial investments 
required [68,99]. 

Several methods are commonly used to measure the IRI of pavement 
surface, but most of them are inefficient or costly. Therefore, the 
accelerometer in smartphone technique was proposed by researchers at 
the Massachusetts Institute of Technology to detect the pavement de-
fects including roughness, which was found to be a great method to 
capture the roughness of pavement rapidly in a very economical manner 
[68]. In this regard, Islam et al. [68] determined the IRI of three 2-miles 
long test sites using vehicle vertical acceleration based on a smartphone 
and based on inertial profiler methods. It was reported that the IRI ob-
tained from the smartphone application and that obtained from the in-
ertial profiler are very close. It was also stated that the IRI-based 
smartphone data can be used for more effective decision-making for 
pavement design, maintenance and rehabilitations. The possibility of 
using smartphone sensors to estimate pavement roughness conditions 
was also explored by Douangphachanh and Oneyama [100]. It was 
confirmed that there is a great potential for utilizing smartphone-based 
data for pavement roughness estimation. It was also found that the data 
obtained based on the smartphone at a frequency of 40–50 Hz is the best 
in representing the pavement roughness condition. Different types of 
smartphones and vehicle types were also recommended for further in-
vestigations. To cup up with the need for advanced technologies to 
monitor the pavement conditions in developing countries, Rana [24] 
proposed a new technique using non-commercial vehicle dynamics and 
smartphone sensors to be used for estimating the International rough-
ness index (IRI) of pavement in Bangladesh. The vehicle suspension 
damping parameter was firstly estimated by system identification 
techniques. Using the acceleration data obtained through driving the 
vehicle over the road, the pavement profile was estimated. IRI was then 
calculated based on the estimated road profile. It was stated that the 
proposed technique is reliable to be used for monitoring pavement 
conditions as it was validated by a numerical simulation. 

Islam et al. [101] carried out another study to measure the pavement 
surface roughness using a newly developed smartphone-based applica-
tion. The Roughness Capture application was developed and used in this 
study. The ProVAL software was employed to create the pavement 
profile based on the acceleration data collected by the smartphone 
accelerometer sensor. The roughness was calculated based on smart-
phone data and compared with a pavement profile obtained from the 
inertial profiler method. It was reported that the developed application 
has a good correlation to the results obtained from the inertial profiler 

method, however, calibration of the vehicle suspension systems should 
be taken into consideration for future studies. Further details on the 
development and validation of the Roughness Capture smartphone 
application for measuring pavement roughness can be found in the 
Doctoral dissertation of Islam [102]. In order to address some recom-
mendations stated by the aforementioned study, Rana et al. [103] con-
ducted a new study to introduce a vibration-based technique for 
pavement condition monitoring using smartphone vibration sensors and 
ordinary vehicles taking into consideration calibration for vehicles’ 
suspension systems. Vehicle unknown parameters were estimated using 
gray-box modeling to be used for pavement profile reconstruction. The 
performance of the developed technique was validated using numerical 
simulation for two different vehicles with four different speeds, which 
was found to be reasonably accurate. Besides, field testing is also per-
formed at different vehicle speeds. Both simulation and field testing 
showed that the proposed technique is efficient to be used for pavement 
condition monitoring, especially for roughness detection. 

Meanwhile, a recent study was conducted by Aleadelat et al. [104] to 
investigate the feasibility of the 3D accelerometer smartphone sensor for 
measuring pavement roughness. Data was collected from different road 
segments that have different geometric features. To explore the useful 
features of the different signals obtained from smartphone sensors, 
signal processing and pattern recognition techniques were used. The 
extract features were compared to referenced IRI that was obtained from 
a standard South Dakota profiler. It was found that the 
smartphone-based technology is acceptable for measuring IRI compared 
to the standard profile-based method. Further investigation considering 
different smartphone types, different lower speeds and different vehicles 
was recommended for improving the accuracy of smartphone-based 
roughness measurement. Similarly, Zeng et al. studied the feasibility 
of using smartphone-based sensors for roughness evaluation along 
93 km of 1–64 W Route and the US-250 E Route in Virginia. It was 
claimed that the smartphone-based application was found to be a more 
efficient and cost-effective technique for pavement roughness moni-
toring. However, it was stated that different data collection trips, 
different lanes and different vehicle speeds and vehicle types should be 
taken into consideration for future studies. Moreover, the possibility of 
using an Android Studio 2.0 smartphone application to evaluate the 
pavement roughness was also evaluated in a recent study [105]. Signal 
preprocessing image was conducted on the collected data from the 
accelerometer and GPS of the smartphone to smoothen the data and 
vehicle parameters were also identified. The model algorithm was 
established and IRI and profile elevation were back-calculated based on 
it. It was found that IRI calculated based on the developed method found 
to be close to that obtained by digital survey vehicle (DSV) with a 
maximum error of 10%. 

Furthermore, a case study was conducted by Buttlar et al. [106] to 
evaluate the use of the Roughness Capture smartphone application for 
airport pavement condition assessment. The inverse state-space model 
was used to estimate the pavement profile from the acceleration and GPS 
data collected by the smartphone application. MATLAB code was 
employed to analyze the data and calculate the IRI. The IRI values ob-
tained from the Roughness Capture-based data were compared to the 
known IRI that was measured by Automatic Road Analyzer (ARAN) van. 
The results of the validation phase of the study for road pavement 
showed that the Roughness Capture application performed well 
compared to the ARAN method with adequate accuracy. Then the 

Table 1 (continued ) 

Reference/ 
Country 

Objectives Data collection method Analysis Methods Results and Findings Remarks 

Chatterjee et al. 
2020[67] / 
USA 

To validate the road surface 
defects that predicted based 
on smartphone data using 
3D pavement data 

Accelerometer, 
magnetometer and 
gyroscope 

Recurrent neural 
network (RNN) 

RNN-based models showed that 
smartphone-based data can be 
used to predict IRI and rut depth 
with adequate accuracy 

