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Abstract
Nonconvexity in learning curves is almost always
undesirable. A machine learning model with a non-
convex learning curve either requires a larger quan-
tity of data to observe progress in its accuracy or
experiences an exponential decrease of accuracy at
low sample sizes, with no improvement in accuracy
even when more data points are added. This paper
proposes a novel approach to determine the convex-
ity of a learning curve, which relies on calculating
the second derivative of the learning curve to es-
timate its convexity. Along the way, we have con-
firmed the correctness of the proposed method from
multiple perspectives, such as testing it with base-
lines or establishing confidence intervals for the
convexity of the learning curve. Lastly, we com-
pare our method to an alternative method and high-
light some of its shortcomings.

1 Introduction
A learning curve is a function that gives us insight into
the impact of the machine learning model’s error rate with
respect to the number of training points used to train our
model [1]. One possible application of learning curves is
determining the number of training data points our machine
learning model should have. In this field of research, we
usually call the data points on the learning curve anchors to
differentiate them from the data used to train a classifier.

Generally speaking, most literature researching this field
assumes that learning curves are universally convex and
decreasing unit cost functions [2]. We think that one of
the main driving factors for this assumption is the Convex
Gaussian Minimax Theorem [3]. The Convex Gaussian
Minimax Theorem is a statistical tool, and one of its many
use cases is estimating the true mean of a Gaussian distribu-
tion [4], which could potentially show us the true shape of
the learning curves. This motivates us to ask the questions
”How many learning curves are nonconvex?” and How can
we estimate nonconvexity?. To help answer this question,
we first address, ”When is a discrete function nonconvex?”.
Next, ”How does the convexity of the individual learning
functions affect the averaged learning function?” and How
certain are we in the convexity of the learning curve? might
also explain why convex learning curves were assumed as
standards. Finally, with the question Are high convexity
violation learning curves nonconvex? we will compare
this paper’s proposed method of checking convexity to the
convexity violation implemented inside of the Learning
Curve Database (LCDB) [5]. In this paper, we will address
the issue of convexity violation using an alternative approach
while also determining the overall convexity of the learning
curve.

The paper will adopt the following structural organization.
In Section 2 some related works will be analyzed. Section 3
will introduce an algorithm for calculating the second deriva-
tive and define theoretical concepts that will be later used in

the paper. Subsequently, Section 4 will propose methods for
evaluating convexity on a discrete function. The principal
outcomes of the research question will be presented in Sec-
tion 5. Next, Section 6 will report on the experimental results
derived from Section 5. Section 7 will offer conclusions, sug-
gest a few approaches for future improvements, and identify
potential gaps in the research. Lastly, in Section 8, ethical
considerations surrounding the study will be discussed.

2 Related Work
There has been minimal research conducted on verifying the
convexity of learning curves. One example can be seen in
[5], however, the method used is relatively crude. It relies
on two adjacent anchors to determine the convexity of the
middle anchor. The main shortcoming of this technique is
sensitivity to inaccuracies due to noise in the anchor points
and that the method assumes that the neighbouring anchor
points are an equal distance from the middle one, which is
not the case. Lastly, the proposed measure only describes
the largest convexity violation, which is correct locally but
not on the entire learning curve. There is another useful
tool introduced in [5], which is the LCDB, which allows
us access to learning curves with different dataset-classifier
combinations. A different work that also explores the
convexity of the learning curve can be found in [6], which
tries to ”repair” the convexity of the learning curve.

3 Methodology
The following section will define some tools needed to con-
struct the algorithm for estimating the Second Derivative of
the learning curve, after which we will introduce the algo-
rithm itself. Next, we will propose a metric to evaluate the
convexity of the learning curve. Finally, we will define the
confidence interval of an anchor’s convexity.

Convex function
Before exploring the algorithm first, we have to define what a
convex function is. A function is convex if its Second Deriva-
tive is positive on its entire domain, however, the function’s
Second Derivative must exist.

