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Fuzzy Adaptive Constrained Consensus Tracking of
High-Order Multi-agent Networks: A New

Event-Triggered Mechanism
Ning Wang , Ying Wang, Guanghui Wen , Senior Member, IEEE, Maolong Lv , and Fan Zhang

Abstract—This article aims to realize event-triggered con-
strained consensus tracking for high-order nonlinear multiagent
networks subject to full-state constraints. The main challenge of
achieving such goals lies in the fact that the standard designs [e.g.,
backstepping, event-triggered control, and barrier Lyapunov
functions (BLFs)] successfully developed for low-order dynamics
fail to work for high-order dynamics. To tackle these issues, a
novel high-order event-triggered mechanism is devised to update
the actual control input, lowering the communication and compu-
tation burden. More precisely, compared with the conventional
event-triggered mechanism, not only the amplitudes of control
signals and a fixed threshold are considered but a monotonically
decreasing function is introduced to allow a relatively big thresh-
old, while guaranteeing consensus tracking error to be small.
Then, a high-order tan-type BLF working for both constrained
and unconstrained scenarios is incorporated into the distributed
adding-one-power-integrator design for the purpose of confining
full states within some compact sets all the time. A finite-time
convergent differentiator (FTCD) is introduced to circumvent the
“explosion of complexity.” The consensus tracking error is shown
to eventually converge to a residual set whose size can be adjusted
as small as desired through choosing appropriate design param-
eters. Comparative simulations have been conducted to highlight
the superiorities of the developed scheme.

Index Terms—Event-triggered control (ETC), full-state con-
straints, high-order multiagent networks.
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I. INTRODUCTION

RECENT years have witnessed a tremendous progress in
the field of distributed control of nonlinear multiagent

networks and, in general, they can be classified by two cat-
egories: 1) strict-feedback multiagent networks [1]–[3] and
2) pure-feedback multiagent networks [4]–[6], i.e., systems
whose dynamics are described or can be transformed into
a chain of integrators with power equal to one. For these
results, the commonly adopted approach is an extension of
the well-known backstepping technique [7] in a distributed
sense by introducing one linear integrator at each iteration,
and also combined with universal approximators [e.g., fuzzy
logic systems (FLSs) and neural networks (NNs)] to handle
unparameterized nonlinearities [8]–[10]. Compared to NNs,
FLSs are particularly studied since the experience from expert
human operators can be systematically included into fuzzy IF-
THEN rules to be part of the control [11], [12]. High-order
nonlinear multiagent networks are a generalization of strict-
feedback or pure-feedback multiagent networks, in which
the virtual and actual control terms are the power func-
tions with positive odd integers rather than linear ones. It
is well documented in literature that high-order dynamics,
appearing in aerospace and robotic applications [13], [14], are
extremely challenging to deal with, as their linearized dynam-
ics might possess uncontrollable modes whose eigenvalues are
on the right half-plane [15], making all standard feedback lin-
earization or standard backstepping methodologies [1]–[10]
inapplicable. The adding-one-power-integrator procedure was
therefore proposed in [16] to overcome the aforementioned
challenges by introducing one high-power integrator instead
of a linear one at each iteration. Since then, fruitful results
have been obtained for single high-order system [17]–[19]
and multiple high-order systems [20]–[22]. However, it has
to be stressed that the above-mentioned results in [17]–[22]
suffer from two major drawbacks: 1) they relied on the peri-
odic sampling mechanism and 2) they did not take into account
full-state constraints. The importance of those two points are
highlighted hereafter.

It is well recognized that the task of the periodic sam-
pling mechanism is to execute every fixed period of time,
resulting in unnecessary waste of communication and com-
puting resources [23]. To solve this issue, event-triggered
control (ETC) was formulated in [24] where the task is
to execute only when the triggering errors are larger than
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some prespecified thresholds. Since then, massive ETC strate-
gies have been proposed for single systems [25]–[27] and
multiagent networks [28]–[32]. Unfortunately, all above-
mentioned ETC protocols are solely suitable for low-order
dynamics (i.e., the powers are equal to one) and cannot be
directly applied to high-order cases. This is because the exist-
ing event-triggered mechanisms rely on the precondition that
the signs of the combination terms of the local tracking errors
and the transition control signals are less than or equal to 0.
However, the combination terms cannot be obtained and their
signs cannot also be determined due to the existence of high
powers (see discussions in Remark 6). In addition, the exist-
ing thresholds in [23]–[28] and [30]–[32] are composed by the
amplitudes of control signals as well as a fixed threshold. Such
designs theoretically imply that tracking accuracy is weakened
when the magnitudes of control signals become large. In prac-
tical scenarios, it usually requires small consensus tracking
error, while guaranteeing larger threshold (see discussions in
Remark 7). To the best of our knowledge, such an answer
is missing in the existing literature. In other words, how to
establish a balance between tracking performance and the
magnitudes of control signals needs to be further researched.
Thence, a new event-triggered mechanism must be sought
going beyond the state-of-the-art for high-order multiagent
networks.

Besides, in practical engineering systems, the states are typ-
ically required to satisfy various restrictions and the violation
of these constraints may deteriorate system performance, or
even cause instability [33], [34]. Barrier Lyapunov function
(BLF) originally proposed in [35] has been successfully uti-
lized to handle such an issue in the context of multiagent
networks [36]–[39]. Nevertheless, most existing literature
in [36] and [39] require the agent dynamics to be in the form
of low-order systems. The critical difficulty of extending the
available BLF to high-order systems consists in how to con-
struct some appropriate Lyapunov functions with well-imposed
exponential powers. Despite two recent works in [40] and [41]
were dedicated to solving this problem, they are neither suit-
able for multiagent networks nor do they consider the ETC.
Motivated by the above discussions, the main innovative points
of this work are listed as follows.

1) This seems to be a pioneering work of event-triggered-
constrained consensus tracking design for high-order
nonlinear multiagent networks in spite of ETC input and
full-state constraints.

2) To overcome the difficulty that the existing event-
triggered mechanisms in [23]–[32] cannot be used for
high-order dynamics due to the presence of high-powers,
a novel high-order event-triggered mechanism is for the
first time formulated for (1) which is designed in com-
bination with a new monotonically decreasing function
that enables us to give a larger threshold to trigger the
events as less as possible, while making the consensus
tracking error smaller.

3) A high-order tan-type BLF is appropriately adopted to
handle full-state constraints in the framework of the dis-
tributed adding-one-power-integrator control. Different
from the existing results [18]–[22], we ensure that the

full-state constraints are not transgressed while guaran-
teeing the boundedness of closed-loop networks.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Algebraic Graph Theory

Let us first give some preliminaries on the graph theory.
The communication topology among agents is described by a
directed graph G = (V, E) with V = {v0, v1, . . . , vM}(M ≥ 2)
and E ⊆ V × V being the set of nodes (agents) and the set of
edge, respectively. A directed edge eji = (j, i) ∈ E represents
that agent i can obtain information from agent j. The neigh-
bor set of agent i is denoted by Ni = {j|eji ∈ E}. Because
agent 0 plays a special role (leader), let us consider the sub-
graph defined by G = (V, E) with V = {v1, . . . , vM} the
set of follower agents and E ⊆ V × V defined accordingly.
For this subgraph, let us define the adjacency matrix A =
[aij] ∈ R

M×M as follows: if eji ∈ E , then aij > 0; otherwise,
aij = 0. The Laplacian matrix L associated with G is defined as

L =
[

0 0T
M×1

−θ L + B
]

with B = diag[θ1, . . . , θM], where θi > 0

if the leader 0 ∈ Ni, i = 1, . . . ,M and θi = 0 otherwise.
Moreover, θ = [θ1, . . . , θM]T and L = D−A is the Laplacian
matrix related to L with D = diag{d1, . . . , dM} ∈ R

M×M ,
where di = ∑

j∈Ni
aij. The directed graph G contains at least

one directed spanning tree with the leader as the root [5]. It
should be noted that L + B is a nonsingular M-matrix [22].

B. Problem Statement

Consider a multiagent network whose follower agents have
the following nonlinear dynamics:⎧⎨

⎩
χ̇i,m = ψi,m

(
χ i
)+ φi,m

(
χ i,m

)
χ

pi,m
i,m+1

χ̇i,ni = ψi,ni

(
χ i
)+ φi,ni

(
χ i
)
u

pi,ni
i

yi = χi,1

(1)

for 1 ≤ i ≤ M, 1 ≤ m ≤ ni − 1, where χ i,m = [χi,1, χi,2,

. . . , χi,m]T ∈ R
m and χ i = [χi,1, χi,2, . . . , χi,ni ]

T ∈ R
ni are the

states, yi ∈ R and ui ∈ R are the output and the input signal of
the ith follower agent, respectively. The functions ψi,m(·) and
φi,m(·) are unknown smooth nonlinearities, and pi,m ∈ Qodd,
where Qodd denotes the set of positive odd integers. All states
remain within the following feasible set:

�χi,m := {
χi,m ∈ R,

∣∣χi,m(t)
∣∣ ≤ kbi,m

}
(2)

for some known upper bounds kbi,m > 0 (1 ≤ i ≤ M, 1 ≤
m ≤ ni).