The developed models showed to 
be unsatisfied to predict cracking, 
potholes and reviling  
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aforementioned procedure was implemented for Missouri Airports to 
determine the IRI values based on Roughness Capture-data. To reduce 
the uncertainty, only one vehicle type and one smartphone model were 
maintained for data collection for the entire project. It was concluded 
that the Roughness Capture application is a potential cost-effective tool 
for airports pavement condition assessment. Besides, the validation 
showed good consistency between the IRI obtained from smartphone 
application-based data and the ARAN method. Different smartphones 
and different vehicle types were recommended to be considered for 
future research. Besides, the correlation between smartphone-based IRI 
and other common existing IRI methods for highway and airport pave-
ments is an interesting topic for the future. Bisconsini et al. [107] also 
studied the applicability of the smartphone-based roughness method by 
collecting acceleration signals at different speeds and different data 
acquisition rates. The IRI obtained from smartphone data was compared 
to that obtained from Rod and Level technique for the same pavement 
sections. It was found that the data acquisition rate is the main factor 
that influences the application of smartphones for road roughness 
evaluation. It was also stated that the IRI obtained from smartphone data 
showed a strong correlation with IRI obtained from the Rod and Level 
technique with an R2 value of 0.95, indicating that smartphone is a 
reliable method for pavement roughness monitoring. 

On the other hand, the effect of surface defects on smartphone-based 
road roughness was evaluated by Janani et al. [108]. The accuracy of the 
smartphone-based method was validated by an external 3-axis acceler-
ometer. The model was developed between power spectral density (PSD) 
and IRI of the acceleration values. The IRI was calculated before and 
after excluded of windows that present road surface irregularities. The 
statistical analysis was applied to compare the results of IRI with IRI 
from roughometer. The correlation between the smartphone-based IRI 
and roughometer based IRI was reported to be more than 0.86. It was 
also stated that considering other pavement defects in 
smartphone-based roughness calculation led to about a 61.8% increase 
in the IRI values. The aforementioned findings were supported by 
research finding from Sandamal and Pasindu’s study [109]. That 
showed the cost-effectiveness and adequate accuracy of 
smartphone-based roughness data to be used for pavement condition 
monitoring for rural roads in Sri Lanka. Besides, it was reported that 
there is a good correlation between the pavement surface failures such 
as potholes, reveling and edge breaks and smartphone-based roughness 
estimations. Another recent study was conducted to develop a 
cost-effective, accurate and quickly predictive model for 
smartphone-based roughness estimation using a deep convolutional 
neural network (DCNN) [69]. The historical IRI data that was collected 
using conventional methods and accelerometer-based data obtained 
from the smartphone application was used for training, testing and 
development of DCNN. The developed model was used to predict the IRI 
values for a new year and the correlation coefficient was found to be 
0.79. This indicates the developed model can represent about 79% of the 
actual data collected from the field. It was concluded that the addition of 
accelerometer data to the historical data increased the accuracy of the 
prediction. The effects of different vehicle suspension types and the in-
tensity of distresses on the prediction accuracy were recommended to be 
investigated in future work. 

The roughness evaluation for rural roads using smartphone-based 
data was also studied by Alatoom and Obaidat [76]. Collected acceler-
ation data were filtered using different signal processing methods such 
as a baseline correlation filter. The influence of acceleration sampling 
rate, smartphone position and vehicle speeds and integration technique 
were studied to come up with the best parameters that could be utilized 
to estimate IRI with adequate accuracy. It was found that the developed 
method can be used for estimating IRI with an R2 value of 0.72 and a 
very good accuracy using the double integration technique at 200 
samples/s with a vent mount smartphone. It was also explored that the 
variance and mean error of the acceleration values increased with 
vehicle speed increase which could be minimized by applying the speed 

normalization method. It was recommended that the effects of different 
tire pressure, engine size, vehicle type, spring stiffness and vehicle size 
on the IRI estimation should be studied. It was also suggested to study 
the effects of pavement distress and breaking, sudden acceleration and 
deceleration on IRI measurements. Another new research was carried 
out by Al-Suleiman and Alatoom [75] to develop a pavement roughness 
regression model based on data collected by smartphone sensors. The 
traffic loading, pavement age and traffic volume were taken as inde-
pendent variables. Besides, the effects of pavement defects and patching 
on the roughness were also studied. The signal processing technique was 
used to obtain the IRI values from the acceleration data from the 
smartphone sensors. It was reported that after the extensive modeling 
process, the best regression model showed an R2 value of 0.63, indi-
cating about 63% of the smartphone-based IRI can be predicted by the 
developed model. On the other hand, it was found that the pavement 
defects have a significant effect on the roughness prediction and the 
patching even has more effect than defects. The authors proposed a 
group of recommendations. That includes investigating the effects of 
pavement thickness and structure, materials characteristics and overlay 
thickness on the predicted IRI values based on data obtained from 
smartphone sensors. It was also recommended that proposed IRI models 
in developed countries can be calibrated for developing countries where 
the construction and quality of pavement are relatively similar. Finally, 
the developed models were suggested to be calibrated based on the types 
of vehicles and smartphones that will be used for pavement monitoring. 

Although many researchers have investigated the use of smartphone 
sensors as an alternative technique for estimating roughness, most of 
them did not consider the effects of vehicle speed in roughness estima-
tion using the smartphone-based method. Therefore and to overcome 
such shortcoming, Janani et al. [99] carried out recent research to 
enhance the precision of smartphone sensors-based roughness estima-
tions through the standardizing of vehicle speed. The roughness was 
evaluated for three different speed ranges. The smartphone-based 
method was used to measure the roughness at different speeds and the 
results were validated by comparing to the IRI measured by a rough-
ometer. It was found that roughness obtained from the smartphones has 
a high correlation value of 0.75 for 31–50 km/h speed ranges, indicating 
the accuracy of the smartphone methods with considering the vehicle 
speeds. The effects of pavement type, the season of data collection, road 
condition (wet or dry) and pavement temperature on roughness esti-
mation based on smartphone data were recommended to be further 
studies in future. 