∀x ∈ D, f ′′(x) ≥ 0 (1)

We can see this mathematical definition in Equation 1,
where f is at least a twice differentiable function and D is the
domain of the function. This definition holds for continuous
functions, but in our case, we are working with discrete func-
tions as a learning curve is constructed by many individual
anchors. We extend the definition to be able to handle discrete
functions by approximating differentiation by computing the
finite difference at the desired points. In this new definition
f becomes the discrete function of the learning curve and x
will be considered as the sample size to which we calculate
the error rate of the function.

Linear Regression
The next tool we need to construct our algorithm is Linear Re-
gression. Linear regression is a statistical method used to find



the best-fit line that represents the relationship between two or
more variables [7]. The line of best-fit is the line which min-
imizes its squared difference with respect to the data points.

Algorithm for Estimating the Second Derivative
The Algorithm’s main goal is to approximate the Second
Derivative at every anchor point. We use a similar approach
from [8], where the finite difference at a given point was ap-
proximated by using Linear Regression on the nearby data
points. Additionally, we have borrowed the data loader and
dataset of the learning curves from LCDB [5], also available
on GitHub 1. Now we present a high level description of the
algorithm:

1. Takes as an input every anchor point of the learning
curve

2. For each anchor point with sample size si, collects an-
chor points with sample size si, si−1 and si+1, the set
creation can be also described with the following equa-
tion: Ai = {(s, y) ∈ f |s ∈ si−1, si, si+1}

3. On each set of collected anchors perform Linear Regres-
sion. This way we can obtain the equation of the best-fit
line: β0 + xβ1 ⇐ LinearRegression(Ai)

4. Save the slopes of the fitted lines: slopei = β1

5. Repeat steps 1-4, but with the previously computed
slopes as input

Steps 1-4 are used to calculate the finite difference of the in-
put. Using these steps twice differentiates the function twice
thus approximating its Second Derivative. We calculate the
sample size in the same manner as it is calculated in LCDB
[5]: sn = 16

√
2
n

. In step 2 it is important to note that there
might be multiple anchor points with the same sample size.

Evaluating convexity
Now that we have created an algorithm for estimating the Sec-
ond Derivative of the learning curve the only task we have left
out is evaluating if a learning curve is convex or nonconvex.
We already know the answer partially, based on our defini-
tion of convexity we only need to check if all calculated Sec-
ond Derivatives are above zero. However, evaluating learn-
ing curves may not be this simple, since the learning curves
are only approximated functions we must also take noise into
consideration. Noise may cause fluctuation in value thus
flipping the signs of some of the Second Derivative values,
in which case it is not trivial to determine the convexity of
the learning curve we run into the same issue if the learning
curve would also contain both convex and nonconvex regions.
Therefore we created a measure to calculate how convex the
function is in its domain. The measure checks whether there
are more convex than nonconvex anchors in the domain of the
learning curve.

Sc = {x ∈ f ′′|s ≥ 0} (2)

Snc = {x ∈ f ′′|s < 0} (3)

M =
|Sc| − |Snc|

|f ′′|
(4)

1https://github.com/fmohr/lcdb/

In Equations 2 and 3 f ′′ refers to a discrete set of sec-
ond derivatives meaning that the set in Equation 2 only con-
tains convex point and the set in Equation 3 only nonconvex.
Lastly, by the Equation 4 my measure is defined as the differ-
ence between the number of convex and nonconvex anchors.
If M ≥ 0 we define the learning curve as dominantly con-
vex, otherwise we say it is dominantly nonconvex. The value
of the measure ranges within the interval [-1, 1]. This range
holds, since if all anchors are convex then |Sc| = |f ′′|, result-
ing in M = 1, similar reasoning applies if all the anchors are
nonconvex, where if |Snc| = |f ′′| holds, then M = −1.

Confidence intervals

y = β0 + β1x (5)
β1 = β1 ± SE(β1)tn−2,α/2 (6)

SE(β1) =
σ∑

(xi − x)2
(7)

We establish a simple linear regression with two dimen-
sions in which case we can define a regression line as shown
in Equation 5, where we are mostly interested in the value of
β1 corresponding to the slope of the line while ignoring the
value of β0. We assume that the anchor points at a given sam-
ple size have normal distribution around a mean [9]. Next,
we can establish the confidence interval of the slope accord-
ing to [10], which is demonstrated in Equation 6, where t is a
value from t-distribution, and SE is the standard error, what
we further define in Equation 7.

