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Abstract

The absence of haptic feedback on touchscreens creates a big reliance on visual attention, leading to
reduced focus and increased cognitive load, especially in dynamic real-world scenarios like driving
or using interactive media. While previous research has extensively explored static pointing tasks, a
significant gap exists in understanding interactions with moving targets. This thesis investigates the
effect of active lateral force feedback, generated specifically by the Ultraloop haptic device, on user
performance in dynamic point-following-tasks.

An experiment with 11 participants was carried out to separate the effect of vision and compare different
types of haptic feedback across four conditions: Vision Only, Vision with Active Force, No Vision with
Friction Modulation, and No Vision with Active Force. In this task, participants moved their finger on
the Ultraloop to track a target that moved along a one-dimensional randomized multi-sine path. Then,
their performance for each condition was evaluated by measuring the mean tracking error during their
experimental trials. Then, their performance was evaluated with a McRuer crossover model analysis to
measure human control behavior during the continuous pointing task by estimating parameters such as
crossover frequency, lead and lag for each experimental condition.

The results demonstrate that active lateral force feedback significantly minimizes tracking error. It
served as an additional cue in visual conditions, reducing the average tracking error by 24.1%, and acted
as an effective sensory substitute in non-visual conditions, drastically outperforming friction modulation
feedback by reducing the average tracking error by 34.8%. The McRuer analysis showed that it is
possible to identify a human control behavior for visual conditions, but becomes quite complicated for
non-visual conditions. Also, participants employed predictive control in visual conditions but reverted
to reactive, heavily filtered strategies when relying solely on haptic feedback.

In conclusion, this experiment demonstrated that programmable active lateral force feedback is an
effective tool for improving touch-enabled interactions in dynamic tasks. These findings expand the
usability of active surface haptics, thereby advancing the development of more intuitive and efficient
haptic touch interfaces in the future.
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Introduction

Touchscreens and touchpads are becoming more essential in daily life, not only on mobile phones and
tablets but also as replacements for traditional buttons, dials, and sliders in various everyday interactions.
These devices have many advantages for the user due to great stimulus-response compatibility [1],
which refers to how efficiently a user can respond to a stimulus, with performance improving when
the stimulus and required action are intuitively aligned. Despite the increasing use of traditional
touchscreens, they provide little or very primitive haptic feedback, which is essentially vibrotactile
feedback. This creates a significant demand on the visual attention of the user[2], which can deteriorate
during multitasking or when visuals are masked due to external factors [3], such as when driving. This
makes interacting with moving elements particularly risky due to significantly increasing cognitive
load. These could involve continuous interaction with moving targets, such as tracking an enemy in
a fast-paced action or racing video game, where players must continuously track and target moving
enemies or navigate through dynamic courses. Lateral force feedback could guide the player’s fingers,
improving accuracy and reaction time without relying solely on visual cues. Another example could be
following a cursor on a military radar display where an operator using a touchscreen to track a moving
drone or vehicle on a digital map requires precision under high-stress conditions. Haptic guidance
on the screen would reduce the risk of losing the target, allowing the operator to maintain situational
awareness with less focused visual attention.

Recent advancements in surface haptics, particularly in systems like the Ultraloop developed by Cai
and Wiertlewski [4], have demonstrated the effectiveness of velocity-dependent lateral force feedback
in improving touchscreen interaction. Their study showed that positive damping, where the lateral
force increases with finger speed, enables users to complete pointing tasks faster and with greater
accuracy. This result suggests that dynamic haptic feedback can support smoother and more efficient
target acquisition by minimizing corrective movements, especially during the fine-targeting phase
of interaction. Therefore, lateral forces are becoming indispensable for the implementation of haptic
feedback in modern tactile touchscreens.

However, current research remains largely limited to static pointing tasks [5], typically modeled using
Fitts’ Law, which is a predictive model used to measure the speed-accuracy trade-off in human movement,
particularly in pointing tasks. It is primarily applied in human-computer interaction to evaluate and
optimize the design of interface elements, such as button sizes and distances, by estimating the time
required to accurately acquire a target. While these tasks offer a robust framework for evaluating
different feedback modalities, they do not fully represent the dynamic interactions where targets are
moving or the goals are changing. Dynamic tasks introduce complex elements of prediction and
continuous error correction that static Fitts’ Law models cannot capture.



Programmable tactile feedback, which directly engages the user’s finger, is a promising solution to
overcome these limitations. Recent advancements in surface haptics, such as the Ultraloop device, have
demonstrated that velocity-dependent lateral force feedback can improve speed and accuracy in static
pointing tasks. However, this foundational research fails to address the possibility of dynamic pointing
tasks, which can be the next step for modern interfaces. This gap leads to our research question:

Does the lateral force feedback from the Ultraloop reduce a user’s tracking error in a dynamic target-
following-task?

One of the following composed hypotheses is that the presence of lateral force feedback generated by
the Ultraloop will improve user performance in dynamic pointing tasks by reducing tracking errors
for target acquisition compared to non-feedback conditions. In addition, it is hypothesized that active
lateral force feedback will lead to better performance than other forms of tactile feedback, specifically
friction modulation. This thesis aims to investigate how the active lateral force feedback generated by
the Ultraloop affects the user with respect to these feedback conditions.



Background & Relatable Work

This chapter elaborates on the background of the research to give context to the conducted experiment.
It explains the core technology supporting this study, beginning with the working principle of the
Ultraloop haptic device and analyzing the key experimental findings from earlier work, which serve as
an important stepping stone for the experiment presented in this thesis. Furthermore, it introduces
the McRuer crossover model, a framework from manual control theory, which is used in this work
to measurably analyze human control dynamics during the haptic tracking task. By covering these
key areas—the device and its precedent studies-this chapter provides the necessary foundation for
understanding the methodology and analysis of the present investigation.
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2.1. Ultraloop Device

To understand the concept of active lateral force feedback provided by the Ultraloop, it is essential to first
explain the underlying working principle of the implemented device. The Ultraloop is a unique haptic
device introduced and developed by Z. Cai and M. Wiertlewski [6], designed to generate controllable
lateral forces on a user’s fingertip through high-frequency surface vibrations. The device consists
of a ring-shaped aluminum structure with multiple piezoelectric actuators mounted symmetrically
around its base; see figure 2.1. These actuators excite the structure at ultrasonic frequencies to produce
controlled wave propagation along the surface. By precisely tuning the input signals, the system can
synthesize traveling waves that exert tangential forces on the fingertip, creating the sensation of a guided
or resistive motion without any displacement of the surface.

The working principle relies on two orthogonal resonant standing waves of the ring structure. When
these waves are simultaneously excited with a #90° phase shift, they combine to form a traveling wave.
This traveling wave induces elliptical surface particle motion, resulting in an active net force applied to
the skin in the direction of wave propagation. The resulting tangential force arises from the momentum
transfer between the oscillating surface and the finger’s skin friction, effectively pushing or pulling
the fingertip along the tactile surface. This mechanism allows the Ultraloop to deliver continuous and
controllable lateral forces of up to approximately 300 mN, even when the finger remains stationary on
the surface. The ring geometry of the Ultraloop provides mechanical symmetry, which ensures uniform
propagation of the resonant waves and minimizes unwanted disturbance of the traveling waves. This
design enables precise and repeatable tactile feedback over the entire contact area. Furthermore, the
combination of ultrasonic actuation and high structural stiffness ensures minimal vertical displacement,
preserving a stable and rigid interaction surface while allowing rich tangential feedback.

active
force // _ elliptical
! motion

travelling wave

Figure 2.1: (a) The Ultraloop functions as a traveling-wave surface haptic interface, where piezoelectric actuators excite two
structural modes that interact to produce a traveling wave. (b) This wave drives an elliptical motion of the surface, which in turn
applies controlled lateral forces to the fingertip. [6]

Opverall, the Ultraloop enables the active rendering of tactile cues such as friction modulation, directional
force guidance, and virtual surface contours [7]. Its working principle bridges the gap between
vibration-based haptic feedback and force feedback systems, making it a versatile platform for exploring
realistic touch interactions and sensorimotor control in human-machine interfaces. For more info and
schematics, see Appendix C.
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2.2. Related Work

Before discussing the foundational work, it is essential to clarify how pointing-tasks are modeled during
continuous interaction from a control-theoretic perspective. Control theory frames behavior in terms
of signals, systems, goals, states, error, feedback, and feedforward, and these relationships are often
illustrated using block diagrams that show how signals move through a system with feedback. The
signals shown as arrows vary over time, while systems—shown as boxes—transform these signals and
may contain internal states. In pointing tasks, the system state is not limited to position but also includes
higher-order terms such as velocity, and potentially acceleration, which relates to muscle activation.