Remark 1: The importance of the high-order nonlinear
multiagent networks covers both theoretical and engineering
aspects: from the theoretical point of view, the high-order non-
linear dynamics (1) generalize those of [3], [4], [8]–[10], [28],
[30], [38], and [39] because the multiagent models in [3], [4],
[8]–[10], [28], [30], [38], and [39] are a special case of (1)
when pi,m = 1. From the application point of view, dynam-
ics (1) can describe relevant classes of practical systems, such
as dynamical boiler-turbine units, hydraulic dynamics, poppet
valve systems, or underactuated, weakly coupled mechani-
cal systems with cubic force-deformation relations (nonlinear
spring forces).
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Control Objective: We aim to design an event-triggered con-
sensus tracking control protocol for each follower agent such
that each follower agent’s output yi(t) can track the reference
signal yL(t) with tunable tracking error. In addition, all sig-
nals of the closed-loop networks remain bounded as well as
the full-state constraints are not violated.

At this point, the following assumptions and lemmas are
first provided.

Assumption 1 [21]: For each follower agent i, we assume
the sign of φi,m(·) is positive and there exist known real
constants φ

i,m
> 0 and φi,m > 0, (1 ≤ m ≤ ni) satisfy

φ
i,m

≤ |φi,m(·)| ≤ φi,m.

Assumption 2 [37]: For a continuously differentiable refer-
ence signal yL(t) of leader agent 0, there exist known positive
constants y∗

L < kbi,m and y∗
L,1 such that |yL| ≤ y∗

L and
|ẏL| ≤ y∗

L,1.
Remark 2: Assumption 1 is given to ensure the controlla-

bility of system (1). Assumption 2 is standard and can be
found in [33] and [37]–[40]. It should be noted that for the
state-constrained multiagent networks, it is essential to select
suitable bounded reference signal yL(t) to be tracked. Thus,
Assumption 2 is reasonable, and we can always provide a
robust estimate about the upper bound of yL(t).

Lemma 1 [22]: For any χ1, χ2 ∈ R and positive odd integer
b, there exist real-valued functions r1(·, ·) and r2(·, ·) such that

(χ1 + χ2)
b = r1(χ1, χ2)χ

b
1 + r2(χ1, χ2)χ

b
2

where r1(χ1, χ2) ∈ [℘
1
, ℘1] with ℘

1
= 1 − ε and ℘1 =

max{1 + ε, 2b−1}, with ∀ε ∈ (0, 1) a constant, |r2(χ1, χ2)| ≤
℘2 with constant ℘2 > 0 independent of χ1 and χ2.

Lemma 2 [26]: The hyperbolic tangent function tanh(•) is
continuous and differentiable, for any δ > 0 and χ ∈ R, it has

0 ≤ |χ | − χ tanh
(χ
δ

)
≤ κδ, − χ tanh

(χ
δ

)
≤ 0

where κ = supt>0{(t/[1 + et])} = 0.2785.
Lemma 3 [18]: Let ζ1 ∈ R, ζ2 ∈ R, and r1 and r2 be

positive constants. For any � > 0, it holds that

|ζ1|r1 |ζ2|r2 ≤ r1� |ζ1|r1+r2

r1 + r2
+ r2�

−r1/r2 |ζ2|r1+r2

r1 + r2
.

Lemma 4 [40]: For a given positive constant m, and every
ζ1 ∈ R and ζ2 ∈ R, there holds∣∣ζm

1 − ζm
2

∣∣ ≤ 	m

(
|ζ1 − ζ2|m−1 + |ζ2|m−1

)
|ζ1 − ζ2|

where 	m = m(1 + 2m−3) is a positive constant.

C. Fuzzy Logic Systems

Define a set of fuzzy IF-THEN rules, where the ith IF-
THEN rule is written as [42] follows.
Ri: If Z1 is Fi

1 and, . . . , and Zn is Fi
n, then y is Bi, where

Z = [Z1, . . . ,Zn]T ∈ R
n, and y ∈ R are the input and output of

the FLSs, respectively, and Fi
1, . . . ,Fi

n and Bi are fuzzy sets in
R. Let h(Z) be a continuous function defined on a compact set
�Z. Then, for a given desired level of accuracy κ > 0, there
exists an FLS W∗TS(Z) such that supZ∈�Z

|h(Z) − WTS(Z)| ≤
κ, where W = [�1, . . . ,�f ]T is the adaptive fuzzy parameter

vector in a compact set �W . f is the number of the fuzzy
rules. S(Z) = [ψ1(Z), . . . , ψf (Z)]T is the fuzzy basis function
vector with ψi(Z) = 
n

j=1μFi
j
(Zj)/

∑N
i=1 [
n

j=1μFi
j
(Zj)], where

μFi
j
(Zj) is a fuzzy membership function of the variable Zj in

the IF-THEN rule. Let W∗ be the optimal parameter vector,
which is defined as

W∗ = arg min
W∈�W

{
sup

Z∈�Z

∣∣∣h(Z) − WTS(Z)
∣∣∣
}
.

Then, we can further obtain

h(Z) = W∗TS(Z) + κ (3)

where κ is the minimum fuzzy approximation error.

III. DISTRIBUTED EVENT-TRIGGERED-CONSTRAINED

CONSENSUS PROTOCOL DESIGN

The distributed adding-one-power-integrator method,
combined with high-order tan-type BLFs and a new
high-order event-triggered mechanism, will be employed
to facilitate the following control design. Define
a constant qi = max1≤m≤ni{pi,m}(i = 1, 2, . . . ,M).
Before moving on, the following transformation is
given: {

si,1 = ∑
j∈Ni

aij
(
yi − yj

)+ θi(yi − yL)

si,m = χi,m − χi,m,c, m = 2, 3, . . . , ni
(4)

where i = 1, . . . ,M, and xi,m,c represents the virtual con-
trol inputs specified later. Moreover, |χi,m,c| < χ∗

i,m,c is
established, where χ∗

i,m,c > 0 is a constant. After collecting
s1 = [s1,1, s2,1, . . . , sM,1]T ∈ R

M , one has s1 = (L + B)δ
where δ = y − yL with y = [y1, y2, . . . , yM]T and yL =
[yL, yL, . . . , yL]T . Because L + B is nonsingular, one has
‖δ‖ ≤ (‖s1‖/[σ(L + B)]), being σ(L + B) the minimum
singular value of L + B.

A. Distributed-Constrained Consensus Protocol Design

Step i, 1 (i ∈ {1, . . . ,M}): The time derivative of si,1 along
(1) and (4) is

ṡi,1 = −
∑
j∈Ni

aij

(
φj,1

(
χj,1

)
χ

pj,1
j,2 + ψj,1

(
χ j
))− θiẏL

+ (di + θi)
(
φi,1

(
χi,1

)
χ

pi,1
i,2 + ψi,1

(
χ i
))
. (5)

Take the high-order tan-type BLF as

Vi,1 = 2k
qi−pi,1+2
ci,1

π
(
qi − pi,1 + 2

) tan

⎛
⎝πs

qi−pi,1+2
i,1

2k
qi−pi,1+2
ci,1

⎞
⎠+ β̃2

i,1

2γi,1
(6)

where kci,1 = (
∑

j∈Ni
aij + θi)kbi,1 −∑

j∈Ni
aijy∗

L,2 − θiy∗
L is an

upper bound of si,1 defined in a set �si,1 = {si,1||si,1| < kci,1}
with y∗

L,2 being a constant specified later. β̃i,1 = βi,1 − β̂i,1
and γi,1 > 0 is a design parameter.

Remark 3: If kci,m → ∞ approaches to infinity,

the term ([2k
qi−pi,1+2
ci,1 ]/[π(qi − pi,1 + 2)]) tan(([πs

qi−pi,1+2
i,1 ]/

[2k
qi−pi,1+2
ci,1 ])) will tend to ([s

qi−pi,1+2
i,1 ]/[qi − pi,1 + 2]), thus

the proposed controller can deal with both the constrained
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case and the unconstrained case. The conventional BLF-based
controllers in [33]–[36] can only handle the constrained case
due to the fact limkci,1→∞(1/[qi − pi,1 + 2]) log([k

qi−pi,1+2
ci,1 ]/

[k
qi−pi,1+2
ci,1 − s

qi−pi,1+2
i,1 ]) = 0.

