
 
 

Delft University of Technology

Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their
Exact Computation

Neufeld, Ariel; Papapantoleon, Antonis; Xiang, Qikun

DOI
10.1287/mnsc.2022.4456
Publication date
2023
Document Version
Final published version
Published in
Management Science

Citation (APA)
Neufeld, A., Papapantoleon, A., & Xiang, Q. (2023). Model-Free Bounds for Multi-Asset Options Using
Option-Implied Information and Their Exact Computation. Management Science, 69(4), 2051-2068.
https://doi.org/10.1287/mnsc.2022.4456

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1287/mnsc.2022.4456
https://doi.org/10.1287/mnsc.2022.4456


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



This article was downloaded by: [131.180.130.145] On: 14 May 2023, At: 23:15
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Management Science

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Model-Free Bounds for Multi-Asset Options Using Option-
Implied Information and Their Exact Computation
Ariel Neufeld, Antonis Papapantoleon, Qikun Xiang

To cite this article:
Ariel Neufeld, Antonis Papapantoleon, Qikun Xiang (2023) Model-Free Bounds for Multi-Asset Options Using Option-Implied
Information and Their Exact Computation. Management Science 69(4):2051-2068. https://doi.org/10.1287/mnsc.2022.4456

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2022, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/mnsc.2022.4456
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org


Model-Free Bounds for Multi-Asset Options Using
Option-Implied Information and Their Exact Computation
Ariel Neufeld,a,* Antonis Papapantoleon,b,c Qikun Xianga

aDivision of Mathematical Sciences, Nanyang Technological University, 637371 Singapore; bDelft Institute of Applied Mathematics, Delft
University of Technology, 2628 Delft, The Netherlands; c Institute of Applied and Computational Mathematics, Foundation for Research and
Technology—Hellas, 70013 Heraklion, Greece
*Corresponding author
Contact: ariel.neufeld@ntu.edu.sg, https://orcid.org/0000-0001-5500-5245 (AN); a.papapantoleon@tudelft.nl,

https://orcid.org/0000-0002-9504-2822 (AP); qikun001@e.ntu.edu.sg, https://orcid.org/0000-0002-6149-162X (QX)

Received: July 5, 2020
Revised: July 6, 2021; November 8, 2021
Accepted: January 6, 2022
Published Online in Articles in Advance:
June 28, 2022

https://doi.org/10.1287/mnsc.2022.4456

Copyright: © 2022 INFORMS

Abstract. We consider derivatives written on multiple underlyings in a one-period finan-
cial market, and we are interested in the computation of model-free upper and lower
bounds for their arbitrage-free prices. We work in a completely realistic setting, in that we
only assume the knowledge of traded prices for other single- and multi-asset derivatives
and even allow for the presence of bid–ask spread in these prices. We provide a fundamen-
tal theorem of asset pricing for this market model, as well as a superhedging duality result,
that allows to transform the abstract maximization problem over probability measures into
a more tractable minimization problem over vectors, subject to certain constraints. Then,
we recast this problem into a linear semi-infinite optimization problem and provide two
algorithms for its solution. These algorithms provide upper and lower bounds for the pri-
ces that are ε-optimal, as well as a characterization of the optimal pricing measures. These
algorithms are efficient and allow the computation of bounds in high-dimensional scenar-
ios (e.g., when d � 60). Moreover, these algorithms can be used to detect arbitrage opportu-
nities and identify the corresponding arbitrage strategies. Numerical experiments using
both synthetic and real market data showcase the efficiency of these algorithms, and they
also allow understanding of the reduction of model risk by including additional informa-
tion in the form of known derivative prices.
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1. Introduction
The classical paradigm in finance and theoretical eco-
nomics assumes the existence of a model that pro-
vides an accurate description of the evolution of asset
prices, and all subsequent computations about hedg-
ing strategies, exotic derivatives, risk measures, and
so forth, are based on this model. However, academ-
ics, practitioners, and regulators have realized that all
models provide only a partially accurate description
of this reality; thus, either methods need to be devel-
oped to aggregate the results of many models or
approaches must be devised that allow for computations
in the absence of a specific model. The first approach led
to the introduction of robust methods in asset pricing and
no-arbitrage theory (Rigotti and Shannon 2005, Maruhn
2009, Dana and Riedel 2013, Epstein and Ji 2013, Neufeld
and Nutz 2013, Possamaï et al. 2013, Bayraktar et al. 2015,
Bouchard and Nutz 2015, Beissner 2017, Yan et al. 2022,