An example is given in figure 2.2, which shows a general control theoretic framework for continuous
interaction as a second-order lag (20L) model. The second-order lag (20L) model is a simple linear
model in control theory, characterized by its oscillatory step response before reaching steady state,
with its behavior defined by two key parameters: a natural frequency controlling oscillation speed and
a damping ratio controlling the damping rate, determining if the system is underdamped, critically
damped, or overdamped [8]. The interaction of the framework is modeled as a control loop between
the human and the computer. The user forms an intention, compares it with the observed system
state, which forms a certain error, and generates a control signal that drives the biomechanics in his
arm, producing motion sensed by the input device(mouse). This signal is filtered, transformed by the
device’s transfer function, and interpreted as position, velocity, or acceleration control, depending on
the integration applied. The application then updates its state, which can be simply shown during
desktop tasks, and this updated state is displayed back to the user, closing the loop.

fntention;

Display

»
|

Controller

| Applitation \
Integrator| | Dynamics !
]
i |
[P s
Step

i
Biomechanics

Dead
Time

Figure 2.2: A general control-theoretic framework for modeling continuous human—computer interaction is presented. As an
illustrative example, the framework is instantiated using the block diagram of the second order lag (20L) model. [8]

To identify the human element in figure 2.2, the manual control literature offers numerous models,
which vary in assumptions, complexity, and parameters, each based on different assumptions about
human behavior [8]. One of the most influential frameworks in human—computer interaction is Fitts’
Law, which describes pointing as a speed—accuracy trade-off: the time to acquire a target increases with
the distance to the target and decreases with the target width [9]. Although originally formulated for
discrete movements, Fitts’ Law has been widely applied to pointing devices and remains the standard
predictive model for movement time in Human Computer Interaction (HCI).
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In earlier research conducted by Z. Cai [7], he investigated the possibilities of active lateral force feedback
of the Ultraloop by testing whether active force feedback can improve the performance in Fitts’s pointing
task, which is a standardized motor-control experiment in which a participant must move as quickly and
accurately as possible between targets of varying size and distance. Here, a one-dimensional pointing
task was designed where participants had to slide against the tactile surface of the Ultraloop to locate a
target using different kinds of feedback conditions. The tested targets had 3 different widths (16, 32,
and 48 pixels) and 3 different distances (200, 400, and 600 pixels). The tested feedback conditions were
active force, friction modulation, vision-only, and vision combined with active force. Figure 2.3 shows
the implementation of the force and friction profiles of the different types of feedback conditions. In the
first two conditions, the targets were invisible and had to be located purely by touch, while in the last
two conditions, the targets were visible, enabling a comparison of performance with and without active
lateral force feedback. For the friction modulation, a friction profile was implemented, which gives the
feeling of high friction inside the target and low friction outside it. While for the conditions with active
force, a force profile was implemented that excites a directing lateral force while outside the target and
no force at all while inside the target.

o

a active force friction modulation ¢ vision vision + active force

— Ca
. high friction\_) high friction
SN
low friction

3
50 position
. 0

friction
o friction

low friction i
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position position

Figure 2.3: (a) Active force and (d) vision + active force conditions share an identical force profile, where forces consistently push
the finger toward the target. In the (b) friction modulation condition, friction is high inside and low outside the target area. In (c)
vision condition, friction remains consistently low. Targets are visible only in conditions (c) and (d). [7]

For this experiment all the participants used their index finger to slide across the surface to locate and
select a target as quickly and accurately as possible. Each trial started with a green start area appearing
randomly on the left or right side to avoid orientation bias. In visual conditions, the red target was also
visible. Participants moved the white cursor—representing their finger position—into the start area and
held it there for 0.6 s until a timer began. Then they slid their finger across the surface to locate the
target using either visual or haptic cues, freely moving back and forth to confirm its position. Finally,
they lifted their finger at the perceived target location, which triggered the confirmation and saving of
the completion time of the trial.

Figure 2.4a shows the mean completion times of the tasks in the nine movement conditions and four
teedback conditions. In the haptic-only conditions, active force feedback consistently resulted in shorter
completion times than friction modulation across all movements, with a statistically significant difference.
These results demonstrate the clear advantage of active force feedback in non-visual conditions. When
visual feedback was available, active force feedback further reduced completion time, with the difference
between vision and vision + active force also reaching statistical significance across all movement
conditions. The Fitts’s law analysis in figure 2.4b shows a clear linear relationship between completion
time and task difficulty for all feedback conditions. The resulting performance indices indicate that
active force feedback leads to more efficient targeting than friction modulation in haptic-only conditions
and also improves performance when combined with vision. These findings raise the question of
how active lateral force feedback will influence user performance in dynamic environments with a
continuously moving target.
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Figure 2.4: (a) Mean completion time in a pointing task across nine movement conditions. (b) Linear regression for mean
completion time based on Fitts’s indices of difficulty (ID). [7]
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2.3. McRuer Crossover Model

Another control model that can identify human behavior during human-computer interaction is the
McRuer Crossover Model, which describes how a human behaves as part of a closed-loop control
system, where the goal is to maintain stable and accurate control of a dynamic process [10]. Originally
developed to model pilot behavior in aerospace systems [11], this model has since been widely applied to
study human performance in manual control tasks such as driving, tele-operation and human—machine
interfaces. The core idea behind the model is that the human operator continuously observes the
difference between the desired state (the target) and the actual state (the system response) and then
generates corrective control actions to minimize this error over time. This base principle of the pilot
continuously adapting their control actions to match the dynamics of the system being controlled, can
be expressed mathematically in the frequency domain as follows:

We _
Yy(s)Ye(s) = ?6 e 2.1)
. Display » Yp(s) = Yc(s) >
iit) + e(t) clt) m(t)
Random Error oHueTaatgr Colntrolletd
forci_ng Vieal p elemen
function stimulus
Operator System
output output

Figure 2.5: Pilot-vehicle block diagram [12]

where Y), represents the pilot, Y. the controlled element, and their product Y, Y, forms the open-loop
transfer function, which is visible in the pilot-vehicle block diagram shown in figure 2.5, while w,
denotes the crossover frequency and 7, the effective time delay. The crossover model does not capture
the entire frequency response of human tracking; it is a local linear approximation that works only near
crossover frequency w., where the human closed-loop behavior resembles a first-order, slope-controlled
system. By rearranging the formula of equation 2.1 it is possible to obtain the pilot transfer function in
the crossover region:

Y,(s) = Y;l(s)%e%. 2.2)

Determining the exact inverse Y, (s) is complex. McRuer found that the pilot’s primary observed goal
is not to exactly invert Y.(s), but to shape the combined open-loop response Y, (s)Y:(s) to achieve the
critical -20 dB/decade slope in the crossover region, which means that the human pilot adjusts their
control strategy so that the total gain of the human-machine system decreases at a precise rate around
the critical frequency where stability is determined, producing good tracking performance and sufficient
stability margins. This procedure of shaping the pilot’s response is referred to as equalization [12].
McRuer noted that, because of inherent cognitive and motor limitations, a human operator cannot have
more than one lead term and one lag term. This observation leads to the simplified equalization model:

1+Ts

Kp m, (23)

Yye =

where K, represents the operator’s sensitivity or gain, describing how strongly the participant reacts to
the perceived error signal. The relationship w. ~ K, K, links the pilot gain to the controlled-element
gain K., showing that both determine the crossover frequency.
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The parameter T; is the human lag time constant, it models that humans do not react instantaneously,
but with some lag, whereas T, is the human lead time constant, it gives the system “lead” to counteract
lag and stabilize the loop.

