
Delft Center for Systems and Control

Towards Sustainable CNNs:
Tensor Decompositions for
Green AI solutions
Exploring Energy Consumption of Large CNNs

D. Breen

M
as

te
ro

fS
cie

nc
e

Th
es

is

Towards Sustainable CNNs: Tensor
Decompositions for Green AI solutions

Exploring Energy Consumption of Large CNNs

Master of Science Thesis

For the degree of Master of Science in Systems and Control & Robotics
at Delft University of Technology

D. Breen

August 19, 2024

Faculty of Mechanical Engineering (ME) · Delft University of Technology

Copyright © Delft Center for Systems and Control (DCSC) & Cognitive Robotics (CoR)
All rights reserved.

Abstract

The ever-increasing complexity of Artificial Intelligence (AI) models has led to environmental
challenges due to high computation and energy demands. This thesis explores the application
of tensor decomposition methods—CP, Tucker, and TT—to improve the energy efficiency of
large Convolutional Neural Networks (CNNs) during inference by reducing energy consump-
tion. The energy consumption of several convolution layers was measured using a watt meter
across various CNN configurations and different hardware architectures (Central Processing
Unit (CPU) and Graphics Processing Unit (GPU)). In addition, several regression mod-
els were fitted to estimate energy savings, incorporating memory usage. It was found that
TT decomposition consistently provided the most significant energy savings across various
compression ratios, influenced by CNN hyperparameters such as input/output channels, fea-
ture sizes, and kernel sizes, whereas CP decomposition was the least effective in reducing
energy. The GPU implementations generally resulted in additional energy consumption, and
the GPU regression models suggested a need for more complex relationships. The thesis
also revealed that the efficiency of tensor decompositions might be highly dependent on the
implementation details of software libraries, such as TensorlyTorch, which can significantly im-
pact the computation and memory complexities. These findings underscore the importance
of both hardware-specific considerations and careful software implementation in achieving
energy-efficient CNNs, providing a foundation for further research in energy-constrained en-
vironments.

Master of Science Thesis D. Breen

Table of Contents

Preface & Acknowlegdements vii

1 Introduction 1

2 Related work 5
2-1 Sustainable AI . 5

2-1-1 Trends in Green AI . 5
2-1-2 Green autonomous driving . 6

2-1-3 Evaluating Green AI . 6

2-2 Measuring the energy consumption . 7

2-2-1 Energy to measure . 8

2-2-2 Methods to measure the energy . 10

2-2-3 Internal measurement tools . 11
2-3 Tensor decompositions . 13

2-3-1 Preliminaries . 13
2-3-2 CP decomposition . 17

2-3-3 Tucker decomposition . 19

2-3-4 TT decomposition . 20

2-4 Energy-efficient CNNs . 22

2-4-1 Model compression methods . 22

2-4-2 Tensor decomposed convolutions . 23

2-4-3 Training vs inference . 26

2-5 Contributions . 26

Master of Science Thesis D. Breen

iv Table of Contents

3 Methodology 29
3-1 Decomposed convolutions . 29

3-1-1 Convolutional neural networks . 30
3-1-2 CP convolution . 31
3-1-3 Tucker convolution . 33
3-1-4 TT convolution . 35

3-2 Experimental design . 36
3-2-1 Single convolution . 37
3-2-2 Decomposed Resnet18 . 38

3-3 Data collection . 39
3-3-1 Energy measurement . 39
3-3-2 Memory profiling . 41
3-3-3 Logging . 41

3-4 Data processing . 43
3-5 Modelling the expected energy savings of decomposed convolutions 44

3-5-1 Data augmentation before fitting . 45
3-5-2 Fitting several regression models . 45
3-5-3 Evaluation metrics . 46

4 Experiments 49
4-1 Influence of input channels . 50

4-1-1 CPU energy savings . 50
4-1-2 GPU energy savings . 52
4-1-3 Key findings . 54

4-2 Influence of output channels . 55
4-2-1 CPU energy savings . 56
4-2-2 GPU energy savings . 57
4-2-3 Key findings . 60

4-3 Influence of the feature size . 60
4-3-1 CPU energy savings . 60
4-3-2 GPU energy savings . 62
4-3-3 Key findings . 64

4-4 Influence of the kernel size . 65
4-4-1 CPU energy savings . 66
4-4-2 GPU energy savings . 67
4-4-3 Key findings . 69

4-5 Energy savings decomposed ResNet18 . 70
4-6 Modelling of the saved energy . 72

4-6-1 Benchmark Model Performance . 72
4-6-2 Comparative analysis with linear and polynomial models including memory

usage . 73
4-7 Key findings . 75

D. Breen Master of Science Thesis

Table of Contents v

5 Conclusion & Discussion 77
5-1 Conclusion . 77

5-1-1 Tensor decomposition methods . 77
5-1-2 CNN configurations . 78
5-1-3 Hardware considerations . 78
5-1-4 Modelling of energy savings . 79
5-1-5 Tensor decompositions for CNNs in AVs 80

5-2 Discussion . 81
5-3 Future work . 83

A Tensor decompositions 85
A-1 CP decomposition . 85
A-2 Tucker decomposition . 86
A-3 TT decomposition . 87

B Methodology 89
B-1 Tensorly Torch decomposed convolutions . 89
B-2 Data processing . 92
B-3 Regression . 95

B-3-1 CPU regression model . 96
B-3-2 GPU regression model . 96

B-4 Resnet18 architecture . 98

C Experiments 101
C-1 Single convolution baseline . 101
C-2 Regression . 102

C-2-1 Benchmark model results . 102
C-2-2 CPU results . 103
C-2-3 GPU results . 104

Glossary 125
List of Acronyms . 125

Master of Science Thesis D. Breen

Preface & Acknowlegdements

I have learned so much throughout my studies and this thesis marks the end of my double
degree in Systems and Control and Robotics at TU Delft. It explores tensor decomposition
methods for improving the energy efficiency of AI systems, a topic driven by the growing need
to balance technological advancements with environmental sustainability. I enjoyed doing a
thesis that also included some form of sustainability because I believe that this is important
and not always considered in projects and courses in the Masters and Bachelors.

The creation of this thesis involved a lot of energy measurements, training of networks and
the cover page was created using DALL-E, a large text-to-image AI model, which might
contradict the research into how energy can be saved. Still, I hope that this work can make a
small contribution to this research field, even though the thesis itself was not as sustainable.

I am very grateful to my supervisors, Dr. Ir. Kim Batselier and Dr. Julian Kooij, for their
guidance and support throughout this thesis. Their expertise in tensor methods and CNNs
has been invaluable.

I also want to thank my parents for their tireless support and encouragement, which have
been crucial to my academic journey. To my friends, thank you for your motivation and
understanding during this process.

Thank you to everyone who has supported me along the way.

Master of Science Thesis D. Breen

List of Figures

1-1 Estimated Joules of a forward pass for different Top-1 accuracy Deep Neural Net-
works (DNN). 2

1-2 Emissions from computing onboard autonomous vehicles (AVs) driving 1 h/day. . 2

1-3 Example of tensor decomposition methods, Parallel Factors (PARAFAC) Canonical
Decomposition (CANDECOMP) (CP), Tucker and Tensor Train (TT), for image
compression. 3

2-1 The CPU and GPU architectures. 8

2-2 Fibers of a 3rd-order tensor. 14

2-3 Slices of a 3rd-order tensor. 14

2-4 Several tensor diagrams for different order tensors. 14

2-5 Tensor diagram of the inner product . 15

2-6 Tensor diagram of the mode-n matricization. 15

2-7 Tensor diagram of the mode-n product. 16

2-8 CP decomposition of a 3rd-tensor. 17

2-9 The tensor diagram of the CP decomposition of an Nth-order tensor. 18

2-10 Tensor diagram of the Tucker decomposition. 19

2-11 MLSVD of a 3rd order tensor . 20

2-12 TT decomposition consisting of multiple tensor cores 21

2-13 The TT-Singular Value Decomposition (SVD) process decomposing a 4th-order
tensor. 21

2-14 The average and standard deviation of critical parameters 23

2-15 Decomposing the kernel into factor matrices using the CP decmposition. 24

Master of Science Thesis D. Breen

x List of Figures

2-16 Tucker-2 decomposition of a convolution layer of a CNN. 25

2-17 Decomposed convolution layer using TT into several smaller layers. 25

2-18 Overview of ‘sustainability’ metrics proposed in literature resembling the energy
efficiency of a model. 27

3-1 The methodological process of this thesis consists of five steps, for which the last
four, bounded in the box, lie as a basis for this thesis contribution. 29

3-2 Architecture of Resnet18 . 30

3-3 Full convolution operation. 31

3-4 The VoltCraft SEM-5000 . 40

3-5 Several power measurement sequences for different experiments run both on the
CPU and GPU. 43

4-1 The mode-S ranks of all three tensor decomposition methods across all compression
ratios. 50

4-2 The energy saved for different methods, CP, Tucker and TT, for a different number
of input channels, run on a CPU. 51

4-3 The Multiply-Accumulate operation (MAC) operations and memory, both calcu-
lated and measured on the CPU, for the different methods and input channels. . 52

4-4 The energy saved for different methods, CP, Tucker and TT, for a different number
of input channels, run on a GPU. 53

4-5 The measured memory usage on the GPU, for the different methods and input
channels. 54

4-6 The mode-T ranks of all three tensor decomposition methods across all compression
ratios. 55

4-7 The energy saved for different methods, CP, Tucker and TT, for a different number
of output channels, run on a CPU. 56

4-8 The MAC operations and memory, both calculated and measured on the CPU, for
the different methods and input channels. 58

4-9 The energy saved for different methods, CP, Tucker and TT, for a different number
of input channels, run on a GPU. 59

4-10 The measured memory usage on the GPU, for the different methods and output
channels. 59

4-11 The energy saved for different methods, CP, Tucker and TT, for different feature
sizes, run on a CPU. 61

4-12 The MAC operations and memory, both calculated and measured on the CPU, for
the different methods and feature sizes. 63

4-13 The energy saved for different methods, CP, Tucker and TT, given by different
colours, run on a GPU . 64

D. Breen Master of Science Thesis

List of Figures xi

4-14 The measured memory usage on the GPU, for the different methods and feature
sizes. 64

4-15 The mode-d ranks of all three tensor decomposition methods across all compression
ratios. 66

4-16 The energy saved for different methods, CP, Tucker and TT, for different kernel
sizes, run on a CPU . 67

4-17 The MAC operations and memory, both calculated and measured on the CPU, for
the different methods and kernel sizes. 68

4-18 The energy saved for different methods, CP, Tucker and TT, for different kernel
size, run on GPU. 69

4-19 The measured memory usage on the GPU, for the different methods and kernel sizes. 70

4-20 Inference energy of decomposed ResNet18 layers. 71

4-21 Predicted vs actual energy from the linear benchmark model for CPU (left) and
GPU (right). 73

4-22 Predicted vs actual energy saved from linear model on CPU. 74

4-23 Predicted vs actual energy saved from the polynomial model on CPU. 74

4-24 Predicted vs actual energy saved from linear model on GPU. 75

4-25 Predicted vs actual energy saved from the polynomial model on GPU. 76

5-1 Energy consumption measured by several tools. 81

5-2 The difference in MAC operations for one experiment for the complexity in the
literature and the found complexity in the TensorlyTorch analysis for both the CP
and TT decomposition. 82

B-1 Residuals versus the fitted values of the CPU models based on the measured mem-
ory and the calculated memory. 96

B-2 Histogram of the residuals of the CPU models based on the measured memory and
the calculated memory. 97

B-3 Histogram of the residuals of the GPU models based on the measured memory and
the calculated memory. 97

B-4 Residuals versus the fitted values of the GPU models based on the measured
memory and the calculated memory. 98

Master of Science Thesis D. Breen

List of Tables

2-1 Overview of tools still under development, containing their measurement methods
(main/alternatives) and utilization. 13

2-2 Nomenclature of the different tensor concepts and operations. 17

3-1 Intermediate storage complexity and computational complexity for different tensor
decomposition methods. 37

3-2 Technical Details of the VoltCraft SEM-5000 40

4-1 Control, independent and dependent variables of experiment 1. 50

4-2 Control, independent and dependent variables of experiment 2. 55

4-3 Control, independent and dependent variables of experiment 3. 61

4-4 Control, independent and dependent variables of experiment 4. 65

4-5 Control, independent and dependent variables for training and inference Resnet18
experiment. 70

4-6 Comparison of Root-mean-square error (RMSE) values for different models on CPU
and GPU. 72

B-1 RESNET18 Layers and Parameters (Page 1) . 99

B-2 RESNET18 Layers and Parameters (Page 2) . 100

C-1 Baseline energy consumption of CPU and GPU at different values of S 101

C-2 Baseline energy consumption of CPU and GPU at different values of T 101

C-3 Baseline energy consumption of CPU and GPU at different values of W 102

C-4 Baseline energy consumption of CPU and GPU at different values of d 102

Master of Science Thesis D. Breen

xiv List of Tables

C-5 OLS Regression Results: CPU, Benchmark Model (MAC Operations Only) . . . 102

C-6 OLS Regression Results: GPU, Benchmark Model (MAC Operations Only) . . . 103

C-7 OLS Regression Results: CPU, Measured Memory, Linear Model 103

C-8 OLS Regression Results: CPU, Measured Memory, Polynomial Model 103

C-9 OLS Regression Results: CPU, Calculated Memory, Linear Model 104

C-10 OLS Regression Results: CPU, Calculated Memory, Polynomial Model 104

C-11 OLS Regression Results: GPU, Measured Memory, Linear Model 105

C-12 OLS Regression Results: GPU, Measured Memory, Polynomial Model 105

C-13 OLS Regression Results: GPU, Calculated Memory, Linear Model 105

C-14 OLS Regression Results: GPU, Calculated Memory, Polynomial Model 106

D. Breen Master of Science Thesis

Chapter 1

Introduction

The rise of intelligent applications, devices, and transportation has led to an increased de-
pendence on Artificial Intelligence (AI) inducing a demand for faster and more advanced
AI models. While AI is being promoted as an innovation contributing to our welfare and
shaping our future [1], there is another less-highlighted side. The query for larger and better-
performing AI models came along with some challenges [2]. Besides requiring substantial
financial costs, these models also require extensive computational resources and energy, im-
posing great environmental impact and retaining the future of AI. It was found that training
state-of-the-art natural language processing models resulted in up to 3 million dollars of fi-
nancial costs but more importantly, up to 280 000 kg of CO2 emissions, which is equivalent
to a person flying 300 times between Amsterdam and New York [3]. Additionally, it was
established that the approximated energy consumption of U.S. data centres increased by 33
billion kWh from 2000 to 2006 and on a global scale the estimations increased by 65 billion
kWh over five years [4]. Figure 1-1 contributes by showing the estimated energy consumption
growth of milestone Deep learning (DL) models, which form a big part of the current AI
research field. These examples give a clear image of the needed change in the current AI
research that should not solely pursue better accuracy but also consider the consequences of
ever-increasing compute and complexity.

This shift towards acknowledging the importance of more sustainability-driven metrics instead
of solely pursuing accuracy was first encouraged by [2] and persisted under the umbrella term
Green AI. Green AI is defined as AI research that pursues a high accuracy and performance
but in doing so actively avoids increasing the complexity and number of computations and po-
tentially even decreasing them [6]. It is the opposite of the current mentality of Red AI which
is defined as the state-of-the-art AI that only seeks to result in the best accuracy and perfor-
mance without taking into account the environmental, economic and social consequences [6].
To measure the ‘greenness’ or ‘sustainability’ of AI, several metrics have been proposed, such
as the amount of carbon emitted, elapsed real time, the number of parameters, the number
of floating point operations (FPO) and the amount of energy consumed [6]. However, these
metrics lack universality making model comparison difficult and alternative metrics need to
be developed as proposed by [7].

Master of Science Thesis D. Breen

2 Introduction

Figure 1-1: Estimated Joules of a forward pass for different Top-1 accuracy Deep Neural Networks
(DNN). The dashed line is a linear fit on a logarithmic-scale, for the models with the highest
accuracy per year. The solid line fits all models’ average energy (retrieved from [5]).

Current Green AI research focuses primarily on large neural networks [8]. To increase the
accuracy and performance of neural networks, deeper and wider networks are developed con-
sisting of a growing number of parameters. These large networks with high accuracy will
consume more energy than others as seen in Figure 1-1. Besides, the environmental im-
plications another challenge arises. The current desire for autonomy and computation of
resource-limited applications, such as mobile phones or autonomous vehicles (AVs), demands
new technologies allowing energy-efficient computation and memory [5]. Object detection in
AVs requires high computational power and the capacity to process 21.6 billion inferences
daily without compromising critical safety requirements [9]. They are now even referred to
as ‘driving data centres’ or ‘supercomputers on wheels’ [10], emitting the same amount of
carbon emissions as data centres based on their expected power consumption as is shown in
Figure 1-2. Therefore, it is essential to consider accuracy and energy consumption for these
resource-constrained applications, in line with the Green AI mentality.

Figure 1-2: Emissions from computing onboard AVs driving 1 h/day: With one billion AVs, each
using an average of 0.84 kW of computing power, the total emissions would be comparable to
those produced by all data centres combined (reprinted from [10]).

To facilitate the integration of large and accurate Convolutional Neural Networks (CNNs)
into the AVs without facing these resource, computation and sustainability challenges it is

D. Breen Master of Science Thesis

3

important to find a way to reduce their energy consumption and computational workload.
The development of more energy-efficient CNNs has been extensively researched, and meth-
ods such as pruning, quantization and knowledge distillation are widely used [11]–[15]. A
promising state-of-the-art strategy is to use tensor decompositions. The tensor decomposi-
tion methods can be used to decompose the large kernels of the CNNs, breaking down the
‘regular’ convolution layers and replacing them with separate smaller ones. Especially for
deep CNNs for which the kernels can become very large, the use of tensor decomposition
shows great potential. This potential has been widely researched and in [16], a compact but
thorough overview is presented consisting of the current advancements in this research field,
addressing the energy efficiency problem through the use of tensor decompositions, especially
in the context of CNNs.

Tensor decompositions offer a solution by approximating large CNNs with low-rank approx-
imations while maintaining the desired accuracy and by extracting physically meaningful
variables from the data in an accurate and computationally conserving way [17]–[20]. Three
main tensor decompositions are used to decompose the layers of the CNN: Parallel Fac-
tors (PARAFAC) Canonical Decomposition (CANDECOMP) (CP) decomposition, Tucker
decomposition and Tensor Train (TT) decomposition [16]. To illustrate their capabilities and
accuracy preservation, another application of tensor decomposition, namely image compres-
sions, is used in Figure 1-3. Here, the left image is decomposed into smaller components,
consisting of only 2% of the original number of parameters. After reconstructing, based on
only 2% of the parameters, the main features are still present and interpretable. This example
can give an intuitive understanding, that when large CNN kernels are decomposed to a min-
imal number of parameters, the approximation could still achieve well enough performance.

Original CP Tucker TT

Figure 1-3: Example of tensor decomposition methods, CP, Tucker and TT, for image compres-
sion. It visualizes that the approximation of the tensor decomposition can keep accuracy even
with only 2% of the original number of parameters.

Decomposing layers into smaller components reduces the number of parameters in large ker-
nels, affecting both computational and memory complexity. This reduction is expected to
decrease the number of operations required, lowering the computational load, and decreasing
the memory usage compared to the original larger kernels. A lower computational workload
and decreased memory movements suggest efficient and fast processing, theoretically reduc-
ing the energy consumption of large CNNs. However, despite the progress of implementing
tensor decompositions in convolutional layers, further exploration is needed to fully realize

Master of Science Thesis D. Breen

4 Introduction

their potential for energy-efficient processing, particularly in analysing the real-time energy
reduction of using tensor decompositions as network compression of CNNs.

This thesis aims to investigate the potential of implementing these tensor decompositions in
CNNs for energy reduction, allowing for more energy-efficient inference. That is why the
following research question will be answered:

How does the implementation of tensor decompositions (CP, Tucker, and TT) affect the
energy efficiency of large CNNs during inference, with a focus on predicting the resulting
energy savings?

This will be done by breaking this question into smaller sub-questions, presented below.

SQ1 Which type of tensor decomposition (CP, Tucker, or TT) and compression ratio yields
the best performance for energy efficiency in CNNs?

• Objective: Identify the most efficient tensor decomposition method and optimal
compression ratios for maximum energy savings.

SQ2 Which convolutional hyperparameters, such as input/output channels, input feature
size, and kernel size, yield the greatest energy savings for decomposed convolutions
using tensor decompositions?

• Objective: Determine which convolutional hyperparameters affect the saved en-
ergy consumption most.

SQ3 To what extent is the energy consumption of tensor-decomposed CNNs influenced by
the use of hardware, specifically Graphics Processing Unit (GPU) compared to Central
Processing Unit (CPU)?

• Objective: Evaluate the effect of the implementation of different types of hard-
ware, in particular the differences between CPU and GPU?

SQ4 To what extent can energy savings in tensor-decomposed CNNs be accurately predicted
based on pre-implementation data, such as calculated computation and memory usage,
compared to models requiring additional empirical measurements?

• Objective: Determine the accuracy of predicting energy savings in tensor-decomposed
CNNs using pre-implementation data versus empirical measurements, and compare
the effectiveness of these predictive models.

This thesis consists of four chapters. First, Chapter 2 will outline the the state-of-the-art
research in this field, which forms a basis for the next chapters. Second, Chapter 3 gives
an elaboration on the used methodology. Third, Chapter 4 will present all results and key
findings. Lastly, Chapter 5 will present the final conclusions to the above-presented question
including a discussion which will also present the steps for future work.

D. Breen Master of Science Thesis

Chapter 2

Related work

This chapter gives a concise overview of the existing literature and state-of-the-art research
in the research field. It shows the current foundation on which this thesis will build its
contributions. The current state of the Green AI perspective will be outlined, followed by
different measurement techniques of energy consumption. After that the preliminaries and
basic concepts of tensor decompositions are outlined, showing the theoretical background of
decomposed convolutions. Lastly, the decomposed convolutions and current research will be
presented.

2-1 Sustainable AI

The trends in current AI research are monitored closely [5], [21]–[25]. The exponentially
growing demand for large models has initiated a large research field looking into ‘sustainable’
AI. This section will present state-of-the-art research that tries to define ‘sustainable’ AI and
tries to come up with new ‘sustainability’ metrics. In addition, the current integration of this
new view on AI into current autonomous driving research will be shortly outlined, showing
the impact on current applications.

2-1-1 Trends in Green AI

Early awareness of the increasing sustainability impact of ICT was uncertain about whether
the energy saved using ICT would outweigh the energy required for ICT resources. The
GREENSOFT model was proposed to address this, which includes energy-efficient metrics,
life-cycle design considerations, and sustainable software criteria [4]. It was suggested to
closely monitor these sustainability concerns.

Concrete policy considerations were proposed in [2], highlighting that training large natural
language models could emit up to 600.000 pounds of CO2. Authors were encouraged to report
the resources used, including finances and computation, alongside model accuracy.

Master of Science Thesis D. Breen

6 Related work

Sustainable AI was proposed by [26] and defined as “a movement to foster change in the entire
lifecycle of AI products (i.e. idea generation, training, re-tuning, implementation, governance)
towards greater ecological integrity and social justice”. This term highlights the distinction
between ‘AI for sustainability’ and ‘sustainability of AI’, reflecting the balance discussed in [4].
Another term is Green AI. It is defined as “AI research that is more environmentally friendly
and inclusive” [6], contrasting with the common Red AI mentality. Although sustainable AI
and Green AI are used interchangeably, Green AI has become a more established term. [8]
provides an extensive overview of the Green AI research field.

Efficiency as an evaluation metric for AI was proposed by [6], while [1] argued that focus-
ing solely on efficiency is insufficient, particularly in terms of compute, energy and carbon.
Improvements in AI efficiency can lead to unexpected outcomes [1]. For instance, there are
discrepancies between compute efficiency, energy efficiency and carbon efficiency and not all
expected gains from increased energy efficiency are necessarily realized, also known as the re-
bound effect [27]. This effect, where increased efficiency leads to more usage, may counteract
some benefits of new implementations [3].

2-1-2 Green autonomous driving

In autonomous driving, addressing the resource limitations while meeting the computational
demands for safe and fast processing has led to the integration of Green AI. The contrast
between Green AI and Red AI perspectives is noticeable in current research [28]–[31]. So-
lutions like edge inference, which combines cloud connectivity and external data processing,
offer potential solutions. However, they merely shift the computational workload rather than
reduce it, making sustainability still a concern. A combination of onboard computer and
cloud connectivity is researched in [32].

Another downside of leveraging network connections for external computation and storage
is that it introduces cybersecurity and safety challenges [33]. [34] provides an overview of
edge AI for autonomous vehicles (AVs), involving opportunities of model optimization. The
main research areas are model compression, consisting of parameter reduction, layer/node
reduction, neural architecture search, and model approximation, which includes quantization,
sparsification, low-rank approximations, and knowledge distillation [34]. Additionally, data-
centric Green AI offers other opportunities to improve energy efficiency [35], [36].

2-1-3 Evaluating Green AI

To effectively implement the Green AI perspective and motivate researchers, new metrics
are needed that embody the ‘sustainability’ of AI, focusing on the energy efficiency of a
network. These new metrics require universality, enabling direct comparison between different
AI models. In [37] an overview of metrics is presented, divided into compute, energy, carbon
emission and runtime metrics.

The number of floating point operations (FPO)s can give an insight into the computational
speed of an algorithm, typically calculated for one forward pass through a network [37].
An alternative is the number of Multiply-Accumulate operations (MACs) or Multiply-Add
operations (MADs) [38], which is twice the number of FPOs and can be of substantial amount

D. Breen Master of Science Thesis

2-2 Measuring the energy consumption 7

in large Convolutional Neural Networks (CNNs) [37], [39]–[41]. These metrics perform well
in showing the computational complexity of a model, however are not hardware-dependent.
Different types of hardware can show a difference in energy efficiency for the same number of
operations [42].

Another metric is the number of parameters in the network [43], which can correlate with
training and inference time [41]. However, this metric is not universal, as different model
architectures with a similar number of parameters, can show different energy profiles, and are
not directly comparable [6], [44].

In contrast, more hardware-focused metrics such as hardware-utilization of Central Processing
Unit (CPU) and Graphics Processing Unit (GPU) are crucial for designing resource-efficient
Deep learning (DL)-frameworks [45], [46]. CPU-GPU utilization-aware energy-efficient strate-
gies can reduce energy consumption significantly [47]. Related metrics include GPU- and
CPU-hours, which can be seen as the utilization times the runtime [48]. However, these
metrics do not consider the efficiency of the network and code that is running.

Runtime metrics, divided into the inference time and training time, are commonly used to
compare models on the same hardware and software settings, despite their lack of universality
[49]–[51].

Energy consumption metrics provide a direct measure of a model’s energy efficiency, using
measurements or estimates in Joules, kWh, or Watts for training and inference [37], [52]–
[54]. Similar to other metrics, these metrics are not hardware-independent. Carbon emission
estimation, another direct sustainability measure, considers energy consumption, location-
specific carbon intensity, and Power Usage Effectiveness (PUE). [55]–[58].

Integrating energy consumption into the Red AI versus Green AI perspectives introduces new
metrics that balance sustainability and accuracy. For example, in [59], accuracy per Joule
is proposed and in [7] several energy-based efficiency metrics are given, including an energy-
precision ratio and a recognition efficiency. The GreenQuotientIndex allows researchers to
prioritize energy consumption over accuracy by tunable parameters.

Carbon footprint is another metric, which focuses more on the whole picture of the models’
sustainability. As a basis for this lies the energy consumed by a model. Then, based on the
location and time, either inference, training or both are performed, and the carbon intensity
(the division of how the energy is produced) is used to calculate the estimated carbon emis-
sions. However, this implies that the sustainability of a model relies on the location and time,
which is not a general metric.

While these metrics focus on the training and inference phases of the model, the full lifecycle
also includes infrastructure, recycling and development. To address this, the full-cycle energy
consumption metric [60] and the deep learning lifecycle efficiency metric [7] were proposed.

2-2 Measuring the energy consumption

Most of the metrics above can be profiled quite straightforward, for example by using times-
tamps for runtime metrics, calculating the number of parameters or monitoring hardware
utilization using integrated Application Programming Interfaces (APIs). However, accurately

Master of Science Thesis D. Breen

8 Related work

profiling energy consumption in specific processes is challenging [52]. This section will elab-
orate on the current research in energy measurement, consisting of what energy to measure
and existing tools and estimators.

2-2-1 Energy to measure

Before diving deeper into the state-of-the-art measuring techniques several concepts need
some clarification. This section provides a basic explanation of several hardware components
for which it is important to measure their energy. Also, the full-life-cycle assessment will be
discussed.
CPU and GPU computation
CPUs and GPUs are crucial processors for computationally demanding tasks, each designed
for different but complementary purposes [61]. CPUs execute sequences of stored instructions
and manage overall system operations, processing inputs, storing data, and outputting results
through a fetch, decode, and execute cycle. Modern CPUs include an Arithmetic Logic
Unit (ALU) for arithmetic operations, a Control Unit (CU) for control, and a cache to reduce
memory retrieval costs [62] as shown in Figure 2-1a. However, their lack of extensive parallel
processing limits performance in complex computations [63].

(a) CPU architecture (b) GPU architecture

Figure 2-1: The CPU and GPU architectures, showing their differences in sequential and parallel
processing.

In contrast, GPUs, initially designed for graphics processing, excel in parallel processing
and have expanded to general-purpose computing (General-Purpose Graphics Processing
Unit (GPGPU)) [64]. They handle computationally intensive tasks like scientific simulations,
data processing, and DL [65]. Unlike CPUs, GPUs operate many control units in parallel,
enhancing efficiency in tasks like tensor computations [66]. This parallelization is visualized in
Figure 2-1b, especially in comparison to the single CU structure of the CPU. This increased
performance efficiency, however, can offset the energy efficiency of a GPU application [67]
and requires considerations in tuning code and GPU configurations [68]. Another drawback
of using GPU for performance efficiency is that it is more expensive than the CPU.
In the context of tensor decompositions, involving complex computations, the use of GPGPU
still presents a potential option. Among others, research on using GPGPU for tensor decom-
positions includes an optimization algorithm for non-negative tensor factorization [66] and
higher-order tensor computations in Google Colab [66]. The terms GPGPU and accelerated
GPU are used interchangeably in tensor network research, however, they differ slightly. Be-
sides focusing on general-purpose tasks, accelerated GPU includes accelerating other tasks

D. Breen Master of Science Thesis

2-2 Measuring the energy consumption 9

including graphics and communication. Accelerated GPU has been used for tensor computa-
tions such as the Hadamard product [63] and for a scalable C++ library for tensor network
processing [69].

Memory
Another important component inside the processing hardware is Random-Access Memory
(RAM) and can be divided into either Static Random-Access Memory (SRAM) or Dynamic
Random-Access Memory (DRAM). Since DRAM is the most used component in current com-
puter hardware the focus will lie on DRAM [70]. Despite its popularity, DRAM contributes
heavily to energy consumption due to the movement of memory [71] and is almost 200 times
more energy consuming than other operations, such as addition or multiplication [72].

Since the energy consumed for the memory allocation can be extensive, it is thus an important
factor to consider when designing an energy-efficient CNN. The memory allocation and man-
agement can differ between the GPU and CPU, whereas for GPU the memory performance
can be a key efficiency limitation [73]. Due to the parallel architecture of the GPU, handling
multiple memory operations simultaneously, compared to the sequential processing of the
CPU, efficient management and optimization of the memory access patterns is required to
prevent bottlenecks and ensure all control units remain busy. It is thus more difficult to opti-
mize the memory performance of this GPUs, in particular for energy efficiency where a lack of
research is present, since research focuses more on the computational efficiency of the GPUs
[73], [74]. In addition, the heterogeneous and distributed nature of the GPU subsystems adds
to the complexity, with various types of caches and memory banks, showing different power
usage and energy efficiency [75], [76]. These factors might make GPU memory management
more complicated and energy-intensive compared to CPUs, highlighting the importance of
extending the research into efficient memory management in the GPU, e.g. creating energy
models based solely on memory usage [77].

Life cycle assessment
As mentioned before, current research mainly focuses on the training phase of developing new
AI models. However, NVIDIA estimated that 80 to 90 percent of the total expected energy
consumption is consumed during the inference phase [78]. Especially models that will be used
extensively during deployment would have a great benefit in research into inference energy.
However, the current research mainly focuses on the training of Machine learning (ML) models
and sometimes even neglects to mention the inference phase. The fact that measuring the
training energy is more isolated and controlled contributes to the lack of research in inference
energy [78].

Another part of the energy consumption of new ML models is the full life-cycle assessment.
The energy consumed by manufacturing and end-of-life stages of the hardware, data centres,
and other parts is hard to estimate or predict and is thus frequently not included. Besides
the research in [57], there is still a big research gap and there are great opportunities to
look into these sources of energy consumption. [57] highlights the need for research and
finds that probably most of the energy related to mobile devices and data centres comes
from manufacturing and infrastructure. Due to the lack of research in the field of life-cycle
assessment and the difficulty of requiring information about this topic, this part will not be
taken into account further. However, the opportunities in the research around the energy
consumption of running inference are addressed and will be discussed.

Master of Science Thesis D. Breen

10 Related work

2-2-2 Methods to measure the energy

Following the taxonomy in [54], this section will discuss methods for measuring the energy
consumption of the previously mentioned factors (CPU, GPU and DRAM), focusing on the
software-level methods relevant to the energy consumption of the software implementations.
These estimators will further be divided into internal (e.g. Python libraries) and external
(e.g. watt meters) methods, following [79], focused on external tools, and [44], focused on
internal tools.
External measuring
External measurements are commonly performed by power or watt meters with alternative
options like Intelligent Platform Management Interfaces (IPMI) sensors, although these sen-
sors lack accuracy [80]. Watt meters, used to measure the power in circuits, come in several
types, such as electrodynamic watt meters, electronic watt meters and sensor-based watt me-
ters (thermal, radiation, hall and diode)[79]. In contrast, energy meters, which measure the
energy supplied to a circuit over time, include electric motor energy, induction-type watt-
hour, electrolytic energy, static energy and all-digital energy meters, with the latter being the
most modern and common [79].
All digital energy meters, like smart plugs, plug load meters and energy monitoring adapters,
are typically placed between the wall socket and the power supply of the hardware [81], such
as Kill a Watt and WattsUp [82], and can give information about voltage, power and current
with adjustable sampling rates.
Recent smart meters proceeded on this allowing users to calculate, monitor, measure and
transmission energy, enabling remote management of energy consumption [79]. However, the
liability and performance of these meters can vary depending on the device, giving unrepre-
sentable power measurements [81].
Internal measuring
One big limitation of external measuring is the inability to break down the energy consumption
into component-specific energy. Internal measuring, relying on hardware sensors and software
interfaces, does allow for this breakdown. These internal measuring tools, embedded by
manufacturers, measure the power consumption for main components such as CPU, GPU
and DRAM [81].
One of these embedded profiling APIs is Intel’s Running Average Power Limit (RAPL) inter-
face, developed to monitor and control the system’s power consumption [81]. RAPL provides
fine-grained and high-sampled measurements of the energy consumption and power limits for
each domain, accessible through model-specific registers, read directly or through sysfs inter-
face, perf events or the Performance API (PAPI) library [80]. However, detailed calculations
by RAPL are not documented [81]. The RAPL data is mostly used for the measurements of
the CPU, however, it is limited to Intel processors, it cannot provide data for virtual machines
and the data is only accessible using Linux, since the Windows interface was discontinued.
For GPU measurements, Nvidia’s C-based API library, Nvidia Management Library (NVML),
monitors and manages GPU, providing real-time data on temperatures, utilization, power
draw and other relevant metrics via nvidia-smi [83]. There are few details about the actual
calculations of NVML. The library pynvml integrates NVML with Python.
Both RAPL and NVML measure the energy of the whole processor. To measure consumed
energy at the software level, per processor energy consumption is necessary, which is retrieved

D. Breen Master of Science Thesis

2-2 Measuring the energy consumption 11

from real-time utilization information obtained from the cross-platform psutil library. If real-
time utilization is unavailable, CPU utilization can be estimated using usage-based modelling,
since the CPU utilization is correlated to the computing power [81]. The Thermal Design
Power (TDP), provided by the manufacturer, can be a good approximation of the maximum
power usage under steady workload [81]. Unlike CPU utilization, determining the exact GPU
utilization is harder so commonly the full workload is assumed.

2-2-3 Internal measurement tools

Combining all these different libraries and interfaces to measure the full energy consumption
of all three CPU, GPU and DRAM can be a complicated task and requires some knowledge
of hardware and electrical engineering. To strive for more Green AI-driven metric reporting,
keeping measurements accessible to all researchers, several tools and Python libraries have
been developed. These tools are unique and can differ in some important parts. Below an
overview will be given of a variety of state-of-the-art tools, their limitations and assumptions.
Tools that are included are all still under development or updated. The tools will be divided
into two different categories: the online calculators and the real-time energy monitors.

Online Calculators
Online calculators estimate energy consumption based on user-input hardware details and
process information, without providing real-time data or life-cycle assessments.

Green algorithms [84] is a tool that calculates the carbon footprint and energy consumption
of an algorithm, based on user-input such as running time (hours), number of cores, core
model types, memory size (GigaBytes (GB)), core usage factor (0-1), location of running and
PUE of the data centre. The calculator uses a database of known CPU and GPU models and
their TDP values to find the power of the computing core. If the model is unknown, the user
can provide the TDP and utilization or full utilization and a TDP of 12 W is assumed. For
the power drawn by the memory, full memory utilization is assumed at an average of 0.3725
W/GB. Unsubstantiated assumptions can affect the accuracy and reliability of this tool.

Similarly, the ML Emissions Calculator (CO2 impact tracker) [85], estimates the CO2 emis-
sions and energy consumption based on user input such as model type and training time.
Unlike the Green algorithms, it focuses solely on GPU and does not explicitly display energy
consumption. This methodology is less transparent, but further investigation reveals it uses
the TDP to estimate the energy consumption which may not be entirely accurate [81].

Real-time estimators
The online calculators lack accuracy and are estimations of the energy consumption of al-
gorithms after they have been run. Real-time information can increase the accuracy of the
estimations and allow the researchers to monitor the energy consumption on the software
level. Several tools have been developed, which vary greatly in approach and functionalities.

Codecarbon [86], developed by the same researchers as the ML emissions calculator, is a
Python library that tracks the carbon footprint and energy consumption of algorithms during
a predefined time interval of all three CPU, GPU and DRAM with the option of full machine
or per process monitoring. Utilization is determined using psutil for DRAM, NVML for GPU
(assuming zero if no NVIDIA GPU is found) and RAPL for CPU. If the RAPL files are
unavailable, a non-substantiated ‘global average’ of 85 W is used as the TDP. Energy by

Master of Science Thesis D. Breen

12 Related work

memory is not measured but is estimated at 0.375 W/GB based on Crucial DRAM 1. The
Codecarbon library is used often in literature. It is used to estimate the carbon footprint of
large models, such as the Open Pretrained Transformer [87] and BLOOM [88]. In the context
of autonomous driving Codecarbon is used to estimate the CO2 impact of a CNN trained for
AVs [89]. Lastly, Codecarbon is used to perform a hardware-level comparison [90].

Merged into the current CodeCarbon library is the Energy Usage Reports [91] that calculates
the energy consumption of a given function and publishes an energy usage report that gives
more details about the calculated results and presents suggestions for locations with lower
carbon footprint.

Another Python library available through PyPi is CarbonTracker [92], which estimates the
energy consumption of DL models over a defined number of epochs, gathering real-time power
samples from RAPL for CPU and DRAM, and from NVML for GPU. Specific processor uti-
lization is not considered, so 100% is used. Also, if RAPL and NVML are unavailable, no
alternatives are presented and zero energy consumption is reported. The Carbontracker is
often used in literature, estimating the carbon footprint of large models, e.g. medical image
analysis [93], and for ‘common’ data science [94]. In [94] it is found that the measurements
of Carbontracker are very different from actual RAPL data. Besides that, also the influ-
ence of network setups on energy consumption has been researched using the data of the
Carbontracker [95].

Tracarbon [96] is a python package hosted by PyPi, initially designed for Apple Mac but now
also able to track RAPL files on Linux. There is no paper substantiating the methods used
and it is unclear what the algorithm measures specifically and which processors are measured.
The GitHub states that when implemented on non-Apple products it only uses RAPL data.

Contrary to the other tools, the Eco2AI library, focuses only on processes related to the
training phase of ML models [97]. The total GPU power is retrieved from pynvml. If no
NVIDIA GPU is available, then the GPU energy is not taken into account. The Python
libraries os and psutil are used to track the utilization. The total CPU energy is based on the
TDP of the CPU and when it is unknown, it is assumed to be 100 W based on [98]. RAM
energy is proportional to allocated memory, with an estimate of 0.375 W/GB for DDR3
and DDR4 memory, for which utilization is tracked using psutil. Other memory models are
not considered. Eco2AI has been used to measure the energy consumption of compressed
transformers using matrix decomposition [99].

To summarize, these tools and their assumptions are presented in Table 2-1. It can be seen
that these tools have large variability in methods and estimates, showing that the tools might
not be as reliable as needed.

Other tools are present in the literature that try to estimate energy consumption, however,
these tools are no longer under development and haven’t been updated. Tools like the exper-
iment impact tracker [37], EnergyVis [100], Pyjoules2, Cumulator and pTop are mentioned in
literature surveys and propose similar methods as the tools presented above.

1https://www.crucial.com/support/articles-faq-memory/how-much-power-does-memory-use
2https://powerapi.org/

D. Breen Master of Science Thesis

2-3 Tensor decompositions 13

Table 2-1: Overview of tools still under development, containing their measurement methods
(main/alternatives) and utilization.

Tools Methods Utilization

Green
algorithms

CPU: TDP/12 W GPU: TDP/12 W
RAM: 0.375 W/GB given or 100%

ML emissions
calculator

CPU: - GPU: TDP
RAM: - not computed, so 100%

Codecarbon CPU: RAPL/TDP/ 85 W GPU: NVML
RAM: 0.375 W/GB not computed, so 100%

Carbontracker CPU: RAPL GPU: NVML
RAM: RAPL psutil, nvidia-smi or 100%

Tracarbon CPU: RAPL GPU: -
RAM: - not computed, so 100%

Eco2AI CPU: TDP GPU: NVML
RAM: 0.375 W/GB psutil, os or 100%

2-3 Tensor decompositions

As presented in the previous section, the complexity of both memory and computation can
influence the energy consumption of a model and this can differ for different hardware architec-
tures. As presented before the tensor decompositions show great potential for energy-efficient
models, reducing the number of parameters in a model, with a great influence on the num-
ber of operations and memory usage. In this section, the preliminaries of tensors and three
commonly used tensor decompositions will be elaborated by outlining the different methods,
hyper-parameters, benefits and drawbacks. This provides a basic understanding of the the-
ory behind this compression method and enables more intuitive understanding of the actual
implementation in CNNs.