Beissner and Riedel 2019, Bouchard et al. 2019), whereas
the second one led to model-free methods in asset pric-
ing and no-arbitrage theory (Hobson 1998; Bertsimas
and Bushueva 2006; Beiglböck et al. 2013; Henry-
Labordère 2013; Davis et al. 2014; Dolinsky and Soner
2014a; Galichon et al. 2014; Riedel 2015; Acciaio et al.
2016; Burzoni et al. 2016, 2019, 2021; Cheridito et al.
2017; Dolinsky and Neufeld 2018; Bartl et al. 2019, 2020;
Hu et al. 2019; Lütkebohmert and Sester 2019).

In this work, we consider derivatives written on
multiple underlyings in a one-period financial market,
and we are interested in the computation of upper
and lower bounds for their arbitrage-free prices. We
work in a completely realistic setting, in that we only
assume the knowledge of traded prices for other
single- and multi-asset derivatives and even allow
for the presence of bid–ask spread in these prices. In
other words, we work in a model-free setting in the
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presence of option-implied information, and make no
assumption about the probabilistic evolution of asset
prices (i.e., their marginal distributions) or their
dependence structure.

The computation of bounds for the prices of multi-
asset options, most often basket options, is a classical
problem in the mathematical finance literature and has
connections with several other branches of mathe-
matics, such as probability theory, optimal transport,
operations research, and optimization. In the most clas-
sical setting, one assumes that the marginal distribu-
tions are known, and the joint law is unknown; this
framework is known as dependence uncertainty. In
this framework, several authors have derived bounds
for multi-asset options using tools from probability
theory, such as copulas and Fréchet–Hoeffding bounds
(Dhaene et al. 2002a, b; Hobson et al. 2005a, b; Chen
et al. 2008). These bounds turned out to be very wide
for practical applications; hence, recently there was an
interest in methods that allow for the inclusion of addi-
tional information on the dependence structure to
reduce this gap. This led to the creation of improved
Fréchet–Hoeffding bounds and the pricing of multi-
asset options in the presence of additional information
on the dependence structure (Tankov 2011, Puccetti
et al. 2016, Lux and Papapantoleon 2017).

The setting of dependence uncertainty is intimately
linked with optimal transport theory, and its tools have
also been used to derive bounds for multi-asset option
prices (see Bartl et al. 2022 for a formulation in the pres-
ence of additional information on the joint distribution).
More recently, De Gennaro Aquino and Bernard (2020),
Eckstein and Kupper (2021), and Eckstein et al. (2021)
have translated the model-free superhedging problem
into an optimization problem over classes of functions
by extending results in optimal transport, and used
neural networks and the stochastic gradient descent
algorithm for the computation of the bounds.

Ideas from operations research and optimization have
also been applied for the computation of model-free
bounds in settings that are closer to ours and do not nec-
essarily assume knowledge of the marginal distributions
(or, equivalently, knowledge of call option prices for a
continuum of strikes). Bertsimas and Popescu (2002)
consider the computation of the model-free bounds on a
single-asset call option given the moments of the under-
lying asset price and the model-free bounds on a single-
asset call option given other single-asset call and put
option prices. In addition, they also consider specific
conditions under which the model-free bounds on a
multi-asset option can be theoretically computed in pol-
ynomial time. d’Aspremont and El Ghaoui (2006) con-
sider a framework where the prices of forwards and
single-asset call options are known and compute upper
and lower bounds on basket options prices using linear
programming. In the more general case where the prices

