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Summary

The new generation of power plants based on innovative thermodynamic cycles operat-

ing with unconventional working fluids, such as CO2 close to its thermodynamic critical

point or organic fluids close to their vapour saturation line, is an attractive option for high

efficiency conversion of sustainable energy sources in the low and medium power output

range. One of the most challenging tasks is to make this technology competitive by re-

alizing highly efficient turbomachinery components. The main difficulty stems from the

strongly non-ideal fluid dynamic behaviour of such fluids, which largely deviates from

that of fluids commonly employed in standard applications. As a consequence, special

design is needed, as available methods for turbomachinery of steam or gas turbine power

plants cannot be used. The scarce knowledge on both the numerical modeling of non-

ideal fluid flows and on their performance in turbomachinery applications makes research

crucial. Computational fluid dynamics (CFD) is a powerful tool to investigate the physics

of non-ideal flows and to assist the design of unconventional machines.

This thesis presents original research in the field of non-ideal fluid dynamics on three

complementary aspects, namely numerical methods, applications, and theory, aiming at

(i) developing new numerical schemes for the accurate and efficient CFD simulation of

non-ideal compressible flows; (ii) investigating the performance of turbomachinery op-

erating with unconventional fluids; (iii) studying the hydrodynamic stability of variable

property fluid flows. The core of the report consists of five self-contained chapters, each

addressing a specific problem, which are grouped into three parts according to their area

of contribution.

In the first part, novel implicit schemes for the spatial discretization of the Navier–

Stokes equations in the framework of the finite-volume method are introduced (Chapter

2). The look-up table approach is extensively analyzed and proposed as an accurate and

efficient alternative to the direct solution of the equation of state model for fluid property

evaluation. In order to address the proper handling of sub-domains interfaces needed in

unsteady turbomachinery simulations, a new flux-conserving treatment of non-conformal

mesh blocks interfaces is proposed in Chapter 3.

In the second part, the focus shifts to the investigation of non-ideal fluid flows in

turbomachines. Chapter 4 reports the CFD computation of the performance map of a

20 mm diameter radial compressor operating with supercritical CO2 designed for a power

of 50 kW and a rotational speed of 75 krpm. Results obtained by means of Reynolds-

averaged Navier–Stokes (RANS) simulations are compared to experimental measure-

ments of isentropic efficiency and specific enthalpy rise, showing a reasonable agreement

and providing a validation for the numerical schemes introduced in Chapter 2. Chapter 5
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Summary

investigates the unsteady operation of a supersonic turbine for organic Rankine cycle ap-

plications using unsteady RANS simulations. The evolution of shock waves and viscous

wakes and their interaction are described in details and related to the fluctuations of blade

loads, which can be of the same order of magnitude of their time-averaged values, demon-

strating the primary importance of performing unsteady simulations when studying such

non-conventional machines.

A third part concludes the thesis presenting an analytical study of the hydrodynamic

stability of a thermally-stratified channel flow with temperature dependent properties. The

classical linear stability analysis framework is extended to include the effect of variable

transport properties. Various distributions of thermal conductivity and specific heat across

the channel height are considered in order to assess under which conditions variable prop-

erties contribute to the stabilization or destabilization of the flow. The presented results

have practical implications in the study of the transition to turbulence of wall bounded

flows of unconventional fluids and in devising flow control strategies.
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Chapter 1

1.1 Green power technologies in the global energy sce-

nario

Worldwide urbanization and economic growth occurred at a continuously increasing rate

in the last century and are expected to follow the same trend in the future. Consequently,

global energy demand dramatically rose, e.g., it doubled since 1980 (1), making energy

provision one of the primary challenges our Society has to face. Nowadays, most of

energy production comes from the use of fossil fuels, which accounts for 80% of the to-

tal (2), with coal playing a major role due to its easy accessibility and low cost. Despite

regulations and limitations introduced by governments on the use of fossil fuels, they are

expected to continue to play a large role in the future (2). China represents a striking ex-

ample of the large utilization of fossil fuels: its total fossil fuels electricity net generation

rose from 230 TWh in 1980 to 3700 TWh in 2012, topping the United States in 2009 (3).

It is well documented that the most serious threat posed by the use of fossil fuels is

the emission of green house gases (GHG) to the atmosphere, which are responsible for

climate change. The International Panel on Climate Change report (4) from last year af-

firms that the total anthropogenic GHG emissions steadily increased by 80% from 1970

to 2010. In these four decades, the CO2 share of GHG emissions remained constant to

about 75%. Economic and population growth are the main drivers for increasing levels of

CO2 emissions from fossil fuel combustion. While the contribution of population growth

was roughly constant in the period 1970-2010, the contribution of economic growth con-

siderably increased during 2000-2010.

One of the consequences of high CO2 concentrations in the atmosphere is that it re-

duces the transmission of thermal radiation from the earth surface and low atmosphere,

therefore warming the surface by the so-called greenhouse mechanism (5). Consistent in-

crease of the global mean earth surface temperature for over a century was observed and

matched by numerical predictions of climate models up to 1975 (6). After a short period of

time characterized by a temperature drop, a more rapid warming followed at a rate 0.2 ◦C
per decade in the following four decades, reaching a total temperature increase of 0.8 ◦C
in the post-industrial era (7–10). Several studies demonstrated that the consequences of the

surface mean temperature increase already affect our everyday life. Global warming is

responsible for increasing sea levels (9,11) due to the ocean thermal expansion (12) and the

melting from non-polar glaciers, with an increasing contribution of the ice sheet (13). Con-

vincing arguments were proposed for recent climate change being a primary agent of ob-

served ecological changes, namely in the breeding and migration date, and geographical

and breeding range of animals due to their sensitivity of habitat or food supply to altered

temperatures and precipitations (7,14–18). Increasing extreme climate events, although dif-

ficult to monitor and analyze on a global scale due to the lack of high-quality long-term

climate data (19), may also be directly or partially attributed to global warming (4,20), as it

is the case for the observed intensification of heavy precipitation events in the Northern

Hemisphere land areas (21).

In order to draw possible pathways which could lead to a mitigation of global warm-

ing, the International Energy Agency published a report in 2012 whereby a so-called two-

2
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degrees scenario was introduced. Several recommendations and guidelines were given in

order to limit the global temperature increase with respect to pre-industrial era to 2 ◦C by

2050. Other studies also proposed policies and technological options to achieve the target

of comply with the 2 ◦C maximum temperature rise, proposing to limit the CO2 concentra-

tion levels in the atmosphere to the range 350-450 ppm (4,22) (nowadays the concentration

is 400 ppm). This maximum CO2 concentration threshold might be dangerously further

reduced as a consequence of the feedback between the climate and the biosphere (23). De-

laying efforts to mitigate emissions will substantially decrease the range of options for

reaching the two-degrees objective (4) and overshoot of CO2 concentration could lead to

irreversible catastrophic effects (22).

It is certainly evident that a drastic change in the energy policies must be undertaken

now in order to significantly reduce or divest from fossil fuels usage. Strategic decisions

are to be made by governments in order to promote the role of renewable energy con-

version alternatives which are CO2-neutral. Decentralized production, integrated systems

and smart grids are key elements for a sustainable future. Significant steps in the direction

of green energy have been made by several countries, with Germany being at the forefront

with its energy transition plan, the Energiewende (24), which aims at replacing nuclear and

most of fossil energy with renewables by 2050. In 2005, the share of the country total

electricity generation hold by renewables amounted to 8%, it increased to 25% in 2015

and is planned to reach around 87% by 2050. The process undergoing in Germany does

not only include a switch to new technologies, but involves lower energy consumption

through efficiency and conservation, and an energy usage based on the availability. Long-

term policies adopted in Germany in the last decades made possible a reduction of the

GHG emissions by -22% despite an increase in the gross domestic product of 28% in the

period 1991-2012. These policies also created more than 380,000 jobs, reduced the coun-

try dependence on the imports of fossil fuels, and helped developing the most important

green technology sector worldwide.

Among the alternatives for sustainable energy conversion, the new generation of power

systems based on innovative thermodynamic cycles, having the working fluid operating

in the sub- and supercritical thermodynamic region is an attractive option. Organic Rank-

ine cycle (ORC) and supercritical CO2 (sCO2) Brayton cycle turbogenerators are widely

recognized as power systems which are particularly suited to exploit renewable energy

sources such as solar radiation, waste heat from industrial processes and engines, and

geothermal reservoirs.

In the last two decades, ORC power systems became the technology of choice for

the conversion of renewable or renewable-equivalent energy sources in the low power

output range, from few kWe to few MWe. The working principle of the thermodynamic

cycle is the same as for a steam Rankine cycle. However, the working fluid is an organic

compound, which can be chosen or designed in order to best match the external energy

source/sink, thus making the technology extremely flexible. High conversion efficiency,

low cost, and compact assembly make ORC power plants attractive. For more information

on the history, characteristics and perspective on this technology the reader is referred to

the recent review paper by Colonna et al. (25).

The idea of using sCO2 as the working fluid of a Brayton cycle power plant was first

3
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proposed in the 60’s by Angelino (26) and Feher (27), who highlighted as one of its key

features the very high thermodynamic efficiency, up to 50%, reachable at moderate tur-

bine inlet temperatures if compared to competing technologies, e.g., the well established

steam power plant. Moreover, sCO2 power systems are very compact due to the large

operating density and pressure of the working fluid. Despite the working principles being

introduced long ago, only in the last decade the scientific community and companies have

been undertaking the needed research and development in order to bring the technology to

the market. Studies of the application to next-generation nuclear reactors (28,29), concen-

trated solar power plants (30–33) and waste heat recovery (34,35) have been documented in

the literature. An example of the wide interest in this technology is the SunShot Initiative

which was sponsored by the U.S. Department of Energy in 2012 with a budget contribu-

tion of 8 million USD in order to build a 10 MW concentrated solar power plant in which

the power block is a sCO2 turbogenerator (36).

One of the most challenging aspects of devising competitive ORC or sCO2 turbogen-

erators is the fluid dynamic design of efficient turbomachinery components, namely the

compressor and turbine. The fluid thermophysical properties exhibit strong non-linearities

in the thermodynamic region in which the expansions and compression processes occur,

namely close to the fluid vapour-liquid critical point. This makes the fluid dynamics pe-

culiar and substantially different from the case of fluids used in standard power cycle

technologies, such as steam and air, which comply with the ideal gas model. The lack

of experience, experimental data and knowledge on the physical behaviour of fluids in

the sub- and supercritical thermodynamic region is arguably the main limitation in the

design of efficient machines, which still nowadays often relies on simplified models or

on design strategies developed for air or steam compressors or turbines. Computational

fluid dynamics (CFD) is a powerful tool to investigate fundamental aspects of non-ideal

fluid flow behaviour as well as to assist the components design. By predicting fluid flow

through the machine it allows to optimize the turbomachinery efficiency and limit the

number of experiments and prototypes, thereby reducing the project cost. Despite the

numerous advancements in the field of CFD for ideal fluids, only recently non-ideal fluid

flows received the attention of the scientific community, as demonstrated by the scarce

available literature on both the numerical aspects of the simulations (37–42) and on the study

of specific applications (43–50).

This thesis presents original research in the field of fluid dynamics of non-ideal flu-

ids and documents the study of the problem with three different but complementary ap-

proaches, namely the numerical, applicative, and analytical investigation. The aim of this

work is therefore threefold and consists of:

◮ developing new numerical schemes for the accurate and efficient CFD simulation

of non-ideal compressible flows;

◮ studying with the developed CFD tools turbomachinery problems relevant for ORC

and sCO2 applications which were never investigated before;

◮ analyzing the hydrodynamic stability of non-ideal fluid flows using analytical tools.

4
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1.2 Thesis outline

The material included was partly presented at international conferences and/or appeared

in peer-reviewed international scientific journals. The thesis is organized in five self-

contained chapters, each addressing a specific problem, which can be subdivided accord-

ing to their specific aim into three parts, i) numerical methods, ii) applications, and iii)

analytical study. The final Chapter summarizes the conclusions and proposes future steps

for research in this field.

Numerical methods

The main achievement of this study is the development of a comprehensive methodology

to simulate turbomachinery flows of compressible non-ideal fluids in the framework of

the finite-volume discretization of the Navier–Stokes equations.

Chapter 2 documents the exact derivation of Jacobian matrices for several numerical

schemes for the approximation of convective and diffusive fluxes, in order to account for a

generic equation of state model of the fluid. The use of look-up table interpolation of fluid

properties is analyzed and proposed as alternative to the direct solution of the equation of

state model. The accuracy and convergence of the newly introduced schemes are verified

on a series of one and two-dimensional test cases, and assessed against analytical solutions

when available. It is demonstrated that the best convergence is obtained with a consistent

discretization of the right-hand-side and left-hand-side of the equations, i.e., by using the

same scheme to evaluate the flux and the Jacobian part.

Chapter 3 presents a new flux-conserving treatment of non-conformal mesh blocks

interfaces. The method uses a local auxiliary mesh to establish connectivity between the

non-conformal blocks and is conservative by construction, avoiding any flux interpolation

and without enforcing additional constraints. The Chapter discusses the details of the aux-

iliary mesh generation and its parallelization, and of the flux calculation at the interface.

The accuracy of the gradient reconstruction at the interface, needed in high order and vis-

cous simulations, is also investigated analytically and numerically. Numerical stability is

verified empirically by solving the equations using both explicit and implicit time integra-

tion schemes. Applications to two- and three-dimensional fluid dynamic problems verify

the method for stationary non-conformal mesh blocks simulations as well for simulations

whereby mesh blocks are in relative motion.

Applications

The numerical methodology developed in the first part is applied here to study challeng-

ing turbomachinery problems, providing new insights on the peculiarities of the fluid

dynamic operation of non-conventional machines compressing or expanding the fluid in

the proximity of its vapour-liquid critical point.

Chapter 4 reports the numerical prediction of the performance map of a radial com-

pressor operating with sCO2 by means of steady state RANS simulations. The consid-

ered compressor (50 kW, 20 mm diameter, 75 krpm design rotational speed) is part of

5



Chapter 1

a 250 kW sCO2 turbogenerator prototype designed, realized, and operated for demon-

stration purposes at the Sandia National Laboratories (SNL) site in Albuquerque, New

Mexico.

The highest possible accuracy in the fluid properties description is achieved using

look-up tables generated with a multiparameter equation of state model. Numerical results

are compared to experiments and their agreement validates the developed CFD methodol-

ogy. A detailed flow analysis shows that conditions for local fluid condensation might be

met at the leading edge of the compressor main-blade and that the extent of these regions

grows with the rotational speed. The occurrence of condensation is relevant to efficiency

and stability of operation.

Chapter 5 investigates the stator/rotor interaction in a highly supersonic ORC tur-

bine (60-170 kW, 26 krpm design rotational speed, pressure ratio > 100, maximum vane

Mach number M ≈ 3). Unsteady RANS simulations are performed to highlight the main

flow characteristics and to study the interaction between shock waves and viscous wakes.

Blade loads are calculated and analyzed in the time and frequency domain. Their tempo-

ral fluctuation is found to be of the same order of magnitude of the static loads, therefore

demonstrating the importance of performing unsteady simulation in the design process of

non-conventional supersonic turbomachines. The most important fluid dynamic mecha-

nisms are described and related to the blade load trends, providing unique insights which

might be used along with modern shape optimization techniques to improve the turbine

performance.

Analytical tools

The classic modal and non-modal stability theory developed in the last two decades for a

constant property flow is extended in order to study more realistic fluid flows with vari-

able transport properties. The flow transition from a laminar to a turbulent state strongly

influences parameters such as the skin friction and heat transfer properties. Thus, its

understanding and modeling is of paramount importance for a number of engineering

applications, e.g., in turbomachines or heat exchangers.

Chapter 6 focuses on the effect of temperature dependent thermal conductivity and

specific heat on the maximum growth of perturbations in a thermally stratified laminar

channel flow. Two different reference temperature profiles are considered, namely a linear

and a parabolic profile. The influence of variable properties is assessed in two steps,

first by looking at the individual effects, and subsequently by considering the coupled

variation of thermal conductivity and specific heat. A parametric study of the influence of

the property profiles and of the Prandtl number shows that substantial maximum energy

growth amplification/reduction can be achieved with respect to a constant property case,

therefore promoting or delaying the transition of the flow from a laminar to a turbulent

state. The time needed by the flow to reach the maximum growth of the perturbations

is also studied under variable properties, and shows that the growth mechanism can be

either speeded-up or slowed-down, depending on the Prandtl number.
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Chapter 2

Abstract This paper documents the extension of several widespread flux schemes, used

in finite-volume Navier–Stokes solvers, for the simulation of flows whose fluid properties

must be estimated with complex thermophysical models. Exact Jacobian matrices for the

convective fluxes are derived with no assumption on the fluid equations of state model

for Liou’s AUSM+, Toro et al.’s HLLC, and Kurganov and Tadmor’s central scheme. The

Jacobians of the diffusive fluxes are expressed using the formulation proposed by Pulliam

and Steger, resulting in additional terms due to the viscosity and thermal conductivity

variations. An efficient look-up table approach is thoroughly studied and proposed as an

alternative to the direct solution of the equation of state model for the fluid thermophysical

property evaluation. The newly introduced schemes are validated and tested in terms of

accuracy and convergence rate on a series of one and two-dimensional test cases. The

results indicate that the Jacobian must be based on the same flux formulation as the one

used on the right-hand side of the implicit equation to achieve numerically converged

solutions.

2.1 Introduction

Nowadays, computational fluid dynamics (CFD) is a widely used tool for the analysis and

design of many engineering applications, as well as for the study of the physics of com-

plex flows. Most of the numerical techniques applicable to compressible flows developed

throughout the years have been derived under the assumption that the fluid complies with

the ideal gas model. However, several assumptions (e.g., constant specific heats, ideal gas

law) do not hold if a fluid state is close to its vapor-liquid critical point (dense gas region)

or at high temperatures and low pressures. There is a wide variety of flows for which

real gas effects are predominant and must be considered, some of them being hypersonic

flows, reacting flows, and supercritical flows.

The main focus of this paper is on fluid non-ideality in the dense gas region. Through-

out the paper the fluid is assumed to be in single phase. However, the methods proposed

here can be applied to model two-phase vapor-liquid flows when the assumption of ho-

mogeneous mixture can be made, see for example Refs. (1,2). The interest in dense gasdy-

namics is motivated by the application to energy conversion systems, e.g. organic Rankine

cycle turbines (see Ref. (3) for a recent review), and by the peculiar gasdynamic behaviour

of fluids in such thermodynamic region, whereby non-classical phenomena may occur for

molecularly complex compounds (4,5).

A number of theoretical studies on dense gas flows were conducted in the last few

decades. Some examples are the study of propagation of waves showing classical and

non-classical characteristics (6), of compressible internal flows with heat addition (7,8), of

inviscid flows in cascade configurations (9), in shock tubes (10,11), in nozzles (12), and around

airfoils (13,14). Recently, applications to turbomachinery were investigated by several au-

thors (15–19).

The topic of adapting standard numerical techniques to be applicable for real gas sim-

ulations using the finite-volume Godunov method (20) has been proposed in the 80’s by

several authors. Colella and Glaz (21) were among the first to study the numerical solution
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of the Riemann problem of gasdynamics for a real fluid. The extension of the Roe’s ap-

proximate Riemann solver (22) and of some variants of the original scheme, with the aim

of including complex equations of state, was considered by Glaister (23–26), Montagné and

co-workers (27,28), and Gallouët and co-workers (29,30). Guardone and Vigevano (31) gener-

alized Roe’s linearization to the case of a van der Waals gas, and Mottura et al. (32) to a

high temperature reacting flow. Further contributions are the ones of Colonna and Re-

bay (33), Cinnella and Congedo (34,35), and Cirri et al. (36). Other splitting schemes such as

the Steger–Warming’s (37), van Leer’s (38), Osher’s (39), and Liou’s AUSM+ (40) were con-

sidered by Liou et al. (41), Suresh and Liou (42), and Edwards and co-workers (43,44). Central

difference schemes were studied by Saurel et al. (45) and later by Merkel et al. (46).

The aim of this paper is to provide a complete methodology for incorporating com-

plex thermophysical models in several well established inviscid and viscous flux schemes

for the Navier–Stokes equations. The inviscid flux schemes considered are the AUSM+

scheme introduced by Liou (40), the HLLC scheme of Toro et al. (47), and the central

scheme of Kurganov and Tadmor (KT) (48). No assumption on the equation of state model

is assumed. The description of the Roe solver is included for the purpose of comparison

and its implementation is taken from Colonna and Rebay (33). The diffusive fluxes and

their implicit formulation are discretized following Pulliam and Steger (49). Additional

terms in the Jacobian caused by temperature-dependent viscosity and thermal conductiv-

ity are highlighted and discussed. Furthermore, a look-up table (LUT) interpolation is

proposed and comprehensively evaluated. A detailed assessment of the LUT accuracy,

consistency, and computational efficiency with respect to direct solution of the equation

of state model is given to provide a solid basis for its use.

The paper is structured as follows. Sec. 2.2 describes the analysis of the LUT inter-

polation method and the evaluation of its performance compared to the direct calculation

of fluid properties using EoS models. The formulation of the convective and diffusive nu-

merical fluxes and the expression of the Jacobians for both is provided in Sec. 2.3 and 2.4.

A series of one and two-dimensional test cases is presented in Sec. 5.4 and convergence

histories are also reported. Finally, conclusions are drawn in Sec. 3.7. The appendices

give the generic expressions of the pressure derivatives needed for the fluxes and the Jaco-

bians (A.1), and the strategy adopted to obtain the exact solution of the Riemann problem

of gasdynamics for a real gas (A.2).

2.2 Look-up tables for fluid property evaluations

The main limitation of CFD simulations for the analysis of fluids governed by complex

thermodynamics is the computational effort required for their thermophysical property

evaluation. This issue can be the bottle-neck of the use of real gas flow simulations within

the framework of uncertainty quantification or numerical optimization. If real gas equa-

tions of state models are adopted, various levels of approximation are possible, whereby

high accuracy implies large computational cost. In order to reduce the latter an approxi-

mate property evaluation must be considered instead of a direct solution of the equation

of state. A LUT interpolation provides the best features in terms of efficiency, simplic-
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ity, and flexibility. A grid is generated over a range for two independent thermodynamic

variables (e.g., temperature and density), and all the thermophysical properties of interest

are stored in its nodes. The table can be accessed specifying any pair of properties, and

the cell identification can be easily done with standard search algorithms. If the tabulated

region encompasses the vapor-liquid equilibrium (VLE) region, we split the grid into two

sub-grids, one for the single phase and one for the VLE region. This is done because of

the discontinuity across the saturation lines of thermophysical properties such as pressure

derivatives and the speed of sound. The accuracy, consistency, and computational cost of

table interpolation are analyzed in the following sections.

2.2.1 Accuracy

The comparison of the results of three table interpolation schemes is described hereafter,

namely the bilinear, the 3rd order Lagrange polynomial, and the least-squares gradient

interpolation schemes. The accuracy of the property interpolation is assessed in the su-

percritical region of carbon dioxide CO2 (similar results can be obtained with different

fluids), where several thermophysical properties show a nonlinear behavior, e.g. den-

sity, specific heats, thermal conductivity, and viscosity. Interpolated values for 40,000

random input states are compared with the values obtained from the solution of the ther-

modynamic model, namely the multiparameter EoS for technical applications of Span

and Wagner type (50–52). The thermodynamic model is expressed in terms of the reduced

Helmholtz free energy as a function of the reduced density and of the inverse of the re-

duced temperature. The model parameters (12 in total) are optimized fitting a large set

of high accuracy experimental data. The average relative interpolation error is shown in

Fig. 2.1 as a function of the number of discretization nodes for the single edge of the

table. The convergence rate for the three schemes is not affected by the different choice

of input variables. As expected, the polynomial interpolation shows the best accuracy

and convergence. Similar results and trends are obtained if values calculated in other

thermodynamic regions are compared. It is worth mentioning that a limited number of

discretization nodes (around 100 for each dimension in the presented case) leads to a

level of accuracy acceptable for many practical applications.

2.2.2 Consistency

If the direct solution of the thermodynamic model is replaced by property interpolation,

the consistency of the approximate state with an EoS is of primary concern. The numerical

study of this aspect is illustrated in this section with a focus on the evaluation of the speed

of sound, which can be expressed as

c =

√

∂Π

∂ρ
+

(

ht − ‖v‖2
) ∂Π

∂Et
, (2.1)

where Π = Π(ρ,m, Et) is the pressure as a function of density ρ, momentum m = ρv, and

total energy Et = ρ
(

e + 1
2
‖m‖2 /ρ2

)

. The analytic expression of the pressure derivatives
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Figure 2.1: Average interpolation error using different input variables for bilinear

( ), least-squares gradient ( · ) and 3rd order Lagrange polynomial interpolation ( )

schemes. Different symbols correspond to speed of sound (△), isobaric specific heat ca-

pacity (2) and pressure (center) or specific internal energy (left and right) (#). The tab-

ulated region is ρ = [200, 600] kg/m3 and T = [308, 500] K. 40,000 random input states

are computed.

is provided in A.1. The derivatives can be tabulated at the nodes and then interpolated

(method A), or calculated based on the interpolated values of the pressure (method B),

e.g., using finite differences. Another possibility is to directly interpolate the speed of

sound (method C). Fig. 2.2 shows the differences for the speed of sound between the

methods A and C, and B and C for the same thermodynamic region as in Sec. 2.2.1, and

the same number of samples. If the pressure derivatives are interpolated (method A), the

difference converges one order faster as compared to method B. It can be inferred from

Fig. 2.2 that the inconsistency due to these different approaches can be considered neg-

ligible in most practical applications, even if a relatively small number of discretization

points is selected.