2-3-1 Preliminaries

To keep a consistent nomenclature, this section will be based on the terminology and theories
used in [101] and [17]. The definition of a tensor used is different from the familiar stress
tensor and tensor fields known from physics and engineering. In the context of this research,
the tensor is defined as an N-dimensional array and is given as an Nth-order or N-way tensor.
The order of a tensor is given by the number of dimensions also known as modes. For clarity,
a vector is a 1st-order tensor and a matrix is a 2nd-order tensor. To make a clear distinction
between a higher-order tensor X, a matrix X, a vector x and a scalar x, they have different
notations. A special tensor is a diagonal tensor X ∈ IRI1×I2×···×IN which only has entries
on the superdiagonal, so xi1i2···iN ̸= 0 only if i1 = i2 = · · · = iN . Visualizing higher-order
tensors is challenging so tensor diagrams, also known as the Penrose graphical notations
[102], were developed. Figure 2-4 shows five different tensor diagrams.

To talk about specific elements in tensors subscripts are used, also known as indices. The
indices of the different dimensions of tensors typically range from one to their uppercase

Master of Science Thesis D. Breen

14 Related work

version, i = 1, . . . , I. Using superscripts the elements in sequences are denoted, e.g. X(n)

which represents the nth matrix in a sequence.
Similar to the concept of rows and columns in matrices, fixing all but one index in a tensor,
is called a fiber . Figure 2-2 shows a 3rd-order tensor where two out of the three indices are
kept fixed resulting in column, row and tube fibres.

I2

I1

I3

j

k x:,j,k

a) mode-1 fibers: x:,j,k

I2

I1

I3

i

k xi,:,k

b) mode-2 fibers: xi,:,k

I2

I1

I3

i

j xi,j,:

c) mode-3 fibers: xi,j,:

Figure 2-2: Mode-1 (column), mode-2 (row) and mode-3 (tube) fibers of a 3rd-order tensor
(adapted from [103]).

Fixing all but two indices in a tensor is called a slice. The lateral, frontal and horizontal
slices of a 3rd-order tensor are visualized in Figure 2-3. For example, a 4th-order tensor has
six different slices.

I2

I1

I3

j

X :,j,:

a) Lateral slices: X :,j,:

I2

I1

I3

k

X :,:,k

b) Frontal slices: X :,:,k

I2

I1

I3

i Xi,:,:

c) Horizontal slices: Xi,:,:

Figure 2-3: Lateral, frontal and horizontal slices of a 3rd-order tensor (adapted from [103]).

x x

I

X
I1 I2

X
I1

I2

I3
X

I1

I2

I3

I4

scalar vector matrix 3rd-order 4th-order

Figure 2-4: Different tensor diagrams for a scalar, a vector, a matrix, a 3rd-order tensor and
4th-order tensor.

An Nth order tensor is of rank one if it can be written as the outer product of N vectors,
i.e.

X = x(1) ◦ x(2) ◦ · · · ◦ x(N). (2-1)
The ‘◦’ symbol represents the outer product. This means that each element of tensor
X ∈ IRI1×I2×I3×I4 is given by a product of the corresponding vector elements, i.e.

xi1i2i3i4 = x
(1)
i1

x
(2)
i2

x
(3)
i3

x
(4)
i4

for all 1 ≤ in ≤ In. (2-2)

D. Breen Master of Science Thesis

2-3 Tensor decompositions 15

The inner product, of two same-sized tensors X,Y ∈ IRI1×I2×···×IN , is given by the sum of
the product of their entries [101], as visualised in Figure 2-5, i.e.

⟨X,Y⟩ =
I1∑

i1=1

I2∑
i2=1
· · ·

IN∑
iN =1

xi1i2···iN yi1i2···iN . (2-3)

I1

I2

...

IN

IN−1

X Y

Figure 2-5: Tensor diagram of the inner product between X,Y ∈ IRI1×I2×···×IN summing over
all indices indicated by the red contracting lines.

Transforming an Nth-order tensor into a matrix is called unfolding, flattening or mode-n
matricization as visualized in Figure 2-6. Matricization can be done over each mode of
a tensor. A mode-n unfolding of tensor X ∈ IRI1×I2×···×IN is denoted by X(n). Unfolding
rearranges the mode-n fibres to be the columns of the resulting matrix, called grouping, where
tensor elements (i1, i2, . . . , iN) map to matrix elements (in, j) where

j = 1 +
N∑

k=1
k ̸=n

(ik − 1) Jk with Jk =
k−1∏
m=1
m̸=n

Im [101]. (2-4)

X

. . .
I1

In

IN
. . .

X(n)
I1 I1I2 . . . In−1In+1 . . . IN

Figure 2-6: Tensor diagram of the mode-n matricization. Left the original Nth-order tensor is
shown and on the right the mode-n matricization of the Nth-order tensor is shown, by grouping
indices I1I2 . . . In−1In+1 . . . IN .

The mode-n product entails the multiplication of the mode-n fibre with a matrix, re-
placing the n-mode dimension with the matrix dimension. The mode-n product between
X ∈ IRI1×I2×···×In and matrix S ∈ IRJ×In is given as Y = X×nS ∈ IRI1×···×In−1×J×In+1×···×IN .
Element-wise this gives,

(X×n S)i1···in−1jin+1···iN
=

In∑
in=1

xi1i2···iN sjin . (2-5)

Figure 2-7 visualizes the mode-n product between tensor X and matrix S. The order of
multiplication is irrelevant as long as the products are not along the same mode.

Master of Science Thesis D. Breen

16 Related work

X

. . .
I1

In

IN
. . .

S

In J

= Y

. . .
I1

J

IN
. . .

Figure 2-7: Mode-n product between tensor X and matrix S by contracting over In given by the
red connecting line.

The Kronecker product between matrices A ∈ IRI×J and B ∈ IRK×L is given by A ⊗B
and it results in

C = A⊗B =


a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

aI1B aI2B · · · aIJB


=

[
a1 ⊗ b1 a1 ⊗ b2 a1 ⊗ b3 · · · aJ ⊗ bL−1 aJ ⊗ bL

]
,

(2-6)

with C ∈ IRIK×JL.
One important property of the Kronecker product is that each mode of tensor Y can be
written as

Y = X×1 A(1) ×2 A(2) · · · ×N A(N)

⇕
Y(n) = A(n)X(n)(A(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1))⊤.

(2-7)

The Kathri Rao product is the column-wise version of the Kronecker product. For matrices
A ∈ IRI×K and B ∈ IRJ×K the Katrhi-Rao product (A⊙B) results in

C = A⊙B =
[

a1 ⊗ b1 a2 ⊗ b2 . . . aK ⊗ bK

]
, (2-8)

with C ∈ IRIJ×K .
The Hadamard product is an element-wise matrix product. For matrices A ∈ IRI×J and
B ∈ IRI×J the Hadamard product (A ⊛ B) results in

C = A ⊛ B =


a11b11 a12b12 · · · a1Jb1J

a21b21 a22b22 · · · a2Jb2J
...

...
aI1bI1 aI2bI2 · · · aIJbIJ

 , (2-9)

with matrix C ∈ IRI×J . The Hadamard notation ‘⊛’ is taken from [17] and is different from
the notation of [101].
The Kronecker, Khatri-Rao and Hadamard products have different properties which are useful
later on in the tensor decompositions [101] and are shown below. Here A† denotes the Moore-
Penrose pseudo-inverse of A [104].

D. Breen Master of Science Thesis

2-3 Tensor decompositions 17

(A⊗B)(C⊗D) = AC⊗BD,

(A⊗B)† = A† ⊗B†,

A⊙B⊙C = (A⊙B)⊙C = A⊙ (B⊙C),
(A⊙B)⊤(A⊙B) = A⊤A ⊛ B⊤B,

(A⊙B)† = ((A⊤A) ⊛ (B⊤B))†(A⊙B)⊤.

(2-10)

A summarized nomenclature of the previously presented concepts is given in Table 2-2.

Table 2-2: Nomenclature of the different tensor concepts and operations. On the left the notation
is given with the definition on the right.

x Scalar ◦ Outer product
x Vector ⊗ Kronecker product
X Matrix ⊙ Khatri-Rao product
X Tensor ⊛ Hadamard product
in Index of the nth dimension ×n Mode-n product
In Size of the nth dimension ∥X∥F Frobenius norm
xi1,i2,...,iN An element of X † Pseudo-inverse

2-3-2 CP decomposition

The Parallel Factors (PARAFAC) decomposition, also known as the polyadic form of a ten-
sor, topographic components model or PARAFAC Canonical Decomposition (CANDECOMP)
(CP) [101], involves decomposing the tensor into a sum of component rank-one tensors, which
is visualized in Figure 2-8. For higher-order CP decompositions, visualisation becomes chal-
lenging so tensor diagrams become essential as illustrated in Figure 2-9. Here, tensor X is
approximated by a superdiagonal core tensor and factor matrices A(1), A(2), . . . , A(N).

X

=

c

b

a

+

c

b

a

+ . . . +

c

b

a

Figure 2-8: CP decomposition of a 3rd-tensor X into the sum of rank-one tensors (adapted from
[101]).

The Nth-order tensor X ∈ IRI1×I2×···×IN is approximated by

X ≈
R∑

r=1
a(1)

r ◦ a(2)
r ◦ · · · ◦ a(N)

r = JA(1), A(2), . . . , A(N)K, (2-11)

consisting of R vectors a
(1)
r , . . . , a

(N)
r for r = 1, . . . , R with R a positive integer. On the right,

an alternative shorthand notation for the CP is given. The matrices A(1), A(2), . . . , A(N) con-

Master of Science Thesis D. Breen

18 Related work

tain the rank one vectors and are called the factor matrices, i.e. A(1) =
[
a(1)

1 a(1)
2 . . . a(1)

R

]
and similarly for all other modes.

To improve numerical stability or computational efficiency, it is common to normalize the
factor matrices to length one. These weights are then contracted into vector λ ∈ IRR and
from this the approximation changes into

X ≈
R∑

r=1
λra(1)

r ◦ a(2)
r ◦ · · · ◦ a(N)

r ≡ Jλ; A(1), A(2), . . . , A(N)K. (2-12)

Each mode-n of the tensor can be approximated using the Khatri-Rao product between all
other factor matrices and is given by

X(n) ≈ A(n)Λ
(
A(N) ⊙ · · · ⊙A(n+1) ⊙A(n−1) ⊙ · · · ⊙A(1)

)⊤
(2-13)

where Λ = diag(λ).

XI1

I2 IN
. . .

≈

A(1)
I1

A(2)

I2

A(2)

IN

A(N)

. . .

R

R R

Figure 2-9: The tensor diagram of the CP decomposition of an Nth-order tensor X into N factor
matrices A(1) . . . A(N) (adapted from [16]).

Tensor rank
The rank of a tensor X is defined as the smallest number of rank-one tensors necessary for
an exact representation. Unlike matrix rank, the tensor rank of a real-valued tensor can differ
over IR or over C. There is no straightforward method to determine it. Finding the exact
rank is NP-hard and an incorrect choice of rank affects the approximation: too low a rank
can cause underfitting, while too high can cause overfitting.

Uniqueness
The CP decomposition of a tensor of rank R is essentially unique if the R rank-1 terms
are unique, meaning no alternative decomposition exists for a given number of components.
However, this uniqueness is subject to two indeterminacies: permutation and scaling. The
CP decomposition is generally unique if the components are sufficiently different and the
number of components is not unreasonably large. Additionally, a more deterministic con-
dition, the Kruskal condition, and a generic condition exist and are further elaborated in
Appendix A Section A-1.

Computing the CP decomposition
There are different algorithms to compute the CP decomposition, but one particular algorithm
is used often in research, namely the Alternating Least Squares (ALS) method [101]. The
main idea of the ALS is to iteratively minimize a cost function by optimizing each factor
matrix individually while keeping the others fixed [17]. This results in a linear least squares

D. Breen Master of Science Thesis

2-3 Tensor decompositions 19

problem. The convex cost function used for the CP is commonly chosen to be the Frobenius
norm which can be denoted as

J
(
A(1), A(2), . . . , A(N)

)
= ∥X− JΛ; A(1), A(2), . . . , A(N)K∥2F . (2-14)

The full CP-ALS algorithm can be found in Appendix A Algorithm 1. Besides the ALS
algorithm, other techniques are suggested [105], [106].

2-3-3 Tucker decomposition

The CP decomposes a tensor into factor matrices, each representing a different mode, making
it suitable for categorical and sparse data [107]. For dense data with structure and patterns
spread over more than one mode, the CP decomposition is insufficient and cannot grasp
the multi-mode complexity. An alternative decomposition is the Tucker decomposition, also
known as Three-mode factor analysis (3MFA), N-mode Principle component analysis (PCA),
Three-mode PCA (3MPCA), N-mode Singular Value Decomposition (SVD) and Higher-order
SVD (HOSVD) [101]. The fundamental idea of the Tucker decomposition is that the tensor
is decomposed into a core tensor, capturing interactions across all modes and factor matrices
capturing all mode-specific information.

This idea generalizes to an Nth-order tensor X ∈ IRI1×I2×···×IN that is approximated by

X = G×1 U(1) ×2 U(2) · · · ×N U(N) = JG; U(1), U(2), . . . , U(N)K, (2-15)

consisting of a core tensor G ∈ IRR1×R2×···×RN and factor matrices U(1), U(2), . . . , U(N) ∈
IRIn×Rn , for n = 1, . . . , N , which can be thought of as principal components of each mode.
Here the Rn depicts the number of components (i.e. columns) in the factor matrices. When
Rn < In then the Tucker decomposition is a compressed (i.e. truncated) version of the tensor
X. On the right side, an alternative shorthand notation is given for the Tucker decomposition.

XI1

I2 IN
. . .

≈

U (1)
I1

U (2)

I2

U (2)

IN

U (N)

. . .

GR1

R2 RN

Figure 2-10: Tensor diagram of the Tucker decomposition (adapted from [16]).

The CP decomposition is a special form of the Tucker decomposition, where the core ten-
sor is superdiagonal and the truncation Rn of each factor matrix is the same. For mode-n
matricization, using the Kronecker product, the Tucker decomposition is given by

X(n) = U(n)G(n)
(
U(N) ⊗ · · · ⊗U(n+1) ⊗U(n−1) ⊗ · · · ⊗U(1)

)⊤
. (2-16)

Computing the Tucker decomposition
The well-known and commonly used method to compute the Tucker decomposition of a

Master of Science Thesis D. Breen

20 Related work

tensor is a form of SVD, generalized to higher order tensors, also known as Multilinear
SVD (MLSVD) or HOSVD. For a 3rd-order tensor, the visualization of this approach is
given in Figure 2-11, which shows the three factor matrices along each mode of the core
tensor. The truncation parameters R1, R2, . . . , RN can be determined by removing low left

X ≈
U(1)

S

U(3)

U(2)

Figure 2-11: The MLSVD of tensor X ∈ IRI1×I2×···×IN into core tensor S ∈ IRR1×R2×···×RN

and factor matrices U(1), U(2), . . . , U(N) ∈ IRIn×Rn for n = 1, . . . , N (adapted from [101]).

singular values until the decomposition approximation is sufficient. Alternatively, a method
can be used based on the Eckart-Young theorem [108]. This algorithm is common and is
known as sequentially truncated HOSVD (st-HOSVD) [109] given in Appendix A Algorithm 2.
Combining HOSVD with an initialization using ALS, presents the full algorithm known as
Higher-order orthogonal iteration (HOOI) or HOSVD-ALS, which is given in Appendix A
Algorithm 3. Besides HOOI, there are also alternative algorithms to compute the Tucker
decomposition [110]–[112].
Uniqueness
Tucker decompositions are not unique but non-uniqueness can also bring some opportunities.
It is possible to apply conditions on the factor matrices like non-negativity, and sparsity. In
addition, with some constraints, the solution can inherently be unique, such as the HOSVD.
Implementing the HOSVD to find the Tucker decomposition, can inherit the uniqueness
properties of the SVD.
Multilinear rank
Contrary to matrix rank, the different mode-n ranks R1, R2, . . . , RN are not all the same and
in addition differ from the tensor rank. The rank corresponding to the N-tuple R1, R2, . . . , RN

is called the multilinear rank or n-rank and consists of the dimensions of the vector space
spanned by its mode-n fibres, i.e.

rankML(X) = {rank(X(1)), rank(X(2)), . . . , rank(X(N))}. (2-17)

2-3-4 TT decomposition

For higher-order tensors, the Tucker core can become large, potentially negating the benefits
of decomposition due to the increased storage requirements for these large cores. As a solution,
the Tensor Train (TT) represents the tensor as a structured low-rank approximation. Similar
to CP and Tucker, TT decomposes the Nth-order tensor into N 3rd-order tensor cores. In
practice, the ranks of the TT are lower than those of the CP making it a great alternative for
high dimensional tensors.
The tensor X ∈ IRI1×I2×···×IN is approximated by the TT decomposition given by

X(i1, i2, . . . , iN) = G(1)(:, i1, :)G(2)(:, i2, :) · · ·G(N)(:, iN , :) = ⟨⟨G(1),G(2), . . . ,G(N)⟩⟩ (2-18)

D. Breen Master of Science Thesis

2-3 Tensor decompositions 21

and consists of the multilinear product of 3rd-order TT-cores G ∈ IRRn−1×In×Rn+1 (n =
1, 2, . . . , N), shown in Figure 2-12. On the right side, the alternative shorthand notation is
given.
In addition to dimensionality reduction, the TT is computationally more efficient due to its
structure. Adding, the inner product, computation of tensor norms, Hadamard and Kronecker
product, matrix-by-vector and matrix-by-matrix products can be efficiently performed using
slice matrices of the individual core tensors.

G(1) G(2) G(N). . .
R1 R2 RN−1

I1 I2 IN

Figure 2-12: TT consisting of multiple tensor cores G(1),G(2), . . . ,G(N) and tensor ranks
R1, R2, . . . , RN−1.

Computing the TT decomposition
There are several methods to compute the TT approximation [113]–[115] but the TT-SVD
algorithm is the most common. The full process of TT-SVD is given in Appendix A Algo-
rithm 4 and is visualized in Figure 2-13. The TT-SVD makes use of the standard matrix
SVD using truncation based on the Eckart-Young theorem [108]. The TT decomposition is
not unique and so tensor train cores can be transformed for convenience.

I1

I2

I4

I3X ⇒
unfolding

I1 I1I2I3X(1)

I2I3I4I1
R1

U(1) SV (1) →
reshape

R1I2 I3I4SV (1)

⇓
G(1) R1

I1

SVD

I3I4R2I2
R2

U(2) SV (2) →
reshape

R2I3 I4SV (2)

⇓ reshape

G(2)R1 R2

I2

I4R2I3
R3

U(3) SV (3) →
=

R3

I4

G(4)

⇓ reshape

G(3)R2 R3

I3

SVD

SVD

Figure 2-13: The TT-SVD process decomposing a 4th-order tensor (adapted from [116]).

TT-ranks
The truncation ranks in the TT format are defined as TT-ranks. For each unfolded matrix
Xn of tensor X with rank(Xn) = Rn there exists a decomposition with TT-ranks not higher
than Rn [117]. The TT-ranks are thus bounded by the following rule

Rn = rank(X(n)) ≤ min(
n∏

k=1
Ik,

N∏
k=n+1

Ik). (2-19)

The TT format is not unique so there might be situations in which the TT-ranks are not
optimal for the representation of tensor X. For example, basic linear algebra operations,

Master of Science Thesis D. Breen

22 Related work

such as adding, can result in higher TT-ranks. There is a technique to find lower TT-ranks
and a more optimal TT format without losing accuracy which is called TT-rounding. The
full algorithm is given in Appendix A Algorithm 5. Especially for higher-order tensors, it is
important to find a low-rank approximation.

2-4 Energy-efficient CNNs

The presented tensor decompositions are not the only options for efficient CNNs. This research
field has been growing, focusing on two main strategies: acceleration using specialized hard-
ware and compression techniques. Hardware architecture greatly impacts code efficiency, with
alternatives to general GPUs and CPUs, such as Field-Programmable Gate Array (FPGA)
and Tensor Processing Unit (TPU), being explored [118], [119]. On the other side, model
compression could create more energy efficiency and in the scope of this thesis, this section
will focus on energy-efficient CNNs through model compression.

2-4-1 Model compression methods

Promising compression methods for energy-efficient CNNs include quantization, pruning,
knowledge distillation (KD), and low-rank approximations, including the tensor decompo-
sitions, which will be shortly introduced to give a comprehensive and thorough overview of
the current state-of-the-art.

Quantization reduces computational and memory costs by storing full-precision values in low
bid-width precision. It can greatly compress a model, however, it can reduce the accuracy
and requires hardware with low precision properties [15], [120], [121]. This trade-off between
accuracy and onboard latency is of importance in object detection in AVs [122], [123].

Pruning [11], [13] involves zeroing out less influential parameters, e.g. gradients or weights, or
removing entire channels, with various strategies like evolutionary algorithms [124], iterative
L1 pruning [125], combinations with other methods like Knowledge distillation (KD) [126]
or hardware-aware pruning [127] which are commonly used in object detection. Despite the
compression abilities, this method can also reduce accuracy [128], [129], requiring retraining
or fine-tuning and usually starts with an over-parameterized pre-trained model [128].

KD transfers knowledge from larger teacher models to lightweight student models [12], [14].
The performance of the student model depends on the architecture of the teacher [130] with
limits on the distillable knowledge [131]. In object detection, different techniques are present
[12] including instance-aware KD [122] and feature-based KD [129].

Unlike the other compression methods, focusing on training modifications, low-rank approx-
imations also compress during training, enforcing low-rank structures in the network [132].
For instance, self-attention with low-rank approximation reduces the complexity in deep met-
ric learning [133]. Additionally, low-rank structures in layers such as depth-wise separable
convolutional layers [40] and learning low-rank structured sparsity in language models, have
shown great promise in reducing parameters and accelerating models.

Low-rank tensor structures are especially relevant in visual data due to nonlocal similarities
and underlying patterns [134]. These low-rank tensor structures are used in image completion

D. Breen Master of Science Thesis

2-4 Energy-efficient CNNs 23

and denoising [135]–[137] and are suitable for tensor decomposition techniques. In recognition
tasks in AVs, these decompositions can compress the model while still persevering underlying
patterns in the data [138]. Unlike flattening, tensor decompositions maintain underlying
patterns and exploit interactions of latent factors [138], as seen in TensorFaces [139] and
multilinear Active Appearance Models (AAM’s) [140].

A special form of low-rank approximation is tensor decomposition. These low-rank approx-
imations can be used to approximate CNNs by decomposing convolution, pooling or fully
connected layers [141], [142]. The pooling or sub-sampling layer, generates a smaller-sized
output vector, compressing the number of trainable parameters [143]. Pooling layers inher-
ently compress data, so tensor decompositions are less common there. Most research focuses
on compressing the convolution layers, which can be more parameter-heavy and energy-
consuming than fully connected layers, especially for deeper networks, making them ideal
for tensor decompositions [144]. In addition, the redundancy among convolutional kernels,
resulting from the difference in size between input/output channels and the kernel size, makes
them very suitable for tensor decompositions [18].

2-4-2 Tensor decomposed convolutions

The focus of this thesis lies on the tensor decompositions and their implementation in convo-
lution layers. This section will elaborate extensively on the current state-of-the-art of these
decomposed convolution layers, consisting of the three popular tensor decomposition meth-
ods: CP decomposed convolutions, Tucker decomposed convolutions and TT decomposed
convolutions, as presented in the tensor diagrams in Figure 2-14.

(a) CP-CNN (b) Tucker-CNN (c) TT-CNN

Figure 2-14: Tensor diagrams for CNN convolutional layers decomposed by either CP decompo-
sition, Tucker decomposition and TT decomposition.

CP convolution
Using CP decomposition, the convolutional layers are approximated by four [19] or three [18]
(combining the spatial dimensions) smaller convolutions, as shown in Figure 2-15. Another
method is also suggested, that uses CP but does not break the original structure of the
network [72].

Several other papers use CP decomposition to compress the kernels of CNNs [5], [145]–[148].
Each method contributes different insights. [149] was one of the first to use a low-rank
approximation of the kernels and used a greedy CP decomposition.

Master of Science Thesis D. Breen

24 Related work

(a) Decomposing the kernel into four factor
matrices (reprinted from [19]).

(b) Decomposing the kernel into three factor
matrices (reprinted from [150]).

Figure 2-15: Decomposing the kernel into factor matrices using the CP decmposition.

It was found that using this greedy update method was worse than alternative methods such
as nonlinear least squares (NLS) [19] or ALS and using NLS led to better performance with
or without fine-tuning. Alternatively, [149] used a bi-clustering method, exploiting the use of
redundancy of the kernels in higher convolutional layers, which could also be a useful addition
to the NLS [19]. In addition, the greedy method does not guarantee to decrease the size of the
tensor and compresses the kernel sufficiently [18]. Using numerical optimization algorithms
such as the NLS or ALS can furthermore result in diverging components and degeneracy
(non-uniqueness) [18].
Balancing the estimation stability and accurate approximation is a challenge and asks for
additional constraints for increased stability, such as column-wise orthogonality, positivity
and nonnegativity. Unfortunately, these constraints are not always feasible to apply in certain
data sets [18]. Moreover, the ‘standard’ CP decompositions, show sensitivity problems with
increased rank and are not robust to small perturbations in the factor matrices [18]. To
solve these sensitivity and stability problems [151] introduced the Error Preserving Correction
(EPC) to the approximation which in addition to minimizing the Frobenius norm also bounds
the approximation error ζ. Based on the EPC, the sensitivity of the decomposition can
be minimized while still preserving a good approximation error, enhancing the convergence
of the CP decomposition [18]. Another approach to enhance the convergence of the CP
decomposition is based on the scaling factor. In [152], an extension of this normalization is
used to enable separate optimization for global and per-rank scaling.
Tucker convolution
As mentioned in Subsection 2-3-3, the Tucker decomposition can take into account the inter-
action between different modes and factor matrices through a core tensor. Additionally, the
use of the Tucker decomposition removes the challenge of finding a fitting rank and compres-
sion ratio. The Tucker ranks can be selected based on the left singular values as mentioned in
Subsection 2-3-3 or by using Variational Bayesian Matrix Factorization (VBMF) as proposed
by [153]. [154] proposes a method that learns the Tucker ranks during compressing and train-
ing, by optimizing the loss function of the CNN and the Tucker cost function simultaneously.
Furthermore, utilizing the Tucker decomposition results in better convergence stability [154].
Due to small kernel sizes, the redundancy in those dimensions does not need reduction. That
is why, several papers [18], [153]–[156] focus more on the compression of the third and fourth
dimension of the kernels. This form of Tucker decomposition is also known as Tucker-2
decomposition. A sequence of three convolutions now substitutes the full convolution, as
shown in Figure 2-16.
The Tucker decomposition is less researched in the context of CNNs. This is likely because the
Tucker core tensor remains a 4th-order tensor and can consist of many parameters. However,

D. Breen Master of Science Thesis

2-4 Energy-efficient CNNs 25

Figure 2-16: Tucker-2 decomposition of a convolution layer of a CNN (reprinted from [157]).

[155] uses Hierarchical Tucker-2 decompositions which show significant drops in the amount
of FPO needed during training. This is achieved by also compressing the Tucker core using a
binary-tree model which reduces the complexity of storage. The combination of using Tucker
and CP decomposition can furthermore reduce the complexity of the Tucker core. [18] first
uses the Tucker decomposition to decompose the convolution layers and then uses the CP
decomposition to decompose the relatively large Tucker core.

These methods are all based on 4th-order kernels. In addition, [156] proposes two methods
that can deal with higher order tensors, namely Adaptive Dimension Adjustment Tucker de-
composition (ADA-Tucker), that performs Tucker decompositions on arbitrary-order tensors
and Shared Core ADA-Tucker (SCADA-Tucker) that proposes a shared tensor core for all
layers. Finally, to introduce non-linear instead of linear activation functions combined with
the Tucker decomposition, [153] proposes an optimization algorithm that optimises both the
multi-linear rank and the nonlinear cost function simultaneously. These frameworks can also
be applied to fully connected layers.

Tensor Train convolutions
One of the first to apply TT decomposition in a Deep Neural Networks (DNN), applied the TT
directly to the fully connected layers [148]. Subsequently, [158] was one of the first to apply
TT in convolution layers. In this method the TT decomposition was applied on a matricized
kernel and the convolution operations were rewritten into matrix-by-matrix multiplications.
Alternatively, it is proposed to apply the TT directly to a permuted version of the kernel
[20], [159]. [20] proposes a method that decomposes the convolution layer into a sequence of
four layers consisting of the TT-cores as shown in Figure 2-17. Alternatively, similar to CP,
combining the spatial dimensions allows for the substation of three convolutions [159].

Figure 2-17: Decomposed convolution layer using TT into several smaller layers (reprinted from
[20]).

Master of Science Thesis D. Breen

26 Related work

As mentioned in Subsection 2-3-4, the ranks of the TT decomposition are not always optimal.
A solution to this can be TT-rounding. Alternatively, [160] proposes a method to reduce these
high TT-ranks by using a Riemannian Gradient Descent Method.

2-4-3 Training vs inference

There is an imbalance in research looking at the benefits of tensor decompositions in training
and inference of CNNs. All of the already mentioned papers, except [153], [20] and [148],
do not take into account inference and focus mainly on training. This is for the three main
types of tensor decompositions CP, Tucker and TT and specifically in CNNs. Other research
outside of these bounds can contain insights on running inference. [146] takes into account the
benefits of implementing TT decomposition, however, focuses on implementing it in Recurrent
neural network (RNN)s. Only one specific paper was found that showed a detailed outline of
a TT-based inference engine [147].

2-5 Contributions

The previous sections have given a comprehensive overview of the current state-of-the-art
research for efficient CNNs and the theory behind tensor decompositions. The objective of
this thesis is to further investigate the potential of tensor decompositions for making large
CNNs more energy efficient. In doing so it will build upon the foundation of the current
research field presented in the previous sections.

In Section 2-1, the current state of Green AI is presented, highlighting the growing research
into the ‘sustainability’ of large DL models. Traditional Red AI focuses on performance and
accuracy, but new metrics are needed to capture the environmental impact represented by
efficiency. Several metrics, summarized in Figure 2-18, focus on different aspects of energy
efficiency but lack generality.

As shown in Figure 2-18, parameters, runtime, and FPO primarily allow for comparison based
on code efficiency, often neglecting hardware discrepancies. Metrics such as CPU/GPU hours
or utilization emphasize hardware efficiencies, however, lack generalization in algorithmic
optimization. This thesis will focus on the energy consumed by a model, offering a holistic
approach, encompassing hardware, computation and code efficiency.

Subsection 2-2-2 presents methods to measure or estimate energy consumption, using external
watt meters or software implementations based on API data such as RAPL and NVML.
Table 2-1, highlights the variability and reliability issues of these tools, whose techniques are
not always well substantiated. Subsection 2-2-3 further indicates that these tools are often
used when researching energy consumption, however, fail to check the reliability. There is a
gap in the research, where the energy consumption is measured in real-time using an external
device. Combined, this thesis has the following contribution:

D. Breen Master of Science Thesis

2-5 Contributions 27

Params
Runtime

FPO’s

CPU hours
GPU hours
Utilization

Energy
efficiency

Energy
consumption

Figure 2-18: Overview of ’sustainability’ metrics proposed in literature resembling the energy
efficiency of a model. Some focus more on code implementation, whereas others focus on the
impact of hardware. The energy consumption presents a more holistic approach, directly measured
by an external device.

Contribution 1: Emperical real-time energy measurements

This thesis will contribute an empirical study design, where the energy efficiency of
the model is presented by the energy consumption measured in real-time using an
external watt meter. This allows for fully controllable energy measurements, increased
reliability, and holistic comparison between different models.

As discussed in Subsection 2-4-2, there are several ways to compress a model, making it
more energy efficient, with a particular focus on tensor decompositions. However, the focus
lies on theory and measuring the actual energy consumption of implementing these methods
is not done. Especially, looking at tensor decompositions, there is research that shows the
potential of tensor decomposition for energy efficiency, however, no research measures the
actual energy saved during implementation. In addition, most research looks into the benefits
during training and not during inference. Combined another contribution of this research is:

Contribution 2: Inference energy savings of tensor-decomposed convolu-
tions

This thesis will directly measure the energy saved by running inference on tensor-
decomposed convolutional layers and identify key parameters that influence the amount
of energy saved. This will be done by decomposing convolution layers with different
configurations using different tensor decomposition methods and compression ratios,
enabling not only theoretical comparison of energy efficiency but also practical.

Subsection 2-2-1 shows that current research has identified that GPU and CPU can result in
different amounts of power usage due to architecture differences. However, when looking at
tensor decomposition, there is a lack of research that presents the effects of implementing the
decompositions on different types of hardware looking also at what this does for the energy
consumption. This thesis will consider different hardware types resulting in the following
contribution:

Master of Science Thesis D. Breen

28 Related work

Contribution 3: CPU vs. GPU

This thesis will look at the differences in energy savings between running inference
on tensor-decomposed convolution layers on both a CPU and a GPU. In this way, it
will be possible to identify differences between hardware implementations comparing a
sequential and parallel processor.

Current research mainly focuses on the theoretical reduction of parameters and computa-
tional complexity by using tensor decompositions. As was mentioned in Subsection 2-1-3, the
reduced number of parameters might not directly correlate to the energy efficiency. Subsec-
tion 2-2-1 has shown that key aspects of energy consumption are computational complexity,
e.g. MAC operations, and in addition memory usage. However, there is a gap in the research
looking into whether the energy saved by these tensor decompositions can be predicted based
on the expected computational complexity and especially on memory usage. So the final
contribution of this thesis is:

Contribution 4: Energy modelling

This thesis will fit several models to predict the energy saved by implementing these
tensor decompositions in convolutional layers, based on the relation, either linear or
polynomial, between computational complexity, i.e. the number of MAC operations,
and in particular the memory usage.

D. Breen Master of Science Thesis

Chapter 3

Methodology

This chapter will build on the current state of the art presented in Chapter 2 by presenting
the methodology used to answer the research questions and elaborating on the contributions
of this thesis.

Figure 3-1 shows the different steps of this methodology. First, an analysis was done on the
current implementation of tensor decompositions in convolutions, highlighting the important
parameters. Based on these findings, experiments were designed, followed by the data acqui-
sition, consisting of the energy consumption measurements. After that, the acquired dataset
is processed and lastly, the findings have been used to model the energy consumption based
on important parameters. The last four steps, bounded in the box, are where the contribution
of this thesis comes through most since the analysis contains current state-of-the-art research
too. The next sections will outline these different steps in more detail.

Analyse
decomposed
convolutions

Experimental
design

Data
collection

Data
processing Modelling

Figure 3-1: The methodological process of this thesis consists of five steps, for which the last
four, bounded in the box, lie as a basis for this thesis contribution.

3-1 Decomposed convolutions

Several state-of-the-art papers highlight the theoretical benefits and challenges of decomposed
convolutions, as mentioned in Subsection 2-4-2. However, practical implementation relies
on hardware and software. The code implementation can have a great influence on the
resulting efficiency. Since this thesis is focused on the potential efficiency increase of these
decomposition methods, it will analyse a practical implementation of these decompositions
instead of focusing on theoretical benefits. A popular state-of-the-art library TensorlyTorch

Master of Science Thesis D. Breen

30 Methodology

was used providing a combination of the PyTorch library and the Tensorly library, facilitating
tensor learning through tools including tensor operations and tensor manipulations. It was
chosen to use an existing library, used by current research, to show the current state of
energy-efficient decomposed convolutions.

The documentation of TensorlyTorch lacks a clear explanation of how it is implemented and
on which theory the implementation is based. In the next sections, the implementation will
be elaborated to create a more intuitive understanding of the library’s back end and ensure
that further analysis of the results can be more extensive. Through this analysis, it is possible
to compare theory and implementation and highlight any bottlenecks involving efficiency.

As mentioned in Subsection 2-2-1, two aspects are great contributors to the energy con-
sumption of implemented software: the computational complexity and the memory usage. In
addition to clarifying the TensorlyTorch decomposed convolutions, the analysis also allows
for the identification of important parameters influencing energy savings by decomposing,
based on these two aspects. To highlight any discrepancies between theoretical computation
complexity, the calculated Multiply-Accumulate operations (MACs) based on the analysis of
TensorlyTorch will be compared to the operations presented in the literature. Since literature
does not involve memory considerations, it will be extended by this analysis, presenting a
contribution to the current field.

3-1-1 Convolutional neural networks

First, a small introduction to ‘regular’ convolutions implemented in PyTorch is given, es-
tablishing the important parameters, design choices and their basic function. This allows
comparison to the decomposed convolutions.

The structure of a Convolutional Neural Network (CNN) consists of one input layer and one
output layer with multiple hidden layers in between. One specific neuron takes input vector x
and produces output vector y following a given function with a certain weight vector w. This
weight vector represents the interconnection between neurons of two adjacent layers [143] and
can then be used to extract certain features from images. An example of the CNN structure,
in particular of ResNet18, is given in Figure 3-2 and clearly shows these types of hidden layers.

Figure 3-2: Architecture of Resnet18 (reprinted from [161]).

The convolution layer is an important hidden layer in the context of object detection. Within
this layer, the weight vector, referred to as kernel or filter, slides over the input image and
generates a feature map. Each neuron in the network is connected to other neurons in adjacent
layers and this correlation is called the receptive field which builds up the kernel. Through
weight-sharing similar features in different locations of the image can be detected [143]. The

D. Breen Master of Science Thesis

3-1 Decomposed convolutions 31

sliding over the image is called the convolution operation and is a time-consuming operation.
It maps the input tensor U ∈ IRW ×H×S into an output tensor V ∈ IRW ′×H′×T using the linear
mapping

vw′,h′,t =
d∑

i=1

d∑
j=1

S∑
s=1

ki,j,s,tuw(i),h(j),s [19]. (3-1)

Here, the kernel K ∈ IRd×d×S×T is a 4th-order tensor with the spatial dimensions or filter
size given by d and input and output channels S and T . Note that the output feature map
uw(i),h(j),s is a function of i and j dependent on the padding and stride as given in Equation 3-
2. Visualization of a full convolution is shown in Figure 3-3. The number of MAC operations
in these convolutions is given by STd2W ′H ′, where W ′ and H ′ are the width and height of
the output feature map.

Figure 3-3: Full convolution operation (reprinted from [19]).

These weight kernels can become rather substantial and consist of many parameters, espe-
cially in deep or wide networks. As mentioned in Subsection 2-4-1, the redundancy in these
convolutional kernels, due to the difference in size between the spatial dimensions and the
number of input and output channels, makes them very suitable for tensor decompositions
[18].
In addition to the kernel size, influenced by the number of input and output channels, other
parameters influence the efficiency of the convolution operations. Looking at the MAC oper-
ations, the output feature maps are also of importance, which is given by

W ′ = W + 2P − d

l
, H ′ = H + 2P − d

l
, (3-2)

where W and H are the input feature map sizes, P is the padding and l is the stride. Padding
is a technique to keep spatial dimensions after convolution, by adding extra entries around
the original feature map. The stride is the number of ‘steps’ or pixels the sliding window
makes.

3-1-2 CP convolution

For Parallel Factors (PARAFAC) Canonical Decomposition (CANDECOMP) (CP) Tensor-
lyTorch uses the method proposed by [19], described in Subsection 2-3-2. The element-wise
rank-R CP decomposition of a 4th-order tensor kernel K ∈ IRd×d×S×T is given by

ki,j,s,t =
R∑

r=1
k

(x)
i−x+δ,rk

(y)
j−y+δ,rk(s)

s,rk
(t)
t,r [19], (3-3)

where δ = d−1
2 . It shows that the convolution from Equation 3-1 is decomposed into four

2nd-order factor matrices K(s) ∈ IRS×R, K(t) ∈ IRT ×R, K(x) ∈ IRd×R, K(y) ∈ IRd×R. The CP

Master of Science Thesis D. Breen

32 Methodology

decomposition is shown in Figure 2-15 and shows a clear difference to the full convolutional
layer shown in Figure 3-3.
The complete convolution operation V, using a 4th-order tensor kernel K, is now substituted
by a sequence of four convolutions with intermediate tensors U(s),U(sy) and U(syx) consisting
of factor matrices K(s), K(t), K(x), K(y). Element-wise this is given by

u
(s)
i,j,r =

S∑
s=1

k(s)
s,rui,j,s

u
(sy)
i,y,r =

y+δ∑
j=i−δ

k
(y)
j−y+δ,ru

(s)
i,j,r

u(syx)
x,y,r =

x+δ∑
i=x−δ

k
(x)
i−x+δ,ru

(sy)
i,y,r

vx,y,t =
R∑

r−1
k

(t)
t,ru(syx)

x,y,r .

(3-4)

The analysis of the TensorlyTorch pseudo code, actually showed that the implementation
is slightly different than the theory shown above. Similar to the theory the convolution is
substituted by four smaller 1D convolutions. However, the input and output sizes of the
intermediate results are different, where the spatial dimensions are combined and reshaping
is performed. This results in different intermediate tensors, influencing the memory and
computational complexity, outlined below:

• The first layer, convolves over the number of input channels S, which involves a mode-n
product over mode S. The input feature map U ∈ IRB×S×W H , combining the spatial
dimensions convolves with the first factor matrix K(s) ∈ IRR×S×1 into output feature
map U(s) ∈ IRB×R×W H . The MACs of this convolution thus come to BRSWH.

• Before the next convolution some reshaping is performed, where the output feature
map U(s) ∈ IRB×R×W H of the previous convolution reshapes to input feature map
U(s) ∈ IRBH×R×W . Then this feature map is convolved with the third factor matrix
K(x) ∈ IRd,1,R to output feature map U(sy) ∈ IRBH×R×W ′ , resulting in BHdRW ′ MAC
operations.

• After permutation and reshaping the new input feature map U(sx) ∈ IRBW ′×R×H is
convolved with the fourth factor matrix K(y) ∈ IRd,1,R into output feature map U(sxy) ∈
IRBW ′×R×H′ , resulting in BW ′dRH ′ MAC operations.