Based on the reviewed studies on the applications of smartphone 
sensors for pavement roughness estimation and the summary presented 
in Table 2, it can be said that this technology is cost-effective and 
adequately accurate compared to most other methods that are used for 
measuring the roughness of roads and airports. Although extensive 
research has been done in this regard, more studies are still needed to 
improve the accuracy and come up with a standard smartphone method 
that can be recommended as an alternative to existing methods in 
different countries for different conditions. 

3.2. Potholes 

The pothole is one of the common pavement distress and the greatest 
threat to vehicle drivers [111]. It is a main cause of accidents due to the 
sudden steering of the vehicle tire that directly affects the safety and 
comfort of road users. Overall, it can be stated that the principle for 
utilizing a smartphone technology to detect potholes in pavement is 
mostly based on the accelerometers and GPS data collected by the 
smartphones. The smartphone’s accelerometer measures the accelera-
tion of the vehicle as it moves over the potholes. This acceleration data 
can be utilized to estimate the depths and severities of the potholes, 
while the GPS data can be utilized to estimate the location of the pot-
holes. The data collected can then be analyzed using algorithms to 
provide quantitative measures of the potholes. However, it is important 
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Table 2 
Summary of the findings from the literature on applications of smartphones for the detection of pavement surface roughness.  

Reference/Country Objectives Data collection 
method 

Analysis Methods Results and Findings Remarks 

Islam et al. 2014[68] 
/ USA 

To measure and compare 
the IRI obtained from 
smartphone 
accelerometer and 
inertial profiler 

Smartphone 
accelerometer and 
Inertial profiler 

MATLAB code and profile 
viewing and analysis 
program was utilized to 
estimate IRI 

IRI obtained from smartphone 
application data is very close to 
that obtained from inertial 
profiler 

More data was recommended 
to be collected for future 
studies at different rates and 
vehicle speeds 

Douangphachanh 
and Oneyama 
2013[100] / Japan 

To explore the 
possibility of using 
smartphone sensors for 
estimating pavement 
roughness 

AndroSensor 
application, 
accelerometer and 
GPS 

High pass filter, Fast Fourier 
Transform, establishing the 
relationships between 
acceleration data and IRA at 
different frequencies 

It was found that the 40–50 Hz 
is the best frequency that can be 
adopted for smartphone data 
collection to adequately 
represent the pavement 
roughness conditions 

The use of different 
smartphones and different 
vehicle types was 
recommended for future 
studies. 

Rana 2022[24] / 
Bangladesh 

To propose a new 
technique for pavement 
conditions monitoring in 
Bangladesh based on 
smartphone sensors data 

Smartphones sensors 
and non-commercial 
vehicle 

Mathematical models and 
numerical simulation 

Developed technique found to 
be efficient to monitor 
pavement condition in the area 
of study  

Janani et al. 2021 
[99] / India 

To study the effects 
different smartphone 
performance and 
different vehicle speeds 
on roughness detection 

Smartphone sensor 
and roughometer 

Quarter Car Simulation 
(QCS) 

A high correlation was found 
between roughness from 
smartphone data at different 
vehicles’ speeds and IRI from 
roughometer 

The effects of pavement type, 
the season of data collection, 
road condition (wet or dry) 
and pavement temperature on 
roughness estimation based on 
smartphone data were 
recommended to be further 
studies in future 

Islam et al. 2014 
[101] / USA 

To estimate the 
roughness of pavement 
based on data collected 
from Roughness Capture 
smartphone application 

Roughness Capture 
application, GPS, 
accelerometer 

MATLAB code and ProVAL 
software 

Roughness obtained from 
smartphone-based data has 
good correlation to roughness 
from inertial profiler method 

Vehicle suspension system 
needs to be taken in 
consideration for improving 
the accuracy of roughness 
measurements 

Rana et al. 2021 
[103] / Bangladesh 

To introduce a new 
technique for roughness 
detection based on 
smartphone data 
considering vehicles’ 
suspension systems. 

AndroSensor 
smartphone 
application, 
accelerometer, 

Quarter-car vehicle model, 
gray-box modeling and 
Gauss-Newton numerical 
algorithm 

Based on the numerical 
simulation and field validation 
the developed technique was 
found to be efficient for 
detection the roughness of 
pavement surface.  

Aleadelat et al. 2018 
[104] / USA 

To explore the feasibility 
of using smartphone- 
based accelerometer for 
roughness measurement 

3D accelerometer and 
South Dakota profiler 

Signal processing and pattern 
recognition techniques 

Roughness obtained from 
smartphone-based method 
found to be acceptable 
compared to the one obtained 
based on South Dakota profile 

Further studies are 
recommended to investigate 
the effects of different 
smartphones, different speeds 
and different vehicles on the 
accuracy of smartphone-based 
roughness 

Zeng et al. 2017 
[110] / USA 

To study the ability of 
smartphone-based 
sensors to measure 
pavement roughness 

Smartphone 
accelerometers 

Microsoft Excel Smartphone-based application 
found to be efficient and cost- 
effective for pavement 
roughness monitoring 

Different highway lanes, 
different vehicles, different 
speeds and different data 
collection trips were 
recommended for future 
research 

Zhang et al. 2021 
[105] / China 

To propose a theoretical 
method based on 
smartphone data for IRI 
estimation 

Android Studio 2.0 
application, GPS, 
accelerometer and 
digital survey vehicle 
(DSV) 

Quarter actual vehicle model, 
MATLAB for signal pre- 
processing and 

The proposed theoretical 
method based on smartphone 
data exhibited less than 10% 
error compared to DSV-based 
method 

The theoretical algorithms 
based on whole vehicle or half 
vehicle models were 
highlighted that to be used for 
future studies by same authors 

Buttlar et al. 2018 
[106] /USA 

To evaluate the use of 
smartphone-based 
methods to determine 
the IRI for Airports 
pavements 

Roughness Capture 
application, 
accelerometer, GPS 
and Automatic Road 
Analyser (ARA) van 