4 Experimental Setup
The experimental setup for evaluating the convexity of learn-
ing curves must be done systematically to assess the be-
havioural patterns of the learning curves correctly. In this
section, the algorithm proposed in the Methodology section
will be examined first. Next, a comparison between an indi-
vidual and a whole set of learning curves of the same dataset
and classifier will be evaluated. After this, the confidence
interval of each anchor point per learning curve will be cal-
culated. Lastly, a general evaluation of the convexity viola-
tion measure will be made for the LCDB dataset of learning
curves.

Experiment 1: Is the Second Derivative Estimating
Algorithm working correctly?
Firstly, it is crucial to make sure that the devised algorithm
performs what it was designed for. To test this algorithm
we will have to also combine it with the measure that will
be used to evaluate learning curves. The experiment will
include a test for a convex and a nonconvex function. In
this case, a quadratic function, f(x) = x2, will be cho-
sen to assess the correctness of the algorithm. Afterwards,
we will try out a more complex learning curve, we will cre-
ate a decreasing exponential with a local maximum, f(x) =

e−0.05x+0.5e−
(x−128)2

16 , which will serve as a more practical
test. All of the above-mentioned baseline learning curves will
be generated in the following way:

1. Take samples of the function with inputs correspond-
ing to sn according to Equation ?? up until n = 20,



which corresponds to a dataset with the size of 16384
data points.

2. Add random noise with 5% of the difference between
the largest and smallest anchor as standard deviation.

3. Map the values between 0 and 1.

4. Run the algorithm on the modified values

5. Repeat steps 1-4 one hundred times and average the re-
sult

Experiment 2: How many learning curves in the LCDB
dataset are nonconvex?
In this experiment, the learning curves provided by the LCDB
dataset will be evaluated. The dataset itself has 20 dif-
ferent classifiers and 248 datasets. Overall, 4366 different
classification-dataset combinations will be used to rank the
learning curves, with each learning curve having 25 anchor
points per sample size. It is important to note that some an-
chors of the learning curve are NaN valued, to deal with this
we have decided to ignore such anchors. Next, the convexity
measure will be computed for all the existing combinations
and ranked in decreasing order to view the most and least
convex learning curves. Lastly, the percentage of learning
curves with a negative measure will be calculated.

Experiment 3: Are there any differences in convexity, if
we only take individual learning curves instead of
measuring all of them at once?
The next experiment will provide insight into the difference
between taking a single learning curve from a sample of 25
learning curves. The convexity measure will be determined
for each individual learning curve, and the overall convexity
will be decided on a majority vote. We will propose that a
violation occurs if the convexity of the learning curve changes
compared to Experiment 2.

Experiment 4: After calculating the confidence interval,
how many anchors exhibit a mismatch in convexity
measure?
Setting up this experiment became more challenging due
to the way the Algorithm Determining Convexity was con-
structed, after using the first linear regression most of the
variance is reduced to zero on each sample size since the
first linear regression creates only one anchor point for every
sample size. To eliminate this issue and retain the variance,
Experiment 3’s method was used to calculate the first deriva-
tive. It is acceptable to use this method because individual
learning curves are not interacting between themselves, thus
retaining the noise that each of them carries. After this, the
second derivative is calculated with Experiment 2’s method,
additionally while calculating the slope from a set of anchors
the confidence interval is also calculated here. A α = 0.95 is
used to calculate the critical value. Finally, it is checked if the
anchor’s slope and one of the confidence interval values have
different signs, which we count as a violation in the convex-
ity interval. More precisely a violation happens if the slope
is greater than zero, but the lower bound of the confidence
interval is less than zero, and vice versa.