of other basket options are also known, they derive a
relaxation to the problem that can be solved using linear
programming. This work was later extended by various
authors. Peña et al. (2010b) improve the results of
d’Aspremont and El Ghaoui (2006) when computing the
lower bounds on basket options prices in two special
cases: (i) when the number of assets is limited to two
and prices of basket options are known and (ii) when
the prices of only a forward and a single-asset call option
per asset are known. Peña et al. (2012) develop a linear
programming-based approach for the problem of com-
puting the upper price bound of a basket option given
bid and ask prices of vanilla call options. Peña et al.
(2010a) study the problem of computing the upper and
lower bounds on basket and spread option prices when
the prices of other basket and spread option prices are
known. Their approach involves solving a large linear
programming problem via the Dantzig–Wolfe decompo-
sition in which the corresponding subproblem is solved
using mixed-integer programming. Compared with
d’Aspremont and El Ghaoui (2006), Peña et al. (2010a),
and Peña et al. (2010b, 2012), the numerical methods we
develop in Section 3 apply to settings that are much
more general, where the derivative being priced and the
traded derivatives with known prices can be any contin-
uous piece-wise affine function (including, but not lim-
ited to, vanilla, basket, spread, and rainbow options, as
well as any linear combination of these options). More-
over, as we demonstrate in Section 4, these methods are
able to efficiently compute the price bounds in high-
dimensional scenarios, for example, when 60 assets are
considered. This is considerably higher compared with
existing studies. Daum and Werner (2011) develop a
discretization-based algorithm for solving linear semi-
infinite programming problems that returns a feasible
solution and apply the algorithm to compute the upper
bounds on basket or spread options prices when single-
asset call, put, and exotic options prices are known. Cho
et al. (2016) develop methods similar to Daum and
Werner (2011) but for lower bounds on basket or spread
options prices. The algorithm we introduce in Section
3.1 takes a similar approach but is able to solve the prob-
lem when the prices of multi-asset options with a more
general class of payoff functions are known. Kahalé
(2017) uses a central cutting plane algorithm to compute
the super- and subreplicating prices of financial deriva-
tives using hedging portfolios that consist of other finan-
cial derivatives in the multiperiod discrete-time setting.
The algorithm only works under the assumption that
the underlying state space (i.e., the space of asset prices)
is finite. When the state space is infinite, it is discretized
before applying the central cutting plane algorithm,
and the discretization error is analyzed. However, the
approach of discretizing the state space has limited
applicability to the multidimensional settings (i.e., with
multiple underlying assets) because of the curse of
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dimensionality. The algorithm we develop in Section 3.2
is also based on a central cutting plane algorithm, but it
allows us to efficiently compute model-free price bounds
in high-dimensional state spaces for financial derivatives
that depend on multiple assets.

Our contributions are three-fold: First, we provide a
fundamental theorem of asset pricing for the market
model described previously, as well as a superhedg-
ing duality, that allows to transform the abstract maxi-
mization problem over probability measures into a
more tractable problem over vectors, subject to certain
constraints. Second, we recast this problem into a lin-
ear semi-infinite optimization problem and provide
two algorithms for its solution. These algorithms
provide upper and lower bounds for the prices of
multiasset derivatives that are ε-optimal, as well as a
characterization of the optimal pricing measures.
These algorithms are efficient and allow the computa-
tion of bounds in high-dimensional scenarios (e.g., when
d � 60) that were not possible by previous methods.
Moreover, these algorithms can be used to detect
arbitrage opportunities in multi-asset financial mar-
kets and to identify the corresponding arbitrage
strategies. Third, we perform numerical experiments
using synthetic data and real market data to show-
case the efficiency of these algorithms. These experi-
ments allow us to understand the reduction of the
no-arbitrage gap, that is, the difference between the
upper and lower no-arbitrage bounds, by including
additional information in the form of known deriva-
tive prices. The no-arbitrage gap directly reflects the
model-risk associated to a particular derivative and
the information available in the market. The numeri-
cal experiments show a decrease of the model-risk
by the inclusion of additional information, although
this decrease is not uniform and depends on the
form of information and the specific structure of the
payoff functions.

This paper is organized as follows: In Section 2, we
present the modeling framework, state the no-arbitrage
theorem and the superhedging duality, and discuss a
setting that is relevant for practical applications. In Sec-
tion 3, we present the algorithms that have been
developed for the computation of model-free bounds
and state theorems that show the validity of these
algorithms. In Section 4, we discuss various numeri-
cal experiments using both synthetic and real market
data that show the efficiency of the algorithms and
the reduction of model-risk by the inclusion of addi-
tional information in the form of known derivative
prices. We also perform a numerical experiment to
show the ability of the algorithms to detect arbitrage
opportunities. Appendix A contains the proofs of the
main results of this paper. The online appendices
contain additional remarks and discussions about
the theoretical results, the numerical methods, and the

numerical experiments, as well as the proofs of the
results in Section 2.