2.2.3 Computational cost

The implementation of the LUT method can be effectively optimized in order to reduce the

number of operations needed for each property evaluation. In this respect, the compact

barycentric form of the Lagrange polynomials (53) was used in this work. Furthermore,

all the geometrical coefficients needed for the least-squares gradient reconstruction were

computed in a pre-processing step. Two thermodynamic models were compared with the

LUT approach, namely the improved Stryjek–Vera modified Peng–Robinson cubic EoS
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Figure 2.2: Numerical error in the evaluation of the speed of sound for bilinear ( ), least-

squares gradient ( · ) and 3rd order Lagrange polynomial interpolation ( ) schemes. The

pressure derivatives of Eq. (2.1) are either interpolated from the table (2) or computed

using central finite differences of the interpolated pressure (▽). The reference value is di-

rectly interpolated from the tabulated speed of sound data. 40,000 random input variables

are considered on the tabulated region ρ = [200, 600] kg/m3 and T = [308, 500] K.

(iPRSV) (54), and the Span–Wagner multiparameter EoS for technical applications (52). To

perform the analysis of the computational cost, a function which calculates 15 primary

and secondary thermophysical properties, commonly used in CFD solvers, was imple-

mented for both thermodynamic models and for the three table interpolation schemes.

The thermodynamic state of the fluid is specified by setting ρ and e, which is the typical

combination of input variables used in a finite volume scheme to calculate the thermody-

namic state after the solution is advanced in time. For a given thermodynamic model, and

for a given implementation, the cost of the direct solution of the thermodynamic model

largely depends on the choice of the specified state variables and on their thermodynamic

region. Fig. 2.3 shows the average computational cost of the two EoS’s for input states in

the supercritical and VLE region of CO2 (this is interesting for the applications in which

the homogeneous mixture assumption can be adopted (1,2)). The computational cost of the

table interpolation is also reported, and shows a reduction of up to 4 orders of magni-

tude when compared to the direct solution of the thermodynamic model. Furthermore,

the computational cost of the table approach does not depend on the thermodynamic re-

gion, as seen for the direct EOS model evaluations. The computational cost reduction can

be even larger if more complex EOS models are considered for the comparison, e.g., a
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reference equation of state as the one presented in Ref. (55). A further advantage of look-

up tables is that any secondary property can be evaluated very efficiently. For example,

the computation of derivatives can be avoided for the evaluation of secondary properties,

e.g., speed of sound, fundamental derivative of gasdynamics Γ (4), which can be directly

interpolated.
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Figure 2.3: The computational cost of the direct solution of the thermodynamic model

and table interpolation is assessed with 2.5M random calls to a function which evaluates

15 primary and secondary thermophysical properties commonly used in CFD simula-

tions. The thermodynamic models based on the Span–Wagner type multiparameter EoS

for technical applications (52) and cubic iPRSV EoS (54) are considered for the comparison

using (ρ, e) as the input state, in the supercritical and VLE region of CO2.

2.3 Approximate Riemann solver fluxes and Jacobians

for an equilibrium real gas

An extension of several widespread convective flux evaluation schemes and their Jaco-

bians is presented in this section to account for an equilibrium real gas thermodynamic

model. Analytical implicit formulations are provided for the AUSM+ (40), HLLC (47), and

Kurganov and Tadmor (48) schemes (the variables at the cell faces are considered indepen-

dent of the speed of sound) and an approximate derivation of the Jacobian is given for the

Roe solver (22).
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Hereafter, the analytical convective (Euler) fluxes and Jacobian matrix will be referred

to as Fcon and Acon, as

Fcon(U) =







































m · n
(ρu)qn + Π(U)nx

(ρv)qn + Π(U)ny

(ρw)qn + Π(U)nz

ρqnht







































, and Acon(U) =
∂Fcon(U)

∂U
, (2.2)

where m = (ρu, ρv, ρw)T denotes the linear momentum, Et = ρ
(

e + 1
2
‖v‖2

)

the total

energy, U =
(

ρ,m, Et
)T

the conserved variables vector, Π(U) the pressure, ht the specific

total enthalpy, n =
(

nx, ny, nz

)T
the surface normal unit vector, and qn = v ·n the covariant

velocity.

2.3.1 Roe

The Roe scheme (22) is based on the definition of an average state URoe. While the expres-

sions for ρRoe, vRoe, htRoe
for a real gas are identical to the ones for an ideal gas, the defi-

nition of an average speed of sound cRoe requires average values for the partial derivatives

of pressure with respect to density and internal energy, which are not uniquely defined

for an equilibrium real gas (27,28). The solution proposed by Vinokur and Montagné (28) is

used to close the problem. The numerical convective fluxes for the Roe scheme can be

expressed as

F j+ 1
2
(UL,UR) =

Fcon(UR) + Fcon(UL)

2
− 1

2

5
∑

k=1

|λk|wkrk, (2.3)

where λk is the k-th eigenvalue of the Euler Jacobian matrix, Eq. (2.2), wk = (L∆U)k

the k-th Riemann invariant, and rk the k-th right eigenvector. The definition of the Rie-

mann invariants and right and left eigenvectors for a real gas are taken from Colonna and

Rebay (33). The subscripts L and R denote the left and right states of the considered cell

interface j + 1
2
, respectively.

Due to the complexity of an exact derivation of the second term in Eq. (2.3) for a real

gas, an approximate Jacobian is adopted, namely

AL,R(UL,UR) =
1

2

(

Acon L,R
± |ARoe

± |
)

, (2.4)

where |ARoe
± | = RΛ±L, with Λ± the diagonal matrices of the positive and negative eigen-

values. The matrices L,R,Λ± are evaluated using the Roe average state.
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2.3.2 AUSM+

The numerical flux for the Liou’s approximate Riemann solver (40) can be expressed as a

function of the conserved variables as

F j+ 1
2
(UL,UR) = a j+ 1

2







































m+
j+ 1

2

UL + m+
j+ 1

2







































0

0

0

0

ΠL







































+ m−
j+ 1

2

UR+

m−
j+ 1

2







































0

0

0

0

ΠR













































































+ p j+ 1
2







































0

nx

ny

nz

0







































, (2.5)

whereby the only difference with the original formulation is the substitution of Ht =

Et + Π. The common interface speed of sound is chosen as a j+ 1
2
=
√

cLcR . The other

terms are defined as m±
j+ 1

2

= 1
2

(

m j+ 1
2
± |m j+ 1

2
|
)

, p j+ 1
2
= P+(ML)ΠL + P−(MR)ΠR, and

m j+ 1
2
= M+(ML) +M−(MR), with M being the Mach number. The split Mach numbers

M± and pressures P± are

M±(M) =

{ 1
2

(M ± |M|) , if |M| ≥ 1,

± 1
4
(M ± 1)2

(

1 + 4β(M ∓ 1)2
)

, otherwise,
(2.6)

P±(M) =

{

1
2

(1 ± |M|/M) , if |M| ≥ 1,
1
4
(M ± 1)2(2 ∓ M ± 4αM(M ∓ 1)2), otherwise,

(2.7)

with α = 3/16 and β = 1/8 as in the original paper (40).

Neglecting the dependence of the interface speed of sound on the conserved variables

(frozen speed of sound), the complete Jacobian of the AUSM+ flux can be written in the
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compact form

AL,R(UL,UR) = a j+ 1
2









































































































(

∂m+
j+ 1

2

∂UL,R

)T

ρL +

(

∂m−
j+ 1

2

∂UL,R

)T

ρR

(

∂m+
j+ 1

2

∂UL,R

)T

(ρu)L +

(

∂m−
j+ 1

2

∂UL,R

)T

(ρu)R

(

∂m+
j+ 1

2

∂UL,R

)T

(ρv)L +

(

∂m−
j+ 1

2

∂UL,R

)T

(ρv)R

(

∂m+
j+ 1

2

∂UL,R

)T

(ρw)L +

(

∂m−
j+ 1

2

∂UL,R

)T

(ρw)R

(

∂m+
j+ 1

2

∂UL,R

)T

(Et
L + ΠL) + m+,−

j+ 1
2

ΠT
L,RU
+

(

∂m−
j+ 1

2

∂UL,R

)T

(Et
R + ΠR)









































































































+ a j+ 1
2
m+,−

j+ 1
2

I +













































































0T

(

∂p
j+ 1

2

∂UL,R

)T

nx

(

∂p
j+ 1

2

∂UL,R

)T

ny

(

∂p
j+ 1

2

∂UL,R

)T

nz

0T













































































, (2.8)

where I represents the identity matrix and ΠU =
(

Πρ,Πρu,Πρv,Πρw,ΠEt

)T
the gradient of

the pressure with respect to the conserved variables. The subscripts indicate the partial

derivatives. The expressions of the pressure derivatives for a generic equation of state are

given in A.1. The partial derivatives in Eq. (2.8) are expressed as

∂m j+ 1
2

∂UL

=
∂M+
∂UL

, (2.9)

∂m j+ 1
2

∂UR

=
∂M−
∂UR

, (2.10)

∂m±
j+ 1

2

∂UL

=
1

2

∂m j+ 1
2

∂UL

(

1 ± sign(m j+ 1
2
)
)

, (2.11)

∂m±
j+ 1

2

∂UR

=
1

2

∂m j+ 1
2

∂UR

(

1 ± sign(m j+ 1
2
)
)

, (2.12)

∂M±(M)

∂U
=

{

1
2

(

1 ± sign(M)
)

MU, if |M| ≥ 1,

± 1
2
(M ± 1) (1 + 8βM(M ∓ 1)) MU, otherwise,

(2.13)
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∂p j+ 1
2

∂UL

= P+ΠLU
+ ΠL

∂P+
∂UL

, (2.14)

∂p j+ 1
2

∂UR

= P−ΠRU
+ ΠR

∂P−
∂UR

, (2.15)

∂P±
∂U
=

{

0, if |M| ≥ 1,

± 1
4
(M ± 1)

(

±3 − 3M + 4α(5M2 − 1)(M ∓ 1)
)

MU, otherwise.
(2.16)

The derivatives of the Mach number with respect to the conservative variables are

∂M

∂U
=











































−M/ρ

nx/(ρa j+ 1
2
)

ny/(ρa j+ 1
2
)

nz/(ρa j+ 1
2
)

0











































. (2.17)

2.3.3 HLLC

In Batten et al. (56), a thorough analysis and derivation of the implicit formulation for

the HLLC scheme of Toro et al. (47) is presented, but limited to a fluid complying with

the ideal gas assumption. In case of a real gas equation of state, several modifications

need to be made. The average Roe state, used for the estimation of the wave speeds to

decompose the solution, see (57,58), is calculated according to Vinokur and Montagné (28).

The numerical fluxes at each interface are expressed as

F j+ 1
2
(UL,UR) =































Fcon(UL) if S L > 0,

F∗
L

if S L ≤ 0 < S M ,

F∗
R

if S M ≤ 0 ≤ S R,

Fcon(UR) if S R < 0.

(2.18)

The wave speeds S L = min
(

λ1(UL), λ1(URoe)
)

and S R = max
(

λ5(UR), λ5(URoe)
)

are

taken from Einfeldt et al. (57), with λ1,5 = qn ∓ c. S L and S R are not differentiated in the

derivation of the Jacobians, and are considered frozen hereafter. The intermediate wave

speed S M is defined in Batten et al. (58) as

S M =
ρRqnR

(S R − qR) − ρLqnL

(

S L − qnL

)

+ pL − pR

ρR

(

S R − qnR

) − ρL

(

S L − qnL

) . (2.19)
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For supersonic states, the interface flux is given by the convective flux Fcon evaluated

either in the left or right state. For intermediate conditions the following fluxes are defined

F∗L,R =













































ρ∗
L,R

S M

(ρu)∗
L,R

S M + p∗nx

(ρv)∗
L,R

S M + p∗ny

(ρw)∗
L,R

S M + p∗nz
(

Et∗
L,R + p∗

)

S M













































, (2.20)

with average states

U∗L,R =











































ρ∗
L,R

(ρu)∗
L,R

(ρv)∗
L,R

(ρw)∗
L,R

Et∗
L,R











































= ΩL,R



















































ρL,R

(

S L,R − qnL,R

)

(

S L,R − qnL,R

)

(ρu)L,R +
(

p∗ − pL,R

)

nx
(

S L,R − qnL,R

)

(ρv)L,R +
(

p∗ − pL,R

)

ny
(

S L,R − qnL,R

)

(ρw)L,R +
(

p∗ − pL,R

)

nz
(

S L,R − qnL,R

)

eL,R − pL,RqL,R + p∗S M



















































, (2.21)

with

ΩL,R =
(

S L,R − S M

)−1
, (2.22)

and

p∗ = ρL

(

qnL
− S L

) (

qnL
− S M

)

+ pL = ρR

(

qnR
− S R

) (

qnR
− S M

)

+ pR. (2.23)

As reported in Ref. (56), the implicit formulation takes the form

AL,R(UL,UR) =











































AL = Acon(UL), AR = 0, if S L > 0,

AL =
∂F∗

L

∂UL
, AR =

∂F∗
L

∂UR
, if S L ≤ 0 < S M ,

AL =
∂F∗

R

∂UL
, AR =

∂F∗
R

∂UR
, if S M ≤ 0 ≤ S R,

AL = 0, AR = Acon(UR), if S R < 0.

(2.24)
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The main difference between the proposed derivation and Ref. (56) is that the pressure

derivatives maintain their generic expression, which is valid for any equation of state

model.

∂F∗
L

∂UL,R

=





































































(

∂ρ∗
L

∂UL,R

)T
S M +

(

∂S M

∂UL,R

)T
ρ∗

L
(

∂(ρu)∗
L

∂UL,R

)T

S M +
(

∂S M

∂UL,R

)T
(ρu)∗

L
+

(

∂p∗

∂UL,R

)T
nx

(

∂(ρv)∗
L

∂UL,R

)T

S M +
(

∂S M

∂UL,R

)T
(ρv)∗

L
+

(

∂p∗

∂UL,R

)T
ny

(

∂(ρw)∗
L

∂UL,R

)T

S M +
(

∂S M

∂UL,R

)T
(ρw)∗

L
+

(

∂p∗

∂UL,R

)T
nz

(

∂Et∗
L

∂UL,R
+

∂p∗

∂UL,R

)T

S M +
(

Et∗
L + p∗

) (

∂S M

∂UL,R

)T





































































. (2.25)

The derivative of the flux F∗
R

is the same as Eq. (2.25) once the left average state U∗
L

is

changed to U∗
R

.

The average states derivatives are

∂ρ∗
L

∂UL

= ΩL







































S L

−nx

−ny

−nz

0







































+ ρ∗LΩL

∂S M

∂UL

, (2.26)

∂ρ∗
L

∂UR

= ρ∗LΩL

∂S M

∂UR

, (2.27)

∂(ρu)∗
L

∂UL

= ΩL









































(ρu)LqnL
/ρL − nxΠLρ

S L − qnL
− (ρu)Lnx/ρL − nxΠLmx

−(ρu)Lny/ρL − nxΠLmy

−(ρu)Lnz/ρL − nxΠLmz

−ΠLEt nx









































+

ΩL

(

nx

∂p∗

∂UL

+ (ρu)∗L
∂S M

∂UL

)

, (2.28)

∂(ρu)∗
L

∂UR

= ΩL

(

(ρu)∗L
∂S M

∂UR

+ nx

∂p∗

∂UR

)

, (2.29)
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∂(ρv)∗
L

∂UL

= ΩL
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
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(ρv)LqnL
/ρL − nyΠLρ

−(ρv)Lnx/ρL − nyΠLmx
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− (ρv)Lny/ρL − nyΠLmy

−(ρv)Lnz/ρL − nyΠLmz

−ΠLEt ny


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
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
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





+

ΩL

(

ny

∂p∗

∂UL

+ (ρv)∗L
∂S M

∂UL

)

, (2.30)

∂(ρv)∗
L

∂UR

= ΩL

(

(ρv)∗L
∂S M

∂UR

+ ny

∂p∗

∂UR

)

, (2.31)

∂(ρw)∗
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∂UL

= ΩL
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(ρw)LqnL
/ρL − nzΠLρ

−(ρw)Lnx/ρL − nzΠLmx

−(ρw)Lny/ρL − nzΠLmy
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−ΠLEt nz


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+

ΩL

(

nz

∂p∗

∂UL

+ (ρw)∗L
∂S M

∂UL

)

, (2.32)

∂(ρw)∗
L

∂UR

= ΩL

(

(ρw)∗L
∂S M

∂UR

+ nz

∂p∗

∂UR

)

, (2.33)
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∂UL

= ΩL
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− ΠLEt qnL
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















+

ΩL

(

S M

∂p∗

∂UL

+
(

Et∗
L + p∗

) ∂S M

∂UL

)

, (2.34)

∂Et∗
L

∂UR

= ΩL

(

S M

∂p∗

∂UR

+
∂S M

∂UR

(

Et∗
L + p∗

)

)

, (2.35)

∂p∗

∂UL,R

= ρL,R

(

S R,L − qnR,L

) ∂S M

∂UL,R

. (2.36)

In Eq. (2.26)-(2.36) the relation ∂ΩL/∂UL = Ω
2
L
∂S M/∂UL has been used. The expressions

for the pressure derivatives are given in A.1. The derivatives of the right state U∗
R

are easily

obtained by interchanging the subscript L with R, and S L with S R on the right-hand side
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of Eq. (2.26)-(2.34). The derivatives of the intermediate wave speed are given by

∂S M

∂UL,R

= ρ̃−1
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
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




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
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







, (2.37)

with ρ̃ = ρR

(

S R − qnR

) − ρL

(

S L − qnL

)

.

2.3.4 Kurganov and Tadmor central scheme

The Kurganov and Tadmor (KT) central scheme (48) allows to calculate the inviscid fluxes

without any knowledge of the eigenstructure of the interface Riemann problem. They are

expressed as

F j+ 1
2
(UL,UR) =

Fcon(UR) + Fcon(UL)

2
−

a j+ 1
2

2
(UR − UL) , (2.38)

with a j+ 1
2

being the maximum local propagation speed

a j+ 1
2
= max

L,R

(

ρ

(

∂Fcon

∂U

(

UL,R

)

))

. (2.39)

In this three-dimensional extension its value is taken as a j+ 1
2
= max(λL, λR), with λL =

max(|qnL
+ cL|, |qnL

− cL|) and λR = max(|qnR
+ cR|, |qnR

− cR|). Considering a frozen local

propagation speed, the derivation of the implicit Jacobians is

AL,R(UL,UR) =
1

2

(

Acon(UL,R) ± a j+ 1
2
I

)

. (2.40)

This scheme is extremely compact and requires only few operations to evaluate both

fluxes and Jacobians. The extension to include a dense gas equation of state model only

needs the generalization of the expression of Fcon and Acon, see e.g. (33). However, the

simplified approximations of the KT scheme lead to a higher numerical dissipation in its

semi-discrete formulation, if compared to Roe, AUSM+, and HLLC. Several modifica-

tions were proposed to overcome this issue, often applicable to two-dimensional struc-

tured grids only (48,59–61).

2.3.5 Hybrid schemes: AUSM+-KT and HLLC-KT

A hybrid numerical discretization is also possible, whereby the Jacobian on the left hand

side (LHS) and the explicit flux on the right hand side (RHS) of the Newton–Raphson

scheme are evaluated using two different approximate Riemann solvers. Two combina-

tions considered in this paper are: AUSM+ (RHS) and KT (LHS) referred to as AUSM+-

KT; and HLLC (RHS) and KT (LHS) referred to as HLLC-KT. This is a simple com-

monly used approach and the results of these hybrid methods will be discussed in therms

of convergence achieved in Sec. 5.4.
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2.3.6 Scalar transport equations

It is common to solve scalar transport equations in numerical simulations, such as tur-

bulence models in the framework of Reynolds-averaged Navier–Stokes (RANS), com-

bustion models, scalar dispersion, etc. All the schemes described above can be easily

extended to the advection of a generic scalar φi. It should be mentioned that for the KT

scheme the intensity of the artificial dissipation can be reduced by replacing the maximum

local propagation speed, defined in Eq. (2.39), with the convective velocity

a j+ 1
2
≡ max(|qnL

|, |qnR
|). (2.41)

The flux for the scalar then reads

Fsca,i =
1

2

(

qnR
ρRφiR + qnL

ρLφiL − a j+ 1
2

(

ρRφiR − ρLφiL

)

)

, (2.42)

and the Jacobian is

Asca,iR,L =
1

2

((

qnR,L
∓ a j+ 1

2

)

φiR,L , nxφiR,L , nyφiR,L , nzφiR,L , 0, qnR,L
∓ a j+ 1

2

)

. (2.43)

2.4 Diffusive fluxes

The diffusive fluxes are expressed as

Fdif(Q) =





















0

n · τ
v · (n · τ) + n · (λ∇T )





















, (2.44)

with τ = µ
(

∇ ⊗ v + (∇ ⊗ v)T − 2
3

(∇ · v) I
)

being the viscous stress tensor, µ the fluid

dynamic viscosity, and λ the thermal conductivity. Q = (ρ, u, v,w, T )T is the vector of the

primitive variables. The velocity and temperature gradients at each face are calculated as

∇φ|f · nf =
φA − φB

‖xA − xB‖
αf +

1

2

(∇φ|A + ∇φ|B
) · (nf − αfsf) , (2.45)

where φ is a generic variable, A and B denote the two cell centers sharing the face f,

α = s·n, and s is the normalized vector connecting the A and B cell centroids. More details

can be found in Refs. (62,63). The flux Jacobian needed for the implicit time integration is

obtained following Pulliam and Steger (49) as:

Adif(U) =
∂Fdif(Q)

∂Q

∂Q

∂U
. (2.46)

For a dense gas, the viscosity and thermal conductivity variations must be included

in the calculation of ∂Fdif(Q)/∂Q. If not available from the thermodynamic library, the

following derivatives

∂µ(ρ, T )

∂ρ
,

∂µ(ρ, T )

∂T
,

∂λ(ρ, T )

∂ρ
, and

∂λ(ρ, T )

∂T
, (2.47)
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can be numerically computed by means of finite differences using the tabulated values for

µ and λ. The temperature derivatives needed for the evaluation of the tensor ∂Q/∂U can

be expressed using the chain rule on Θ = T (ρ, e(ρ,m, Et))

∂Θ

∂ρ
=
∂T

∂ρ
+
∂T

∂e

∂e

∂ρ
,

∂Θ

∂Et
=
∂T

∂e

∂e

∂Et
, and

∂Θ

∂mi

= −vi

∂Θ

∂Et
, (2.48)

which is valid for any equation of state. The specific internal energy as a function of the

conservative variables is given by

e(ρ,m, Et) =
1

ρ

(

Et − 1

2

‖m‖2
ρ

)

. (2.49)

2.5 Results

The accuracy and the convergence rate of simulations using the the inviscid and viscous

flux schemes from Sec. 2.3 and 2.4 are assessed for five paradigmatic cases. These are, a

one-dimensional Riemann problem, an inviscid supersonic flow over a ramp, a bi-bump

channel, a cylinder in supersonic cross flow, and a turbulent subsonic flow in a turbine cas-

cade. Several fluids, relevant for technical applications, are considered and the simulation

conditions are chosen such that the fluid’s thermodynamic state is close to the liquid-vapor

critical point, where strong variations of thermophysical properties occur. The code used

to perform the simulations is an in-house finite volume Navier–Stokes solver developed

by Pecnik et al. (64). The implicit Euler time integration scheme is used in all cases, except

for the one-dimensional Riemann problem, which is solved using the explicit three-step

Runge–Kutta method of Shu and Osher (65). The large sparse linear system resulting from

the implicit time integration is solved using PETSc (66), which implements the generalized

minimal residual algorithm (67), pre-conditioned with the incomplete LU factorization. In

all simulations, the initial Courant number CFL of the time integration scheme is set to 1,

and gradually increased at each time step up to a maximum value CFL = 1000. Unless

otherwise specified, a second order spatial discretization scheme is used.

The look-up table method presented in Sec. 2.2 is employed in all simulations. How-

ever, computations using direct solution of the equation of state model are also performed,

but since no differences were found in the calculated flow field, those results are not pre-

sented here. The thermodynamic properties are tabulated using an in-house library (68).

2.5.1 One-dimensional Riemann problem

Helium is the selected fluid for this test case, and its thermodynamic properties are cal-

culated according to the model implemented in Ref. (52). The initial left and right states

are summarized in Tab. 2.1. A constant time step ∆t = 2.5 × 10−4 is used to integrate the

equations until t = 0.02 s. The grid discretizes x ∈ [−5, 5] using 200 intervals.

Results are shown in Fig. 2.4 and compared with the exact described in A.2. All nu-

merical schemes are in good agreement with the reference solution, with the KT central
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Table 2.1: Initial conditions of the one-dimensional Riemann problem. Helium is the fluid

selected. The subscript r indicates reduced quantities.