Experiment 5: How well does the proposed metric work
compare to the one proposed in the LCDB?
In this experiment, learning curves with the top 10 highest
convexity violations according to the metric proposed in [5]
are compared to this paper’s measure. It is important to note
that the ranking in LCDB does not explicitly say that a high
convexity violation should automatically correspond to a non-
convex curve. These selected learning curves’ convexity will
be eyeballed and then compared to this paper’s measure.

5 Results
In the Result section we will present the outcomes of the ex-
periments we defined in the previous section.

Experiment 1: Is the Second Derivative Estimating
Algorithm working correctly?
We have evaluated the Second Derivative Estimator Algo-
rithm’s performance with baseline functions 100 times. In
Table 1 we summarize our result. The Second Derivative
Estimator Algorithm estimated the convex baseline with an
average score of 0.404 and the worst score was 0.1, mean-
ing that the algorithm correctly assumes that the baseline is
convex in all 100 runs. Testing the baseline for a nonconvex
curve also produced similar results. More specifically the av-
erage score was -0.388, while its worst score was -0.1. The
next curve we explored shown in Figure 3, was a decreasing
exponential with a hill, we considered this curve to be convex
since the nonconvex part represented only a small portion of
the whole learning curve, where the results of the baseline
were 0.327 average score and 0.1 worst score.

Baseline Average case Worst case Best case
Convex 0.404 0.1 0.8

Nonconvex -0.388 -0.1 -0.8
Convex with hill 0.327 0.1 0.6

Table 1: Baseline testing results of the Algorithm

Experiment 2: How many learning curves in the LCDB
dataset are nonconvex?
Among the 4366 learning curves, 8.86% were identified as
nonconvex. In Figure 4 we can see that the most learn-
ing curves are produced by the sigmoid SVC classifier with
28.34% of its learning curves being nonconvex, while the
least nonconvex learning curves were created by the Linear
Discriminant Analysis learner with 1.16%. Figure 5 shows
us some dataset ids (OpenmlId) which produced the largest
quantity of nonconvex learning curves.

Experiment 3: Are there any differences in convexity, if
we only take individual learning curves instead of
measuring all of them at once?
From Table 2, we can observe that when a learning curve is
nonconvex according to Experiment 2 in 81.40% of the cases
indicate that if we investigate the individual learning curves
the majority of them turn out to be convex, while on the other
hand if Experiment 2 predicts a convex learning curve only
in 0.53% of the cases the individual learning curves would be
nonconvex in the majority.



Figure 1: Example learning curve, for the
convex baseline with an average score of
0.404

Figure 2: Example learning curve, for the
nonconvex baseline with an average score of
-0.388

Figure 3: Convex baseline with nonconvex
violation with an average score of 0.327

Figure 4: Learners and the fraction of their learning curves that are
nonconvex

Curve type Percentage of the mismatching
evaluation

Convex 0.53%
Nonconvex 81.40%

Table 2: Percentage where conducting this experiment did not match
the result of Experiment 2

Experiment 4: After calculating the confidence interval,
how many anchors exhibit a mismatch in convexity
measure?
A learning curve’s anchors percentage that does not have the
same sign on the second derivative on the upper or lower
bounds of its confidence interval is demonstrated in Table
3. On average, 58.36% of the learning curves’ anchors have
such violations. While we only observe nonconvex learn-
ing curves, this percentage increases to 74.03% and on con-
vex learning curves we see this average violation decrease to
56.84%.

Experiment 5: How well does the proposed metric work
compare to the one proposed in the LCDB?
This experiment’s results are summarized in Table 4. Out of
the 10 learning curves with the highest violation according to
LCDB, we have observed that only 1 learning curves are non-

Figure 5: Top 5 datasets that produce the biggest amount of noncon-
vex learning curves

Curve type Mean Percentage of confidence in-
terval violation

Convex 56.84%
Nonconvex 74.03%

Overall 58.36%

Table 3: Average percentage of anchors per learning curve that had
confidence interval violation

convex according to our measure. However, while eyeballing
we discovered that additional 3 learning curves were misclas-
sified as convex by our measure, while 1 learning curve had
undecidable shapes. Lastly, 5 learning curves had high viola-
tion in LCDB, but were convex learning curves.