McRuer’s analysis [13] indicates that the overall time delay in the loop can be expressed as:

Te = 70 — At(w;) (2.4)

where 7, is the effective time delay, representing all latencies in the loop, including visual perception,
neural transmission, display latency, and device feedback delay. The variable w; represents the
bandwidth of the forcing function applied during the task(closed-loop system input). As for the
crossover frequency:

We = Weo + Aw(w;). (2.5)

For most modeling purposes, the correction term Aw(w;) can be considered negligible. According to
McRuer [13] it is proven that:

Tt
wWOTo = E (2.6)

Using this property, the crossover frequency may be approximated as:

TC
~—, 2.7
Wc 270 2.7)

which allows one to compute the pilot gain K}, yielding the familiar crossover-form pilot model:

(1 + TLS) 1,5

W) =K T

2.8)

To account for the dynamics of the human neuromuscular system, an additional first-order lag is
typically included:

1
1+ T,s’

N(s) = (2.9)

Here, T, represents the neuromuscular time constant, modeling muscle activation dynamics and the
mechanical delay between neural commands and applied force.

By combining the equalization term (2.3), the neuromuscular dynamics (2.9), and the effective delay 7,
yields the commonly used Tustin-McRuer pilot model:

Yy(s) = Kp - e - 7S, (2.10)

One of the key insights of the McRuer crossover model is that humans adapt their internal control
strategy to the dynamics of the system they are interacting with. For example, when controlling a
sluggish or highly delayed system, people tend to reduce their control gain and increase their reliance
on predictive actions to maintain stability. Conversely, when interacting with a fast or responsive system,
they increase their gain to achieve more precise tracking. This adaptive nature explains why the model
can describe a wide range of behaviors across different domains — from aircraft piloting to precise
finger movements on touch interfaces. Ultimately, the McRuer crossover model provides a framework
for measuring human-in-the-loop dynamics by treating the human operator as an adaptive, dynamic
element within a feedback system, which makes this model a good candidate for evaluating dynamic
tracking tasks.



Experimental Method

Understanding how humans respond to different forms of haptic feedback is essential for improving
surface haptic interfaces and optimizing their integration in dynamic interaction tasks. To explore this,
an experimental study was conducted using the Ultraloop device, focusing on how users track a moving
target under various sensory and feedback conditions. This chapter outlines the experimental method
used to investigate human performance during target-following-tasks with the Ultraloop surface haptic
device. The aim of these experiments is to evaluate how different feedback conditions in visual and
non-visual situations affect users’ tracking accuracy. The following sections describe the experimental
setup, including participant preparation, familiarization with the haptic feedback conditions, and
implementation of multiple randomized trials across the haptic feedback conditions.

10
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The Ultraloop is capable of implementing friction modulation and active lateral force feedback. To test
both forms of haptic feedback on participants fingers while interacting with the Ultraloop, a total of 11
young adult participants (aged 20-30, from the TU Delft campus) participated in the experiments. Each
participant washed and dried their hands to ensure that they had a clear tactile sense of the surface.
Before the participants started the experiment, they first had to complete an introduction trial, where
they could experience friction modulation and active lateral force feedback and get acquainted with
them. Shown earlier in chapter 2, during friction modulation, participants experience the feeling of a
bump when they move their finger over the moving target, while active lateral force feedback gives
participants the feeling of a pulling force on the contact surface of the Ultraloop that will direct their
finger towards the moving target. Both these forms of feedback are shown in figure 3.1.

a b

active force friction modulation

low friction low friction
P X Pl X

— - A = - =]

high friction high friction

Figure 3.1: The top shows the GUI of the dynamic following-task. The bottom shows the active force or friction field in active
force (a) or friction modulation (b) condition, respectively. [7]

For the experimental setup with respect to the hardware, the Ultraloop (see Fig 3.2) device was
implemented to interact with the participant’s finger as a contactor. Participants used their right index
finger on the Ultraloop contact surface to follow the horizontally moving target, which is virtually
displayed on a laptop screen as the cursor. The red area indicates where the virtual moving target is at a
specific moment, while the Ultraloop uses friction modulation or active lateral force feedback to guide
participants to that specific area. This red area matches the movement of the virtual moving object.

oy ool

:paue1s1ad o)

.

Figure 3.2: The Ultraloop contact surface for the participants to follow the moving virtual target, indicated by the red overlaid
rectangle. Also, a position sensor is mounted on top to measure the finger position of the participant.
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This virtual target-tracking task is programmed with Python using a Pygame library, where the target
moves only horizontally with sinusoidal behavior. When the participant’s finger is within the moving
object, it turns green (see figure 3.3), which is an indication of perfect tracking, but when the finger
is outside the moving object, it turns red (see figure 3.4). When the target becomes red, the program
starts collecting error measurements, such as the duration of the red state and the positional difference
between the target and the participant’s finger.

Press Ctrl to select target

Press S to start trial

Active Force

Success!
F: active force / friction modulation
Esc: exit. V: hide/display target

Figure 3.3: The graphical user interface displaying the dynamic following-task. Here the user’s cursor is within the region of the
target, which is thus displayed in green.

Press Ctrl to select target
Press S to start trial

Active Force

Success!
F: active force / friction modulation

Esc: exit. V: hide/display target

Figure 3.4: The virtual simulation of the dynamic following-task, where the participant is outside the boundary of the dynamic
moving object.
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Then each participant had to interact with the Ultraloop for five trials of 15 seconds each for 4 different
conditions, similar to the earlier research by Cai[7]. The four conditions are described as follows:

1. Condition 1: No tactile feedback is implemented and the participant follows the visible moving
object.

2. Condition 2: Active lateral force feedback is implemented and the participant follows the visible
moving object.

3. Condition 3: Friction modulation is implemented and the participant follows the invisible moving
object.

4. Condition 4: Active lateral force feedback is implemented and the participant follows the invisible
moving object.

For generating the five 15 seconds trials, a Python script was implemented to generate five different
horizontal movement trajectories using the principle of a multiphase multi-sine shown in Figure 3.5.
Multiphase multi-sines generate controllable random trajectories ideal for system identification by
covering multiple frequencies in a single, reproducible signal [14]. The goal of implementing this
principle is to create natural, yet controlled, target motions for experimental trials. Each trial signal is
synthesized as a multisine of the form:

N
x(t) = E A sin(2mfit + i) (3.1)
i=1
Loaded Horizontal Target Movements (Start at 0)
400 —— Trial 1
Trial 2
—— Trial 3
300 4 —— Trial 4
—— Trial 5
200 4
ﬁ 100
=
c
2
G 0
2
k]
=
® _100
—200
-300
0 2 4 6 8 10 12 14

Time [s]

Figure 3.5: The 5 trial movement patterns, which each simulate the movement of the moving target in the following-task.

where f; are the chosen frequencies, A; are equal amplitudes, and ¢; are the randomized phases. A set
of discrete sinusoidal components is defined within a low-frequency range (0.01-0.40 Hz in 0.05 Hz
steps). These frequencies represent the building blocks of the target movement. All components are
assigned equal amplitudes, ensuring that no single frequency overshoots the motion. For each trial,
every frequency component is assigned an independent random phase uniformly distributed between 0
and 27t. This multiphase construction ensures that each trial produces a unique trajectory. Random
phases avoid repetition and prevent predictable motion patterns. Finally, the signal is shifted so that
it always starts at zero, making the beginning of each trial aligned and comparable across conditions.
Also, this way participants cannot recognize movements from the initial point. This process is executed
five times with newly randomized phase sets, generating five unique target movements; see table 3.1.