MATLAB code, machine 
learning, Genetic 
Programming 

The implementation of the 
Roughness Capture-based 
roughness technique is a cost- 
effective and adequate accurate 
for IRI estimation for Airports 
pavements 

Considering different data 
collection rates, different 
vehicle suspensions, and 
mounting smartphones on 
aircraft instead of vehicles 
were recommended to 
improve the accuracy 

Bisconsini et al. 2018 
[107] / Brazil 

To evaluate the 
applicability of 
smartphone-based data 
to estimate IRI 

Smartphone 
accelerometer and 
GPS sensors, Rod and 
Level method 

ProVAL software The IRI obtained from 
smartphone-based data showed 
R2 value of 0.97 with the IRI 
obtained from the Rod and 
Level technique, indicating the 
accuracy of smartphone-based 
data to estimate IRI 

Smartphone-based IRI should 
be compared with other 
instruments-based IRI such as 
inertial profilometers 

Janani et al. 2020 
[108] / India 

To investigate the effects 
pavement distress on 
smartphone-based 
roughness 

AndroSensor 
application, 
accelerometer, 
external 
accelerometer, 
roughometer 

Statistical analysis and Power 
Spectral Density using 
MATLAB 

It was found that there is a high 
effect for pavement defects on 
the smartphone-based 
roughness with an increase of 
about 62% compared to that 
before including their effects. 

The future research was 
recommended considering the 
analysis of the results when 
smartphone is not fixed firmly. 

(continued on next page) 
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to note that the accuracy of the measurements depend on several factors, 
including the quality of the accelerometers, the speeds and directions of 
the vehicles, and the type of pavement surfaces [62,87]. In this regard, 
Eriksson et al. [87] developed a mobile sensing-based application to 
detect the surface conditions of pavement. This study is considered one 
of the earlier studies on the application of smartphone technology for 
road pavement surface monitoring. Sensor-equipped vehicles were used 
along with the developed mobile application and associate algorithms 
and the system was called Pothole Patrol (P2). The GPS and acceler-
ometer vibration sensors were used to collect the data. It was found that 
the developed system is able to detect potholes and other severe pave-
ment surface defects based on the accelerometer data collected from 
roads in the Boston area. The system was validated on data from the 
thousands of kilometers in and around the Boston area and found to be 
successful to detect real potholes. The Pothole Patrol (P2) system ar-
chitecture from collecting data to detect the potholes defect is summa-
rized in Fig. 10. Subsequently, An et al. [96] evaluated the possibility of 
using a deep convolutional neural network (DCNN) to detect potholes in 
the road pavement surface. The data were collected using a smartphone 
camera. Two types of images were used; grayscale and color images. 
Four DCNN models were evaluated to classify the collected images. 
These models are MobileNet_v1, Inception_ResNet_v2, Inception_v4 and 
ResNet_v2_152. 3028 images were used for the training process and 159 
images for testing and validation of the developed models. It was found 
that all evaluated models showed an accuracy of more than 95% to 

detect the potholes on the road surface. 
Kyriakou et al. [97] carried out research to develop prediction 

models that can detect potholes on the surface of the pavement. Data 
was collected using GPS, accelerometers, gyroscopes and camera sensors 
of smartphone that was mounted on the windshield of the car. Besides, 
the smartphone was connected to an OBD-II reader which was used for 
recording and exporting readings generated from the georeferenced and 
timestamped sensor. The time interval was considered to be 0.1 s per 
reading to achieve as much as possible high resolution. The data was 
then analyzed using an artificial neural network (ANN). It was found 
that the smartphone-based sensors and ANN are the most efficient 
techniques, low-cost and accurate to be used for pothole detection on the 
surface of pavement with an accuracy level of more than 90%. However, 
several limitations were highlighted by the study such as vehicle con-
ditions, driver behavior and smartphone types and conditions were re-
ported that may affect the accuracy of the collected data. In this regard, 
a new study was conducted to evaluate the effects of sensing compo-
nents and reorientation of the smartphone accelerometers on the pre-
diction accuracy of potholes on pavement surfaces [98]. Different 
algorithms were used and optimized to come up with the best combi-
nations and threshold values to achieve the desired accuracy. A road 
segment of 70.3 km with 88 potholes was considered for the collection 
of the data. AndroSenser application was used for collecting the data 
that help in tracking the GPS, accelerometer, orientation, magnetic field, 
proximity, sound and battery status of the smartphone. Besides, an 

Table 2 (continued ) 

Reference/Country Objectives Data collection 
method 

Analysis Methods Results and Findings Remarks 

Aboah and Adu- 
Gyamfi 2020[69] / 
USA 

To develop a deep 
learning model for 
smartphone-based 
roughness estimation 

Smartphone 
application with GPS, 
accelerometer and 
gyroscope 

Deep convolutional neural 
network (DCNN) 

The developed model showed 
R2 value of 0.79 between the 
predicted IRI from DCNN and 
IRI from smartphone-based data 
and historical data 

Future studies were 
recommended to study the 
effects of different vehicle 
suspension types and distress 
intensities on prediction 
accuracy 

Al-Suleiman and 
Alatoom 2022[75] 
/Jordon 

To develop a regression 
model for smartphone- 
based roughness 
estimation 

AndroSeneor 
application, 
accelerometer and 
GPS sensors 

Regression modeling and 
statistical analysis 

The developed regression model 
showed an R2 value of 0.63, 
indicating only 63% of 
smartphone-based roughness 
can be estimated by the 
developed model 

The relationship between the 
IRI values and pavement 
structure, pavement thickness, 
materials properties and 
overlay thickness was 
recommended to be studied 
for improving the degree of 
prediction accuracy. 