6 Discussion
From the results of Experiment 1, we can see that the mea-
sure we proposed correctly estimated the convexity of the
baselines in all three cases. We give an example of all three
types of baselines in Figures 1, 2 and 3. We must also note
that even though all the curve scores had the correct sign,
some of the scores were very close to zero, which in this case
would mean that the curve was neither convex nor nonconvex.



Figure 6: Nonconvex learning curve with
OpenmlId 54, sigmoid SVC learner and score
of -0.166

Figure 7: Nonconvex learning curve with
OpenmlId 4137, sigmoid SVC learner and
score of -0.333

Figure 8: Nonconvex learning curve with
OpenmlId 1503, sigmoid SVC learner and
score of -0.333

OpenmlId learner LCDB violation Measure
28 LDA 0.315 0.778
41163 LDA 0.308 0.556
14 QDA 0.276 0.231
40996 Ridge 0.272 0.75
1041 Ridge 0.255 0.625
554 Ridge 0.242 0.75
962 QDA 0.239 0.2857
728 Perceptron 0.234 0.0
40910 QDA 0.227 0.125
1441 QDA 0.225 -0.333

Table 4: Top 10 highest violations of convexity in LCDB compared
to our measure. QDA - Quadratic Discriminant Analysis, LDA -
Linear Discriminant Analysis

Experiment 2 revealed that based on this paper’s measure
8.86% of learning curves are nonconvex. Figure 4 proposes
that nonconvexity might also be more common in some
learners than others, meanwhile, Figure 5 points toward
that nonconvexity might be a property of a specific dataset.
From a total of 4366 dataset-learner combinations, we chose
to manually explore all 206 learning curves with sigmoid
SVC as the learner. Out of these learning curves we most
commonly saw 3 types of nonconvex learning curves. The
first type, had an increase in the error rate in the early stages
of the curve and then its error rate stagnated on the rest of the
curve, sometimes the increase in error rate came at a higher
sample size, which bears resemblance to what we would
see in overfitting, we can also observe this phenomenon in
Figure 6. The second type, see an example in Figure 7, had
the opposite shape as described in the previous type, the error
rate did not change until a larger sample size, where the error
rate suddenly dropped. Lastly, there were some curves that
seemed to be neither convex nor nonconvex, however, they
were still labelled as nonconvex learning curves, we show
one such curve in Figure 8.

Analyzing Experiment 3 an interesting pattern emerges
from Table 2, we observe that whenever a curve is nonconvex
according to Experiment 2, Experiment 3 will predict that
the same curve is convex 81.40% of the time. There are two

Figure 9: Individual learning curves of OpenmlId 346, learner Pas-
sive Aggressive Classifier and a score of -1.0, there are 15 convex
and 10 nonconvex learning curves present, however,r we have plot-
ted only one convex and one nonconvex curve for the sake clarity

possible explanations for this phenomenon, one is that the
learning curve should be nonconvex, however since we take
only 25 learning curve samples, there are not enough learn-
ing curves for Experiment 3 to study. The second possible
explanation is that these learning curves should be convex as
suggested by Experiment 3 and that the nonconvexity arises
from the noise in the data. An example of mismatching
results between Experiment 2 and 3 can be seen in Figure 9,
where the learning curves’ score was -0.666, however, there
were 15 convex and 10 nonconvex individual learning curves.

We can see a trend of nonconvex learning curves having
more violations according to both Experiments 3 and 4,
however, in Experiment 4 the violations between convex and
nonconvex learning curves were not as big as in Experiment
3. Since we perceived such a large average violation in
Experiment 4, we can identify the main cause of the problem,
which is that we simply did not have enough data points,
thus making the variance large. This result also helps us
explain why were there so many nonconvex learning curve
violations in Experiment 3. Therefore by sampling more
learning curves for each dataset-learner combination, we



should potentially reduce the number of violations in both
Experiments 3 and 4 leading us to better accuracy in our
measure.