2. Duality in the Presence of
Option-Implied Information

In this section, we introduce a general framework for a
model-free, one-period, financial market where multiple
assets and several single- andmulti-asset derivatives writ-
ten on these assets are traded simultaneously. Model-free
means that we will not make any assumption about the
probabilistic model that governs the evolution of asset
prices. Instead, we will use information available in the
financial market and implied by the prices of single- and
multi-asset derivatives.Wewill provide both a fundamen-
tal theorem and a superhedging duality in this setting,
where our results and proofs are inspired by Bouchard
and Nutz (2015). Moreover, we will describe concrete
examples of this framework that are of practical interest.

Throughout this work, all vectors are column vec-
tors unless otherwise stated. We denote vectors and
vector-valued functions by boldface symbols. For a
vector x in a Euclidean space, let [x]j denote the jth
component of x. For simplicity, we also use xj to
denote [x]j when there is no ambiguity. Let ||x|| denote
the Euclidean norm of x. Let 〈x,x′〉 denote the Eucli-
dean inner product of two vectors x and x′. We denote
by ei the ith standard basis vector of a Euclidean
space, by 0 the vector with all entries equal to zero,
that is, 0 � (0,: : : ,0)T, and by 1 the vector with all
entries equal to one, that is, 1 � (1,: : : ,1)T. We call a
subset of a Euclidean space a polyhedron or a polyhe-
dral set if it is the intersection of finitely many closed
half-spaces. We call a subset of a Euclidean space a
polytope if it is a bounded polyhedron.

Let Ω be a Polish space equipped with its Borel
σ-algebra denoted by B(Ω). Let P(Ω) denote the set of
Borel probability measures onΩ. Let gj : Ω→ R be Borel
measurable for j � 1, : : : ,m, for some fixedm ∈ N, and let
g : Ω→ R

m denote the vector-valued Borel measurable
function where the jth component corresponds to gj. Let
πj,πj ∈ R be such that πj ≤ πj for j � 1, : : : ,m. Let y �
(y1,: : : ,ym)T ∈ R

m and define π : Rm → R as

π(y) :�∑m
j�1

y+j πj − y−j πj, (2.1)

where y+j :�max{yj, 0},y−j :�max{−yj, 0}. Let 〈y,g〉 de-
note the function

∑m
j�1 yjgj : Ω→ R.

We make the following no-arbitrage assumption.

Assumption 2.1 (No-Arbitrage). The following implica-
tion holds for any y ∈ R

m:

〈y,g〉 −π(y) ≥ 0⇒ 〈y,g〉 −π(y) � 0,

where the inequality and the equality are both understood
as pointwise.
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Remark 2.2. Assumption 2.1 is inspired by the
no-arbitrage assumption introduced in definition 1.1
of Bouchard and Nutz (2015), where the set of possi-
ble models for the market is P(Ω), that is, all Borel
probability measures, and a single time step is consid-
ered. The difference between Assumption 2.1 and the
no-arbitrage assumption in Bouchard and Nutz (2015)
is that the price of a financial derivative in the present
work is not a singleton but can lie anywhere between
the corresponding bid and ask prices. There are other
notions of no-arbitrage that are weaker than Assump-
tion 2.1, for example, the “no uniform strong arbitrage”
assumption in definition 2.1 of Bartl et al. (2022).

Let f : Ω→ R be a Borel measurable function and
define the functional φ( f ) as follows:

φ( f ) :� inf {c+π(y) : c ∈ R,y ∈ R
m, c+ 〈y,g〉 ≥ f }:

(2.2)

LetQ be defined as follows:

Q :� μ ∈ P(Ω) : πj ≤
∫
Ω

gjdμ ≤ πj, for j � 1, : : : ,m
{ }

:

The main results of this section are the following fun-
damental theorem and superhedging duality, whose
proofs are provided in Appendix EC.4.