14

Unfortunately, at the time these randomized multiphase multi-sine paths were generated, the actual
random implemented phases were not recorded in the code. At the time of realization, these paths were
already implemented for the human experiments and therefore not possible to extract the same exact
values back.

Table 3.1: Multisine parameters for generating the trial movements

N A; filrad/s] ¢;[rad]
1 1 0.01 [0, 271]
2 1 0.06 [0, 27]
3 1 0.11 [0, 27]
4 1 0.16 [0, 27]
5 1 0.21 [0, 2]
6 1 0.26 [0, 2]
7 1 0.31 [0, 271]
8§ 1 0.36 [0, 27]

With 4 experimental conditions consisting of 5 trials each, it comes down to 20 combinations in total to
test. These combinations were given to the participant at random to prevent bias and pattern recognition.
For a better visual display, the test matrix is given in table 3.2.

Table 3.2: Testing Matrix for Participants

Condition Trial Movement Patterns
1) Vision Only Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
2) Vision + Active Force Feedback Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

3) No Vision + Friction Modulation Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
4) No Vision + Active Force Feedback | Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

During the experiment, there are measured values that are important to give an indication about
the participants performance. For example, the principal metric to evaluate the performance of the
participants in the tracking task was calculated by analyzing the mean error distance between the
moving target and the position of the participant’s finger over time. This error represents the deviation
between the target trajectory and the participant’s cursor trajectory, indicating whether tactile feedback
helps participants maintain accurate alignment with the moving target by comparing this for each
individual participant in each condition.

To characterize the human-in-the-loop control behavior during the tracking task, the participant’s
interaction with the Ultraloop system can be represented as a closed-loop control system. Figure 3.6
shows a block diagram of the point-following-task of the participant with the Ultraloop, based of figure
2.5. The movement of the target here is defined as f(t), which is a position function in pixels, where e(t)
is the error distance between the moving target and the finger of the participant, c(t) is the operator
output and the control input, which is a velocity and finally y(t) is the control output as a position in
pixels, which is a feedback that affects the error distance. Also, a small addition to this block diagram is
d(t), which represents control noise, intended as the noise introduced by the operator while exerting
the control action.

dit)

Visual+Tactile QOperator
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Figure 3.6: Participant-controller block diagram.
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In figure 3.7 there is a real-world visualization of the block diagram from figure 3.6, which shows
what all the inputs and outputs of the system look like while the participant is interacting in the
point-following experiment. In figure 3.7B, a zoomed-in image of the screen the participant looks at
during the experiment to see his cursor and the moving target, where sometimes the target is visible or
invisible. Figure 3.7C shows the top view of the interacting tactile display (Ultraloop) the participant
uses during the experiment, where the tactile stimulus (red arrow) in this case is the active lateral force
feedback guiding the finger towards the target.
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Figure 3.7: A: Participant conducting the point-following experiment visualized with the inputs and outputs of the
participant-controller block diagram. B: GUI showing the position of the moving target and cursor of the participant. C: Top view
of the interacting display of the Ultraloop.




Results

This chapter presents the results of the experiment to evaluate how different haptic feedback conditions
influence tracking performance during the dynamic target-following-task with the Ultraloop device.
These results show whether active lateral force feedback helps users maintain control, particularly for
conditions of varying velocity, unpredictable movement, and occluded vision. The results are structured
to address two primary performance indicators. First, an analysis of the mean error distance between
the moving target and all the participants’ finger positions over time, providing a direct measure of
tracking accuracy followed by a more detailed perspective by examining example tracking paths from
a representative participant across all feedback conditions, illustrating how resulting paths differed
between them. The second part of this chapter presents a dynamic modeling attempt using the McRuer
Crossover Model to describe how participants regulate their movements under different haptic feedback
conditions.

16
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4.1. Participant Performance

Both RMSE and average error distance are suitable standard accuracy metrics for evaluating target-
tracking performance, but because RMSE disproportionately penalizes large deviations, average error
distance was chosen as the more appropriate metric in this context [15]. The average error distance
between the participant’s finger and the moving target is analyzed, providing the mean Euclidean
distance between the participant’s trajectory and the target trajectory for each condition. These conditions
are compared with each other to see the impact of active lateral force feedback in situations with and
without visual feedback. For the average error distance, a set of box plots were made for each condition
with their five different movement trials to indicate whether all trials are evenly difficult or if one was
significantly more complicated than the others. This was not the case according to the results shown
in A.1 in the Appendix, where the mean error-distance was determined for each trial-track for all
conditions. It shows that there is no specific track with a significantly higher mean error-distance over all
four tested conditions, concluding that these movement trials were equally difficult for the participants.

More importantly, the results of the box plot made over all the participants’ mean error distances for
all conditions. Figure 4.1 shows the performance of all participants for each condition, calculating the
mean error-distance for each participant for all five movement trials of that specific condition, and then
showing it as a data-point in the box plot. Each data-point has its own specific color indicating to which
participant it belongs. Overall, this figure shows a significant difference between the first two conditions
(vision) and the last two conditions (no vision). Conditions 1 (Vision Only) and 2 (Vision + Active Force
Feedback) show significantly lower mean error-distance compared to conditions 3 (No Vision + Friction
Modulation) and 4 (No Vision + Active Force Feedback), clearly demonstrating that visual information
plays a dominant role in tracking accuracy, as expected. Also within expectations, Condition 3 (No
Vision + Friction Modulation) showed the highest error values, reflecting the difficulty of relying solely
on cues from friction modulation, while Condition 4 (No Vision + Active Force Feedback) performed
slightly better but still lagged behind the visual conditions, while conditions 1 (Vision Only) and 2
(Vision + Active Force Feedback) consistently showed the lowest overall error distances.
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Figure 4.1: Boxplots of all the 11 participants’ mean error-distance for each of the 4 testing conditions. Each condition shows a
plot of the mean error distance + standard deviation indicated on top.
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4.11. Visual Conditions

To enable a clearer comparison of the impact of active lateral force feedback for visible conditions, the
focus is placed on conditions 1 (Vision Only) and 2 (Vision + Active Force Feedback). Figure 4.2 shows
a zoomed-in part of figure 4.1 with lines connecting the corresponding participants with their mean
error-distance for the two conditions. The slope of the connecting lines reflects the extent to which
active lateral force feedback influences participant tracking performance. A steeper downward slope
indicates a greater positive impact of active lateral force feedback on performance. This figure shows
that all participant have a downward slope, meaning that condition 2 (Vision + Active Force Feedback)
where the active lateral force is implemented, reduces their mean error-distance. One small detail that
causes this is that most participants tend to overshoot in the following-task experiment for condition
1 (Vision Only) when they try to predict the trajectory of the target by going ahead with their finger
position, not expecting the small occurring changes in speed and direction. The lateral forces likely help
minimize overshoot and fine-tuning corrections, especially during the turning points of the sinusoidal
target motion, leading to smoother and more accurate tracking.