Alatoom and Obaidat 
2021[76] / Jordon 

To proposed a procedure 
for estimating IRI for 
rural roads 

Smartphone 
accelerometer sensor 
and GPS with different 
sampling rate 

Fourier transformation, 
Trapezoidal double 
integration and inverse 
Fourier transformation for 
generating road profile. 
ProVal software used for data 
analysis 

Developed procedure showed to 
be a very good estimation for 
IRI with R2 value of 0.72 

More studies about the effects 
of different tire pressure, 
vehicle size, engine and spring 
stiffness on IRI measurement 
were recommended  

Fig. 10. Pothole Patrol (P2) system architecture [87].  
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external tri-axis accelerometer was used to collect data that was used to 
validate the findings from the smartphone-based technique. The speed 
of the vehicle was maintained from 40 to 60 km/h. The optimal com-
bination of algorithms was found when z peak, z sus, z-x, z diff and 
std-dev algorithms are combined with threshold values of 2 g, 0.45 g, 
[1.5 g, 0.5 g], 2 g and 1.4 g, respectively. It was claimed that proposed 
algorithms could solve the challenges facing the engineers in the accu-
racy of detection potholes using smartphone-based technologies. 

3.3. Rutting 

Rutting distress is one of the common pavement surface distresses 
that accelerates the pavement degradation, increases the maintenance 
and repair costs, and reduces the user’s safety and comfort [112]. The 
principles for utilizing smartphones to detect the rutting distress in 
pavement mainly include the use of sensors and image processing 
techniques. Particularly, the smartphone’s gyroscope and accelerometer 
sensors can be utilized to measure the lateral and vertical movements of 
the devices as they are moved along the pavements. These measure-
ments can be used to estimate the rut width and depth, which indicate 
the severity of rutting distresses. Furthermore, images of the pavement 
surface can be captured by the smartphone’s camera, which can be 
analyzed utilizing images analysis algorithms to identify and measure 
the severity of rutting distress [30,113]. To contribute to the develop-
ment of intelligent, rapid and real-time technologies for the detection of 
pavement surface performance, Zhang et al. [30] conducted a recent 
study to evaluate the possibility of using smartphones for detecting 
pavement rutting. The self-developed driving acquisition application 
was employed to collect the vibration accelerations through the driving. 
After the data were de-noised and vibration characteristics were 
analyzed using various working conditions, seven vibration acceleration 
indexes were established with the pavement rutting with a high degree 
of correlation. The convolutional neural network (CNN) was used to 
develop the prediction model for pavement rutting and the results were 
compared with other types of neural networks including back-
propagation and multilayer perceptron. It was reported that the CNN 
showed an adequate performance to predict the pavement rutting with 
an average error of 16.6%. It was also concluded that smartphones can 
be satisfied to be used for evaluating pavement rutting. It can be stated 
that although the importance and the widespread of rutting distress, it 
was not received enough attention. Therefore, this research gap needs to 
be further investigated in future studies. 

3.4. Cracks 

Cracks are one of the pavement defects that lead to pavement dete-
rioration and have direct effects on the driving and road users’ safety, 
thus smart monitoring for such distress could mitigate their effects. The 
principles for utilizing smartphones to detect cracks in pavement involve 
using the built-in camera and image processing tools to collect and 
analyze images of the pavement surfaces. The images of the pavement 
surface, including the cracks, are captured using the smartphone cam-
era. Then various computer vision methods are used to process the 
captured images to detect and extract the cracks from the pavement 
surfaces. In order to enhance the visibility of the cracks, applying seg-
mentation algorithms, filters and edge detection techniques are 
required. The accuracy of the severity and size of the measured cracks 
are governed by the analysis technique used [72,113,114]. In general, 
the detection and measuring the cracks in the pavement surface mainly 
depend on the combining of smartphone cameras and image processing 
techniques. Chen et al. [72] developed a novel model based on a con-
volutional neural network and time-frequency analysis to detect pave-
ment transverse cracks based on the smartphone data. Collected data by 
accelerometer and smartphone was analyzed using short-time Fourier 
transform (STFT) and wavelet transform (WT) to transfer the 
one-dimensional vibration signal into two dimensional. Then STFT and 

WT were combined with CNN which resulted in accurate detection of 
transverse cracks. Developed models were validated by other data and 
found that STFT-CNN and WT-CNN models showed an accuracy of 
91.4% and 97.2%, respectively. In order to generalize the proposed 
models, it was recommended that different vehicle conditions and 
different driving conditions for various pavement sections should be 
further investigated in future studies. It can be said that very few studies 
reported in the literature so far on the detection of cracks using 
smartphone-based data technology. Therefore, cracks are still one of the 
research gaps in pavement monitoring systems that need extensive 
research. 

3.5. Other defects 

Zhou et al. [115] conducted a recent study to propose a convolu-
tional neural network (CNN) model to predict manhole covers based on 
smartphone collected data. The collected images were first classified 
into rainy and nonrainy types. Three different smartphones were used to 
collect 12,853 images. The developed model showed an accuracy of 86.3 
% to detect road manhole covers based on the observations from the 
smartphone. It was also stated that the developed CNN model can be 
effectively used under various road and environmental conditions to 
detect manhole covers. Establishing an effective and global detection 
system using IoT technology and adopting the crowdsourcing idea was 
recommended for future research. Another research was conducted by 
Massahi et al. [116] to investigate the raveling performance of 
open-graded asphalt pavement using smartphone data. Images and GPS 
sensors were used to collect the data with the location area of raveling 
and its severities. The data extracted from different databases of the 
Florida Department of Transportation (FDOT) was included for com-
parison purposes. A numerical statistical model was developed for 
raveling performance based on the data collected from smartphones and 
compared to raveling ratings from FDOT. It was found there is a good 
correlation between both techniques. To explore the causes of raveling, 
the relative influence of construction, mix design and environmental 
factors were also investigated. It was found that there was a significant 
correlation between raveling and gradation, mixing temperatures, 
ambient temperatures and mix spread rate. 