Pr Tr ρ [kg/m3] u [m/s] P [bar]

Right 0.95 1.1 26.56 0.0 2.161

Left 2.825 1.275 96.38 0.0 6.426

scheme being the most diffusive. A discontinuity is observed in the velocity field. Ac-

cording to Clerc (69) this is inherent to the conservative formulation of the discretized Euler

equations and depends on the nonlinear shape of the isobars in the ρ−ρe plane. However,

to explain the nature of the observed phenomenon in details, further quantifications are

required which is outside of the scope of this work. Fig. 2.5 shows all the thermodynamic

states which define the solution of the Riemann problem on the ρ − T plane, including

contour lines for 1 − z, with z = P/ρRT being the compressibility factor.

x [m]

D
en

si
ty

[k
g

/m
3
]

­5 ­4 ­3 ­2 ­1 0 1 2 3 4 5
20

40

60

80

100

Exact
AUSM

+

HLLC
Roe
KT

x [m]

P
re

ss
.

[b
ar

]

­5 ­4 ­3 ­2 ­1 0 1 2 3 4 5
1

2

3

4

5

6

7

x [m]

V
el

o
ci

ty
[m

/s
]

­5 ­4 ­3 ­2 ­1 0 1 2 3 4 5
0

5

10

15

20

25

30

x [m]

M
ac

h
[­

]

­5 ­4 ­3 ­2 ­1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

Figure 2.4: Solution of the Riemann problem. Helium is the fluid selected. The initial

conditions are reported in Tab. 2.1.
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Figure 2.5: Thermodynamic states of the solution of the Riemann problem described in

Tab. 2.1 and Fig. 2.4. Contour lines are for 1−z, with z = P/ρRT being the compressibility

factor. When 1 − z = 0 the ideal gas assumption holds.

2.5.2 Supersonic flow over a ramp

This test case is a supersonic inviscid flow (inlet Mach number M = 2) of hydrogen over

a ramp with a slope of 2.5 deg. The geometry is discretized on a mesh with 222 × 174

control volumes. The inlet conditions are given in terms of reduced pressure Pr = 1.05 and

reduced temperature Tr = 1.05. The polynomial table interpolation is used to evaluate the

thermodynamic properties. The Mach number distribution shows an oblique shock wave

followed by a centered rarefaction fan, and is displayed in Fig. 2.6.

The numerical solution is compared with the exact solution obtained by solving the

Rankine–Hugoniot relations across the shock wave and integrating the Prandtl–Meyer

ordinary differential equation. Since no closed form solution for these two nonlinear

waves can be obtained for a real gas, the two sets of equations are solved numerically.

Properties are directly evaluated using the hydrogen thermodynamic model implemented

in Ref. (52). Tab. 2.2 compares the exact solution to the average post shock and post fan

states obtained by the CFD solver using the four different schemes. The agreement is

satisfactory with maximum deviations of less than 0.02 %.
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(a) AUSM+ (b) HLLC

(c) Roe (d) KT

Figure 2.6: Mach number contour lines (15 levels from 1.7 to 2.0) for the ramp test case.

Inlet conditions are M = 2, Pr = 1.05, Tr = 1.05. The angle of the slope is 2.5 deg.

Table 2.2: Post-shock and post-fan states obtained averaging the CFD results. The direct

solution of the Rankine–Hugoniot relations together with the integration of the Prandtl–

Meyer ordinary differential equation is also reported in the first row. Fluid properties are

calculated using table interpolation except for the last simulation included, which uses

direct solution of the equation of state (DC).

Post shock state Post fan state

ρ [kg/m3] P [bar] M [−] ρ [kg/m3] P [bar] M [−]

Exact 18.4785 16.8556 1.79802 16.7624 13.6128 1.99969

AUSM+ 18.4787 16.8579 1.79791 16.7609 13.6150 1.99932

HLLC 18.4799 16.8604 1.79777 16.7580 13.6108 1.99958

Roe 18.4799 16.8604 1.79777 16.7580 13.6108 1.99958

KT 18.4806 16.8617 1.79771 16.7574 13.6102 1.99961

HLLC DC 18.4799 16.8604 1.79777 16.7580 13.6108 1.99958
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Table 2.3: Initial conditions for the bi-bump test case.

Fluid Pr Tr M

MD6M 0.94 0.997 1.6

CO2 1.05 1.15 1.6

Fig. 2.7 shows the convergence histories of the schemes using the residual of the

energy equation. The AUSM+, Roe, and HLLC schemes show very similar convergence

features. In fact, the Roe and HLLC schemes are the same due to the supersonic nature of

the flow, where the HLLC and Roe flux corresponds to the Euler flux given in Eq. (2.2).

The KT scheme shows slightly slower convergence.

The convergence rate of HLLC using direct solution (DC) of the thermodynamic

model is also presented, and shows a deterioration of convergence after 6 orders of magni-

tude. This can be related to the numerical tolerance used in the Newton–Raphson iteration

for the inversion of the equation of state model in the external library.

The performance of the two hybrid schemes AUSM+-KT and HLLC-KT is found to

be in both cases sensibly worse as compared to the base schemes with a consistent exact

Jacobian. Similar behavior of the converge history was observed by several authors when

using an approximate definition of the Jacobian matrix for ideal gas simulations. Batten et

al. (56) shown that a fully linearized approximate Riemann solver flux function converges

faster than the case when the Jacobian matrix is considered frozen (for the Roe scheme) or

is obtained under the assumption of frozen wave speeds (in case of HLLC scheme). In the

context of adjoint shape optimization, Dwight and Brezillon (70) studied approximations

of the gradients with respect to a full linearization of all the terms in the flow solver, and

observed that they may have similar performance with respect to the exact differentiation

in some cases, but may also converge sensibly slower in other. Similar remarks were

presented by Carpentieri et al. (71), who highlighted that quadratic converge for the Roe

scheme is obtained only if the Jacobian is exact, and concluded that first-order accurate

approximations are not effective since their optimization procedure stalled for all the test

cases considered.

2.5.3 Supersonic flow in a two-dimensional bi-bump channel

The bi-bump test case, introduced by Monaco et al. (9), is studied with two different fluids

with inlet conditions reported in Tab. 2.3. The thermodynamic models are based on the

iPRSV cubic equation of state (54) for MD6M, and on the Span–Wagner multiparameter

equation of state (52) CO2. The mesh consists of 499 × 249 control volumes.

Considering the flow of MD6M, a pattern of interacting shocks is observed, whose

intensity is weak due to the low value of the fundamental derivative of gasdynamics Γ (4),

see also Ref. (33), which is negative at the inlet. Fig. 2.9 shows that, in the case of the CO2

flow, the shocks are stronger as the value of Γ is well above 1.

The convergence history of the energy residual is plotted in Fig. 2.10. For both simu-

lations, a similar behavior is observed as for the ramp test case. Again, the HLLC and Roe
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Figure 2.7: Convergence history of the energy equation residual for the ramp test case of

Fig.2.6.

schemes convergence is the same. Interestingly, the AUSM+ shows a temporary conver-

gence rate deterioration after the residual has decreased by 4 orders of magnitude. Several

tests with different interpolation schemes, table refinement, and also using direct solution

of the thermodynamic model ruled out the inaccuracy or inconsistency of the interpolated

thermodynamic properties to be the reason for this convergence deterioration. Similarly

to the case discussed in Sec. 2.5.2, also here the hybrid schemes show the slowest con-

vergence. In fact, with the AUSM+-KT scheme no stable solution was achieved using the

same integration parameters for the MD6M case.
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(a) AUSM+ (b) HLLC

(c) Roe (d) KT

Figure 2.8: Mach number contour lines (20 levels between 1.4 and 1.9) for the supersonic

MD6M flow in a bi-bump channel. The inlet boundary conditions are summarized in

Tab. 2.3.
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(a) AUSM+ (b) HLLC

(c) Roe (d) KT

Figure 2.9: Mach number contour lines (20 levels between 1.2 and 1.9) for the supersonic

CO2 flow in a bi-bump duct. The inlet boundary conditions are summarized in Tab. 2.3.
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(a) Subcritical MD6M
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Figure 2.10: Convergence history of the energy equation residual for the bi-bump test

case of Fig. 2.8 and 2.9.
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2.5.4 Cylinder in supersonic cross flow

The inviscid simulation of a cylinder in supersonic cross flow is analyzed here with MDM

vapor as the fluid. A uniform inflow at M = 2.5, P = 11.48 bar, and T = 554.3 K is cho-

sen, which corresponds to the subcritical state with Pr = 0.811 and Tr = 0.983. The

initial conditions are selected such that the flow evolves in the transcritical region slightly

below and above the critical point, where the thermodynamic properties vary abruptly, see

Fig. 2.11. The multiparameter equation of state model implemented in Ref. (52) is used to

generate the table. Compared to the bi-bump and ramp test cases, a more strict CFL con-

dition is needed in order to prevent the solution from diverging during the first integration

steps. This is mainly due to the thermodynamic state falling outside the tabulated region,

which covers the range of validity of the thermodynamic model. A CFL of 2.5 is used for

the first 200 steps, and then gradually increased by a factor of 1.05 at each time step up to

25. All the simulations are performed using first order spatial accuracy.

The obtained Mach number distribution is depicted in Fig. 2.12. The flow field is

dominated by a strong bow shock wave. Downstream of the bow shock the flow is mainly

subsonic, except for the region close to the outlet boundary. The thermodynamic states

computed in all the cell centers using the AUSM+ scheme are plotted in the ρ − T plane,

see Fig. 2.11. As already mentioned, they lie in the transcritical thermodynamic region of

the selected fluid, making the test of the schemes particularly challenging. Contour lines

for 1 − z are also shown in order to identify where the deviation from the ideal gas law is

larger.

Figure 2.11: Calculated thermodynamic states of the cylinder in inviscid supersonic cross

flow with MDM as the fluid. Contour lines are for 1 − z, with z = P/ρRT being the

compressibility factor.
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(a) AUSM+ (b) HLLC (c) Roe (d) KT

Figure 2.12: Mach number contour lines (15 from 0 to 2.5) for a cylinder in supersonic

cross flow with MDM as the fluid. The Inlet conditions are: M = 2.5, P = 11.48 bar, and

T = 554.3 K.
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Figure 2.13: Convergence history for the supersonic flow over a cylinder test case of

Fig. 2.12.
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The convergence history of the energy equation residual is shown in Fig. 2.13. The

best performance is obtained with the KT and AUSM+ schemes, while the convergence

is not monotonic for the Roe’s solver which exhibits oscillations in the decrease of the

residual. A trend similar to the one obtained with the ASUM+ scheme for the case of

supercritical CO2 presented in Sec. 2.5.3 is observed for the HLLC scheme in this test

case. After the CFL number is increased, the residual is stationary for about 300 time

steps and later decreases to convergence. Both hybrid schemes fail to converge for this

case. A similar stall of the residual was observed by Batten et al. (56) when using a frozen

Jacobian matrix for the Roe solver for the same test case configuration, however for an

ideal gas flow.

2.5.5 Two-dimensional subsonic flow through the VKI LS-89 turbine

blade cascade

A test case of engineering interest is considered here, namely the turbulent flow of MDM

through the well documented VKI LS-89 turbine cascade. The total inlet conditions are

chosen to reasonably represent the operation of an organic Rankine cycle (ORC) turbine

operating at supercritical temperatures: Ttot = 219.1 ◦C and Ptot = 13.87 bar. These

correspond to the reduced values of Tr = 1.05 and Pr = 0.98. The outlet pressure is

specified 3 chord length downstream of the trailing edge to avoid spurious reflections at

the outlet affecting the flow around the blade with Pout = 11 bar.

The no-slip condition is applied on the solid wall, and periodicity is set on the upper

and lower boundaries. The one equation turbulence model of Spalart and Allmaras (72)

is used with the KT advection flux formulation, Eq. (2.42) and (2.43). Numerical ob-

servations showed that using the maximum local propagation speed (Eq. (2.39)) as the

intensity of the numerical dissipation in Eq. (2.43) is beneficial for the convergence rate

of the scalar. The inlet value of the turbulent viscosity is νSA ≈ 1 × 10−5. Approximately

16,000 hexahedral cells are used to discretize the domain, clustered on the blade surface.

A maximum CFL number of 100 is used for the implicit time integration. The calculated

Mach number flow field for the second order turbulent simulation is shown in Fig. 2.14.

The predictions given by the AUSM+, HLLC, and Roe’s do not display significant differ-

ences, while a higher level of numerical diffusion is observed for the KT scheme.

Fig. 2.15(a) displays the convergence history of the energy equation residual for a

laminar simulation using first order spatial discretization, and Fig. 2.15(b) for a turbulent

simulation using second order spatial discretization. Because of the poor convergence

behavior of the hybrid schemes (AUSM+-KT and HLLC-KT) observed for the previous

cases, they have not been considered for comparison. The convergence is found to be

faster for the laminar case, showing a monotonic decrease of the residual. Interestingly,

the KT scheme converges within only 500 time steps. Despite the oscillating behavior of

the residual for the turbulent test case, it can be inferred from Fig. 2.15(b) that the solution

is converged after 2000 steps for practical considerations (the residual is decreased by

five orders of magnitude). To assess the influence of the viscous Jacobian including the

derivatives of the transport properties (thermal conductivity λ and molecular viscosity

37



Chapter 2

µ) two simulations were performed: one with and one without those derivatives. Based

on the results (not shown) no convergence improvement was achieved. However, it is

expected that closer to the pseudo critical line with strong variations of µ and λ a better

convergence is obtained including the derivatives of the transport properties in the viscous

Jacobian.

(a) AUSM+ (b) HLLC

(c) Roe (d) KT

Figure 2.14: Mach number contour lines for a subsonic turbulent flow over the VKI LS-89

turbine blade cascade with MDM as the fluid.
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Figure 2.15: Convergence history for the VKI LS-89 test case of Fig. 2.15.

2.6 Conclusions

This paper documents the implicit formulation of several approximate Riemann solvers

with no assumption on the fluids’ equation-of-state. The formulations are valid for any

EOS model for the estimation of the fluid thermodynamic properties, and any temperature-

dependent model for the transport properties. Analytical expressions of the exact flux

Jacobians for the HLLC, AUSM+, and Kurganov and Tadmor schemes are presented and

the general approach allows the coupling to accurate thermophysical models for the sim-

ulation of real gas flows. Differences from the ideal gas formulation are pointed out,

and can be summarized by the need for general expressions of partial derivatives of pres-

sure and temperature with respect to the conserved variables vector and several additional

terms in the diffusive flux Jacobians arising from temperature-dependent fluid viscosity

and thermal conductivity.

A method for the computation of the fluid thermophysical properties based on the

interpolation of look-up table is analyzed in terms of accuracy and consistency. Despite

the latter cannot be enforced when the properties are interpolated independently one from

another, a relatively small number of discretization nodes for the thermodynamic table is

found to be sufficient as far as the consistency and accuracy of the property evaluations

are concerned. The main advantage using the LUT method when compared to the direct

solution of the equation of state model is the computational cost that is reduced by up to

4 orders of magnitude. The cost reduction can be even larger if a reference EoS model is

used for the comparison.

Numerical experiments demonstrate the accuracy of the proposed numerical methods,

and a comparison with the exact solution for the one-dimensional Riemann problem and

the supersonic ramp test case validates their formulation. Other flow configurations are
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also considered, including a turbulent flow through a turbine cascade. The wide variety of

fluids selected for the test cases ensures the generality and flexibility of the methodology.

From the results obtained for all the cases it is not possible to state which method performs

best. However, the results indicate that in order to achieve convergence it is essential to

use consistent formulations for the Jacobians based on the chosen flux scheme.

A.1 Pressure derivatives and speed of sound

The pressure relation can be conveniently written as a function of the conserved variables

U =
(

ρ,m, Et
)T

P = P(ρ, e) = P
(

ρ, e
(

ρ,m, Et
))

= Π, (50)

in which we introduced a different symbol to specify the new thermodynamic relation.

In order to express the Jacobian of the Euler fluxes, the derivatives of Π are needed.

Differentiating Eq. (50)

dΠ = Pρdρ + Pe

(

eρdρ + emdm + eEt dEt
)

. (51)

The partial derivatives of Π can then therefore be expressed as follows

Πρ = Pρ + Peeρ, Πmi
= Peemi

, ΠEt = PeeEt . (52)

Using the definition of the specific internal energy as a function of the conserved variables,

e = e
(

ρ,m, Et) = Et/ρ − 1
2
‖m‖2 /ρ2, it is possible to express its partial derivatives as

eρ = −
1

ρ

(

e − 1

2
‖v‖2

)

, emi
= −vi

ρ
, eEt =

1

ρ
. (53)

The derivatives of Π can now be re-written as

Πρ = α −
e

ρ
β +

1

2

β

ρ
‖v‖2 , Πmi

= −vi

ρ
β, ΠEt =

β

ρ
, (54)

where

α =
∂P(ρ, e)

∂ρ
and β =

∂P(ρ, e)

∂e
. (55)

A.2 Exact solution of the Riemann problem for a real gas

Referring to Quartapelle et al. (73), the one-dimensional Riemann problem of gasdynamics

can be formulated as follows

{

u1(T1; L) − u3(T3; R) = 0,

P1(T1; L) − P3(T3; R) = 0,
(56)
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where L and R indicate the initial left and right state, respectively. The subscripts 1,3

denote the two genuinely nonlinear eigenvalues of the Euler equations λ1,3 = u∓ c, while

the linearly degenerate eigenvalue is λ2 = u. Using this convention, the intermediate

state 1 is bounded by λ1 and λ2, while 3 by λ2 and λ3. The solution of the Riemann

problem is obtained imposing the continuity of the velocity and pressure across the contact

discontinuity (associated with λ2). The expressions for these two quantities are obtained

integrating the rarefaction fan (if the pressure in the intermediate state is smaller than the

one of the corresponding initial state) or solving the Rankine–Hugoniot shock relations

u1(T ; L) ≡
{

urar
1

(T ; L) if P(T ) < PL,

uRH
1

(T ; L) if P(T ) > PL,
(57)

u3(T ; R) ≡
{

urar
3

(T ; R) if P(T ) < PR,

uRH
3

(T ; R) if P(T ) > PR.
(58)

The nonlinear system (56) is solved iteratively for the two intermediate temperatures T1,3

using the Newton–Raphson method. All the thermodynamic derivatives used for the so-

lution of the rarefaction and shock wave relations, and needed in the definition of the

Eq. (56) Jacobian are numerically approximated using centered finite differences. The

Newton–Raphson iterations are stopped when the sum of the relative increments for T1

and T3 is smaller than 10−10.
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Chapter 3

Abstract We present a new flux-conserving treatment of non-conformal mesh block

interfaces for the numerical solution of conservation laws by high order finite volumes

schemes. An auxiliary mesh is used at the interface to establish a connectivity between

non-conformal blocks. The method does not involve any flux interpolation and conserva-

tion is therefore guaranteed by construction, without enforcing additional constraints.

Additionally, several gradient reconstructions across the interface have been adapted

and their order of accuracy is studied analytically and numerically. Applications to two

and three dimensional fluid dynamic problems are considered, and the verification of

the method is provided by comparing solutions obtained on single-block grids with no

interfaces. Also the accuracy and numerical stability of the interface treatment is demon-

strated empirically for a variety of test cases, such as a cylinder in supersonic cross-flow,

low Mach-number vortex shedding, and a transonic turbine stage. The exemplary flow

simulation problems are solved using explicit and implicit time integration schemes. The

obtained results successfully demonstrate the effectiveness of the proposed method for

stationary non-conformal blocks domains, as well as for mesh blocks in relative motion.

3.1 Introduction

The numerical discretization of complex geometries is a challenging task which often

requires the generation of unstructured or multi-block grids in order to guarantee a high

quality of the resulting computational domain. Node-to-node connectivity among the

discrete elements is required by standard numerical techniques and is guaranteed by most

algorithms for mesh generation. However, there are applications for which the grid must

be split into subregions, or patches, with non-matching interface boundaries. Typical

examples are found in aeroelasticity simulations, where the aerodynamic and structural

interface nodes often do not coincide, or multiphysics simulations. A similar situation

occurs when parts of the domain are in relative motions with respect to each other, as it is

the case for turbomachinery computations.

The appropriate treatment of the artificially introduced internal boundaries is crucial.

The most critical aspects such a treatment has to comply with are: numerical conservation,

stability, accuracy and efficiency. In general, the methods can be categorized based on

their numerical conservation properties, namely they can be subdivided in conservative

and non-conservative schemes.

Berger (1) was among the first to propose a method to conserve variables at grid in-

terfaces. Rai (2–4) developed a conservative zonal-boundary scheme for grids having a

common cell-centered line at the interface, which was later applied to study the two-

dimensional stator/rotor interaction of an axial turbine stage (5). Lerat and Wu (6) proposed

a patched grid technique based on a common cell-side line instead. Interface cell faces are

sub-divided into smaller segments on which the fluxes are calculated and then summed

together in order to obtain the total numerical flux, thus avoiding any interpolation. Lerat

and Wu’s method was later successfully applied by Benkenida et al. (7) to calculate trans-

port of vortices. Zhang et al. (8) proposed instead a polynomial remapping of the variables

on the non-matching faces, enforcing conservation in the definition of the polynomials co-
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efficients. An alternative approach which ensures conservation is obtained by introducing

a local mesh at the boundary between domains, whose purpose is to correctly “attach“ the

non-conformal patches, documented in Refs. (9–11), where CFD applications are treated,

and in Refs. (12,13), which in turn are concerned with multiphysics simulations.

Non-conservative schemes suffer from possible loss of accuracy and stability issues,

especially when discontinuities, e.g., shock waves, occur across the interface. One of

the most widely used non-conservative scheme is the CHIMERA interpolation technique

on overlapping grids in its original formulation (14,15). As acknowledged by the authors,

problems were encountered in case of shock/interface interaction. Wang (16) extended the

scheme to a conservative formulation which replaces the overlapped zones by patched

zones. Another modification to the original CHIMERA method is the one proposed by

Kao and Liou (17): they replaced the grid overlapping with a newly defined unstructured

grid. The conservation error for the CHIMERA scheme was analyzed by Wang et al. (18),

who showed that it is a first order term of the mesh elements size if a second order con-

servative scheme is used, and if discontinuities are not in the proximity of the overlapping

area interface. In addition, they also showed that the non-conservative formulation might

cause inaccurate solutions for smooth flows too, and pointed to the benefits of using a con-

servative formulation. Overlapping grids were also considered by Liu (19), who extended

the central scheme of Kurganov and Tadmor (20) to account for the new mesh topology.

Other alternative non-conservative interface methods were successfully applied to CFD

calculations on complex geometries such as a complete aircraft configuration (21,22). Tang

and Zhou (23) rigorously investigated the convergence and accuracy of non-conservative

schemes showing that the conservation error is bounded if the solution itself is bounded.

This paper presents a new flux-conserving treatment of non-conformal interfaces for

the numerical solution of conservation laws by high order finite volumes schemes. The

method is based on the concept of a supermesh introduced by Farrell et al. (24) and later ap-

plied to the conservative interpolation of cell-centered finite volume variables by Menon

and Schmidt (25). The supermesh acts as an auxiliary interface grid that establishes con-

nectivity between the mesh blocks. The numerical fluxes are evaluated on the supermesh

and then summed to the flux balance of the control volumes of their respective parent

meshes.

Section 3.2 introduces the supermesh and describes its construction. The flux as-

sembly technique for the internal control volumes and at the interface is described in

Sec. 3.3. The method automatically guarantees flux conservation by construction, with-

out any interpolation or the need to enforce additional constraints. The challenge of an

accurate gradient reconstruction at the interface control volumes, which is needed for

high order spatial accuracy, is addressed in Sec. 3.4. Modifications to the least-squares

and Green–Gauss methods are proposed, and their order of accuracy is derived analyti-

cally and verified numerically on two and three dimensional domains. The parallelization

of the supermesh generation and of the interface treatment is discussed in Sec. 3.5. The

verification of the proposed interface treatment is provided by solving the Navier–Stokes

equations. Several two and three dimensional numerical tests are presented and discussed

in Sec. 3.6. Numerical stability is shown empirically using explicit and implicit time

integration schemes. Finally, conclusions are drawn in Sec. 3.7.
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3.2 Non-conformal mesh interface treatment using a su-

permesh

3.2.1 Supermesh definition

The auxiliary grid between two non-conformal mesh blocks, as displayed in Fig. 3.1,

is constructed using the supermesh methodology. The most important properties of the

supermesh, as described in Refs. (24,25), are reported in the following for the sake of com-

pleteness. Let MA and MB be two arbitrary surface meshes of the same geometrical

domain Ω ⊂ ℜ3. They will be referred to as parent meshes. NA and NB are the nodes

ofMA andMB, respectively, and EA and EB the elements (faces in this case) of the two

meshes.

Definition 1. A supermesh MS of {MA,MB} is a mesh of Ω which satisfies the

following properties:

• NS ⊇ NA ∪NB;

• A(ES ∩ E) ∈ {0, A(ES )} ∀ ES ∈ MS , E ∈ M, M ∈ {MA,MB};

where A is the surface area function. �

The first property asserts that the supermesh contains every node of the parent meshes.

The second asserts that the intersection area of each element of the supermesh ES with

any element of a parent mesh must either be null or measure the whole supermesh element

area A(ES ). In other words, it is possible to reconstruct every element of a parent mesh

using an appropriate number of supermesh elements.