Theorem 2.3 (Fundamental Theorem). The following
are equivalent:

(i)Assumption 2.1 holds.
(ii) For all ν ∈ P(Ω), there exists μ ∈Q such that ν� μ.

Theorem 2.4 (Superhedging Duality). Under Assump-
tion 2.1, the following statements hold.

(i)We have that φ( f ) > −∞.
(ii) There exists y ∈ R

m such that φ( f ) + 〈y,g〉 −π(y) ≥ f .
Hence, the infimum in (2.2) is attained when φ( f ) <∞.

(iii)We have the following superhedging duality result:

φ( f ) � sup
μ∈Q

∫
Ω

fdμ: (2.3)

Remark 2.5. No-arbitrage conditions and fundamental
theorems of asset pricing are essential tools to under-
stand and characterize the viability of a model in a
financial market. They must be tailored to the modeling
assumptions and the specific applications in mind;
hence, a multitude of comparable statements exist in
the literature. Analogously to our no-arbitrage condi-
tion, the fundamental theorem presented in Theorem
2.3 is closely related to the first fundamental theorem in
Bouchard and Nutz (2015). The main difference is the
presence of a bid–ask spread, which means that we
cannot exactly reduce our results to their theorem and
another proof is needed; this proof is motivated by the
results in Bouchard and Nutz (2015). There are several
other versions of a fundamental theorem in the pres-
ence of model uncertainty in the mathematical finance

literature (discrete time models: Bayraktar et al. 2014,
Acciaio et al. 2016, Bayraktar and Zhang 2016, Burzoni
et al. 2021; continuous time models: Dolinsky and
Soner 2014b, Biagini et al. 2017).

Let us point out that the fundamental theorem pre-
sented here plays a particular role in conjunction with
the numerical methods developed in the next section.
More specifically, it provides a sufficient condition for
the detection of arbitrage opportunities by numerically
testing the violation of the no-arbitrage condition.
Moreover, it provides a sufficient condition for repair-
ing derivative prices by removing arbitrage opportuni-
ties from the market, in the same spirit as Cohen et al.
(2020). These results are novel in the related literature
on multi-asset model-free price bounds and are facili-
tated by the tailor-made fundamental theorem.

Remark 2.6. Superhedging dualities are also classical
and essential tools in mathematical finance, typically
tailored to specific modeling assumptions and appli-
cations. The superhedging duality presented in Theo-
rem 2.4 is motivated by the superhedging theorem in
Bouchard and Nutz (2015), with the main difference
being once again that we are considering an interval
of bid and ask prices instead of a single price. There
are multiple comparable duality results or superhedg-
ing theorems in various areas of mathematics. In
the mathematical finance literature, these results are
known as superhedging theorems or (martingale) opti-
mal transport dualities (Beiglböck et al. 2013, Bayraktar
et al. 2014, Dolinsky and Soner 2014a, Acciaio et al.
2016, Cheridito et al. 2017). In the operations research
literature, these results are known as perfect or strong
dualities (Bertsimas and Popescu 2002, d’Aspremont
and El Ghaoui 2006, Nishihara et al. 2007, Peña et al.
2010b). These latter dualities are typically based on
classical results in mathematical programming (Karlin
and Studden 1966, Hettich and Kortanek 1993).

Let us point out that the superhedging duality (2.3)
is crucial when verifying the ε-optimality of a measure
in the numerical algorithms introduced in Section 3 (see
Theorem 3.7 and Corollary 3.8).

The canonical way to interpret the framework
developed earlier is as follows: when Ω � R

d
+, then

there exist d underlying risky assets that are traded in
the financial market, and Ω represents the (nonnega-
tive) prices of the assets at a fixed future date. Inves-
ting into a unit of the asset i then corresponds to the
payoff function g(x) ≡ proji(x) :� xi for x ∈ R

d
+. More-

over, there exist m traded derivatives (typically
m� d) with known bid and ask prices (πj,πj)j�1:m,
written either on single or on multiple assets. The pay-
off function gj of a single-asset derivative depends on
the price of only a single asset, that is, gj � g̃j◦proji for
some i ∈ {1, : : : ,m} and g̃j : R+ → R. For example, gj(x) �
(xi − κj)+ corresponds to a call option with strike κj. The
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payoff function gj of a multi-asset derivative depends on
the prices of multiple assets. For example, gj(x) � (〈w, x〉−
κj)+ corresponds to a basket call option with weight w
and strike κj. These derivatives encode all the informa-
tion available in this market. Specifically, information
about the marginals of the probability measures in Q
is implied by the bid and ask prices of single-asset
derivatives, whereas partial information on the joint
distribution is implied by the bid and ask prices of
multi-asset derivatives.