Furthermore, Ksaibati [117] studied the possibility of using Andro-
Sensor smartphone application to estimate the pavement serviceability 
index (PSI) for local roads. It was found that the acceleration data 
collected by smartphone accelerometer sensors can be a very good factor 
to estimate the PSI. Two statistical models were developed based on 
regression analysis which were found to be able to predict the actual PSI 
using smartphone signals with an R2 value higher than 0.9. The type of 
smartphone showed a significant effect on the predicted PSI. Different 
variables that may affect the estimation of PSI based on smartphone 
acceleration data were recommended to be further studied. To estimate 
pavement condition index (PCI), Vemuri et al. [118] developed an 
Android smartphone application based on acceleration data collected 
from 14 pavement sections in Houston city. Multiple linear regression 
models were developed based on the acceleration data collected by 
smartphone sensors and proposed models were validated using two 
random pavement sections. It was found that the PCI has a good cor-
relation with acceleration vibration with R2 values of 0.85–0.9. This 
indicates that about 90% of the PCI can be estimated by acceleration 
vibrations from the smartphone application. It was recommended that 
developed models should be calibrated to fit different types of vehicles 
and different sensitivity of the accelerometer sensors. 

Meanwhile, Stephens et al. [65] conducted recent research to explore 
whether a custom-based smartphone application has the capability to 
employ the smartphone sensors for collecting vibrational and global 
position system (GPS) data with an adequate degree of accuracy for 
detecting pavement failures. A smartphone application was developed 
to fit Android and iOS systems that use GPS, accelerometer and gyro-
scope sensors to sample, log rotational, location and vibrational data. A 
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developed application was used with different sensor hardware to 
collect data that was analyzed to come up with a conclusion. It was 
stated that the developed application is a success too to evaluating 
smartphone sensors that can be utilized to detect pavement failure, 
providing adequate precision and accuracy, and considering the 
smartphone GPS limitations. On the other hand, An experimental study 
was carried out using smartphones to identify the various pavement 
defects using an artificial neural network (ANN) [119]. The smartphone 
accelerometers were used to collect the acceleration versus time data 
with a total of 7680 data from different pavement failures including 
alligator, pothole, speedbump and intact pavement. In order to differ-
entiate between the pavement failures, ten different features were 
identified using sign-processing-based techniques in frequency and time 
domains, and ANN was utilized for classification. Among different al-
gorithms used to train the ANN models, Patternnet and Pattern-
net+ Learning Vector Quantization 2 provided high-level accuracy with 
93.48% and 90%, respectively. It can be stated that still there is a need 
for developing detection models for different pavement surface failures 
based on smartphone data, especially for defects that only received very 
limited attention so far. The summary of the findings from the literature 
included in this review on applications of smartphones for the detection 
of miscellaneous pavement surface defects such as manhole covers, 
raveling and others can be found in Table 3 as shown below. It is clear 
that only a small body of research is existing for such defects compared 
to roughness, which reflects the need for further studies in the future. 

In general, it can be concluded that based on the extensive literature 
review on the applications of smartphone for detecting pavement de-
fects, it was found that while the most defect detection relies on accel-
erometer data; however, it may not be sufficient to accurately 
distinguish between different types of defects. Several studies have 
shown that the use of multiple sensors, including images, GPS, gyro-
scope, temperature and strain sensors, in addition to accelerometer can 
enhance the accuracy of defects detection and classification [35,49,72, 
92,97,113]. Moreover, studies have also reported that analysis methods 
such as machine learning techniques are a potential to be applied to 
accelerometer data to improve the accuracy of defects detection and 
classification [54,115]. The utilization of accelerometer data for pave-
ment defects detection has been extensively studied in the literature. 
Although, accelerometer data has been found to be a reliable source of 
information for PCM, using only accelerometer data to accurately 
distinguish between various types of pavement defects can be chal-
lenging [98]. Accelerometers data can provide information on the fre-
quencies and intensities of vibrations resulting from pavement distresses 
[38,39,80]. However, different types of distresses can have similar 

vibration properties, which can make it challenging to accurately 
differentiate between them. Several studies have evaluated the possi-
bility of using machine-learning techniques to enhance the accuracy of 
pavement defects detection and classification based on accelerometer 
data. These techniques require training and testing various algorithms to 
identify patterns in the data that correspond to various types of distress 
[19,120,121]. It was also reported that to reduce time consumption, 
cost, and the need for human experts in pavement condition monitoring, 
researchers suggest applying and investigating various 
machine-learning techniques on data generated from different 
smartphone-based sensors, including accelerometer [19,54,120,121]. 

Overall, it may be difficult to accurately differentiate between 
various types of pavement defects based on only accelerometer data, but 
combination of different technologies such as built-in smartphone sen-
sors with external sensors can also improve the efficiency of monitoring 
systems. Besides, utilizing machine-learning algorithms could be 
promising in improving the accuracy of the detecting and distinguishing 
of different defect types toward more reliable pavement condition 
monitoring [54,98]. 

4. Motivations and challenges of using smartphone applications 
for pavement condition monitoring 

Researchers, pavement agencies and governments are looking for 
cost-effective and innovative methods to perform the regular pavement 
condition monitoring. There are several conventional methods that can 
be used for collecting data for pavement condition monitoring. The 
manual inspection technique is one of the conventional methods, how-
ever, it is not efficient, time-consuming, needs professional skills and is 
unsafe and even data collected by the manual method will not be enough 
for machine learning modeling to accurately represent the real defects in 
the pavement surfaces [19,120,121]. Thus, the use of smartphone sen-
sors technology along with a computer vision-based system could be 
cost-effective, and efficient for collecting accurate and enough data that 
are directly and automatically transferred for further processing toward 
fast and more accurate decision making. Furthermore, smartphones are 
equipped with a wide range of sensors that can be effectively used for 
detecting the motion, position and environmental conditions around us. 
Besides, they have adequate storage, communications and computing 
capabilities [4,19,54]. That makes smartphones one of the strongest 
tools that can be used for pavement condition monitoring among the 
available alternatives. The smartphone is also one of the best options 
that can be used for rural roads and developing countries where there 
are not enough budgets, technologies and professional skills available to 

Table 3 
Summary of the findings from the literature on applications of smartphones for the detection of miscellaneous pavement surface defects.  