3.2.2 Supermesh construction

The supermesh construction consists of an intersection problem between n−1 dimensional

elements, where n is the number of dimensions of the grid blocks. The task is trivial in

case of 2D meshes, whereby the supermesh is made of segments demarcated by the set of

nodesNS , which coincides withNA∪NB. This is valid for every 1D intersection problem,

as depicted in Fig. 3.1(a).

In case of 3D mesh blocks, the supermesh definition consists of a 2D face intersection

problem between two interface surface meshes. Figure 3.1(b) shows a three-dimensional

mesh consisting of two blocks with non-conformal interface elements. MA andMB are

the surface meshes on the patched boundary faces. Unstructured quadrilateral and triangu-

lar elements are used onMA andMB, respectively.MS denotes the interface supermesh,

which is an hybrid unstructured grid.

In order to satisfy the properties of Definition 1 (discussed in Sec. 3.2.1) and guarantee

flux-conservation across the interface, it is crucial that the intersection scheme used to

calculateMS is accurate and robust. Exact numerical conservation can only be achieved

if the intersection is computed to machine precision. The algorithm used in this study

to calculate the intersection between two generic parent mesh elements, EA,i and EB, j, is

described graphically in Fig. 3.2 and consists of four steps:
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(a) 2D mesh blocks, 1D parent meshes interpolation. Empty circles indicate the

cell centers of the elements, while the black circles denote NS .

(b) 3D mesh blocks, 2D parent meshes and interpolation.

Figure 3.1: Interface supermesh definition for 2D and 3D parent grids. In both cases the

mesh blocks are displaced for the sake of clarity and the interface supermesh is displayed

in the middle.
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1. identify the vertices of EA,i contained within EB, j, and vice versa;

2. calculate the intersection between the edges of EA,i and EB, j;

3. remove double points from step 1 and 2;

4. if the number of calculated nodes (NS , i j) after step 3 is larger than 2, define new

supermesh elements.

At step 3, two nodes N1 and N2 are considered to coincide if |xN1
− xN2

| < 10−14. Step

3 addresses all the special situations stemming from coincidental nodes or edges. In

general, the intersection procedure may lead to small elements of size comparable to

machine precision, which however does not pose any limitations in the flux calculation

and in the choice of the time-step, the latter being computed using the volume of the mesh

cells of the original blocks.

Several exemplary face intersections are shown in Fig. 3.3 in order to characterize

common situations usually encountered. If NS , i j = 3 the supermesh element ES ,k is a

triangle, Fig. 3.3(a), while if NS , i j = 4, ES ,k is a quadrilateral element, Fig. 3.3(b). The

situation in which the calculated supermesh element ES ,k coincides either with EB, j or

with EA,i is depicted in Fig. 3.3(c) and 3.3(d), respectively. Finally, if NS , i j > 4, multiple

elements are defined, Fig. 3.3(e) and 3.3(f). In order to keep the number of supermesh

elements to a minimum, it is convenient to define as many quadrilateral elements as pos-

sible at each face intersection, to limit the use of triangular elements when an odd number

of nodes is available.

The intersection procedure discussed can be generalized to an arbitrary surface mesh,

not necessarily planar as in Fig. 3.1(b), by parametrizing the parent meshes using a com-

mon local coordinate system, and by computing the intersections in the local frame of

reference.

Figure 3.2: Necessary steps to calculate supermesh elements by intersecting two generic

elements EA,i and EB, j.
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: Exemplary intersections of 2D elements.

3.3 Conservative flux assembly at the interface

In this work we consider finite volume integration scheme for conservation laws written

as

∂

∂t

∫

Ω

UdΩ +

∫

∂Ω

F (U) dA = 0, (3.1)

where U is the vector of the conservative variables and F(U) the flux vector, which is in

general a non-linear function of U. The physical domain of interest is denoted by Ω and

its external boundary by ∂Ω. In the finite-volume framework,Ω is discretized numerically

into control volumes whose total number is indicated by Ncv. Equation (3.1) can be re-

written in the semi-discrete form in the cell center of each control volume cv as

∂Ucv

∂t
= −RHS(Ucv), (3.2)

where the discretized flux balance is casted to the right-hand-side (RHS) of the equations

as

RHS(Ucv) = − 1

Vcv

N f a
∑

f a=1

F(UL,UR)A f a −
1

Vcv

Nb f a
∑

f a=1

F(UL,Ubc)A f a. (3.3)

The nomenclature used in Eq. (3.3) is displayed in Fig. 3.4. Here, Vcv indicates the volume

of cv and N f a and Nb f a the number of discrete faces defining the control volume, which
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can be either internal or on the boundary of the domain (Nb f a). A f a denotes the area of

the face f a. The value of the face flux depends on the conservative variable states on the

left and on the right side of the face, UL and UR, and is considered positive if it points

outwards of the control volume. A first order accurate scheme is obtained if UL and UR are

assumed equal to the values in the cell centers of the respective control volumes, namely

if UL = Ucv and UR = Unb, where nb indicates the neighbor of cv sharing the face f a on

which the flux is calculated. The total number of internal neighbors for each cv is denoted

by Nnb and satisfies Nnb = N f a − Nb f a. In case one of the faces is a boundary face, the

boundary condition Ubc is used in the flux calculation.

xcv, Ucv

xnb, Unb

x f a

UL

UR

(a) Internal cell (N f a = 3).

xcv, Ucv

x f a

UL

Ubc

∂Ω

(b) Boundary cell (N f a = 2 and Nb f a = 1).

Figure 3.4: Schematic of the finite volume discretization.

The proposed interface treatment uses the supermesh to replace the parent meshes

MA and MB in the flux balance calculation of the interface control volumes. At each

ES , the left and right states used to evaluate the supermesh face flux are taken from the

corresponding EA and EB. To this end, it is necessary to map the supermesh on the parent

meshes. For every ES , TA and TB contain the index of the parent mesh control volume,

such that

TA,i = P(k) if A
(ES ,i ∩ EA,k

)

= A
(ES ,i

)

, (3.4)

TB,i = P(k) if A
(ES ,i ∩ EB,k

)

= A
(ES ,i

)

, (3.5)

where i and k indicate the index of a generic supermesh and parent mesh element, respec-

tively. P(k) returns the index of the control volume cv, which contains the boundary face

k. The flux balance for an interface control volume belonging toMA on a two-dimensional

structured grid is illustrated in Fig. 3.5. The fluxes computed on the supermesh faces con-

tribute to the flux balance as

RHSint(Ucv) = RHS(Ucv) − 1

Vcv

Ns f
∑

s f=1

F
(

Ucv,UTB,s f

)

As f , (3.6)

where Ns f is the number of supermesh elements that are mapped on cv (for cv = 6 they

are two, indicated by the indices 9 and 10), and As f is the area of the single supermesh
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face. The same formula is applied to a control volume contained in MB by replacing

TB,s f with TA,s f . The flux integral conservation over the whole interface is guaranteed by

the second property of Definition 1, provided that the interpolation method is accurate to

machine precision.

Figure 3.5: Schematic showing the flux balance calculation for the interface control vol-

ume cv = 6. For the case displayed TA = (4, 5, 5, 6, 6, 7) and TB = (8, 8, 9, 9, 10, 10), thus

the neighbors of cv that contribute to the flux balance calculation are nb = (7, 2, 5, 9, 10).

3.4 Interface gradient reconstruction

In order to achieve second or higher order spatial accuracy, the states are extrapolated

from the cell centers to the faces using an appropriate gradient reconstruction scheme.

Let us consider the exemplary unstructured mesh depicted in Fig. 3.4; a generic scalar

quantity φ is calculated at a cell face as

φ f a = φcv + ψcv∇φcv ·
(

x f a − xcv

)

, (3.7)

whereby ∇φcv = (∂xφcv, ∂yφcv, ∂zφcv) is the gradient of the scalar in the cell center, and the

partial derivatives are written in the compact form ∂x = ∂/∂x, ∂y = ∂/∂y, ∂z = ∂/∂z. The

location of the face and control volume centroids are denoted by x f a and xcv, respectively,

and ψcv is a slope limiter function which prevents spurious oscillations in the regions

where φ varies sharply. The number of control volumes used to approximate the gradient

at each grid cell center is referred to as stencil and depends on the order of accuracy of the

scheme and on the scheme itself. In this paper, we consider second order methods only

and we limit our discussion to the least-squares (LS) and Green–Gauss (GG) gradient

reconstruction schemes.

In the following, we analyze the LS and GG methods as formulated on the internal

cells of the computational domain, and we discuss their modification to be adapted to

the interface problem. We make use of structured mesh blocks to describe the schemes
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and to study their order of accuracy. The reasons for choosing two structured blocks are

to simplify the analytical analysis of the order of accuracy (presented in Sec. 3.4.3), and

to prevent the numerical results of Sec. 3.4.4 from being polluted by the quality of the

internal control volumes. Hereafter, we will refer to the structured grid blocks depicted in

Fig. 3.6. In order to be consistent with the equations introduced in Sec. 3.3, the naming

of the elements is the same as the one adopted for the unstructured grids.

(a) Internal control volume. (b) Interface: extended stencil.

(c) Interface: face value.

Figure 3.6: Stencil for the least-squares and Green–Gauss gradient reconstruction in the

cell centroid cv = 0.

3.4.1 Least-squares gradient

The LS method approximates the gradient in the center of a control volume by minimizing

an objective function in the form (see e.g. Mavriplis (26))

J =

Nnb
∑

nb=1

w2
nbE2

nb, (3.8)
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where w2
nb
= 1/|xnb − xcv|2 and Enb denotes the error

E2
nb =

(

−(φnb − φcv) + ∂xφcv(xnb − xcv) + ∂yφcv(ynb − ycv) + ∂zφcv(znb − zcv)
)2
. (3.9)

The minimization of Eq. (3.8) leads to
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∑Nnb
nb=1 w2

nb
(xnb − xcv)(φnb − φcv)

∑Nnb
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nb
(ynb − ycv)(φnb − φcv)

∑Nnb
nb=1 w2

nb
(znb − zcv)(φnb − φcv)





















.

(3.10)

The coefficients of the matrix depend on the geometry of the mesh only, and can be

efficiently calculated and stored in a pre-processing step. They are defined as

S w2dxdy =

Nnb
∑

nb=1

w2
nb(xnb − xcv)(ynb − ycv), (3.11)

and similarly for S w2dx2 , S w2dy2 , and S w2dz2 , S w2dxdz, and S w2dydz.

In case at least one of the faces enclosing cv is part of ∂Ω, the contribution of the

boundary faces must be included in the objective function, as

J =

Nnb
∑

nb=1

w2
nbE2

nb +

Nb f a
∑

f a=1

w2
f aE2

f a, (3.12)

with w2
f a
= 1/|x f a − xcv|2, and

E2
f a =

(

−(φ f a − φcv) + ∂xφcv(x f a − xcv) + ∂yφcv(y f a − ycv) + ∂zφcv(z f a − zcv)
)2
. (3.13)

The values of the scalar on the external faces are specified as boundary conditions. The

minimization of Eq. (3.12) results in an expression for ∇φcv similar to Eq. (3.10).

3.4.1.1 Extended stencil

An intuitive possibility is to extend the list of neighbors of a generic control volume

cv by adding neighbors across the interface that share a face in the supermesh, and to

make use of Eq. (3.10) with the updated connectivity (LSI-F). A generic cv in the mesh

patch containingMA has a number of new neighbors which corresponds to the number

of supermesh elements satisfying TA,i = cv. The index which identifies the new neighbor

belonging to the mesh patch containingMB is given by TB,i.

Figure 3.6(b) shows the extended stencil for the interface control volume contained in

MA on a structured mesh; the cells 4 and 5 are added to the list nb = 1, 2, 3. Although, the

two mesh blocks are both structured cartesian grids, the interface stencil is skewed due

to the non-conformity of the grids, resembling the typical stencil used on an unstructured

mesh. In case the elements ofMB are much smaller than the ones ofMA, the stencil is

strongly biased towardMB. This leads to a deterioration of the gradient accuracy not only

along the direction which crosses the interface, but also along the direction parallel to it.

To avoid this biasing, only the closest neighbor can be considered (LSI-C).
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3.4.1.2 Approximate face value

An alternative approach consists of treating the faces of the control volume on the inter-

face as external boundary faces whose value is computed as

φ f a =
1

A(EA,k)

∑

i:TA,i=cv

A(ES ,i)
φcvdTB,i

+ φTB,i
dcv,i

dcv,i + dTB,i

, (3.14)

where EA,k is the k-th element of the parent meshMA, which corresponds to the boundary

face f a of cv on the interface. This approach will be referred to as LSI-Fa in the following.

Note that
∑

i:TA,i=cv A(ES ,i) = A(EA,k) by definition. dcv,i and dTB,i
denote the distances

between the face centers of the supermesh elements i and the cell centers of cv and TB,i,

respectively. Equation (3.14) assumes that cv belongs to the grid block containingMA.

If cv is on the grid block containing MB, the indices A and B must be interchanged.

Considering the two-dimensional case depicted in Fig. 3.6(c), Eq. (3.14) reduces to

φ f a =
a
(

φ4d0,1 + φ0d4

)

(

d0,1 + d4

) +
(1 − a)

(

φ5d0,2 + φ0d5

)

(

d0,2 + d5

) . (3.15)

3.4.2 Green–Gauss gradient

The GG method numerically approximates the Green–Gauss theorem as

∇φcv =
1

Vcv

N f a
∑

f a=1

φ f aA f an f a, (3.16)

with n f a indicating the unit vector normal to the face. In second order cell-centered

numerical schemes φ f a is commonly linearly interpolated as

φ f a =
φcvdnb + φnbdcv

dnb + dcv

, (3.17)

where dcv = |xcv − x f a| and dnb = |xnb − x f a|. The GG gradient only requires the face value

on the interface boundary for the non-conformal interface problem (GGI). This is done

by using Eq. (3.14). No additional modification to the standard scheme is required.

3.4.3 Analytical order of accuracy

The analytical derivation of the order of accuracy for the schemes introduced above is

given in this section. The procedure is based on the Taylor series expansion of the solution

in the neighboring cells, which is substituted into the schemes described above. The order

of accuracy is quantified by the order of magnitude of the truncation error.

In case of internal control volumes (no interface), LS and GG are equivalent on a

structured grid
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∂LS
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




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

















φ4−φ0

2∆x4
+

φ2−φ0

2∆x2

φ3−φ0

2∆y3
+

φ1−φ0

2∆y1























, (3.18)
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with ∆xnb = xnb − x0 and ∆ynb = ynb − y0. In Eq. (3.18) and in the following it is

assumed that the unit normal vectors to the faces of cv = 0 point outwards from the

control volume. The length of the faces Ah and Av is calculated as Ah = x f a,4 − x f a,2 and

Av = y f a,3−y f a,1, where f a, nb is the face shared by cv = 0 and the neighbor nb. It follows

that x0 = (x f a,2 + x f a,4)/2 and y0 = (y f a,1 + y f a,3)/2.

The function in the neighbors cell centers is approximated by the Taylor series expan-

sion as

φnb = φ0+∂xφ0∆xnb+∂yφ0∆ynb+∂
2
xxφ0

∆x2
nb

2
+∂2

yyφ0

∆y2
nb

2
+∂2

xyφ0∆xnb∆ynb+O(∆x3)+O(∆y3).

(3.19)

Substituting the Taylor expansions into Eq. (3.18) leads to
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, (3.20)

which shows that the methods are in general first order accurate on non-uniform grids and

second order accurate in case either ∂2
xxφ0 = ∂

2
yyφ0 = 0 or the grid is uniform (|∆x2| = |∆x4|

and |∆y1| = |∆y3|).

3.4.3.1 LSI-C

The order of accuracy for LSI-C is derived next. Note, the order of accuracy for LSI-F is

the same as for LSI-C and is not shown here for the sake of brevity. Let us consider the

stencil depicted in Fig. 3.6(b). The weights for the least squares gradient are

w2
1 =

1

∆y2
1

, w2
2 =

1

∆x2
2

, w2
3 =

1

∆y2
3

, w2
4 =

1

∆x4
4
+ ∆y2

4

, (3.21)

Equation (3.10) reduces to
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(3.22)

The least squares approximation of the gradient can be thus written as
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(3.23)
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The order of accuracy of Eq. (3.23) is calculated by replacing φ1, φ2, φ3, and φ4 with their

Taylor expansions
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. (3.24)

Equation (3.24) shows that LSI-C is in general first order accurate even if the two non-

conformal mesh blocks are regular structured grids of squared elements.

3.4.3.2 LSI-Fa and GGI

In case the face which is located on the interface is treated as an external boundary face,

see Fig. 3.6(c), LS-Fa and GGI reduce to the same expression
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

















. (3.25)

The approximation of the gradient along the direction parallel to the interface is not af-

fected by the interface treatment, i.e. ∂LS I−Fa
y φ0 ≡ ∂GGI

y φ0 ≡ ∂GG
y φ0 ≡ ∂LS

y φ0. Replacing

φ f a with Eq. (3.15)

∂GGI
x φ0 =

1

2∆x f a

[

a
φ4d0,1 + φ0d4,1

d0,1 + d4,1

+ (1 − a)
φ5d0,2 + φ0d5,2
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− φ0

]

+
φ2 − φ0

2∆x2

. (3.26)

Expanding φ2, φ4, and φ5 in Taylor series we obtain
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which can be recasted as

∂GGI
x φ0 = ∂xφ0 + ∂xφ0O

(

∆x0
)

+ ∂yφ0O
(

∆y

∆x

)

+ . . . , (3.28)

showing the presence of two terms of order-0 which prevent the approximated gradient to

converge as the computational grid is refined.

3.4.4 Numerical convergence

The accuracy of the gradient reconstruction is verified numerically in two and three di-

mensions for the following test functions

f 2D
1 = x y, (3.29)

f 2D
2 = sin(2πx̄) sin(2πȳ), (3.30)

f 3D
3 = sin(4πx) + sin(4πy) + sin(4πz), (3.31)

f 3D
4 = sin(2πx̃) sin(2πy) sin(2πz̃). (3.32)

where the bar ¯(.) and tilde ˜(.) indicate a transformed coordinate system, which is rotated

by π/4 about the z and y axis, respectively. The test domains areΩ2D = [0, 1]×[0, 1] ⊂ ℜ2

and Ω3D = [0, 1] × [0, 1] × [0, 1] ⊂ ℜ3. The interface is placed at x = 0.5 in the 2D case

and at z = 0.5 in the 3D case. The computational domain is made of a coarse structured

grid on the left side of the interface and of a finer grid on the right side of the interface.

The elements of both grid blocks are regular quadrilaterals in 2D and cubes in 3D. The

edge ratio of the fine grid elements to the coarse grid is 0.7, and it is kept constant during

the mesh refinements. To assess the calculated order of accuracy of the LS, GG, LSI-C,

LSI-F, LSI-Fa and GGI methods, the L1 norm of the difference between the reconstructed

and analytical value of the gradient is used, namely

‖ε j‖L1
=















N
∑

i=1

|∂NUM
j φi − ∂ jφi| / |∂ jφi|















/N, (3.33)

where N indicates the total number of control volumes used to calculate the error, and

j = x, y, z is the component of the gradient. No slope limiter is used. Results for the

particular case of matching mesh blocks are not included since equations (3.24) and (3.27)

reduce to Eq. (3.20) in this specific situation, therefore recovering the same convergence

property as for the internal cells.

Figure 3.7 displays the convergence of the error for the test functions in the 2D do-

main. The calculated convergence rates for LSI-F, LSI-C, LSI-Fa, and GGI are consistent

with the analytical derivation of the order of accuracy of Sec. 3.4.3. LSI-F and LSI-C both

converge first order, and LSI-Fa and GGI show an error of order zero along the direction

which crosses the interface, while the convergence along the direction parallel to the in-

terface is not affected and is the same as for the internal cells, see Eq. (3.25). In Fig. 3.7(a)

( f 2D
1

), the results for the LS and GG methods in the internal cells are not shown since both
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methods exactly reconstruct a function that has zero second and higher order derivatives

on a regular grid. The same property holds for the y derivative in case of GGI and LSI-Fa.

The calculated order of accuracy in 3D is shown in Fig. 3.8. The rate of convergence

agrees with the derivation of Sec. 3.4.3 obtained in 2D case. In case of f 3D
3

, LSI-C shows

an order of accuracy close to two, while LSI-F remains first order as predicted by the

analytical expression. For f 3D
4

, the calculated converge of the y derivative of both LSI-F

and LSI-C is below first order.

Overall, the results do not lead to conclusive evidence about which of the methods is

best. LSI-C appears to offer a better reconstruction of the gradient as compared to LSI-F,

and shows second order convergence in case of f 3D
3

while LSI-F remains first order for

all the test functions considered. GGI and LS-Fa are a trade-off between accuracy and

simplicity of implementation. On the one hand a constant error in the direction perpen-

dicular to the interface is introduced, which is quantified to about 10% at most for all the

numerical tests performed. On the other hand, second order accuracy is maintained along

the directions parallel to the interface.

h
10

­3
10

­2
10

­110
­5

10
­4

10
­3

10
­2

10
­1

10
0

1
st

order

‖ε
‖ L

1

(a) f 2D
1
= x y

h
10

­3
10

­2
10

­110
­5

10
­4

10
­3

10
­2

10
­1

10
0

Internal

LSI­Fa & GGI

LSI­C

LSI­F

1
st

order

2
nd

order

‖ε
‖ L

1

(b) f 2D
2
= sin(2πx̄) sin(2πȳ)

Figure 3.7: Average L1 norm of the error on the gradient reconstruction in the internal

and interface control volumes on a two dimensional domain. Symbols indicate the com-

ponents of the derivatives, namely 2 is ∂xφ and △ is ∂yφ.

3.5 Parallelization

The parallel distribution of the supermesh generation procedure and of the interface flux

calculation are discussed here. The former is independent from the topology of the mesh

after the partitioning step. A possible strategy to compute the supermesh in parallel is

detailed in Sec. 3.5.1. The interface flux calculation requires an adaptation in case the

interface is splitted among several cores. The choice of whether to distribute the interface

control volumes among different cores or not depends on several factors that are summa-
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Figure 3.8: Average L1 norm of the error on the gradient reconstruction in the internal

and interface control volumes on a three dimensional domain. Symbols indicate the com-

ponents of the derivatives, namely 2 is ∂xφ, △ is ∂yφ, and � is ∂zφ.

rized in Tab. 5.2. Load balancing benefits from a sub-division of the interface. However,

having the interface distributed on several cores, requires additional data exchange be-

tween them in order to update the interface supermesh properties. Moreover, memory

usage is penalized by the need to store these additional variables. Given the usually small

ratio of interface-to-internal faces, the requirements in terms of additional memory usage

and data exchange between the cores are not large enough to justify the loss in load bal-

ance. Therefore, only the case where the interface is split among multiple cores is treated

here.

3.5.1 Distributed supermesh construction

The schematic graphical representation of an exemplary parallel supermesh construction

is given in Fig. 3.9. It shows a 2D grid partitioning on three cores that also splits the

non-conformal interface. First, the interface control volumes are pre-processed in order

to define the complete parent meshesMA andMB, see Fig. 3.9(b), and this information

is shared among all the cores. Subsequently, each core checks only a limited number of

Table 3.1: Advantages and disadvantages of partitioning the non-conformal interface.

Single core Multiple cores

Load balance − +

Memory + −
Data exchange + −
Supermesh generation + +
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EA for intersections with EB in order to define a temporary local supermesh MS ,i, see

Fig. 3.9(c), with i = 1, 2, 3 in this case. All theMS ,i are then grouped together to define

the complete supermeshMS . The last step consists in distributing to each core only the

ES mapped on the localMA andMB, see Fig. 3.9(d) and 3.9(e). As a consequence, every

core has a new local supermesh MS ,i ⊆ MS . If no parent mesh elements are present

locally,MS ,i = ∅, as it is the case for CORE 3 in Fig. 3.9(a). As expected, the scaling of

the proposed parallelization is linear, see Fig. 3.10.

(a) Grid partition.

MAMB

(b) Parent meshes identifi-

cation.

M
A
,1

M
A
,2

M
A
,3

MB

(c) Parallel supermesh gen-

eration.

(d) Local supermesh:

CORE 1.

(e) Local supermesh:

CORE 2.

Figure 3.9: Schematic representation of the procedural steps involved in the generation of

a supermesh. Filled symbols indicate the cell centers of the supermesh elements.
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Figure 3.10: Calculated scaling of the parallel supermesh construction (dashed line). Re-

sults are obtained for two fixedMA,B counting 5 × 104 elements each.

3.5.2 Flux assembly across the interface

If information about the control volumes, identified by TA,i and TB,i, is stored locally on

the core, no additional information is needed in order to calculate the supermesh face

flux and sum it to the corresponding control volume flux balances. Every variable can

be retrieved by using the control volume index only. Conversely, if either TA,i or TB,i is

not stored locally for that core, communication is required to retrieve the necessary flow

variables. Thus, we propose to store on each supermesh face the flow properties and to

update them at each time step. This comes at a computational cost that depends on the

number of the needed flow variables, on the number of supermesh elements, and on the

number of cores used for the partition. Memory usage also increases with the number

of variables and supermesh elements. However, given the relatively small interface to

internal mesh face ratio, the penalty in terms of memory and computational efficiency is

not expected to significantly influence the code performance.
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3.6 Numerical verification for the Navier–Stokes equa-

tions

The Navier–Stokes equations are used for the verification of the proposed mesh blocks

interface treatment. Five exemplary test cases provide the numerical verification. Station-

ary non-conformal grid blocks are considered in Sec. 3.6.2, 3.6.3 and 3.6.4, while mesh

blocks in relative motion are considered in Sec. 3.6.5 and 3.6.6. A wide range of flow

regimes is investigated, i.e., subsonic, transonic and supersonic flows, under steady state

and unsteady conditions, including flow discontinuities (shock waves) crossing the mesh

interface.