By comparing the average error distance between all participants under visual conditions, the results
show that implementing active lateral force feedback leads to a reduction of 6.5 pixels, corresponding
to a 24.1% improvement in tracking accuracy. It is also shown in the figure that the difference in the
mean error-distance is significant because the boxplots do not overlap. Furthermore, a t-test that gives a
p-value less than 0.05 (p = 0.000003) proves that condition 1 (Vision Only) has a significantly higher
error than condition 2 (Vision + Active Force Feedback), indicating that active lateral force feedback has
a positive impact on participant performance for visible target-following-tasks.
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Figure 4.2: Zoomed-in image of the boxplots of all the 11 participants’ mean error-distance for each of the 4 testing conditions,
focusing on comparing Vision Only (condition 1) to Vision + Active Force Feedback (condition 2).
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4.1.2. Non-Visual Conditions

For a specific comparison of the impact of active lateral force feedback for non-visual conditions, the
focus is placed on conditions 3 (No Vision + Friction Modulation) and 4 (No Vision + Active Force
Feedback). Figure 4.3 also shows a zoomed-in part of figure 4.1 with a line connecting the corresponding
participants with their mean error-distance for these two non-visual conditions. The trials with condition
3 (No Vision + Friction Modulation) were, for all participants, the most difficult because this bump
they feel when they move over the target is the only feedback that gives an approximate location of the
moving target for a certain time instance. Therefore, every participant quickly tends to use their finger
for active exploration in order to find the bump of the target. But for condition 4 (No Vision + Active
Force Feedback) the trials seemed less difficult due to the guiding feedback of the active lateral force
feedback. Here, it is also noticeable that almost all connections show a steep downward slope, which
means that the active force did indeed have an impact on the participants” performance. However,
individual differences occurred, with some participants (e.g., participant 008, 009) in the non-visual
force condition still exhibiting exploratory behaviors similar to those observed in condition 3 (No Vision
+ Friction Modulation). This might be due to the participant quickly losing the target and then enacting
the same behavior as the trials for condition 3 (No Vision + Friction Modulation). This suggests that for
certain participants, the active force magnitude may have been insufficient to fully suppress the need
for active exploration, or that personal differences in tactile sensitivity and interpretation affected the
ability to rely solely on force guidance.

By comparing the average all the mean error distances between all participants under non-visual
conditions, the results show that implementing active lateral force feedback compared to only friction
modulation leads to a reduction of 54.2 pixels, corresponding to a 34.8% improvement in tracking
accuracy. Also, a t-test that gives a p-value less than 0.05 (p ~ 0.00) shows that condition 3 (No Vision
+ Friction Modulation) has a significantly higher error than condition 4 (No Vision + Active Force
Feedback), indicating that active lateral force feedback has a positive impact on participant performance
for invisible target-following-tasks.
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Figure 4.3: Zoomed-in image of the boxplots of all the 11 participants’ mean error-distance for each of the 4 testing conditions,
focusing on comparing No Vision + Friction Modulation (condition 3) to No Vision + Active Force Feedback (condition 4).
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4.2. Tracking Behavior

The overall results revealed clear differences in mean error-distance across the four experimental
conditions (Figure 4.1), particularly between visual and non-visual settings. To review the resulting
tracking paths for deeper insight participant 007 was selected because his performance consistently
demonstrated one of the lowest error levels across all conditions.

4.2.1. Visual Conditions

To provide a clearer view of how these errors manifest, trial path 1 in figure 3.5 from this participant is
shown for each experimental condition. As expected for condition 1 (Vision Only) in figure 4.4, the
participant tracks the target very accurately, while the mean error-distance remains consistently low
throughout the trial, with smooth transitions during direction changes. At the peaks of the movement
pattern of the moving target, which indicate a change of moving direction, it is slightly noticeable that
the participant’s resulting path shows some overshoots, which might be due to unexpected changes in
the moving direction the participant cannot predict.

For condition 2 (Vision + Active Force Feedback) in figure 4.5, there are barely any differences compared
to the paths in condition 1 (Vision Only). However, it is slightly noticeable the participant initiates
movement more quickly and exhibits less overshoot at peaks of the trajectory (t =1, 7, 14) compared to
the Vision Only condition. The tactile cues appear to enhance the participant’s ability to make finer,
more immediate corrections and minimize positional error during rapid direction changes. So, the
addition of active force feedback to visual information results in slightly improved tracking precision.

Participant 007 - Condition 1 - Trial 1

— Target
—— Participant

100 1

X Position

©

—100 {

=200 q

0 2 4 6 8 10 12 14
Time (s)

Figure 4.4: Resulting paths generated by the moving target(green) and the participant(blue). These results come from participant
007, condition 1 (Vision Only), movement trial 1.



4.2. Tracking Behavior 21
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Figure 4.5: Resulting paths generated by the moving target(green) and the participant(blue). These results come from participant
007, condition 2 (Vision + Active Force Feedback), movement trial 1.

4.2.2. Non-Visual Conditions

The result of participant 007 for condition 3 (No Vision + Friction Modulation) in figure 4.6 shows that
the participant experiences difficulties in trying to match the movement of the target. This is expected
due to significant challenges in tracking performance when visual feedback is removed and only haptic
information from friction modulation is available. The path of the participant contains many irregular
oscillations, with peak locations and movement directions frequently misaligned with the target path.
These mismatches suggest that the participant is actively exploring the surface to locate the moving
target rather than accurately tracking it. Even though the participant’s path occasionally intersects
with the target path, which results in a tactile input from the friction modulation, he still struggles to
determine the direction of the target’s movement.

In Condition 4 (No Vision + Active Force), where directional lateral force feedback replaces visual
information, participant 007 shows improved performance compared to Condition 3 (No Vision +
Friction Modulation); see figure 4.7. Although the tracking error remains degraded relative to the visual
conditions, the movement path shows more systematic corrections and a clearer overall trajectory than
in condition 3 (No Vision + Friction Modulation). This shows that the active force feedback provides
useful directional guidance in contrast to friction modulation but cannot yet fully compensate for the
absence of visual position information. However, the tracking still shows small occasional directional
uncertainties, particularly at a small distance after a change of direction indicated by peaks(t =7, 9, 14).
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Figure 4.6: Resulting paths generated by the moving target(green) and the participant(blue). These results come from participant
007, condition 3 (No Vision + Friction Modulation), movement trial 1.
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Figure 4.7: Resulting paths generated by the moving target(green) and the participant(blue). These results come from participant
007, condition 4 (No Vision + Active Force Feedback), movement trial 1.
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4.3. McRuer Analysis

For the human tracking experiment using the McRuer Crossover Model, a Python script was implemented
to perform individual participant analyses for each condition. The collected tracking data include a
time array in which, at each timestep, the cursor position, target position, and their corresponding
tracking-error were recorded. After pre-processing the participants’ tracking data where it resamples to
60 Hz uniform time steps and normalizes positions to center around the screen midpoint, it implements
the tracking-error which is the fundamental closed-loop feedback signal. The model converts this error
into a velocity command, which is then integrated to yield a predicted cursor position. This cursor
position was predicted for each resulting path of the participant across the four experimental conditions:
(1) visible target without tactile feedback, (2) visible target with active lateral force feedback, (3) invisible
target with friction modulation feedback, and (4) invisible target with active lateral force feedback.

Fitting of the McRuer crossover model parameters was performed jointly across all the five trials
per condition by using the Differential Evolution (DE) algorithm implemented in SciPy. Differential
evolution is a population-based stochastic optimization method that is particularly effective for nonlinear,
multi-parameter problems—such as fitting models, where parameter landscapes often contain multiple
local minima [16]. The goal of the optimization is to find the set of parameters [K, T;, Tj, Ty, Te]
that minimizes the sum of the root mean squared error (RMSE) between the simulated model output
(model-predicted cursor position) and the participant’s actual cursor trajectory across all trials in a
given condition. The optimization function evaluates how well the simulated model reproduces the
participant’s tracking behavior. This approach offers several advantages for McRuer model fitting, like
it avoids becoming trapped in local minima, which is common with gradient-based methods. Also, it
can handle noisy or discontinuous objective functions, which may arise from measurement noise in
behavioral data. Eventually, this optimization procedure provided a distinct set of parameters for every
participant and condition, resulting in 44 identified models. The following bounds for these parameters
are shown in table 4.1 below, which are based on plausible estimates from literature [11]. Two boundary
sets were used to take into account that people control movement differently depending on whether
they can see the target or not. Therefore, the model uses different parameter ranges for visual and
non-visual conditions to match these natural differences in human control. Typical human parameters
reported in the literature suggest fixed values of approximately T,, = 0.1 s for neuromuscular lag and
T, = 0.2 s for effective delay [12].

Table 4.1: Boundary interval for the McRuer Crossover Parameters for identifying the participant.