• Lastly, another mode-n product over mode-R of input feature map U(sy) ∈ IRB×R×W ′H′

and factor matrix K(t) ∈ IRT ×R×1 is performed resulting in the output feature map
V ∈ IRB×T ×W ′H′ . When the last two dimensions are then separated, the original
output size of the ‘regular’ convolution is reached. The MACs of this convolution thus
come to BRTW ′H ′

In [19], it is stated that the complexity after decomposing becomes R(S + 2d + T) for both
the number of parameters and the number of operations per output pixels. This would come

D. Breen Master of Science Thesis

3-1 Decomposed convolutions 33

to BR(S + 2d + T)W ′H ′ MAC operations, which is different from the BR(SWH + dW ′H +
dW ′H ′ + TW ′H ′) operations found in the analysis of TensorlyTorch.

As mentioned in Section 2-3, rank R is an important parameter. In addition to influencing
the accuracy of the approximation, it also greatly influences the computational and memory
complexity. For the CP, the rank is equal for all modes and as mentioned in Subsection 2-3-2,
finding an optimal rank is NP-hard. Tensorly uses the desired reduction of parameters to
calculate the rank, defined as the compression. The analysed Tensorly pseudo-code can be
found in Section B-1. The compression is the amount of parameters left after compressing the
convolutional layer, given as a fraction. So if the compression is c = 0.1, the result consists
of 10% of the original number of parameters and the layer is thus compressed to 10%.

Based on the principles found in Section 2-3, the compression ratio is defined as

c = number of params after compression
number of params original tensor = R

∑N
k=1 Ik∏N

k=1 Ik

, (3-5)

where c is the compression rate, R is the CP rank, I1 = T, I2 = S, I3 = d and I4 = d. As a
result, R is thus given by

R = c
∏N

k=1 Ik∑N
k=1 Ik

. (3-6)

Tensorly uses this formula to determine the rank corresponding to the predefined compression
rate, which can then be rounded, capped or floored according to the programmer’s preference.

3-1-3 Tucker convolution

The TensorlyTorch library uses the Higher-order orthogonal iteration (HOOI) algorithm to
compute the Tucker decomposition of kernel K ∈ IRT ×S×d×d as defined in Subsection 2-3-3
and Algorithm 3 in Appendix A. Contrary to the efficient Tucker-2 method, omitting spatial
modes from the decomposition [18], [153]–[156], TensorlyTorch decomposes the full kernel
into four factor matrices K(t) ∈ IRT ×R1 , K(s) ∈ IRS×R2 , K(x) ∈ IRd×R3 , K(y) ∈ IRd×R4 and a
tensor core G given by

K ≈ G×1 K(t) ×2 K(s) ×3 K(x) ×4 K(y). (3-7)

The complete convolution operation V, using a 4th-order tensor kernel K, is now substituted
by three convolutions with intermediate tensors U(s) and U(syx) consisting of factor matrices
K(t), K(s), K(x), K(y). Element-wise this is given by

u
(s)
r2,ij =

S∑
s=1

k
(s)
s,r2,1us,ij (3-8)

u
(syx)
r1,i,j =

j+δ∑
j−δ

i+δ∑
i−δ

R2∑
r2=1

k̃r2,r1,i,ju
(s)
r2,i,j (3-9)

vt,xy =
R1∑

r1=1
k

(t)
t,r1,1u

(syx)
r1,ij , (3-10)

Master of Science Thesis D. Breen

34 Methodology

with K̃ = G×3 K(x) ×4 K(y).
After analysing the TensorlyTorch pseudo-code to see the actual intermediate steps and imple-
mentation, highlighting any additional number of MACs or memory, these convolutions can be
broken down in more detail. This decomposition results in two one-dimensional convolutions
and one two-dimensional convolution, contrary to the three two-dimensional convolutions
from the Tucker-2 implementation 1:

• The first layer, convolves over the number of input channels S, which involves a mode-
n product over mode S. The input feature map U ∈ IRB×S×W H convolves with the
first factor matrix K(s) ∈ IRR2×S×1 into output feature map U(s) ∈ IRB×R2×W H . The
MACs of this convolution thus comes to BR2SWH.

• Before the next convolution some reshaping is performed separating the spatial di-
mensions to input feature map U(s) ∈ IRB×R2×W ×H . To get the new kernel K̃, the
mode-n products between the core tensor and the third and fourth-factor matrices is
performed using Tensorly’s tenalg.multimode function. Then a two-dimensional convo-
lution is applied, convolving in both spatial dimensions, resulting in the output feature
map U(syx) ∈ IRB×R1×W ′×H′ . The number of MAC operations thus comes to the oper-
ations from the two mode-n products 2R1R2R3R4 and the two-dimensional convolution
BR1R2W ′H ′d2.

• Lastly, another mode-n product over mode-R1 of input feature map U(syx) ∈ IRB×R1×W ′H′

and factor matrix K(t) ∈ IRT ×R1×1 is performed resulting in the output feature map
V ∈ IRB×T ×W ′H′ . When the last two dimensions are then separated, the original output
size of the ‘regular’ convolution is reached. The MACs of this convolution thus comes
to BR1TW ′H ′.

For the popular Tucker-2 decomposed convolutions, the number of operations would come to
B(SR2HW+d2R1R2H ′W ′+TR1H ′W ′), which is different from the B(WHSR2+2(R1R2R3R4)+
R1R2W ′H ′d2 +R1TW ′H ′) operations found in the analysis of TensorlyTorch, with additional
intermediate results.
In Subsection 2-3-3, the multi-linear ranks were determined using the Higher-order Singular
Value Decomposition (SVD) (HOSVD), however in TensorlyTorch the multi-linear ranks are
determined based on the desired compression of the number of parameters, similar to CP.
The analysed Tensorly pseudo-code can be found in Section B-1. Each factor matrix U (n)

is truncated by rank Rn, so Rn = trIn with truncation factor tr. The multilinear ranks
that need to be found are thus defined as (trI1, trI2, . . . , trIn). In the same way as CP the
compression ratio is defined as shown in Equation 3-1-2 and rewritten this is given by

number of params after compression = c ∗ number of params original tensor. (3-11)

The number of parameters after compression is given by the number of parameters in the
factor matrices plus the number of parameters in the Tucker core given by

number of params after compression = tN
r

N∏
k=1

Ik︸ ︷︷ ︸
Tucker core

+ tr

N∏
k=1

I2
k︸ ︷︷ ︸

factor matrices

. (3-12)

1https://github.com/jacobgil/pytorch-tensor-decompositions/tree/master

D. Breen Master of Science Thesis

3-1 Decomposed convolutions 35

To find the truncation factor the Brent optimization method [162] is used after which the
ranks are calculated based on a combination of Equation 3-1-3 and Equation 3-1-3 given by

f(tr) = tN
r

N∏
k=1

Ik + tr

N∏
k=1

I2
k − c

N∑
k=1

Ik, (3-13)

where I1 = T, I2 = S, I3 = d and I4 = d. Due to the use of these optimization algorithms
the influence of the different CNN parameters, such as number of input channels, number of
output channels, kernel size and feature size becomes less interpretable and intuitive.

3-1-4 TT convolution

For the Tensor Train (TT) convolution the implementation is similar to [20] but different from
[158]. The TensorlyTorch uses the TT-SVD [117] method presented in Subsection 2-3-4 and
Algorithm 4 in Appendix A to decompose the permuted kernel K ∈ IRS×d×d×T into four core
tensors G(s) ∈ IRS×R1 , G(x) ∈ IRR1×d×R2 , G(y) ∈ IRR2×d×R3 , G(t) ∈ IRR3×T . Element-wise
this is given by

ks,x,y,t =
R1∑

r1=1

R2∑
r2=1

R3∑
r3=1

g(s)
s,r1g(y)

r1,x,r2g(x)
r2,y,r3g

(t)
r3,t [20]. (3-14)

The complete convolution operation V, using a 4th-order tensor kernel K, is now substituted
by a sequence of four convolutions with intermediate tensors U(s),U(sy) and U(syx). Element-
wise this is given by

u
(s)
i,j,r1

=
S∑

s=1
g(s)

s,r1ui,j,s (3-15)

u
(sy)
i,y,r2

=
y+δ∑

j=i−δ

R1∑
r1=1

g
(y)
r1,j−y+δ,r2

u
(s)
i,j,r1

(3-16)

u(syx)
x,y,r3 =

x+δ∑
i=x−δ

R2∑
r1=2

g
(x)
r2,i−x+δ,r3

u
(sy)
i,y,r2

(3-17)

vx,y,t =
R3∑
r−1

k
(t)
r3,tu

(syx)
x,y,r3 . (3-18)

The analysis of the TensorlyTorch pseudo-code showed that the implementation is slightly
different from the theory. Similar to the theory the convolution is substituted by four one-
dimensional convolutions, however, additional reshaping is performed to fit the convolutions,
as presented below in more detail.

• The first layer, convolves over the number of input channels S, which involves a mode-n
product over mode S. The input feature map U ∈ IRB×S×W H convolves with the tensor
core G(s) ∈ IRR1×S×1 into output feature map U(s) ∈ IRB×R1×W H . The MACs of this
convolution thus come to BR1SWH.

Master of Science Thesis D. Breen

36 Methodology

• Before the next convolution the spatial dimensions are again unfolded to input feature
map U(s) ∈ IRB×R×W ×H . Then this feature map is convolved with the reshaped core
tensor G(y) ∈ IRR2×R1×d to output feature map U(sy) ∈ IRB×R2×W ×H′ , resulting in
BR2R1dWH ′ MAC operations.

• The input feature map U(sy) ∈ IRB×R2×W ×H′ is then convolved with the reshaped core
tensor G(x) ∈ IRR3×R2×d to output feature map U(syx) ∈ IRB×R3×W ′×H′ , resulting in
BR2R3dW ′H ′ MAC operations.

• Lastly, another mode-n product over mode-R3 of input feature map U(syx) ∈ IRB×R3×W ′H′

and factor matrix G(t) ∈ IRR3×T ×1 is performed resulting in the output feature map
V ∈ IRB×T ×W ′H′ . When the last two dimensions are then separated, the original output
size of the ‘regular’ convolution is reached. The MACs of this convolution thus come to
BR3TW ′H ′.

In [20], it is stated that the complexity after decomposing is B(R1WH + R2d(R1WH +
R3W ′H) + R3TW ′H ′), which is slightly different from the BWHSR1 + BR2(R1dWH ′ +
dR3W ′H ′) + BW ′H ′TR3 operations found in the analysis of TensorlyTorch.
As mentioned in Subsection 2-3-4, the TT-SVD algorithm might result in higher and non-
optimal ranks. In addition to using the compression ratio to find the TT-ranks, the implemen-
tation of Tensorly finds the ranks proportional to the size of the dimensions. The analysed
Tensorly pseudo-code can be found in Section B-1.
The number of parameters in the first and final TT-cores is given by R1I1 and RN IN re-
spectively. For the in-between TT-cores, the number of parameters is given by RkIkRk+1 for
k = 1, . . . , N − 1. If the rank was chosen to be the same this would result in R2Ik. Now,
similar to the Tucker ranks, a truncation factor t

(k)
r = Ik+Ik+1

2 is chosen proportional to the
dimension size and this results in the number of parameters being (tk

rR)Ik(tk+1
r R). Now the

compression ratio can be defined as

c =
∑N

k=1 tk
rIktk+1

r R2 + (t1
rI1 + tN

r IN)R∏N
k=1 Ik

, (3-19)

which results in the following quadratic formula

N∑
k=1

tk
rIktk+1

r R2 + (t1
rI1 + tN

r IN)R− c
N∏

k=1
Ik = 0, (3-20)

from which the rank Rk = tk
rR is calculated using I1 = S, I2 = d, I3 = d and I4 = T .

3-2 Experimental design

The previous analysis described the modified convolutions, revealing differences from the
current theoretical state-of-the-art implementation. Based on this analysis two types of ex-
periments were designed: one set isolates a single convolution layer to map the influence of
various parameters on energy consumption, and another set applies tensor decompositions to
a CNN, specifically ResNet18 using the CIFAR10 dataset.

D. Breen Master of Science Thesis

3-2 Experimental design 37

3-2-1 Single convolution

Table 3-1 summarizes the found computational and memory complexity. The memory com-
plexity is chosen to be the added memory by the ‘new’ intermediate results since this is what
sets the methods apart from each other. To allow a fair comparison between the methods,
the amount of parameters in the kernels has been excluded since each method has the same
amount of parameters due to the rank selection of Tensorly based on the compression ratio.
In addition, the input and output feature maps were not included as they are the same for
each method and the original convolution.

Table 3-1: Intermediate storage complexity and computational complexity for different tensor
decomposition methods.

Method Complexity

CP Memory: BRWH + BRW ′H + BRW ′H ′

Computation: BR(SWH + dW ′H + dW ′H ′ + TW ′H)

Tucker Memory: BR2WH + BR1W ′H ′ + 2R1R2R3R4
Computation: B(WHSR2 + 2(R1R2R3R4) + R1R2W ′H ′d2 + R1TW ′H ′)

TT Memory: BR1WH + BR2W ′H + BR3W ′H ′

Computation: B(WHSR1 + R2(R1dW ′H ′ + dR3W ′H ′) + W ′HTR3)

Regular Computation: Bd2STW ′H ′

For each experiment, several independent variables were used, based on the identification of
key parameters from Table 3-1, to find the correlation between the energy consumption and
the different variables. This resulted in the following experimental set F ∈ {S, T, d, W, M, c, Ha}:

• The number of input channels S ∈ {192, 256, 320, 384, 448}. The specific number is
chosen based on the practical example of ResNet18, presented in Subsection 3-1-1,
showing input channels as a multiple of 64.

• The number of output channels T ∈ {192, 256, 320, 384, 512}. The specific number
is chosen based on the practical example of ResNet18, presented in Subsection 3-1-1,
showing output channels as a multiple of 64, where T ≥ S.

• The input feature size, chosen to be square, W ∈ {2, 4, 6, 8}. Smaller input feature sizes
combined with larger input and output channels were selected to represent the deeper
layers of convolutional networks, that are expected to benefit most from decompositions.

• The kernel size, chosen to be square, d ∈ {1, 3, 5}, as these are common in popular
architectures such as ResNet2.

• The tensor decompositions method M ∈ {cp, tucker, tt, not decomposed (nd)}.

• The compression ratio c ∈ {0.1, 0.25, 0.5, 0.75, 0.9}, defined as the ratio of parameters
kept, not the number of parameters removed. For example, a compression ratio of ten
per cent means, that the decomposed kernel consists of 10% of the original kernel and
c = 0.1 is thus the most compression. This definition was chosen to be the same as

2Resnet18 consists of kernels 1 × 1 and 3 × 3. In addition, larger ResNets can also contain kernels of 5 × 5

Master of Science Thesis D. Breen

38 Methodology

defined by TensorlyTorch. A multitude of compression ratios was chosen to show the
range and influence of small changes in compression ratio.

• The hardware used, Ha ∈ {Intel Core i7-6700HQ Central Processing Unit (CPU),NVIDIA
GeForce GTX Titan X Graphics Processing Unit (GPU)}. The first being a laptop and
the second a desktop, which were available for this thesis.

Separate experiments to see the influence of padding and stride were not designed, as Table 3-
1 already suggests that a higher stride leads to more MAC and larger intermediate results.
Padding was kept constant at one, a common size that keeps spatial dimensions intact.

The common dependent variables are the energy consumption, the calculated number of MAC
operations, the calculated additional memory based on the intermediate output feature maps
and the measured memory using a profiling tool. Calculation of the intermediate results,
next to real-time measurements, was chosen to determine whether pre-calculated memory
complexity could accurately represent actual memory complexity. If this is confirmed, esti-
mating energy savings before actual measurements would be possible, as discussed in SQ4.

The experiments run can be divided into four ‘themes’, each showing the influence of one CNN
parameter (S, T, d, W) and together showing the influence of the different tensor decomposi-
tion parameters (M, c). This division will also be used in Subsection 3-2-2. Each experiment
in this section has a basic experimental design. For these experiments, a controlled environ-
ment was desired to focus on the specific gains of decomposing. That is why it was chosen to
run inference on one isolated convolution layer, by performing multiple forward passes. Using
PyTorch, one convolution layer was made using Conv2d, based on the independent variables
defined in each experiment. The layer is decomposed using the previously mentioned Tensor-
lyTorch library. Since only the inference energy is of interest the with torch.no_grad mode
of PyTorch is used during each run, disabling any gradient calculations. To decompose the
layer, the tltorch.FactorizedConv.from_conv function is used from TensorlyTorch, for which
the analysis was already given in Section 3-1. It is important to note that the Factorized-
Conv.from_conv library on default reconstructs the kernel when performing the convolution,
which means only benefiting from less memory. Changing the parameter ’implementation’ is
crucial for efficient decomposed convolutions.

3-2-2 Decomposed Resnet18

To provide a broader perspective, including a real implementation instead of a single con-
volution, energy and memory measurements of running inference on a commonly used CNN
were performed. A similar method to [163] was used, where multiple layers of ResNet18 were
decomposed using different tensor decompositions with various compressions. Unlike [163],
this thesis focuses on energy and memory consumption rather than the approximation error.

The pre-trained ResNet18 from [163] was used as a starting point for decomposition. The
open-source GitHub code 3 [163] was adapted by adding the data collection code (Section 3-
3). The FactorizedConv implementation was adjusted to be ’factorized’ instead of using
reconstructed convolutions. [163] focused on approximation error and accuracy, saving models
during the best epochs, which caused random energy drops in the energy measurements.

3https://github.com/JSchuurmans/tddl

D. Breen Master of Science Thesis

3-3 Data collection 39

Removing this part stabilized the measurements, crucial for reliable results. Using a similar
methodology as the previous isolated experiments, only the forward pass was performed, using
torch.no_grad().
This experiment was run only on GPU due to computational constraints of the CPU. The
configurations of the chosen convolution layers are detailed in Section B-4 in the appendix.
Not all layers were decomposed as some have identical hyperparameters. All three tensor
decompositions were used, with various compression ratios to measure smaller differences.
The same seed (torch.manual_seed(), random.seed(), np.random()) was used for consistency
across all runs.
The reduced energy consumption of decomposing the separate layers will be presented as
the ratio between the energy saved (measured based on the energy consumption of running
inference on the whole CNN) and the original baseline energy when not decomposing, i.e.
Renergy = Ebaseline−Edecomposed

Ebaseline
.

3-3 Data collection

This section discusses the methodology used for collecting the energy and memory measure-
ments. Two extraneous effects were taken into account for all forms of data collection to
ensure the reliability of the results:

• Background processes: Measurements were done on both the GPU and CPU with no
visible processes running in the background. Invisible processes and Ubuntu updates
could not be controlled, so three runs were performed per experiment at different times
to account for variability.

• Software configurations: Consistent software configurations were used across all experi-
ments, by using the same libraries and versions on both the laptop and desktop (specific
requirements can be found on GitHub). This allows for direct comparison.

First, an overview of the energy measurement methodology will be presented, followed by
memory measurements, and finally the logging of the data.

3-3-1 Energy measurement

One key contribution of this thesis is measuring the real-time energy consumption of running
code. As discussed in Section 2-2, existing tools for monitoring energy consumption use
various methods and libraries, often without substantiated methodologies. For this thesis,
careful control over measurements was important. Additionally, one of the objectives was
to model energy consumption based on memory usage and MAC operations. The state-of-
the-art monitoring tools typically estimate memory energy consumption based on a global
average, not the energy specific to actual memory usage. Therefore, a direct measuring tool,
the watt meter, was chosen instead of software tools.
Another benefit of using a watt meter is its hardware independence. Many software tools
require specific software and library versions, which can interfere with current code imple-
mentations or other software packages. The watt meter avoids conflicting packages and

Master of Science Thesis D. Breen

40 Methodology

provides a simple, effective way to measure energy consumption. Additionally, running these
tools in the background adds an extra time cost, possibly interfering with the measurements
and this could add up for many experiments.

A requirement for the watt meter was the ability to log measurements frequently and not
only show the measurements on a display. If the energy is logged, then the meter logs data at
low frequencies, such as daily averages. Industrial watt meters offer high-frequency logging
and precision but are expensive and sometimes require integration into the circuit, which was
not feasible for the personal laptop and desktop. Therefore, the VoltCraft SEM5000 4 was
chosen, depicted in Figure 3-4. This watt meter is placed between the power adapter and the
wall socket, logging voltage, current, and power every minute to an insertable and removable
SD card. It logs the current value at the start of each minute and does not average over
the minute, providing the necessary frequency. Table 3-2, shows the technical details of the
measurement tool, including tolerance (deviation in measurements), resolution (number of
decimals) and the frequency of the measurements.

Table 3-2: Technical Details of the
VoltCraft SEM-5000

Parameter Range Specification

Tolerance
< ±2% > 10 W
< ±10% 3 - 10 W
< ±0.03 W < 3 W

Resolution

0.001 W 0.3 - 9.999 W
0.01 W 10.00 - 99.99 W
0.1 W 100.0 - 999.9 W
1 W 1000 - 3680 W

Frequency Every minute

Figure 3-4: The VoltCraft
SEM-5000

Because the energy measurements had a frequency of one minute, the number of epochs was
chosen in such a way that each measurement would run a sufficient amount of time, around
four minutes, so enough data points were gathered per experiment.

Measuring power through wall sockets introduces challenges due to power fluctuations. These
fluctuations can result from grid capacity differences (e.g. night vs. day) or from internal
power management in GPUs and CPUs, which adjust power consumption based on workload.
To address this, three runs of each experiment will be measured and run at varying times
rather than consecutively.

The steps used to start the measurements using the watt meter are as follows:

1. Charge the used hardware, if possible (laptop), completely so that all energy drawn
from the wall socket is assumed to be for the processes running on the device. For a
desktop, the energy drawn for idle consumption is assumed to be consistent, whereas
the energy drawn for charging laptops is not consistent over time.

4https://www.conrad.nl/nl/p/voltcraft-sem5000-energiekostenmeter-kostenprognose-alarmfunctie-
instelbaar-stroomtarief-datalogger-2587314.html

D. Breen Master of Science Thesis

3-3 Data collection 41

2. Install the watt meter between the power plug and the wall socket, by setting the
precise time and date using the SET -button as seen in Figure 3-4. Then define the
precise measurement period using the F -button. When the circle light is green it means
the watt meter is initialized correctly and is ready, otherwise, it is coloured red.

3. Start running the code which needs to be measured.

4. After the code is finished, read out the SD card and process the data which methodology
is further described in detail in Subsection 3-3-3.

5. Repeat this for three runs of each experiment.

3-3-2 Memory profiling

To measure memory usage, memory profiling tools were used in addition to the calculated
estimates based on intermediate results from Table 3-1. For both CPU and GPU, memory
profiling was executed during a single forward pass to ensure direct comparability with the
calculated memory and avoiding the influence of PyTorch’s internal memory management,
which uncontrollably releases and frees up memory after epoch runs. Memory usage was
recorded in bytes and then converted to megabytes (MB) by dividing it by 10242.

In more detail, the CPU memory was measured using the integrated PyTorch memory profil-
ing tool 5, profiling the memory consumption of the model operators. The profiler variables
are set in 12 in Listing 3.3.

For the GPU memory consumption, the PyTorch profiler tool did not manage to make use of
the pynvml, due to version conflicts, so another method was used. As shown in Listing 3.1,
in each epoch the PyTorcyh CUDA peak memory stats are cleared and the peak memory
allocated is then used to represent the memory consumption of the GPU.

To connect the energy savings to the measured memory usage, the additional memory was
calculated by subtracting the memory used in each baseline run (without decomposition)
from the memory used in each experimental run.

1 with torch. no_grad ():
2 torch.cuda. reset_peak_memory_stats ()
3 for _ in tqdm(range(m), desc=" Forward Iterations "):
4 output = model(Variable (x))
5 peak_memory = torch.cuda. max_memory_allocated ()

Listing 3.1: Memory Profiling of the GPU memory consumption

3-3-3 Logging

Since an external device was used to measure the energy consumption it was important to
find a method to log the data coherently on two different platforms: both the watt meter and
Python. The watt-meter logs the data every minute and saves it as a single CSV file on an
SD card. After the experiments, the SD card is removed and read out using Pandas. Note

5https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html

Master of Science Thesis D. Breen

42 Methodology

that before reading the CSV, the top lines of the description need to be removed from the
CSV before processing.

To log which experiment corresponds to each time period and energy measurement, the
Python logging library was used. This Application Programming Interface (API) allows each
Python module to log to the same file. For each log entry the date (DD/MM/YYYY) and time
(h:m:s) are recorded. Before any code has been run the log handler needs to be initialized,
as long as no other exists. The logging level is set to INFO to provide relevant information
without interfering with ERROR, WARNING, or FATAL logs. The file handler level is set
using fh.setLevel(). More details of the code can be found in Listing 3.2.

1 import logging
2 logger = logging . getLogger (’Layer_fin ’)
3 logger . setLevel (logging .INFO)
4

5 # Check if the logger already has a FileHandler
6 if not any(isinstance (handler , logging . FileHandler) for handler in logger .

↪→ handlers):
7 fh = logging . FileHandler (’Kernel .log ’)
8 fh. setLevel (logging .INFO)
9 formatter = logging . Formatter (’%(asctime)s - %(name)s - %(levelname)s - %(

↪→ message)s’)
10 fh. setFormatter (formatter)
11 logger . addHandler (fh)

Listing 3.2: Logging setup for Layer_fin

Before the forward passes are run, the logger records the starting time, logging the experiment
name (consisting of the important parameters S, T, W, d, M, and c) prefixed with ‘start’ and
ending with ‘-ind’ followed by the index of the current run (1-3). Since the watt meter logs
every minute, the code is synchronized to start at the beginning of a minute using Python’s
time and datetime libraries. After the forward passes are completed, the logger records the end
time, again logging the experiment name but now prefixed with ‘end’, as shown in Listing 3.3.
Once all experiments are finished, each log file is converted to a CSV using the code given in
Section B-1 Listing B.4.

1 . . .
2 model.train ()
3 timers .sleep (60)
4 now = datetime .now ()
5 sec_wait = 60 - now. second
6 timers .sleep(sec_wait)
7 start_training = perf_counter ()
8 if decompose :
9 logger .info(f"dec -start -outch{ out_channels }-inch320 -fact{ factorization }-r{

↪→ rank}-wh{img_w}-ind{ind}s")
10 else:
11 logger .info(f"bas -start -outch{ out_channels }-inch{ in_channels }-wh{img_w}-

↪→ ind{ind}s")
12 with torch. no_grad ():
13 with profile (activities =[ProfilerActivity .CPU], record_shapes =False ,

↪→ profile_memory =True) as prof:
14 for _ in tqdm(range(m), desc=" Forward Iterations "):

D. Breen Master of Science Thesis

3-4 Data processing 43

15 output = model(Variable (x))
16 if decompose :
17 logger .info(f"dec -end -outch{ out_channels }-inch320 -fact{

↪→ factorization }-r{rank}-wh{img_w}-ind{ind}s")
18 else:
19 logger .info(f"bas -end -outch{ out_channels }-inch{ in_channels }-wh{

↪→ img_w}-ind{ind}s")
20 end_training = perf_counter ()
21 training_time = start_training - end_training
22 key_averages = prof. key_averages ()
23 peak_memory = sum ([item. cpu_memory_usage for item in key_averages])
24 . . .

Listing 3.3: Code snippet of inference logging and memory profiling on CPU

3-4 Data processing

After all data was logged, it needed to be processed before it could be used. The various
log files of the Python logger contained the different measurement periods for the different
experiments. The watt meter logs files were saved per month in CSV files and consisted of
the power measurements per minute. It was key to combine the information of these two log
files into coherent results.

To separate the power measurements into different periods based on the Python logger files,
the ‘start’ prefix assigned to each experiment was used. After locating the first ‘start’ in the
log, the corresponding DateTime was collected and matched with the DateTime in the power
measurements CSV. The end time was then found by moving one index down in the logger file
and compared with the CSV. This process was repeated to extract all measurement periods
from the power CSV. Once the individual measurement periods were identified, the different
runs of the same experiment were combined using the ‘ind’ value, into a single measurement
ID.

0 2 4 6 8 10 12 14 16 18
Time [min]

10

15

20

25

30

35

40

Po
we

r [
W

]

Runs for different measurements on the CPU

0 5 10 15 20
Time [min]

100

150

200

250

300

Po
we

r [
W

]

Runs for different measurements on the GPU

Figure 3-5: Several power measurement sequences for different experiments run both on the
CPU and GPU.

Master of Science Thesis D. Breen

44 Methodology

Figure 3-5 shows different power measurements from various experiments. Occasionally, the
measurements display a large outlier in the first minute. This may be due to the prior
measurement ending close to the next minute, resulting in a shorter waiting time. Instead
of starting from the idle consumption, some peak or dip in energy might still be present
Therefore, the first measurement was treated as an outlier and removed. The duration of
the first minute was kept to accurately reflect its influence on final energy consumption
(E=power*time). The remaining measurements in the period were used and the median was
taken to reflect the power over that time period, removing any other outliers and power grid
fluctuations. Then the energy was calculated by multiplying the median with the total time
period (including the first minute). Energy consumption was converted into kWh, a standard
unit in research. For each experiment, run multiple times, the average energy consumption
was calculated by taking the mean over all runs.

The full pseudo-code of the data processing is given in Listing B.5 in Section B-1.

3-5 Modelling the expected energy savings of decomposed convo-
lutions

For this thesis, a simple energy complexity model was used, assuming that the two main
contributors to total energy consumption are memory usage and MAC operations. Previous
research suggests that memory operations typically consume more energy compared to MAC
operations [72]. Modelling both the MAC and memory can give insight into the influence
ratio between these variables on the energy saved.

To establish a baseline for comparison, a benchmark model was first developed using a simple
linear regression with the MAC operations as the sole predictor. This benchmark reflects the
traditional focus on the computational complexity of tensor decomposed convolutions estab-
lished in Chapter 2, where energy efficiency is often discussed primarily in terms of MAC
operations and reduced number of parameters. However, in the TensorlyTorch implementa-
tion used in this thesis, CP, Tucker, and TT decomposed layers result in the same number
of parameters, despite leading to different energy reductions. Therefore, the number of pa-
rameters was not chosen as a representative variable for the benchmark. By establishing the
benchmark, it is possible to quantify the basic predictive power of computational complexity
alone and use it as a reference point to evaluate the improvements offered by more complex
models that incorporate memory usage.

Following up on that another aspect is considered: whether the memory is measured or
calculated. The sizes of the intermediate results of the separate decomposed convolutions can
be calculated based on the analysis of the chosen CNN hyperparameters and decomposition
parameters following Subsection 2-4-2. It would be convenient to predict the energy saved
before actually measuring anything, i.e. measuring memory usage using a profiling tool.
Therefore, it was decided to not only model the energy savings based on the number of
reduced MAC operations and the measured memory usage but also create models based on
the in-advance calculated memory from the intermediate results. The results of these models
could indicate whether the calculated memory could make valid predictions on the energy
saved by decomposing before actual implementation.

D. Breen Master of Science Thesis

3-5 Modelling the expected energy savings of decomposed convolutions 45

Both multivariate linear and polynomial regression models were employed to analyze the
relationships between the dependent variable (energy saved) and the independent variables
(calculated memory, measured memory, and MAC operations). It was chosen to fit a multi-
variate linear regression model as a simple approach to understanding the linear relationships
in the data. Additionally, a polynomial regression model was applied to capture potential
non-linear patterns, providing a more complex analysis. This additional complexity might
particularly be relevant in the context of complex memory management scenarios, such as
those encountered in GPU platforms, where non-linear relationships might better explain the
data.

For each hardware implementation (CPU and GPU), a model was fitted since it is expected
that different models are necessary, especially for the memory allocations that can differ
between the different hardware, which was derived from literature is Subsection 2-2-1.

In summary, eight different models were fitted—four for each type of hardware—either linear
or polynomial, with the measured or calculated memory. More details are provided below,
starting with processing the data.

3-5-1 Data augmentation before fitting

The data used for these models was obtained from measurements taken during the single-
layer convolution experiments, as detailed in earlier sections. The dependent variable in these
models is the energy savings (∆E) and the independent variables are the reduction in MAC
operations (∆MAC) and the additional memory required (∆memory). The memory variable
can be either calculated or measured, depending on the model variant being used. These
variables represent the differences in operations and memory before and after decomposition
compared to the original baseline convolution.

Given the difference in the order of magnitude between the energy saved, the MAC operations
and the memory usage, it was necessary to standardize the independent variables. Standard-
ization ensures that the coefficients derived from the regression models are on the same scale,
allowing for a more meaningful comparison of their relative influence on energy savings. The
StandardScalar from the scikit-learn library was used for this standardization process.

After standardization, the datasets were split into training and test sets based on an 80%-20%
ratio, so that the models could be evaluated on unseen data. The total dataset contained 200
measurements, resulting in a training set of 180 measurements and a test set of 20 measure-
ments. The energy measurements obtained from the watt meter were processed according to
the procedure described in Section 3-4, and no further outlier removal was performed for the
regressions.

3-5-2 Fitting several regression models

Building upon the established benchmark model, more complex regression models were devel-
oped to explore the multivariate relationships between energy savings, MAC operations, and
memory usage. Both linear and polynomial regression models were fitted, exploring different
complexities to capture potential linear and non-linear patterns.

Master of Science Thesis D. Breen

46 Methodology

To find these relationships, Linear Regression was used with either linear or polynomial
features, under the assumptions of linearity, normality of the residuals, homoscedasticity,
no multicollinearity and independence of the measurements. For both hardware types and
different memory conditions, these properties were investigated, and a detailed description is
provided in Section B-3 in the appendix. The data distribution showed some deviation from
a normal distribution, although it largely resembled one. Additionally, there were indications
of heteroscedasticity.

Linear regression model
The multivariate linear regression model incorporates both MAC operations and memory
usage (calculated or measured) as independent variables. The model assumes a linear rela-
tionship between the predictors and the energy saving, as presented by

∆E = β0 + β1x1 + β2x2 + ϵ, (3-21)

where β0 is the intercept, β1, β2 are the least squares estimators and x1 and x2 are the inde-
pendent variables ∆memory and ∆MAC respectively, with error ϵ, explaining any variance
not explained by the model.

The linear regression was performed using the Ordinary Least Squares (OLS) method from
the statsmodels library. It was chosen to use the statsmodels linear regression over the other
commonly used scikit-learn because it allows for better statistical comparison between models
through the available statistical model summary. The slight indication of heteroscedasticity
was addressed by using robust Standard Errors (SEs) (cov=’HC1’) to mitigate a biased SE.
This adjustment results in more reliable p-values, test statistics, and confidence intervals
[164].

Polynomial regression model
To capture more complex relationships that might exist between the variables, a second-order
polynomial was applied. This model includes squared and interaction terms to account for
potential non-linear effects, given by

∆E = β0 + β1x1 + β2x2 + β3x2
1 + β4x2

2 + β5x1x2 + ϵ, (3-22)

where β0 is the intercept, β1, β2, β3, β4, and β5 are the least squares estimators, and x1 and
x2 are the independent variables ∆memory and ∆MAC respectively, with some additional
noise ϵ. Now additional squared (x2

1, x2
2) and interaction (x1x2) terms can account for the

potential non-linear relations.

Similar to the linear regression, the OLS from statsmodels was used, however, now polynomial
features were included using the scikit-learn PolynomialFeatures. Using PolynomialFeatures,
the intercept is added by default so it is important to note not to do this (include_bias=False)
since the intercept is added through statsmodels. For the polynomial regression, again robust
SEs are used.

3-5-3 Evaluation metrics

To compare and evaluate the fitted models several evaluation metrics are used to assess the
performance and robustness. Below an overview is given of the different metrics.

D. Breen Master of Science Thesis

3-5 Modelling the expected energy savings of decomposed convolutions 47

Root-mean-square error (RMSE)
To measure the performance of the models, in terms of accuracy, the RMSE was used. An
advantage of the RMSE is that this metric has the same unit as the dependent variable,
allowing for direct comparison. A lower RMSE indicates that the predicted values are closer
to the actual values, evaluating the model accuracy.

R-squared and Adjusted R-squared
The R-squared metric is used to see the proportion of the variance in the dependent variables
that can be explained by the independent variables. When the R-squared value is closer to one,
it suggests that the model can account for a significant part of the variance. When additional
predictors are added, the R-squared value will either remain constant or will increase, even
when the new predictor does not add extra predicting power. Comparing the benchmark
(single independent variable) with the other models (multivariate) solely based on the R-
squared value might not give a representable result. That is why, in addition to the R-squared,
also the adjusted R-squared is used, which only increases when the additional dependent
variable adds additional prediction power. Using the adjusted R-squared, it is thus possible to
evaluate whether incorporating the memory usage and polynomial terms leads to meaningful
improvements.

Model robustness
As mentioned before, a train-test split will be used to show the results of the model on
unseen data. In that way, the robustness of the model can be evaluated on reliability and
generalizability.

Master of Science Thesis D. Breen

Chapter 4

Experiments

In this section, all experiments will be discussed and results will be presented. The analysis
will help to derive conclusions presented in Chapter 5. Initially, the isolated experiments for
both Central Processing Unit (CPU), Graphics Processing Unit (GPU) and the ResNet18
experiments will be discussed addressing SQ1, SQ2 and SQ3, followed by the regression
models, addressing SQ4.

The analysis will focus on the assumed contributors to energy consumption: Multiply-Accumulate
operation (MAC) operations and memory consumption, both measured and calculated. Given
the interest in reducing energy consumption, the comparison between parameters and meth-
ods will be based on the difference in energy saved ∆E = Ebaseline − Edecomposed, where
negative numbers indicate additional energy consumption and positive numbers indicate en-
ergy savings. As a reference, all baseline energy consumptions are presented in Appendix C
Section C-1. In addition, it was also of interest whether the calculated memory was a good
indicator of the real additional memory, enabling prediction before actual measurements are
needed. The differences between the measured and calculated memory will also be outlined.

For each isolated experiment, random input features are generated in the sizes needed for
the experiments, sampled from a normal distribution with the mean and standard deviation
of the CIFAR10 dataset. Each batch is sampled once and used for all experiments, to al-
low for fair comparison. For experiments run on both GPU and CPU, input features are
reformatted to float32 from float64, optimized for GPU and commonly used in Convolutional
Neural Networks (CNNs), using x.float(). This allows for more efficient processing. The code
explicitly moves the model and variables to either CPU or GPU using torch.device("cuda" if
torch.cuda.is_available() else "cpu"). For running the inference on the pre-trained ResNet18
the CIFAR10 train dataset was used as input, consisting of 50000 images with a batch size
of 128.

Master of Science Thesis D. Breen

50 Experiments

4-1 Influence of input channels

This section elaborates on the results of experiment one where the effect of the input channels
combined with the different tensor decompositions and compression ratios is investigated.
Table 4-1 shows the different hyperparameters used for this single convolution experiment.

Table 4-1: Control, independent and dependent variables of experiment 1.

Control Variables Independent Variables Dependent Variables

T = 512 S ∈ {192, 256, 320, 384} Energy consumption

W ×H = 4× 4 M ∈ {cp, tucker, tt, nd} Memory

d = 3 c ∈ {0.1, 0.25, 0.5, 0.75, 0.9} MAC

epochs = 7.0× 103(CPU), 5.8× 105(GPU) Hardware ∈ {CPU, GPU}

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Compression

0

200

400

600

800

1000

1200

1400

1600

1800

R

Ranks for Mode-S CP Decomposition
In_ch=192
In_ch=256
In_ch=320
In_ch=384

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Compression

0

200

400

600

800

1000

1200

1400

1600

1800

R2

Ranks for Mode-S Tucker Decomposition
In_ch=192
In_ch=256
In_ch=320
In_ch=384

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Compression

0

200

400

600

800

1000

1200

1400

1600

1800

R1

Ranks for Mode-S TT Decomposition
In_ch=192
In_ch=256
In_ch=320
In_ch=384

Figure 4-1: The mode-S ranks of all three tensor decomposition methods across all compression
ratios.

Figure 4-1, show the different ranks, for the different number of input channels. It shows that
with the increase of S and decrease of compression ratio, the Parallel Factors (PARAFAC)
Canonical Decomposition (CANDECOMP) (CP) rank is significantly higher than the mode-S
specific Tucker and Tensor Train (TT) ranks. It is also visible, that with less compression,
the CP ranks are growing more rapidly than the mode-specific ranks. The rank has a great
influence on the reduction of MAC, but especially on the intermediate tensors that need to
be stored. Figure 4-1 might indicate that the expected energy saved will be less for the CP
compared to Tucker and TT.

4-1-1 CPU energy savings

Figure 4-2 illustrates the energy reduction achieved by different tensor decomposition meth-
ods, varying compression rates, and the number of input channels for the CPU using a line
chart. On the y-axis, the saved energy (positive values) and added energy (negative values)
in kWh are displayed, while the x-axis presents the different compression rates. The standard
deviation of the measurements is shown by the hue.

D. Breen Master of Science Thesis

4-1 Influence of input channels 51

For CP decomposition, higher compression results in higher energy savings. The most energy
is saved, E = 0.008 kWh (67.23% of baseline E), for S = 384 at c = 0.1. At compression of
c = 0.25 energy savings cross zero, indicating that from there additional energy is consumed.
With less compression, all configurations show negative energy savings. Notably at around
c = 0.5, a transition takes place where configurations with a larger number of input channels,
begin to consume more energy compared to those with fewer channels.

The Tucker decomposition method shows similar patterns. Higher compression ratios lead
to increased energy savings, with a maximum of ∆E = 0.0097 kWh (81.51% of baseline E).
Between c = 0.5 and c = 0.75, a similar transition occurs, where a larger amount of input
channels consume more energy than those with fewer channels, also crossing the zero-energy
savings line.

Among the three decomposition methods, the TT shows the most consistent energy savings,
remaining positive for all input channel configurations, with a maximum energy saving of
∆E = 0.0099 kWh (83.19% of baseline E). For all compression ratios, the higher the number
of input channels shows slight variations in the energy savings.

0.2 0.4 0.6 0.8
Compression Ratio

0.025

0.020

0.015

0.010

0.005

0.000

0.005

0.010

En
er

gy
 sa

ve
d

(k
W

h)

CP Decomposition

0.2 0.4 0.6 0.8
Compression Ratio

Tucker Decomposition

0.2 0.4 0.6 0.8
Compression Ratio

TT Decomposition

input channels
In_ch=192
In_ch=256
In_ch=320
In_ch=384

Energy Consumption Across Compression Ratios by Input Channels and Decomposition Methods

Figure 4-2: The energy saved for different methods, CP, Tucker and TT, for a different number
of input channels, given by different colours, run on a CPU. The hue presents the standard
deviation of the measurements.

In Figure 4-3, CP decomposition shows visible variation in MAC reduction across different
compression ratios, particularly in lower compression (c ≥ 0.5), where an increase in MAC
operations is visible. Both additional measured and calculated memory show an increase with
increasing input channels. This pattern matches the pattern in Figure 4-2, where the energy
savings drop to zero for compression rates c > 0.25. The spike in memory usage and MAC
operations at lower compressions likely contributes to this drop in energy savings.