Reference/ 
Country 

Objectives Data collection method Analysis Methods Results and Findings Remarks 

Zhou et al. 
2022[115] 
/ China 

To develop CNN model for 
detecting road manhole 
covers 

Three different 
smartphones, 
accelerometer, 
gyroscope and image 
sensors 

Convolutional 
neural network 

Developed model showed a very 
good accuracy of 86.3% to detect the 
manhole covers 

An effective and global system was 
recommended to be developed for 
manhole covers detection using IoT 
technology 

Massahi et al. 
2017[116] 
/ USA 

To evaluate the raveling 
performance of pavement 
using smartphone 

Image and GPS 
smartphone sensors 

Numerical 
statistical 
modeling 

It was found that mixing and 
ambient temperatures, mix spread 
rate and gradation factors are 
considered the main causes of 
raveling  

Ksaibati 2017 
[117] / USA 

To estimate the pavement 
serviceability index using 
acceleration data from 
smartphones 

AndroSensor Regression 
analysis 

Two statistical models developed 
with adequate accuracy (R2 more 
than 0.9) for predicting PSI from 
acceleration data collected by 
smartphones 

Future studies were recommended to 
consider different factors that may 
affect the prediction of PSI based on 
acceleration data from the 
smartphones 

Vemuri et al. 
2020[118] 
/ USA 

To develop regression 
models based on smartphone 
data for estimating pavement 
condition index (PCI) 

Andoid Studio 
Application, 
accelerometer and GPS 
sensors 

Multiple linear 
regression models 

The acceleration data obtained from 
the smartphone application showed 
a correlation coefficient between 
0.85 and 0.9 with PCI 

Developed models should be 
calibrated to fit different vehicle 
types and various sensitivities of 
accelerometer sensors  
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cover the required regular pavement condition monitoring. 
Although the aforementioned motivations for utilizing smartphone- 

based applications for detecting pavement surface performance, there 
are many challenges that should be taken into consideration to be 
mitigated by researchers, pavement industries and governments. One of 
these challenges is the quality of built-in smartphone sensors that need 
to be upgraded to cope with the high demand for pavement monitoring 
and assessment. Furthermore, there are many factors that have a direct 
effect on the quality of measurement and collection of data using 
smartphone-based applications through their effects on the movement 
and vibration of the smartphone. These factors such as different hard-
ware and software architectures, operation systems, chips and other 
physical properties [4,102,122]. From the survey of the most published 
literature on the applications of smartphones for pavement monitoring, 
it can be noted that most of those studies only used GPS and acceler-
ometer sensors, which limits the capability of the smartphone to collect 
a wide range of data on the different conditions of pavement such as 
environment including pavement temperatures, moisture damage, ef-
fects of fluid on pavement surface and so on. Therefore, it is an impor-
tant task for future researchers to use all available sensors and even add 
external sensors and combine the built-in and external sensors to come 
up with smartphone applications that can collect as much possible data 
on the pavement surface conditions from different perspectives toward 
addressing challenges. 

Another challenge is the drain down of smartphone batteries due to 
the continuous collection, processing, transmission and storage of data. 
This issue can be resolved through energy harvesting including the 
electrical energy that can be generated from the speed of the vehicle, 
pavement surface heat, solar, vibration and so on to recharge the 
smartphone batteries and keep the collecting of data continues for as 
long as possible [4]. In addition, one of the shortcomings of using 
smartphone-based sensors technology is the collected data is not directly 
collected from the pavement surface but is inferred from the data that 
resulted from the interaction among the vehicle, driver and pavement 
[97]. To address this challenge, further research is needed to investigate 
the separate and combined effects of different vehicle types and condi-
tions, drivers’ behavior and smartphone types and conditions to achieve 
more accurate data [72]. Machine learning techniques can also be uti-
lized to evaluate these effects and develop models that maximize data 
accuracy. More than machine learning approaches can be also inte-
grated to come up with better accuracy [54]. The comparison of 
smartphone-based techniques with other well-stablished pavement 
condition monitoring methods can be also useful in assessing the accu-
racy of the collected data. Additionally, collaboration with sensor en-
gineers can help identify the effects of different smartphone sensor 
characteristics on data accuracy, leading to recommendations for 
selecting the optimum sensors and characteristics for better accuracy. 

Furthermore, there is no existing technique for collecting data by 
smartphones or vehicles without the authorization and contribution of 
their owners. Besides, there is a need to calibrate accelerometers for 
each vehicle because there is no standard across vehicles. Therefore 
establishing a global standard for utilizing smartphones for pavement 
condition monitoring is still a challenge that faces the researchers [97]. 
The automated detection of pavement failures from pavement images is 
also a challenge. That includes the challenges related to the sources and 
resolution of the images (from smartphones, digital cameras, etc.), 
non-uniformity of defects, and the presence of other features such as 
joints [94]. Another challenge is developing an automated system that 
can accurately classify the pavement defects, especially those that are 
very close in nature or shape such as transverse cracks, longitudinal 
cracks, alligator cracks, etc. [94]. Therefore, further extensive research 
with a combination of different machine learning techniques and 
different available technologies such as artificial intelligence should be 
investigated in this regard to come up with an automated system that 
can be accurately used to identify and distinguish among all pavement 
surface distresses. 

5. Recommendations and future directions 

To contribute to addressing the aforementioned challenges and 
developing a sustainable smartphone-based pavement condition moni-
toring system, the most important recommendations and future di-
rections are summarized in this section. Such recommendations and 
future directions may provide a useful reference for researchers and 
pavement industries interested in developing a smartphone-based 
pavement condition monitoring system as an alternative to conven-
tional techniques. The main recommendations are highlighted as 
follows:  

▪ The rate of data collection using smartphone applications 
should be improved in order to avoid missing any data during 
the survey, especially at high vehicle speeds. 

▪ Parameters and conditions that are related to using of smart-
phones for the collection of roughness and other pavement 
defects data should be optimized using advanced optimization 
tools to come up with optimal conditions that can be used in 
different countries with different conditions for pavement 
performance failures detection close or better than that ob-
tained using conventional techniques such as inertial profilers.  

▪ One of the important recommendations is to upgrade the 
smartphone applications that are used for detecting the 
roughness of pavement surfaces to perform an analysis of 
collected data and eliminate any noise due to the outliers.  