Remark 4: In contrast with [40] and [41], the proposed
high-order tan-type BLF method is more general in the sense
that the existing BLF control protocol can be included as spe-
cial cases of (6) when pi,m = 1, i.e., k2

ci,1
tan [πs2

i,1/2k2
ci,1

]/π .
Thus, it can be also utilized to deal with the state-
constrained control problem of low/high-order nonlinear
multiagent networks.

In view of (5) and (6), the time derivative of Vi,1 is

V̇i,1 = −ki,1 tan

⎛
⎝πs

qi−pi,1+2
i,1

2k
qi−pi,1+2
ci,1

⎞
⎠− β̃i,1

˙̂β i,1

γi,1
− (di + θi)li,1sqi+1

i,1

+ s
qi−pi,1+1
i,1

�i,1

(
(di + θi)φi,1(χi,1)χ

pi,1
i,2,c + Fi,1(Zi,1)

)

+ s
qi−pi,1+1
i,1

�i,1
(di + θi)φi,1(χi,1)

(
χ

pi,1
i,2 − χ

pi,1
i,2,c

)
(7)

where Fi,1(Zi,1) = −∑
j∈Ni

aij(φj,1(χj,1)χ
pj,1
j,2 + ψj,1(χ j)) −

θiẏL + (di + θi)(ψi,1(χ i) + �i,1li,1s
pi,1
i,1 ) + ki,1s

−(qi−pi,1+1)
i,1

sin([πs
qi−pi,1+2
i,1 ]/[2k

qi−pi,1+2
ci,1 ]) cos([πs

qi−pi,1+2
i,1 ]/[2k

qi−pi,1+2
ci,1 ]),

�i,1 = cos2([πs
qi−pi,1+2
i,1 ]/[2k

qi−pi,1+2
ci,1 ]) and Zi,1 =

[χT
i ,χ

T
j , yL, ẏL]T .

An FLS W∗T
i,1Si,1(Zi,1) is utilized to approximate Fi,1(Zi,1),

such that for any given κi,1 > 0, it holds that

Fi,1
(
Zi,1

) = W∗T
i,1Si,1

(
Zi,1

)+ oi,1
(
Zi,1

)
,
∣∣oi,1

(
Zi,1

)∣∣ ≤ κi,1

(8)

where oi,1(Zi,1) is the approximation error.
Remark 5: As for Fi,1(Zi,1), it has

sin([πs
qi−pi,1+2
i,1 ]/[2k

qi−pi,1+2
ci,1 ]) ∼ ([πs

qi−pi,1+2
i,1 ]/[2k

qi−pi,1+2
ci,1 ])

when si,1 → 0. In the presence of this, one has

limsi,1→0
ki,1

s
qi−pi,1+1
i,1

sin

(
πs

qi−pi,1+2
i,1

2k
qi−pi,1+2
ci,1

)
cos

(
πs

qi−pi,1+2
i,1

2k
qi−pi,1+2
ci,1

)

= limsi,1→0
ki,1πsi,1

2k
qi−pi,1+2
ci,1

cos

(
πs

qi−pi,1+2
i,1

2k
qi−pi,1+2
ci,1

)
= 0.

It means that the singularity issue never emerges in Fi,1(Zi,1).
Thus, Fi,1(Zi,1) is a continuous function and can be approxi-
mated by an FLS.

In light of Lemma 3, we get

s
qi−pi,1+1
i,1

�i,1
Fi,1 = s

qi−pi,1+1
i,1

�i,1
W∗T

i,1Si,1 + s
qi−pi,1+1
i,1

�i,1
oi,1

≤ 1

p̄i,1
�

p̄i,1
i,1 �

−p̄i,1
i,1

∥∥W∗
i,1

∥∥p̄i,1
∥∥Si,1

∥∥p̄i,1sqi+1
i,1

+ 1

p
i,1

�
−p

i,1
i,1

+ 1

p
i,1

ω
−p

i,1
i,1 κ

p
i,1

i,1 + 1

p̄i,1
ω

p̄i,1
i,1 �

−p̄i,1
i,1 sqi+1

i,1

≤ sqi+1
i,1 �

−p̄i,1
i,1

(
�

p̄i,1
i,1 βi,1�

p̄i,1
i,1 + ω

p̄i,1
i,1

)
+ �i,1

(9)

where p̄i,1 = ([qi + 1]/[qi − pi,1 + 1]), p
i,1

= ([qi + 1]/pi,1),

‖Si,1‖ = �i,1, βi,1 = ‖W∗
i,1‖p̄i,1 , and �i,1 = �

−p
i,1

i,1 +
ω

−p
i,1

i,1 κ
p

i,1
i,1 . It follows from (7)–(9) that the time derivative of

Vi,1 is:

V̇i,1 ≤ −ki,1 tan

⎛
⎝πs

qi−pi,1+2
i,1

2k
qi−pi,1+2
ci,1

⎞
⎠− (di + θi)li,1sqi+1

i,1

+ s
qi−pi,1+1
i,1

�i,1
(di + θi)φi,1(χi,1)

(
χ

pi,1
i,2 − χ

pi,1
i,2,c

)

− β̃i,1
˙̂β i,1

γi,1
+ sqi+1

i,1 �
−p̄i,1
i,1

(
�

p̄i,1
i,1 βi,1�

p̄i,1
i,1 + ω

p̄i,1
i,1

)

+ s
qi−pi,1+1
i,1

�i,1
(di + θi)φi,1(χi,1)χ

pi,1
i,2,c + �i,1. (10)

Design the virtual control χi,2,c and the adaptive law ˙̂β i,1 as

χi,2,c = −si,1

[
�i,1

(
�

p̄i,1
i,1 β̂i,1�

p̄i,1
i,1 + ω

p̄i,1
i,1

)] 1
pi,1

= −si,1ϑi,1 (11)

�i,1 = �
−q̄i,1
i,1

[
φ

i,1
(di + θi)

]−1
(12)

˙̂β i,1 = �
−p̄i,1
i,1 γi,1�

p̄i,1
i,1 sqi+1

i,1 �
p̄i,1
i,1 − γi,1υi,1β̂i,1 (13)

where q̄i,1 = (pi,1/[qi − pi,1 + 1]), �i,1, υi,1, ωi,1, and γi,1
are positive design constants. Substituting (11)–(13) into (10)
yields

V̇i,1 ≤ −ki,1 tan

⎛
⎝πs

qi−pi,1+2
i,1

2k
qi−pi,1+2
ci,1

⎞
⎠− (di + θi)li,1sqi+1

i,1

+ s
qi−pi,1+1
i,1

�i,1
(di + θi)φi,1(χi,1)

(
χ

pi,1
i,2 − χ

pi,1
i,2,c

)

+ υi,1β̃i,1β̂i,1 + �i,1. (14)

According to Lemmas 3 and 4, we have

s
qi−pi,1+1
i,1

�i,1
φi,1

(
χi,1

)(
χ

pi,1
i,2 − χ

pi,1
i,2,c

)

≤ s
qi−pi,1+1
i,1

�i,1
φi,1	pi,1

(∣∣si,2
∣∣pi,1 + (

si,1ϑi,1
)pi,1−1∣∣si,2

∣∣)

≤ 1

p
i,1

ζi,1φ
p

i,1
i,1 �

−p
i,1

i,1 sqi+1
i,2 + 1

p̄i,1
ζ

−q̄i,1
i,1 	p̄i,1

pi,1sqi+1
i,1

+ 1

qi + 1
ζi,1�

−(qi+1)
i,1 sqi+1

i,2

(
φi,1ϑ

pi,1−1
i,1

)qi+1

+ qi

qi + 1
ζ

− 1
qi

i,1 	
qi+1

qi
pi,1 sqi+1

i,1

≤ li,1sqi+1
i,1 + (di + θi)

−1ϑ i,1sqi+1
i,2 (15)

where li,1 = (1/p̄i,1)ζ
−q̄i,1
i,1 	p̄i,1

pi,1 + (qi/[qi + 1]) ζ
−(1/qi)

i,1

	([qi+1]/qi)
pi,1 and ϑ i,1 = (1/p

i,1
) (di + θi) ζi,1(φi,1/�i,1)

p
i,1 +
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(di + θi) (1/[qi + 1]) ζi,1(([φi,1ϑ
pi,1−1
i,1 ]/�i,1))

qi+1
with

	pi,1 = pi,1(1 + 2pi,1−3) and ζi,1 is a constant. Applying
Young’s inequality to υi,1β̃i,1β̂i,1 and considering (15), one
arrives at