Similarly, Tucker has lower MAC reduction at lower compression ratios (c > 0.5) for all input
channels. Combined with the increase of memory, particularly at lower compression with
more input channels, this can explain the negative energy savings observed in Figure 4-2.

Master of Science Thesis D. Breen

52 Experiments

In contrast, TT shows a substantial MAC reduction and low memory usage, consistent for
all compression rates and input channels. This consistency matches well with the consistent
energy savings and minimal differences in energy consumption between the increasing number
of input channels.

Figure 4-3 shows that the calculated memory has similar patterns as the measured memory
for all measurements and input channels. However, a slight difference can be found in the
Tucker decomposition, where the calculated memory shows more distinct spikes of memory
for lower compression ratios c > 0.5.

1.0

0.5

0.0

0.5

1.0 1e9 MAC reduction CP

0

20

40

60

80

100

Measured memory CP

0

2

4

6
1e6 Calculated memory CP

1.0

0.5

0.0

0.5

1.0 1e9 MAC reduction Tucker

0

20

40

60

80

100

Measured memory Tucker

0

2

4

6
1e6Calculated memory Tucker

192 256 320 384
1.0

0.5

0.0

0.5

1.0 1e9 MAC reduction TT

192 256 320 384
0

20

40

60

80

100

Measured memory TT

192 256 320 384
0

2

4

6
1e6 Calculated memory TTRe

du
ce

d
nu

m
be

r o
f M

AC
 o

pe
ra

tio
ns

M
em

or
y

(M
B)

M
em

or
y

(#
pa

ra
m

s)

Number of Input Channels

Experiment 1: Memory and Computation Complexity
Compression Ratio

0.1 0.25 0.5 0.75 0.9

Figure 4-3: The MAC operations and memory, both calculated and measured on the CPU, for
the different methods and input channels. On the left the MAC operations reduced by decom-
posing, in the middle the measured memory and on the right the calculated memory based on
the intermediate results.

4-1-2 GPU energy savings

Figure 4-4 illustrates the energy reduction achieved by different tensor decomposition meth-
ods, varying compression rates, and the number of input channels for the GPU using a line
chart. On the y-axis, the saved energy (positive values) and added energy (negative values)
in kWh are displayed, while the x-axis presents the different compression rates. The standard
deviation of the measurements is shown by the hue.

D. Breen Master of Science Thesis

4-1 Influence of input channels 53

In contrast to the CPU energy savings, the CP decomposition has no energy savings for the
decomposed layers and even has a large amount of additional energy, with the least additional
energy of ∆E = −0.030 kWh (575% of baseline E). In addition, a different pattern is visible
where the large number of input channels S = 384 performs less for most compression. When
the compression is c = 0.5 it can be seen that the middle number of input channels S = 256
and S = 192 perform even worse but then spike up at c = 0.75 and c = 0.9. For the least
amount of compression, a similar result to the CPU can be seen where the lowest number of
input channels adds less energy than the largest number of input channels.

The energy savings from the Tucker decomposition are all below zero, with the least additional
energy of ∆E = −0.011 kWh (92.44% of baseline E), and show consistent overall compression
ratios. Figure 4-4 indicates that with increasing input channels increased added energy is
consumed. There is no longer a transition as seen in the CPU results. In contrast, the TT
decomposition shows some, but very subtle, energy savings, with the largest ∆E = 0.006 kWh
(50.42% of baseline E), for the largest number of input channels S = 384 for high compressions
c ≤ 0.25.

0.2 0.4 0.6 0.8
Compression Ratio

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

En
er

gy
 sa

ve
d

(k
W

h)

CP Decomposition

0.2 0.4 0.6 0.8
Compression Ratio

Tucker Decomposition

0.2 0.4 0.6 0.8
Compression Ratio

TT Decomposition

input channels
In_ch=192
In_ch=256
In_ch=320
In_ch=384

Energy Consumption Across Compression Ratios by Input Channels and Decomposition Methods

Figure 4-4: The energy saved for different methods, CP, Tucker and TT, for a different number
of input channels, given by different colours, run on a GPU. The hue presents the standard
deviation of the measurements.

The calculated memory and reduced MAC operations shown in Figure 4-3 also apply to
the GPU and cannot explain the observed fluctuation and differences in the energy savings.
Figure 4-5 shows the measured memory on the GPU, which gives more insight into the
memory usage on the GPU. Especially since it is known from the literature that specialized
GPU consist of more complex memory structures, the memory usage may be more influential,
whereas the MAC operations may not be due to efficient parallel computing [165].

Looking at CP memory usage, it can be seen that for S = 192 and S = 256 a drop is visible
at compression c = 0.75. This matches the spikes in energy savings in the CP in Figure 4-4.
For Tucker it can be seen that the memory usage increases with increased input size and

Master of Science Thesis D. Breen

54 Experiments

192 256 320 384
0

20

40

60

80

100

120

140

160
CP

192 256 320 384
0

20

40

60

80

100

120

140

160
Tucker

192 256 320 384
0

20

40

60

80

100

120

140

160
TT

Compression ratio
0.1
0.25
0.5
0.75
0.9

M
em

or
y

(M
B)

Input channels

Measured Memory for Experiment 1 on GPU

Figure 4-5: The measured memory usage on the GPU, for the different methods and input
channels.

compression ratio, however, it doesn’t increase much, which could match the small variation
in Figure 4-4. The energy savings of the Tucker and CP are below zero and this might be
so due to too much added memory. Looking at TT the memory added is lower, especially
for a large number of input channels and compression 0.25 which shows a similar pattern to
Figure 4-4 for which the energy savings of S = 384 are the highest and the other number of
input channels show added memory similarly to Tucker and TT.
Figure 4-5 shows that for the memory usage of the GPU, the calculated intermediate results
from Figure 4-3, might not be a good predictor for the actual memory consumption.

4-1-3 Key findings

This experiment was designed to look into whether the number of input channels of a layer
had a noticeable impact on the inference energy savings by decomposing the layer using either
CP, Tucker or TT decomposition across different compression levels. Below the key findings
of this experiment are outlined.

• MAC operations and memory: The results suggest that indeed the reduced MAC oper-
ations and the additional memory usage play an important role in energy savings. For
both the CPU and GPU, it was seen that the memory and MAC operations showed
patterns that could explain certain changes in energy consumption. In addition, espe-
cially for GPU, it could seen that the additional memory may be the most prominent
factor and that the calculated memory, especially for CPU, shows similar patterns to
the measured memory, which might make it a good predictor.

• Number of input channels: The additional memory and reduced MAC operations are
dependent on the number of input channels. For high compression, the larger the
number of input channels the more benefit is gained. However, for lower compression
levels c ≥ 0.5, the smaller number of input channels performs better. So this suggests
that the number of input channels is important when decomposing a convolutional layer
and there is a trade-off present.

• Decomposition methods: TT shows the most potential for decomposing as it shows
consistency in overall compression levels and the number of input channels. For the

D. Breen Master of Science Thesis

4-2 Influence of output channels 55

higher compression levels (c = 0.1, c = 0.25), all three methods showed similar energy
savings, however for both Tucker and CP the lower compression levels c ≥ 0.5 showed
additional energy and especially the CP decomposition performed worse.

• Hardware: The energy savings of the CPU were higher than of the GPU for all input
channels and the GPU mostly even presented additional energy needed after decom-
posing. The differences presented in the reduced MAC operations and memory might
indicate similar patters and might align with the energy savings.

4-2 Influence of output channels

This section elaborates on the results of experiment two where the effect of the number of
output channels combined with the different tensor decompositions and compression ratios
is investigated. Table 4-2 shows the variables used in this experiment. First, the results of
the CPU experiment will be outlined, after which a comparison will be made with the GPU
experiment.

Table 4-2: Control, independent and dependent variables of experiment 2.

Control Variables Independent Variables Dependent Variables

S = 192 T ∈ {192, 256, 320, 384} Energy consumption

W ×H = 4× 4 M ∈ {cp, tucker, tt, nd} Memory

d = 3 c ∈ {0.1, 0.25, 0.5, 0.75, 0.9} MAC

epochs = 9.0× 103(CPU), 5.8× 105 (GPU) Hardware ∈ {CPU, GPU}

Figure 4-6, show the different ranks, for the different number of output channels. Similar to
the mode-S ranks, the difference between the CP rank and mode T specific Tucker and TT
rank is visible. The ranks are smaller than the mode-S ranks. Again, it would be expected that
the balance between MAC reduction and memory allocation will result in the CP decomposed
convolution saving less energy than the other methods, based on these differences in the ranks.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Compression

0

200

400

600

800

1000

R

Ranks for Mode-T CP Decomposition
Out_ch=192
Out_ch=256
Out_ch=320
Out_ch=384

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Compression

0

200

400

600

800

1000

R1

Ranks for Mode-T Tucker Decomposition
Out_ch=192
Out_ch=256
Out_ch=320
Out_ch=384

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Compression

0

200

400

600

800

1000

R3

Ranks for Mode-T TT Decomposition
Out_ch=192
Out_ch=256
Out_ch=320
Out_ch=384

Figure 4-6: The mode-T ranks of all three tensor decomposition methods across all compression
ratios.

Master of Science Thesis D. Breen

56 Experiments

4-2-1 CPU energy savings

Figure 4-7 illustrates the energy reduction achieved by different tensor decomposition meth-
ods, varying compression rates, and the number of output channels for the CPU using a line
chart. On the y-axis, the saved energy (positive values) and added energy (negative values)
in kWh are displayed, while the x-axis presents the different compression rates. The standard
deviation of the measurements is shown by the hue.

Generally, the CP decomposition shows an increase in energy consumption rather than sav-
ings, except at a high compression ratio of c = 0.1, across all output channels, with a maximum
of ∆E = 0.0026 kWh (51.38% of baseline E). Similar to the pattern seen in the number of
input channels, there is a noticeable transition between c = 0.25 and c = 0.5, where the en-
ergy added for larger output channels T = 384 grows stronger than that of the smaller output
channels. This suggests that compression in convolution layers consisting of a large number
of output channels is only beneficial at high compression levels. Additionally, the standard
deviation for the smaller compressions (c=0.75 and c=0.9) appears to be larger, indicating
more variability in the energy measurements.

0.2 0.4 0.6 0.8
Compression Ratio

0.020

0.015

0.010

0.005

0.000

0.005

En
er

gy
 sa

ve
d

(k
W

h)

CP Decomposition

0.2 0.4 0.6 0.8
Compression Ratio

Tucker Decomposition

0.2 0.4 0.6 0.8
Compression Ratio

TT Decomposition

output channels
Out_ch=192
Out_ch=256
Out_ch=320
Out_ch=384

Energy Consumption Across Compression Ratios by Output Channels and Decomposition Methods

Figure 4-7: The energy saved for different methods, CP, Tucker and TT, for a different number
of output channels, given by different colours, run on a CPU. The hue presents the standard
deviation of the measurements.

For the Tucker decomposition, layers with a larger number of output channels (T = 384)
induce more energy savings than those with smaller output channels until c = 0.75, with the
largest savings of ∆E = 0.0039 kWh (77% of baseline E). At this compression level, a transi-
tion occurs, and all output channels show similar energy consumption. At high compression
levels c < 0.5, the Tucker decomposition shows energy savings, however beyond this point the
benefit of decomposing is reduced, resulting in additional energy consumption.

The TT decomposition shows consistent energy savings for all compression ratios, increasing
with the number of output channels, with a maximum energy savings of ∆E = 0.004 kWh
(79.05% of baseline E). However, the smallest number of output channels T = 192, lies on

D. Breen Master of Science Thesis

4-2 Influence of output channels 57

the zero energy savings line, suggesting that decomposing layers with fewer output channels
might result in additional energy consumption.
Overall, the TT decomposition shows the most consistent energy savings and performs best at
low compression levels. The Tucker decomposition presents similar energy savings at higher
compression levels, but at lower compression levels it results in additional energy consumption.
Lastly, the CP decomposition performs the worst even at high compression levels. This trend
is consistent across all number of output channels
Figure 4-8 shows the MAC operations reduced by decomposing and the additional memory
both calculated and measured. In Figure 4-8 CP decomposition shows visible variation in
MAC reduction across different compression ratios. In particular, for each number of output
channels, there is a clear transition between MAC reductions (∆E > 0) and additional MAC
operations (∆E < 0) between compression ratios c = 0.25 and c = 0.5. Differently from
all other compression ratios, less MAC operations are added with c = 0.5 with increased T.
In combination with, the consistently increasing memory with a higher number of output
channels, both calculated and measured, it might explain the transition shown in Figure 4-7.
It suggests that for higher output channels, more memory is required, especially in the lower
compression levels, which negates the benefit from the MAC reductions.
For the Tucker decomposition, Figure 4-8 shows with more output channels T = 384, the
most MAC reduction occurs, especially at high compression levels. However, the differences
between high and low levels of compression become more noticeable for T = 384. Additionally,
there is a consistent increase in memory usage, both calculated and measured, across all
compression rates, with the highest usage at a higher number of output channels. This might
explain the transition observed in Figure 4-7, where lower MAC reduction at low compression
levels, in combination with increased memory, might balance out and result in additional
energy consumption.
Figure 4-7 showed consistent positive energy savings across all compression rates and increased
savings with a higher number of output channels. This pattern is also visible in Figure 4-8,
where the TT decomposition demonstrates minimal memory usage and similar MAC reduction
compared to the other methods, with little difference across different compression ratios except
for c = 0.1. The MAC reduction increases significantly with the number of output channels,
whereas memory usage shows minimal growth, explaining the increased savings for a higher
number of output channels.
Similar to the previous experiment, the calculated memory seems to be a good predictor for
the actual memory usage, for the CPU. However, also in Figure 4-8 it can be seen that the
calculated memory shows more peaks in the memory for the Tucker decomposition.

4-2-2 GPU energy savings

Figure 4-9 illustrates the energy reduction achieved by different tensor decomposition meth-
ods, varying compression rates, and the number of output channels for the GPU using a line
chart. On the y-axis, the saved energy (positive values) and added energy (negative values)
in kWh are displayed, while the x-axis presents the different compression rates. The standard
deviation of the measurements is shown by the hue. The measured energy savings differ from
those on the CPU, demonstrating specific patterns. Notably, all energy savings are negative
for all three methods, indicating additional energy consumption.

Master of Science Thesis D. Breen

58 Experiments

2

0

2

1e8 MAC reduction CP

0

20

40

60
Measured memory CP

0

1

2

3

1e6 Calculated memory CP

2

0

2

1e8 MAC reduction Tucker

0

20

40

60
Measured memory Tucker

0

1

2

3

1e6Calculated memory Tucker

192 256 320 384

2

0

2

1e8 MAC reduction TT

192 256 320 384
0

20

40

60
Measured memory TT

192 256 320 384
0

1

2

3

1e6 Calculated memory TTRe
du

ce
d

nu
m

be
r o

f M
AC

 o
pe

ra
tio

ns

M
em

or
y

(M
B)

M
em

or
y

(#
pa

ra
m

s)

Number of Output Channels

Experiment 2: Memory and Computation Complexity
Compression Ratio

0.1 0.25 0.5 0.75 0.9

Figure 4-8: The MAC operations and memory, both calculated and measured on the CPU, for
the different methods and input channels. On the left the MAC operations reduced by decom-
posing, in the middle the measured memory and on the right the calculated memory based on
the intermediate results.

Looking at Figure 4-9 for the CP it can be seen that generally the highest T = 384 and lowest
T = 192 number of output channels outperform the others, except for low compression level
c = 0.9 where these number of output channels show a jump. Over all the added energy is
present at T = 320 of ∆E = −0.0025 kWh (60.38% of baseline E).

For both the Tucker and TT decompositions, the additional energy consumption is much
lower compared to CP across all methods and compression levels, with a minimum of ∆E =
−0.0018 kWh (43.48% of baseline E). TT decomposition even shows consistent results across
different compression ratios and several output channels, suggesting a minimal influence of
these parameters on energy consumption. Tucker decomposition shows a similar pattern,
with minimal additional energy of ∆E = −0.0007 kWh (16.91% of baseline E), but there is a
clear separation between the middle number of output channels (T = 256, T = 320) and the
extreme output channels (T = 192, T = 384).

Again, the calculated memory and MAC operations from Figure 4-8 are the same for the
GPU experiments. However, the additional measured memory of the GPU implementation,
as shown in Figure 4-10, differs visibly from the calculated memory. This discrepancy suggests
that the calculated memory may not be a reliable predictor for actual GPU memory usage.

D. Breen Master of Science Thesis

4-2 Influence of output channels 59

0.2 0.4 0.6 0.8
Compression Ratio

0.10

0.08

0.06

0.04

0.02

0.00

En
er

gy
 sa

ve
d

(k
W

h)

CP Decomposition

0.2 0.4 0.6 0.8
Compression Ratio

Tucker Decomposition

0.2 0.4 0.6 0.8
Compression Ratio

TT Decomposition

output channels
Out_ch=192
Out_ch=256
Out_ch=320
Out_ch=384

Energy Consumption Across Compression Ratios by Output Channels and Decomposition Methods

Figure 4-9: The energy saved for different methods, CP, Tucker and TT, for a different number
of input channels, given by different colours, run on a GPU. The hue presents the standard
deviation of the measurements

For the CP decomposition, it can be seen that for each of the output channels, the memory
increases with the compression rates, except for T = 320. Here, there is a peak memory
at compression c = 0.75, which can be lead back to the additional energy consumption in
Figure 4-9. Also, the increase in memory between compression level c = 0.75 and c = 0.9
for T = 256 is less prominent than for T = 192 and T = 384. In combination with more
reduction of MAC operations for these output channels, it might be the reason that between
c = 0.75 and c = 0.9 spikes up above the other output channels.

192 256 320 384
0

10

20

30

40

50

60

CP

192 256 320 384
0

10

20

30

40

50

60

Tucker

192 256 320 384
0

10

20

30

40

50

60

TT
Compression ratio

0.1
0.25
0.5
0.75
0.9

M
em

or
y

(M
B)

Out channels

Measured Memory for Experiment 2 on GPU

Figure 4-10: The measured memory usage on the GPU, for the different methods and output
channels.

For Tucker, the memory usage shown in Figure 4-10, indicates that both T = 384 and T = 192
have similar memory patterns with a minimal increase between them. In contrast, T = 256
and 320 show more increased memory at all compression ratios and between each other.
This pattern resembles the one observed in Figure 4-9, though more differentiation would be

Master of Science Thesis D. Breen

60 Experiments

expected between T = 256 and T = 320 based on the memory. The similarity between the
energy savings may be attributed to the difference in MAC reduction, negating the memory
influence.

4-2-3 Key findings

This experiment was designed to look into whether the number of output channels of a layer
had a prominent impact on the inference energy savings by decomposing the layer using either
CP, Tucker or TT decomposition across different compression levels. Below the key findings
of this experiment are outlined.

• MAC operations and memory: Similar to experiment 1, it was found that the reduction
in MAC operations and additional memory, could explain the patterns seen in the
energy savings. Again, the calculated memory seems to show the same patterns as the
measured memory, except for the GPU. With a high compression ratio, the reduction
of the MAC is optimal, with less additional memory. This is where the most benefit
can be found.

• Number of output channels: It can be seen that for all three decompositions, the layers
with the highest number of output channels show the most benefit. However, for lower
compression, this flips around and the larger layers perform the worst.

• Decomposition methods: In this experiment again TT has the most consistent energy
savings. Tucker decomposition shows similar energy savings for high compression ratios
after which it decreases. However, CP performs worse on all compression ratios and the
number of output channels.

• Hardware: Similar to experiment 2, there is a difference in energy savings between
CPU and GPU. The GPU measurements show no energy savings with a lower amount
of memory and the same MAC reduction. This might suggest that the memory plays a
more prominent role in the energy consumption of the GPU.

4-3 Influence of the feature size

This section will give an outline of the found results, comparing the energy savings over
different feature sizes, methods and compression ratios. All variables are presented in Table 4-
3.

4-3-1 CPU energy savings

Figure 4-11 illustrates the energy reduction achieved by different tensor decomposition meth-
ods, varying compression rates, and feature sizes for the CPU using a line chart. On the
y-axis, the saved energy (positive values) and added energy (negative values) in kWh are
displayed, while the x-axis presents the different compression rates. The standard deviation
of the measurements is shown by the hue.

D. Breen Master of Science Thesis

4-3 Influence of the feature size 61

Table 4-3: Control, independent and dependent variables of experiment 3.

Control Variables Independent Variables Dependent Variables

S = 448 W, H ∈ {2, 4, 6, 8} Energy consumption

T = 512 M ∈ {cp, tucker, tt, nd} Memory

d = 3 c ∈ {0.1, 0.25, 0.5, 0.75, 0.9} MAC

epochs = 9.5× 103(CPU), 3.3× 105 (GPU) Hardware ∈ {CPU, GPU}

Starting with the CP decomposition, a big variety in energy savings is shown. As can be seen
for high level of compression c = 0.1, all feature sizes give energy savings, where most energy
is saved ∆E = 0.035 kWh (62.28% of baseline E), using the largest feature sizes. Then with
lower compression levels c ≥ 0.25, the energy savings become negative indicating additional
energy consumption. Especially for larger feature size (8 × 8) the additional energy grows
extensively. For the smallest feature size (2× 2), there is no energy gained but also not much
energy added. This suggests that decomposing large feature sizes gives the most benefit only
for large compression levels.

0.2 0.4 0.6 0.8
Compression Ratio

0.125

0.100

0.075

0.050

0.025

0.000

0.025

0.050

En
er

gy
 sa

ve
d

(k
W

h)

CP Decomposition

0.2 0.4 0.6 0.8
Compression Ratio

Tucker Decomposition

0.2 0.4 0.6 0.8
Compression Ratio

TT Decomposition

Feature size
Feat=2
Feat=4
Feat=6
Feat=8

Energy Consumption Across Compression Ratios by Features and Decomposition Methods

Figure 4-11: The energy saved for different methods, CP, Tucker and TT, for different feature
sizes, given by different colours, run on a CPU. The hue presents the standard deviation of the
measurements.

For the Tucker decomposition, the energy savings are positive for a larger set of compression
levels c ≤ 0.5, with a maximum of ∆E = 0.044 kWh (78.29% of baseline E). Similar to the CP
decomposition, the larger the feature size the more energy is saved, until a transition point
between c = 0.5 and c = 0.75. For the low compression rates, the smaller feature sizes seem
to add less energy than the larger ones.

Similar to the previous experiments, the TT decomposition shows consistent energy savings
for all feature sizes across all compression levels, with a maximum of ∆E = 0.041 kWh

Master of Science Thesis D. Breen

62 Experiments

(72.95% of baseline E). Here the larger the feature size the larger the energy savings. There
is a small decrease visible when compressing less than c = 0.1.

Overall, Figure 4-11 shows that again the TT shows the most benefits from decomposing
overall feature sizes. Following that the Tucker shows energy savings for all feature sizes with
sufficient compression levels c ≤ 0.5. In contrast, the CP shows the least potential for using
tensor decompositions to save energy consumption. Only for a high compression level c = 0.1
energy savings are present.

Looking at Figure 4-12, the general differences between feature sizes are more prominent than
for the other parameters. Also, the MAC reduction is minimal for all methods for the small
2× 2 feature size.

Looking at CP, a similar pattern is visible where there is a reduction in MAC operations
up to a certain compression level (c = 0.5), after which additional MAC operations occur.
This is particularly noticeable with larger feature sizes, where the increase in MAC operations
is significant. This may explain the observed transition to increased energy consumption in
Figure 4-11 after c = 0.25. Furthermore, memory usage increases with larger feature sizes and
lower compression levels, showing signs of quadratic growth for both measured and calculated.
This growth could explain why the energy savings for different feature sizes diverge more in
the lower compression levels than previous experiments, which showed more linear growth.

For the Tucker decomposition, Figure 4-12 shows that the MAC reductions increase with the
increased feature size, but the reduction over all feature sizes reduces for smaller compressions.
Also, the memory consumption, both measured and calculated, grows for increased feature
sizes, but also with the compression levels. Combined the memory and MAC operations can
explain the reduction in energy savings over compression ratios, but also show that due to
memory growth, the larger feature sizes will decrease faster.

The MAC reductions of the TT are consistent over all compression rates, as also seen before
at the number of input channels and output channels. However, the MAC reduction does
show an impactful increase with the increase in feature size. This can explain why the largest
feature size of 8 × 8 has the most energy savings. Looking at the memory usage, it is more
than for the Tucker decomposition, which is different than seen in previous experiments. This
might explain that for this experiment the Tucker decomposition has more energy savings in
Figure 4-11 for the largest feature size since they have similar MAC reduction.

This difference in memory usage between the Tucker and TT is also not fully captured when
looking solely at the calculated memory, which shows lower and minimal memory usage for
the TT. Again for the Tucker decomposition spikes are noticeable in the calculated memory
across lower compression levels.

4-3-2 GPU energy savings

Figure 4-13 illustrates the energy reduction achieved by different tensor decomposition meth-
ods, varying compression rates, and feature sizes for the GPU using a line chart. On the
y-axis, the saved energy (positive values) and added energy (negative values) in kWh are
displayed, while the x-axis presents the different compression rates. The standard deviation
of the measurements is shown by the hue.

D. Breen Master of Science Thesis

4-3 Influence of the feature size 63

4

2

0

2

4
1e9 MAC reduction CP

0

100

200

300

400

Measured memory CP

0.0

0.5

1.0

1.5

2.0

2.5
1e7 Calculated memory CP

4

2

0

2

4
1e9 MAC reduction Tucker

0

100

200

300

400

Measured memory Tucker

0.0

0.5

1.0

1.5

2.0

2.5
1e7Calculated memory Tucker

2 4 6 8

4

2

0

2

4
1e9 MAC reduction TT

2 4 6 8
0

100

200

300

400

Measured memory TT

2 4 6 8
0.0

0.5

1.0

1.5

2.0

2.5
1e7 Calculated memory TTRe

du
ce

d
nu

m
be

r o
f M

AC
 o

pe
ra

tio
ns

M
em

or
y

(M
B)

M
em

or
y

(#
pa

ra
m

s)

Feature

Experiment 3: Memory and Computation Complexity
Compression Ratio

0.1 0.25 0.5 0.75 0.9

Figure 4-12: The MAC operations and memory, both calculated and measured on the CPU, for
the different methods and feature sizes. On the left the MAC operations reduced by decompos-
ing, in the middle the measured memory and on the right the calculated memory based on the
intermediate results.

For the CP decomposition, similar patterns are seen as on the CPU, however now none of the
feature sizes at any compression level present energy savings, only for 8× 8 at c = 0.1, where
∆E = 0.0042 kWh (7.12% of baseline E). Also, a division is visible, where both the features
4×4 and 2×2 show similar energy consumption and the features 6×6 and 8×8 show similar
energy savings, where the 6× 6 shows less additional energy at low compressions c ≥ 0.75.
The Tucker decomposition also indicates an increase in energy consumption, except for the
largest feature size at high compression levels (c ≥ 0.5), with maximum savings of ∆E = 0.028
(49.82% of baseline E). For all other feature sizes and compression ratios, additional energy
is required. The energy consumption for feature sizes 2 × 2, 4 × 4 and 6 × 6 shows minimal
differences, particularly at higher compression level, with a maximum energy saved ∆E =
0.025 kWh (44.48% of baseline E). A similar trend is observed in the TT decomposition;
however, almost no additional energy is needed. The smaller feature sizes lie close to the
zero-energy line, with only the largest feature size demonstrating some energy savings.
The memory usage, presented in Figure 4-14 shows a general increase in memory usage,
compared to the memory used for the CPU, for all feature sizes, compression ratios and
method, except for the CP decomposition. The additional memory needed for the CP decom-
position is lower on the GPU than on the CPU, which might explain similar energy savings

Master of Science Thesis D. Breen

64 Experiments

0.2 0.4 0.6 0.8
Compression Ratio

0.25

0.20

0.15

0.10

0.05

0.00

En
er

gy
 sa

ve
d

(k
W

h)

CP Decomposition

0.2 0.4 0.6 0.8
Compression Ratio

Tucker Decomposition

0.2 0.4 0.6 0.8
Compression Ratio

TT Decomposition

Feature size
Feat=2
Feat=4
Feat=6
Feat=8

Energy Consumption Across Compression Ratios by Features and Decomposition Methods

Figure 4-13: The energy saved for different methods, CP, Tucker and TT, for different feature
sizes, given by different colours, run on a GPU. The hue presents the standard deviation of the
measurements.

despite the complicated GPU memory management. For the Tucker and TT, the higher mem-
ory consumption could explain the lower energy savings for GPU than for CPU. Especially
the memory usage of the TT for large compressions is much higher than for the CPU.

2 4 6 8
0

50

100

150

200

250

300
CP

2 4 6 8
0

50

100

150

200

250

300
Tucker

2 4 6 8
0

50

100

150

200

250

300
TT

Compression ratio
0.1
0.25
0.5
0.75
0.9

M
em

or
y

(M
B)

Feature

Measured Memory for Experiment 3 on GPU

Figure 4-14: The measured memory usage on the GPU, for the different methods and feature
sizes.

4-3-3 Key findings

This experiment was designed to look into whether the feature size of a layer had a prominent
impact on the inference energy savings by decomposing the layer using either CP, Tucker or TT
decomposition across different compression levels. Below the key findings of this experiment
are outlined.

• MAC operations and memory: The difference in MAC operations and memory between
the different feature sizes is more present than for the other parameters, which follows

D. Breen Master of Science Thesis

4-4 Influence of the kernel size 65

the quadratic relation from the analysis in Table 3-1, also in the measured memory. The
higher decrease of MAC and addition memory, again shows a trade-off. The measured
memory shows the same pattern which would suggest that the calculated memory is
compliant to the measured memory.

• Feature size: The results suggest that the feature size has a more prominent effect on
energy savings. For larger feature sizes the energy saved is large for high compression
c = 0.1, however, the additional energy for low compressions and certain methods
suggests that layers with larger feature sizes need a more careful selection of compression
ratio.

• Decomposition methods: For high compression c = 0.1 all methods show promising re-
sults, however with increased feature size and low compression, the CP shows undesired
additional energy. Tucker shows energy savings also for smaller compression levels until
c ≥ 0.75, but the most consistent energy savings are again from decomposing with TT.
Careful selection of the method is thus required for larger feature sizes.

• Hardware: There is a great difference between the energy savings of the CPU and the
GPU, which might be explained by the difference in memory usage between the different
feature sizes. Especially for CP where the intermediate results are very large coinciding
with the more prominent decrease in energy savings.

4-4 Influence of the kernel size

This section will give an outline of the found results, comparing the energy savings over
different kernel sizes, methods and compression ratios. All variables used are given in Table 4-
4.

Table 4-4: Control, independent and dependent variables of experiment 4.

Control Variables Independent Variables Dependent Variables

S = 384 d ∈ {1, 3, 5} Energy consumption

T = 512 M ∈ {cp, tucker, tt, nd} Memory

W ×H = 4× 4 c ∈ {0.1, 0.25, 0.5, 0.75, 0.9} MAC

epochs = 9.0× 103(CPU), 6.0× 105 (GPU) Hardware ∈ {CPU, GPU}

Figure 4-15, show the different ranks, for the different kernel sizes. It can be seen that again
the CP ranks are very large compared to the Tucker and TT. Also, the CP rank grows
extensively between the different kernel sizes, where d = 5 × 5, shows more than twice as
large a rank as the 3× 3 kernel. Notably, the 1× 1 kernel shows similar ranks to the TT and
Tucker mode-specific ranks. Again, the expected savings from the CP will be lower, however
for the 1× 1 kernels similar results might be expected.

Master of Science Thesis D. Breen

66 Experiments

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Compression

0

1000

2000

3000

4000

5000

R

Ranks for Mode-d CP Decomposition
Kernel=1
Kernel=3
Kernel=5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Compression

0

1000

2000

3000

4000

5000

R3
/R

4

Ranks for Mode-d Tucker Decomposition
Kernel=1
Kernel=3
Kernel=5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Compression

0

1000

2000

3000

4000

5000

R2

Ranks for Mode-d TT Decomposition
Kernel=1
Kernel=3
Kernel=5

Figure 4-15: The mode-d ranks of all three tensor decomposition methods across all compression
ratios.

4-4-1 CPU energy savings

Figure 4-16 illustrates the energy reduction achieved by various tensor decomposition meth-
ods, compression rates, and kernel sizes for the CPU illustrated using a line chart. On the
y-axis, the saved energy (positive values) and added energy (negative values) in kWh are
displayed, while the x-axis presents the different compression rates. The standard deviation
of the measurements is shown by the hue.

In the case of the CP decomposition, energy savings are only observed for larger kernel sizes
and higher compression ratios with notable savings at a high compression of c = 0.1, with a
maximum of ∆E = 0.015 (60.24% of baseline E). For lower compression ratios, energy savings
drop below zero meaning additional energy is required for these decomposed convolutions.
This becomes especially significant for the larger 5× 5 kernel at low compression levels. For
the smaller kernels (1× 1 and 3× 3), the energy drop is less prominent but still present. At
low compression levels, both the 1× 1 and the 3× 3 kernel show similar energy addition.

For the Tucker decomposition, the largest 5× 5 kernel shows the most initial energy savings
for high compression, with a maximum of ∆ = 0.020 kWh (80.32% of baseline E). However,
between compression ratios c = 0.25 and c = 0.5, there is a transition where energy addition
begins for all kernel sizes, except the 1 × 1 kernel. The 5 × 5 kernel shows the most signif-
icant addition for low compression levels, while the 1 × 1 kernel remains constant across all
compression levels, showing zero energy savings or addition.

For the TT decomposition, consistent energy savings are observed across all compression
ratios, with savings increasing with larger kernel sizes to a maximum of ∆ = 0.019 kWh
(76.31% of baseline E). Especially for the largest 5× 5 kernel, TT shows the most consistent
energy savings across all compression levels. In addition, a clear pattern is seen where the
energy savings grow with the increased kernel size. Again, the 1 × 1 kernel shows no effect
after decomposition, neither adding nor saving energy.

Looking at Figure 4-17, for all methods, there is minimal MAC reduction for the smallest
1 × 1 kernel, which could explain why decomposing would not result in energy savings for
all methods. Looking specifically at the CP decomposition, for larger kernels, there is more
MAC reduction, especially at high compression ratios. After c > 0.25, there are additional

D. Breen Master of Science Thesis

4-4 Influence of the kernel size 67

0.2 0.4 0.6 0.8
Compression Ratio

0.10

0.08

0.06

0.04

0.02

0.00

0.02

En
er

gy
 sa

ve
d

(k
W

h)

CP Decomposition

0.2 0.4 0.6 0.8
Compression Ratio

Tucker Decomposition

0.2 0.4 0.6 0.8
Compression Ratio

TT Decomposition

Kernel size
Kernel=1
Kernel=3
Kernel=5

Energy Consumption Across Compression Ratios by Kernel Sizes and Decomposition Methods

Figure 4-16: The energy saved for different methods, CP, Tucker and TT, for different kernel
sizes, given by different colours, run on a CPU. The hue presents the standard deviation of the
measurements.

MAC operations, particularly for the largest 5 × 5 kernel. In addition, the memory usage
between the different kernel sizes seems to grow quadratically, also in the measured memory,
with increasing kernel size for all compression ratios, which follows the relations found in the
TensorlyTorch analysis from Table 3-1. In combination with the additional MAC, this might
explain the increased additional energy consumption for the largest 5×5 kernel size compared
to the other kernels shown in Figure 4-17. For the 1× 1 kernel, the CP decomposition shows
growing memory consumption for lower compression ratios, which might explain why for CP,
the 1× 1 kernel shows changing energy consumption.
For the Tucker decomposition, the MAC reduction increases significantly with the larger kernel
size. However, across compression levels, each kernel shows a decrease in MAC reduction,
especially for lower compression ratios c > 0.5. For the largest 5 × 5 kernel the difference
between the MAC reduction for high compression and low compression becomes more present.
For the memory, there is minimal change between the different kernel sizes. Combined, this
can explain why lower compressions c > 0 will show additional energy usage, especially for
the largest 5× 5 kernel.

4-4-2 GPU energy savings

Figure 4-18 illustrates the energy reduction achieved by different tensor decomposition meth-
ods, varying compression rates, and kernel sizes for the GPU using a line chart. On the
y-axis, the saved energy (positive values) and added energy (negative values) in kWh are
displayed, while the x-axis presents the different compression rates. The standard deviation
of the measurements is shown by the hue.
For the CP decomposition, a different pattern can be seen for the GPU energy savings. For
all kernel sizes, additional energy is required, with a minimum of ∆ = −0.014 kWh (354% of

Master of Science Thesis D. Breen

68 Experiments

2

1

0

1

2
1e9 MAC reduction CP

0

100

200

300

Measured memory CP

0.0

0.5

1.0

1.5

1e7 Calculated memory CP

2

1

0

1

2
1e9 MAC reduction Tucker

0

100

200

300

Measured memory Tucker

0.0

0.5

1.0

1.5

1e7Calculated memory Tucker

1 3 5

2

1

0

1

2
1e9 MAC reduction TT

1 3 5
0

100

200

300

Measured memory TT

1 3 5
0.0

0.5

1.0

1.5

1e7 Calculated memory TTRe
du

ce
d

nu
m

be
r o

f M
AC

 o
pe

ra
tio

ns

M
em

or
y

(M
B)

M
em

or
y

(#
pa

ra
m

s)

Kernel Size

Experiment 4: Memory and Computation Complexity
Compression Ratio

0.1 0.25 0.5 0.75 0.9

Figure 4-17: The MAC operations and memory, both calculated and measured on the CPU, for
the different methods and kernel sizes. On the left the MAC operations reduced by decompos-
ing, in the middle the measured memory and on the right the calculated memory based on the
intermediate results.

baseline E), growing with the increased kernel size and with compression levels. Especially
the largest 5× 5 kernel shows a high amount of additional energy.

The Tucker decomposition shows a little less energy addition, even for the largest kernel 5×5
but for all levels no energy savings are present, except at c = 0.1 with ∆E = 0.0062 kWh
(24.90% of baseline E). After c = 0.1 all three kernel sizes show increased additional energy
for decreased compression.

In contrast, the TT decomposition shows energy savings for the largest 5 × 5 kernel overall
compressions, with a maximum of ∆E = 0.035 (140% of baseline E). This energy savings
seems to be similar to the TT decomposition run on the CPU. Again the TT shows consistency
over all compression rates for all kernel sizes.

To explain these differences between CPU and GPU, Figure 4-19 shows the measured memory
from the GPU. The memory of the CP decomposition shows even more differences and a
more prominent quadratic increase for larger kernel sizes. This might explain why for the
GPU, the energy consumption differences between the kernel sizes are more pronounced than
for the CPU.

The Tucker memory seems very similar to the memory measured on the CPU. However, the

D. Breen Master of Science Thesis

4-4 Influence of the kernel size 69

0.2 0.4 0.6 0.8
Compression Ratio

0.4

0.3

0.2

0.1

0.0

En
er

gy
 sa

ve
d

(k
W

h)

CP Decomposition

0.2 0.4 0.6 0.8
Compression Ratio

Tucker Decomposition

0.2 0.4 0.6 0.8
Compression Ratio

TT Decomposition

Kernel size
Kernel=1
Kernel=3
Kernel=5

Energy Consumption Across Compression Ratios by Kernel Sizes and Decomposition Methods

Figure 4-18: The energy saved for different methods, CP, Tucker and TT, for different kernel
sizes, given by different colours, run on a GPU. The hue presents the standard deviation of the
measurements

energy savings are lower than those of the CPU. This might be the case since memory plays
a more important role for the GPU, and thus the MAC reduction does not counterbalance
the memory loss as much as in the CPU.
For the TT decompositions, the memory shows a similar pattern to the CPU memory, how-
ever, the values seem a little lower, particularly for the large 5× 5 kernel. This might explain
why the energy saved on the GPU appears to be slightly higher than that of the CPU. For
the other kernel sizes, the TT decomposition also performs a little worse on the GPU.

4-4-3 Key findings

This experiment was designed to look into whether the kernel size had a prominent impact
on the inference energy savings by decomposing the layer using either CP, Tucker or TT
decomposition across different compression levels. Below the key findings of this experiment
are outlined.

• MAC operations and memory: For this experiment, the MAC reductions and memory
seem to explain the patterns in energy savings. For a larger kernel size, the reduction
of MAC operations increases rapidly. For the memory, this difference is also present
where the increase seems to be quadratic similar to the different feature sizes. For a
really small kernel 1× 1 almost no reduction of MAC operations and additional energy
is present for all methods. Different to the other experiments the Tucker method seems
to have less measured memory than the other methods, which cannot seem to explain
the energy saving and is not compliant to the calculated energy.

• Kernel size: The kernel size seems to have a great influence on the energy savings and
for high compression the energy saved is quite high. With the increase of the kernel size,

Master of Science Thesis D. Breen

70 Experiments

1 3 5
0

50

100

150

200

250

300

350

400
CP

1 3 5
0

50

100

150

200

250

300

350

400
Tucker

1 3 5
0

50

100

150

200

250

300

350

400
TT

Compression ratio
0.1
0.25
0.5
0.75
0.9

M
em

or
y

(M
B)

Kernels

Measured Memory for Experiment 4 on GPU

Figure 4-19: The measured memory usage on the GPU, for the different methods and kernel
sizes.

more energy is saved, however again a trade-off is present where for lower compressions,
c ≥ 0.25 for CP and c ≥ 0.5 for Tucker, present additional energy.

• Decomposition methods: Again, the TT decomposition provides consistent energy sav-
ings over all compression levels which increases with the kernel size. CP performs the
worst especially for low compressions and high kernel size, followed by Tucker.

• Hardware: The energy saved on the GPU is much lower and except for TT, only shows
additional energy consumption. For GPU also the Tucker memory is the lowest. The
trends in energy savings are similar to the CPU.

4-5 Energy savings decomposed ResNet18

In this section, the result of the energy measurements to a commonly used CNN, ResNet18,
will be outlined. For such a network the different layers all have different configurations
where more than one of the parameters from previous experiments change per layer. It is
interesting to see whether the effects per parameter can be translated to a network with
combined connections.
The variables used for this experiment are given in Table 4-5. As input data, the CIFAR10
dataset was used.

Table 4-5: Control, independent and dependent variables for training and inference Resnet18
experiment.

Control Variables Independent Variables Dependent Variables

Input image=32× 32× 3 L ∈ {63, 57, 51, 47, 41, 35, 28, 25, 19, 6} Energy consumption

seed=1 Method ∈ {cp, tucker, tt, not decomposed} Memory

lr=1× 10−5 (only for training) c ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} MAC

epochs = 100 Hardware ∈ {GPU}

Figure 4-20 shows the percentage of inference energy saved for each layer, compression level
and decomposition method. As also mentioned in Subsection 3-2-2, the metric is the ratio of

D. Breen Master of Science Thesis

4-5 Energy savings decomposed ResNet18 71

energy saved compared to the original baseline energy. The gradient shows the energy saved
in blue and the additional energy in red.