For the stationary test cases, the validation is performed by comparing the flow field

calculated on a two-block mesh to the one obtained on a single-block mesh, i.e., no in-

terface, with comparable elements size. The numerical flux conservation is verified for

the continuity and energy equations as the difference between the integrated values at the

interface and the ones calculated at the outlet and inlet boundaries. Relative differences

were found to be of the order of machine precision and are not included here. Conver-

gence histories are also shown and the numerical stability is demonstrated empirically for

explicit and implicit time integration schemes.

3.6.1 Navier–Stokes solver

The conservative variables vector for the Navier–Stokes equations is

U =





















ρ

ρv

ρet





















, (3.34)

whereby ρ is the fluid density, v is the velocity vector, and et = e+ 1
2
|v|2 is the specific total

energy. The fluxes are conveniently splitted into a convective and diffusive part, namely

F = Fc + Fd and

Fc =





















n · ρv

ρv (n · v)+Pn
(

ρet + P
)

(v · n)


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








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and Fd =





















0

n · Π
v · (n · Π) + n · (λ∇T )





















, (3.35)

in which P denotes the pressure, T the temperature and λ the thermal conductivity. The

stress tensor is expressed as Π = µ
(

∇ ⊗ v + (∇ ⊗ v)T − 2
3

(∇ · v) I
)

, with µ being the dy-

namic viscosity of the fluid, T indicating the transpose operator, I the identity matrix, and

⊗ the outer (or tensor) product.

The convective fluxes are evaluated numerically at each face of the domain using

an approximate Riemann solver, e.g., AUSM+ (27) or HLLC (28). The evaluation of the

diffusive fluxes needs an accurate evaluation of the temperature and velocity gradients on

the faces, which are calculated as

∇φ f a · n f a =
φnb − φcv

|xnb − xcv|
α f a +

1

2
(∇φnb + ∇φcv) ·

(

n f a − α f as f a

)

, (3.36)
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with α f a = s f a · n f a, and s the normalized vector connecting the nb and cv cell centroids.

Second order spatial accuracy is achieved using the GG method for the internal control

volumes and GGI at the interface. The gradient slope limiter proposed by Venkatakrish-

nan (29) is adopted. More details on the flow solver used in this study are given by Pecnik

et al. (30).

Time integration can performed using explicit three-steps Runge–Kutta (RK3) scheme (31),

which is second order accurate, or implicit schemes, namely backward Euler and backward-

differentiation-formula (BDF2), in order to avoid restrictions related to the choice of the

time step. In case implicit schemes are used, the numerical scheme requires the definition

of the flux Jacobians. A thorough derivation of the Jacobians employed in the CFD code

is given by Rinaldi et al. (32).

3.6.2 Cylinder in supersonic cross flow

An incoming inviscid supersonic flow at Mach number M = 4 is considered. First order

accuracy was used for the convective flux discretization and the Euler equations were

integrated in time with the explicit RK3 method and the implicit backward Euler scheme.

For the latter, the Courant number was gradually increased after 100 time steps from

CFL = 1 to CFL = 1000.

Fig. 3.11 shows the calculated Mach number contour lines on a single-block and two-

block domain. The shock waves cross the interface without generating any spurious oscil-

lation and no discrepancies are observed between the two solutions. The only differences

in the Mach distribution downstream of the cylinder are due to a coarser spacing of the el-

ements of the right-hand side mesh block for the two-block grid. The convergence history

is not affected by the presence of the interface for both, explicit and implicit simulations,

see Fig. 3.12.

3.6.3 Laminar vortex shedding

A second test case is provided by the simulation of the laminar vortex shedding from a

two-dimensional cylinder at Reynolds number Re = 1300 (based on the inlet properties

and the cylinder diameter). Second order spatial and temporal accuracy is used. The

Navier-Stokes equations are integrated with the explicit RK3 scheme using a constant

∆t = 2.5 × 10−6 s.

The calculated flow fields for the single-block and two-block meshes are superim-

posed in Fig. 3.13 in terms of density, vorticity and pressure, at the same normalized

time. A coarser mesh is used for the right block of the two-block computational domain,

which introduces more diffusion in the vortices downstream of the cylinder and is the

reason for slight differences in the contour lines. The coarse mesh block also influences

the solution on the fine mesh block (left-hand side) since the information can propagate

upstream in a subsonic flow.
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Figure 3.11: Mach number contour lines obtained from the simulation results of a cylinder

in a M = 4 supersonic cross flow. The solution obtained on a single-block mesh (solid

line) is compared to the one obtained on a two-block mesh (dashed lines). Detailed views

of the wake and bow shock at the interface are given in the square boxes.
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Figure 3.12: Convergence history of the energy equation related to the simulation whose

results are displayed in Fig. 3.11. The Euler equations were integrated using the implicit

backward Euler (top) and explicit three-steps Runge–Kutta (bottom) methods.

3.6.4 Inviscid supersonic flow in a three-dimensional double bump

channel

The simulation of an inviscid, M = 2.5 supersonic flow in a double bump channel is used

to test the interface treatment in case the flow is three-dimensional. The two bumps are

located on the bottom and side wall. This configuration guarantees that the flow is fully
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Figure 3.13: Results of the simulation of the laminar vortex shedding at Re = 1300. The

solution obtained by means of a single-block mesh (solid line) is compared to the one

obtained with a two-block mesh (dashed lines). Note that in case of a two-block mesh,

the blocks are considered as disconnected by the visualization tool. Thus, the contour

lines might display a discontinuity at the interface, which is not physical but merely an

artifact of the visualization.

three-dimensional due to the interaction between shock waves and expansion fans. A

structured mesh is used for the single-block domain. The interface for the two-block mesh

is located downstream of the bumps. The mesh upstream of the interface is the same as

for the single block configuration, while downstream of the interface the mesh consists of

wedge elements. In both cases the computational domain counted approximately 650,000

control volumes. Second order spatial accuracy was used, and the Euler equations were

integrated using the implicit backward Euler scheme with an initial CFL = 50, which was

gradually increased after 10 time steps up to CFL = 1000.

The calculated flow fields are displayed in Fig. 3.14 on two planes, at half of the

channel width and height. The small but appreciable differences seen in the Mach number

contour lines downstream of the interface are due to the different volume distribution of

mesh elements between the single-block and two-block cases. The convergence history

of the energy equation is reported in Fig. 3.15 and shows a slower convergence rate for

the two-block case after the residual has decreased by six orders of magnitude.
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(a) Half channel height plane.

(b) Half channel width plane.

Figure 3.14: Mach number contour lines for the simulation results of an inviscid M = 2.5

supersonic flow in a three-dimensional double bump channel. The solution obtained by

means of a single-block mesh (solid line) is compared to the one obtained with a two-

block mesh (dashed lines).
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Figure 3.15: Convergence history of the energy equation related to the simulation whose

results are displayed in Fig. 3.14. Equations were integrated using the backward Euler

scheme.
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3.6.5 Cylinders in relative motion in inviscid supersonic cross flow

This and the following section describe the results of two test cases in which the interface

treatment is applied to mesh blocks in relative motion. For these cases the supermesh

construction as described in Sec. 3.2 has to be repeated at every time step after the relative

position of the two mesh blocks is updated.

The right patch of the computational domain moves vertically at a constant speed vR

such that vR/cin = 0.2, where cin is the speed of sound at the inlet. The test case is the

simulation of a uniform normalized ideal gas flow entering from the inlet boundary at

M = 4 and crossing two cylinders. Periodic boundary conditions are set on the upper

and lower boundaries. Second order spatial accuracy is used and Euler equations are

integrated using the implicit two-steps backward-differentiation-formula (BDF2) method

with a constant time step defined such that one translating period is discretized in 28,000

steps.

Fig. 3.16 displays the evolution of the Mach distribution over one period. Downstream

of the first cylinder the flow is still supersonic. This results in a second bow shock in

front of the moving cylinder, which interacts with the first one. The shock crosses the

interface smoothly, as seen by the contour lines and the same conclusion of Sec. 3.6.2

also apply here. The convergence history shows that a periodic flow state is achieved

after two complete cylinder passes, and that the present interface treatment does not have

any negative effect on the periodicity, see Fig. 3.17. The peak of the residual at t = 0

corresponds to the downstream cylinder being in the wake of the upstream cylinder. The

two peaks at t = 0.25T and t = 0.75T , where T indicates the period, correspond to the

impingement of the first bow shock tails on the front part of the second bow shock, as can

be observed in Fig. 3.16.

(a) t = 0.0 (b) t = 0.25T (c) t = 0.5T (d) t = 0.75T

Figure 3.16: Mach number contour lines for the simulation results of two cylinders in

relative motion in a M = 4 supersonic cross flow. The external edge of the mesh blocks is

shown in order to locate the interface and the periodic boundaries for the moving patch.
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Figure 3.17: Convergence history of the energy equation related to the simulation whose

results are displayed in Fig. 3.16. Equations were integrated using the BDF2 method and

a constant time step chosen such that one period corresponds to 28,000 steps.

3.6.6 Transonic axial turbine stage

The final test case chosen for the verification of the interface treatment is the simulation

of the transonic flow through the blades of an axial turbine stage. The considered geome-

try was designed by Erhard and Gehrer (33) and numerically investigated by Schennach et

al. (34). The purpose of this test case is to show the effectiveness of the interface treatment

on a problem of engineering interest, such as an unsteady turbomachinery simulation,

which features the complexity of combined vortex shedding crossing the interface and

shock waves propagating upstream and downstream of the interface. Due to the peri-

odicity of the geometry, a reduced computational domain was used to perform the CFD

simulation. It includes two stator vanes and three rotor blades, counting approximately

50,000 cells in total. A two-dimensional turbulent simulation of the mid-span plane was

performed using the Spalart and Allmaras (SA) turbulence model (35), whereby a non-

uniform distribution of the cross-section area was included. Second order spatial accu-

racy was used. Total pressure Ptot = 3.429 bar and total temperature Ttot = 454.4 K were

set at the inlet, while a constant static pressure P = 1.102 bar was imposed at the outlet.

The rotor blades move at a vertical velocity of vR = 268.166 m/s. The Navier–Stokes

equations and the transport equation for the SA turbulence model were integrated with

the BDF2 method using 40,000 time steps to discretize one period.

Contours for the magnitude of the vorticity and lines for the magnitude of the pressure

gradient are shown in Fig. 3.18, which displays the evolution of the flow field over a

complete period. The fluid enters the domain from the left-hand-side boundary and is

accelerated in the stator to a supersonic state, which leads to the formation of a normal

shock wave near the trailing edge of the stator vanes. The shock propagates to the rotor

and impinges on the leading edge of the rotor blades. A second shock is then reflected

back to the stator interacting with the vortex shedding from the vanes trailing edge, and

eventually impinges on the vane suction side. Supersonic conditions are met also further

downstream in the rotor channel, as demonstrated by the presence of a trailing edge shock

wave on the rotor blades.
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Figure 3.18: Results of the simulation of the flow in the transonic turbine stage described

in Refs. (33,34). Colors represent the vorticity field (blue indicates negative values, red

positive values, the range is from -35,000 1/s to 35,000 1/s). Lines indicate the pres-

sure gradient (100 lines are used on the range 5 MPa/m to 1,100 MPa/m). The images

cover a complete time period starting from t = 0 in the top-left sub-figure, whereby the

computational domain is shown (black line).
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3.7 Conclusions

This paper presents a new flux-conserving treatment of the interface between non-conformal

mesh blocks. The method is based on the definition of an auxiliary interface mesh, called

supermesh, which establishes a connection between the interface control volumes and is

defined by the intersection of the elements of the non-conformal interface grid blocks.

The method can be applied to the finite-volume discretization of any system of conserva-

tion laws, however the present study is applied to the Euler and Navier–Stokes equations

only.

Numerical flux conservation is ensured by calculating the fluxes on the supermesh

elements and summing their contribution to the respective control volumes of the parent

meshes, thus avoiding any flux interpolation. Details of the procedure to generate the su-

permesh are discussed in 2D and 3D cases. The accuracy of the intersection scheme used

to define the supermesh elements is of crucial importance to satisfy the definition of the

supermesh and to ensure the flux conservation property of the method. The parallelization

of the supermesh generation and interface treatment is also described for simulations on

multi-core computing architectures.

Modifications to the least-squares and Green–Gauss gradient reconstruction methods

are proposed at the non-conformal mesh interface. The order of accuracy of the new

schemes is derived analytically and a numerical verification of the results is presented for

2D and 3D domains. It is found that, in case of least-squares reconstruction, extending the

stencil to the control volumes of the mesh block opposite of the interface leads to a first

order convergence of the gradient along each spatial direction. Alternatively, the interface

faces can be treated as external boundaries and their values can be set as a linear combi-

nation of the neighbors. In this case, the accuracy of the gradient reconstruction along the

direction which crosses the interface is reduced to 0-order, thus preventing convergence

as the mesh is refined.

The supermesh interface treatment is verified on five test cases featuring shock waves

crossing the interface and the transport of viscous vortices. Numerical fluxes conservation

is achieved to machine precision. The calculated flow fields show no spurious oscillations

at the interface and agree with the results obtained on a single-block mesh, i.e., no in-

terface. Numerical stability is demonstrated empirically by solving the equations with

three different time integration schemes, namely explicit three-steps Runge–Kutta, im-

plicit backward Euler and BDF2 methods, and by studying subsonic, transonic and super-

sonic flow regimes. The convergence rates were not found to be affected by the presence

of the interface.
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Chapter 4

Abstract The performance map of a radial compressor operating with supercritical

CO2 is computed by means of three dimensional steady state Reynolds-averaged Navier–

Stokes simulations. The geometry investigated is part of a 250kW prototype which was

tested at Sandia National Laboratories (SNL). An in-house fluid dynamic solver is cou-

pled with a look-up table algorithm to evaluate the fluid properties. Tables are generated

using a multiparameter equation of state, which ensures high accuracy in the fluid char-

acterization. The compressor map is calculated considering three different rotational

speeds (45 krpm, 50 krpm, and 55 krpm). For each speed-line several mass flow rates are

simulated. Numerical results are compared to experimental data from SNL to prove the

potential of the methodology.

4.1 Introduction

The idea of using supercritical carbon dioxide (sCO2) as the working fluid of closed loop

Brayton cycle turbines for energy conversion was first studied in the late sixties by An-

gelino (1) and Feher (2). The main advantage of this cycle configuration is the much higher

conversion efficiency reachable at moderate maximum cycle temperatures, compared to

competing technologies. This is possible because of the small work needed to compress

the fluid close to its vapor-liquid critical point, and of the use of a high degree of re-

generation. A further advantage of sCO2 power cycle turbines is the high power density

which leads to compact general assemblies, due to the high operating fluid densities and

pressures.

These studies were recently resumed by the scientific community because of the

high potential of using sCO2 cycles in next-generation nuclear reactors (3–6), or to exploit

low/medium temperature renewable energy sources, such as solar radiation (7–10). This in-

terest led to the realization of several proof-of-concept test loop facilities, as for example

the one operating at Sandia National Laboratories (11,12).

Despite the fervid activity, no commercial sCO2 power unit is currently operational.

Among the challenges that need to be faced to bring this technology to the market we list

the development of robust control strategies, the realization of cost effective compact heat

exchangers, and the improvement of the turbomachinery performance. While significant

progress has been made in the design of turbomachinery operating with fluids behaving

as ideal gases, only recently the interest shifted to non-conventional machines operating

with dense vapors or supercritical fluids (13–18). Although simple one dimensional or sur-

rogate models are commonly used for preliminary designs, only accurate fluid dynamic

simulations can provide important insights on the flow field that can be used to improve

the machine aerodynamics, and therefore its performance. Difficulties in the simulation

and analysis of flows evolving close to the fluid vapor-liquid critical point arise from the

highly nonlinear variations of the fluid thermophysical properties in this region.

This paper presents a methodology for the computational fluid dynamic (CFD) sim-

ulation of the compressible flow of sCO2 in a radial compressor. The component ana-

lyzed is part of a 250 kW prototype investigated experimentally by Wright et al. (11). A

Reynolds-averaged Navier–Stokes solver (19) was coupled to a multiparameter equation of
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state model to evaluate the thermophysical properties of the fluid (20,21). A brief overview

of the real gas CFD code is provided in the following, together with a description of the

compressor geometry and computational mesh. Three dimensional steady state simula-

tions were performed using a mixing-plane to treat the rotor-diffuser interface at three dif-

ferent rotational speeds of the impeller (45 krpm, 50 krpm, and 55 krpm), and for several

mass flow rates. Finally, numerical results are compared to experiments and discussed.

4.2 CFD solver for dense vapor and supercritical fluid

flows

The compressible Reynolds-averaged Navier–Stokes equations were solved using the

CFD code developed by Pecnik et al. (19). The solver is based on a cell-centered finite

volume formulation on unstructured arbitrary polyhedral meshes. It uses a subdomain de-

composition through the freely available package Parmetis (22) and the Message Passing

Interface as the parallel infrastructure. The equations are discretized in the conservative

form

∂

∂t

∫

Ω

UdΩ +

∫

∂Ω

(Fc (U) − Fd (U)) dA =

∫

Ω

SdΩ. (4.1)

U = U(x, t) = (ρ,m, Et)T represents the conserved variables vector, with ρ being the

density, m = ρv the Cartesian momentum, and Et = ρ(e + 1
2
|v|2) the total internal energy.

Fc(U) and Fd(U) are the convective and diffusive fluxes, S the source term, and Ω and ∂Ω

are the physical domain of interest and its boundary.

The fluxes and source term vectors are expressed for a rotating non-inertial reference

frame as

Fc(U) =





















n · ρ (v − vm)

ρv (n · (v − vm))+Pn
(

Et + P
)

((v − vm) · n) + P (vm · n)





















, (4.2)

Fd(U) =





















0

n · Π
v · (n · Π) + n · (λ∇T )












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





, (4.3)

S(U) =





















0

−ρ (ω × v)

0





















, (4.4)

where ω denotes the angular velocity of the rotating non-inertial reference frame, vm =

ω × r, P the pressure, Π the stress tensor, λ the thermal conductivity, T the temperature,

and n the outward pointing unit vector normal to the surface.

The convective fluxes are discretized using the AUSM+ approximate Riemann solver

proposed by Liou (23). Second order accuracy is achieved using a suitable interpolation

scheme (least-squares gradient) to reconstruct the state (ρ, v, P) at each cell face. The
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slope limiter proposed by Venkatakrishnan (24) and later modified by one of the authors (19)

is used to reduce the discrete gradients to guarantee the monotonicity of the reconstructed

variable at the face center. In order to ensure thermodynamic consistency of the recon-

structed state, the fluid state is evaluated at the faces using the interpolated density and

pressure.

The diffusive fluxes discretization needs an accurate and efficient evaluation of the

gradients at the cell faces. Following Kim et al. (25), the velocity and temperature gradients

at the faces are calculated as

∇φ| f · n f =
φA − φB

|xA − xB|
α f +

1

2

(∇φ|A + ∇φ|B
) ·

(

n f − α f s f

)

, (4.5)

where φ is a generic variable, A and B the two cell centers sharing the face f , and α = s ·n.

The set of equations is closed using the k−ω shear stress transport model of Menter (26),

which represents a standard choice in turbomachinery flows computations.

In order to increase the robustness of the simulations, first order accuracy was used

for the convective fluxes, while the diffusive fluxes were discretized using a second order

scheme.

Equations are implicitly integrated in time using the backward Euler scheme to allow

for the choice of large time steps. A newly introduced implicit formulation of AUSM+ is

adopted, while the diffusive fluxes Jacobian is expressed in the form suggested by Pulliam

and Steger (27). The Jacobians of the convective and diffusive fluxes expressed for a fluid

governed by a complex equation of state are taken from Rinaldi et al. (28). The large sparse

system resulting from the fluxes linearization is solved using PETSc (29).

4.2.1 Thermophysical model

In order to accurately estimate the thermodynamic and transport properties of the super-

critical fluid, a reference model based on the multiparameter equation of state of Span and

Wagner (20) is used. The viscosity is computed based on the work of Fenghour et al. (30),

while the other transport properties are based on Vesovic et al. (31). A look-up table in-

terpolation method recently developed by the authors couples the solver to the evaluation

of fluid properties in order to greatly reduce the computational time (28). The property ta-

ble is obtained with an in-house library (32), which links to a well-known thermodynamic

property program (21) for the evaluation of primary properties, while it relies on its own

routines for the evaluation of secondary or derived properties (e.g., the pressure and tem-

perature derivatives needed for the implicit time integration). The tabulated region is split

into separate single phase and two-phase property tables to avoid large interpolation er-

rors which would occur for states lying close to the vapor-liquid saturation lines, because

some properties (e.g., the speed of sound or pressure derivatives) are discontinuous across

the boundary separating the single phase and vapor-liquid equilibrium (VLE) states. The

number of nodes of the tables used in the simulations was chosen in order to guarantee

that the maximum interpolation error in the whole tabulated region is below 0.1%.
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Figure 4.1: Impeller and diffuser geometry (11)

4.2.2 Boundary conditions

Constant total conditions and turbulence properties were specified at the compressor inlet,

see Tab. 4.2, while a constant static pressure was set at the diffuser outlet. A no-slip

boundary condition was applied at the walls, which were modeled as adiabatic. The

mixing-plane approach (33) was applied to treat the interface between rotor and diffuser.

4.3 Geometry and computational mesh

The investigated case is the single stage radial compressor operating in the proof-of-

concept test loop facility at Sandia National Laboratories, and is shown in Fig. 4.1. The

rotor consists of 6 main blades and 6 splitter blades, while the diffuser is made of 17

wedge shaped blades. The geometrical specifications are taken from Wright et al. (11) and

summarized in Tab. 4.1. They were used to generate the three dimensional geometry by

means of a commercial software (34).

An in-house hybrid mesh generator was used to generate a flexible and high quality

computational grid. The adopted software employs a geometry transformation tailored to

turbomachinery geometries, which reduces the complexity of the mesh generation from

three to two dimensions. The original geometry is discretized into several constant span

level surfaces in the physical space (x, y, z). The frame of reference is then changed to

(M, φ, s), with M being the normalized meridional length, φ the azimuthal angle, and s

the normalized span. The surfaces can be therefore meshed using two dimensional grid

generation schemes in the transformed space. The planes are finally transformed back

to the physical space, and a node interpolation in the spanwise direction is performed in

order to fill the whole three dimensional domain. In the present study, five equally spaced

span level surfaces were employed.
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Table 4.1: Main compressor dimensions (11)

Inlet shroud radius 9.3720 mm

Inlet hub radius 2.5375 mm

Exit blade height 1.7120 mm

Exit blade radius 18.6817 mm

Blade thickness 0.762 mm

Tip clearance 0.254 mm

Radial rotor/diffuser blades gap 0.3 mm

Inlet Blade Angle at tip 50 deg

Exit blade back sweep angle -50 deg

Exit vaned diffuser angle 71.5 deg

Diffuser blade divergence angle 13.17 deg

Figure 4.2: Three dimensional view of the computational mesh used to model the rotor

and the diffuser vanes. The grid counts approximately 8 × 105 cells, which are clustered

at the walls to ensure y+ ≈ 1. Hexahedral cells were used for the blades boundary layers

and at the inlet of the rotor, while wedge cells were placed elsewhere. Detailed views

are shown for the surface mesh of the rotor main blade, diffuser wedge, and the interface

between rotor and diffuser.

An O-type structured mesh was used around the blades, and the elements were clus-

tered at the walls to have the correct resolution of the boundary layers. The normal-to-wall

velocity profile was fully resolved using a sufficiently fine grid, y+ ≈ 1 at the walls. An
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unstructured triangulation (35) was used for the remaining part of the domain. In order

to have the same mesh topology in terms of connectivity and number of nodes on the

five planes (needed for the interpolation in the spanwise direction), the unstructured tri-

angulation was performed at the hub only (s = 0), and morphed and smoothed (using a

Laplacian scheme) on the other levels to match the new boundaries. The impeller and

the tip clearance gap were meshed separately using 39 and 19 elements in the spanwise

direction, respectively. The discretization of the diffuser was straightforward due to the

simplicity of the geometry. At the leading edge of the diffuser blade a small curvature

was introduced to remove numerical problems due to the sharp corner.

The periodicity of the geometry and the steady flow assumption allow to simulate only

one passage of the rotor and one of the diffuser using about 6.5×105 and 1.5×105 elements

respectively. The mesh resolution was refined with respect to previous studies (18), in order

to ensure more accurate results. Figure 4.2 shows the modeled compressor geometry and

the computational grid, with detailed views of the main blade leading and trailing edge

and of the interface region.

4.4 Discussion of the CFD model and of the available ex-

perimental data

4.4.1 Numerical model

A critical aspect of the fluid dynamic modeling of the problem under investigation is the

treatment of fluid condensation. Previous studies (18,36,37) indicated that the fluid thermo-

dynamic state falls in the VLE region near the leading edge of the main compressor blade.