V̇i,1 ≤ −ki,1 tan

⎛
⎝πs

qi−pi,1+2
i,1

2k
qi−pi,1+2
ci,1

⎞
⎠+ sqi+1

i,2 ϑ i,1

+ 1

2
υi,1

(
β2

i,1 − β̃2
i,1

)
+ �i,1. (16)

Step i,m (i ∈ {1, . . . ,M},m ∈ {2, . . . , ni − 1}): By means
of (1) and (4), we obtain the time derivative of si,m as

ṡi,m = φi,m
(
χ i,m

)
χ

pi,m
i,m+1 + ψi,m

(
χ i
)− χ̇i,m,c. (17)

The following finite-time-convergent differentiator (FTCD) is
then utilized to estimate χ̇i,m,c:{

χ̇c
i,m,c = χ̇d

i,m,c − �a
i,m−1κ

a
i,m−1

χ̇d
i,m,c = −�b

i,m−1κ
b
i,m−1

(18)

with χc
i,m,c and χ̇c

i,m,c being the estimates of χi,m,c and χ̇i,m,c,
respectively, and⎧⎪⎪⎨

⎪⎪⎩
κ

a
i,m−1 = ∣∣zi,m−1

∣∣ 1
2 sign

(
zi,m−1

)+ �i,m−1zi,m−1

κ
b
i,m−1 = −�i,m−1

∣∣zi,m−1
∣∣ 1

2 sign
(
zi,m−1

)
+ �

2
i,m−1zi,m−1 + sign

(
zi,m−1

) (19)

where zi,m−1 = χi,m,c − χc
i,m,c denotes the estimation error,

and �a
i,m−1, �b

i,m−1, �i,m−1 are positive design constants, and
sign(•) is the signum function. According to the discussion
in [43], for any given ς∗

i,m−1 > 0, the following equation
holds:

χ̇i,m,c = χ̇c
i,m,c + ςi,m−1,

∣∣ςi,m−1
∣∣ ≤ ς∗

i,m−1 (20)

where ςi,m−1 is the estimation error of the FTCD. Take the
high-order tan-type BLFs as

Vi,m = Vi,m−1 + 2k
qi−pi,m+2
ci,m

π
(
qi − pi,m + 2

) tan

(
πs

qi−pi,m+2
i,m

2k
qi−pi,m+2
ci,m

)

+ 1

2γi,m
β̃2

i,m (21)

where kci,m = kbi,m − χ∗
i,m,c is an upper bound of

si,m defined in a set �si,m = {si,m||si,m| < kci,m} with
χ∗

i,m,c being a constant specified later. β̃i,m = βi,m −
β̂i,m and γi,m > 0 is a design parameter. It follows
from (17), (20), and (21) that the time derivative of
Vi,m is:

V̇i,m ≤ s
qi−pi,m+1
i,m

�i,m

(
φi,m

(
χ i,m

)
χ

pi,m
i,m+1,c − ς∗

i,m−1 + Fi,m
(
Zi,m

))

+
m−1∑
n=1

�i,n + s
qi−pi,m+1
i,m

�i,m
φi,m

(
χ i,m

)(
χ

pi,m
i,m+1 − χ

pi,m
i,m+1,c

)

+
m−1∑
n=1

(
1

2
υi,n

(
β2

i,n − β̃2
i,n

))
− s

qi−pi,m+1
i,m

�i,m
χ̇c

i,m,c

−
m∑

n=1

ki,n tan

(
πs

qi−pi,n+2
i,n

2k
qi−pi,n+2
ci,n

)
− β̃i,m

˙̂β i,m

γi,m

− li,msqi+1
i,m + ϑ i,m−1sqi+1

i,m (22)

where Fi,m(Zi,m) = sin([πs
qi−pi,m+2
i,m ]/[2k

qi−pi,m+2
ci,m ])

cos([πs
qi−pi,m+2
i,m ]/[2k

qi−pi,m+2
ci,m ]) ki,ms

−(qi−pi,m+1)
i,m +ψi,m(χ i)+

�i,mli,ms
pi,m
i,m , �i,m = cos2([πs

qi−pi,m+2
i,m ]/[2k

qi−pi,m+2
ci,m ]), and

Zi,m = [χT
i ,χ

T
j , β̂i,1, β̂i,2, . . . , β̂i,m−1, yL, ẏL, ÿL]T . Analogous

to step 1, one has

s
qi−pi,m+1
i,m

�i,m
Fi,m = s

qi−pi,m+1
i,m

�i,m

(
W∗T

i,mSi,m + oi,m
)

≤ sqi+1
i,m �

−p̄i,m
i,m �

p̄i,m
i,m βi,m�

p̄i,m
i,m + ω

−p
i,m

i,m κ
p

i,m
i,m

+ sqi+1
i,m �

−p̄i,m
i,m ω

p̄i,m
i,m + δ

−p
i,m

i,m (23)

where ‖Si,m‖ = �i,m and βi,m = ‖W∗
i,m‖p̄i,m . Besides,

applying Lemma 3 yields −s
qi−pi,m+1
i,m �−1

i,mςi,m−1 ≤
sqi+1

i,m �
−p̄i,m
i,m ξ

p̄i,m
i,m + ξ

−p
i,m

i,m ς
∗p

i,m
i,m−1. For subsequent analysis,

let us define �i,m = �
−p

i,m
i,m + ω

−p
i,m

i,m κ
p

i,m
i,m + ξ

−p
i,m

i,m ς
∗p

i,m
i,m−1

and p̄i,m = ([qi + 1]/[qi − pi,m + 1]), p
i,m

= ([qi + 1]/pi,m).
Design the virtual control input χi,m+1,c and the adaptive law˙̂β i,m as

χi,m+1,c = −si,m

[
�i,m

(
�

p̄i,m
i,m ϑ i,m−1 + �

p̄i,m
i,m β̂i,m�

p̄i,m
i,m

− s
−pi,m
i,m �

q̄i,m
i,m χ̇c

i,m,c + ω
p̄i,m
i,m + ξ

p̄i,m
i,m

)] 1
pi,m

= −si,mϑi,m (24)

�i,m = �
−q̄i,m
i,m φ−1

i,m
(25)

˙̂β i,m = �
−p̄i,m
i,m γi,m�

p̄i,m
i,m sqi+1

i,m �
p̄i,m
i,m − γi,mυi,mβ̂i,m (26)

where q̄i,m = (pi,m/[qi − pi,m + 1]), �i,m, υi,m, ωi,m, ξi,m, and
γi,m are positive design constants. Hence, the derivative of Vi,m

along (22)–(26) satisfies

V̇i,m ≤
m∑

n=1

�i,n −
m∑

n=1

ki,n tan

(
πs

qi−pi,n+2
i,n

2k
qi−pi,n+2
ci,n

)
− li,msqi+1

i,m

+
m−1∑
n=1

(
1

2
υi,n

(
β2

i,n − β̃2
i,n

))
+ υi,mβ̃i,mβ̂i,m

+ s
qi−pi,m+1
i,m

�i,m
φi,m

(
χ i,m

)(
χ

pi,m
i,m+1 − χ

pi,m
i,m+1,c

)
. (27)

Using Lemmas 3 and 4, one reaches

s
qi−pi,m+1
i,m

�i,m
φi,m

(
χ i,m

)(
χ

pi,m
i,m+1 − χ

pi,m
i,m+1,c

)

≤ li,msqi+1
i,m + ϑ i,msqi+1

i,m+1 (28)

where li,m = (1/p̄i,m)ζ
−q̄i,m
i,m 	p̄i,m

pi,m + (qi/[qi + 1])ζ−(1/qi)
i,m

	([qi+1]/qi)
pi,m , ϑ i,m = (1/p

i,m
)ζi,m(φi,m/�i,m)

p
i,m + (1/[qi + 1])

ζi,m([φi,mϑ
pi,m−1
i,m ]/�i,m)

qi+1 with 	pi,m = pi,m(1 + 2pi,m−3)
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and ζi,m is a constant. By employing Young’s inequality to
υi,mβ̃i,mβ̂i,m, and substituting (28) into (27) results in

V̇i,m ≤ −
m∑

n=1

ki,n tan

(
πs

qi−pi,n+2
i,n

2k
qi−pi,n+2
ci,n

)
+ sqi+1

i,m+1ϑ i,m

+
m∑

n=1

(
1

2
υi,n

(
β2

i,n − β̃2
i,n

))
+

m∑
n=1

�i,n. (29)

B. High-Order Event-Triggered Mechanism

In this section, we propose a new high-order event-triggered
mechanism, and the ETC signal is given by

ui(t) = υi(th) ∀t ∈ [th, th+1) (30)

where υi(t) is transition control signal. The high-order event-
triggered mechanism is described as

th+1 = inf

{
t > th||ei(t)| ≥ δi,0

∣∣∣uq̄i,ni
i (t)

∣∣∣+ τi,0

+ λi,0∑n
k=1

∣∣si,k(t)
∣∣+ κi,0

}
(31)

where ei(t) = υi(t) − u
q̄i,ni
i (t) stands for the control sampling

error with q̄i,ni = (pi,ni/[qi − pi,ni + 1]). 0 < δi,0 < 1, λi,0,
τi,0, and κi,0 are positive design constants.