The CP decomposition shows that lower compressions generally increase the energy, except for
layers 57, 41, and 25. This energy increase is particularly noticeable in the largest layer (63),
which aligns with observations from isolated experiments. Layers 57, 41, and 25 are down-
sampling layers with a 1×1 kernel, possibly explaining the minimal energy change. At higher
compressions, the additional energy decreases slightly, consistent with isolated experiment
results. The most energy saved in the CP decomposition is 0.4% in layer 28 (c = 0.1), while
the most energy added is −33.34% in layer 63 (c = 0.9).

For the Tucker decompositions, similar patterns are seen, where the lower compressions add
more energy than the higher compression levels, however for the largest layers it can be seen
that this does not result in energy savings, but it gets close to zero. For the middle layers,
Tucker does show some slight energy savings and compared to CP shows overall better results,
with a maximum of 2.24% savings for layer 28 (c = 0.3) and the most additional energy of
−15.83% for layer 63 (c = 0.7).

The best results are found for the TT decomposition, however not many differences can be
found between TT and Tucker. For the larger layers 63, 57 and 51 there is less profounding
energy addition, however still no savings. At high compression on the largest layer, however
some blue can be seen where there is a suggestion that for large layers with high compression,
there is potential for energy savings, with a maximum of 7.24% for layer 63 (c = 0.75). Also
for the other layers, at high compression, a hue of blue can be found, however, most layers
show additional energy with the most added energy of −7.4% at layer 63 (c = 0.9).

As also observed in the previous isolated experiments, TT shows a more consistent and better
result than the other methods, followed by Tucker and CP. However, there is still little energy
saved and mostly energy addition. This is a similar situation as for the other experiments,
where in general the GPU experiments showed mainly energy addition.

6 19 25 28 35 41 47 51 57 63
Layer

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Co
m

pr
es

sio
n

Ra
tio

Tucker Decomposition

6 19 25 28 35 41 47 51 57 63
Layer

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Co
m

pr
es

sio
n

Ra
tio

CP Decomposition

6 19 25 28 35 41 47 51 57 63
Layer

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Co
m

pr
es

sio
n

Ra
tio

TT Decomposition

30

20

10

0

10

20

30

En
er

gy
 S

av
in

gs
 (%

)

Figure 4-20: The inference energy saved by decomposing several layers of the ResNet18 with
different decomposition methods, CP, Tucker and TT, for various compression levels. The colorbar
shows, that the greener the more energy is saved and the more orange, the less energy is saved.

Master of Science Thesis D. Breen

72 Experiments

4-6 Modelling of the saved energy

This section will elaborate on the results from the regression models. The benchmark model
performance will be presented, from which comparisons can be derived with the more complex
multivariate models, either linear or polynomial, based on the memory usage and the reduced
MAC operations. This will be done based on the R-squared, adjusted R-squared and the
Root-mean-square error (RMSE). To look at the generalization of the models the dataset,
consisting of the single convolution energy measurements, is split into a test and training set
resulting in different RMSE.

4-6-1 Benchmark Model Performance

The benchmark model is based solely on the number of reduced MAC operations, representing
the focus of current research on the computational complexity of tensor decomposed convo-
lutions. For both hardware types, a separate benchmark model is fitted, taking into account
the difference in compute (parallel vs. serial). The statsmodels summary of the fitted models
are given in detail in Appendix C Subsection C-2-1.

For the CPU, the benchmark model has an R-squared value of 0.586, with an adjusted R-
squared of 0.584. These values are quite low, however larger than the GPU, indicating that the
model is not capable of capturing all variances in the model. The coefficient for the reduced
MAC operations is 1.68 × 10−2 (Standard Error (SE)= 2.52 × 10−3, p<0.001), indicating a
statistically significant positive relationship. The intercept −2.00 × 10−3 (SE= 1.06 × 10−3,
p-0.062) is not statistically significant, indicating that it does not contribute to the predictive
power of the model.

For the GPU, the benchmark model has an R-squared value of 0.305, with an adjusted R-
squared of 0.301. These values are quite low, indicating that the model is not capable of
capturing all variances in the model. The coefficient for the reduced MAC operations is
3.55 × 10−2 (SE= 6.72 × 10−3, p<0.001), again indicating a statistically significant positive
relationship. The intercept −4.38 × 10−2 (SE= 4.00 × 10−3, p<0.001) is more negative
compared to the CPU model and significant, suggesting that the reduced MAC operations
can not capture all variances and another negative contribution might be present.

Looking at Figure 4-21a and Figure 4-21b, it can be seen that the benchmark models do not
perform very well.

Table 4-6: Comparison of RMSE values for different models on CPU and GPU.

Metric Bench Lin (Meas) Lin (Calc) Poly (Meas) Poly (Calc)
CPU RMSE
(Train) 0.0535 0.0087 0.0058 0.0079 0.0055
CPU RMSE
(Test) 0.0075 0.0057 0.0045 0.0049 0.0046
GPU RMSE
(Train) 0.0141 0.0302 0.0324 0.0294 0.0251
GPU RMSE
(Test) 0.0415 0.0237 0.0227 0.0241 0.0206

D. Breen Master of Science Thesis

4-6 Modelling of the saved energy 73

0.03 0.02 0.01 0.00 0.01 0.02 0.03 0.04 0.05
Predicted energy saved (kWh)

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

Ac
tu

al
 e

ne
rg

y
sa

ve
d

(k
W

h)

Predicted vs Actual Energy Savings (Benchmark, OLS)

(a) Measured memory

0.20 0.15 0.10 0.05 0.00 0.05
Predicted energy saved (kWh)

0.20

0.15

0.10

0.05

0.00

0.05

Ac
tu

al
 e

ne
rg

y
sa

ve
d

(k
W

h)

Predicted vs Actual Energy Savings (Benchmark, OLS)

(b) Calculated memory

Figure 4-21: Predicted vs actual energy from the linear benchmark model for CPU (left) and
GPU (right).

4-6-2 Comparative analysis with linear and polynomial models including memory
usage

The more complex models also include the additional memory required when the convolution
layers are decomposed. For memory usage, both calculated memory (based on the parameters
in the intermediate tensors) and the memory measured with a profiling tool were used. To
see whether additional complexity, capturing also non-linear relations, would increase the
performance both linear and polynomial models were fitted on either the GPU or CPU data.

The results showed that in general the inclusion of memory as a predictor significantly im-
proves the model’s explanatory power. The results for both linear and polynomial models,
incorporating either measured or calculated memory, are provided in detail in Appendix C
Subsection C-2-2 and Subsection C-2-3.

CPU models
For the linear CPU model, based on the measured memory (Table C-7), the adjusted R-
squared increases to 0.841 compared to the benchmark adjusted R-squared of 0.584, indicating
that the addition of the measured memory captures more of the variance in the data. The
coefficient for measured memory is -0.0119 (SE=0.0011) indicating a strong negative effect on
the energy savings (p < 0.001). The MAC coefficient remains positive (0.0124, SE=0.0013),
confirming that reduced operations contribute positively to energy savings and even with a
similar amount to the memory. This is reflected in the RMSE values, where the train RMSE
drops to 0.0087, and the test RMSE to 0.0057, improving from the benchmark RMSE (0.0535
and 0.0075).

The linear CPU model using the calculated memory (Table C-9), shows a better predictive
performance, with an adjusted R-squared of 0.928. Here the calculated memory coefficient
shows a more negative influence (-0.0151, SE=0.0008) on the energy savings (p<0.001), com-
pared to the measured energy. The MAC coefficient is 0.0090 (SE=0.0011), showing a slightly
decreased influence (p<0.001), balanced out by the calculated memory. The lower RMSE
values 0.0058 (train) and 0.0045 (test) confirm the better fit of the model, as also seen in
Figure 4-22, where the calculated memory model aligns more closely with the diagonal.

Master of Science Thesis D. Breen

74 Experiments

0.04 0.03 0.02 0.01 0.00 0.01 0.02 0.03
Predicted energy saved (kWh)

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

Ac
tu

al
 e

ne
rg

y
sa

ve
d

(k
W

h)

Predicted vs Actual Energy Savings (Measured memory, OLS)

(a) Measured memory

0.04 0.03 0.02 0.01 0.00 0.01 0.02 0.03
Predicted energy saved (kWh)

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

Ac
tu

al
 e

ne
rg

y
sa

ve
d

(k
W

h)

Predicted vs Actual Energy Savings (Calculated memory, OLS)

(b) Calculated memory

Figure 4-22: Predicted vs actual energy saved from linear model on CPU.

The polynomial models show some minor improvements in the R-squared values (0.937 for
calculated memory and 0.870 for measured memory). Compared to the linear models, the
increased complexity only has subtle accuracy differences, with train RMSE of 0.0079 (mea-
sured) and 0.0055 (calculated), and test RMSE of 0.0049 (measured) and 0.0046 (calcu-
lated). In addition, it is important to note, that some of the higher-order coefficients, such as
β3 = −9.30×10−3 (SE= 4.85×10−3, p=0.0598) from the calculated memory, are not statisti-
cally significant, indicating that the additional complexity does not significantly contribute to
the predictive power. Combined, this suggests that the slight performance improvement may
not fully justify the added complexity of the polynomial models, especially when using cal-
culated memory. Figure 4-23, also visually confirms that the performance of the polynomial
does not improve that much.

0.04 0.03 0.02 0.01 0.00 0.01 0.02 0.03
Predicted energy saved (kWh)

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

Ac
tu

al
 e

ne
rg

y
sa

ve
d

(k
W

h)

Predicted vs Actual Energy Savings (Measured memory, Polynomial)

(a) Measured memory

0.04 0.03 0.02 0.01 0.00 0.01 0.02 0.03
Predicted energy saved (kWh)

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

Ac
tu

al
 e

ne
rg

y
sa

ve
d

(k
W

h)

Predicted vs Actual Energy Savings (Calculated memory, Polynomial)

(b) Calculated memory

Figure 4-23: Predicted vs actual energy saved from the polynomial model on CPU.

GPU models
Compared to the linear benchmark model, the adjusted R-squared of the linear GPU model,
with measured memory, improves from 0.301 to 0.776 (Table C-11). The coefficient for the

D. Breen Master of Science Thesis

4-7 Key findings 75

measured memory is −5.24×10−2 (SE=3.12×10−3, p < 0.0001), indicating that the memory
usage has a significant negative impact on the energy savings. The MAC coefficient remains
positive at 7.30 × 10−3 (SE=2.58 × 10−3, p = 0.000457) and is larger than the measured
memory coefficient, indicating that the MAC operations might be more influential.
For the linear GPU model, using the calculated memory, the R-squared of 0.745 (adjusted R-
squared of 0.742) is slightly lower than the measured memory model. The calculated memory
coefficient is −4.99×10−2 (SE=8.68×10−3, p < 0.001), showing significant negative influence
to the energy consumption and is more pronounced than for the CPU model. The MAC
coefficient is similar to that in the measured model at 9.40 × 10−3 (SE=2.68 × 10−3, p =
0.000432). The RMSE values 0.0324 (train) and 0.0227 (test) suggest, in addition to the
lower R-squared values compared to the CPU, that the complexity of GPU may require more
complex models. This difference in performance is also visible in Figure 4-24 and Figure 4-22.

0.04 0.03 0.02 0.01 0.00 0.01 0.02
Predicted energy saved (kWh)

0.04

0.03

0.02

0.01

0.00

0.01

0.02

Ac
tu

al
 e

ne
rg

y
sa

ve
d

(k
W

h)

Predicted vs Actual Energy Savings (Measured memory, OLS)

(a) Measured memory

0.04 0.03 0.02 0.01 0.00 0.01 0.02
Predicted energy saved (kWh)

0.04

0.03

0.02

0.01

0.00

0.01

0.02

Ac
tu

al
 e

ne
rg

y
sa

ve
d

(k
W

h)

Predicted vs Actual Energy Savings (Calculated memory, OLS)

(b) Calculated memory

Figure 4-24: Predicted vs actual energy saved from linear model on GPU.

The polynomial models on the GPU data introduce some improvement in the R-squared
values (0.790 for measured memory and 0.847 for calculated memory) and adjusted R-squared
values (0.784 for measured memory and 0.843 for calculated) compared to the benchmark,
however, the gains are subtle, with train RMSE of 0.0294 and test RMSE of 0.0241 for
measured memory, and train RMSE of 0.0251 and test RMSE of 0.0206 calculated memory
models. In addition, Figure 4-25, shows that the predictions for the polynomial models are
not much better than from the linear models. The coefficients for the interaction terms and
squared terms in these polynomial models, such as the squared term for calculated memory
−9.83 × 10−2 (SE=1.16 × 10−2, p < 0.001), indicate potential non-linear relations, but their
overall impact is limited.

4-7 Key findings

The presented results of the eight different regression models have highlighted some interesting
insights. Below a summary of the key findings will be given.

• Benchmark model limitations: The benchmark models, which focused only on MAC
operations, had low adjusted R-squared values (0.584 for CPU and 0.301 for GPU),

Master of Science Thesis D. Breen

76 Experiments

indicating that MAC operations alone are insufficient to accurately predict energy sav-
ings.

• Impact of memory usage as an additional predictor: Adding memory usage as a predictor
greatly improved model performance. For the CPU, the adjusted R-squared increased
to 0.841 with measured memory and 0.928 with calculated memory. For the GPU, these
values were 0.776 and 0.742, respectively, highlighting the strong influence of memory
on energy savings on both types of hardware.

• Calculated versus measured memory: Models using calculated memory generally outper-
formed those using measured memory, however, the test RMSE was lower for calculated
memory models, indicating better predictive accuracy, particularly in the CPU models.

• Additional complexity from polynomial features: Polynomial models offered only slight
improvements over linear models, particularly in the GPU models. Although the ad-
justed R-squared values for the polynomial models were slightly higher (0.937 for cal-
culated memory on CPU and 0.847 for GPU), this added complexity did not lead to
a significant boost in predictive accuracy. Some of the higher-order coefficients, were
not statistically significant, indicating that these polynomial terms did not meaningfully
improve the model. Additionally, when comparing RMSE values between training and
test sets, it became clear that linear models, especially those using calculated memory,
perform better. This was particularly visible in the CPU data, where the simpler linear
models performed nearly as well as the more complex polynomial models.

0.04 0.03 0.02 0.01 0.00 0.01 0.02
Predicted energy saved (kWh)

0.04

0.03

0.02

0.01

0.00

0.01

0.02

Ac
tu

al
 e

ne
rg

y
sa

ve
d

(k
W

h)

Predicted vs Actual Energy Savings (Measured memory, Polynomial)

(a) Measured memory

0.04 0.03 0.02 0.01 0.00 0.01 0.02
Predicted energy saved (kWh)

0.04

0.03

0.02

0.01

0.00

0.01

0.02

Ac
tu

al
 e

ne
rg

y
sa

ve
d

(k
W

h)

Predicted vs Actual Energy Savings (Calculated memory, Polynomial)

(b) Calculated memory

Figure 4-25: Predicted vs actual energy saved from the polynomial model on GPU.

D. Breen Master of Science Thesis

Chapter 5

Conclusion & Discussion

This section summarizes the results from both the single convolution experiments and the
regression models from Chapter 4 and uses them to address the initial research questions.
Following this, a discussion will highlight the limitations and assumptions of the thesis. Lastly,
a presentation of the possible future work, extending on this research, will be given.

5-1 Conclusion

As a foundation of this thesis the following research question was formulated:

How does the implementation of tensor decompositions (Parallel Factors (PARAFAC) Canonical
Decomposition (CANDECOMP) (CP), Tucker, and Tensor Train (TT)) affect the energy ef-
ficiency of large Convolutional Neural Networks (CNNs) during inference, with a focus on
predicting the resulting energy savings?
This research question was divided into smaller sub-questions, for which the findings will be
given below before answering the main research question.

5-1-1 Tensor decomposition methods

The first sub-question, related to the decomposition methods is: Which type of tensor decom-
position (CP, Tucker, or TT) and compression ratio yields the best performance for energy
efficiency in CNNs?
The analysis of tensor decompositions (CP, Tucker, TT) for decomposed convolutions reveales
that both the decomposition method and the compression ratio greatly affect the energy
efficiency of the decomposed convolutions. CP decomposition generally provides the least
energy savings, especially at lower compression ratios, due to increased memory demands.
Tucker decomposition offers better energy efficiency across a wider range of compression
ratios, but it still consumed more energy at lower compression ratios, especially for larger
layers.

Master of Science Thesis D. Breen

78 Conclusion & Discussion

In contrast, the TT decomposition consistently yielded the best energy savings across all
compression ratios, with minimal additional energy requirements. For the Tucker and CP
sometimes additional energy was required for the decomposed convolutions at lower compres-
sion levels, which is contradicting the intended benefits of decomposing.

While this thesis focuses on energy efficiency, it’s important to consider that lower compression
ratios likely offer higher accuracy, which is essential in safety-critical systems like autonomous
vehicles (AVs). For AVs, where safety constraints may require lower compression ratios, TT
decomposition is recommended based on its consistent performance. If higher compression is
acceptable, both Tucker and TT decompositions are viable options.

5-1-2 CNN configurations

The second sub-question, related to different convolution layer configurations, was: Which
convolutional hyperparameters, such as input/output channels, input feature size, and kernel
size, yield the greatest energy savings for decomposed convolutions using tensor decomposi-
tions?

The analysis of different convolutional configurations revealed that increased input/output
channels, feature input sizes, and kernel sizes generally led to greater energy savings when
using decomposed convolutions at high compression ratios. However, lower compression lev-
els often resulted in additional energy consumption for larger convolutions. Thus, careful
selection of which convolutional layers to decompose is crucial, especially with specific tensor
decomposition and compression ratio combinations.

The most influential parameters were identified as the kernel size and feature size, showing
the most impact on the reduction of Multiply-Accumulate operations (MACs) and additional
memory required. Consequently, these parameters had the most effect on the energy sav-
ings. Notably, the 1× 1 kernel generally shows no reduced energy but also no added energy
consumption, balancing around zero energy saved. While the number of input and output
channels also demonstrated increased energy savings with larger sizes, the differences were
less prominent compared to kernel and feature sizes.

The experiments on the popular ResNet18, showed that the larger layers, consisting of larger
kernels and input/output channels, combined with high compression can reduce the energy
consumption, however, for lower compressions additional energy is required, especially for the
CP.

These findings suggest that strategically choosing which layers to decompose, particularly
considering kernel and feature sizes, is crucial for maximizing energy savings. This aligns
with current research focused on balancing compression, energy efficiency, and computational
performance. Therefore, informed architectural decisions are necessary for effective inference
on decomposed CNNs, especially in resource-limited implementations such as AVs.

5-1-3 Hardware considerations

The third sub-question, related to the difference between implementing tensor decomposi-
tion on either Central Processing Unit (CPU) or Graphics Processing Unit (GPU), was: To

D. Breen Master of Science Thesis

5-1 Conclusion 79

what extent is the energy consumption of tensor-decomposed CNNs influenced by the use of
hardware, specifically GPU compared to CPU?
The analysis of all experiments performed on either CPU or GPU, has shown that using
GPU has an important influence on the energy saved. Overall the energy savings of using
the GPU were lower than that of the CPU. This was an unexpected result since GPU
parallel processing was expected to decrease the computational demand. An explanation for
the higher energy consumption might be the difference in memory management between the
GPU and CPU. The found memory patterns of the GPU were different from the CPU and the
results suggest that the additional memory allocation, necessary for the smaller intermediate
tensors, plays a more prominent role in the specialized hardware such as GPU. Due to these
memory fluctuations, it is more difficult to see patterns based on layer configurations and
compressions and predict the effect.

In implementing tensor decomposition in AVs for efficient inference, these findings highlight
the importance of considering hardware-specific characteristics. Although GPUs are known
for their parallel processing powers, which should reduce computational demand, their possi-
ble memory management inefficiencies can lead to higher energy consumption. This insight
stresses the need to optimise the implementation of tensor decompositions for computational
efficiency and memory usage, particularly when deploying on large CNNs on specialized hard-
ware in AVs.

5-1-4 Modelling of energy savings

The fourth sub-question, related to the modelling of the expected energy savings, was: To
what extent can energy savings in tensor-decomposed CNNs be accurately predicted based on
pre-implementation data, such as calculated computation and memory usage, compared to
models requiring additional empirical measurements?
Eight different regression models were fitted to answer this sub-question, based on two pre-
dictors for energy saving: memory usage and MAC operations. These models were compared
to a benchmark model that focused only on the computational complexity (reduced MACs)
after decomposing.

The benchmark models, for both CPU and GPU, did not perform very well at predicting the
energy savings. For the CPU, the benchmark model had an R-squared value of 0.586 and for
the GPU, it was even lower at 0.305. The coefficients of the MAC operations were significant,
indicating that it does contribute to the energy savings, however, they alone can not capture
all influences on the energy savings.

When memory usage was added as an additional predictor, the performance increased signif-
icantly. The linear model, including either measured or calculated memory, had an increase
in the adjusted R-squared values up to 0.928 for CPU models (calculated memory) and 0.776
for GPU models (measured memory). This indicates that memory usage is an important
factor contributing to the energy savings of tensor-decomposed CNNs. The differences in
performance between the CPU and GPU further suggest that the memory and computa-
tional complexity of the GPU might ask for more complex modelling techniques.

The comparison between models using calculated and measured memory showed that the
calculated memory generally was better in predicting the energy savings, especially in CPU

Master of Science Thesis D. Breen

80 Conclusion & Discussion

models. This suggests that predictive models based on calculated memory, which can be
determined prior to model implementation, can be sufficient for modelling the energy savings.
This allows for convenient in-advance predictions of energy savings.

The additional complexity in the polynomial models did not show major improvements in the
predicting performance compared to the linear models. The adjusted R-squared values for
these models were slightly higher, but some of the higher-order terms were not statistically
significant, indicating that the added complexity did not always result in better predictions.
In particular, for the CPU models the simpler linear models performed almost the same as
the polynomial models. For the GPU models, showing some increased accuracy, increased
complexity might be necessary, maybe in the form of additional predictors.

In conclusion, while it is possible to predict energy savings in tensor-decomposed CNNs to
some extent, particularly when additional memory is added to the models, the complexity
of the energy savings, especially on specialized hardware like GPU, limits the accuracy of
these predictions. For CPU, linear models, especially with the calculated memory, offer a
promising approach for initial predictions, however, more sophisticated modelling might still
be necessary to accurately and reliably predict. Also, since the sample size of the data used
in these models (n_train=180, n_test=20) is not that large, more additional measurements
could enhance the performance of these regression models.

5-1-5 Tensor decompositions for CNNs in AVs

Finally, the main question, which was presented again at the beginning of this chapter will
be answered.

This thesis has looked further into the potential of tensor decomposition methods to increase
the energy efficiency of large CNNs. It has shown that implementing these decompositions
in CNNs can result in energy savings. However, to do so, careful selection of key parameters,
such as decomposition method, CNN layers to decompose and hardware implementations,
is required. These parameters can drastically affect energy savings, resulting in additional
energy consumption.

In the context of implementation in AVs the first potential has been shown to increase the
energy efficiency. However, this thesis has also shown that the expected results and theo-
retical benefits, might not always be present. Especially implementing these decomposition
methods on specialized hardware such as GPU shows weak energy savings and most of the
time even additional energy. This implies, that more research is still necessary before these
decomposition methods can be implemented into real-life applications.

For this thesis, the accuracy of the resulting convolutions has not been taken into account,
however, in the context of safety-critical AVs this is still important to keep in mind. The
findings in this thesis show that for better energy savings the compression levels need to be
high, probably affecting the accuracy. Before implementation, it is thus important to look
into the balance between compression and accuracy, considering the safety implications.

Lastly, regression models showed that predicting energy savings in tensor-decomposed CNNs
is feasible, particularly when memory usage is included as a predictor. Benchmark models
based solely on MACs were less accurate, especially for GPU. However, adding memory
usage significantly improved prediction accuracy, with calculated memory being particularly

D. Breen Master of Science Thesis

5-2 Discussion 81

effective for the CPU data, suggesting that pre-implementation predictions can be reliable.
While polynomial models offered minimal improvements, the complexity of GPU energy sav-
ings may require more complex models. Additional empirical data could further enhance the
prediction accuracy.

5-2 Discussion

During this research, several choices and assumptions were made that could have influenced
the results presented. In this section, some of these decisions and assumptions will be high-
lighted. In addition, any unexpected outcomes will be pointed out.

One of the main design choices was to use a watt meter, instead of using existing profiling tools.
Although the watt meter has several advantages, it also comes with some drawbacks. The
energy can not be measured per process and the power fluctuations might introduce noise. The
alternative tools also have their advantages and disadvantages but choosing one of those would
have possibly changed the results. To get an image of the other tools compared to the watt
meter some small experiments were done using the CarbonTracker tool and the online Green
Algorithms calculator. Figure 5-1 shows the results of these tools for different experiments,
where each experiment uses different CNN parameters and decomposition method, with a
total of three experiments. It can be seen that the online tool substantially overestimates
the energy consumption. Contrary, the CarbonTracker shows similar results as the watt
meter. This suggests that the measurements and results in this thesis can be assumed relevant
compared to the CarbonTracker and changing to another measurement tool might not change
the results of this thesis that much.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Compression Ratio

0.00

0.02

0.04

0.06

0.08

En
er

gy
 (k

W
h)

Energy Consumption for Different Tools
Meas 1
Meas 2
Meas 3

Green algorithms
Carbontracker
Watt meter

Figure 5-1: Energy consumption measured in three experiments, each with a different tensor
decomposition across various compression ratios. For each experiment, the energy is measured
by Green algorithms, CarbonTracker or the watt meter.

An unexpected result is that the use of the specialized GPU resulted in worse energy consump-
tion than the CPU. The parallel computation was designed to be more efficient, however, this

Master of Science Thesis D. Breen

82 Conclusion & Discussion

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Compression

1

2

3

4

5

6

7

of

 M
AC

 o
pe

ra
tio

ns

1e8 The MAC operations for CP
MACs from literature
MACs from thesis

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Compression

1.5

2.0

2.5

3.0

3.5

4.0

4.5

of

 M
AC

 o
pe

ra
tio

ns

1e7 The MAC operations for TT
MACs from literature
MACs from thesis

Figure 5-2: The difference in MAC operations for one experiment for the complexity in the
literature and the found complexity in the TensorlyTorch analysis for both the CP and TT de-
composition.

thesis has shown that for this implementation the bottleneck of the GPU, in the context of en-
ergy consumption, might be the memory allocation. Further investigating this phenomenon,
by doing more experiments on other types of GPU or other specialized hardware such as
Tensor Processing Unit (TPU), might give more insights into this bottleneck, particularly
focusing on the memory management.

Talking about memory, another limitation of this thesis is worth mentioning. For the memory
profiling, presented in Section 3-3, only the peak memory was measured compared to mea-
suring the complete memory. It can be expected, that the peak memory is a representative
measure since it presents the highest needed memory for that piece of code and thus shows
the memory demand. However, to be sure it would be a good idea to look closer into the
memory allocated on the GPU, especially since the results are disappointing.

Another possible cause for the found energy inefficiencies could be the badly documented
TensorlyTorch library. It is possible that the library was not coded efficiently or that the
programmers did not consider the memory implications when coding. The efficiency of the
allocation of the memory might have a big impact on the energy savings from decomposing. It
would thus be beneficial to look into how this library is constructed in the context of memory
allocation and to see what the energy savings would do if this library was not used.

In addition to the influence on the memory, the TensorlyTorch implementation also results
in different computational complexities, as was found in this thesis analysis. The number of
MAC operations was used to calculate the reduced complexity and the derived reduction did
match the patterns seen in the energy consumption. However, when we take the MACs for the
CP decomposition as an example, Figure 5-2 shows that this thesis analysis of TensorlyTorch
shows a substantially larger number of MAC operations compared to the number of operations
from the literature. The TT decomposition however doesn’t show a big difference, however,
the large difference in the CP, compared to the complexities described in the literature, is an
interesting observation and might require more research.

One part, of the thesis, was modelling the energy savings based on the reduced number

D. Breen Master of Science Thesis

5-3 Future work 83

of MAC reductions and the measured or calculated additional memory. To use a linear
regression, assumptions were made, about the data. It was assumed that the data was
normally distributed, which it almost was, however, some skewness was present. This could
have influenced the accuracy of the model. The number of data points used for the linear
regression was also quite low, where only 180 data points were included in the training set.
Collecting more data points might increase the accuracy of the models. In the dataset of the
GPU there was also an imbalance between many negative energy savings and less positive
energy savings. This data imbalance might also impact the accuracy of the model.

The linear regressions made a start in modelling the energy savings from decomposing. These
models were based on the memory and MACs. To extent on these models, it might be nice to
investigate other predictors, for example the different ranks that have a direct relation with
the MAC and memory. In addition, different regressions or other modelling techniques could
be used to see whether this can increase the accuracy.

As mentioned in Section 3-3, each experiment was run three times, from which at least one run
was at another date and time. Running three runs instead of one increases the representation
of the actual measurements and reduces the inclusion of noise. However, three runs might
not be sufficient, and adding additional runs would be preferred. The number of epochs for
each run was chosen based on some trial and error runs to make sure the measurements were
sufficiently long, having at least four data points. However, in hindsight, it was found that
not all measurements were sufficiently long and some might have been a bit too short.

5-3 Future work

In the previous section, several unexpected results but also limitations of this thesis were
outlined. Combined these form a basis for future work, extending on this thesis. Below
possible extensions will be summarized presenting an overview of the future work.

One of the main questions following this thesis is why the implementations on the GPU
showed additional energy consumption in most of the experiments. Several explanations were
thought off, in particular the memory allocation of the GPU. Future work should look into
these memory allocation patterns and the efficiency of them.

Combined with that, future work should look into whether the popular TensorlyTorch library
is efficiently implemented and whether the use of this library has a great impact on the energy
efficiency of the decomposed convolutions.

Lastly, more extensive and longer experiments are necessary with more variations in inde-
pendent variables. This thesis has presented a baseline, identified initial patterns and shown
the first potential benefits of decomposed convolutions. Future research, could extent on
this creating a larger dataset of energy savings and showing the more broad implications
of tensor-decomposed convolutions. This could also include looking into other types of spe-
cialized hardware such as TPUs, specialized for tensor operations. More data could also
encourage expanding the regression models and exploring other modelling techniques to find
accurate and reliable models predicting the energy savings needed.

To conclude, this thesis has made a great start and has laid a foundation for future work
looking into the great potential of tensor decomposition in large CNNs.

Master of Science Thesis D. Breen

Appendix A

Tensor decompositions

The algorithms presented below form the basis for tensor decomposition methods such as
Parallel Factors (PARAFAC) Canonical Decomposition (CANDECOMP) (CP), Tucker and
Tensor Train (TT) decomposition. They are separated for each technique and are referenced
in Section 2-3.

A-1 CP decomposition

Algorithm 1 gives the representation of finding the best low-rank approximation of the original
tensor by implementing the CP using Alternating Least Squares (ALS).

Algorithm 1 CP-ALS [101]
1: function CP-ALS(X, R)
2: Initialize A(n) ∈ IRIn×R for n = 1, . . . , N
3: repeat
4: for n = 1, . . . , N do
5: V← A(1)⊤A(1) ⊛ · · ·⊛ A(n−1)⊤A(n−1) ⊛ A(n+1)⊤A(n+1) ⊛ · · ·⊛ A(N)⊤A(N)

6: A(n) ← X(n)
(
A(N) ⊙ · · · ⊙A(n+1) ⊙A(n−1) ⊙ · · · ⊙A(1)

)
V†1

7: normalize columns of A(n) and store norms as λ
8: end for
9: return λ, A(1), A(2), . . . , A(N)

10: until convergence or maximum iterations
11: end function

When the factor matrices have been determined there is a deterministic condition to say
something about the uniqueness of the CP decomposition, which is given below. There is
also a general condition which can tell something about the uniqueness of the decomposition
before computing the factor matrices, which is given below for a 4th-order tensor. This
general condition can also be used to find an initial choice of the tensor rank.

Master of Science Thesis D. Breen

86 Tensor decompositions

Theorem A-1.1: A generic condition [166]

Consider a tensor X ∈ IRI×J×K×L. Then the CP decomposition is generally unique if

R ≤ L and R(R− 1) ≤ IJK(3IJK − IJ − IK − JK − I − J −K + 3)/4. (A-1)

Theorem A-1.2: Kruskal’s condition [167]

Consider the CP decomposition X = JA(1), A(2), . . . , A(N)K. If

N∑
n=1

kA(n) ≥ 2R + (N − 1) (A-2)

then rank(X) =R and the CPD is unique.

kA(n) represent the Kruskal-rank of the factor matrix A(n). The Kruskal rank is the
maximum value of k such that any k columns of the factor matrix A(n) are linearly
independent.

A-2 Tucker decomposition

The well-known and commonly used method to compute the Tucker decomposition of a
tensor is a form of Singular Value Decomposition (SVD), generalized to higher order tensors,
also known as Multilinear SVD (MLSVD) or Higher-order SVD (HOSVD). The truncation
parameters R1, R2, . . . , RN can be determined by removing low left singular values until the
decomposition is a sufficient approximation. Alternatively, a method can be used based on
the Eckart-Young theorem [108]. This method truncates the factor matrices by thresholding
the truncation error. The theorem states that this error is given by ϵ2

n = ϵ2∥X∥
N = ∥Σ(n)∥2F ,

where ϵ is the relative error between the original tensor and the approximation, ϵn is the
truncation error of the current SVD and Σ is a matrix with the truncated singular values on
the diagonal. The Rn is increased until the inequality does not hold. The method is common
and is known as sequentially truncated HOSVD (st-HOSVD) [109] given in Algorithm 2.

As mentioned in Subsection 2-3-3 the MLSVD does not give the optimal approximation of
the tensor. In addition, an ALS algorithm was proposed using the MLSVD as initialization
and minimizing the cost function

min
G,U(1),...,U(N)

∥∥∥X− JG; U(1), U(2), . . . , U(N)K
∥∥∥

subject to G ∈ RR1×R2×···×RN ,

U(n) ∈ RIn×Rn column-wise orthogonal for n=1, . . . , N,

(A-3)

where U(n) ∈ RIn×Rn are the factor matrices and G the core tensor. The full algorithm
known as Higher-order orthogonal iteration (HOOI) or HOSVD-ALS is given in Algorithm 3
and updates each factor matrix by keeping the others fixed.

D. Breen Master of Science Thesis

A-3 TT decomposition 87

Algorithm 2 st-HOSVD [109]
1: function st-HOSVD(X, ϵ)
2: Y = X

3: for N = 0 to N − 1 do
4: [U, S,∼] = SVD(Y(n))
5: Rn = min

{
R |

∑In
i=R+1 σ2

i ≤ ϵ2∥X∥2/N
}

6: U(n) = U(:, 1 : Rn)
7: Y = Y×n U(n)⊤

8: end for
9: G = Y

10: return (G, U(1), U(2), . . . , U(N))
11: end function

Algorithm 3 HOOI [101]
function HOOI(X, R1, R2, . . . , RN)

initialize U(n) ∈ IRIn×R for n = 1, . . . , N using HOSVD
repeat

for n = 1, . . . , N do
Y← X×1 U(1)⊤ · · · ×n−1 U(n−1)⊤ ×n+1 U(n+1)⊤ · · · ×N U(N)⊤

U(n) ← Rn leading left singular vectors of Y(n)
end for

until convergence or maximum iterations are surpassed
G← X×1 U(1)⊤ ×2 U(2)⊤ · · · ×N U(N)⊤

return G, U(1), U(2), . . . , U(N)

end function

A-3 TT decomposition

The full process of TT-SVD is given in Algorithm 4 using the standard matrix SVD. First, the
tensor is put into its mode-1 matricization. Then, the SVD of the new matrix is computed.
The unitary matrix U is then truncated by TT-rank Rn again based on the Eckart-Young
theorem [108]. Then the SV⊤ is reshaped, grouping the current indices In and the tensor
rank Rn−1, which will be the new input for the SVD. This process is repeated until the final
index IN .

The TT format is not unique so there might be situations in which the TT-ranks are not
optimal for the representation of tensor X. For example, basic linear algebra operations with
TTs can result in higher TT-ranks. Lowering the TT-ranks and finding a more optimal TT
format without losing accuracy is called TT-rounding. The TT-rounding method is usually
implemented using either SVD or QR-factorization and is similar to the TT-SVD algorithm
(Algorithm 4) but then on the TT-format. The full rounding process is given in Algorithm 5.
First, the TT is brought into its site-N-mixed canonical form, putting the norm of the TT
in the final tensor core. Then the same procedure as in the TT-SVD is applied where each
tensor core is matricized and truncated to a lower rank.

Master of Science Thesis D. Breen

88 Tensor decompositions

Algorithm 4 TT-SVD [117]
Require: N-dimensional tensor X, prescribed accuracy ϵ
Ensure: Cores G(1),G(2), . . . ,G(N) of the TT approximation X̃ to X in the TT format with

TT ranks Rn equal to the δ-ranks of the unfoldings Xn of X, where δ = ϵ√
N−1∥X∥F . The

computed approximation satisfies ∥X− X̃∥F ≤ ϵ∥X∥F
1: initialization: compute truncation parameter δ = ϵ√

N−1∥X∥F
2: C = X, R0 = 1
3: for n = 1 to N − 1 do
4: C := reshape(C, [RnIn, numel(C)

Rn−1In
]

5: Compute δ-truncated SVD: C = USV + E, ∥E∥F ≤ δ, Rn = rankδ(C)
6: New core: G(n) := reshape(U , [Rn−1, In, Rn])
7: C := SV ⊤

8: end for
9: G(N) = C

10: Return tensor X̃ in TT format with cores G(1),G(2), . . . ,G(N)

Algorithm 5 TT-rounding [17]
Input: Nth-order tensor X = ⟨⟨G(1),G(2), . . . ,G(N)⟩⟩ ∈ IRI1×I2×···×IN , in a TT format with
an overestimated TT rank, RT T = {R1, R2, . . . , RN−1}, and TT-cores G ∈ IRRn−1×In×Rn ,
absolute tolerance ϵ and maximum rank Rmax

Output: Nth-order tensor X̃ with a reduced TT-rank; the cores are rounded according to
the input tolerance ϵ and/or ranks bounded by Rmax such that ∥X− X̃∥F ≤ ϵ∥X∥F
1: initialization X̃ = X and δ = ϵ√

N−1
2: put the TT X in site-N-mixed canonical form, placing the norm in the final tensor core:
3: for n = 1 to N − 1 do
4: QR decomposition G(n)

(2) = QnR with G(n)
(2) ∈ IRRn−1In×Rn

5: Replace cores G(n)
(2) = Qn and G(n+1)

(1) = Qn ← RG(n+1)
(1) with G(n+1)

(1) ∈ IRRn×In+1Rn+1

6: end for
7: start rounding process
8: for n = N to 2 do
9: Perform δ-truncated SVD G(n)

(1) = Udiag{σ}V⊤

10: Determine minimum rank R̃n−1 such that Σr>Rn−1σ2
r ≤ δ2∥σ∥2

11: Replace cores G̃(n−1)
(2) ← G̃(n−1)

(2) Ũdiag{σ̃} and G̃(n)
(1) = Ṽ⊤

12: end for
13: return Nth-order tensor X̃ = ⟨⟨G̃(1)

, G̃
(2)

, . . . , G̃
(N)⟩⟩ ∈ IRI1×I2×···×IN with reduced TT-

cores G̃
(n) ∈ IRR̃n−1×In×R̃n

D. Breen Master of Science Thesis

Appendix B

Methodology

In this chapter, more extensive elaborations will be given for several parts presented in Chap-
ter 3.

B-1 Tensorly Torch decomposed convolutions

In Section 3-1, the analysis of the Tensorly Torch library was presented, showing key variables
and differences between Tensorly Torch and theory. This analysis was done based on the
pseudo-code of the Tensorly Torch library which are presented below.

The Parallel Factors (PARAFAC) Canonical Decomposition (CANDECOMP) (CP) decom-
position pseudo-code is presented below, which shows that the CP decomposition replaces on
convolution layer with four 1D convolutions.

1 def cp_conv (x, cp_tensor , bias=None , stride =1, padding =0, dilation =1):
2 """ Perform a factorized CP convolution
3

4 Parameters
5 ----------
6 x : torch. tensor
7 tensor of shape (batch_size , C, I_2 , I_3 , ..., I_N)
8

9 Returns
10 -------
11 NDConv (x) with a CP kernel
12 """
13 shape = cp_tensor .shape
14 rank = cp_tensor .rank
15

16 batch_size = x.shape [0]
17 order = len(shape) - 2
18

19 if isinstance (padding , int):

Master of Science Thesis D. Breen

90 Methodology

20 padding = (padding ,)*order
21 if isinstance (stride , int):
22 stride = (stride ,)*order
23 if isinstance (dilation , int):
24 dilation = (dilation ,)*order
25

26 # Change the number of channels to the rank
27 x_shape = list(x.shape)
28 x = x. reshape ((batch_size , x_shape [1], -1)). contiguous ()
29

30 # First conv == tensor contraction
31 # from (in_channels , rank) to (rank == out_channels , in_channels , 1)
32 x = F. conv1d (x, tl. transpose (cp_tensor . factors [1]). unsqueeze (2))
33

34 x_shape [1] = rank
35 x = x. reshape (x_shape)
36

37 # convolve over non - channels
38 for i in range(order):
39 # From (kernel_size , rank) to (rank , 1, kernel_size)
40 kernel = tl. transpose (cp_tensor . factors [i+2]). unsqueeze (1)
41 x = general_conv1d (x. contiguous (), kernel , i+2, stride = stride [i],

↪→ padding = padding [i], groups =rank)
42

43 # Revert back number of channels from rank to output_channels
44 x_shape = list(x.shape)
45 x = x. reshape ((batch_size , x_shape [1], -1))
46 # Last conv == tensor contraction
47 # From (out_channels , rank) to (out_channels , in_channels == rank , 1)
48 x = F. conv1d (x* cp_tensor . weights . unsqueeze (1). unsqueeze (0) , cp_tensor .

↪→ factors [0]. unsqueeze (2) , bias=bias)
49

50 x_shape [1] = x.shape [1] # = out_channels
51 x = x. reshape (x_shape)
52

53 return x

Listing B.1: Factorized CP Convolution

The Tensor Train (TT) decomposition pseudo-code is presented below, which shows that the
TT decomposition replaces on convolution layer with four 1D convolutions.