Since the main goal of this investigation is the estimation of the typical performance pa-

rameters with engineering accuracy, the adoption of the single-fluid model allows to avoid

a considerable increase of complexity. Therefore, the homogeneous mixture approxima-

tion was used for the thermodynamic states lying inside the vapor-liquid equilibrium re-

gion. Properties were averaged based on the vapor quality, and metastable states were not

considered.

This modeling choice is further justified by the lack of accurate nucleation models

close to the critical point and of experimental data against which the extended fluid flow

model could be validated. Moreover, the small density differences between the liquid and

vapor phases close to the critical point suggest that the influence of this modeling approx-

imation on the results is marginal, given the small dimension of the regions where the

thermodynamic state falls inside the dome. In addition to that, Baltadjiev et al. (37) and

Lettieri et al. (38) shown that in practice the short residence time of the flow prevents con-

densation from taking place (their results were however obtained for operating conditions

farther from the critical point than the ones studied in this paper).

A general limitation of RANS modeling, especially for supercritical flows, is the re-

liability of turbulence models to accurately mimic the effects of turbulence. Most of the

models were developed and calibrated for incompressible flows of gases obeying to the

ideal gas law, and for simple geometries. For a comprehensive assessment the reader is
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referred to the work of He et al. (39). One of the issues is the definition of the effective

thermal conductivity, which is commonly modeled as the sum of molecular λ and turbu-

lent thermal conductivity λtur, λeff = λ + λtur, with λtur = cPµtur/Prtur, and µtur and Prtur

the turbulent viscosity and turbulent Prandtl number, respectively. While the turbulent

Prandtl number can be assumed constant for an ideal gas flow, it varies significantly for

a supercritical flow (40,41). Furthermore, the value of the fluid specific heat capacity cP

is not defined in the homogeneous mixture model if the thermodynamic state is in the

VLE region. For these reasons, λtur was not included in the heat transfer term in the en-

ergy equation. This modification to the equations is not expected to affect significantly

the results since strong temperature gradients are not present in the flow field and the

assumption of adiabatic walls was used.

4.4.2 Experimental data

The inlet conditions were taken from Wright et al. (11), however the values applied in the

simulations may differ from the ones measured during the experimental campaign. In fact,

the report does not specify the exact location of the sensors and whether the measured inlet

quantities are total or static. In this work, constant total conditions were assumed and the

reported values were interpreted as such.

It is worth mentioning that applying constant static conditions instead of total condi-

tions can result in significant changes in the inlet fluid properties for states close to the

critical point. This is due to the strong non-linearities and the large density, which leads to

large differences between static and total conditions even for small velocities. For exam-

ple, for the condition with the largest mass flow rate considered in this work, ∆P/Ptot =
1
2
ρinU2

in
/Ptot ≈ 2.5%. Accordingly, the transport properties change as ∆µ/µin ≈ 1.7%,

∆cP/cP,in ≈ 41%, ∆λ/λin ≈ 14%.

In addition, the measured inlet conditions are given within ranges of pressure P =

[77, 81.39] bar and temperature T = [304.3, 307] K. The uncertainty on pressure and

temperature translates into a large density range ρ = [345, 690] kg/m3.

Furthermore, the compressor map measured experimentally in Ref. (11) is also affected

by uncertainties related to measurement equipment, flow leakage, windage losses, etc.,

which are not taken into account in the CFD simulations.

4.5 Results

The compressor map was calculated by performing steady state simulations at three dif-

ferent rotational speeds, namely 45 krpm, 50 krpm, and 55 krpm. The inlet conditions are

reported in Tab. 4.2.

Figure 4.3 shows the averaged inlet and outlet states of all simulations in the T -s dia-

gram. Iso-pressure and iso-enthalpy lines in the range of the outlet values are also shown.

Note, all the compression processes cross the pseudo-critical line for the conditions con-

sidered, which is the locus of thermodynamic states where the specific heat at constant

pressure peaks and where transition between liquid-like and vapor-like behavior occurs.
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The compressor performance is assessed in Fig. 4.4 in terms of isentropic efficiency

η = (hout,s−hin)/(hout−hin) and specific enthalpy rise. Numerical results are compared with

experimental data from Wright et al. (11). The calculated efficiency curves are reasonably

close to the experimental data, showing a slight shift towards low flow coefficients. The

difference between numerical values and experiments is within an arguably acceptable

range, given the limitations discussed in the previous section. The specific enthalpy rise

obtained from the simulations shows a nearly linear dependence on the flow coefficient.

Therefore, the presented simulations do not capture the compressor surge at low mass flow

rates and high pressure ratios (which is clearly visible in the experimental data). The order

of accuracy of the convective fluxes discretization is expected to play an important role in

the representation of the loss mechanisms (e.g., flow separations), and as a consequence

Table 4.2: Inlet boundary conditions (11). Tu =
√

2/3k /U is the inlet turbulence intensity,

with k being the turbulent kinetic energy and U the average velocity at the inlet. ReT =√
k Lρ/µ is the inlet turbulent Reynolds number. Tu and ReT are used to calculate the

inlet values of turbulent kinetic energy and specific dissipation ω used by the turbulence

model.

Ptot [bar] Ttot [ ◦C] Tu [%] ReT [-]

76.9 32.8 5 100

Figure 4.3: Average inlet and outlet states. Symbols correspond to 45 krpm (squares),

50 krpm (diamonds), and 55 krpm (triangles).
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in the performance prediction. The fact that no back-flow or recirculation is allowed at

the outlet of the diffuser can also influence the results when the operating conditions are

close to surge.
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Figure 4.4: Compressor performance map

Pressure contours are depicted in Fig. 4.5 at half of the span height for two mass

flow rates and at a rotational speed of 55 krpm. The distribution is smooth due to the

small value of the relative Mach number in the rotor, which reaches about M = 0.5 at

the interface location. Figure 4.5 (a) corresponds to the calculated maximum efficiency

for the considered speed line, whereby the velocity angle at the inlet of the diffuser is

well aligned with the diffuser blade, and the diffuser recovers pressure efficiently. A small

stagnation region can be identified by the high pressure at the leading edge of the blade.

As the mass flow increases, see Fig. 4.5 (b) which corresponds to the minimum efficiency

of the 55 krpm speed line, the flow at the outlet of the rotor has a larger radial component.

For this reason, it impinges on one side of the diffuser blade, leading to a large stagnation

region which affects the overall pressure recovery in the diffuser vane. Moreover, the flow

accelerates around the blade leading edge determining a small low pressure region.

Finally, it is possible to identify regions of the domain where the calculated thermody-

namic states are located inside the VLE region, therefore where there is the possibility for

CO2 to condense. As already mentioned, this phenomenon has not been modeled in the

presented simulations. Nevertheless, qualitative conclusions can still be drawn from the
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analysis of the computed flow fields. Figures 4.6 and 4.7 present the predicted two-phase

flow regions for the three considered rotational speeds, at nearly constant flow coeffi-

cients. At the leading edge of the compressor main blade, shown in Fig. 4.6, the surface

which delimits the single phase and the two-phase region becomes larger for increasing

rotational speeds, and is stretched in the direction of the hub. This was not observed at

the leading edge of the splitter blade, where the fluid state is in the vapor single phase

for each simulated condition. Given the high value of the design rotational speed, namely

75 krpm, the predicted two-phase regions are expected to increase significantly. Because

of the proximity to the critical point of the inlet state, conditions for condensation can be

met and consequently the modeling of two-phase flow can be important in order to predict

the flow accurately.

A similar phenomenon occurs at the trailing edge of both blades, as depicted in

Fig. 4.7, where the flow acceleration around the sharp corners determines a large drop

in the static pressure, see Fig. 4.5. However, the dependence on the rotational speed is

weaker and appears reversed. The largest region is observed for the lowest rotational

speed.

For high mass flows, a two-phase flow region is predicted at the diffuser leading edge

also. This can be explained referring to Fig. 4.5 (b). When the inlet flow angle is not

aligned with the diffuser blade, the large acceleration around the sharp leading edge is

such that the thermodynamic state falls below the saturation lines.

(a) φ = 0.038 and η = 69.2% (b) φ = 0.0468 and η = 62%

Figure 4.5: Contours of pressure at 50% of the span and 55 krpm
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(a) φ = 0.0384, ω = 45 krpm (b) φ = 0.0396, ω = 50 krpm (c) φ = 0.038, ω = 55 krpm

Figure 4.6: Main blade leading edge: control volumes where the thermodynamic state is

in the VLE region

(a) φ = 0.0384, ω = 45 krpm (b) φ = 0.0396, ω = 50 krpm (c) φ = 0.038, ω = 55 krpm

Figure 4.7: Main and splitter blade trailing edge: control volumes where the thermody-

namic state is in the VLE region

4.6 Conclusions

The performance map of a radial compressor operating with supercritical CO2 was cal-

culated by means of three dimensional steady state simulations. The in-house compu-

tational tool is formed by a parallel RANS solver for unstructured grids obtaining fluid

thermophysical properties thanks to a look-up table interpolation method. Thermophys-

ical fluid property tables are generated with an in-house program implementing state-of-

the-art models, allowing for accurate predictions even close to the fluid critical point and

in the vapor-liquid equilibrium region.

Numerical results were compared to experimental data over a range of mass flow rates

and for three values of the impeller rotational speed. The qualitative and quantitative

prediction of the compressor isentropic efficiency was satisfactory, however showing a

shift of the optimal operating condition towards low values of the flow coefficient. The

specific enthalpy rise of the fluid predicted with simulations depends linearly on the mass

flow, differently from values measured from experiments. Furthermore, the compressor

surge could not be simulated due to the limitations of the model.
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The difference between experimental and numerical results was discussed by address-

ing the limitations of the adopted models and those related to the experimental data.

The computed flow fields showed a smooth variation of fluid properties, and allowed

to gain insights on the compressor performance degradation for high mass flow rates.

Simulations also highlighted the possibility of CO2 condensation in some regions of the

domain, and allowed the study of the dependence of their extent on the impeller rotational

speed. The volume of calculated thermodynamic states lying in the VLE region at the

leading edge of the impellers is predicted to grow for increasing rotational speeds. A

similar phenomenon with a weaker dependence on the rotational speed was observed

at the trailing edge of both the main and the splitter blades, however with a reversed

dependence on the rotational speed if compared to the main blade leading edge.

In conclusion, the potential of using three dimensional CFD simulations for the im-

provement of the aerodynamic design of non-conventional turbomachinery, such as the

ones operating with supercritical fluids, was demonstrated. Although models can still

be improved to a large extent, they can provide reasonable performance predictions and

valuable information about the flow field that can be used in the design process.
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Chapter 5

Abstract Organic Rankine cycle (ORC) turbogenerators are the most viable option to

convert sustainable energy sources in the low-to-medium power output range (from tens of

kW to several MW). While the working principle is the same as that of steam power plants,

the working fluid is a complex organic compound and the turbine expansion encompasses

thermodynamic states in the dense vapour region, where the ideal gas assumption does

not hold. This work addresses the challenge of simulating the highly unsteady supersonic

flow of a non-ideal fluid through high expansion ratio and high-speed ORC turbines,

and of characterizing its effect on unsteady blade loading and turbine efficiency. Detailed

unsteady Reynolds-averaged Navier–Stokes simulations of a radial inflow 150 kW turbine

are documented. The expansion ratio is larger than 100 and the maximum Mach number

in the stator passage is approximately 2.8. The results indicate that the blade loading

fluctuations are of the same order of magnitude of the static loads, which signifies the

importance of taking unsteady effects into account in designing optimal and reliable high-

speed supersonic ORC turbines.

5.1 Introduction

Organic Rankine cycle (ORC) turbogenerators are a widely recognized technology for

the conversion of low-to-medium temperature heat sources in the low power output range

(from few kWe to few MWe). Suitable external thermal energy sources are the waste heat

from industrial processes or engines, biomass combustion, solar radiation and geothermal

reservoirs. While the working principle of the cycle is that of the steam Rankine cycle,

the use of an organic compound gives an additional degree of freedom to the designer.

An optimal fluid can be selected in order to best match the temperature profile of the

external thermal energy source and sink and in order to obtain an optimal turbine design.

A measure of the increasing utilization of ORC power plants around the world is given

by the cumulative global capacity, which has now reached approximately 2,000 MWe and

is rapidly increasing. A recent review paper by Colonna et al. (1) summarizes the history,

characteristics and perspective of this technology.

An organic working fluid gives an intrinsic advantage in the design of an efficient

low power output turbine, if compared to a steam turbine, due to its different thermo-

physical properties: for a given power output it is possible to design a turbine with a

smaller number of stages, lower rotational speed, and higher volumetric flow due to the

smaller enthalpy decrease over the expansion in case the fluid is an organic compound.

Furthermore, the so-called retrograde behaviour of many ORC working fluids allows for

a fully dry expansion, thus avoiding issues related to condensation, like blade erosion

and efficiency penalty. However, what makes the design and realization of efficient ORC

turbines challenging is the fact that the expansion occurs partially in the so-called dense

vapour region, whereby the thermophysical fluid properties differ from those of the ideal

gas, thus calling for complex models to accurately estimate their value As a consequence,

fluid dynamic features are quite different from those of conventional steam or gas turbine.

Moreover, the low speed of sound of complex organic fluids results in a supersonic flow

regime.
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In the last decade, much effort has been dedicated to advancing the simulation state-

of-the-art and to the understanding of the steady state fluid dynamic operation of ORC

turbomachinery. Two-dimensional flows of organic vapors were studied by means of

Euler and Reynolds-averaged Navier–Stokes (RANS) simulations by Colonna et al. (2),

Harinck et al. (3–5), Sciacovelli and Cinnella (6) and Wheeler and Ong (7), focusing on the

peculiarities of dense vapour gasdynamics. Sauret and Gu (8) performed 3D simulations

of a single stage radial inflow turbine in off-design conditions in order to assess its perfor-

mance. Several works were devoted to the development of novel design methodologies

for non-conventional machines. Guardone et al. (9) studied the effect of the fluid molecu-

lar complexity on nozzle design by means of the method of characteristics. Quasi-1D and

throughflow calculations were used to demonstrate methods for optimal turbine design

by Pini et al. (10) and Casati et al. (11). Substantial improvement of a radial inlet turbine

performance by means of automated stator-blade shape optimization was showcased by

Harinck et al. (12) and Pasquale et al. (13).

However, the inherent unsteadiness of ORC turbines due to transonic and often su-

personic flow regime (the expansion ratio can be of the order of 100 in small-capacity

single-stage radial-inflow turbines) and to the continuous shift of operation between on-

and off-design conditions requires unsteady, time resolved simulations to capture a num-

ber of phenomena otherwise ignored, e.g., shock/shock, shock wave/boundary layer and

wake/boundary layer interaction, which can strongly affect the turbine performance.

The unsteady fluid dynamics of standard steam and gas turbines was extensively stud-

ied both experimentally and numerically in the last decades. Unsteady external distur-

bances and viscous wakes interact with the boundary layer affecting its transition to tur-

bulence (14,15) and its heat load distribution and blade cooling effectiveness, which rep-

resent a major concern in standard applications, often leading to a deterioration of the

latter (16–19). Noise generation due to the fluctuating pressure field and vibrations induced

by unsteady blade loads are also critical aspects in modern engines (20–22). Finally, un-

steady simulations and experiments are crucial for the improvement of multistage ma-

chines performance by vanes clocking, which can increase the efficiency up to 1% by

simply adjusting the relative position of the stator vanes (23–26).

This paper presents a computational fluid dynamic (CFD) investigation of the sta-

tor/rotor interaction in a high-speed, single-stage, highly supersonic, radial inflow ORC

turbine. The considered geometry is the preliminary design of the turbine studied by

Harinck et al. (5). Quasi-3D unsteady RANS simulations highlight the main flow charac-

teristics under off-design conditions. The stator/rotor interaction is investigated in terms

of shock interactions and blade loads in the time and frequency domain. CFD calculations

were performed using an in-house flow solver which accounts for the non-ideal proper-

ties of the fluid via look-up tables generated using a multiparameter equation of state

model. The analysis provides insights on the unsteady flow field and interaction mech-

anisms and demonstrates the importance of unsteady CFD simulations for the design of

non-conventional turbomachines.

The paper is structured as follows. The CFD code and the fluid thermophysical mod-

els are described in Sec. 5.2. An overview of the turbine geometry and of the computa-

tional domain is given in Sec. 5.3. Results are presented in Sec. 5.4, which includes a
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discussion of the instantaneous flow field (Sec. 5.4.1), of the unsteady shock waves and

viscous wakes interaction (Sec. 5.4.2), of the rotor and stator blade pressure distributions

(Sec. 5.4.3), of the time and modal analysis of rotor blade loads (Sec. 5.4.4) and of sev-

eral virtual pressure probes placed inside the domain (Sec. 5.4.5), and of the isentropic

efficiency of the machine (Sec. 5.4.6). Finally, conclusions are summarized in Sec. 6.4.

5.2 Numerical infrastructure and applied methods

5.2.1 RANS solver

The CFD code used in this study was developed by Pecnik et al. (27) and discretizes the

compressible Navier–Stokes equations using a cell-centered finite-volume formulation.

Convective fluxes are calculated using Liou’s AUSM+ (28) approximate Riemann solver.

Second order spatial accuracy is achieved by a least-squares gradient reconstruction of

properties. Velocity and temperature gradients, needed for the evaluation of the viscous

fluxes, are estimated on the cell faces as proposed by Kim et al. (29). The one equation

turbulence model of Spalart and Allmaras (30) closes the RANS equations and models the

Reynolds stresses. The implicit formulation of the system of equations is generalized to

a complex equation of state (EoS) model as described by Rinaldi et al. (31). Equations are

integrated in time by the second order accurate backward differentiation formula method

and the resulting linear system is solved using the package PETSc (32). The RANS solver

was previously validated on turbomachinery flows of ideal and non-ideal fluids (33–36).

5.2.2 Thermophysical models of the working fluid

Due to the proximity of the inlet fluid thermodynamic state to its critical point, the ideal

gas law is not suitable to represent the fluid properties. The equation of state model

adopted in this study is based on the multiparameter Helmholtz energy function derived

by Lemmon and Span (37), supplied with constitutive relations for transport properties

detailed in Refs. (38–41). Secondary thermodynamic properties, such as pressure and tem-

perature derivatives, needed in the definition of the implicit numerical flux Jacobians by

the RANS solver, are calculated using an in-house thermodynamic library (42).

The computational cost of property evaluation is drastically reduced by the use of

look-up table interpolation, which replaces the direct evaluation of properties by means

of the EoS model. This look-up table method is thoroughly analyzed in Ref. (31). 400×400

discrete nodes were used to tabulate the single phase region of toluene spanning the range

ρ = [0.005, 145] kg/m3 and T = [310, 690] K. The nodes in the table are uniformly dis-

tributed along the T and log(ρ) range. The thermodynamic table is accessed in a straight-

forward manner using density and internal energy (to update the thermodynamic state in

the cell centers at each time step), pressure and temperature (at the walls) and density

and pressure (to reconstruct the thermodynamic state on the face centers). When nei-

ther density nor temperature are used as input variables for the interpolation function, a

Newton–Raphson iterative procedure is used to inversely evaluate the corresponding ρ
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and T . The iteration is stopped with a relative tolerance of 10−10 on the calculated ρ

and T . The inverse evaluation of the input thermodynamic state is used for some spe-

cific boundary conditions only, namely the total inlet conditions which require the use of

enthalpy and entropy to calculate the complete fluid state.

The average and maximum interpolation error over the whole tabulated region was

calculated in a pre-processing step to ensure the desired level of accuracy in the fluid

property estimation. Table 5.1 reports the results obtained by using 800, 000 random

thermodynamic input states. The error was calculated as ε = |φtab − φEoS|/φEoS, where

φtab and φEoS are the interpolated property and the one obtained by solving the equation

of state model, respectively. Deviations are shown for enthalpy h, temperature T , speed

of sound c, shear viscosity µ, thermal conductivity λ and isobaric specific heat cP using

two different combinations of input thermodynamic states, namely ρ, P and ρ, u. For each

property, the maximum interpolation error does not exceed 0.05%, and the average error

is below 0.0005%, thus confirming the accuracy of the approach.

Table 5.1: Thermophysical properties interpolation error

h T c µ λ cP

εmax(ρ, P) 3.25 10−5 9.07 10−5 1.17 10−4 2.88 10−5 3.25 10−5 2.26 10−4

εav(ρ, P) 3.27 10−6 4.49 10−6 2.38 10−6 2.01 10−6 3.64 10−6 1.55 10−6

εmax(ρ, u) 2.19 10−6 1.48 10−5 8.28 10−5 2.16 10−5 2.02 10−5 3.26 10−4

εav(ρ, u) 5.81 10−8 1.06 10−6 1.03 10−6 6.20 10−7 4.95 10−7 1.02 10−6

5.3 Turbine geometry and computational domain

The geometry investigated in this work is taken from Harinck et al. (5) and can be con-

sidered as a preliminary design of the turbine operating in a commercial ORC power unit

with a nominal power output in the range 60 − 170 kWe. The turbine consists of a stator

counting 18 blades, a rotor counting 47 blades and a diffuser, whereby the latter has not

been taken into account in the present study. Figure 5.1 shows a photograph of the tur-

bine geometry (left) and the computational domain and mesh (right). The working fluid

is toluene and the inlet total conditions are in the range of pressures P0,r = [0.7, 0.8] and

temperatures T0,r = [0.9, 1], where the subscript 0 denotes the total quantities and the

reduced properties are indicated by the subscript r, i.e., normalized by their vapour-liquid

critical value. The rotational speed of the machine is in the range ω = [24, 30] krpm.

In order to apply standard periodic boundary conditions along the circumferential

direction and to reduce the size of the computational domain, the number of rotating

blades was decreased to 45 in the numerical model. Thus, it was possible to model only

40◦ of the whole circumference, including 2 stator blades and 5 rotor blades, see Fig. 5.1.

A quasi-3D computational mesh was employed: the 2D plane at half of the channel height
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was discretized using one cell only in the vertical direction, but the real cross-sectional

area distribution was kept as a function of the distance from the axis of rotation. This

allows the fluid to expand in a similar manner as it would do in the real 3D geometry.

The computational mesh was made of approximately 200,000 hexahedrons. The blades

boundary layers were generated separately using an O-mesh and elements were clustered

at the wall in order to have y+ ≈ 1. The rest of the domain was filled using a paving

algorithm.

Constant radial inward velocity angle and total properties taken from Ref. (5) were set

at the inlet, a Neumann boundary condition was applied at the supersonic rotor outlet. Two

off-design rotational speeds were simulated, namely ω1 = 24 krpm and ω2 = 28 krpm.

Blades were modeled as adiabatic walls. A flux-conserving treatment was used at the

stator/rotor sliding interface (43). Table 5.2 summarizes the boundary conditions used in

this study.

Figure 5.1: Turbine real geometry (left) and computational mesh (right)

5.4 Results

The results of the unsteady turbine simulation for two rotational speeds, namely 24 krpm

and 28 krpm, are reported here. For both simulations a fixed time step was chosen such

that every period was discretized in 100,000 steps, which corresponded to a maximum

Courant number CFL ≈ 1.5. Detailed results are discussed by meas of contour pots of

pressure and entropy, time-averaged pressure distributions along the profiles, unsteady

Table 5.2: Turbine boundary conditions

T0,in P0,in Pout ω Walls

314.5 ◦C 31.9 bar ∇P = 0 24 krpm, 28 krpm Adiabatic
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blade loads, and modal analyses of the pressure field sampled at three locations of the

computational domain and of the rotor blade loads.

The grid independence of the results was verified using a finer mesh counting 550,000

cells, which was obtained by applying a grid refinement strategy to the coarse grid (200,000

cells). All the cells belonging to the rotor domain were subdivided into 4 smaller control

volumes. The same was done for the cells downstream of the stator blades trailing edge

and for the ones crossed by the shock waves in the diverging part of the stator vanes. The

average difference along the whole blade for the pressure profiles of the rotor blade at

28 krpm is summarized in table 5.3 and justifies the use of the coarse grid.

Table 5.3: Grid convergence results

Min. PS Max. PS Av. PS Min. SS Max. SS Av. SS

Av. difference [%] 1.17 1.27 0.59 3.58 2.86 1.20

5.4.1 Instantaneous flow field

In order to allow for an overall evaluation of the flow field, Fig. 5.2 displays the magnitude

of the pressure gradient for 24 krpm and 28 krpm, which makes the visualization of the

shock waves pattern distinct. Images depict the turbine field at τ = 0, where τ = t/T ,

with t being the physical time and T the time period needed by one rotor blade to move

by 40 deg.

Similar flow features are observed for the operation at 24 krpm and 28 krpm. The

fluid enters radially from the right hand side of the image, accelerates in the converging

part of the stator vanes and reaches sonic conditions in the throat (TH). The expansion

continues in the diverging part of the vane leading to highly supersonic flow with a Mach

number M ≈ 2.8. The fluid is then re-compressed by two oblique shock waves (ST1 and

ST2) stemming from the rounded trailing edge of the stator blades. ST1 directly enters

the rotor and interacts with the rotor blades and a complex pattern of shock waves in the

rotor passages, while ST2 first hits the wall of the vane and then is reflected (R) in the

rotor. The relative Mach number at the rotor inlet is supersonic in case of 24 krpm and

causes the formation of strong bow shock waves (BS) in front of the blunt leading edge

of the rotor blade. Weaker BS shocks are calculated at 28 krpm due to a lower (transonic)

relative Mach number at the rotor inlet. For both rotational speeds, relative supersonic

conditions are reached on the suction side of the rotor blades, which eventually result in

oblique shock waves (OS) downstream of which the boundary layer separates forming

large recirculation areas. The area variation in the rotor passages is such that the flow

expands further to supersonic conditions near the blades trailing edge from which two

oblique shock waves are generated (RT1 and RT2), similarly to ST1 and ST2 in the stator.
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(a) ω = 24 krpm (b) ω = 28 krpm

Figure 5.2: Snapshot of the pressure gradient field at τ = 0.