Define si,0(t) = (1/[
∑n

k=1 |si,k(t)| + κi,0]) and it can be
known that si,0 is a monotonically decreasing function of the
local tracking errors si,k(t), k = 1, 2, . . . , ni. From (30) and

(31), it can be verified that |υi(t) − u
q̄i,ni
i (t)| ≤ δi,0|uq̄i,ni

i (t)| +
τi,0 +λi,0si,0(t) holds for all t ∈ [th, th+1). Then, the following
two situations should be considered.

Situation I: When ui(t) ≥ 0. Since ui(t) > 0, one can obtain

− δi,0u
q̄i,ni
i (t) − λi,0si,0(t) − τi,0 ≤ υi(t) − u

q̄i,ni
i (t)

≤ δi,0u
q̄i,ni
i (t) + λi,0si,0(t) + τi,0. (32)

Thus, it is possible to get that

υi(t) − u
q̄i,ni
i (t) = ci,0(t)

(
δi,0u

q̄i,ni
i (t) + τi,0 + λi,0si,0(t)

)
(33)

where ci,0(t) is a time-varying parameter satisfying ci,0(t) ∈
[−1, 1].

Situation II: When ui(t) < 0, it is possible to reach

δi,0u
q̄i,ni
i (t) − λi,0si,0(t) − τi,0 ≤ υi(t) − u

q̄i,ni
i (t)

≤ −δi,0u
q̄i,ni
i (t) + λi,0si,0(t) + τi,0. (34)

Furthermore, we have

υi(t) − u
q̄i,ni
i (t) = ci,0(t)

(
δi,0u

q̄i,ni
i (t) − τi,0 − λi,0si,0(t)

)
.

(35)

Synthesizing and summarizing the above two situations lead to

υi(t) − u
q̄i,ni
i (t) ≤ ci,2(t)

(
λi,0si,0(t) + τi,0

)
+ ci,1(t)δi,0u

q̄i,ni
i (t) (36)

where {
ci,1(t) = ci,2(t) = ci,0(t), ui(t) ≥ 0
ci,1(t) = ci,0(t), ci,2(t) = −ci,0(t), ui(t) < 0.

It is not hard to deduce that

ui(t) =
[
υi(t) − ci,2(t)λi,0si,0 − ci,2(t)τi,0

1 + ci,1(t)δi,0

] 1
q̄i,ni

. (37)

The transition control signal υi(t) is

υi(t) = (
1 + δi,0

)⎡⎣αi,ni − si,0 tanh

⎛
⎝ si,0si,ni�

−q
i,ni

i,ni

δi,1

⎞
⎠

− δi,2 tanh

⎛
⎝δi,2si,ni�

−q
i,ni

i,ni

δi,1

⎞
⎠
⎤
⎦ (38)

αi,ni = −s
q̄i,ni
i,ni

[
�i,ni

(
�

p̄i,ni
i,ni

ϑ i,ni−1 + �
p̄i,ni
i,ni

β̂i,ni�
p̄i,ni
i,ni

− s
−pi,ni
i,ni

�
q̄i,ni
i,ni

χ̇c
i,ni,c + ω

p̄i,ni
i,ni

+ ξ
p̄i,ni
i,ni

)]q
i,ni

(39)

�i,ni = �
−q̄i,ni
i,ni

[
φ

i,ni
(1 − ε)

]−1
(40)

where �i,ni = cos2([πs
qi−pi,ni+2
i,ni

]/[2k
qi−pi,ni+2
ci,ni

]), ωi,ni , �i,ni ,
ξi,ni δi,1, and δi,2 > δi,0 are positive design constants satisfying
λi,0 < 1 − δi,0, τi,0 < δi,2(1 − δi,0). Design the adaptive law
β̂i,ni as

˙̂β i,ni
= �

−p̄i,ni
i,ni

γi,ni�
p̄i,ni
i,ni

sqi+1
i,ni

�
p̄i,ni
i,ni

− γi,niυi,ni β̂i,ni (41)

where p̄i,ni = ([qi + 1]/[qi − pi,ni + 1]), q
i,ni

=
(1/[qi − pi,ni + 1]), γi,ni and υi,ni are positive design
constants.

Remark 6: To highlight the distinguishing feature of
the newly proposed high-order event-triggering mecha-
nism (31), we first briefly recall the existing designs
in [23]–[32]. Note that state-of-the-art ETC signals are
typically devised as ui(t) = ([υi(t)]/[1 + ci,1(t)δi,0]) −
([ci,2(t)τi,0]/[1 + ci,1(t)δi,0]) on the basis of Lemma 2. Such
an idea relies on the precondition si,niυi(t) ≤ 0 so as to
obtain −χ tanh(χ/δ) ≤ 0. However, such a precondition can-
not be satisfied for high-order case due to the existence of
high powers qi − pi,ni + 1 and pi,ni such as s

qi−pi,ni+1
i,ni

and
(([υi(t)]/[1 + ci,1(t)δi,0]) − ([ci,2(t)τi,0]/[1 + ci,1(t)δi,0]))pi,ni .
To solve this issue, we develop a high-order event-triggered
mechanism as in (31) whose importance is listed in Remarks 7
and 8.

Remark 7: In contrast to conventional event-triggered
strategies (e.g., fixed threshold, relative threshold, and switch-
ing threshold) [23]–[28], [30]–[32], our proposed triggering
threshold exhibits a better balance between tracking accuracy
and resource utilization. This is because existing thresholds
in [23]–[28] and [30]–[32] are composed by the amplitudes of
control signals as well as a fixed threshold. Such designs the-
oretically imply that tracking accuracy is weakened when the
magnitudes of control signals become large. When the mag-
nitudes of control signals are approaching zero, more precise
control can be applied to the system such that better track-
ing accuracy can be obtained, however, which will make the
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threshold small. To tackle such contradiction, a monotonically
decreasing function si,0(t) in our article is embedded into the
design of the proposed high-order event-triggered mechanism
and its role is allowing a relatively big threshold, while guar-
anteeing that the consensus tracking error is small, and that
singularity issue is precluded due to the use of κi,0 in (31).

Remark 8: When taking pi,m = 1, dynamics (1) are the
low-order nonlinear multiagent networks, and the high-order
event-triggered strategy reduces to th+1 = inf{t > th||ei(t)| ≥
δi,0|ui(t)| + τi,0 + λi,0si,0(t)} with ei(t) = υi(t) − ui(t), which
is exactly the one suitable for low-order systems. Besides,
(31) encompasses the existing event-triggered mechanism [24]
(e.g., the fixed threshold strategy (12) and (13) or rela-
tive threshold (23) and (24) in [24]) as special cases when
δi,0 = λi,0 = 0 or λi,0 = 0.

IV. STABILITY ANALYSIS

At this point, the main result of this article is given in the
following Theorem 1.

Theorem 1: For the high-order nonlinear multiagent
networks (1) with full-state constraints, under Assumptions
1 and 2, consider the distributed event-triggered-constrained
consensus tracking controllers (11), (12), (24), (25), and
(38)–(40) and adaption laws (13), (26) and (41) with initial
conditions χi,m(0) ∈ �χi,m,0 = {χi,m||χi,m(0)| ≤ kbi,m} and
β̂i,m(0) ≥ 0, i = 1, 2, . . . ,M,m = 1, 2, . . . , ni, it holds the
following.

1) All closed-loop signals remain bounded, and system
states χi,m can be confined within the compact set
�χi,m := {χi,m||χi,m(t)| ≤ kbi,m} all the time.

2) The consensus tracking error δ eventually converges into
the compact set �s defined by

�s =
⎧⎨
⎩‖δ‖ ≤

√√√√ 1

σ 2
(L + B)

M∑
i=1

�2

⎫⎬
⎭

where � is a positive constant given later.
3) Zeno-behavior phenomenon is excluded in the sense

that the interexecution intervals {th+1 − th} are lower
bounded by a positive constant T∗

i ∀h ∈ N+.
Proof: See the Appendix.
Remark 9: The size of �s can be made small by decreas-

ing �i,m, ωi,m, ξi,m, and υi,m, while increasing γi,m. Then,
the design parameters �i,m, ωi,m, υi,m, ξi,m, and γi,m can be
adjusted so as to satisfy ( /α) ≤ 
, namely, V(t) ≤ 
 holds
for ∀t ≥ 0. Furthermore, a design procedure of the proposed
algorithm can be sketched as follows.