1 def tt_conv (x, tt_tensor , bias=None , stride =1, padding =0, dilation =1):
2 """ Perform a factorized tt convolution
3

4 Parameters
5 ----------
6 x : torch. tensor
7 tensor of shape (batch_size , C, I_2 , I_3 , ..., I_N)
8

9 Returns
10 -------
11 NDConv (x) with an tt kernel
12 """
13 shape = tt_tensor .shape
14 rank = tt_tensor .rank

D. Breen Master of Science Thesis

B-1 Tensorly Torch decomposed convolutions 91

15

16 batch_size = x.shape [0]
17 order = len(shape) - 2
18

19 if isinstance (padding , int):
20 padding = (padding ,)*order
21 if isinstance (stride , int):
22 stride = (stride ,)*order
23 if isinstance (dilation , int):
24 dilation = (dilation ,)*order
25

26 # Change the number of channels to the rank
27 x_shape = list(x.shape)
28 x = x. reshape ((batch_size , x_shape [1], -1)). contiguous ()
29

30 # First conv == tensor contraction
31 # from (1, in_channels , rank) to (rank == out_channels , in_channels , 1)
32 x = F. conv1d (x, tl. transpose (tt_tensor . factors [0], [2, 1, 0]))
33

34 x_shape [1] = x.shape [1] #rank [1]
35 x = x. reshape (x_shape)
36

37 # convolve over non - channels
38 for i in range(order):
39 # From (in_rank , kernel_size , out_rank) to (out_rank , in_rank ,

↪→ kernel_size)
40 kernel = tl. transpose (tt_tensor . factors [i+1], [2, 0, 1])
41 x = general_conv1d (x. contiguous (), kernel , i+2, stride = stride [i],

↪→ padding = padding [i])
42

43 # Revert back number of channels from rank to output_channels
44 x_shape = list(x.shape)
45 x = x. reshape ((batch_size , x_shape [1], -1))
46 # Last conv == tensor contraction
47 # From (rank , out_channels , 1) to (out_channels , in_channels == rank , 1)
48 x = F. conv1d (x, tl. transpose (tt_tensor . factors [-1], [1, 0, 2]) , bias=bias)
49

50 x_shape [1] = x.shape [1]
51 x = x. reshape (x_shape)
52

53 return x

Listing B.2: Factorized TT Convolution

The Tucker decomposition pseudo-code is presented below, which shows that the Tucker de-
composition replaces one convolution layer with two 1D convolutions and one 2D convolution.

1 def tucker_conv (x, tucker_tensor , bias=None , stride =1, padding =0, dilation =1):
2 # Extract the rank from the actual decomposition in case it was changed by

↪→ , e.g., dropout
3 rank = tucker_tensor .rank
4

5 batch_size = x.shape [0]
6 n_dim = tl.ndim(x)
7

8 # Change the number of channels to the rank

Master of Science Thesis D. Breen

92 Methodology

9 x_shape = list(x.shape)
10 x = x. reshape ((batch_size , x_shape [1], -1)). contiguous ()
11

12 # This can be done with a tensor contraction
13 # First conv == tensor contraction
14 # from (in_channels , rank) to (rank == out_channels , in_channels , 1)
15 x = F. conv1d (x, tl. transpose (tucker_tensor . factors [1]). unsqueeze (2))
16

17 x_shape [1] = rank [1]
18 x = x. reshape (x_shape)
19

20 modes = list(range (2, n_dim +1))
21 weight = tl. tenalg . multi_mode_dot (tucker_tensor .core , tucker_tensor .

↪→ factors [2:] , modes=modes)
22 x = convolve (x, weight , bias=None , stride =stride , padding = padding)
23

24 # Revert back number of channels from rank to output_channels
25 x_shape = list(x.shape)
26 x = x. reshape ((batch_size , x_shape [1], -1))
27 # Last conv == tensor contraction
28 # From (out_channels , rank) to (out_channels , in_channels == rank , 1)
29 x = F. conv1d (x, tucker_tensor . factors [0]. unsqueeze (2) , bias=bias)
30

31 x_shape [1] = x.shape [1]
32 x = x. reshape (x_shape)
33

34 return x

Listing B.3: Factorized Tucker Convolution

B-2 Data processing

As mentioned in Section 3-4, it was discussed that the log file, consisting of the DateTime
stamps of each experiment needed to be transferred to a CSV file. This was done by using
the following pseudo-code:

1 import csv
2

3 # Open the logger log file
4 with open(’Feat.log ’, ’r’) as log_file :
5 # Open a new csv file , which will be filled with data
6 with open(’testen .csv ’, ’w’, newline =’’) as csv_file :
7 # Define the CSV writer
8 csv_writer = csv. writer (csv_file)
9

10 # Give headers to the CSV file , with the Datetime stamp and the
↪→ experiment name

11 csv_writer . writerow ([’Datetime ’, ’Name ’])
12

13 # Iterate over each line in the log file
14 for line in log_file :
15 # Based on the ’ - ’ split the lof file lines
16 parts = line.strip ().split(’ - ’)

D. Breen Master of Science Thesis

B-2 Data processing 93

17

18 # Check if the line has at least two parts
19 if len(parts) >= 2:
20 datetime_str = parts [0] # Get the datetime string
21 name = parts [-1] # Get the name of the experiment
22

23 # Split the datetime string into seperate date and time to
↪→ remove the milliseconds

24 datetime_parts = datetime_str .split(’ ’)
25

26 # Check if the datetime string has two parts
27 if len(datetime_parts) == 2:
28 date , time = datetime_parts
29 # Split the time part by comma and remove the milliseconds
30 time = time.split(’,’)[0]
31

32 # Combine date and time into a single datetime stamp
33 datetime_combined = f"{date} {time}"
34

35 # Write datetime and info to the CSV file
36 csv_writer . writerow ([datetime_combined , name])
37 else:
38 print(f" Ignoring line: {line.strip ()}") # Print warning

↪→ for unexpected line
39 else:
40 print(f" Ignoring line: {line.strip ()}") # Print warning for

↪→ unexpected line

Listing B.4: Creating a CSV file from the Python logger file.

After, combining the data from the watt meter and the logger file, a big dataset needed
to be created with the different periods per run, different experiments with their runs com-
bined under one name, the mean energy consumption, standard deviations and more. The
pseudo-code to combine all information is given below and gives a good overview, including
descriptions of the used code.

1 def get_dicts (testlog , decompose):
2 testlog = testlog
3 # Create an empty lists for the periods
4

5 periods = {}
6 # Find the different start and end pairs , by iterating over all the log

↪→ rows
7 for index , row in testlog . iterrows ():
8

9 if row[’Info ’]. startswith (f’{ decompose }-start ’): #find a row that
↪→ starts with start

10 #read out the DateTime stamp
11 start_time = pd. to_datetime (row[’Datetime ’])
12 # Find the end time corresponding to the start time
13 end_time = pd. to_datetime (testlog .loc[index + 1, ’Datetime ’])
14 end_time_round = end_time . replace (second =0)
15

16 # filter the period out of the watt meter measurements between the
↪→ start and the end time

Master of Science Thesis D. Breen

94 Methodology

17 close_strt = data_struct .iloc [(data_struct [’Datetime ’] -
↪→ start_time).abs (). argsort () [:1]]

18 period = data_struct [(data_struct [’Datetime ’] >= close_strt .iloc
↪→ [0][’Datetime ’]) & (data_struct [’Datetime ’] < end_time_round)]

19

20 # Extract the name of the measurement presented after ’start ’
21 exp_name = row[’Info ’]. split(’start -’)[1] # Extract the text

↪→ following ’start -’
22

23 # Add filtered data with period name as key to dictionary
24 periods [exp_name] = period
25

26 #Add the extra seconds , since measurements are per minute
27 periods [exp_name][’extra_t ’]=(end_time - end_time_round).

↪→ total_seconds ()
28

29 # Create a new dictionary to find different runs of the same measurement
30 all_runs = {}
31

32 # Now find different runs for the same measurement by iteratinf over all
↪→ period dict items

33 for exp_name , runs in periods .items ():
34

35 # Extract the name of the experiment by removing the ind
36 name = exp_name .split(’-ind ’)[0]
37

38 # Check if the type of measurement was alreadt seen in the list of
↪→ periods

39 if name in all_runs :
40 # If so append the new run of that experiment
41 all_runs [name]. append (runs)
42 else:
43 # If not start a new list under the name of the experiment
44 all_runs [name] = [runs]
45

46 # Create a new dictionary for the final results
47 experiment_results = {}
48

49 # Find all measurements for each experiment
50 for experiment_name , experiment_runs in all_runs .items ():
51 # Create lists to store means , standard deviations , period lengths ,

↪→ and total energies
52 means = []
53 stds = []
54 period_lengths = []
55 total_energies = []
56 total_energy_kwh =[]
57 # Iterate over each different experiment , over the different runs
58 for run in experiment_runs :
59 # Calculate median over the power measurments
60 power=run[’Power (W)’]. to_numpy ()
61 #To be sure check whether length of exp is larger than one , if so

↪→ remove the first minute
62 if len(power) >1:
63 median =np. median (power [1:])
64 else:
65 median =np. median (power)

D. Breen Master of Science Thesis

B-3 Regression 95

66

67 # Calculate period length , combining the seconds after full
↪→ minutes

68 period_length =len(power) -1+np.mean(run[’extra_t ’]) / 60 #
↪→ Convert to minutes

69

70 # Calculate the totale energy based on the measured power and
↪→ period length

71 total_energy = median * period_length *60
72 period_lengths . append (period_length)
73 total_energies . append (total_energy)
74 total_energy_kwh . append (total_energy /(3600*1000))
75

76 # Calculate mean and standard deviation of total energies
77 mean_total_energy = np.mean(total_energies)
78 std_total_energy = np.std(total_energies)
79

80 energy_kwh =np.mean(total_energy_kwh)
81 energy_std =np.std(total_energy_kwh)
82

83 # Add results to the experiment_results dictionary
84 experiment_results [experiment_name] = {
85 ’period_lengths ’: period_lengths ,
86 ’total_energies ’: total_energies ,
87 ’total_energies_kwh ’: total_energy_kwh ,
88 ’mean_total_energy ’: mean_total_energy ,
89 ’std_total_energy ’: std_total_energy ,
90 ’energy (kWh)’: energy_kwh ,
91 ’std_energy (kWh)’: energy_std
92 }
93 return experiment_results , all_runs , periods

Listing B.5: Processing the data.

B-3 Regression

As mentioned in Section 3-5 the use of a regression model means that certain assumptions
need to be met:

• Linear relationship: the dependent variables and both independent variables need to
show a linear relationship.

• Multivariate normality: The regression model assumes that the residuals are normally
distributed.

• No multicollinearity: The different independent variables can not correlate too much
with each other. This can be checked by verifying that the VIF is lower than 1.5.

• Homoscedasticity: the variance in the residuals should be consistent across all levels of
the independent variables, i.e. there should be no discernible increase in the scatter of
the residuals versus the predicted variables.

The assumptions were checked for both Central Processing Unit (CPU) and Graphics Pro-
cessing Unit (GPU) models and for both the measured and calculated memory.

Master of Science Thesis D. Breen

96 Methodology

B-3-1 CPU regression model

The first assumption was based on the linearity between the dependent and independent
variables. For this assumption to hold, the residuals vs fitted values in Figure B-1 need
to show no clear patterns and consist of spread out scatter. As can be seen, there is a
scatter somewhat random, however some indication of a pattern is present, where there is a
cluster visible. This might indicate that the relation between the dependent and independent
variables is not fully linear and more complex models might be necessary. Figure B-1 indicates

0.06 0.04 0.02 0.00 0.02 0.04
Fitted values

0.025

0.020

0.015

0.010

0.005

0.000

0.005

0.010

0.015

Re
sid

ua
ls

Residuals vs Fitted Values
Residuals
Zero Line

(a) Data based on MAC and measured mem-
ory

0.06 0.04 0.02 0.00 0.02
Fitted values

0.0100

0.0075

0.0050

0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

Re
sid

ua
ls

Residuals vs Fitted Values
Residuals
Zero Line

(b) Data based on Multiply-Accumulate op-
eration (MAC) and calculated memory

Figure B-1: Residuals versus the fitted values of the CPU models based on the measured memory
(left) and on the calculated memory (right).

homoscedasticity in the measured memory plot since the variance is consistent across all levels
and seems not to depend on the fitted values. For the calculated memory, however, it is less
straightforward, since a slight indication of a tunnel is present, where the variance increases
with increased fitted values. since this effect seems not heavily present, it is decided to assume
homoscedasticity for both.
To check the multicollinearity, the VIF value was calculated using the statsmodels library.
The VIF was found to be 1.0 for both the measured and calculated memory, which is lower
than 1.5. So there is no multicollinearity present in the data.
Lastly, the data is assumed to be normally distributed. Looking at the histograms, based on
the data for both the memory types, it can be seen that the distribution has some skewness
and shows some non-normalities. The distribution comes close to the normality distribution,
however, the assumption of normality might influence the results of the regression models.

B-3-2 GPU regression model

The GPU model shows similar results. As can be seen in Figure B-3, the distribution of the
data is not exactly normally distributed and shows some skewness and irregularities. For the
GPU model, the mean of the residuals seems to be even further away from the zero mean
than the CPU mode.

D. Breen Master of Science Thesis

B-3 Regression 97

0.02 0.01 0.00 0.01
Residuals

0

50

100

150

200

250

300

De
ns

ity

Histogram of Residuals
Normal Distribution
Residuals

(a) Data based on MAC and measured mem-
ory

0.0100 0.0075 0.0050 0.00250.0000 0.0025 0.0050 0.0075 0.0100
Residuals

0

50

100

150

200

De
ns

ity

Histogram of Residuals
Normal Distribution
Residuals

(b) Data based on MAC and calculated mem-
ory

Figure B-2: Histogram of the residuals of the CPU models based on the measured memory (left)
and on the calculated memory (right).

For the linear regression, the assumption was made of homoscedasticity and linearity. Looking
at Figure B-4, it can be seen that for the GPU the values are not as scattered as for the CPU,
showing more clustering. Besides the clustering, now also other more tunnel-shaped patterns
are present indicating heteroscedasticity and non-linear behaviour. This might have an impact
on the results of the linear and polynomial regression

Lastly, the Variance Inflation Factor (VIF) of the GPU model came to 1.043 which is smaller
than 1.5 and thus indicates no multicollinearity.

0.10 0.08 0.06 0.04 0.02 0.00 0.02 0.04
Residuals

0

5

10

15

20

25

30

35

De
ns

ity

Histogram of Residuals
Normal Distribution
Residuals

(a) Data based on MAC and measured mem-
ory

0.08 0.06 0.04 0.02 0.00 0.02 0.04 0.06
Residuals

0

5

10

15

20

25

30

35

40

De
ns

ity

Histogram of Residuals
Normal Distribution
Residuals

(b) Data based on MAC and calculated mem-
ory

Figure B-3: Histogram of the residuals of the GPU models based on the measured memory (left)
and on the calculated memory (right).

Master of Science Thesis D. Breen

98 Methodology

0.25 0.20 0.15 0.10 0.05 0.00
Fitted values

0.08

0.06

0.04

0.02

0.00

0.02

0.04

Re
sid

ua
ls

Residuals vs Fitted Values

Residuals
Zero Line

(a) Data based on MAC and measured mem-
ory

0.30 0.25 0.20 0.15 0.10 0.05 0.00
Fitted values

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Re
sid

ua
ls

Residuals vs Fitted Values
Residuals
Zero Line

(b) Data based on MAC and calculated mem-
ory

Figure B-4: Residuals versus the fitted values of the GPU models based on the measured memory
(left) and on the calculated memory (right).

B-4 Resnet18 architecture

D. Breen Master of Science Thesis

B-4 Resnet18 architecture 99
Ta

bl
e

B
-1

:
RE

SN
ET

18
La

ye
rs

an
d

Pa
ra

m
et

er
s

(P
ag

e
1)

L
ay

er
P

ar
am

et
er

s
D

es
cr

ip
ti

on

0
17

28
C

on
v2

d(
3,

64
,k

er
ne

l_
siz

e=
(3

,3
),

st
rid

e=
(1

,1
),

pa
dd

in
g=

(1
,1

),
bi

as
=

Fa
lse

)
1

12
8

B
at

ch
N

or
m

2d
(6

4,
ep

s=
1e

-0
5,

m
om

en
tu

m
=

0.
1,

affi
ne

=
Tr

ue
,t

ra
ck

_
ru

nn
in

g_
st

at
s=

Tr
ue

)
2

0
R

eL
U

(in
pl

ac
e=

Tr
ue

)
3

0
M

ax
Po

ol
2d

(k
er

ne
l_

siz
e=

3,
st

rid
e=

2,
pa

dd
in

g=
1,

di
la

tio
n=

1,
ce

il_
m

od
e=

Fa
lse

)
6

36
86

4
C

on
v2

d(
64

,6
4,

ke
rn

el
_

siz
e=

(3
,3

),
st

rid
e=

(1
,1

),
pa

dd
in

g=
(1

,1
),

bi
as

=
Fa

lse
)

7
12

8
B

at
ch

N
or

m
2d

(6
4,

ep
s=

1e
-0

5,
m

om
en

tu
m

=
0.

1,
affi

ne
=

Tr
ue

,t
ra

ck
_

ru
nn

in
g_

st
at

s=
Tr

ue
)

8
0

R
eL

U
(in

pl
ac

e=
Tr

ue
)

9
36

86
4

C
on

v2
d(

64
,6

4,
ke

rn
el

_
siz

e=
(3

,3
),

st
rid

e=
(1

,1
),

pa
dd

in
g=

(1
,1

),
bi

as
=

Fa
lse

)
10

12
8

B
at

ch
N

or
m

2d
(6

4,
ep

s=
1e

-0
5,

m
om

en
tu

m
=

0.
1,

affi
ne

=
Tr

ue
,t

ra
ck

_
ru

nn
in

g_
st

at
s=

Tr
ue

)
12

36
86

4
C

on
v2

d(
64

,6
4,

ke
rn

el
_

siz
e=

(3
,3

),
st

rid
e=

(1
,1

),
pa

dd
in

g=
(1

,1
),

bi
as

=
Fa

lse
)

13
12

8
B

at
ch

N
or

m
2d

(6
4,

ep
s=

1e
-0

5,
m

om
en

tu
m

=
0.

1,
affi

ne
=

Tr
ue

,t
ra

ck
_

ru
nn

in
g_

st
at

s=
Tr

ue
)

14
0

R
eL

U
(in

pl
ac

e=
Tr

ue
)

15
36

86
4

C
on

v2
d(

64
,6

4,
ke

rn
el

_
siz

e=
(3

,3
),

st
rid

e=
(1

,1
),

pa
dd

in
g=

(1
,1

),
bi

as
=

Fa
lse

)
16

12
8

B
at

ch
N

or
m

2d
(6

4,
ep

s=
1e

-0
5,

m
om

en
tu

m
=

0.
1,

affi
ne

=
Tr

ue
,t

ra
ck

_
ru

nn
in

g_
st

at
s=

Tr
ue

)
19

73
72

8
C

on
v2

d(
64

,1
28

,k
er

ne
l_

siz
e=

(3
,3

),
st

rid
e=

(2
,2

),
pa

dd
in

g=
(1

,1
),

bi
as

=
Fa

lse
)

20
25

6
B

at
ch

N
or

m
2d

(1
28

,e
ps

=
1e

-0
5,

m
om

en
tu

m
=

0.
1,

affi
ne

=
Tr

ue
,t

ra
ck

_
ru

nn
in

g_
st

at
s=

Tr
ue

)
21

0
R

eL
U

(in
pl

ac
e=

Tr
ue

)
22

14
74

56
C

on
v2

d(
12

8,
12

8,
ke

rn
el

_
siz

e=
(3

,3
),

st
rid

e=
(1

,1
),

pa
dd

in
g=

(1
,1

),
bi

as
=

Fa
lse

)
23

25
6

B
at

ch
N

or
m

2d
(1

28
,e

ps
=

1e
-0

5,
m

om
en

tu
m

=
0.

1,
affi

ne
=

Tr
ue

,t
ra

ck
_

ru
nn

in
g_

st
at

s=
Tr

ue
)

25
81

92
C

on
v2

d(
64

,1
28

,k
er

ne
l_

siz
e=

(1
,1

),
st

rid
e=

(2
,2

),
bi

as
=

Fa
lse

)
26

25
6

B
at

ch
N

or
m

2d
(1

28
,e

ps
=

1e
-0

5,
m

om
en

tu
m

=
0.

1,
affi

ne
=

Tr
ue

,t
ra

ck
_

ru
nn

in
g_

st
at

s=
Tr

ue
)

28
14

74
56

C
on

v2
d(

12
8,

12
8,

ke
rn

el
_

siz
e=

(3
,3

),
st

rid
e=

(1
,1

),
pa

dd
in

g=
(1

,1
),

bi
as

=
Fa

lse
)

29
25

6
B

at
ch

N
or

m
2d

(1
28

,e
ps

=
1e

-0
5,

m
om

en
tu

m
=

0.
1,

affi
ne

=
Tr

ue
,t

ra
ck

_
ru

nn
in

g_
st

at
s=

Tr
ue

)
30

0
R

eL
U

(in
pl

ac
e=

Tr
ue

)
31

14
74

56
C

on
v2

d(
12

8,
12

8,
ke

rn
el

_
siz

e=
(3

,3
),

st
rid

e=
(1

,1
),

pa
dd

in
g=

(1
,1

),
bi

as
=

Fa
lse

)
32

25
6

B
at

ch
N

or
m

2d
(1

28
,e

ps
=

1e
-0

5,
m

om
en

tu
m

=
0.

1,
affi

ne
=

Tr
ue

,t
ra

ck
_

ru
nn

in
g_

st
at

s=
Tr

ue
)

35
29

49
12

C
on

v2
d(

12
8,

25
6,

ke
rn

el
_

siz
e=

(3
,3

),
st

rid
e=

(2
,2

),
pa

dd
in

g=
(1

,1
),

bi
as

=
Fa

lse
)

36
51

2
B

at
ch

N
or

m
2d

(2
56

,e
ps

=
1e

-0
5,

m
om

en
tu

m
=

0.
1,

affi
ne

=
Tr

ue
,t

ra
ck

_
ru

nn
in

g_
st

at
s=

Tr
ue

)

Master of Science Thesis D. Breen

100 Methodology
Table

B
-2:

RESN
ET18

Layers
and

Param
eters

(Page
2)

L
ayer

P
aram

eters
D

escription

37
0

R
eLU

(inplace=
True)

38
589824

C
onv2d(256,256,kernel_

size=
(3,3),stride=

(1,1),padding=
(1,1),bias=

False)
39

512
B

atchN
orm

2d(256,eps=
1e-05,m

om
entum

=
0.1,affi

ne=
True,track_

running_
stats=

True)
41

32768
C

onv2d(128,256,kernel_
size=

(1,1),stride=
(2,2),bias=

False)
42

512
B

atchN
orm

2d(256,eps=
1e-05,m

om
entum

=
0.1,affi

ne=
True,track_

running_
stats=

True)
44

589824
C

onv2d(256,256,kernel_
size=

(3,3),stride=
(1,1),padding=

(1,1),bias=
False)

45
512

B
atchN

orm
2d(256,eps=

1e-05,m
om

entum
=

0.1,affi
ne=

True,track_
running_

stats=
True)

46
0

R
eLU

(inplace=
True)

47
589824

C
onv2d(256,256,kernel_

size=
(3,3),stride=

(1,1),padding=
(1,1),bias=

False)
48

512
B

atchN
orm

2d(256,eps=
1e-05,m

om
entum

=
0.1,affi

ne=
True,track_

running_
stats=

True)
51

1179648
C

onv2d(256,512,kernel_
size=

(3,3),stride=
(2,2),padding=

(1,1),bias=
False)

52
1024

B
atchN

orm
2d(512,eps=

1e-05,m
om

entum
=

0.1,affi
ne=

True,track_
running_

stats=
True)

53
0

R
eLU

(inplace=
True)

54
2359296

C
onv2d(512,512,kernel_

size=
(3,3),stride=

(1,1),padding=
(1,1),bias=

False)
55

1024
B

atchN
orm

2d(512,eps=
1e-05,m

om
entum

=
0.1,affi

ne=
True,track_

running_
stats=

True)
57

131072
C

onv2d(256,512,kernel_
size=

(1,1),stride=
(2,2),bias=

False)
58

1024
B

atchN
orm

2d(512,eps=
1e-05,m

om
entum

=
0.1,affi

ne=
True,track_

running_
stats=

True)
60

2359296
C

onv2d(512,512,kernel_
size=

(3,3),stride=
(1,1),padding=

(1,1),bias=
False)

61
1024

B
atchN

orm
2d(512,eps=

1e-05,m
om

entum
=

0.1,affi
ne=

True,track_
running_

stats=
True)

62
0

R
eLU

(inplace=
True)

63
2359296

C
onv2d(512,512,kernel_

size=
(3,3),stride=

(1,1),padding=
(1,1),bias=

False)
64

1024
B

atchN
orm

2d(512,eps=
1e-05,m

om
entum

=
0.1,affi

ne=
True,track_

running_
stats=

True)
65

0
A

daptiveAvgPool2d(output_
size=

(1,1))
66

5130
Linear(in_

features=
512,out_

features=
10,bias=

True)

D. Breen Master of Science Thesis

Appendix C

Experiments

Below the additional details are given for the single convolution experiments and the regression
models, elaborating on Chapter 4.

C-1 Single convolution baseline

Below the baseline energy consumption, of the non-decomposed convolution layers are pre-
sented to which the measured energy of the decomposed layers is compared.

Table C-1: Baseline energy consumption of Central Processing Unit (CPU) and Graphics Pro-
cessing Unit (GPU) at different values of S

S ECPU (kWh) EGPU (kWh)

192 5.21× 10−3 ± 2.90× 10−5 9.72× 10−3 ± 2.90× 10−5

256 7.50× 10−3 ± 9.00× 10−5 1.38× 10−2 ± 4.00× 10−6

320 9.74× 10−3 ± 3.36× 10−4 1.81× 10−2 ± 3.30× 10−5

384 1.19× 10−2 ± 3.10× 10−4 2.24× 10−2 ± 3.90× 10−5

Table C-2: Baseline energy consumption of CPU and GPU at different values of T

T ECPU (kWh) EGPU (kWh)

192 2.15× 10−3 ± 2.90× 10−5 9.64× 10−3 ± 1.3× 10−5

256 3.11× 10−3 ± 2.70× 10−5 7.66× 10−3 ± 3.0× 10−6

320 4.14× 10−3 ± 1.90× 10−5 1.10× 10−2 ± 5.1× 10−5

384 5.06× 10−3 ± 5.40× 10−5 8.70× 10−3 ± 7.0× 10−6

Master of Science Thesis D. Breen

102 Experiments

Table C-3: Baseline energy consumption of CPU and GPU at different values of W

W ECPU (kWh) EGPU (kWh)

2 9.57× 10−3 ± 4.40× 10−5 1.05× 10−2 ± 6.50× 10−5

4 1.83× 10−2 ± 0.80× 10−5 1.39× 10−2 ± 2.00× 10−5

6 3.11× 10−2 ± 4.00× 10−5 2.91× 10−2 ± 4.70× 10−5

8 5.62× 10−2 ± 4.07× 10−5 5.75× 10−2 ± 5.10× 10−5

Table C-4: Baseline energy consumption of CPU and GPU at different values of d

d ECPU (kWh) EGPU (kWh)

1 3.96× 10−3 ± 1.70× 10−5 1.07× 10−3 ± 1.20× 10−5

3 1.54× 10−2 ± 1.90× 10−5 2.33× 10−2 ± 0.50× 10−5

5 2.49× 10−2 ± 0.21× 10−5 6.66× 10−2 ± 9.40× 10−5

C-2 Regression

This section presents summary tables for the eight Ordinary Least Squares (OLS) regression
models and the benchmark models, detailing the key statistical values and coefficients. These
results provide a comprehensive analysis of the regression models discussed in Subsection 3-
2-2, focusing on the comparison between measured and calculated memory, as well as linear
versus polynomial models, across both CPU and GPU platforms.

For each table, the R-squared and Adjusted R-squared values indicate the proportion of
variance explained by the model. The F-statistic and Prob (F-statistic) assess the overall
significance of the model. The coefficients and their Standard Errors, z-values, and p-values
provide insight into the importance and impact of each independent variable in the model.

C-2-1 Benchmark model results

This subsection provides the OLS summaries of the linear regression benchmark models, for
both CPU (Table C-5) and GPU (Table C-6) data.

Table C-5: OLS Regression Results: CPU, Benchmark Model (MAC Operations Only)

Statistic Value
R-squared 5.86× 10−1

Adjusted R-squared 5.84× 10−1

F-statistic 4.47× 101

Prob (F-statistic) 2.89× 10−10

Log-Likelihood 5.11× 102

Variable Coefficient Standard Error z-value p-value
Constant −2.00× 10−3 1.06× 10−3 −1.87 6.16× 10−2

MAC Operations (x1) 1.68× 10−2 2.52× 10−3 6.68 2.34× 10−11

D. Breen Master of Science Thesis

C-2 Regression 103

Table C-6: OLS Regression Results: GPU, Benchmark Model (MAC Operations Only)

Statistic Value
R-squared 3.05× 10−1

Adjusted R-squared 3.01× 10−1

F-statistic 2.80× 101

Prob (F-statistic) 3.59× 10−7

Log-Likelihood 2.72× 102

Variable Coefficient Standard Error z-value p-value
Constant −4.38× 10−2 4.01× 10−3 −1.09× 101 8.48× 10−28

MAC Operations (x1) 3.55× 10−2 6.72× 10−3 5.29 1.23× 10−7

C-2-2 CPU results

This subsection provides all OLS summaries of the CPU models, both linear and polynomial,
with measured and calculated memory.

Table C-7: OLS Regression Results: CPU, Measured Memory, Linear Model

Statistic Value
R-squared 8.41× 10−1

Adjusted R-squared 8.40× 10−1

F-statistic 2.92× 102

Prob (F-statistic) 7.98× 10−57

Log-Likelihood 5.98× 102

Variable Coefficient Standard Error z-value p-value
Constant −2.00× 10−3 6.58× 10−4 −3.01 3.00× 10−3

Additional Memory (x1) −1.19× 10−2 1.09× 10−3 −1.10× 101 4.90× 10−28

Reduced MAC (x2) 1.24× 10−2 1.32× 10−3 9.40 5.53× 10−21

Table C-8: OLS Regression Results: CPU, Measured Memory, Polynomial Model

Statistic Value
R-squared 8.70× 10−1

Adjusted R-squared 8.66× 10−1

F-statistic 2.08× 102

Prob (F-statistic) 2.01× 10−71

Log-Likelihood 6.16× 102

Variable Coefficient Standard Error z-value p-value
Constant −2.00× 10−3 6.00× 10−4 −3.30 9.72× 10−4

x1 −1.41× 10−2 2.01× 10−3 −7.03 2.14× 10−12

x2 1.15× 10−2 2.58× 10−3 4.44 8.93× 10−6

x3 8.80× 10−3 2.96× 10−3 2.99 2.83× 10−3

x4 7.90× 10−3 2.41× 10−3 3.28 1.03× 10−3

x5 −2.90× 10−3 2.34× 10−3 −1.25 2.10× 10−1

Master of Science Thesis D. Breen

104 Experiments

Table C-9: OLS Regression Results: CPU, Calculated Memory, Linear Model

Statistic Value
R-squared 9.29× 10−1

Adjusted R-squared 9.28× 10−1

F-statistic 8.13× 102

Prob (F-statistic) 6.36× 10−90

Log-Likelihood 6.70× 102

Variable Coefficient Standard Error z-value p-value
Constant −2.00× 10−3 4.40× 10−4 −4.50 6.75× 10−6

Additional Memory (x1) −1.51× 10−2 8.47× 10−4 −1.78× 101 8.91× 10−71

Reduced MAC (x2) 9.00× 10−3 1.07× 10−3 8.33 7.90× 10−17

Table C-10: OLS Regression Results: CPU, Calculated Memory, Polynomial Model

Statistic Value
R-squared 9.37× 10−1

Adjusted R-squared 9.35× 10−1

F-statistic 4.11× 102

Prob (F-statistic) 2.37× 10−94

Log-Likelihood 6.81× 102

Variable Coefficient Standard Error z-value p-value
Constant −2.00× 10−3 4.18× 10−4 −4.73 2.23× 10−6

x1 −1.12× 10−2 2.18× 10−3 −5.14 2.73× 10−7

x2 1.66× 10−2 2.70× 10−3 6.14 8.50× 10−10

x3 −5.60× 10−3 4.68× 10−3 −1.19 2.30× 10−1

x4 −9.30× 10−3 4.95× 10−3 −1.88 5.98× 10−2

x5 −6.10× 10−3 2.53× 10−3 −2.41 1.61× 10−2

C-2-3 GPU results

This subsection provides all OLS summaries of the GPU models, both linear and polynomial,
with measured and calculated memory.

D. Breen Master of Science Thesis

C-2 Regression 105

Table C-11: OLS Regression Results: GPU, Measured Memory, Linear Model

Statistic Value
R-squared 7.78× 10−1

Adjusted R-squared 7.76× 10−1

F-statistic 2.21× 102

Prob (F-statistic) 8.27× 10−49

Log-Likelihood 3.74× 102

Variable Coefficient Standard Error z-value p-value
Constant −4.38× 10−2 2.27× 10−3 −1.93× 101 6.82× 10−83

Additional Memory (x1) −5.24× 10−2 3.12× 10−3 −1.68× 101 4.65× 10−63

Reduced MAC (x2) 7.30× 10−3 2.58× 10−3 2.84 4.57× 10−3

Table C-12: OLS Regression Results: GPU, Measured Memory, Polynomial Model

Statistic Value
R-squared 7.90× 10−1

Adjusted R-squared 7.84× 10−1

F-statistic 3.64× 102

Prob (F-statistic) 3.84× 10−90

Log-Likelihood 3.79× 102

Variable Coefficient Standard Error z-value p-value
Constant −4.40× 10−2 2.23× 10−3 −1.97× 101 6.17× 10−86

x1 −5.90× 10−2 7.99× 10−3 −7.35 1.94× 10−13

x2 −1.60× 10−2 1.43× 10−2 −1.13 2.60× 10−1

x3 8.00× 10−3 1.09× 10−2 7.23× 10−1 4.70× 10−1

x4 2.30× 10−2 1.63× 10−2 1.38 1.70× 10−1

x5 1.90× 10−2 1.00× 10−2 1.86 6.29× 10−2

Table C-13: OLS Regression Results: GPU, Calculated Memory, Linear Model

Statistic Value
R-squared 7.45× 10−1

Adjusted R-squared 7.42× 10−1

F-statistic 2.01× 101

Prob (F-statistic) 1.36× 10−8

Log-Likelihood 3.62× 102

Variable Coefficient Standard Error z-value p-value
Constant −4.38× 10−2 2.44× 10−3 −1.80× 101 2.86× 10−72

Additional Memory (x1) −4.99× 10−2 8.68× 10−3 −5.75 9.10× 10−9

Reduced MAC (x2) 9.40× 10−3 2.68× 10−3 3.52 4.32× 10−4

Master of Science Thesis D. Breen

106 Experiments

Table C-14: OLS Regression Results: GPU, Calculated Memory, Polynomial Model

Statistic Value
R-squared 8.47× 10−1

Adjusted R-squared 8.43× 10−1

F-statistic 3.41× 101

Prob (F-statistic) 3.43× 10−24

Log-Likelihood 4.08× 102

Variable Coefficient Standard Error z-value p-value
Constant −4.38× 10−2 1.90× 10−3 −2.30× 101 1.61× 10−117

x1 −9.83× 10−2 1.16× 10−2 −8.47 2.37× 10−17

x2 1.24× 10−2 4.76× 10−3 2.60 9.39× 10−3

x3 6.12× 10−2 2.70× 10−2 2.26 2.37× 10−2

x4 7.30× 10−3 1.90× 10−2 3.84× 10−1 7.01× 10−1

x5 −4.00× 10−4 4.75× 10−3 −9.20× 10−2 9.26× 10−1

D. Breen Master of Science Thesis

Bibliography

[1] D. Wright, C. Igel, G. Samuel, and R. Selvan, Efficiency is Not Enough: A Critical
Perspective of Environmentally Sustainable AI, Sep. 2023. doi: 10.48550/arXiv.230
9.02065. [Online]. Available: http://arxiv.org/abs/2309.02065.

[2] E. Strubell, A. Ganesh, and A. McCallum, Energy and Policy Considerations for Deep
Learning in NLP, Jun. 2019. doi: 10.48550/arXiv.1906.02243. [Online]. Available:
http://arxiv.org/abs/1906.02243.

[3] E. Memmel, C. Menzen, J. Schuurmans, F. Wesel, and K. Batselier, Position: Tensor
Networks are a Valuable Asset for Green AI, May 2024. [Online]. Available: http://a
rxiv.org/abs/2205.12961.

[4] S. Naumann, M. Dick, E. Kern, and T. Johann, “The GREENSOFT Model: A reference
model for green and sustainable software and its engineering,” Sustainable Computing:
Informatics and Systems, vol. 1, no. 4, pp. 294–304, Dec. 2011, issn: 2210-5379. doi:
10.1016/j.suscom.2011.06.004. [Online]. Available: https://www.sciencedirect
.com/science/article/pii/S2210537911000473.

[5] R. Desislavov, F. Martínez-Plumed, and J. Hernández-Orallo, “Trends in AI inference
energy consumption: Beyond the performance-vs-parameter laws of deep learning,”
Sustainable Computing: Informatics and Systems, vol. 38, p. 100 857, Apr. 2023, issn:
2210-5379. doi: 10.1016/j.suscom.2023.100857. [Online]. Available: https://www
.sciencedirect.com/science/article/pii/S2210537923000124.

[6] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, Green AI, Aug. 2019. doi: 10.4
8550/arXiv.1907.10597. [Online]. Available: http://arxiv.org/abs/1907.10597.

[7] N. Lenherr, R. Pawlitzek, and B. Michel, “New universal sustainability metrics to
assess edge intelligence,” Sustainable Computing: Informatics and Systems, vol. 31,
Sep. 2021, issn: 2210-5379. doi: 10.1016/j.suscom.2021.100580. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2210537921000718.

[8] R. Verdecchia, J. Sallou, and L. Cruz, “A systematic review of Green AI,” en, WIREs
Data Mining and Knowledge Discovery, vol. 13, no. 4, e1507, 2023, issn: 1942-4795.
doi: 10.1002/widm.1507. [Online]. Available: https://onlinelibrary.wiley.com
/doi/abs/10.1002/widm.1507.

Master of Science Thesis D. Breen

https://doi.org/10.48550/arXiv.2309.02065
https://doi.org/10.48550/arXiv.2309.02065
http://arxiv.org/abs/2309.02065
https://doi.org/10.48550/arXiv.1906.02243
http://arxiv.org/abs/1906.02243
http://arxiv.org/abs/2205.12961
http://arxiv.org/abs/2205.12961
https://doi.org/10.1016/j.suscom.2011.06.004
https://www.sciencedirect.com/science/article/pii/S2210537911000473
https://www.sciencedirect.com/science/article/pii/S2210537911000473
https://doi.org/10.1016/j.suscom.2023.100857
https://www.sciencedirect.com/science/article/pii/S2210537923000124
https://www.sciencedirect.com/science/article/pii/S2210537923000124
https://doi.org/10.48550/arXiv.1907.10597
https://doi.org/10.48550/arXiv.1907.10597
http://arxiv.org/abs/1907.10597
https://doi.org/10.1016/j.suscom.2021.100580
https://www.sciencedirect.com/science/article/pii/S2210537921000718
https://doi.org/10.1002/widm.1507
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1507
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1507

108 BIBLIOGRAPHY

[9] A. Zewe, Computers that power self-driving cars could be a huge driver of global carbon
emissions, Jan. 2023. [Online]. Available: https://news.mit.edu/2023/autonomous
-vehicles-carbon-emissions-0113.

[10] S. Sudhakar, V. Sze, and S. Karaman, “Data Centers on Wheels: Emissions From
Computing Onboard Autonomous Vehicles,” en, IEEE Micro, vol. 43, no. 1, pp. 29–
39, Jan. 2023, issn: 0272-1732, 1937-4143. doi: 10.1109/MM.2022.3219803. [Online].
Available: https://ieeexplore.ieee.org/document/9942310/.

[11] Y. He and L. Xiao, “Structured Pruning for Deep Convolutional Neural Networks: A
Survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 46,
no. 5, pp. 2900–2919, May 2024, issn: 1939-3539. doi: 10.1109/TPAMI.2023.3334614.
[Online]. Available: https://ieeexplore.ieee.org/abstract/document/10330640
#full-text-section.

[12] ShengJieCheng, QiuxiaZhao, XinYunZhang, N. Yadikar, and K. Ubul, “A Review of
Knowledge Distillation in Object Detection,” IEEE Access, pp. 1–1, 2023, issn: 2169-
3536. doi: 10.1109/ACCESS.2023.3288692. [Online]. Available: https://ieeexplor
e.ieee.org/abstract/document/10159388.

[13] H. Cheng, M. Zhang, and J. Q. Shi, A Survey on Deep Neural Network Pruning-
Taxonomy, Comparison, Analysis, and Recommendations, Aug. 2023. doi: 10.48550
/arXiv.2308.06767. [Online]. Available: http://arxiv.org/abs/2308.06767.

[14] S. M. Kaleem, T. Rouf, G. Habib, T. j. Saleem, and B. Lall, A Comprehensive Review
of Knowledge Distillation in Computer Vision, Apr. 2024. doi: 10.48550/arXiv.240
4.00936. [Online]. Available: http://arxiv.org/abs/2404.00936.

[15] B. Rokh, A. Azarpeyvand, and A. Khanteymoori, “A Comprehensive Survey on Model
Quantization for Deep Neural Networks in Image Classification,” ACM Transactions
on Intelligent Systems and Technology, vol. 14, no. 6, 97:1–97:50, Nov. 2023, issn:
2157-6904. doi: 10.1145/3623402. [Online]. Available: https://dl.acm.org/doi/10
.1145/3623402.

[16] M. Wang, Y. Pan, Z. Xu, X. Yang, G. Li, and A. Cichocki, Tensor Networks Meet
Neural Networks: A Survey and Future Perspectives, May 2023. [Online]. Available:
http://arxiv.org/abs/2302.09019.

[17] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, and D. P. Mandic, “Tensor
Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-
Rank Tensor Decompositions,” English, Foundations and Trends® in Machine Learn-
ing, vol. 9, no. 4-5, pp. 249–429, Dec. 2016, issn: 1935-8237, 1935-8245. doi: 10.1561
/2200000059. [Online]. Available: https://www.nowpublishers.com/article/Deta
ils/MAL-059.