5.4.2 Unsteady shock wave and viscous wake interactions

Results are shown for one rotational speed only, namely 28 krpm, in order to avoid re-

dundancy since the main features of the flow structure evolution at 24 krpm are qualita-

tively similar. Moreover, the machine operation at 28 krpm is more efficient, as shown

in Sec. 5.4.6. Given the periodic nature of the flow field, the analysis is focused on the

passage of one rotor blade, namely blade 4, through one stator vane, i.e., rotating by 20

deg, only.

Figure 5.3 shows the absolute value of the pressure gradient. At time τ = 0, a bow

shock wave (BS) is located in front of the leading edge of the blade due to local supersonic

conditions in the relative frame of reference. The tail of the stator vane reflected shock

(T1) is approached by the suction side of the rotor blade 0. A shock wave (P1) detaches

from the front part of the rotor blade 3 pressure side, moving toward the middle of the

channel. Subsequently, at τ = 1/12 the P1 front extends along the length of rotor blade 3

and clusters with two other shock waves. Simultaneously, T1 impinges on the rotor blade

0 suction side and is reflected back toward BS, τ = 1/12 and τ = 2/12. The two interact

at τ = 2/12 merging in a single shock front at τ = 3/12 which hits the stator blade wall at

τ = 4/12 and is reflected back (RBS) in the rotor at τ = 5/12. This mechanism introduces

a perturbation in the boundary layer of the stator blade, contributing to the unsteadiness

in the pressure distribution highlighted in the following, see Fig. 5.5. At the same time,

the reflected shock wave (T2) of the stator vane hits the pressure side of the rotor blade

3 and is convected downstream through the rotor blade channel, eventually impinging on

the suction side of the rotor blade 4 at τ = 4/12.

The main sources of losses are displayed by the normalized entropy field sn = (s −
sin)/sin, as shown in Fig. 5.4. Entropy increase is visible in the stator blades boundary

layer due to viscous dissipation. The boundary layer thickens at two locations (T1 and

T2) due to the interaction with the stator trailing edge shock wave and the rotor blade
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bow shock BS, see also Fig. 5.3. A large source of losses appears in the recirculation

areas (S) on the suction side of the rotor blades and are caused by the boundary layer

separation induced by the oblique shock waves located near the blades leading edge (OS,

see Fig. 5.2(a) and Fig. 5.2(b)). Moreover, the entropy contour plot shows local peaks in

the wakes of the stator. At τ = 0, as the leading edge of the rotor blade 4 passes the stator

blade trailing edge, a first peak (P1) is reached and convected downstream, impinging on

the blade leading edge at τ = 3/12. As the blade moves, the stator wake interacts with the

pressure side at τ = 5/12 and causes a local growth of the boundary layer. The interaction

point and the wake itself are then convected downstream through the rotor blade channel

(green arrow, starting from τ = 5/12 and continuing from τ = 0 to τ = 4/12). The

entropy increase induced by the shock waves are small if compared to the losses due to

flow separation and viscous wakes.

Figure 5.3: Time evolution of the pressure gradient field at 28 krpm over half time period.

The color scale is the same as in Fig. 5.2(b).

5.4.3 Stator and rotor surface pressure distribution

Time-averaged pressure distributions on the rotor blade and on the diverging section of

the stator nozzle are displayed in Fig. 5.5, together with the envelope of the maximum

and minimum values over one time period. The collapse of the profiles for average,

maximum and minimum values on the stator Side 1 indicates that the RANS result shows

no unsteadiness. The same conclusion can be drawn for a large extent of Side 2. A

strong shock wave (pressure is increased by a factor 3) compresses the fluid near the

trailing edge of the blade and introduces a weak unsteadiness in the flow. This is partly

107



Chapter 5

Figure 5.4: Time evolution of the normalized entropy field sn = (s − sin)/sin at 28 krpm.

The color scale goes from 0 (white) to 10 % (blue).

caused by the oscillation of the shock location on Side 2 over a range delimited by the

maximum/minimum pressure lines of Fig. 5.5. The calculated pressure profiles do not

present significant differences if the rotational speed is changed. Conversely, on the rotor

blades the minimum/maximum pressure envelopes largely divert from the time-averaged

profile. Maximum pressure deviations can be as large as 1 bar on the blade suction side

at 28 krpm. This suggests that the flow in the rotor vanes is highly unsteady. Overall,

positive pressure fluctuations can reach larger values on both pressure and suction sides

and for both rotational speeds.

5.4.4 Modal analysis of rotor blade loads

The time evolution of the rotor blade loads is studied on a local coordinate system centered

in the blade center of gravity and oriented in the radial and tangential directions with

respect to the center of rotation of the rotor, as sketched in Fig. 5.7. The tangential and

radial pressure forces, denoted as Ft and Fr, and the torque Mz are displayed for the rotor

blade 4. Other blades profiles differ only by a shift of τ = 0.2. The viscous contributions

were found to be of the order of ≈ 1%, thus they are excluded from the analysis.

The force profiles show highly unsteady loads, featuring sharp variations due to the

boundary layer interaction with shock waves. The force fluctuation can be as high as

60% of the time averaged value for the radial component and 30% for the tangential

component. Torque also fluctuates largely and, notably, exhibits a change in sign for ω2,

which might be of concern in the structural design of the blade.
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Figure 5.5: Time-averaged (solid lines), maximum and minimum values (dashed lines)

of pressure on the rotor and stator blades. Quantities are functions of the radial distance

r =
√

x2 + y2 from the axis of rotation.

Loads profiles can be related to the flow field evolution, described in Sec. 5.4.2. The

sudden increase in the Ft magnitude at τ ≈ 0.2 − 0.25 is due to the pressure rise on the

blade pressure side caused by the detachment of a shock wave, see P2 in Fig. 5.3. Fr

increases as a consequence. This mechanism has an effect on Mz also, being responsible

for the absolute minimum of the torque over the whole time period. At τ = 0.3−0.35, the

magnitude of Ft sharply decreases as a result of the impingement of the shock wave front

T2 on the blade suction side, see Fig. 5.3. This affects the torque, determining a sudden

decrease of Mz and eventually a chance in sign for the high rotational speed case.

A modal analysis of the blade loads highlights the different periodic contributions and

gives indications on the extent of the frequency band which contains most of the energy.

The calculated signal was sampled every 4.76×10−9 s over three periods, each amounting

to 2.38 × 10−4 s. The blade loads frequency content is displayed in Fig. 5.8. Most of the

energy is contained in the first 5-10 stator blade-passing-frequency (sBPF = 8,400 Hz)

harmonics, and in particular in the first two. Similar profiles are obtained for 24 krpm and
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Figure 5.7: Time evolution of the blade forces and torque. Time-averaged values are also

reported (dashed lines).

28 krpm.

5.4.5 Modal analysis of pressure probes

In this section, the pressure signal calculated at three locations of the computational do-

main is analyzed in the time and frequency domain. Figure 5.9 depicts the location of the

three numerical probes; P1 is placed downstream of the stator blade trailing edge, and P2

and P3 are in front of the rotor blade leading edge and downstream of its trailing edge.

The physical signals and their spectra are displayed in Fig. 5.10. The sampling rate

is the same used in the previous section. The pressure signal at P1 shows two dynam-

ics locked by the rotor blade-passing-frequency (rBPF = 21,000 Hz); large oscillations

which can be related to the oscillation of the impinging shock on the stator wall and to

the interaction between the stator blade boundary layer and the rotor blades bow shocks,
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Figure 5.8: Spectra of the radial (left) and tangential (center) components of the force

and torque (right) on the rotor blades. The frequency is normalized by the blade passing

frequencies.

P2

P3 P1

Figure 5.9: Numerical probes location

and smaller ones which are due to local peaks of vorticity which induce peaks of viscous

losses, as described in Fig. 5.4. Both oscillations have larger amplitudes at high rotational

speed, 28 krpm. The signal spectra separate the different periodic contributions; most of

the energy is contained in the first harmonic for 24 krpm, while at 28 krpm the second and

third harmonics also contribute significantly to the spectrum. P2 and P3 pressure profiles

appear somewhat noisy, as confirmed by a larger number of harmonics which signifi-

cantly contribute to the signals energy content. In case of P2, it is possible to identify the

interaction between the rotor blade leading edge and the shock waves ST1 and ST2, see

Fig. 5.2(a) and Fig. 5.2(b), by the sharp increase in pressure at τ ≈ 0.05, 0.35, 0.55, 0.85.
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Figure 5.10: Pressure signal (left) and their spectra (center and right) calculated at the

locations depicted in Fig. 5.9. The frequency is normalized by the blade passing frequen-

cies.

5.4.6 Turbine efficiency

The calculated isentropic turbine efficiency η = (hout − hin)/(hout,s − hin) is depicted in

Fig. 5.11 for both rotational speeds. The time-averaged value at 28 krpm ηω2
was used

as a reference. Based on this quantification it can be seen that for 28 krpm the efficiency

is higher than for the low rotational speed. This can be partly explained by comparing

Fig. 5.2(a) to Fig. 5.2(b) described in Sec. 5.4.1; a weaker shock waves structure in the

rotor is calculated for 28 krpm, which leads to less losses and higher efficiency. For

both rotational speeds, the efficiency profile oscillates periodically at a frequency which is

twice the rotor blade-passing-frequency and five times the stator blade-passing-frequency.

The amplitude of the oscillations is about 0.5 % in both cases.

5.5 Conclusions

The stator/rotor interaction in a high-speed, single-stage, highly supersonic, radial inflow

ORC turbine was investigated by means of detailed quasi-3D unsteady RANS simulations

in order to analyze the unsteadiness of the supersonic flow which is typical of this type

of unconventional turbines. The considered geometry is the preliminary design of an

operational ORC turbogenerator expander. A validated in-house CFD code was used to

study the fluid dynamics of the expanding fluid, whose properties were approximated by
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Figure 5.11: Isentropic efficiency

a multiparameter equation of state model.

The turbine performance and time evolution of the flow field were studied in terms

of unsteady interactions between shock waves. Shocks generated at the trailing edge of

the stator blades strongly interact with the rotor flow field and are responsible for total

pressure losses and sharp fluctuations of the blade loads. Furthermore, it was possible to

identify the main sources of losses, namely large recirculation areas on the suction side

of the rotor blades and the viscous wake of the stator blades. Overall, higher turbine

efficiency was calculated at high rotational speed.

The analysis of the rotor blade load profiles showed high unsteadiness which might be

relevant as far as structural and fatigue aspect are of concern. Force fluctuations can reach

up to 60% and 30% of their time-averaged value for the radial and tangential component,

respectively, and are caused by the shock waves impingement on the blade surface. The

torque was also found to feature ample and sharp fluctuations, and a change in sign in

case of high turbine rotational speed. The steep changes in blade loads were related to the

physical mechanisms of shocks interactions. A frequency domain analysis gave further

information on the loads and flow field energy content, which was found to be limited to

the first 5-10 harmonics for the blade loads and to a slightly larger range, 10-15 harmonics,

in case of pressure signals sampled in the stator and rotor domain.

The documented analysis shows that intrinsically unsteady flow features and fluid

dynamic mechanisms dominate the flow evolution in high-speed and supersonic ORC

turbines. Unsteady CFD simulations are the only mean to numerically investigate those

flow characteristics playing a primary role in the operation and performance of the turbine.

Results allowed to identify the main loss sources and large blade loads fluctuations, whose

minimization might be achieved using modern automated shape optimization techniques

supplied by unsteady CFD data.
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Chapter 6

Abstract This Chapter investigates the role of temperature dependent thermal conduc-

tivity and specific heat on the maximum energy growth of perturbations in a thermally-

stratified laminar channel flow under symmetric and asymmetric reference temperature

profiles. All the computations are performed assuming a constant destabilizing viscosity

distribution. A parametric study is conducted to assess the effect of the Prandtl number

and different property gradients across the channel. Variable properties result in a sub-

stantial modulation of the maximum energy growth and of the growth rate, therefore fur-

ther stabilizing or destabilizing the flow compared to the constant property case. The re-

sults indicate that either enhancement or reduction of maximum energy growth can occur

if only one property changes across the channel. Namely, enhancement of the maximum

growth is obtained with cross stream decreasing thermal conductivity and increasing spe-

cific heat profiles with respect to the reference values, while the opposite effect is observed

for the reversed property distribution. In case both thermal conductivity and specific heat

are functions of temperature, the maximum energy growth is always amplified, irrespec-

tively of their profiles. The maximum modulation induced by variable transport properties

is found for a spanwise perturbation under a linear reference temperature profile.

6.1 Introduction

The hydrodynamic stability of shear flows is commonly studied by means of an eigen-

value analysis of the linearized governing equations. This approach is called modal sta-

bility analysis and provides information on whether small perturbations to a laminar ref-

erence state are damped (stable flow) or grow exponentially in time (unstable flow) (1).

The first accurate calculation of the critical Reynolds number in a plane channel flow

above which transition may occur dates back to 1971 and is due to Orszag, who reported

Recr ≈ 5772 (2). However, experimental evidence shows that transition usually occurs at

lower sub-critical Reynolds numbers, Re ≈ 1000.

The discrepancy between experiments and the prediction of the linearized theory lies

in considering the asymptotic behaviour of the flow only by looking at the sign of the

eigenvalues. Transient energy growth is a key mechanism for shear flows to undergo

early transition and is caused by the non-normality of the linearized Navier–Stokes oper-

ator, whose eigenfunctions are by definition non-orthogonal. Small perturbations may be

amplified by several orders of magnitude, and conditions may be met for other instabilities

and flow non-linearities to be triggered.

In order to overcome this limitation, non-modal stability studies the transient be-

haviour of perturbations providing important insights on the physical mechanisms at the

first stages of the laminar-turbulent transition (3–5). In the early 90’s, the pioneering studies

of Reedy and Henningson (6) and Reddy et al. (7) showed that substantial energy growth,

of order O(1000), can be achieved in a channel flow with constant properties at subcriti-

cal Reynolds numbers. They also found that the highest energy amplification is obtained

for streamwise independent perturbations. Several authors extended the analysis to as-

sess whether viscosity stratification has a stabilizing or destabilizing effect. The modal

stability analysis conducted by Wall and Wilson showed that an increase in viscosity
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Linear stability analysis of a channel flow with temperature dependent transport properties

always stabilizes the flow, while a non-uniform decrease of viscosity may either destabi-

lize, as expected, or stabilize the flow, in case a thin layer of low viscosity is formed at the

heated wall (8). The effect of a non-uniform viscosity distribution across the channel on

the transient energy growth of thermally stratified flows was investigated by Chikkadi et

al. (9), who found it to only marginally modify the temporal evolution of the perturbation

energy. Their results were confirmed in a systematic investigation by Sameen and Govin-

darajan (10,11), who additionally considered the effect of Prandtl number Pr on the modal

and non-modal stability characteristics of a heated channel flow, reporting a strong influ-

ence of Pr on the maximum energy growth. A recent review of instabilities in viscosity

stratified flows is provided by Govindarajan and Sahu (12).

In this Chapter we discuss the influence of temperature dependent thermal conduc-

tivity λ and isobaric specific heat cp on the non-modal stability of a thermally-stratified

channel flow. The focus of the presented analysis is on the modulation of the maximum

energy growth and of the growth rate in order to assess whether temperature dependent

transport properties contribute to the stabilization or destabilization of a channel flow. Re-

sults are shown for a constant destabilizing viscosity profile and over a range of Prandtl

numbers which encompasses most fluids of practical interest. The investigation of the

effects of λ and cp variation across the channel height is performed in two steps: firstly,

the properties are decoupled and only one at a time is considered temperature dependent;

secondly, a non-uniform distribution is imposed on both λ and cp.

This Chapter is organized as follows. The governing equations, property profiles and

numerical discretization are described in Sec. 6.2. Results are presented and discussed in

Sec. 6.3. Finally, conclusions are drawn in Sec.6.4.

6.2 Governing equations

The channel flow geometry considered in this study is depicted in Fig. 6.1. The stream-

wise, wall-normal, and spanwise directions are indicated by x, y, and z, respectively, and

the components of the velocity vector along the three directions are denoted by u, v and

w. The reference temperature profiles investigated in this Chapter are also reported in the

Figure: they are a linear (T1) and parabolic profile (T2), which represent an asymmetric

and a symmetric heating of the flow.

In order to linearize the Navier–Stokes equations, the non-dimensional velocity vector

and non-dimensional temperature are decomposed into a reference state and a perturba-

tion

u(x, y, z, t) =
[

U(y) + u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)
]

, (6.1)

Θ(x, y, z, t) = T (y) + θ(x, y, z, t). (6.2)

The perturbations are expressed in normal Fourier mode form as

v(x, y, z, t) = ṽ(y) ei(αx+βz−ωt), (6.3)

θ(x, y, z, t) = θ̃(y) ei(αx+βz−ωt), (6.4)
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Figure 6.1: Channel flow geometry and non-dimensional temperature profiles.

where α and β denote the streamwise and spanwise wave numbers, respectively, and

ω = cα is the complex frequency.

The reference velocity profile, U(y), cannot be determined a priori. It is calculated

numerically by solving the non-dimensional momentum equation in the y direction

d

dy

(

µ
dU

dy

)

= −2, (6.5)

which for a constant viscosity profile gives U = 1 − y2. Equation (6.5) is solved using a

spectral collocation method based on Chebyshev polynomials. In order to avoid interpo-

lations of the reference velocity profile and of its derivatives, the same collocation nodes

are used for Eq. (6.5) and for the discretization of the linear stability equations introduced

below.

Viscosity, thermal conductivity, and isobaric specific heat are expressed as functions

of the non-dimensional temperature only as

µd = µ e−KµΘ, λd = λ e−KλΘ, cpd
= cp e−KcpΘ, (6.6)

where the subscript d denotes the dimensional quantities, K indicates the rate of variation,

and µ, λ, and cp are the reference values used to non-dimensionalize the equations and

to define the Reynolds number Re = U L ρ/µ, the Prandtl number Pr = µ cp/λ, and the

Richardson number Ri = gβ∆T L
3
ρ

2
/µ

2
Re2. In the previous definitions L is the reference

length scale, ρ is the reference density, g the acceleration due to gravity, β the volumetric

thermal expansion coefficient of the fluid, and ∆T = T s − Tb is the difference between the

surface and bulk temperatures.

The derivatives of the transport properties with respect to the spatial coordinates are

expressed using the chain rule, e.g.,

∂µ (Θ(x, y, z, t))

∂x
=

dµ(Θ)

dΘ

∂Θ(x, y, z, t)

∂x
. (6.7)

The Navier–Stokes equations are conveniently recasted in the v − η formulation in or-

der to remove the pressure term from the equations and to automatically satisfy the conti-

nuity constraint. The linearization procedure and the transformation to the Fourier space
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using Eqs (6.3)-(6.4) lead to the following linear stability equations in non-dimensional

form

iα[(v′′ − k2v)(U − c) − U ′′v] =
1

Re

{

µ[v′′′′ − 2k2v′′ + k4v]

+
dµ

dT
T ′2[v′′′ − k2v′] +

dµ

dT
T ′′[v′′ + k2v] +

d2µ

dT 2
(T ′)2[v′′ + k2v]

− dµ

dT
iα[U ′θ′′ + 2U ′′θ′ + (k2U ′ + U ′′′)θ] − 2iα

d2µ

dT 2
U ′T ′θ′

− iα
d2µ

dT 2
T ′′U ′θ − 2iα

d2µ

dT 2
U ′′T ′θ − iα

d3µ

dT 3
U ′(T ′)2θ

}

− Ri k2θ, (6.8)

iα(U − c)η + iβU ′v =
1

Re

{

µ[η′′ − k2η] +
dµ

dT
T ′η′

+ iβ
dµ

dT
[U ′′θ + U ′θ′] + iβ

d2µ

dT 2
T ′U ′θ

}

, (6.9)

iα(U − c)θ + T ′v =
1

RePr

λ

cp

(

θ′′ − k2θ
)

+
1

RePr

2

cp

dλ

dT
T ′θ′, (6.10)

which represent the Orr–Sommerfeld, Squire, and energy equations, respectively, for a

fluid with temperature dependent transport properties. In Eqs. (6.8)-(6.10), the Boussi-

nesq approximation was used to model the buoyancy term. The tilde symbol was dropped

for simplicity and the prime ′ denotes the derivative with respect to y. η is the component

of the vorticity in the wall normal direction, and k2 = α2+β2. The transport properties are

non-dimensionalized as µ = µd/µ, λ = λd/λ, and cp = cpd
/cp. The following boundary

conditions are applied to the perturbations

v(±1) = v′(±1) = η(±1) = θ(±1) = 0. (6.11)

Equations (6.8)-(6.10) are discretized numerically using collocated Chebyshev poly-

nomials (13), and the spectrum of the linear operator is calculated using the software Mat-

lab. The validation of the numerical code used in this study is presented in the Ap-

pendix A.1.

In order to study the non-modal stability of the flow, a definition is needed to measure

the energy of the perturbations. A common choice is the positive definite norm in the

form (6,10,14)

|| v ||2E =
1

2

∫ 1

−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂v

∂y

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

+ k2||v||2 + ||η||2 + ||θ||2dy, (6.12)

which is proportional to the energy of the perturbation vector v = [v, η, θ]. From this

definition, a weight matrix can be defined, Q = C∗C, with C denoting the Cholesky

decomposition matrix. The disturbance energy growth function is then expressed as

G(t) ≡ max
v(0),0

|| v(t) ||2E
|| v(0) ||2E

=

∣

∣

∣

∣

∣

∣ e−iΛtv(0)
∣

∣

∣

∣

∣

∣

2

E

|| v(0) ||2E
=

∣

∣

∣

∣

∣

∣CTe−iΛtT−1C−1
∣

∣

∣

∣

∣

∣

2

2
, (6.13)
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where L = TΛT−1 is the singular value decomposition of the linear operator describing

Eqs. (6.8)-(6.10) and the subscript E indicates the energy norm. Hereafter, the maxi-

mum energy growth over time will be denoted as Gmax = maxt>0 G(t) in case of variable

properties and Gmax,0 for a constant property case, i.e., Kλ = Kcp
= 0 (viscosity is al-

ways considered variable across the channel height). Accordingly, the time at which the

maximum growth is reached will be referred to as tGmax
and tGmax,0

.

6.3 Energy growth modulation

The effect of temperature dependent cp and λ on the maximum energy growth is investi-

gated for a fixed combination of flow parameters used for all the calculations presented

in the following, namely Re = 1000, Ri = 0, and Kµ = 0.2, the latter having a destabi-

lizing effect on the flow with respect to a uniform viscosity case, as reported by Wall and

Wilson (8).

Three perturbations with a fixed amplitude, k = 0.5, are considered in the following,

namely a streamwise (ST), a spanwise (SP), and an oblique (OB) perturbation. The choice

of the amplitude is justified by the results shown in Fig. 6.2, which displays log10(Gmax,0)

on the wave number space for the reported combination of flow parameters at three dif-

ferent Prandtl numbers, namely Pr = 10−2, 1, 10. At low Pr, the distribution of the

maximum growth function is similar to the constant viscosity case, and has its absolute

maximum for the spanwise perturbationα = 0, β ≈ 2. The maximum growth for a stream-

wise perturbation is obtained for α ≈ 0.4, β = 0. As Prandtl increases, larger maximum

amplifications are reached, the region of maximum growth for spanwise perturbations

elongates on the vertical axis and its absolute maximum moves toward lower values of

β. Overall, the choice k = 0.5 represents a compromise to reach high perturbation am-

plifications in each of the three directions, ST, SP, and OB, and over a wide range of

Pr.
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Figure 6.2: Contour lines of log10(Gmax,0) for Re = 1000, Ri = 0, and Kµ = 0.2.
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The individual effect of variable cp and λ is investigated first, i.e., only one property

at a time is considered as temperature dependent imposing Kλ = 0 for the variable cp

case, and vice versa. Figure 6.3 displays the ratio Gmax/Gmax,0 for a linear reference tem-

perature profile. For each of the perturbations, maximum energy growth amplification is

observed for positive values of Kλ and negative values of Kcp
, which correspond to a de-

creasing thermal conductivity λ < 1 and increasing specific heat cp > 1 across the channel

height, respectively. Conversely, maximum energy growth is reduced for opposite prop-

erty profiles. The effect of cp and λ is almost specular: similar amplification/reduction is

in fact obtained for any considered pair of Kλ and −Kcp
. This behaviour is due to the fact

that λ appears in the numerator while cp in the denominator in Eq. (6.10). However, the

presence of the derivative of the thermal conductivity in the last term on the right-hand-

side of Eq. (6.10) introduces a difference in the effect of cp and λ, visible for increasing

magnitude of the exponents Kλ, cp
. The trends obtained under ST and OB perturbations

are similar: the maximum effect is at low Prandtl numbers and amounts to up to ±20%,

it gradually decreases for increasing Pr and shows a second peak of smaller amplitude at

Pr ≈ 1 before eventually decaying. A qualitatively different behaviour is observed under

a SP perturbation: the energy modulation is negligible in the limits of small and very

large Pr, and shows one maximum/minimum which reaches up to ≈ ±30% at a constant

optimal Pr. Overall, the effect of variable cp and λ is larger if compared to the ST and

OB cases, and extends over a wider range of Prandtl numbers.