V. SIMULATION EXAMPLE

To verify the effectiveness of the proposed scheme in
practical application, a practical example composed of four
different poppet valve systems [44] and a reference signal
over the communication graph is considered, as shown in
Fig. 1. From Fig. 1, it can be seen that the reference sig-
nal is accessible to the follower 1 only and is given by
yL(t) = 5 sin(t) + 10 sin(0.5t).

Algorithm 1 Design Procedure of the Proposed Algorithm
1: Specify a constant 
 > 0 and choose appropriate initial

conditions χi,m(0) and β̂i,m(0) ≥ 0 for i = 1, . . . ,M,m =
1, . . . , ni to satisfy V(0) < 
;

2: Define fuzzy rules, fuzzy sets, fuzzy membership func-
tions, and then determine FLSs. Accordingly, calculate
�i,m;

3: Assign specific values to the design parameters γi,m > 0,
�i,m > 0, ωi,m > 0, υi,m > 0 and ξi,m > 0;

4: Determine the intermediate variables according to the fol-
lowing order: si,1 → β̂i,1 → αi,2,c → si,2 → β̂i,2 →
αi,3,c → si,m → β̂i,m → αi,m+1,c → · · · → si,ni →
β̂i,ni → ui for i = 1, 2, . . . ,M,m = 3, . . . , ni − 1.

Fig. 1. Communication topology.

The poppet valve system is one of the most commonly used
components in hydraulic systems, which can be modeled by
the annular leakage equation. The input force fi drives the
poppet to move along the y-axis, regulating the volumetric
flow rate hi = λi�

3
i of oil from high to low pressure chamber

with λi = (π l∗i /6biDi)!Pi being a lumped coefficient and �i

being the effective clearance of the annular passage. l∗i , bi, and
Di are constants independent of axial motion of the poppet.
!Pi is the pressure drop between two chambers and remains
almost unchanged in the control process.

According to the geometric structure, �i = εixi with εi

being a constant related to the cone angle of poppet. The
dynamic of oil volume in upper chamber is given by

ϒ̇i = hi − εi(t) (42)

where εi(t) is the lumped reduction rate of oil attributed to
consumption and other leakages. Likewise, the equation of
motion of the poppet is

miϔi = −kiẋi + Ti(t) + fi (43)

where mi is the mass of the poppet, ki is a viscous friction
coefficient, and Ti(t) is the lumped elastic force. Conduct the
following notation substitution:

χi,1 = ϒi, χi,2 = xi, χi,3 = ẋi, ui = fi. (44)

Then, the dynamic of systems (42) and (43) comes down to⎧⎨
⎩
χ̇i,1 = φi,1χ

3
i,2 + ψi,1

χ̇i,2 = χi,3
χ̇i,3 = φi,3ui + ψi,3

(45)

where φi,1 = λiε
3
i , ψi,1 = −εi(t), φi,3 = 1/mi, and ψi,3 =

(1/mi)[Ti(t)−kiχi,3] with λ1 = 2 Mpa/Pa.s, λ2 = 2.2 Mpa/Pa.s,
λ3 = 2.15 Mpa/Pa.s, λ4 = 2.3 Mpa/Pa.s, ε1(t) = 0.25χ1,1 lpm,
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Fig. 2. Evolutions of (a) yL, y1, y2, y3, and y4 of (b) agent dynamics states χ1,2, χ2,2, χ3,2, and χ4,2, (c) of agent dynamics states χ1,3, χ2,3, χ3,3, and
χ4,3, (d) of parameter adaptive laws β̂1,1, β̂1,2, β̂1,3, β̂2,1, β̂2,2, β̂2,3, β̂3,1, β̂3,2, β̂3,3, β̂4,1, β̂4,2, and β̂4,3.

Fig. 3. Time intervals of triggering events (a) of follower agent 1, (b) of follower agent 2, (c) of follower agent 3, (d) of follower agent 4.

Fig. 4. Comparisons of triggering event (a) of agent 1, (b) of agent 2, (c) of agent 3, (d) of agent 4 between proposed method and existing methods.

ε2(t) = 1.2χ2,1 lpm, ε3(t) = 1.5χ3,1 lpm, ε4(t) = 1.1χ4,1 lpm,
m1 = 2.8 kg, m2 = 2.95 kg, m3 = 3 kg, m4 = 2.9 kg, T1(t) =
1.3χ3

1,1 N, T2(t) = 1.8χ3
2,1 N, T3(t) = 1.5χ3

3,1 N, T4(t) =
2.4χ3

4,1 N, k1 = 3.2 N/mm, k2 = 3.25 N/mm, k3 = 3.4 N/mm,
k4 = 3.35 N/mm, ε1 = 1.45, ε2 = 1.5, ε3 = 1.53, ε4 =
1.58,. The simulation is run with the initial conditions yL(0) =
0, χ1(0) = [−0.8, 0.8,−0.5]T , χ2(0) = [1.1,−1.1, 0.9]T ,
χ3(0) = [−0.6, 0.6,−0.4]T , and χ4(0) = [−0.3, 0.3,−0.2]T

and β̂1,1(0) = 5, β̂1,2(0) = 3, β̂1,3(0) = 1, β̂2,1(0) = 6,
β̂2,2(0) = 4, β̂2,3(0) = 2, β̂3,1(0) = 9, β̂3,2(0) = 4, β̂3,3(0) =
1, β̂4,1(0) = 11, β̂4,2(0) = 7, and β̂4,3(0) = 4.5. Besides, the
design parameters are chosen as ω1,1 = ω1,2 = ω1,3 = 2.6,
ω2,1 = ω2,2 = ω2,3 = 2.4, ω3,1 = ω3,2 = ω3,3 = 3, ω4,1 =
ω4,2 = ω4,3 = 3.2, �1,1 = �1,2 = �1,3 = 0.75, �2,1 = �2,2 =
�2,3 = 1, �3,1 = �3,2 = �3,3 = 1.1, �4,1 = �4,2 = �4,3 =
1.2, ξ1,1 = ξ1,2 = ξ1,3 = 0.65, ξ2,1 = ξ2,2 = ξ2,3 = 0.8,
ξ3,1 = ξ3,2 = ξ3,3 = 1.1, ξ4,1 = ξ4,2 = ξ4,3 = 1.15, γ1,1 =
γ1,2 = γ1,3 = 2.1, γ2,1 = γ2,2 = γ2,3 = 2.3, γ3,1 = γ3,2 =
γ3,3 = 2.4, and γ4,1 = γ4,2 = γ4,3 = 2.5, δi,0 = 0.1, δi,1 = 0.8,
δi,2 = 1.1, λi,0 = 0.6, τi,0 = 0.8, κi,0 = 0.7, ε = 0.3, and
υi,m = 3 for i = 1, 2, 3, 4 and m = 1, 2, 3. In addition, the upper
bounds of agent dynamics states are confined as kbi,1 = 15,

kbi,2 = 1.8, and kbi,3 = 2.2. The simulation results are shown in
Figs. 2–5.

Fig. 2(a) displays that all the follower agents can suc-
cessfully track the reference signal with bounded consensus
tracking errors, and the boundedness of agent dynamics states
χi,2, χi,3, i = 1, 2, 3, 4 are shown in Figs. 2(b) and (c). It is
clear from these figures that the full-state constraints are not
violated. Fig. 2(d) provides the evolutions of β̂1,1, β̂2,1, β̂3,1,
and β̂4,1, and of β̂1,2, β̂2,2, β̂3,2, and β̂4,2, and of β̂1,3, β̂2,3,
β̂3,3, and β̂4,3, respectively. Fig. 3 reveals the time interval
results of the triggering events. The event-triggered times and
the threshold value comparisons of the proposed high-order
event-triggered scheme and the other three event-triggered
schemes in [24] are shown in Figs. 4 and 5, respectively. It
can be observed that the proposed high-order ETC mecha-
nism is feasible and it is more effective than the other three
event-triggered schemes in [24].

In addition, the integral time absolute error (ITAE)
[
∫ T

0 t|si,1(t)|dt], root mean square error (RMSE)
[(1/T)

∫ T
0 s2

i,1(t)dt](1/2), mean absolute error (MAE)
[(1/T)

∫ T
0 |si,1(t)|dt], and mean absolute control action

(MACA) [(1/T)
∫ T

0 |ui|] are utilized here to quantify the
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Fig. 5. Comparisons of threshold values (a) of agent 1, (b) of agent 2, (c) of agent 3, (d) of agent 4 between proposed method and existing methods.