[18] X. Zhang, J. Wu, and M. K. Ng, “Multilinear multitask learning by transformed tensor
singular value decomposition,” vol. 13, 2023, p. 100 479. doi: https://doi.org/10.1
016/j.mlwa.2023.100479. [Online]. Available: https://www.sciencedirect.com/s
cience/article/pii/S2666827023000324.

[19] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky, Speeding-up Con-
volutional Neural Networks Using Fine-tuned CP-Decomposition, Apr. 2015. [Online].
Available: http://arxiv.org/abs/1412.6553.

D. Breen Master of Science Thesis

https://news.mit.edu/2023/autonomous-vehicles-carbon-emissions-0113
https://news.mit.edu/2023/autonomous-vehicles-carbon-emissions-0113
https://doi.org/10.1109/MM.2022.3219803
https://ieeexplore.ieee.org/document/9942310/
https://doi.org/10.1109/TPAMI.2023.3334614
https://ieeexplore.ieee.org/abstract/document/10330640#full-text-section
https://ieeexplore.ieee.org/abstract/document/10330640#full-text-section
https://doi.org/10.1109/ACCESS.2023.3288692
https://ieeexplore.ieee.org/abstract/document/10159388
https://ieeexplore.ieee.org/abstract/document/10159388
https://doi.org/10.48550/arXiv.2308.06767
https://doi.org/10.48550/arXiv.2308.06767
http://arxiv.org/abs/2308.06767
https://doi.org/10.48550/arXiv.2404.00936
https://doi.org/10.48550/arXiv.2404.00936
http://arxiv.org/abs/2404.00936
https://doi.org/10.1145/3623402
https://dl.acm.org/doi/10.1145/3623402
https://dl.acm.org/doi/10.1145/3623402
http://arxiv.org/abs/2302.09019
https://doi.org/10.1561/2200000059
https://doi.org/10.1561/2200000059
https://www.nowpublishers.com/article/Details/MAL-059
https://www.nowpublishers.com/article/Details/MAL-059
https://doi.org/https://doi.org/10.1016/j.mlwa.2023.100479
https://doi.org/https://doi.org/10.1016/j.mlwa.2023.100479
https://www.sciencedirect.com/science/article/pii/S2666827023000324
https://www.sciencedirect.com/science/article/pii/S2666827023000324
http://arxiv.org/abs/1412.6553

BIBLIOGRAPHY 109

[20] M. Gabor and R. Zdunek, “Convolutional neural network compression via tensor-train
decomposition on permuted weight tensor with automatic rank determination,” in
Computational Science – ICCS 2022: 22nd International Conference, London, UK,
June 21–23, 2022, Proceedings, Part III, London, United Kingdom: Springer-Verlag,
2022, pp. 654–667, isbn: 978-3-031-08756-1. doi: 10.1007/978-3-031-08757-8_54.
[Online]. Available: https://doi-org.tudelft.idm.oclc.org/10.1007/978-3-031
-08757-8_54.

[21] S. N. Ajani, P. Khobragade, M. Dhone, B. Ganguly, N. Shelke, and N. Parati, “Ad-
vancements in Computing: Emerging Trends in Computational Science with Next-
Generation Computing,” en, International Journal of Intelligent Systems and Appli-
cations in Engineering, vol. 12, no. 7s, pp. 546–559, 2024, issn: 2147-6799. [Online].
Available: https://ijisae.org/index.php/IJISAE/article/view/4159.

[22] R. Desislavov, F. Martínez-Plumed, and J. Hernández-Orallo, “Compute and Energy
Consumption Trends in Deep Learning Inference,” Sustainable Computing: Informatics
and Systems, vol. 38, p. 100 857, Apr. 2023, issn: 22105379. doi: 10.1016/j.suscom
.2023.100857. [Online]. Available: http://arxiv.org/abs/2109.05472.

[23] J. Sevilla, L. Heim, A. Ho, T. Besiroglu, M. Hobbhahn, and P. Villalobos, “Compute
Trends Across Three Eras of Machine Learning,” in 2022 International Joint Confer-
ence on Neural Networks (IJCNN), Jul. 2022, pp. 1–8. doi: 10.1109/IJCNN55064.202
2.9891914. [Online]. Available: https://ieeexplore.ieee.org/document/9891914.

[24] S. Yu, H. Jiang, S. Huang, X. Peng, and A. Lu, “Compute-in-Memory Chips for
Deep Learning: Recent Trends and Prospects,” IEEE Circuits and Systems Magazine,
vol. 21, no. 3, pp. 31–56, 2021, issn: 1558-0830. doi: 10.1109/MCAS.2021.3092533.
[Online]. Available: https://ieeexplore-ieee-org.tudelft.idm.oclc.org/abstr
act/document/9512855.

[25] M. B. Giles and I. Reguly, “Trends in high-performance computing for engineering cal-
culations,” Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, vol. 372, no. 2022, p. 20 130 319, Aug. 2014. doi: 10.1098
/rsta.2013.0319. [Online]. Available: https://royalsocietypublishing.org/doi
/full/10.1098/rsta.2013.0319.

[26] A. van Wynsberghe, “Sustainable AI: AI for sustainability and the sustainability of
AI,” en, AI and Ethics, vol. 1, no. 3, pp. 213–218, Aug. 2021, issn: 2730-5961. doi:
10.1007/s43681-021-00043-6. [Online]. Available: https://doi.org/10.1007/s43
681-021-00043-6.

[27] D. Font Vivanco, J. Freire-González, R. Galvin, et al., “Rebound effect and sustain-
ability science: A review,” en, Journal of Industrial Ecology, vol. 26, no. 4, pp. 1543–
1563, 2022, issn: 1530-9290. doi: 10.1111/jiec.13295. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/jiec.13295.

[28] T. Yigitcanlar, R. Mehmood, and J. M. Corchado, “Green Artificial Intelligence: To-
wards an Efficient, Sustainable and Equitable Technology for Smart Cities and Fu-
tures,” en, Sustainability, vol. 13, no. 16, p. 8952, Jan. 2021, issn: 2071-1050. doi:
10.3390/su13168952. [Online]. Available: https://www.mdpi.com/2071-1050/13/1
6/8952.

Master of Science Thesis D. Breen

https://doi.org/10.1007/978-3-031-08757-8_54
https://doi-org.tudelft.idm.oclc.org/10.1007/978-3-031-08757-8_54
https://doi-org.tudelft.idm.oclc.org/10.1007/978-3-031-08757-8_54
https://ijisae.org/index.php/IJISAE/article/view/4159
https://doi.org/10.1016/j.suscom.2023.100857
https://doi.org/10.1016/j.suscom.2023.100857
http://arxiv.org/abs/2109.05472
https://doi.org/10.1109/IJCNN55064.2022.9891914
https://doi.org/10.1109/IJCNN55064.2022.9891914
https://ieeexplore.ieee.org/document/9891914
https://doi.org/10.1109/MCAS.2021.3092533
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/abstract/document/9512855
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/abstract/document/9512855
https://doi.org/10.1098/rsta.2013.0319
https://doi.org/10.1098/rsta.2013.0319
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2013.0319
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2013.0319
https://doi.org/10.1007/s43681-021-00043-6
https://doi.org/10.1007/s43681-021-00043-6
https://doi.org/10.1007/s43681-021-00043-6
https://doi.org/10.1111/jiec.13295
https://onlinelibrary.wiley.com/doi/abs/10.1111/jiec.13295
https://onlinelibrary.wiley.com/doi/abs/10.1111/jiec.13295
https://doi.org/10.3390/su13168952
https://www.mdpi.com/2071-1050/13/16/8952
https://www.mdpi.com/2071-1050/13/16/8952

110 BIBLIOGRAPHY

[29] J. Wang, K. Zhu, and E. Hossain, “Green Internet of Vehicles (IoV) in the 6G Era:
Toward Sustainable Vehicular Communications and Networking,” IEEE Transactions
on Green Communications and Networking, vol. 6, no. 1, pp. 391–423, Mar. 2022, issn:
2473-2400. doi: 10.1109/TGCN.2021.3127923. [Online]. Available: https://ieeexpl
ore.ieee.org/abstract/document/9614348.

[30] H. Kim, J. Ben-Othman, and L. Mokdad, “Intelligent Terrestrial and Non-Terrestrial
Vehicular Networks with Green AI and Red AI Perspectives,” en, Sensors, vol. 23,
no. 2, p. 806, Jan. 2023, issn: 1424-8220. doi: 10.3390/s23020806. [Online]. Available:
https://www.mdpi.com/1424-8220/23/2/806.

[31] H. Chen, T. Zhao, C. Li, and Y. Guo, “Green Internet of Vehicles: Architecture,
Enabling Technologies, and Applications,” IEEE Access, vol. 7, pp. 179 185–179 198,
2019, issn: 2169-3536. doi: 10 . 1109 / ACCESS . 2019 . 2958175. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8926352.

[32] P. Lv, W. Xu, J. Nie, et al., “Edge Computing Task Offloading for Environmental
Perception of Autonomous Vehicles in 6G Networks,” IEEE Transactions on Network
Science and Engineering, vol. 10, no. 3, pp. 1228–1245, May 2023, issn: 2327-4697.
doi: 10.1109/TNSE.2022.3211193. [Online]. Available: https://ieeexplore-ieee-
org.tudelft.idm.oclc.org/abstract/document/9906430.

[33] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge Computing for Autonomous
Driving: Opportunities and Challenges,” Proceedings of the IEEE, vol. 107, no. 8,
pp. 1697–1716, Aug. 2019, issn: 1558-2256. doi: 10.1109/JPROC.2019.2915983.
[Online]. Available: https://ieeexplore-ieee-org.tudelft.idm.oclc.org/abstr
act/document/8744265.

[34] D. Katare, D. Perino, J. Nurmi, M. Warnier, M. Janssen, and A. Y. Ding, “A Survey
on Approximate Edge AI for Energy Efficient Autonomous Driving Services,” IEEE
Communications Surveys & Tutorials, vol. 25, no. 4, pp. 2714–2754, 2023, issn: 1553-
877X. doi: 10.1109/COMST.2023.3302474. [Online]. Available: https://ieeexplore
-ieee-org.tudelft.idm.oclc.org/abstract/document/10213996.

[35] S. Salehi and A. Schmeink, “Data-Centric Green Artificial Intelligence: A Survey,”
IEEE Transactions on Artificial Intelligence, vol. 5, no. 5, pp. 1973–1989, May 2024,
issn: 2691-4581. doi: 10.1109/TAI.2023.3315272. [Online]. Available: https://i
eeexplore.ieee.org/abstract/document/10251541?casa_token=w3cKnPt9w54
AAAAA:uZtiNHoWIgfqQ9kE_rHmVO9ecbjWpiJwnA3tvhWrtxMrwg78nV41KN0DP98aeWUhf
TBwElXtKA.

[36] R. Verdecchia, L. Cruz, J. Sallou, M. Lin, J. Wickenden, and E. Hotellier, “Data-
Centric Green AI An Exploratory Empirical Study,” in 2022 International Conference
on ICT for Sustainability (ICT4S), Jun. 2022, pp. 35–45. doi: 10.1109/ICT4S55073
.2022.00015. [Online]. Available: https://ieeexplore.ieee.org/abstract/docum
ent/9830097.

[37] P. Henderson, J. Hu, J. Romoff, E. Brunskill, D. Jurafsky, and J. Pineau, Towards the
Systematic Reporting of the Energy and Carbon Footprints of Machine Learning, Nov.
2022. doi: 10.48550/arXiv.2002.05651. [Online]. Available: http://arxiv.org/ab
s/2002.05651.

D. Breen Master of Science Thesis

https://doi.org/10.1109/TGCN.2021.3127923
https://ieeexplore.ieee.org/abstract/document/9614348
https://ieeexplore.ieee.org/abstract/document/9614348
https://doi.org/10.3390/s23020806
https://www.mdpi.com/1424-8220/23/2/806
https://doi.org/10.1109/ACCESS.2019.2958175
https://ieeexplore.ieee.org/abstract/document/8926352
https://doi.org/10.1109/TNSE.2022.3211193
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/abstract/document/9906430
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/abstract/document/9906430
https://doi.org/10.1109/JPROC.2019.2915983
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/abstract/document/8744265
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/abstract/document/8744265
https://doi.org/10.1109/COMST.2023.3302474
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/abstract/document/10213996
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/abstract/document/10213996
https://doi.org/10.1109/TAI.2023.3315272
https://ieeexplore.ieee.org/abstract/document/10251541?casa_token=w3cKnPt9w54AAAAA:uZtiNHoWIgfqQ9kE_rHmVO9ecbjWpiJwnA3tvhWrtxMrwg78nV41KN0DP98aeWUhfTBwElXtKA
https://ieeexplore.ieee.org/abstract/document/10251541?casa_token=w3cKnPt9w54AAAAA:uZtiNHoWIgfqQ9kE_rHmVO9ecbjWpiJwnA3tvhWrtxMrwg78nV41KN0DP98aeWUhfTBwElXtKA
https://ieeexplore.ieee.org/abstract/document/10251541?casa_token=w3cKnPt9w54AAAAA:uZtiNHoWIgfqQ9kE_rHmVO9ecbjWpiJwnA3tvhWrtxMrwg78nV41KN0DP98aeWUhfTBwElXtKA
https://ieeexplore.ieee.org/abstract/document/10251541?casa_token=w3cKnPt9w54AAAAA:uZtiNHoWIgfqQ9kE_rHmVO9ecbjWpiJwnA3tvhWrtxMrwg78nV41KN0DP98aeWUhfTBwElXtKA
https://doi.org/10.1109/ICT4S55073.2022.00015
https://doi.org/10.1109/ICT4S55073.2022.00015
https://ieeexplore.ieee.org/abstract/document/9830097
https://ieeexplore.ieee.org/abstract/document/9830097
https://doi.org/10.48550/arXiv.2002.05651
http://arxiv.org/abs/2002.05651
http://arxiv.org/abs/2002.05651

BIBLIOGRAPHY 111

[38] V. Akhlaghi, A. Yazdanbakhsh, K. Samadi, R. K. Gupta, and H. Esmaeilzadeh, “Sna-
PEA: Predictive Early Activation for Reducing Computation in Deep Convolutional
Neural Networks,” in 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA), Jun. 2018, pp. 662–673. doi: 10.1109/ISCA.2018
.00061. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8
416863?casa_token=hh3qCAczAQwAAAAA:_96YpO4FNMNZf9lwNyY8Dlslz9dWEA36ewt
IcN9BgKlD2SvuBwEdflUaf67gCpggwQvUDcQ3EA.

[39] M. Tan and Q. V. Le, EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks, Sep. 2020. doi: 10.48550/arXiv.1905.11946. [Online]. Available: http:
//arxiv.org/abs/1905.11946.

[40] A. G. Howard, M. Zhu, B. Chen, et al., MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications, Apr. 2017. doi: 10.48550/arXiv.1704.048
61. [Online]. Available: http://arxiv.org/abs/1704.04861.

[41] J. Xu, W. Zhou, Z. Fu, H. Zhou, and L. Li, A Survey on Green Deep Learning, Nov.
2021. doi: 10.48550/arXiv.2111.05193. [Online]. Available: http://arxiv.org/ab
s/2111.05193.

[42] A. Asperti, D. Evangelista, and M. Marzolla, Dissecting FLOPs along input dimensions
for GreenAI cost estimations, Jul. 2021. doi: 10.48550/arXiv.2107.11949. [Online].
Available: http://arxiv.org/abs/2107.11949.

[43] S. Hassantabar, Z. Wang, and N. K. Jha, “SCANN: Synthesis of Compact and Accu-
rate Neural Networks,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 41, no. 9, pp. 3012–3025, Sep. 2022, issn: 1937-4151. doi:
10.1109/TCAD.2021.3116470. [Online]. Available: https://ieeexplore.ieee.org/a
bstract/document/9552199?casa_token=89Fs3zNcv8AAAAAA:9Sl9JthMgEYpLUII0f
H3rItgJ0K4ycc0XR9qnn8azoWSEtYpGV1BUsVrVS-bYlcelsdg_MbKlw.

[44] V. Mehlin, S. Schacht, and C. Lanquillon, Towards energy-efficient Deep Learning: An
overview of energy-efficient approaches along the Deep Learning Lifecycle, Feb. 2023.
doi: 10.48550/arXiv.2303.01980. [Online]. Available: http://arxiv.org/abs/230
3.01980.

[45] G. Yeung, D. Borowiec, A. Friday, R. Harper, and P. Garraghan, “Towards GPU
utilization prediction for cloud deep learning,” in Proceedings of the 12th USENIX
Conference on Hot Topics in Cloud Computing, ser. HotCloud’20, USA: USENIX As-
sociation, Jul. 2020, p. 6.

[46] J. J. K. Park, Y. Park, and S. Mahlke, “Dynamic Resource Management for Efficient
Utilization of Multitasking GPUs,” in Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, ser. ASPLOS ’17, New York, NY, USA: Association for Computing Machinery,
Apr. 2017, pp. 527–540, isbn: 978-1-4503-4465-4. doi: 10.1145/3037697.3037707.
[Online]. Available: https://dl.acm.org/doi/10.1145/3037697.3037707.

[47] X. Tang and Z. Fu, “CPU–GPU Utilization Aware Energy-Efficient Scheduling Algo-
rithm on Heterogeneous Computing Systems,” IEEE Access, vol. 8, pp. 58 948–58 958,
2020, issn: 2169-3536. doi: 10 . 1109 / ACCESS . 2020 . 2982956. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9045988.

Master of Science Thesis D. Breen

https://doi.org/10.1109/ISCA.2018.00061
https://doi.org/10.1109/ISCA.2018.00061
https://ieeexplore.ieee.org/abstract/document/8416863?casa_token=hh3qCAczAQwAAAAA:_96YpO4FNMNZf9lwNyY8Dlslz9dWEA36ewtIcN9BgKlD2SvuBwEdflUaf67gCpggwQvUDcQ3EA
https://ieeexplore.ieee.org/abstract/document/8416863?casa_token=hh3qCAczAQwAAAAA:_96YpO4FNMNZf9lwNyY8Dlslz9dWEA36ewtIcN9BgKlD2SvuBwEdflUaf67gCpggwQvUDcQ3EA
https://ieeexplore.ieee.org/abstract/document/8416863?casa_token=hh3qCAczAQwAAAAA:_96YpO4FNMNZf9lwNyY8Dlslz9dWEA36ewtIcN9BgKlD2SvuBwEdflUaf67gCpggwQvUDcQ3EA
https://doi.org/10.48550/arXiv.1905.11946
http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.48550/arXiv.1704.04861
http://arxiv.org/abs/1704.04861
https://doi.org/10.48550/arXiv.2111.05193
http://arxiv.org/abs/2111.05193
http://arxiv.org/abs/2111.05193
https://doi.org/10.48550/arXiv.2107.11949
http://arxiv.org/abs/2107.11949
https://doi.org/10.1109/TCAD.2021.3116470
https://ieeexplore.ieee.org/abstract/document/9552199?casa_token=89Fs3zNcv8AAAAAA:9Sl9JthMgEYpLUII0fH3rItgJ0K4ycc0XR9qnn8azoWSEtYpGV1BUsVrVS-bYlcelsdg_MbKlw
https://ieeexplore.ieee.org/abstract/document/9552199?casa_token=89Fs3zNcv8AAAAAA:9Sl9JthMgEYpLUII0fH3rItgJ0K4ycc0XR9qnn8azoWSEtYpGV1BUsVrVS-bYlcelsdg_MbKlw
https://ieeexplore.ieee.org/abstract/document/9552199?casa_token=89Fs3zNcv8AAAAAA:9Sl9JthMgEYpLUII0fH3rItgJ0K4ycc0XR9qnn8azoWSEtYpGV1BUsVrVS-bYlcelsdg_MbKlw
https://doi.org/10.48550/arXiv.2303.01980
http://arxiv.org/abs/2303.01980
http://arxiv.org/abs/2303.01980
https://doi.org/10.1145/3037697.3037707
https://dl.acm.org/doi/10.1145/3037697.3037707
https://doi.org/10.1109/ACCESS.2020.2982956
https://ieeexplore.ieee.org/abstract/document/9045988

112 BIBLIOGRAPHY

[48] P. Krawczuk, G. Papadimitriou, R. Tanaka, et al., “A Performance Characterization
of Scientific Machine Learning Workflows,” in 2021 IEEE Workshop on Workflows in
Support of Large-Scale Science (WORKS), Nov. 2021, pp. 58–65. doi: 10.1109/WORKS5
4523.2021.00013. [Online]. Available: https://ieeexplore.ieee.org/abstract/d
ocument/9652609.

[49] S. Jiang and S.-G. Wang, “Fast Training Methods and Their Experiments for Deep
Learning CNN Models,” in 2021 40th Chinese Control Conference (CCC), Jul. 2021,
pp. 8253–8260. doi: 10.23919/CCC52363.2021.9549817. [Online]. Available: https:
//ieeexplore-ieee-org.tudelft.idm.oclc.org/abstract/document/9549817.

[50] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, Learning Efficient Convolu-
tional Networks through Network Slimming, Aug. 2017. doi: 10.48550/arXiv.1708.0
6519. [Online]. Available: http://arxiv.org/abs/1708.06519.

[51] Z. Liu, T. Zheng, G. Xu, Z. Yang, H. Liu, and D. Cai, Training-Time-Friendly Net-
work for Real-Time Object Detection, Nov. 2019. doi: 10.48550/arXiv.1909.00700.
[Online]. Available: http://arxiv.org/abs/1909.00700.

[52] A. Kruglov, G. Succi, and G. Dlamini, “System Energy Consumption Measurement,”
en, in Developing Sustainable and Energy-Efficient Software Systems, ser. Springer-
Briefs in Computer Science, A. Kruglov and G. Succi, Eds., Cham: Springer Interna-
tional Publishing, 2023, pp. 27–38, isbn: 978-3-031-11658-2. doi: 10.1007/978-3-031
-11658-2_3. [Online]. Available: https://doi.org/10.1007/978-3-031-11658-2_3.

[53] J. Getzner, B. Charpentier, and S. Günnemann, Accuracy is not the only Metric that
matters: Estimating the Energy Consumption of Deep Learning Models, Apr. 2023.
[Online]. Available: http://arxiv.org/abs/2304.00897.

[54] E. García-Martín, C. F. Rodrigues, G. Riley, and H. Grahn, “Estimation of energy
consumption in machine learning,” Journal of Parallel and Distributed Computing,
vol. 134, pp. 75–88, Dec. 2019, issn: 0743-7315. doi: 10.1016/j.jpdc.2019.07.007.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S074
3731518308773.

[55] A. S. Luccioni and A. Hernandez-Garcia, Counting Carbon: A Survey of Factors In-
fluencing the Emissions of Machine Learning, Feb. 2023. doi: 10.48550/arXiv.2302
.08476. [Online]. Available: http://arxiv.org/abs/2302.08476.

[56] L. B. Heguerte, A. Bugeau, and L. Lannelongue, “How to estimate carbon footprint
when training deep learning models? A guide and review,” Environmental Research
Communications, Sep. 2023, issn: 2515-7620. doi: 10 . 1088 / 2515 - 7620 / acf81b.
[Online]. Available: http://arxiv.org/abs/2306.08323.

[57] U. Gupta, Y. G. Kim, S. Lee, et al., “Chasing Carbon: The Elusive Environmental
Footprint of Computing,” IEEE Micro, vol. 42, no. 4, pp. 37–47, Jul. 2022, issn: 0272-
1732. doi: 10.1109/MM.2022.3163226. [Online]. Available: https://doi.org/10.11
09/MM.2022.3163226.

[58] A. Lacoste, A. Luccioni, V. Schmidt, and T. Dandres, Quantifying the Carbon Emis-
sions of Machine Learning, Nov. 2019. doi: 10.48550/arXiv.1910.09700. [Online].
Available: http://arxiv.org/abs/1910.09700.

D. Breen Master of Science Thesis

https://doi.org/10.1109/WORKS54523.2021.00013
https://doi.org/10.1109/WORKS54523.2021.00013
https://ieeexplore.ieee.org/abstract/document/9652609
https://ieeexplore.ieee.org/abstract/document/9652609
https://doi.org/10.23919/CCC52363.2021.9549817
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/abstract/document/9549817
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/abstract/document/9549817
https://doi.org/10.48550/arXiv.1708.06519
https://doi.org/10.48550/arXiv.1708.06519
http://arxiv.org/abs/1708.06519
https://doi.org/10.48550/arXiv.1909.00700
http://arxiv.org/abs/1909.00700
https://doi.org/10.1007/978-3-031-11658-2_3
https://doi.org/10.1007/978-3-031-11658-2_3
https://doi.org/10.1007/978-3-031-11658-2_3
http://arxiv.org/abs/2304.00897
https://doi.org/10.1016/j.jpdc.2019.07.007
https://www.sciencedirect.com/science/article/pii/S0743731518308773
https://www.sciencedirect.com/science/article/pii/S0743731518308773
https://doi.org/10.48550/arXiv.2302.08476
https://doi.org/10.48550/arXiv.2302.08476
http://arxiv.org/abs/2302.08476
https://doi.org/10.1088/2515-7620/acf81b
http://arxiv.org/abs/2306.08323
https://doi.org/10.1109/MM.2022.3163226
https://doi.org/10.1109/MM.2022.3163226
https://doi.org/10.1109/MM.2022.3163226
https://doi.org/10.48550/arXiv.1910.09700
http://arxiv.org/abs/1910.09700

BIBLIOGRAPHY 113

[59] J. Lee, L. Mukhanov, A. S. Molahosseini, et al., “Resource-Efficient Deep Learning: A
Survey on Model-, Arithmetic-, and Implementation-Level Techniques,” ACM Com-
puting Surveys, vol. 55, no. 13s, pp. 1–36, Dec. 2023, issn: 0360-0300, 1557-7341. doi:
10.1145/3587095. [Online]. Available: http://arxiv.org/abs/2112.15131.

[60] B. Li, X. Jiang, D. Bai, et al., Full-Cycle Energy Consumption Benchmark for Low-
Carbon Computer Vision, Oct. 2021. doi: 10.48550/arXiv.2108.13465. [Online].
Available: http://arxiv.org/abs/2108.13465.

[61] S. Mittal and J. S. Vetter, “A Survey of CPU-GPU Heterogeneous Computing Tech-
niques,” ACM Computing Surveys, vol. 47, no. 4, 69:1–69:35, Jul. 2015, issn: 0360-0300.
doi: 10.1145/2788396. [Online]. Available: https://dl.acm.org/doi/10.1145/278
8396.

[62] S. Han, X. Liu, H. Mao, et al., EIE: Efficient Inference Engine on Compressed Deep
Neural Network, May 2016. doi: 10.48550/arXiv.1602.01528. [Online]. Available:
http://arxiv.org/abs/1602.01528.

[63] K. M. A. Hasan and S. Chakraborty, “GPU Accelerated Tensor Computation of
Hadamard Product for Machine Learning Applications,” in 2021 International Con-
ference on Information and Communication Technology for Sustainable Development
(ICICT4SD), Feb. 2021, pp. 1–5. doi: 10.1109/ICICT4SD50815.2021.9396980. [On-
line]. Available: https://ieeexplore.ieee.org/document/9396980.

[64] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips, “GPU
Computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879–899, May 2008, issn:
1558-2256. doi: 10.1109/JPROC.2008.917757. [Online]. Available: https://ieeexpl
ore.ieee.org/abstract/document/4490127.

[65] E. Saleh and C. Shastry, “General Purpose Computing on Graphics Processing Units:
From Fixed-Function Pipelines to Programmable Cores,” in 2022 4th International
Conference on Advances in Computing, Communication Control and Networking, Dec.
2022, pp. 2064–2075. doi: 10.1109/ICAC3N56670.2022.10074048. [Online]. Available:
https://ieeexplore.ieee.org/document/10074048.

[66] S. Shariar and K. M. Azharul Hasan, “GPU Accelerated Indexing for High Order
Tensors in Google Colab,” in 2020 IEEE Region 10 Symposium (TENSYMP), Jun.
2020, pp. 686–689. doi: 10.1109/TENSYMP50017.2020.9230789. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9230789.

[67] J. You, J.-W. Chung, and M. Chowdhury, “Zeus: Understanding and Optimizing
{GPU} Energy Consumption of {DNN} Training,” en, 2023, pp. 119–139, isbn: 978-
1-939133-33-5. [Online]. Available: https://www.usenix.org/conference/nsdi23/p
resentation/you.

[68] R. Schoonhoven, B. Veenboer, B. van Werkhoven, and K. J. Batenburg, Going green:
Optimizing GPUs for energy efficiency through model-steered auto-tuning, Nov. 2022.
doi: 10.48550/arXiv.2211.07260. [Online]. Available: http://arxiv.org/abs/221
1.07260.

Master of Science Thesis D. Breen

https://doi.org/10.1145/3587095
http://arxiv.org/abs/2112.15131
https://doi.org/10.48550/arXiv.2108.13465
http://arxiv.org/abs/2108.13465
https://doi.org/10.1145/2788396
https://dl.acm.org/doi/10.1145/2788396
https://dl.acm.org/doi/10.1145/2788396
https://doi.org/10.48550/arXiv.1602.01528
http://arxiv.org/abs/1602.01528
https://doi.org/10.1109/ICICT4SD50815.2021.9396980
https://ieeexplore.ieee.org/document/9396980
https://doi.org/10.1109/JPROC.2008.917757
https://ieeexplore.ieee.org/abstract/document/4490127
https://ieeexplore.ieee.org/abstract/document/4490127
https://doi.org/10.1109/ICAC3N56670.2022.10074048
https://ieeexplore.ieee.org/document/10074048
https://doi.org/10.1109/TENSYMP50017.2020.9230789
https://ieeexplore.ieee.org/abstract/document/9230789
https://www.usenix.org/conference/nsdi23/presentation/you
https://www.usenix.org/conference/nsdi23/presentation/you
https://doi.org/10.48550/arXiv.2211.07260
http://arxiv.org/abs/2211.07260
http://arxiv.org/abs/2211.07260

114 BIBLIOGRAPHY

[69] D. I. Lyakh, T. Nguyen, D. Claudino, E. Dumitrescu, and A. J. McCaskey, “ExaTN:
Scalable GPU-Accelerated High-Performance Processing of General Tensor Networks
at Exascale,” Frontiers in Applied Mathematics and Statistics, vol. 8, 2022, issn: 2297-
4687. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fams
.2022.838601.

[70] C. S. Hwang, S. K. Kim, and S. W. Lee, “Mass-Production Memories (DRAM and
Flash),” en, in Atomic Layer Deposition for Semiconductors, C. S. Hwang, Ed., Boston,
MA: Springer US, 2014, pp. 73–122, isbn: 978-1-4614-8054-9. doi: 10.1007/978-1-4
614-8054-9_4. [Online]. Available: https://doi.org/10.1007/978-1-4614-8054-9
_4.

[71] D. Schmidt and N. Wehn, “DRAM power management and energy consumption: A
critical assessment,” in Proceedings of the 22nd Annual Symposium on Integrated Cir-
cuits and System Design: Chip on the Dunes, ser. SBCCI ’09, New York, NY, USA:
Association for Computing Machinery, Aug. 2009, pp. 1–5, isbn: 978-1-60558-705-9.
doi: 10.1145/1601896.1601937. [Online]. Available: https://dl.acm.org/doi/10
.1145/1601896.1601937.

[72] A. Nekooei and S. Safari, “Compression of Deep Neural Networks based on quantized
tensor decomposition to implement on reconfigurable hardware platforms,” Neural
Networks, vol. 150, pp. 350–363, Jun. 2022, issn: 0893-6080. doi: 10.1016/j.neunet
.2022.02.024. [Online]. Available: https://www.sciencedirect.com/science/art
icle/pii/S089360802200065X.

[73] B. Jang, D. Schaa, P. Mistry, and D. Kaeli, “Exploiting Memory Access Patterns to
Improve Memory Performance in Data-Parallel Architectures,” IEEE Transactions on
Parallel and Distributed Systems, vol. 22, no. 1, pp. 105–118, Jan. 2011, issn: 1558-
2183. doi: 10.1109/TPDS.2010.107. [Online]. Available: https://ieeexplore.ieee
.org/document/5473222.

[74] T. Allen and R. Ge, “Characterizing Power and Performance of GPU Memory Access,”
in 2016 4th International Workshop on Energy Efficient Supercomputing (E2SC), Nov.
2016, pp. 46–53. doi: 10.1109/E2SC.2016.012. [Online]. Available: https://ieeexp
lore.ieee.org/document/7830508.

[75] X. Mei, K. Zhao, C. Liu, and X. Chu, “Benchmarking the Memory Hierarchy of Modern
GPUs,” en, in Network and Parallel Computing, C.-H. Hsu, X. Shi, and V. Salapura,
Eds., Berlin, Heidelberg: Springer, 2014, pp. 144–156, isbn: 978-3-662-44917-2. doi:
10.1007/978-3-662-44917-2_13.

[76] T. Y. Phuong, D.-Y. Lee, and J.-G. Lee, “Impacts of optimization strategies on perfor-
mance, power/energy consumption of a GPU based parallel reduction,” en, Journal of
Central South University, vol. 24, no. 11, pp. 2624–2637, Nov. 2017, issn: 2227-5223.
doi: 10.1007/s11771-017-3676-5. [Online]. Available: https://doi.org/10.1007
/s11771-017-3676-5.

[77] J. Lucas and B. Juurlink, “MEMPower: Data-Aware GPU Memory Power Model,” en,
in Architecture of Computing Systems – ARCS 2019, M. Schoeberl, C. Hochberger,
S. Uhrig, J. Brehm, and T. Pionteck, Eds., Cham: Springer International Publishing,
2019, pp. 195–207, isbn: 978-3-030-18656-2. doi: 10.1007/978-3-030-18656-2_15.

D. Breen Master of Science Thesis

https://www.frontiersin.org/articles/10.3389/fams.2022.838601
https://www.frontiersin.org/articles/10.3389/fams.2022.838601
https://doi.org/10.1007/978-1-4614-8054-9_4
https://doi.org/10.1007/978-1-4614-8054-9_4
https://doi.org/10.1007/978-1-4614-8054-9_4
https://doi.org/10.1007/978-1-4614-8054-9_4
https://doi.org/10.1145/1601896.1601937
https://dl.acm.org/doi/10.1145/1601896.1601937
https://dl.acm.org/doi/10.1145/1601896.1601937
https://doi.org/10.1016/j.neunet.2022.02.024
https://doi.org/10.1016/j.neunet.2022.02.024
https://www.sciencedirect.com/science/article/pii/S089360802200065X
https://www.sciencedirect.com/science/article/pii/S089360802200065X
https://doi.org/10.1109/TPDS.2010.107
https://ieeexplore.ieee.org/document/5473222
https://ieeexplore.ieee.org/document/5473222
https://doi.org/10.1109/E2SC.2016.012
https://ieeexplore.ieee.org/document/7830508
https://ieeexplore.ieee.org/document/7830508
https://doi.org/10.1007/978-3-662-44917-2_13
https://doi.org/10.1007/s11771-017-3676-5
https://doi.org/10.1007/s11771-017-3676-5
https://doi.org/10.1007/s11771-017-3676-5
https://doi.org/10.1007/978-3-030-18656-2_15

BIBLIOGRAPHY 115

[78] D. Patterson, J. Gonzalez, Q. Le, et al., Carbon Emissions and Large Neural Network
Training, Apr. 2021. doi: 10.48550/arXiv.2104.10350. [Online]. Available: http:
//arxiv.org/abs/2104.10350.

[79] A. Babuta, B. Gupta, A. Kumar, and S. Ganguli, “Power and energy measurement
devices: A review, comparison, discussion, and the future of research,” Measurement,
vol. 172, p. 108 961, Feb. 2021, issn: 0263-2241. doi: 10.1016/j.measurement.2020
.108961. [Online]. Available: https://www.sciencedirect.com/science/article
/pii/S0263224120314354.

[80] K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, and Z. Ou, “RAPL in Action:
Experiences in Using RAPL for Power Measurements,” ACM Transactions on Modeling
and Performance Evaluation of Computing Systems, vol. 3, no. 2, 9:1–9:26, 2018, issn:
2376-3639. doi: 10.1145/3177754. [Online]. Available: https://dl.acm.org/doi/10
.1145/3177754.

[81] M. Jay, V. Ostapenco, L. Lefevre, D. Trystram, A.-C. Orgerie, and B. Fichel, “An
experimental comparison of software-based power meters: Focus on CPU and GPU,”
in 2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet
Computing (CCGrid), May 2023, pp. 106–118. doi: 10.1109/CCGrid57682.2023.00
020. [Online]. Available: https://ieeexplore.ieee.org/document/10171575.

[82] R. A. Bridges, N. Imam, and T. M. Mintz, “Understanding GPU Power: A Survey of
Profiling, Modeling, and Simulation Methods,” ACM Computing Surveys, vol. 49, no. 3,
41:1–41:27, Sep. 2016, issn: 0360-0300. doi: 10.1145/2962131. [Online]. Available: h
ttps://dl.acm.org/doi/10.1145/2962131.

[83] NVIDIA Management Library (NVML). [Online]. Available: https://developer.nv
idia.com/nvidia-management-library-nvml.

[84] L. Lannelongue, J. Grealey, and M. Inouye, Green Algorithms: Quantifying the carbon
footprint of computation, Dec. 2020. doi: 10.48550/arXiv.2007.07610. [Online].
Available: http://arxiv.org/abs/2007.07610.

[85] Mlco, GitHub - mlco2/impact: ML has an impact on the climate. But not all models
are born equal. Compute your model’s emissions with our calculator and add the results
to your paper with our generated latex template. [Online]. Available: https://github
.com/mlco2/impact.

[86] Mlco, GitHub - mlco2/codecarbon: Track emissions from Compute and recommend
ways to reduce their impact on the environment. [Online]. Available: https://github
.com/mlco2/codecarbon.

[87] A. Song, D. Chen, and Z. Zong, “Unveiling the Truth: An Analysis of the Energy and
Carbon Footprint of Training an OPT Model using DeepSpeed on the H100 GPU,” in
Proceedings of the 14th International Green and Sustainable Computing Conference,
ser. IGSC ’23, New York, NY, USA: Association for Computing Machinery, 2024,
pp. 36–38. doi: 10.1145/3634769.3634806. [Online]. Available: https://dl.acm.or
g/doi/10.1145/3634769.3634806.

[88] A. S. Luccioni, S. Viguier, and A.-L. Ligozat, Estimating the Carbon Footprint of
BLOOM, a 176B Parameter Language Model, Nov. 2022. doi: 10.48550/arXiv.221
1.02001. [Online]. Available: http://arxiv.org/abs/2211.02001.

Master of Science Thesis D. Breen

https://doi.org/10.48550/arXiv.2104.10350
http://arxiv.org/abs/2104.10350
http://arxiv.org/abs/2104.10350
https://doi.org/10.1016/j.measurement.2020.108961
https://doi.org/10.1016/j.measurement.2020.108961
https://www.sciencedirect.com/science/article/pii/S0263224120314354
https://www.sciencedirect.com/science/article/pii/S0263224120314354
https://doi.org/10.1145/3177754
https://dl.acm.org/doi/10.1145/3177754
https://dl.acm.org/doi/10.1145/3177754
https://doi.org/10.1109/CCGrid57682.2023.00020
https://doi.org/10.1109/CCGrid57682.2023.00020
https://ieeexplore.ieee.org/document/10171575
https://doi.org/10.1145/2962131
https://dl.acm.org/doi/10.1145/2962131
https://dl.acm.org/doi/10.1145/2962131
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://doi.org/10.48550/arXiv.2007.07610
http://arxiv.org/abs/2007.07610
https://github.com/mlco2/impact
https://github.com/mlco2/impact
https://github.com/mlco2/codecarbon
https://github.com/mlco2/codecarbon
https://doi.org/10.1145/3634769.3634806
https://dl.acm.org/doi/10.1145/3634769.3634806
https://dl.acm.org/doi/10.1145/3634769.3634806
https://doi.org/10.48550/arXiv.2211.02001
https://doi.org/10.48550/arXiv.2211.02001
http://arxiv.org/abs/2211.02001

116 BIBLIOGRAPHY

[89] F. S. Martínez, R. Parada, and J. Casas-Roma, “CO2 impact on convolutional net-
work model training for autonomous driving through behavioral cloning,” Advanced
Engineering Informatics, vol. 56, p. 101 968, Apr. 2023, issn: 1474-0346. doi: 10.101
6/j.aei.2023.101968. [Online]. Available: https://www.sciencedirect.com/scie
nce/article/pii/S1474034623000964.

[90] V. Liu and Y. Yin, Green AI: Exploring Carbon Footprints, Mitigation Strategies, and
Trade Offs in Large Language Model Training, Apr. 2024. doi: 10.48550/arXiv.240
4.01157. [Online]. Available: http://arxiv.org/abs/2404.01157.

[91] K. Lottick, S. Susai, S. A. Friedler, and J. P. Wilson, Energy Usage Reports: Environ-
mental awareness as part of algorithmic accountability, Dec. 2019. doi: 10.48550/ar
Xiv.1911.08354. [Online]. Available: http://arxiv.org/abs/1911.08354.

[92] L. F. W. Anthony, B. Kanding, and R. Selvan, Carbontracker: Tracking and Predicting
the Carbon Footprint of Training Deep Learning Models, Jul. 2020. doi: 10.48550/ar
Xiv.2007.03051. [Online]. Available: http://arxiv.org/abs/2007.03051.

[93] R. Selvan, N. Bhagwat, L. F. Wolff Anthony, B. Kanding, and E. B. Dam, “Carbon
Footprint of Selecting and Training Deep Learning Models for Medical Image Analy-
sis,” en, in Medical Image Computing and Computer Assisted Intervention – MICCAI
2022, L. Wang, Q. Dou, P. T. Fletcher, S. Speidel, and S. Li, Eds., Cham: Springer
Nature Switzerland, 2022, pp. 506–516, isbn: 978-3-031-16443-9. doi: 10.1007/978-
3-031-16443-9_49.

[94] B. Meulemeester and D. Martens, “How sustainable is “common” data science in terms
of power consumption?” Sustainable Computing: Informatics and Systems, vol. 38,
p. 100 864, Apr. 2023, issn: 2210-5379. doi: 10.1016/j.suscom.2023.100864. [On-
line]. Available: https://www.sciencedirect.com/science/article/pii/S221053
7923000197.

[95] D. Geißler, B. Zhou, M. Liu, S. Suh, and P. Lukowicz, The Power of Training: How
Different Neural Network Setups Influence the Energy Demand, May 2024. doi: 10.4
8550/arXiv.2401.01851. [Online]. Available: http://arxiv.org/abs/2401.01851.

[96] F. Valeye, “Tracarbon — Track your device’s carbon footprint - Florian Valeye -
Medium,” Blogpost, Jan. 2023. [Online]. Available: https://medium.com/@floria
n.valeye/tracarbon-track-your-devices-carbon-footprint-fb051fcc9009.