Parameter Visual conditions Non-visual conditions
K, (Human Gain) [0.001, 30.0] [0.001, 10.0]

T; (Lead time constant) [0.05, 0.3] [0.05, 0.15]

T; (Lag time constant) [0.01,0.5] [0.01, 1.0]

T,, (Neuromuscular time constant) 0.1 0.1

7. (Effective time delay constant) 0.2 0.2

After optimizing the model for each individual participant-condition combination, the script visualizes
a box-plot of the parameters, which shows distribution of fitted parameters across conditions with
individual participant data points colored by participant. This analysis helps understand how control
parameters change across different experimental conditions and which parameters are most varying
between participants. With these optimized parameters the McRuer model attempts to reproduce the
general tracking behavior of participants across all conditions, each with its own fitting errors (RMSE),
measuring the difficulty of identifying their control behavior. The parameters fitted to each participant
[Kp, Tp, Ti] revealed clear trends that reflect the influence of visual and tactile feedback on control
performance. Although it is important to note that the model’s fit was not optimal across all experimental
conditions—particularly those without vision—its application offers a valuable, measurable perspective
on the adaptability in human control.
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4.3.1. Model Fitting Error

Before the optimized fitted McRuer Models are evaluated for their specific parameters it is important to
have an indication how well these crossover models performed in identifying the participants’ control
behavior. The McRuer crossover model demonstrated varying levels of fitting performance across the
four experimental conditions in figure 4.8, which shows that participant 007 is a good example, due to
having the lowest fitting error in conditions 1 (Vision Only) and 3 (No Vision + Friction Modulation).
To give a more insightful explanation about the varying fitting error among the four experimental
conditions, a trial path is shown for each of these experimental condition from participant 007. The
model achieved its lowest sum of fitting error in conditions 1 (Vision Only) and 2 (Vision + Active
Force Feedback), with only minimal difference between these visual conditions. In condition 1 (Vision
Only) the sum all the fitting error has a mean value of 490 pixels, while for condition 2 (Vision + Active
Force Feedback) the mean of the total fitting error is at 517 pixels. This performance indicates that
the McRuer model manages to effectively capture the human control strategy when visual feedback is
available, regardless of the addition of tactile cues in Condition 2 (Vision + Active Force Feedback). This
is visible in figure 4.9 and 4.10 where the generated model (red) path does not perfectly match with
the participant path (blue), however it can capture the behavior of the participant by closely oscillating
at the same time. In the legend of the top-left corner the parameters are displayed for the optimized
McRuer model for that specific condition including the sum RMSE of all the fitted model paths.
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Figure 4.8: Boxplots of all the model fitting error values of each participant-condition combination for the 4 testing conditions.
Each condition shows a boxplot of the fitting error values of the optimized McRuer crossover model, which measures how precise
control behavior is captured. Red line: Median. Blue line: Mean.
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Figure 4.9: Resulting paths generated by the moving target(green), the participant(blue) and the McRuer crossover model(red).
Top-right legend displays the optimized parameters for the fitted McRuer model. These results come from participant 007,
condition 1 (Vision Only) and movement trial 5.
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Figure 4.10: Resulting paths generated by the moving target(green), the participant(blue) and the McRuer crossover model(red).
Top-right legend displays the optimized parameters for the fitted McRuer model. These results come from participant 007 during
condition 2 (Vision + Active Force Feedback) and movement trial 5.
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Unfortunately, a significant increase in fitting errors was observed in Condition 3 (No Vision + Friction
Modulation), with an average sum of 931 pixels, representing the poorest model performance across all
conditions. This deteriorating fit (increasing RMSE) in Condition 3 (No Vision + Friction Modulation) is
due to participants using irregular corrections because they only feel bumps and McRuer’s continuous
feedback model captures average behavior but misses discrete corrections. Figure 4.11 shows the
result of participant 007 for condition 3 (No Vision + Friction Modulation) and clearly shows that the
participant experiences difficulties in trying to match the movement of the target. The large amount
of irregular oscillations that mismatch the moving target make it difficult for the model to identify a
certain behavior, especially when the participant does not know where to look, therefore with no visual
feedback, the human behavior becomes more unpredictable, making it almost impossible for the model
to identify an average behavior.
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Figure 4.11: Resulting paths generated by the moving target(green), the participant(blue) and the McRuer crossover model(red).
Top-right legend displays the optimized parameters for the fitted McRuer model. These results come from participant 007 during
condition 3 (No Vision + Friction Modulation) and movement trial 5.

Condition 4 (No Vision + Active Force Feedback) showed moderate fitting performance, with lower fitting
errors compared to Condition 3 (No Vision + Friction Modulation) but still relatively high compared
to the two visual conditions, with an average sum of 740 pixels as fitting error. This improvement
suggests that active lateral force feedback provides more intuitive directional information than friction
modulation, enabling participants to develop control strategies that help more to approximate the
McRuer crossover model, see figure 4.12. However, the higher fitting errors compared to the visual
conditions indicate that even active force in non-visual conditions have different tracking strategies than
the visible tracking conditions.
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Figure 4.12: Resulting paths generated by the moving target(green), the participant(blue) and the McRuer crossover model(red).
Top-right legend displays the optimized parameters for the fitted McRuer model. These results come from participant 007 during
condition 4 (No Vision + Active Force Feedback) and movement trial 5.

Overall, in conditions 1 (Vision Only) and 2 (Vision + Active Force Feedback) the participants can
see the target, but in conditions 3 (No Vision + Friction Modulation) and 4 (No Vision + Active Force
Feedback) they cannot, while the model assumes they can, which means the model is using information
the participants do not have access to. Consequently, the resulting model parameters are not a reliable
reflection of the human’s actual control strategy in those non-visual conditions. The results show that
the McRuer crossover model can describe tracking behavior in visual conditions, however, it may need
adjustments or even implement other alternative identification models to better capture human control
strategies when visual feedback is absent.
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4.3.2. Parameter Optimization

Crossover Gain

Figure 4.13 plots the average control gain (K}) for each condition in the expected descending order
of task difficulty: highest for Condition 2 (Vision + Active Force Feedback), followed by Condition 1
(Vision Only), Condition 4 (No Vision + Active Force Feedback), and lowest for Condition 3 (No Vision +
Friction Modulation). However, it is crucial to note that the McRuer model fundamentally failed to
correctly identify control behavior in Conditions 3 and 4, as its optimization assumes that without
visual feedback the participants have sufficient information with haptic feedback only; consequently,
the resulting parameters for these non-visual conditions are not reliable indicators of the actual control
strategy.

In the visual conditions (see figure 4.14), the model captured the control gains of each individual
participant, connected by colored lines, showed mixed responses to the addition of force feedback in
Condition 2 (Vision + Active Force Feedback): some increased, some decreased, and others remained
similar to Condition 1 (Vision Only). According to the McRuer model, this individual variation resulted
in only a negligible mean increase in K, ( 0.1), indicating that active lateral force feedback provided
barely any improvement to responsiveness when the target was visible.

Unfortunately, for the non-visual conditions (see figure 4.15), the identified parameters reflect an
unreliable fit. While fitted gains were typically lowest for Condition 3 (No Vision + Friction Modulation)
and showed a slight mean increase ( 0.07) for Condition 4 (No Vision + Active Force Feedback) with
active force feedback, this minimal improvement is an artifact of the failed model identification. The
core finding is that the McRuer model is ill-suited to describe behavior when participants cannot see the
target, making a clear interpretation of K, trends in these conditions complicated.
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Figure 4.13: Boxplots of all the K}, parameter values of each participant for the 4 testing conditions. Each condition shows a
boxplot of the K, values of the optimized McRuer crossover model, which identifies their control behavior. Red line: Median.
Blue line: Mean.
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Figure 4.14: Zoomed-in view of the boxplots of parameter values K, of all optimized McRuer models for each
participant-condition combination, focusing on comparing Vision Only (condition 1) to Vision + Active Force Feedback (condition
2). Red line: Median. Blue line: Mean.
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Figure 4.15: Zoomed-in view of the boxplots of parameter values K}, of all optimized McRuer models for each
participant-condition combination, focusing on comparing No Vision + Friction Modulation (condition 3) to No Vision + Active
Force Feedback (condition 4).
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Lead Time Constant

The optimized lead time constants (1} ) presented in Figure 4.16 demonstrate plausible values that reflect
varying degrees of anticipatory control across the experimental conditions. The T}, values fall within
the expected range, representing realistic human prediction horizons for dynamic tracking tasks. The
expected systematic ordering of mean (blue line) T}, values, which is highest in Condition 2, followed
by Condition 1, then Conditions 3 and 4, reveals how different forms of tactile feedback conditions
influence participants’ predictive capabilities.