Fig. 6. Comparison of performance indexes between proposed method and existing methods.

TABLE I
PERFORMANCE INDICES FOR FOUR METHODS

tracking performances of four different ETC schemes,
respectively. More especially, Table I and Fig. 6 give the
comparison results of the event-triggered numbers, ITAE,
RMSE, MAE, and MACA of the four different event-
triggering mechanisms. It can be seen from Table I and Fig. 6
that the proposed high-order event-triggering mechanism
can give a larger threshold to trigger the events as less as
possible, while making the consensus tracking errors smaller
than other three event-triggering mechanisms.

VI. CONCLUSION

In this article, a novel event-triggered-constrained consen-
sus tracking control methodology was proposed for high-order
nonlinear multiagent networks with event-triggered input. To
this purpose, a monotonically decreasing function was embed-
ded into the design of the proposed high-order event-triggered
mechanism so as to give a larger threshold to trigger the
events as less as possible, while making the consensus track-
ing errors smaller. Comparative simulation results confirmed

the superiority of the presented control scheme. An interesting
problem to be investigated in the future is how to solve
the distributed event-triggered consensus tracking problem for
the high-order nonlinear multiagent networks with unknown
control directions [45]. Besides, note that the event-triggered-
constrained consensus tracking control of switched multiagent
networks is an important but difficult issue, thus, the exten-
sion of our control scheme to the case of high-order switched
multiagent networks will be another interesting topic for
further investigation.

APPENDIX

Proof of Theorem 1 [Step i, ni(i = 1, . . . ,M)]: Take the
high-order tan-type BLF as

Vi,ni = Vi,ni−1 + 2k
qi−pi,ni+2
ci,ni

π
(
qi − pi,ni + 2

) tan

⎛
⎝πs

qi−pi,ni+2
i,ni

2k
qi−pi,ni+2
ci,ni

⎞
⎠

+ 1

2γi,ni

β̃2
i,ni

(46)
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where kci,ni
= kbi,ni

−χ∗
i,ni,c

is an upper bound of si,ni defined in
a set �si,ni

= {si,ni ||si,ni | < kci,ni
} with χ∗

i,ni,c
being a constant

specified later. β̃i,ni = βi,ni − β̂i,ni and γi,ni > 0 is a design
parameter. In view of (1), (4), and (46), the time derivative of
Vi,ni is

V̇i,ni ≤
ni−1∑
m=1

�i,m −
ni∑

m=1

ki,m tan

(
πs

qi−pi,m+2
i,m

2k
qi−pi,m+2
ci,m

)
− β̃i,ni

˙̂β i,ni

γi,ni

+
ni−1∑
m=1

(
1

2
υi,m

(
β2

i,m − β̃2
i,m

))
+ sqi+1

i,ni
ϑ i,ni−1

+ s
qi−pi,ni+1
i,ni

�i,ni

(
φi,ni

(
χ i
)
u

pi,ni
i + Fi,ni

(
Zi,ni

))

− s
qi−pi,ni+1
i,ni

�i,ni

χ̇c
i,ni,c − s

qi−pi,ni+1
i,ni

�i,ni

ςi,ni−1 (47)

where Fi,ni(Zi,ni) = sin([πs
qi−pi,ni+2
i,ni

]/[2k
qi−pi,ni+2
ci,ni

])

cos([πs
qi−pi,ni+2
i,ni

]/[2k
qi−pi,ni+2
ci,ni

])ki,ni s
−(qi−pi,ni+1)
i,ni

+ ψi,ni(χ i)

and Zi,ni = [χT
i ,χ

T
j , β̂i,1, β̂i,2, . . . , β̂i,ni−1, yL, ẏL, ÿL]T . Along

similar lines as step 1, it can be obtained that

s
qi−pi,ni+1
i,ni

�i,ni

Fi,ni = s
qi−pi,ni+1
i,ni

�i,ni

(
W∗T

i,ni
Si,ni + oi,ni

)

≤ sqi+1
i,ni

�
−p̄i,ni
i,ni

�
p̄i,ni
i,ni

βi,ni�
p̄i,ni
i,ni

+ ω
−p

i,ni
i,ni

κ
p

i,ni
i,ni

+ sqi+1
i,ni

�
−p̄i,ni
i,ni

ω
p̄i,ni
i,ni

+ �
−p

i,ni
i,ni

(48)

with ‖Si,ni‖ = �i,ni , βi,ni = ‖W∗
i,ni

‖p̄i,ni . Besides, using

Lemma 3 yields −s
qi−pi,ni+1
i,ni

�−1
i,ni

ςi,ni−1 ≤ sqi+1
i,ni

�
−p̄i,ni
i,ni

ξ
p̄i,ni
i,ni

+
ξ

−p
i,ni

i,ni
ς

∗p
i,ni

i,ni−1, where �i,ni = �
−p

i,ni
i,ni

+ ω
−p

i,ni
i,ni

κ
p

i,ni
i,ni

+
ξ

−p
i,ni

i,ni
ς

∗p
i,ni

i,ni−1 and p
i,ni

= ([qi + 1]/pi,ni). The derivative of Vi,ni

along (47) and (48) is

V̇i,ni ≤
ni∑

m=1

�i,m + s
qi−pi,ni+1
i,ni

�i,ni

(
φi,ni(χ i)u

pi,ni
i − χ̇c

i,ni,c

)

+ sqi+1
i,ni

�
−p̄i,ni
i,ni

(
ω

p̄i,ni
i,ni

+ ξ
p̄i,ni
i,ni

+ �
p̄i,ni
i,ni

βi,ni�
p̄i,ni
i,ni

)

−
ni∑

m=1

ki,m tan

(
πs

qi−pi,m+2
i,m

2k
qi−pi,m+2
ci,m

)
− β̃i,ni

˙̂β i,ni

γi,ni

+
ni−1∑
m=1

(
1

2
υi,m

(
β2

i,m − β̃2
i,m

))
+ sqi+1

i,ni
ϑ i,ni−1. (49)

According to (38) and substituting (37) to (49), it can be
obtained that si,niυi(t) ≤ 0. Therefore, the following inequality
holds:

V̇i,ni ≤
ni∑

m=1

�i,m −
ni∑

m=1

ki,m tan

(
πs

qi−pi,m+2
i,m

2k
qi−pi,m+2
ci,m

)
+ sqi+1

i,ni
ϑ i,ni−1

+
ni−1∑
m=1

(
1

2
υi,m

(
β2

i,m − β̃2
i,m

))
− s

qi−pi,ni+1
i,ni

�i,ni

χ̇c
i,ni,c

+ sqi+1
i,ni

�
−p̄i,ni
i,ni

(
ω

p̄i,ni
i,ni

+ ξ
p̄i,ni
i,ni

+ �
p̄i,ni
i,ni

βi,ni�
p̄i,ni
i,ni

)

− β̃i,ni
˙̂β i,ni

γi,ni

+ φi,ni

(
χ i
)

×
⎛
⎝ si,ni�

−q
i,ni

i,ni
υi(t)

1 + δi,0

+
∣∣∣si,ni�

−q
i,ni

i,ni

∣∣∣(λi,0si,0 + τi,0
)

1 − δi,0

⎞
⎟⎠

qi−pi,ni+1

.(50)

Substituting (38) into (50) and invoking Lemmas 1 and 2, (50)
can be rewritten as

V̇i,ni ≤ sqi+1
i,ni

�
−p̄i,ni
i,ni

(
ω

p̄i,ni
i,ni

+ ξ
p̄i,ni
i,ni

+ �
p̄i,ni
i,ni

βi,ni�
p̄i,ni
i,ni

)

−
ni∑

m=1

ki,m tan

(
πs

qi−pi,m+2
i,m

2k
qi−pi,m+2
ci,m

)
+ sqi+1

i,ni
ϑ i,ni−1

− β̃i,ni
˙̂β i,ni

γi,ni

+ φi,ni

(
χ i
)
ri,2
(
0.557δi,1

)qi−pi,ni+1

+
ni∑

m=1

�i,m +
ni−1∑
m=1

(
1

2
υi,m

(
β2

i,m − β̃2
i,m

))

+ φi,ni(χ i)ri,1

(
si,ni�

−q
i,ni

i,ni
αi,ni

)qi−pi,ni+1

− s
qi−pi,ni+1
i,ni

�i,ni

χ̇c
i,ni,c. (51)

Thus, the time derivative of Vi,ni along (39)–(41) is

V̇i,ni ≤ −
ni∑

m=1

ki,m tan

(
πs

qi−pi,m+2
i,m

2k
qi−pi,m+2
ci,m

)
−

ni∑
m=1

1

2
υi,mβ̃

2
i,m

+
ni∑

m=1

�i,m + φi,ni

(
χ i
)
ri,2
(
0.557δi,1

)qi−pi,ni+1

+
ni∑

m=1

1

2
υi,mβ

2
i,m. (52)

Consider the total high-order BLFs as

V =
M∑

i=1

ni∑
m=1

(
2k

qi−pi,m+2
ci,m

π
(
qi − pi,m + 2

) tan

(
πs

qi−pi,m+2
i,m

2k
qi−pi,m+2
ci,m

)
+ β̃2

i,m

2γi,m

)
.