▪ Integration of different smartphone applications and different 
machine learning technologies and algorithms is another hot 
research that could lead to desirable and efficient improvement 
in pavement surface failure detection.  

▪ Comparing the performance of smartphone-based applications 
in the detection of pavement surface defects for different types 
of pavement based on the asphalt mixture type (dense graded, 
gap graded or open-graded) to validate their capability to 
accurately be used for different pavement surfaces.  

▪ The performance of different smartphones based on their 
hardware specifications should be also compared to explore the 
differences and to recommend a suitable one capable to collect 
more accurate data on defects.  

▪ Focused studies on defects that were not covered in literature or 
did not receive enough effort such as fatigue cracking, thermal 
cracking, rutting, moisture damage and so on are 
recommended.  

▪ Video data based on the smartphone was not potentially 
considered in the literature for different pavement defects due 
to needing for a long time to transfer data, power consumption 
and costs [67]. Therefore, it was recommended to consider this 
research gap for future studies with the rapidly grow of 
smartphone properties such as with 5 G, the data transfer will 
be easier and that will make it possible to use real-time data 
based on smartphones with computer vision to detect the road 
surface conditions.  

▪ It is also recommended to compare the performance machine 
learning models used for pavement condition monitoring with a 
unique dataset such as public data available from trans-
portation departments to distinguish which machine learning 
approach can be adopted to achieve the best prediction per-
formance [19].  

▪ The end-to-end deep learning models for automated pavement 
defect detection based on the images should receive more 
attention in future studies [94].  

▪ The collaboration among academia, private companies and 
public agencies toward developing calibrated automated 
monitoring systems for infrastructure monitoring in general 
and pavement surface performance in special are strongly rec-
ommended [4]. 
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▪ The effects of the pavement thickness and structures, materials 
properties, environmental conditions and traffic conditions on 
smartphone data-based defects prediction should be further 
evaluated.  

▪ The effects of different tire pressure, engine size, vehicle type, 
spring stiffness and vehicle size on the acceleration data that is 
collected using the smartphone-based method for failure esti-
mation should be studied.  

▪ The orientation and mounting configuration of smartphones, 
vehicle speed, sampling rate and human biomechanical pa-
rameters are other parameters that have a significant influence 
on the accuracy of smartphone measurements. Therefore, 
further research is needed to be conducted in this regard.  

▪ Many developed and developing countries around the world 
still do not establish any research on using such technology for 
pavement condition monitoring, therefore it is strongly rec-
ommended to start such research toward establishing their own 
standards for more efficient use of this technology.  

▪ Focused studies on the applications of smartphones to monitor 
the condition of cement concrete pavement to detect the 
different defects that did not receive enough attention such as 
support loss, joint deterioration, etc. are strongly 
recommended. 

6. Conclusions 

The application of smartphone technology in pavement condition 
monitoring has received great attention during the last decade. This was 
due to the rapid improvement in smartphone capabilities and cost- 
effectiveness and availability compared to conventional techniques. In 
this review, the efforts of researchers in the developing and use of 
smartphone applications for pavement condition monitoring were 
summarized. Besides, the various techniques that are used for processing 
and developing pavement surface defects detection models based on 
smartphone collected data such as using machine learning approaches 
were discussed. The performance of different developed smartphone 
applications and prediction models in relevant literature were 
compared. At the same time, motivations and challenges of using such 
technology for efficient pavement condition monitoring were reported. 
In addition, recommendations and future directions that have been 
highlighted in the literature were also included. According to the results, 
analysis and discussion from this review the following conclusions can 
be drawn:  

▪ Most pavement detection systems that are developed based on 
smartphone-data applications are effective to detect pavement 
surface conditions with low cost and adequate accuracy 
compared to conventional methods.  

▪ Many factors affect the performance of such technology for data 
collection and developing accurate defect detection models 
including but not limited to smartphone characteristics, vehicle 
types and speed, collection data rate, pavement structure, ma-
terials properties, environment, etc.  

▪ The common smartphone applications that received quite an 
evaluation so far are TrafficSense, Road Condition Tool (RCT), 
SmartRoadSense, RoadSense, AndroSensor, Roughness Capture 
and Asfault. That showed appropriateness to be used for col-
lecting data for pavement monitoring with some limitations 
discussed above. Besides, most of the existing studies are only 
limited to the use of accelerometer, GPS and camera sensors, 
indicating there are a need for future investigation of the 
remaining available sensors.  

▪ Machine learning approaches are strongly involved in the 
preprocessing, processing and analysis the smartphone-based 
data for developing detection and prediction models. ANN, 
CNN, SVM and DNN approaches showed to be the more 

algorithms were used which showed excellent performance in 
most of the cases.  

▪ Most of the developed models using machine learning exhibited 
R2 values of more than 0.9, indicating the developed models 
can represent at least 90% of the actual pavement surface 
performance.  

▪ Most studies reported in the literature addressed the roughness 
of pavement surfaces, however, very few studies investigated 
the applications of smartphones on other defects such as 
rutting, fatigue, thermal cracking, raveling, etc.  

▪ The smartphone-based IRI developed models for different road 
applications showed an accuracy between 0.6 and 0.95 
compared to the IRI obtained from conventional methods such 
as inertial profiler, indicating the good agreement between 
both methods.  

▪ Hybrid machine learning algorithms should be adopted in 
future research for developing more accurate models based on 
smartphone data that can be used to detect different types of 
pavement surface failures.  

▪ The main motivation for using smartphone-based technology 
for pavement condition monitoring is its cost-effectiveness, 
ease and no need for professional skills; however, the main 
challenge is generating enough, clean and very accurate data 
from such technology.  

▪ Future research is recommended for developing a sustainable 
pavement condition monitoring system based on data collected 
from smartphone applications to detect and distinguish all 
pavement surface defects considering all relevant factors 
including the environment with an automated process starting 
from data collecting until taking the decision for the required 
maintenance or rehabilitation. 
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