Results concerning a symmetric parabolic temperature profile are reported in Fig. 6.4

for the same combinations of perturbation intensities and property parameters Kλ, cp
. The

modulation of the maximum energy growth resulting from variable properties is smaller

than for a linear reference temperature profile. Maximum amplification/reduction is lim-

ited to up to ≈ ±10% for the ST and OB perturbation cases, and to up to ≈ ±20% for the

SP case. The trends obtained under ST and OB perturbations appear to be qualitatively

different from the ones obtained with a linear temperature profile: the effect of variable

properties is distributed over a wider range of Pr and it appears to be almost independent

from this parameter in the decade Pr = [0.03, 0.3]. The similarity observed between the

effects of Kλ and −Kcp
for the linear temperature profile is not found in case of a parabolic

temperature profile. The variable λ curves shift toward higher Prandtl numbers, and ther-

mal conductivity has an overall smaller effect if compared to specific heat. The latter

observation is true in case of SP perturbation also.

Another useful measure of the flow stabilization or destabilization due to variable

properties is the time needed to reach the maximum amplification of a perturbation. Fig-

ure 6.5 displays the ratio tGmax
/tGmax,0

for a SP perturbation, which was shown to be the

most effective to enhance/suppress the maximum energy growth, under both a linear and

parabolic temperature profiles. Similar trends are observed in both cases: for λ < 1

and cp > 1 profiles the maximum disturbance amplification takes shorter at low Prandtl

numbers, if compared to the constant property case, and longer for medium/high Prandtl

numbers. The opposite behaviour is observed for reversed λ and cp profiles. Larger mod-

ulation of tGmax
is obtained by variable properties under a linear temperature profile, up to

≈ ±20%, if compared to the parabolic temperature profile case, whereby the maximum

effect is ≈ ±10% and is shifted to higher Pr.
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Figure 6.3: Gmax modulation for a linear temperature profile, T = 1 + y. Numbers

denote values of Kλ (solid lines) and −Kcp
(dashed lines).
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Figure 6.4: Gmax modulation for a parabolic temperature profile, T = 1 − y2. Arrows

indicate the direction of increasing Kλ (solid lines) and −Kcp
(dashed lines).
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Figure 6.5: tGmax
modulation under a spanwise perturbation. Numbers denote values of Kλ

(solid lines) and −Kcp
(dashed lines).

The coupled effect of variable thermal conductivity and specific heat is assessed in

Fig. 6.6 under the assumption of unit local Prandtl number based on non-dimensional

properties, i.e., µ(T ) cp(T )/λ(T ) = 1. This condition can be rewritten as Kλ = Kcp
+

Kµ using Eq. (6.6). Three combinations of property parameters are used to define three

qualitatively different distributions of thermal conductivity and specific heat. Namely, the

first choice of parameters is Kcp
= −0.3, Kλ = −0.1, which corresponds to cp > 1 and

λ > 1 across the channel height, (II); the second choice is Kcp
= −0.1, Kλ = 0.1, which

corresponds to cp > 1 and λ < 1 profiles, (ID); finally, the third choice is Kcp
= 0.1,

Kλ = 0.3, which corresponds to cp < 1 and λ < 1 profiles, (DD).

Results show that regardless of the parameters choice and of the temperature profile,

the coupled effect of variable λ and cp always results in an increase of the maximum

energy growth, which is larger in case of linear reference temperature profile and covers

a wider range of Prandtl numbers, if compared to the parabolic temperature profile case.

Similarly to the results showed for the decoupled property variation, the mechanism to

reach the maximum energy growth is speeded-up at small/medium Pr due to an increased

growth rate, and slowed-down at medium/large Pr as a consequence of a decreased growth

rate.

6.4 Conclusions

The effect of temperature dependent thermal conductivity and specific heat on the non-

modal stability of a thermally-stratified channel flow was studied in this Chapter. A fixed

destabilizing viscosity profile was considered for all the computations under symmetric

128



Linear stability analysis of a channel flow with temperature dependent transport properties

Pr

G
m

ax
/

G
m

ax
,0

10
­2

10
­1

10
0

10
11

1.1

1.2

1.3

K

K

Pr

t G
m

ax
/

t G
m

ax
,0

10
­2

10
­1

10
0

10
10.8

0.9

1

1.1

1.2

K

K

Figure 6.6: Gmax and tGmax
modulation under the coupled effect of variable cp and λ.

Increasing K corresponds to II, ID, and DD cases. Solid lines are obtained for a linear

reference temperature profile, while dashed lines for a parabolic temperature profile.

and asymmetric temperature profiles. Three different perturbations were applied to the

flow, namely a streamwise, spanwise, and oblique perturbation. A parametric study was

conducted in order to assess the effect of the Prandtl number and of different rates of

variation of λ and cp across the channel height.

The analysis of the decoupled effects of variable λ and cp showed that the largest

modulation on the energy growth, in terms of both maximum growth and growth rate,

is obtained under a spanwise perturbation and a linear temperature profile. Decreasing

thermal conductivity (λ < 1) and increasing specific heat (cp > 1) profiles across the

channel height with respect to the reference value are responsible for a larger maximum

energy amplifications if compared to a constant cp and λ case; this mechanism is speeded-

up at low Pr and slowed-down at high Pr. The opposite behaviour is observed for reversed

λ and cp profiles.

In case both thermal conductivity and specific heat are temperature dependent, the

results obtained for three qualitatively different property distributions across the channel

showed that variable properties always lead to an amplification of the maximum energy

growth, regardless of the specific profile, i.e., whether they increase or decrease across

the channel height, therefore further destabilizing the flow and promoting the transition

to turbulence. A similar modulation of the growth rate is observed as in the case of

decoupled λ and cp effects.

The investigation presented in this Chapter demonstrates that substantial modulation

of the maximum energy growth and of the growth rate can be obtained if transport prop-

erties are temperature dependent. This contribute to the stabilization or destabilization

of the flow, promoting or delaying the transition to turbulence accordingly. The results

discussed can have practical implication in devising effective flow control strategies.
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A.1 Code validation

The validation of the linear stability code for the constant and variable property cases

are reported in this Appendix. Hereafter, the number of modes used for the numerical

discretization of the equations is referred to as Nmod.

A.1.1 Constant properties

Table 1: 10 least stable eigenvalues at Re = 2000 from Schmid and Henningson (4).

α = 1 β = 0 α = 0.5 β = 1 α = 0.25 β = 2 α = 0 β = 2

cr ci cr ci cr ci cr ci

0.98418861 -0.01631139 0.97763932 -0.02361068 0.96837728 -0.03974775 0 -0.00323370

0.31210030 -0.01979866 0.37226932 -0.03737398 0.56329537 -0.08548514 0 -0.00507754

0.95256584 -0.04793417 0.93291797 -0.06833204 0.90513428 -0.10299426 0 -0.00693480

0.42418427 -0.07671992 0.49935557 -0.09920592 0.83796079 -0.14010066 0 -0.01107002

0.92078667 -0.07804706 0.88770220 -0.10945538 0.84492959 -0.14965217 0 -0.01310331

0.92091806 -0.07820060 0.88808805 -0.10962449 0.58717755 -0.15289251 0 -0.01982549

0.92094306 -0.07955694 0.88819669 -0.11305351 0.84190728 -0.16629312 0 -0.02173921

0.88932028 -0.11117972 0.84347472 -0.15777756 0.39061440 -0.21452290 0 -0.03078177

0.24936056 -0.13725811 0.31232252 -0.16986946 0.39061296 -0.21452788 0 -0.03284251

0.24936056 -0.13725811 0.31232252 -0.16986946 0.72738833 -0.22753394 0 -0.04449131

Table 2: 10 least stable eigenvalues at Re = 2000 calculated in the present study.

α = 1 β = 0 α = 0.5 β = 1 α = 0.25 β = 2 α = 0 β = 2

cr ci cr ci cr ci cr ci

0.98418861 -0.01631139 0.97763932 -0.02361068 0.96837728 -0.03974775 0 -0.00323370

0.31210030 -0.01979866 0.37226932 -0.03737398 0.56329537 -0.08548514 0 -0.00507754

0.95256584 -0.04793416 0.93291797 -0.06833204 0.90513428 -0.10299426 0 -0.00693480

0.42418426 -0.07671992 0.49935556 -0.09920592 0.83796079 -0.14010066 0 -0.01107002

0.92078667 -0.07804706 0.88770220 -0.10945538 0.84492959 -0.14965217 0 -0.01310330

0.92091806 -0.07820060 0.88808805 -0.10962449 0.58717755 -0.15289251 0 -0.01982549

0.92094306 -0.07955694 0.88819669 -0.11305351 0.84190728 -0.16629312 0 -0.02173921

0.88932028 -0.11117972 0.84347472 -0.15777756 0.39061439 -0.21452290 0 -0.03078177

0.24936056 -0.13725811 0.31232252 -0.16986946 0.39061296 -0.21452788 0 -0.03284251

0.24936056 -0.13725811 0.31232252 -0.16986946 0.72738833 -0.22753394 0 -0.04449131

Table 3: 10 least stable eigenvalues at Re = 10000, α = 1, β = 0.

Kirchner (15) Present study (Nmod = 200)

cr ci cr ci

2.375264888204705e-01 3.739670622979582e-03 2.375264888201986e-01 3.739670624484771e-03

9.646309154506005e-01 -3.516727763102714e-02 9.646309154495075e-01 -3.516727763246223e-02

9.646425100392918e-01 -3.518658379244360e-02 9.646425100373770e-01 -3.518658378933739e-02

2.772043438088034e-01 -5.089872725696934e-02 2.772043438124542e-01 -5.089872725457628e-02

9.363165358813165e-01 -6.320149583992261e-02 9.363165358729421e-01 -6.320149583016497e-02

9.363517811647321e-01 -6.325156907426489e-02 9.363517811685679e-01 -6.325156908591481e-02

9.079830546294746e-01 -9.122273543365587e-02 9.079830546196597e-01 -9.122273542616052e-02

9.080563344920409e-01 -9.131286177906131e-02 9.080563345026510e-01 -9.131286173321232e-02

8.796272922071848e-01 -1.192328526196531e-01 8.796272922062681e-01 -1.192328526988089e-01

8.797556958148425e-01 -1.193707310084970e-01 8.797556957047519e-01 -1.193707312161876e-01
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(a) Reddy and Henningson (6).
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Figure 7: Maximum transient energy growth for Re = 1000, Nmod = 101.
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Figure 8: Spectra (symbols), pseudospectra (solid lines) and numerical range (dashed

lines) for several combinations of flow parameters. Reference is Reddy et al. (7), whereby

only the even part of the operator spectrum is shown.
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A.1.2 Viscosity stratification
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Figure 9: Marginal stability curves for T = 1+y and Kµ = −0.2, 0, 0.2. Symbols are taken

from Wall and Wilson (8), lines are calculated in the present study.
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Tcold = 0, 25, 50 K and µd = C1eC2/Td , whereby C1 = 0.00183 Ns/m and C2 = 1879.9 K.

Symbols are taken from Sameen and Govindarajan (10), lines are calculated in the present

study.
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A.1.3 Heat diffusivity and buoyancy

A channel flow configuration under a linear temperature profile and constant viscosity

is considered. Present calculations are performed using (i) a collocated spectral method

based on Chebyshev polynomials and (ii) 6th order finite differences (4th order at the walls)

using a number of nodes N = 200. For the finite difference discretization the convergence

of the results is checked doubling the number of discretization nodes. Results obtained

by the spectral method do not depend on the number of collocation points for N > 50.

A perfect agreement is found between the critical Reynolds number is observed between

the spectral method and finite differences on N = 400. Results for N = 200 appear to be

closer to the reference ones by Biau and Bottaro (16).
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Figure 11: Critical Reynolds number. Lines are taken from Biau and Bottaro (16), symbols

are calculated in the present study.
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Chapter 7

7.1 Conclusions

This thesis presents original research in the field of computational fluid dynamics (CFD)

of non-ideal fluid flows and is organized in five self-contained chapters, each addressing

a specific problem. The work is subdivided into three parts, namely numerical methods,

applications, and analytical study. The material included was partly presented at inter-

national conferences and/or appeared in peer-reviewed international scientific journals.

Two chapters are already published (Chapter 2 and 4), one is under review for journal

publication (Chapter 3), and two were presented and included as conference proceedings

and are now under review for journal publication (Chapter 5 and 6). Hereafter, the main

conclusions of each Chapter are summarized and discussed.

Numerical methods

Chapter 2 presents the extension of three approximate Riemann solvers to include a

complex equation of state model, and reports for the first time the exact derivation of their

flux Jacobians. A look-up table interpolation is analyzed an proposed as alternative to the

direct solution of the equation of state model. Numerical tests provide the verification

of the newly introduced schemes. This chapter constitutes the basis for the simulations

performed in Chapter 4 and 5.

◮ Look-up tables can speed-up the evaluation of fluid thermophysical properties by

up to 4 orders of magnitude, depending on the thermodynamic conditions used as

input to the EoS, and on the EoS model itself.

◮ A relatively small number of discretization nodes for the thermodynamic table is

found to be sufficient as far as the accuracy and consistency of the interpolated

property are concerned.

◮ Expressions of the numerical convective fluxes and their exact Jacobians are pro-

vided for HLLC, AUSM+ and Kurganov–Tadmor central scheme, using a generic

equation of state model.

◮ The main difference with respect to the ideal gas formulation of the convective

and viscous Jacobians can be summarized by the need for a general expression of

the pressure and temperature derivatives. The differentiation of the viscous fluxes

results in additional terms due to temperature-dependent thermophysical properties,

i.e., viscosity, thermal conductivity and specific heat.

◮ The schemes are verified on 1D and 2D test cases using exact analytical solutions

when available or by comparison of the numerical solutions obtained using the dif-

ferent schemes. The results do not allow to draw a conclusion on which method

performs best. However, the convergence histories for the considered test cases

indicate that in order to achieve convergence it is essential to use a consistent dis-

cretization of the left-hand-side (Jacobian part) and right-hand-side (flux part) of

the equations.
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Chapter 3 describes a new flux-conserving treatment of the interface between non-

conformal mesh blocks. The devised method is used in Chapter 5 to perform unsteady

Reynolds-averaged Navier–Stokes (RANS) simulations of a supersonic turbine.

◮ The use of an auxiliary hybrid mesh, also called supermesh, at the interface es-

tablishes the connectivity among the non-matching mesh blocks and guarantees a

conservative flux calculation by construction of the method, avoiding any flux in-

terpolation or the need to enforce additional constraints.

◮ Despite the application to fluid dynamic simulations, the proposed method can be

applied to any other system of conservation laws discretized by finite-volumes.

◮ The proposed parallelization of the supermesh generation reduces the computa-

tional cost of the task linearly with the number of cores.

◮ The accuracy of the least-squares gradient reconstruction at the interface is studied;

two modifications to the standard scheme are proposed and consist of either extend-

ing the gradient stencil to include the control volumes of the disconnected block,

or to properly set a boundary face value at the interface. It is shown that the latter

approach is more robust and thus preferable.

◮ The effectiveness and conservative nature of the method are verified on five 2D and

3D test cases, which include shock waves and viscous wakes crossing the interface.

No spurious solutions are seen at the interface and numerical fluxes conservation

is achieved to machine precision. The turbulent simulation of the 2D stator/rotor

interaction in a transonic turbine represents an important preliminary verification

of the method for the investigation carried out in Chapter 5.

◮ The numerical stability is proved empirically by solving the equations with three

different time integration schemes, namely explicit three-steps Runge–Kutta, im-

plicit backward Euler and BDF2 methods, for subsonic, transonic and supersonic

flow regimes. The convergence rates were not found to be affected by the presence

of the interface.

Applications

In Chapter 4 the performance map of a radial compressor (50 kW, 20 mm diameter,

75 krpm design rotational speed) operating with supercritical CO2 is calculated by means

of steady state RANS simulations, and the numerical results are compared to experiments.

The methodology developed in Chapter 2 is used here together with a state-of-the-art

multiparameter equation of state model, which ensures the best possible accuracy in the

fluid property evaluation.

◮ The comparison between the calculated and measured isentropic efficiency and en-

thalpy rise provides a reasonable agreement, thus demonstrating the potential of the
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methodology and validating the CFD code. However, discrepancies between simu-

lations and experiments are visible: the calculated optimal operating conditions are

at lower values of the flow coefficient and the model cannot predict the compressor

surge.

◮ Limitations of the presented CFD simulations are discussed and these are: (i) first

order accuracy for the convective fluxes to increase the stability of the simulations;

(ii) lack of suitable turbulence models for non-ideal flows and in particular super-

critical flows; (iii) the lack of a model for the effective thermal conductivity in the

two-phase region in the framework of standard RANS modeling under the homo-

geneous mixture approximation of the fluid.

◮ Possible inaccuracy of the used experimental data are also discussed and depend

on: (i) the design inlet conditions are given without specifying whether the re-

ported properties are static or total, which in the supercritical region can lead to

large differences in terms of thermodynamic and transport properties; (ii) the in-

let conditions measured during the experiments are given as a temperature and

pressure range, which translates in an uncertainty on the inlet density of 100%;

(iii) uncertainties related to measurement equipment, flow leakage, windage losses,

etc., which are not quantified in the experimental campaign and are not taken into

account in the CFD simulations.

◮ Possible local condensation of CO2 is investigated identifying the control volumes

whose calculated thermodynamic state falls inside the vapour-liquid equilibrium

region. They are mainly located at the leading edge of the rotor main-blade, and

their extent largely increases with the rotational speed. Similar conditions are found

at the sharp trailing edge of the rotor blades and at the leading edge of the diffuser

wedges, though covering regions smaller in size and showing a weaker dependence

on the rotational speed. Further investigations are needed to assess whether the

residence time of the flow is long enough to trigger the condensation mechanism

and whether this phenomenon can affect the machine performance.

Chapter 5 investigates the stator/rotor interaction in an ORC supersonic turbine (60-

170 kW, 26 krpm design rotational speed, pressure ratio > 100, maximum vane Mach

number M ≈ 3). The machine is a single stage radial turbine and operates with toluene

at slightly subcritical state at the inlet. Time-averaged and unsteady blade loads are pre-

sented, and the main flow structures and their interactions are described for two off-design

rotational speeds.

◮ The machine operates more efficiently at high rotational speeds due to relative tran-

sonic inlet conditions in the rotor, and a less intense shock waves configuration as

a consequence.

◮ The isentropic efficiency of the turbine is only weakly unsteady. The frequency

of the oscillations is twice the rotor blade-passing-frequency, and the amplitude is

0.5%.
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◮ The main losses are due to the viscous wakes of the stator blades and to the large

flow separations induced by oblique shock waves on the suction side of the rotor

blades.

◮ The shock waves and viscous wakes interactions and their time evolution were

studied. Similar patterns are observed for both considered rotational speeds, with

the exception of the presence of stationary bow shock waves at the leading edge of

the rotor blades in case of low rotational speed, due to relative supersonic conditions

at the inlet of the rotor.

◮ Rotor blade loads show highly unsteady trends featuring ample and sharp fluctu-

ations caused by the shocks impingement on the blades. Force fluctuations in the

radial and tangential direction can reach up to 60% and 30% of their time averaged

values, respectively; the torque also shows large fluctuations and a change in sign

in case of high rotational speed.

◮ The analysis of the frequency content of the flow field and of the loads separates

periodic contributions and provides useful information for the structural design of

the blades. Results show that most of the content is confined to the first 5-10 blade-

passing-frequency harmonics.

◮ The results presented in this Chapter demonstrate how unsteady CFD simulations

can provide crucial insights in the design process of efficient ORC turbines. Shape

optimization methodologies of the rotor blades could benefit from the use of un-

steady CFD data aiming at the minimization of the blade loads fluctuations by sup-

pressing the highlighted shock interactions.

Analytical study

Chapter 6 documents a linear stability analysis of a thermally-stratified channel flow

with temperature dependent transport properties. The aim is to assess whether variable

thermal conductivity λ and specific heat cp contribute to the stabilization of a laminar flow

or promote its transition to a turbulent state.

◮ Temperature dependent transport properties can significantly modulate the transient

energy growth of perturbations in terms of both maximum amplification and growth

rate over a wide range of Prandtl numbers Pr, therefore contributing to the stabi-

lization/destabilization of the flow. The maximum modulation is obtained under a

spanwise perturbation and a linear reference temperature profile.

◮ The effect of decoupled variations of λ and cp, i.e., only one property varies while

the other is constant, can either enhance or suppress the maximum energy growth.

Namely, λ/λre f < 1 and cp/cp,re f > 1 across the channel height both result in

larger energy amplifications if compared to a constant λ or cp flow. The opposite

behaviour is observed for reversed property profiles.
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◮ The coupled variation of temperature dependent properties always result in an en-

hancement of the maximum energy growth of spanwise perturbations regardless of

whether λ and cp decrease or increase with respect to their reference value.

◮ The growth rate of spanwise perturbations is affected by temperature dependent

transport properties: if λ/λre f < 1 across the channel height, the growth rate in-

creases for low/medium Pr and reduces in the medium/high Pr range. The same

modulation is observed for cp/cp,re f > 1, while the opposite behaviour is observed

for reversed property profiles.

◮ Appropriate transport property distributions across the channel might be used to

devise effective flow control strategies.

7.2 Perspectives

The contribution of this thesis is twofold and consists of (i) the development of numerical

techniques for the simulation of compressible flows of non-ideal fluids governed by com-

plex thermophysical models, and of (ii) the study of the fluid dynamic behavior of such

non-conventional flows from both an application perspective, considering turbomachines

operating near the vapour-liquid critical point, and a fundamental point of view, inves-

tigating their hydrodynamic stability. The documented work led to improved prediction

capabilities and fluid dynamic understanding which can be beneficial for the design of ef-

ficient devices operating with non-ideal fluid flows. Despite the presented study addressed

several research questions, others lie on the road still waiting for an answer.

One of the main limitation of studying non-ideal fluid flows using computational tools

is the lack of high quality and reliable experimental data to validate the numerical codes.

On the one hand, it is reasonable to believe that computer programs validated for ideal

gases and then properly adapted to include state-of-the-art thermodynamic models will

perform well when applied to simulate non-ideal fluid flows also. On the other hand, ex-

tensive code validation is needed before such numerical methods can be used to support

the design of devices operating with non-ideal fluids and before they can be an integral

part of the development and optimization of non-conventional machines. A strong effort

is therefore needed to perform experimental campaigns using fluids evolving in the prox-

imity of their vapour-liquid critical point, and to provide the scientific community with

data concerning both fundamental flows, e.g., nozzle expansion, boundary layer flow,

heat exchange in simple geometries, and flows occurring in technical applications, e.g.,

turbomachines.

From a theoretical and modeling standpoint, three of the most promising areas of

research which in the author’s opinion might lead to the most significant practical impli-

cations are listed hereafter.

1. Turbulence modeling. Turbulence models are crucial to study from an engineering

point of view complex or industrial applications, for which the Reynolds-averaged
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Navier–Stokes approach often remains the only affordable option in terms of com-

putational cost. It is a well documented fact that standard turbulence models, which

were developed for simple flows of ideal gases, present severe limitations when ap-

plied to non-ideal fluid flows, especially when heat transfer prediction close to the

fluid vapour-liquid critical point are concerned. Fundamental understanding of the

fluid mechanics and the availability of large set of data on different flow config-

urations are needed in order to develop turbulence models which are suitable for

non-ideal fluid flows. Direct numerical simulation (DNS) is nowadays a viable op-

tion to such aim, as demonstrated by several research groups already active in the

field.

2. Hydrodynamic stability. Flow transition from a laminar to a turbulent state has

crucial consequences on a machine performance, acting for example on the skin

friction and heat transfer coefficient. The transition process has been extensively

studied on ideal fluids in the past decades leading to a defined general picture of

the involved mechanisms. However, the sharp and non-linear variation of ther-

mophysical properties in the vapour-liquid critical point region can have a strong

stabilizing/destabilizing effect on the flow, therefore changing the characteristics of

transition. Linear stability analysis and DNS simulations are fundamental tools to

provide the insights needed to understand the transition process in non-ideal fluid

flows. Chapter 6 of this thesis is a first step in this direction, however on a simplified

flow configuration which used simple relations for the fluid thermophysical proper-

ties and which did not include the effect of density, which sharply varies above the

critical point.

3. Fluid condensation. As demonstrated in Chapter 4 of this thesis, conditions for

local fluid condensation might be met in turbomachines operating with trans- and

supercritical fluids. The occurrence of this phenomenon can strongly influence the

machine operation and performance, and it therefore needs to be investigated into

details. From a scientific point of view, the development of suitable nucleation

models for the transcritical thermodynamic region to be coupled to computational

fluid dynamic codes are the main challenge which has to be tackled studying the

fundamentals of the process using theoretical and analytical models devised from

first principles, and supporting them with experiments.
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