The slight increase of the mean of the optimized T; values in Condition 2 (Vision + Active Force)
compared to Condition 1 (Vision Only) indicates that the addition of active lateral force feedback
slightly enhances participants’ ability to anticipate target motion. This effect suggests that combining
visual with tactile information enables more confident prediction of trajectory patterns. The remarkable
lower T;, values in non-visual Conditions 3 and 4 confirm again the critical factor of visual feedback in
enabling predictive control, with participants reverting to primarily exploratory strategies when vision
is unavailable. Notably, the minimal difference in T, between Conditions 3 and 4 indicates that neither
friction modulation nor active force feedback can fully give the same predictive capabilities enabled by
vision. But then it must be taken into account that the model was not able to fully grasp the continuous
behavior for the non-visual conditions.
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Figure 4.16: Boxplots of all the Tj parameter values of each participant for the 4 testing conditions. Each condition shows a
boxplot of the Ty, values of the optimized McRuer crossover model, which identifies their control behavior. Red line: Median.
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Lag Time Constant

The optimized lag time constants (1) presented in Figure 4.17 demonstrate how different sensory
feedback modalities influence participants” motor response smoothing strategies. The descending order
of the mean optimized T; values (blue line), which is highest in Condition 4 (No Vision + Active Force),
followed by Condition 3 (No Vision + Friction), then Conditions 2 and 1, reveals that their movements
became slower and smoother when they were unable to see the target to prevent irregular corrections
and maintain stability. The minimal difference in T; between Conditions 1 and 2 (Vision conditions)
suggests that while active force feedback enhances tracking precision, it does not substantially alter the
basic smoothing strategy when visual information is available.

This pattern demonstrates that participants adapt their control strategies systematically based on
available sensory information, with visual conditions enabling more responsive control compared to
non-visual conditions. But then again, capturing the perfect control behavior for these non-visual
conditions is quite complicated.
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Figure 4.17: Boxplots of all the Ty parameter values of each participant for the 4 testing conditions. Each condition shows a
boxplot of the Tj values of the optimized McRuer crossover model, which identifies their control behavior. Red line: Median. Blue
line: Mean.



Discussion & Conclusion

5.1. Discussion

This section discusses the experimental findings and practical limitations encountered during the user
study of surface haptic feedback using the Ultraloop. It focuses on interpreting the results of the
target-following experiments conducted with the Ultraloop, highlighting the behavioral differences
between friction modulation and active lateral force feedback. Then, it also discusses key limitations
and their implications for future research.

5.11. Interpretation of Results

The analysis of the mean error-distance between the participant’s finger and the moving target
demonstrates the increasing performance of active lateral force feedback. In both visual and non-visual
scenarios, this form of feedback led to the lowest tracking errors. Condition 2 (Vision + Active Force)
resulted in a significant reduction in mean error-distance compared to Condition 1 (Vision Only). This
indicates that the active force feedback provided by the Ultraloop is not redundant when vision is
available; instead it acts as an extra support that enhances precision.

For the non-visual conditions, Condition 4 (No Vision + Active Force Feedback) showed much
improvement compared to Condition 3 (No Vision + Friction Modulation). Friction modulation, which
provides only discrete bump cues, proved to be an ineffective tactile guide for a continuous tracking
task, resulting in high oscillatory errors. This aligns with observed participant behavior, where users
frequently choose to actively explore the surface to detect these cues to locate the target, which comes
with increasing delays and errors, especially in the absence of vision.

In contrast, the continuous, directional push/pull of the active lateral force feedback provided partici-
pants with a remarkably stable connection with the invisible target. This form of feedback proves to be
more effective by replacing the missing visual information with a continuous tactile signal that expresses
direction of the targeted position. This finding also addresses the limitation of traditional touchscreens
stated in the introduction, stating their heavy reliance on visual attention, by demonstrating that
programmable lateral forces can perhaps replace vision for dynamic tasks.

For the McRuer analysis during the model fitting process, significant challenges emerged in parameter
optimization, particularly for the non-visual conditions 3 (No Vision + Friction Modulation) and 4
(No Vision + Active Force Feedback). For these conditions, the model showed significant high fitting
errors, meaning that it was unable to identify a consistent control behavior from the participants. While
active force feedback improves overall tracking performance, it does not significantly enhance predictive
control beyond what visual information alone provides. This suggests that trajectory anticipation
primarily relies on visual processing pathways, with haptic feedback serving as support for reactive
error correction rather than enabling true predictive control capabilities.
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5.1.2. Limitations and Future Work

Although the findings demonstrate the potential of active lateral force feedback for improving haptic
interaction, several practical and methodological limitations should be noted. For example, each trial
was relatively short due to the heat building up on the Ultraloop surface, which may have affected
tactile intensity over time. Longer trials could provide more insight into how users adapt and develop
behavior models of the device dynamics.

Also, some irregularities in the recorded position data, likely caused by the Neonode sensor’s sampling
limitations or electrical interference, occasionally required restarting the system. These hardware
constraints may have introduced minor inconsistencies in the data. Additionally, the experiments
were conducted on the original Ultraloop device, but a newer version was available, the Flatloop; see
Appendix D. This device was created during the duration of this thesis but not yet stable enough for the
experiments of this study. Future research using this improved hardware could perhaps offer more
consistent force outputs and allow for a broader range of feedback conditions.

The predicted cursor paths from the optimized McRuer model parameters visually confirm its core
limitations. While it generates plausible trajectories for visual tracking, its predictions fail for non-visual
conditions. The poor fit is therefore a direct result of an invalid model structure, not merely an
optimization shortcoming for non-visual conditions. This highlights a limitation that the model’s
structure cannot capture the full complexity of human adaptive control for non-visual condition with
multiple paths.

Instead of forcing a single model structure, like McRuer onto all resulting data, a more robust approach
would be to develop a framework for multi-model identification. Future studies could involve machine
learning or statistical criteria to select the most appropriate model structure for each trial or condition
based on the available sensory information and observed participant behavior.
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5.2. Conclusion

The goal of this research was to investigate the effect of the Ultraloop’s lateral force feedback on
user performance in a dynamic point-following-task, specifically focusing on tracking error and the
adaptation of human control dynamics. The hypothesis stated that active lateral force feedback would
improve performance by reducing tracking errors and enhancing control dynamics compared to non-
feedback or alternative feedback conditions. This research shows that the results support the hypothesis
while also giving insights into how human participants adapt their control strategy according to each
experimental condition, with a clear distinction between the effects of friction modulation and active
lateral force feedback on user performance. Active lateral force feedback functioned as a supportive
cue in visual conditions, lowering the average tracking error by 24.1%, and served as a highly effective
sensory substitute in non-visual conditions, where it outperformed friction modulation by reducing the
average tracking error by 34.8%.

Friction modulation feedback does not express the direction of the target; instead, it merely signals
when the fingertip crosses a particular target point by creating a localized change in surface resistance.
Consequently, this form of feedback supports only detection but not continuous guidance, which limits
its application for non-visual dynamics.

In contrast, active lateral force feedback provides a continuous directional cue that directly guides the
user’s finger towards the moving target. The consistent reduction in mean error distance under active
lateral force feedback conditions indicates that participants were able to rely on these cues for real-time
correction. The improvement noticeable in non-visual conditions suggests that active lateral forces can
serve as effective compensatory feedback in non-visual conditions.