Experiment 5 gives us insight into how the convexity
violation measure in LCDB works. Ranking the learning
curves based on the highest violation has both advantages
and disadvantages compared to our measure. The biggest
drawback in LCDB’s measure is if the learning curve has
double descending property, see Figure 10, it incorrectly
assumes violation, when in reality there are two discontinu-
ous convex curves. The main advantage is that the method
rewards a learning curve for having a single large convexity
violation which determines the overall shape of the curve,
however, this does not work if the learning curve is double
descending or it is noisy.

Returning to our measure Experiment 5 also helped us
identify some of our shortcomings. In Figure 11, we can eye-
ball that the curve should be nonconvex, however, we iden-
tified it as convex. The reason for this particular misclassi-
fication is nonconvexity is only visible on the global scale,
while due to noise our algorithm mistakes some of the anchor
points being convex. One solution, which was also suggested
in Experiments 3 and 4 is to simply increase the number of
individual learning curves per learning curve. Another possi-
ble fix would be to not consider 0 valued second derivatives
as convex anchors, since in these types of curves the error rate
seems to remain constant after the initial increase in error.

Figure 10: Double descent learning curves of OpenmlId 41163,
learner Linear Discriminant Analysis and a score of 0.556

7 Conclusions and Future Work
In summary, the main goal of this paper was to estimate
how many learning curves are nonconvex in LCDB and to
propose an algorithm to find them. Starting with Experiment
1 we concluded that our proposed measure worked for the
baseline learning curves, furthermore, in Experiment 2 we
analyzed the nonconvex learning curves inside LCDB and we
observed that the nonconvex learning curves are undesirable,
because either we do not get continuous performance error

Figure 11: Misclassified learning curve as convex, OpenmlId 14,
learner Quadratic Discriminant Analysis and a score of 0.231

rate decrease only a sudden drop, or with increasing sample
size we find out that the error rate is not decreasing, instead
the error rate was the lowest during low sample sizes. In Ex-
periments 3 and 4 we shifted our attention to see how likely
we have correctly identified a nonconvex learning curve and
we concluded that to acquire more precise results we would
need to increase the number of learning curves generated per
dataset-learner combination. Finally, in Experiment 5 we
have pointed out some of the shortcomings of the method
proposed in LCDB, while also discovering edge cases where
our algorithm does not perform correctly.

This research is not yet complete, first, we want to address
the Second Derivative Estimator Algorithm, which finds the
second derivative by taking linear regression times. While it
works in practice, there should be alternative methods to do
the same more efficiently. One of my suggestions for this is to
use quadratic regression instead of linear regression, mainly
because we can estimate the second derivative with one re-
gression instead of two. Additionally, I would propose stricter
criteria for a curve to be considered nonconvex, such as defin-
ing a convex curve through a convex set or a convex hull.
Lastly, our final suggestion would be to increase the number
of learning curves generated for each dataset-learner combi-
nation from 25 to at least 250. This would certainly reduce
the number of violations discovered in Experiments 3 and 4.

8 Responsible Research
While this paper has little to no direct ethical implications we
should still put importance on other aspects of responsible
research such as reproducibility. We publicize the codebase
used to generate the results of this paper on GitHub 2. The
dataset used in this paper was originally produced in LCDB
[5], which contained the accuracies of the dataset-learner
combinations. From the LCDB library, we have also used
the tool to load the learning curve accuracies. Additionally,
sklearn library was used for the Linear Regression imple-
mentation, scipy was used to calculate the Critical Value,

2https://github.com/kikigogo9/Research-project



lastly we used matplotlib for creating graphs.

Aside from general statistics done on evaluating the
learning curves, we also had to cherry pick some of them to
provide us with examples. The issue here becomes that these
few learning curves are not representing the entire dataset,
due to time constraints we did not have the necessary time to
analyze all 4366 learning curves individually.

We have also employed useful tools such as Grammarly
and ChatGPT to help us check the grammatical correctness
and consistency of the paper. The most commonly used
prompt in ChatGPT was ’Please check for grammar mis-
takes: <section>’, after which we double-checked the output
to make sure the corrected sentences would still retain their
original meaning.
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