(53)

Then, (52) can be further expressed as

V̇i,ni ≤ −μiVi,ni + ηi (54)

where μi = min1≤m≤ni{([ki,mπ(qi − pi,m + 2)]/[2k
qi−pi,m+2
ci,m ]),

γi,mυi,m} and ηi = ∑ni
m=1 �i,m + ∑ni

m=1 (1/2)υi,mβ
2
i,m +

φi,ni
℘i,2(0.557δi,1)

qi−pi,ni+1. Therefore, the derivative of V can
be given by

V̇ ≤ −αV +  (55)

where α = min{μi, 1 ≤ i ≤ M} and  = ∑M
i=1 ηi. It can

be concluded from (55) that V(t) is eventually bounded by
( /α), which can be made arbitrarily small by decreasing
�i,m, υi,m, ωi,m, and ξi,m and meanwhile increasing γi,m.
Namely, it is possible to make ( /α) ≤ 
 by selecting
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the design parameters appropriately. Thus, given any initial
condition satisfying V(0) ≤ 
, we have V̇(t) ≤ 0 and
V(t) ≤ 
 for all t ≥ 0. It follows that V(t) is bounded.
It can be deduced that tan([πs

qi−pi,m+2
i,m ]/[2k

qi−pi,m+2
ci,m ]) are

also bounded. Consequently, the compact set �si,m =
{si,m||si,m| < kci,m} is an invariant set and si,m stays in the
compact set �si,m all the time.

Proposition 1: When |si,1| is bounded, for any initial value
yj(0) ≥ 0, there exists a known positive constant y∗

L,2 such
that |yj(t)| ≤ y∗

L,2.
Proof: See the Appendix.
According to (4), we can obtain that [

∑
j∈Ni

aij + θi]|χi,1|
= |si,1| + ∑

j∈Ni
aij|yj| + θi|yL|. Based on (6) and the above

analysis, it is clear that |si,1| + ∑
j∈Ni

aij|yj| + θi|yL| ≤
kci,1 + ∑

j∈Ni
aijy∗

L,1 + θiy∗
L = [

∑
j∈Ni

aij + θi]kbi,1 . Thus,
the following inequality holds that [

∑
j∈Ni

aij + θi]|χi,1| ≤
[
∑

j∈Ni
aij + θi]kbi,1 and |χi,1| ≤ kbi,1 . Since χ i, χ j, yL, ẏL,

ÿL, and β̂i,1 are bounded and χi,2,c is continuous, it can be
concluded that χi,2,c is bounded. Hence, there exists a pos-
itive constant χ∗

i,2,c such that |χi,2,c| ≤ χ∗
i,2,c. According to

(4) and it can be obtained that |χi,2| = |si,2| + |χi,2,c| ≤
kci,2 + χ∗

i,2,c = kbi,2 and |χi,2| ≤ kbi,2 . Taking the same manip-
ulations, it can be proved that |χi,m| ≤ kbi,m . Therefore, all
the system states χi,1, χi,2, . . . , χi,ni are bounded and con-
fined in the corresponding sets �χi,m := {χi,m||χi,m| ≤ kbi,m}.
Therefore, property (1) of Theorem 1 is proved.

By (54) together with the fact ([πs
qi−pi,1+2
i,1 ]/

[2k
qi−pi,1+2
ci,1 ]) ≤ tan [(πs

qi−pi,1+2
i,1 )/ (2k

qi−pi,1+2
ci,1 )], it holds that

s
qi−pi,1+2
i,1

qi − pi,1 + 2
≤ Vi,ni(0)e

−μit + ηi

μi
. (56)

Noting (56), we know that limt→∞Vi(t) ≤ (ηi/μi), which
leads to limt→∞ |si,1| ≤ ([ηi/μi](qi − pi,1 + 2))(1/[qi−pi,1+2]).
Then, we can obtain

lim
t→∞‖s1‖ ≤

√√√√ M∑
i=1

lim
t→∞

∣∣si,1
∣∣2 ≤

√√√√ M∑
i=1

�2 (57)

where � = ([ηi/μi](qi − pi,1 + 2))[1/(qi−pi,1+2)].
According to (57), we can obtain that limt→∞ ‖δ‖ ≤
(1/[σ(L + B)])

√∑M
i=1 �

2 and property (2) of Theorem 1 is
proved.

To prove the absence of Zeno-behavior, a time constant
T∗ > 0 can be found to satisfy {th+1 − th} ≥ T∗ ∀h ∈ N+. By
invoking ei(t) = υi(t)− u

q̄i,ni
i (t) and taking the time derivative

of ei(t) for all t ∈ [th, th+1), we can get

d

dt
|ei| = d

dt

(
e2

i

) 1
2 = sign(ei)ėi ≤ |υ̇i|. (58)

Noting the expression of υi(t) in (38), we know that υi(t) is
differentiable and υ̇i is a function of bounded variables, i.e.,
bounded signals of the multiagent networks. Therefore, there
exists a constant V∗

i > 0 such that |υ̇i| ≤ V∗
i . Since ei(th) = 0

and limt→th+1ei(t) = δi,0|uq̄i,ni
i (th+1)| + λi,0si,0(th+1) + τi,0, it

can be obtained that the lower bound of interevent intervals T∗
i

satisfies T∗
i ≥ ([δi,0|uq̄i,ni

i (th+1)| + λi,0si,0(th+1) + τi,0]/V∗
i ) ≥

(τi,0/V∗
i ), which implies the Zeno behav-

ior is effectively avoided. The proof is thus
completed. �

Proof of Proposition 1: The main idea is to prove the
boundedness of |yj(t)| through seeking a contradiction. Noting
(4), it can be obtained that |si,1| = [

∑
j∈Ni

aij + θi]|yi| −∑
j∈Ni

aij|yj| − θi|yL|. When |si,1| < kci,1 , we can obtain
⎛
⎝∑

j∈Ni

aij + θi

⎞
⎠|yi| −

∑
j∈Ni

aij
∣∣yj
∣∣− θiy

∗
L < kci,1 . (59)

At this point, four situations should be taken into account.
Situation I: Assuming that |yi| is unbounded as |yi| → ∞,

|yj| is unbounded as |yj| → ∞.
Apparently, the terms on the left-hand side of (59) approach

to infinity as [
∑

j∈Ni
aij + θi]|yi| −∑

j∈Ni
aij|yj| − θiy∗

L → ∞,
which leads to a contradiction with the fact that |si,1| is
bounded.

Situation II: Assuming that |yi| is unbounded as |yi| → ∞,
|yj| is bounded which satisfy |yj| ≤ y∗

L,2 with y∗
L,2 being known

constant.
The proof is similar to Situation 1. When |yi| → ∞, |yj| ≤

y∗
L,2, the terms on the left hand of (59) approach to infinity as

[
∑

j∈Ni
aij + θi]|yi| −∑

j∈Ni
aijy∗

L,2 − θiy∗
L → ∞, which leads

to a contradiction with the fact that |si,1| is bounded.
Situation III: Assuming that |yi| is bounded, |yj| is

unbounded as |yi| → ∞.
Similarly, when |yi| is bounded, |yi| → ∞, the terms on the

left hand of (59) approach to infinity as [
∑

j∈Ni
aij + θi]|yi| −∑

j∈Ni
aijy∗

L,2−θiy∗
L → ∞, which leads to a contradiction with

the fact that |si,1| is bounded.
Situation IV: Assuming that |yi| is bounded, |yj| is bounded

that satisfies |yj| ≤ y∗
L,2 with y∗

L,2 being known constant.
When |yi| is bounded, |yj| is bounded, the inequality

[
∑

j∈Ni
aij + θi]|yi| − ∑

j∈Ni
aijy∗

L,2 − θiy∗
L < kci,1 holds on,

which means that there must exist a known positive con-
stant y∗

L,2 such that |yj| ≤ y∗
L,2. Thus, the proof is thus

completed. �
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