In conclusion, these findings confirm that the Ultraloop’s lateral force feedback provides an effective
tactile mechanism for minimizing tracking error in dynamic environments. It significantly improves
performance as a supporting cue when vision is available and serves as a potential sensory substitute
when vision is absent, significantly outperforming friction-based feedback(friction modulation). All in
all, the demonstrated effectiveness of active lateral force feedback shows promising possibilities for its
application in various scenarios, including assistive technologies and sensory substitution situations.
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Appendix

Table A.1: Examples of Active Tactile Surface Devices

Device Name

Type of Haptic Feedback

Purpose / Application

T-PaD [17]

Ultrasonic vibration to modulate
shear forces

Creating virtual textures and guiding
finger motion

Ultraloop [6]

Ultrasonic vibration for traveling
wave-based lateral force actua-
tion

Active lateral force feedback to enhance
touch interaction by dynamically guid-
ing finger motion

UltraShiver [18] Resonant ultrasonic vibration | Delivers subtle, continuous lateral
and electroadhesion forces for tactile illusions
eShiver [19] Electroadhesion-based asymmet- | Rendering directional friction and force

ric friction

feedback on surfaces

SwitchPad [20]

In-plane ultrasonic oscillation
and out-of-plane electroadhesion

Provides wide-area tactile feedback for
immersive interactive surfaces

LateralPad [21]

Ultrasonic vibration in both nor-
mal and lateral direction

Generating lateral force feedback on a
finger touching a glass
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Appendix - McRuer Analysis

B.1. McRuer Analysis Results
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Figure B.1: Experimental results of participant 001, condition 1. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:

Target path. Blue line: Participant path. Red line: Model path.
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Figure B.2: Experimental results of participant 001, condition 2. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.3: Experimental results of participant 001, condition 3. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.4: Experimental results of participant 001, condition 4. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.5: Experimental results of participant 002, condition 1. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.6: Experimental results of participant 002, condition 2. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.7: Experimental results of participant 002, condition 3. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.8: Experimental results of participant 002, condition 4. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.9: Experimental results of participant 003, condition 1. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.



B.1. McRuer Analysis Results 45

Participant 003 - Condition 2

Tal 1 Target vs Participantl.'){aﬁ ylcRuer Model Tial 3
— Target 300 { = Target 400 — Target
200 —— Participant —— Participant —— Participant
—— McRuer Model ey | p— McRuer Model —— McRuer Model [
2004 300 4
100 1
5 § 150 5
s G G 200
8 o] S 100 8
x x x
50 4
100 1
-100 o9
_s04
04
T T T T T T —100 1 T T T T T T T T T T \ | T T
0 2 4 6 8 10 12 4 ] 2 4 6 8 0 12 14 0 2 4 6 12 14
e, I
s e Model P4 areHnaters
100
200 4
o4 Optimized Parameters:
100 ] K=1336
§ § TL = 1.000
g g -100 4
* 01 x
—200 1 .
RMSE = 523.2919
~100 —— Target —— Target
—— Participant =300 1 —— Participant
—— McRuer Model —— McRuer Model
0 2 4 6 8 0 12 14 ] 2 4 6 8 0 12 14
Time (s) Time (s)

Figure B.10: Experimental results of participant 003, condition 2. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.11: Experimental results of participant 003, condition 3. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.12: Experimental results of participant 003, condition 4. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.13: Experimental results of participant 004, condition 1. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.14: Experimental results of participant 004, condition 2. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.15: Experimental results of participant 004, condition 3. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.16: Experimental results of participant 004, condition 4. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.17: Experimental results of participant 005, condition 1. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.18: Experimental results of participant 005, condition 2. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.19: Experimental results of participant 005, condition 3. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.20: Experimental results of participant 005, condition 4. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.21: Experimental results of participant 006, condition 1. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.22: Experimental results of participant 006, condition 2. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.23: Experimental results of participant 006, condition 3. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.24: Experimental results of participant 006, condition 4. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.25: Experimental results of participant 007, condition 1. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.26: Experimental results of participant 007, condition 2. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.

Participant 007 - Condition 3
Target vs Participantn)(gl McRuer Model

Trial 1 Trial 3
—— Target 400 —— Target
—— Participant 300 —— Participant
200 —— McRuer Model 300 4 —— McRuer Model
200
100 ] 200
g § 100 §
8 8 o] 8 1004
= 0 = x
~100 4 01
—100 1 —200 4 = Target B
—— Participant —100
—300 4 —— McRuer Model
—200-1— - T : . T T - T T T + T ; : - —200 1 T T : - - T -
0 2 4 6 8 10 12 14 [ 2 4 6 8 0 12 14 2 4 6 8 10 12 14
bt
s Ths's Model Bt dtheters
100 4 — Target 200 4
—— Participant
300 4 —— McRuer Model 300
200 Optimized Parameters:
- 200 -
-] S 100
0 @
g 1004 8 04
x x
o] ~100
~200 —— Target
—100 4 —— Participant
~300
—— McRuer Model
=200 - T T T T T T T T T T T T T u T
0 2 4 6 8 10 12 14 [ 2 4 6 8 0 12 14
Time (s) Time (s)

Figure B.27: Experimental results of participant 007, condition 3. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.28: Experimental results of participant 007, condition 4. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.29: Experimental results of participant 008, condition 1. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.30: Experimental results of participant 008, condition 2. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.31: Experimental results of participant 008, condition 3. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.32: Experimental results of participant 008, condition 4. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.33: Experimental results of participant 009, condition 1. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.34: Experimental results of participant 009, condition 2. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.35: Experimental results of participant 009, condition 3. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.36: Experimental results of participant 009, condition 4. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:

Target path. Blue line: Participant path. Red line: Model path.
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Figure B.37: Experimental results of participant 010, condition 1. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:

Target path. Blue line: Participant path. Red line: Model path.
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Figure B.38: Experimental results of participant 010, condition 2. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.39: Experimental results of participant 010, condition 3. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.40: Experimental results of participant 010, condition 4. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.41: Experimental results of participant 011, condition 1. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.
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Figure B.42: Experimental results of participant 011, condition 2. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:

Target path. Blue line: Participant path. Red line: Model path.
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Figure B.43: Experimental results of participant 011, condition 3. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:

Target path. Blue line: Participant path. Red line: Model path.
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Figure B.44: Experimental results of participant 011, condition 4. Legend bottom-right displaying the optimized McRuer model
parameters for generating the model path trying to identify the control behavior for this participant and condition. Green line:
Target path. Blue line: Participant path. Red line: Model path.



Appendix - Ultraloop Device
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Figure C.1: (a) The study employed an ultrasonic traveling-wave haptic touchpad through which users interacted with the surface
to perceive haptic guidance or virtual objects. (b) The system architecture enabled real-time programmable impedance rendering
by updating dual output channels to the touchpad according to finger position, which allowed the generation of
application-specific features such as bumps, position-dependent friction, and variable impedance profiles. [7]
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Figure C.2: (a) Schematic view of the Ultraloop. (b) Symmetric and asymmetric mode of the 24th order. (c) Natural frequency of

the 24th modes for various length-to-radius ratios. (d) Experimental Bode plot of the two frequency-degenerate modes. (e) Mode

shapes of symmetric mode, asymmetric mode and the resulting traveling wave are shown as normalized colormaps. The color at

each grid corresponds to the vibration amplitude measured by a laser Doppler vibrometer. Note that the symmetric mode and
asymmetric mode are orthogonal to each other.[6]
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Appendix - Flatloop Device

Figure D.1: The assembly of the complete designed Flatloop device in Onshape.
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Figure D.2: The components inside the Flatloop device displayed in Onshape.

Figure D.3: The components inside the Flatloop device displayed on the real device.
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Figure D.4: The complete Flatloop device.
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