In this setting, the right-hand side of (2.3) is the
model-free upper bound for the price of a derivative
with payoff function f written on these d assets. The
optimization takes place over all probability measures
that are compatible with the option-implied informa-
tion, that is, all probability measures that produce pri-
ces for a given option within its respective bid and ask
prices. The duality result in (2.3) states that this
model-free upper bound equals the least superhedg-
ing price achieved by trading in the m derivatives
according to the strategy (c,y), that is, holding c units
of cash and yj units of derivative j for j � 1, : : : ,m,
where the minimization takes place over all (c,y) such
that the payoff f is dominated, that is, c+ 〈y,g〉 ≥ f .

Section EC.1 in the online appendices contains addi-
tional discussions about the duality result, including
Example EC.1.2 that demonstrates that the supremum
on the right-hand side of (2.3) is not necessarily
attained, as well as Proposition EC.1.3, which provides
a specific setting in which Assumption 2.1 holds.

3. Numerical Methods for the
Computation of Bounds

The superhedging duality in Theorem 2.4 allows
transformation of the abstract maximization problem
over probability measures into a more tractable mini-
mization problem over vectors that satisfy certain con-
straints. The aim of this section is to develop novel
numerical methods for the exact and efficient compu-
tation of upper and lower bounds on φ( f ). More
specifically, we will develop methods for the compu-
tation of upper and lower bounds φ( f )UB and φ( f )LB,
which are ε-optimal, that is,

φ( f )LB ≤ φ( f ) ≤ φ( f )UB and φ( f )UB −φ( f )LB ≤ ε,

for ε > 0. Our methods allow us to also characterize
the optimal pricing measure associated with the pri-
mal maximization problem. Therefore, we provide a
complete solution to both optimization problems, and
can characterize the solution both in terms of ε-opti-
mal hedging strategies and in terms of the optimal
pricing measure.

Let p :� (π1,: : : ,πm)T and p :� (π1,: : : ,πm)T. The mini-
mization problem φ( f ) in (2.2) can be equivalently

formulated as a linear semi-infinite programming
(LSIP) problem, that is, as an optimization problem
with a linear objective and an infinite number of linear
constraints, one for each ω ∈Ω,

φ( f ) �minimize c+ 〈y+,p〉 − 〈y−,p〉
subject to c+ 〈y+ − y−,g(ω)〉 ≥ f (ω) ∀ω ∈Ω,

c ∈ R, y+ ≥ 0, y− ≥ 0:

(3.1)

LSIP problems are classical optimization problems
that have been thoroughly studied in the related liter-
ature (Goberna and López 1998, 2018). More general
semi-infinite programming problems, including non-
linear semi-infinite programming problems and gener-
alized semi-infinite programming problems (where the
index set can depend on the decision variable), have
also been studied in the literature (Reemtsen and
Rückmann 1998, López and Still 2007, Stein 2012). In
this section, we develop novel algorithms tailored to
solving (3.1) under different assumptions on the space
Ω and the functions g and f.

Let us first introduce the notion of continuous piece-
wise affine (CPWA) functions and their radial functions.

Definition 3.1 (Continuous Piece-Wise Affine Function
and Its Radial Function). We call a function h : Rd → R

a CPWA function if it can be represented as

h(x) �∑K
k�1

ξkmax{〈ak,i,x〉 + bk,i : 1 ≤ i ≤ Ik}, (3.2)

where K ∈ N, Ik ∈ N for k � 1, : : : ,K, and ak,i ∈ R
d, bk,i ∈

R, ξk ∈ {−1, 1} for i � 1, : : : , Ik,k � 1, : : : ,K. The radial
function of h, denoted by h̃ : Rd

+ → R, is defined as

h̃(z) :�∑K
k�1

ξkmax 〈ak,i,z〉 : 1 ≤ i ≤ Ik
{ }

:

The class of CPWA functions contains many popular
payoff functions in finance, including vanilla call and
put options, basket options, spread options, call/put-
on-max options, call/put-on-min options, best-of-call
options, and so on. We refer the reader to Section
EC.2.1 in the online appendices for the CPWA repre-
sentations of these payoff functions and some proper-
ties of CPWA functions.