[97] S. A. Budennyy, V. D. Lazarev, N. N. Zakharenko, et al., “eco2AI: Carbon Emissions
Tracking of Machine Learning Models as the First Step Towards Sustainable AI,” en,
Doklady Mathematics, vol. 106, no. 1, S118–S128, Dec. 2022, issn: 1531-8362. doi:
10.1134/S1064562422060230. [Online]. Available: https://doi.org/10.1134/S106
4562422060230.

[98] D. A. Maevsky, E. J. Maevskaya, and E. D. Stetsuyk, “Evaluating the RAM Energy
Consumption at the Stage of Software Development,” en, in Green IT Engineering:
Concepts, Models, Complex Systems Architectures, ser. Studies in Systems, Decision
and Control, V. Kharchenko, Y. Kondratenko, and J. Kacprzyk, Eds., Cham: Springer
International Publishing, 2017, pp. 101–121, isbn: 978-3-319-44162-7. doi: 10.1007/9
78-3-319-44162-7_6. [Online]. Available: https://doi.org/10.1007/978-3-319-4
4162-7_6.

D. Breen Master of Science Thesis

https://doi.org/10.1016/j.aei.2023.101968
https://doi.org/10.1016/j.aei.2023.101968
https://www.sciencedirect.com/science/article/pii/S1474034623000964
https://www.sciencedirect.com/science/article/pii/S1474034623000964
https://doi.org/10.48550/arXiv.2404.01157
https://doi.org/10.48550/arXiv.2404.01157
http://arxiv.org/abs/2404.01157
https://doi.org/10.48550/arXiv.1911.08354
https://doi.org/10.48550/arXiv.1911.08354
http://arxiv.org/abs/1911.08354
https://doi.org/10.48550/arXiv.2007.03051
https://doi.org/10.48550/arXiv.2007.03051
http://arxiv.org/abs/2007.03051
https://doi.org/10.1007/978-3-031-16443-9_49
https://doi.org/10.1007/978-3-031-16443-9_49
https://doi.org/10.1016/j.suscom.2023.100864
https://www.sciencedirect.com/science/article/pii/S2210537923000197
https://www.sciencedirect.com/science/article/pii/S2210537923000197
https://doi.org/10.48550/arXiv.2401.01851
https://doi.org/10.48550/arXiv.2401.01851
http://arxiv.org/abs/2401.01851
https://medium.com/@florian.valeye/tracarbon-track-your-devices-carbon-footprint-fb051fcc9009
https://medium.com/@florian.valeye/tracarbon-track-your-devices-carbon-footprint-fb051fcc9009
https://doi.org/10.1134/S1064562422060230
https://doi.org/10.1134/S1064562422060230
https://doi.org/10.1134/S1064562422060230
https://doi.org/10.1007/978-3-319-44162-7_6
https://doi.org/10.1007/978-3-319-44162-7_6
https://doi.org/10.1007/978-3-319-44162-7_6
https://doi.org/10.1007/978-3-319-44162-7_6

BIBLIOGRAPHY 117

[99] S. Pletenev, V. Chekalina, D. Moskovskiy, M. Seleznev, S. Zagoruyko, and A. Panchenko,
“A Computational Study of Matrix Decomposition Methods for Compression of Pre-
trained Transformers,” in Proceedings of the 37th Pacific Asia Conference on Language,
Information and Computation, C.-R. Huang, Y. Harada, J.-B. Kim, et al., Eds., Hong
Kong, China: Association for Computational Linguistics, Dec. 2023, pp. 723–742. [On-
line]. Available: https://aclanthology.org/2023.paclic-1.73.

[100] O. Shaikh, J. Saad-Falcon, A. P. Wright, et al., “EnergyVis: Interactively Tracking and
Exploring Energy Consumption for ML Models,” in Extended Abstracts of the 2021
CHI Conference on Human Factors in Computing Systems, ser. CHI EA ’21, New
York, NY, USA: Association for Computing Machinery, 2021, pp. 1–7, isbn: 978-1-
4503-8095-9. doi: 10.1145/3411763.3451780. [Online]. Available: https://dl.acm
.org/doi/10.1145/3411763.3451780.

[101] T. G. Kolda and B. W. Bader, “Tensor Decompositions and Applications,” en, SIAM
Review, vol. 51, no. 3, pp. 455–500, Aug. 2009, issn: 0036-1445, 1095-7200. doi: 10.1
137/07070111X. [Online]. Available: http://epubs.siam.org/doi/10.1137/070701
11X.

[102] A. Joyal and R. Street, “The geometry of tensor calculus, I,” en, Advances in Mathe-
matics, vol. 88, no. 1, pp. 55–112, Jul. 1991, issn: 00018708. doi: 10.1016/0001-87
08(91)90003-P. [Online]. Available: https://linkinghub.elsevier.com/retrieve
/pii/000187089190003P.

[103] X. Chen, “Intuitive understanding of tensors in machine learning,” Blogpost, Feb. 2023.
[Online]. Available: https://medium.com/@xinyu.chen/intuitive-understanding
-of-tensors-in-machine-learning-33635c64b596.

[104] R. Penrose, “A generalized inverse for matrices,” Mathematical Proceedings of the Cam-
bridge Philosophical Society, vol. 51, no. 3, pp. 406–413, 1955. doi: 10.1017/S030500
4100030401.

[105] G. Tomasi and R. Bro, “A comparison of algorithms for fitting the parafac model,”
Computational Statistics Data Analysis, vol. 50, no. 7, pp. 1700–1734, 2006, issn: 0167-
9473. doi: https://doi.org/10.1016/j.csda.2004.11.013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167947304003895.

[106] N. (M. Faber, R. Bro, and P. K. Hopke, “Recent developments in candecomp/-
parafac algorithms: A critical review,” Chemometrics and Intelligent Laboratory Sys-
tems, vol. 65, no. 1, pp. 119–137, 2003, issn: 0169-7439. doi: https://doi.org/10.1
016/S0169-7439(02)00089-8. [Online]. Available: https://www.sciencedirect.co
m/science/article/pii/S0169743902000898.

[107] R. Pajarola, S. K. Suter, R. Ballester-Ripoll, and H. Yang, “Tensor Approximation
for Multidimensional and Multivariate Data,” en, in Anisotropy Across Fields and
Scales, E. Özarslan, T. Schultz, E. Zhang, and A. Fuster, Eds., ser. Mathematics and
Visualization, Cham: Springer International Publishing, 2021, pp. 73–98, isbn: 978-3-
030-56215-1. doi: 10.1007/978-3-030-56215-1_4.

Master of Science Thesis D. Breen

https://aclanthology.org/2023.paclic-1.73
https://doi.org/10.1145/3411763.3451780
https://dl.acm.org/doi/10.1145/3411763.3451780
https://dl.acm.org/doi/10.1145/3411763.3451780
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/07070111X
http://epubs.siam.org/doi/10.1137/07070111X
http://epubs.siam.org/doi/10.1137/07070111X
https://doi.org/10.1016/0001-8708(91)90003-P
https://doi.org/10.1016/0001-8708(91)90003-P
https://linkinghub.elsevier.com/retrieve/pii/000187089190003P
https://linkinghub.elsevier.com/retrieve/pii/000187089190003P
https://medium.com/@xinyu.chen/intuitive-understanding-of-tensors-in-machine-learning-33635c64b596
https://medium.com/@xinyu.chen/intuitive-understanding-of-tensors-in-machine-learning-33635c64b596
https://doi.org/10.1017/S0305004100030401
https://doi.org/10.1017/S0305004100030401
https://doi.org/https://doi.org/10.1016/j.csda.2004.11.013
https://www.sciencedirect.com/science/article/pii/S0167947304003895
https://doi.org/https://doi.org/10.1016/S0169-7439(02)00089-8
https://doi.org/https://doi.org/10.1016/S0169-7439(02)00089-8
https://www.sciencedirect.com/science/article/pii/S0169743902000898
https://www.sciencedirect.com/science/article/pii/S0169743902000898
https://doi.org/10.1007/978-3-030-56215-1_4

118 BIBLIOGRAPHY

[108] G. Golub, A. Hoffman, and G. Stewart, “A generalization of the Eckart-Young-Mirsky
matrix approximation theorem,” en, Linear Algebra and its Applications, vol. 88-89,
pp. 317–327, Apr. 1987, issn: 00243795. doi: 10.1016/0024- 3795(87)90114- 5.
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/002437958
7901145.

[109] Z. Li, Q. Fang, and G. Ballard, “Parallel Tucker Decomposition with Numerically
Accurate SVD,” in Proceedings of the 50th International Conference on Parallel Pro-
cessing, ser. ICPP ’21, New York, NY, USA: Association for Computing Machinery,
2021, pp. 1–11, isbn: 978-1-4503-9068-2. doi: 10.1145/3472456.3472472. [Online].
Available: https://dl.acm.org/doi/10.1145/3472456.3472472.

[110] R. Minster, Z. Li, and G. Ballard, Parallel randomized tucker decomposition algorithms,
2023.

[111] M. Che, Y. Wei, and H. Yan, Efficient algorithms for tucker decomposition via approx-
imate matrix multiplication, 2023.

[112] A. H. Phan and A. Cichocki, “Fast and efficient algorithms for nonnegative tucker
decomposition,” in Advances in Neural Networks - ISNN 2008, F. Sun, J. Zhang, Y.
Tan, J. Cao, and W. Yu, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 772–782, isbn: 978-3-540-87734-9.

[113] L. T. Thanh, K. Abed-Meraim, N. L. Trung, and R. Boyer, “Adaptive algorithms
for tracking tensor-train decomposition of streaming tensors,” in 2020 28th European
Signal Processing Conference (EUSIPCO), 2021, pp. 995–999. doi: 10.23919/Eusipc
o47968.2020.9287780.

[114] D. Aksoy, D. J. Gorsich, S. Veerapaneni, and A. A. Gorodetsky, An incremental tensor
train decomposition algorithm, 2023.

[115] T. Shi, M. Ruth, and A. Townsend, Parallel algorithms for computing the tensor-train
decomposition, 2021.

[116] S. Miron, Y. Zniyed, R. Boyer, et al., “Tensor methods for multisensor signal process-
ing,” en, IET Signal Processing, vol. 14, no. 10, pp. 693–709, 2020, issn: 1751-9683.
doi: 10.1049/iet-spr.2020.0373. [Online]. Available: https://onlinelibrary.wi
ley.com/doi/abs/10.1049/iet-spr.2020.0373.

[117] I. V. Oseledets, “Tensor-Train Decomposition,” en, SIAM Journal on Scientific Com-
puting, vol. 33, no. 5, pp. 2295–2317, Jan. 2011, issn: 1064-8275, 1095-7197. doi: 10
.1137/090752286. [Online]. Available: http://epubs.siam.org/doi/10.1137/0907
52286.

[118] D. Ghimire, D. Kil, and S.-h. Kim, “A Survey on Efficient Convolutional Neural Net-
works and Hardware Acceleration,” en, Electronics, vol. 11, no. 6, p. 945, Jan. 2022,
issn: 2079-9292. doi: 10.3390/electronics11060945. [Online]. Available: https://w
ww.mdpi.com/2079-9292/11/6/945.

[119] P. Dhilleswararao, S. Boppu, M. S. Manikandan, and L. R. Cenkeramaddi, “Efficient
Hardware Architectures for Accelerating Deep Neural Networks: Survey,” IEEE Ac-
cess, vol. 10, pp. 131 788–131 828, 2022, issn: 2169-3536. doi: 10.1109/ACCESS.2022
.3229767. [Online]. Available: https://ieeexplore-ieee-org.tudelft.idm.oclc
.org/abstract/document/9988986.

D. Breen Master of Science Thesis

https://doi.org/10.1016/0024-3795(87)90114-5
https://linkinghub.elsevier.com/retrieve/pii/0024379587901145
https://linkinghub.elsevier.com/retrieve/pii/0024379587901145
https://doi.org/10.1145/3472456.3472472
https://dl.acm.org/doi/10.1145/3472456.3472472
https://doi.org/10.23919/Eusipco47968.2020.9287780
https://doi.org/10.23919/Eusipco47968.2020.9287780
https://doi.org/10.1049/iet-spr.2020.0373
https://onlinelibrary.wiley.com/doi/abs/10.1049/iet-spr.2020.0373
https://onlinelibrary.wiley.com/doi/abs/10.1049/iet-spr.2020.0373
https://doi.org/10.1137/090752286
https://doi.org/10.1137/090752286
http://epubs.siam.org/doi/10.1137/090752286
http://epubs.siam.org/doi/10.1137/090752286
https://doi.org/10.3390/electronics11060945
https://www.mdpi.com/2079-9292/11/6/945
https://www.mdpi.com/2079-9292/11/6/945
https://doi.org/10.1109/ACCESS.2022.3229767
https://doi.org/10.1109/ACCESS.2022.3229767
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/abstract/document/9988986
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/abstract/document/9988986

BIBLIOGRAPHY 119

[120] B. Jacob, S. Kligys, B. Chen, et al., Quantization and Training of Neural Networks
for Efficient Integer-Arithmetic-Only Inference, Dec. 2017. doi: 10.48550/arXiv.17
12.05877. [Online]. Available: http://arxiv.org/abs/1712.05877.

[121] C.-C. Tsai, “A Hardware-friendly Quantization and Model Fine Tuning with STEBC
for Object Detection,” in 2023 IEEE 66th International Midwest Symposium on Cir-
cuits and Systems (MWSCAS), Aug. 2023, pp. 1040–1044. doi: 10.1109/MWSCAS5752
4.2023.10405997. [Online]. Available: https://ieeexplore.ieee.org/abstract/d
ocument/10405997.

[122] H. Zhang, L. Liu, Y. Huang, X. Lei, L. Tong, and B. Wen, “InstKD: Towards Lightweight
3D Object Detection With Instance-Aware Knowledge Distillation,” IEEE Transac-
tions on Intelligent Vehicles, pp. 1–13, 2024, issn: 2379-8904. doi: 10.1109/TIV.202
4.3401461. [Online]. Available: https://ieeexplore.ieee.org/abstract/documen
t/10531046.

[123] C. Deng, Z. Deng, Y. Han, D. Jing, and H. Zhang, “GradQuant: Low-Loss Quantization
for Remote-Sensing Object Detection,” IEEE Geoscience and Remote Sensing Letters,
vol. 20, pp. 1–5, 2023, issn: 1558-0571. doi: 10.1109/LGRS.2023.3308582. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/10230297.

[124] C. Yang, Z. Lin, Z. Lan, R. Chen, L. Wei, and Y. Liu, “Evolutionary channel pruning
for real-time object detection,” Knowledge-Based Systems, vol. 287, p. 111 432, Mar.
2024, issn: 0950-7051. doi: 10.1016/j.knosys.2024.111432. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950705124000674.

[125] D. Ham, J. Jeong, J.-K. Park, et al., Scalable Object Detection on Embedded Devices
Using Weight Pruning and Singular Value Decomposition, Mar. 2023. doi: 10.48550
/arXiv.2303.02735. [Online]. Available: http://arxiv.org/abs/2303.02735.

[126] Y. Zou and C. Liu, “A light-weight object detection method based on knowledge distil-
lation and model pruning for seam tracking system,” Measurement, vol. 220, p. 113 438,
Oct. 2023, issn: 0263-2241. doi: 10.1016/j.measurement.2023.113438. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S02632241230
10023.

[127] M. Shen, L. Mao, J. Chen, et al., “Hardware-Aware Latency Pruning for Real-Time
3D Object Detection,” in 2023 IEEE Intelligent Vehicles Symposium (IV), Jun. 2023,
pp. 1–6. doi: 10.1109/IV55152.2023.10186732. [Online]. Available: https://ieeex
plore.ieee.org/abstract/document/10186732.

[128] L. Liebenwein, C. Baykal, B. Carter, D. Gifford, and D. Rus, Lost in Pruning: The
Effects of Pruning Neural Networks beyond Test Accuracy, Mar. 2021. doi: 10.48550
/arXiv.2103.03014. [Online]. Available: http://arxiv.org/abs/2103.03014.

[129] G. Yang, Y. Tang, Z. Wu, J. Li, J. Xu, and X. Wan, “DMKD: Improving Feature-Based
Knowledge Distillation for Object Detection Via Dual Masking Augmentation,” in
ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Apr. 2024, pp. 3330–3334. doi: 10.1109/ICASSP48485.2024.1
0446978. [Online]. Available: https://ieeexplore.ieee.org/abstract/document
/10446978.

Master of Science Thesis D. Breen

https://doi.org/10.48550/arXiv.1712.05877
https://doi.org/10.48550/arXiv.1712.05877
http://arxiv.org/abs/1712.05877
https://doi.org/10.1109/MWSCAS57524.2023.10405997
https://doi.org/10.1109/MWSCAS57524.2023.10405997
https://ieeexplore.ieee.org/abstract/document/10405997
https://ieeexplore.ieee.org/abstract/document/10405997
https://doi.org/10.1109/TIV.2024.3401461
https://doi.org/10.1109/TIV.2024.3401461
https://ieeexplore.ieee.org/abstract/document/10531046
https://ieeexplore.ieee.org/abstract/document/10531046
https://doi.org/10.1109/LGRS.2023.3308582
https://ieeexplore.ieee.org/abstract/document/10230297
https://doi.org/10.1016/j.knosys.2024.111432
https://www.sciencedirect.com/science/article/pii/S0950705124000674
https://doi.org/10.48550/arXiv.2303.02735
https://doi.org/10.48550/arXiv.2303.02735
http://arxiv.org/abs/2303.02735
https://doi.org/10.1016/j.measurement.2023.113438
https://www.sciencedirect.com/science/article/pii/S0263224123010023
https://www.sciencedirect.com/science/article/pii/S0263224123010023
https://doi.org/10.1109/IV55152.2023.10186732
https://ieeexplore.ieee.org/abstract/document/10186732
https://ieeexplore.ieee.org/abstract/document/10186732
https://doi.org/10.48550/arXiv.2103.03014
https://doi.org/10.48550/arXiv.2103.03014
http://arxiv.org/abs/2103.03014
https://doi.org/10.1109/ICASSP48485.2024.10446978
https://doi.org/10.1109/ICASSP48485.2024.10446978
https://ieeexplore.ieee.org/abstract/document/10446978
https://ieeexplore.ieee.org/abstract/document/10446978

120 BIBLIOGRAPHY

[130] J. Rao, X. Meng, L. Ding, et al., “Parameter-Efficient and Student-Friendly Knowledge
Distillation,” IEEE Transactions on Multimedia, vol. 26, pp. 4230–4241, 2024, issn:
1941-0077. doi: 10.1109/TMM.2023.3321480. [Online]. Available: https://ieeexplo
re.ieee.org/abstract/document/10272648.

[131] U. Ojha, Y. Li, A. S. Rajan, Y. Liang, and Y. J. Lee, What Knowledge Gets Distilled
in Knowledge Distillation? Nov. 2023. doi: 10.48550/arXiv.2205.16004. [Online].
Available: http://arxiv.org/abs/2205.16004.

[132] X. Ou, Z. Chen, C. Zhu, and Y. Liu, Low Rank Optimization for Efficient Deep Learn-
ing: Making A Balance between Compact Architecture and Fast Training, Mar. 2023.
doi: 10.48550/arXiv.2303.13635. [Online]. Available: http://arxiv.org/abs/230
3.13635.

[133] Z. Chen, M. Gong, L. Ge, and B. Du, “Compressed Self-Attention for Deep Met-
ric Learning with Low-Rank Approximation,” en, in Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, Yokohama, Japan: Interna-
tional Joint Conferences on Artificial Intelligence Organization, Jul. 2020, pp. 2058–
2064, isbn: 978-0-9992411-6-5. doi: 10.24963/ijcai.2020/285. [Online]. Available:
https://www.ijcai.org/proceedings/2020/285.

[134] Q. Xie, Q. Zhao, Z. Xu, and D. Meng, “Color and direction-invariant nonlocal self-
similarity prior and its application to color image denoising,” en, Science China Infor-
mation Sciences, vol. 63, no. 12, p. 222 101, Nov. 2020, issn: 1869-1919. doi: 10.1007
/s11432-020-2880-3. [Online]. Available: https://doi.org/10.1007/s11432-020-
2880-3.

[135] X. Li, Y. Ye, and X. Xu, “Low-Rank Tensor Completion with Total Variation for Visual
Data Inpainting,” en, Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 31, no. 1, Feb. 2017, issn: 2374-3468. doi: 10.1609/aaai.v31i1.10776. [Online].
Available: https://ojs.aaai.org/index.php/AAAI/article/view/10776.

[136] H. Xue, S. Zhang, and D. Cai, “Depth Image Inpainting: Improving Low Rank Matrix
Completion With Low Gradient Regularization,” eng, IEEE transactions on image
processing, vol. 26, no. 9, pp. 4311–4320, Sep. 2017, issn: 1941-0042. doi: 10.1109/t
ip.2017.2718183. [Online]. Available: https://doi.org/10.1109/TIP.2017.27181
83.

[137] Y. Liu, Z. Long, and C. Zhu, “Image Completion Using Low Tensor Tree Rank and
Total Variation Minimization,” IEEE Transactions on Multimedia, vol. PP, pp. 1–1,
Jul. 2018. doi: 10.1109/TMM.2018.2859026.

[138] Y. Panagakis, J. Kossaifi, G. G. Chrysos, et al., “Tensor Methods in Computer Vision
and Deep Learning,” en, Proceedings of the IEEE, vol. 109, no. 5, pp. 863–890, May
2021, issn: 0018-9219, 1558-2256. doi: 10 . 1109 / JPROC . 2021 . 3074329. [Online].
Available: https://ieeexplore.ieee.org/document/9420085/.

[139] M. A. O. Vasilescu and D. Terzopoulos, “Multilinear Analysis of Image Ensembles: Ten-
sorFaces,” en, in Computer Vision — ECCV 2002, A. Heyden, G. Sparr, M. Nielsen,
and P. Johansen, Eds., ser. Lecture Notes in Computer Science, Berlin, Heidelberg:
Springer, 2002, pp. 447–460, isbn: 978-3-540-47969-7. doi: 10.1007/3-540-47969-4
_30.

D. Breen Master of Science Thesis

https://doi.org/10.1109/TMM.2023.3321480
https://ieeexplore.ieee.org/abstract/document/10272648
https://ieeexplore.ieee.org/abstract/document/10272648
https://doi.org/10.48550/arXiv.2205.16004
http://arxiv.org/abs/2205.16004
https://doi.org/10.48550/arXiv.2303.13635
http://arxiv.org/abs/2303.13635
http://arxiv.org/abs/2303.13635
https://doi.org/10.24963/ijcai.2020/285
https://www.ijcai.org/proceedings/2020/285
https://doi.org/10.1007/s11432-020-2880-3
https://doi.org/10.1007/s11432-020-2880-3
https://doi.org/10.1007/s11432-020-2880-3
https://doi.org/10.1007/s11432-020-2880-3
https://doi.org/10.1609/aaai.v31i1.10776
https://ojs.aaai.org/index.php/AAAI/article/view/10776
https://doi.org/10.1109/tip.2017.2718183
https://doi.org/10.1109/tip.2017.2718183
https://doi.org/10.1109/TIP.2017.2718183
https://doi.org/10.1109/TIP.2017.2718183
https://doi.org/10.1109/TMM.2018.2859026
https://doi.org/10.1109/JPROC.2021.3074329
https://ieeexplore.ieee.org/document/9420085/
https://doi.org/10.1007/3-540-47969-4_30
https://doi.org/10.1007/3-540-47969-4_30

BIBLIOGRAPHY 121

[140] I. Macedo, E. Vital Brazil, and L. Velho, “Expression Transfer between Photographs
through Multilinear AAM’s,” Oct. 2006, pp. 239–246. doi: 10.1109/SIBGRAPI.2006
.18.

[141] S. Ge, Z. Luo, S. Zhao, X. Jin, and X.-Y. Zhang, “Compressing deep neural networks for
efficient visual inference,” en, in 2017 IEEE International Conference on Multimedia
and Expo (ICME), Hong Kong, Hong Kong: IEEE, Jul. 2017, pp. 667–672, isbn: 978-
1-5090-6067-2. doi: 10.1109/ICME.2017.8019465. [Online]. Available: http://ieeex
plore.ieee.org/document/8019465/.

[142] J. Kossaifi, A. Bulat, G. Tzimiropoulos, and M. Pantic, “T-Net: Parametrizing Fully
Convolutional Nets With a Single High-Order Tensor,” English, IEEE Computer So-
ciety, Jun. 2019, pp. 7814–7823, isbn: 978-1-72813-293-8. doi: 10.1109/CVPR.2019.0
0801. [Online]. Available: https://www.computer.org/csdl/proceedings-article
/cvpr/2019/329300h814/1gyrhm6sn4I.

[143] S. Indolia, A. K. Goswami, S. P. Mishra, and P. Asopa, “Conceptual Understanding
of Convolutional Neural Network- A Deep Learning Approach,” Procedia Computer
Science, International Conference on Computational Intelligence and Data Science,
vol. 132, pp. 679–688, Jan. 2018, issn: 1877-0509. doi: 10.1016/j.procs.2018.05
.069. [Online]. Available: https://www.sciencedirect.com/science/article/pii
/S1877050918308019.

[144] T.-J. Yang, Y.-H. Chen, J. Emer, and V. Sze, “A method to estimate the energy con-
sumption of deep neural networks,” en, in 2017 51st Asilomar Conference on Signals,
Systems, and Computers, Pacific Grove, CA, USA: IEEE, Oct. 2017, pp. 1916–1920,
isbn: 978-1-5386-1823-3. doi: 10.1109/ACSSC.2017.8335698. [Online]. Available:
http://ieeexplore.ieee.org/document/8335698/.

[145] R. Lv, D. Wang, J. Zheng, Y. Xie, and Z.-X. Yang, “Realistic acceleration of neural
networks with fine-grained tensor decomposition,” Neurocomputing, vol. 512, pp. 52–
68, Nov. 2022, issn: 0925-2312. doi: 10.1016/j.neucom.2022.09.057. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S09252312220
11377.

[146] A. Murua, R. Ramakrishnan, X. Li, R. H. Yang, and V. P. Nia, Tensor train decom-
positions on recurrent networks, Jun. 2020. [Online]. Available: http://arxiv.org/a
bs/2006.05442.

[147] C. Deng, F. Sun, X. Qian, J. Lin, Z. Wang, and B. Yuan, “TIE: Energy-efficient
tensor train-based inference engine for deep neural network,” in Proceedings of the
46th International Symposium on Computer Architecture, ser. ISCA ’19, New York,
NY, USA: Association for Computing Machinery, Jun. 2019, pp. 264–278, isbn: 978-
1-4503-6669-4. doi: 10.1145/3307650.3322258. [Online]. Available: https://dl.acm
.org/doi/10.1145/3307650.3322258.

[148] A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov, “Tensorizing neural networks,”
in Proceedings of the 28th International Conference on Neural Information Processing
Systems - Volume 1, ser. NIPS’15, Cambridge, MA, USA: MIT Press, Dec. 2015,
pp. 442–450.

Master of Science Thesis D. Breen

https://doi.org/10.1109/SIBGRAPI.2006.18
https://doi.org/10.1109/SIBGRAPI.2006.18
https://doi.org/10.1109/ICME.2017.8019465
http://ieeexplore.ieee.org/document/8019465/
http://ieeexplore.ieee.org/document/8019465/
https://doi.org/10.1109/CVPR.2019.00801
https://doi.org/10.1109/CVPR.2019.00801
https://www.computer.org/csdl/proceedings-article/cvpr/2019/329300h814/1gyrhm6sn4I
https://www.computer.org/csdl/proceedings-article/cvpr/2019/329300h814/1gyrhm6sn4I
https://doi.org/10.1016/j.procs.2018.05.069
https://doi.org/10.1016/j.procs.2018.05.069
https://www.sciencedirect.com/science/article/pii/S1877050918308019
https://www.sciencedirect.com/science/article/pii/S1877050918308019
https://doi.org/10.1109/ACSSC.2017.8335698
http://ieeexplore.ieee.org/document/8335698/
https://doi.org/10.1016/j.neucom.2022.09.057
https://www.sciencedirect.com/science/article/pii/S0925231222011377
https://www.sciencedirect.com/science/article/pii/S0925231222011377
http://arxiv.org/abs/2006.05442
http://arxiv.org/abs/2006.05442
https://doi.org/10.1145/3307650.3322258
https://dl.acm.org/doi/10.1145/3307650.3322258
https://dl.acm.org/doi/10.1145/3307650.3322258

122 BIBLIOGRAPHY

[149] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting Linear
Structure Within Convolutional Networks for Efficient Evaluation,” in Advances in
Neural Information Processing Systems, vol. 27, Curran Associates, Inc., 2014. [Online].
Available: https://proceedings.neurips.cc/paper_files/paper/2014/hash/2af
e4567e1bf64d32a5527244d104cea-Abstract.html.

[150] M. Astrid and S.-I. Lee, “Cp-decomposition with tensor power method for convolu-
tional neural networks compression,” in 2017 IEEE International Conference on Big
Data and Smart Computing (BigComp), 2017, pp. 115–118. doi: 10.1109/BIGCOMP.2
017.7881725.

[151] A.-H. Phan, P. Tichavský, and A. Cichocki, “Error Preserving Correction: A Method
for CP Decomposition at a Target Error Bound,” IEEE Transactions on Signal Pro-
cessing, vol. 67, no. 5, pp. 1175–1190, Mar. 2019, issn: 1941-0476. doi: 10.1109/TSP.2
018.2887192. [Online]. Available: https://ieeexplore.ieee.org/document/85792
07.

[152] L. Veeramacheneni, M. Wolter, R. Klein, and J. Garcke, “Canonical convolutional neu-
ral networks,” in 2022 International Joint Conference on Neural Networks (IJCNN),
Jul. 2022, pp. 1–8. doi: 10.1109/IJCNN55064.2022.9892607. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9892607.

[153] Y. Liu and M. K. Ng, “Deep neural network compression by Tucker decomposition
with nonlinear response,” Knowledge-Based Systems, vol. 241, p. 108 171, Apr. 2022,
issn: 0950-7051. doi: 10.1016/j.knosys.2022.108171. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0950705122000326.

[154] P. Hao, X. Li, and F. Wu, “Learning Tucker Compression for Deep CNN,” in 2022 Data
Compression Conference (DCC), Mar. 2022, pp. 332–341. doi: 10.1109/DCC52660.2
022.00041. [Online]. Available: https://ieeexplore.ieee.org/document/9810720.

[155] M. Gabor and R. Zdunek, “Compressing convolutional neural networks with hierarchi-
cal Tucker-2 decomposition,” Applied Soft Computing, vol. 132, p. 109 856, Jan. 2023,
issn: 1568-4946. doi: 10.1016/j.asoc.2022.109856. [Online]. Available: https://w
ww.sciencedirect.com/science/article/pii/S156849462200905X.

[156] Z. Zhong, F. Wei, Z. Lin, and C. Zhang, “ADA-Tucker: Compressing deep neural
networks via adaptive dimension adjustment tucker decomposition,” Neural Networks,
vol. 110, pp. 104–115, Feb. 2019, issn: 0893-6080. doi: 10.1016/j.neunet.2018.10
.016. [Online]. Available: https://www.sciencedirect.com/science/article/pii
/S0893608018303010.

[157] L. Huyan, Y. Li, D. Jiang, et al., “Remote Sensing Imagery Object Detection Model
Compression via Tucker Decomposition,” en, Mathematics, vol. 11, no. 4, p. 856, Jan.
2023, issn: 2227-7390. doi: 10.3390/math11040856. [Online]. Available: https://ww
w.mdpi.com/2227-7390/11/4/856.

[158] T. Garipov, D. Podoprikhin, A. Novikov, and D. Vetrov, Ultimate tensorization: Com-
pressing convolutional and FC layers alike, Nov. 2016. doi: 10.48550/arXiv.1611.0
3214. [Online]. Available: http://arxiv.org/abs/1611.03214.

D. Breen Master of Science Thesis

https://proceedings.neurips.cc/paper_files/paper/2014/hash/2afe4567e1bf64d32a5527244d104cea-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/2afe4567e1bf64d32a5527244d104cea-Abstract.html
https://doi.org/10.1109/BIGCOMP.2017.7881725
https://doi.org/10.1109/BIGCOMP.2017.7881725
https://doi.org/10.1109/TSP.2018.2887192
https://doi.org/10.1109/TSP.2018.2887192
https://ieeexplore.ieee.org/document/8579207
https://ieeexplore.ieee.org/document/8579207
https://doi.org/10.1109/IJCNN55064.2022.9892607
https://ieeexplore.ieee.org/abstract/document/9892607
https://doi.org/10.1016/j.knosys.2022.108171
https://www.sciencedirect.com/science/article/pii/S0950705122000326
https://www.sciencedirect.com/science/article/pii/S0950705122000326
https://doi.org/10.1109/DCC52660.2022.00041
https://doi.org/10.1109/DCC52660.2022.00041
https://ieeexplore.ieee.org/document/9810720
https://doi.org/10.1016/j.asoc.2022.109856
https://www.sciencedirect.com/science/article/pii/S156849462200905X
https://www.sciencedirect.com/science/article/pii/S156849462200905X
https://doi.org/10.1016/j.neunet.2018.10.016
https://doi.org/10.1016/j.neunet.2018.10.016
https://www.sciencedirect.com/science/article/pii/S0893608018303010
https://www.sciencedirect.com/science/article/pii/S0893608018303010
https://doi.org/10.3390/math11040856
https://www.mdpi.com/2227-7390/11/4/856
https://www.mdpi.com/2227-7390/11/4/856
https://doi.org/10.48550/arXiv.1611.03214
https://doi.org/10.48550/arXiv.1611.03214
http://arxiv.org/abs/1611.03214

BIBLIOGRAPHY 123

[159] A. Taskynov, V. Korviakov, I. Mazurenko, and Y. Xiong, Tensor Yard: One-Shot
Algorithm of Hardware-Friendly Tensor-Train Decomposition for Convolutional Neural
Networks, Aug. 2021. doi: 10.48550/arXiv.2108.04029. [Online]. Available: http:
//arxiv.org/abs/2108.04029.

[160] J. Qi, C.-H. H. Yang, P.-Y. Chen, and J. Tejedor, “Exploiting Low-Rank Tensor-Train
Deep Neural Networks Based on Riemannian Gradient Descent With Illustrations of
Speech Processing,” en, IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 31, pp. 633–642, 2023, issn: 2329-9290, 2329-9304. doi: 10.1109/TAS
LP.2022.3231714. [Online]. Available: https://ieeexplore.ieee.org/document/1
0006412/.

[161] X. Ou, P. Yan, Y. Zhang, et al., “Moving Object Detection Method via ResNet-18 With
Encoder–Decoder Structure in Complex Scenes,” IEEE Access, vol. 7, pp. 108 152–
108 160, 2019, issn: 2169-3536. doi: 10.1109/ACCESS.2019.2931922. [Online]. Avail-
able: https://ieeexplore.ieee.org/document/8781779/figures#figures.

[162] D. Anderson, “Algorithms for minimization without derivatives,” IEEE Transactions
on Automatic Control, vol. 19, no. 5, pp. 632–633, Oct. 1974, issn: 0018-9286, 1558-
2523, 2334-3303. doi: 10.1109/TAC.1974.1100629. [Online]. Available: https://iee
explore.ieee.org/document/1100629/.

[163] J. T. Schuurmans, K. Batselier, and J. F. P. Kooij, How Informative is the Approxima-
tion Error from Tensor Decomposition for Neural Network Compression? Aug. 2023.
[Online]. Available: http://arxiv.org/abs/2305.05318.

[164] M. A. Mansournia, M. Nazemipour, A. I. Naimi, G. S. Collins, and M. J. Campbell,
“Reflection on modern methods: demystifying robust standard errors for epidemiolo-
gists,” International Journal of Epidemiology, vol. 50, no. 1, pp. 346–351, Dec. 2020,
issn: 0300-5771. doi: 10.1093/ije/dyaa260. [Online]. Available: https://doi.org
/10.1093/ije/dyaa260.

[165] Y. Kim, J. Lee, J.-S. Kim, H. Jei, and H. Roh, “Comprehensive techniques of multi-
GPU memory optimization for deep learning acceleration,” en, Cluster Computing,
vol. 23, no. 3, pp. 2193–2204, Sep. 2020, issn: 1573-7543. doi: 10.1007/s10586-019-
02974-6. [Online]. Available: https://doi.org/10.1007/s10586-019-02974-6.

[166] L. De Lathauwer and J. Castaing, “Tensor-based techniques for the blind separation
of DS–CDMA signals,” Signal Processing, Tensor Signal Processing, vol. 87, no. 2,
pp. 322–336, Feb. 2007, issn: 0165-1684. doi: 10.1016/j.sigpro.2005.12.015.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S016
5168406001745.

[167] J. B. Kruskal, “Three-way arrays: Rank and uniqueness of trilinear decompositions,
with application to arithmetic complexity and statistics,” Linear Algebra and its Ap-
plications, vol. 18, no. 2, pp. 95–138, Jan. 1977, issn: 0024-3795. doi: 10.1016/0024
-3795(77)90069-6. [Online]. Available: https://www.sciencedirect.com/science
/article/pii/0024379577900696.

Master of Science Thesis D. Breen

https://doi.org/10.48550/arXiv.2108.04029
http://arxiv.org/abs/2108.04029
http://arxiv.org/abs/2108.04029
https://doi.org/10.1109/TASLP.2022.3231714
https://doi.org/10.1109/TASLP.2022.3231714
https://ieeexplore.ieee.org/document/10006412/
https://ieeexplore.ieee.org/document/10006412/
https://doi.org/10.1109/ACCESS.2019.2931922
https://ieeexplore.ieee.org/document/8781779/figures#figures
https://doi.org/10.1109/TAC.1974.1100629
https://ieeexplore.ieee.org/document/1100629/
https://ieeexplore.ieee.org/document/1100629/
http://arxiv.org/abs/2305.05318
https://doi.org/10.1093/ije/dyaa260
https://doi.org/10.1093/ije/dyaa260
https://doi.org/10.1093/ije/dyaa260
https://doi.org/10.1007/s10586-019-02974-6
https://doi.org/10.1007/s10586-019-02974-6
https://doi.org/10.1007/s10586-019-02974-6
https://doi.org/10.1016/j.sigpro.2005.12.015
https://www.sciencedirect.com/science/article/pii/S0165168406001745
https://www.sciencedirect.com/science/article/pii/S0165168406001745
https://doi.org/10.1016/0024-3795(77)90069-6
https://doi.org/10.1016/0024-3795(77)90069-6
https://www.sciencedirect.com/science/article/pii/0024379577900696
https://www.sciencedirect.com/science/article/pii/0024379577900696

Glossary

List of Acronyms

GPU Graphics Processing Unit
CPU Central Processing Unit
TPU Tensor Processing Unit
ALU Arithmetic Logic Unit
RAM Random-Access Memory
DRAM Dynamic Random-Access Memory
SRAM Static Random-Access Memory
CU Control Unit
GPGPU General-Purpose Graphics Processing Unit
IPMI Intelligent Platform Management Interfaces
ML Machine learning
DL Deep learning
DNN Deep Neural Networks
API Application Programming Interface
TDP Thermal Design Power
NVML Nvidia Management Library
RAPL Running Average Power Limit
PUE Power Usage Effectiveness
PARAFAC Parallel Factors
CANDECOMP Canonical Decomposition
CP Parallel Factors (PARAFAC) Canonical Decomposition (CANDECOMP)
ALS Alternating Least Squares
3MFA Three-mode factor analysis

Master of Science Thesis D. Breen

126 Glossary

SVD Singular Value Decomposition
3MPCA Three-mode PCA
HOSVD Higher-order Singular Value Decomposition (SVD)
PCA Principle component analysis
MLSVD Multilinear SVD
HOOI Higher-order orthogonal iteration
TT Tensor Train
CNN Convolutional Neural Network
PAPI Performance API
GB GigaBytes
FPO floating point operations
AI Artificial Intelligence
AV autonomous vehicle
NLS nonlinear least squares
EPC Error Preserving Correction
VBMF Variational Bayesian Matrix Factorization
ADA-Tucker Adaptive Dimension Adjustment Tucker decomposition
SCADA-Tucker Shared Core Adaptive Dimension Adjustment Tucker

decomposition (ADA-Tucker)
RNN Recurrent neural network
AAM’s Active Appearance Models
MAC Multiply-Accumulate operation
MAD Multiply-Add operation
KD Knowledge distillation
FPGA Field-Programmable Gate Array
RMSE Root-mean-square error
VIF Variance Inflation Factor
OLS Ordinary Least Squares
SE Standard Error

D. Breen Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	Preface & Acknowlegdements
	List of Figures
	List of Tables

	Main Matter
	Introduction
	Related work
	Sustainable AI
	Trends in Green AI
	Green autonomous driving
	Evaluating Green AI

	Measuring the energy consumption
	Energy to measure
	Methods to measure the energy
	Internal measurement tools

	Tensor decompositions
	Preliminaries
	CP decomposition
	Tucker decomposition
	TT decomposition

	Energy-efficient CNNs
	Model compression methods
	Tensor decomposed convolutions
	Training vs inference

	Contributions

	Methodology
	Decomposed convolutions
	Convolutional neural networks
	CP convolution
	Tucker convolution
	TT convolution

	Experimental design
	Single convolution
	Decomposed Resnet18

	Data collection
	Energy measurement
	Memory profiling
	Logging

	Data processing
	Modelling the expected energy savings of decomposed convolutions
	Data augmentation before fitting
	Fitting several regression models
	Evaluation metrics

	Experiments
	Influence of input channels
	CPU energy savings
	GPU energy savings
	Key findings

	Influence of output channels
	CPU energy savings
	GPU energy savings
	Key findings

	Influence of the feature size
	CPU energy savings
	GPU energy savings
	Key findings

	Influence of the kernel size
	CPU energy savings
	GPU energy savings
	Key findings

	Energy savings decomposed ResNet18
	Modelling of the saved energy
	Benchmark Model Performance
	Comparative analysis with linear and polynomial models including memory usage

	Key findings

	Conclusion & Discussion
	Conclusion
	Tensor decomposition methods
	CNN configurations
	Hardware considerations
	Modelling of energy savings
	Tensor decompositions for CNNs in AVs

	Discussion
	Future work

	Appendices
	Tensor decompositions
	CP decomposition
	Tucker decomposition
	TT decomposition

	Methodology
	Tensorly Torch decomposed convolutions
	Data processing
	Regression
	CPU regression model
	GPU regression model

	Resnet18 architecture

	Experiments
	Single convolution baseline
	Regression
	Benchmark model results
	CPU results
	GPU results

	Back Matter
	Glossary
	List of Acronyms