3.1. CPWA Payoff Functions on
Unbounded Domains

In the first setting, we work under the following
assumptions.

Assumption 3.2 (Setting 1).We assume the following:
(i) The spaceΩ is given byΩ � R

d
+;

(ii) The payoff functions f and (gj)j�1:m are CPWA func-
tions onΩ;

(iii) It holds that φ( f ) <∞ and φ(−f ) <∞.
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In the sequel, for notational reasons, we use x in
place of ω when Ω is a subset of the Euclidean space.
Let us introduce the notion of the slack function for
the LSIP problem in (3.1).

Definition 3.3 (Slack Function). Let y ∈ R
m be fixed,

and denote the slack function of the LSIP problem
in (3.1) by sy : Rd

+ → R, which is defined as sy(x) :�
〈y,g(x)〉 − f (x).
Algorithm 1 (Exterior Cutting Plane (ECP) Algorithm
(Under Assumption 3.2))

Input: p, p, (gj)j�1:m, f, X(0) ⊂ R
d
+, φ, x > 0, ε > 0,

τ > 0, 0 < δ ≤ 1
Output: φ( f )UB, φ( f )LB, c?, y?, X

1 Formulate the function s̃y(·) and use Algorithm 0
(see Section EC.2.2) to generate radial constraints,
denoted by a system of linear inequalities with
auxiliary variables σ̃.

2 Construct a system of linear inequalities σ that con-
tains all variables and inequalities in σ̃, additional
variables c ∈ R, y+ ≥ 0 and y− ≥ 0, and an addi-
tional equality y � y+ − y−.

3 Add the linear inequality c+ 〈y+,p〉 − 〈y−,p〉 ≥
φ− τ to σ.

4 r← 0.
5 repeat
6 for each x ∈ X(r) do
7 Add the linear inequality c+ 〈y+ − y−,g(x)〉 ≥

f (x) to σ.
8 Solve the linear programming (LP) problem:

φ(r) ← minimize c+ 〈y+, p〉 − 〈y−,p〉 subject to
linear constraints σ, and denote the computed
minimizer as (c(r),y+(r), y−(r)).

9 y(r) ← y+(r) − y−(r).
10 Formulate the global minimization problem:

min0≤x≤x sy(r) (x) into a mixed-integer linear pro-
gramming (MILP) problem (see (EC.2.8)).

11 s(r) ← c(r) +min0≤x≤x sy(r) (x) (solve the MILP
problem via the BnB algorithm).

12 X(r+1) ← {x : (x, (λk), (ζk), (δk,i), (ιk,i)) is an integer
feasible solution found by the BnB algorithm
while solving the MILP problem such that c(r)+
sy(r) (x) ≤ δs(r)}.

13 r← r+ 1.
until s(r−1) ≥ −ε;

14 φ( f )LB← φ(r−1), φ( f )UB ← φ(r−1) − s(r−1), c?← c(r−1)

− s(r−1), y? ← y(r−1), X← ⋃ r−1
l�0X

(l).
15 if φ( f )UB < φ then
16 return the problem (3.1) is unbounded.
17 else
18 return φ( f )UB, φ( f )LB, c?, y?,X.
To numerically solve the LSIP problem (3.1), let

us now introduce the cutting plane discretization
method, detailed in Algorithm 1, which is inspired by

the conceptual algorithm 11.4.1 in Goberna and López
(1998). In Line 1 of Algorithm 1, the so-called “radial
constraints” are generated using Algorithm 0 in Sec-
tion EC.2.2 of the online appendices. The purpose of
this step is to generate sufficient and necessary con-
straints on y to guarantee that the slack function sy(·)
is bounded from below. We refer the reader to Section
EC.2.2 for a detailed explanation about this step. In
Lines 10 and 11, the global minimization problem
min0≤x≤x sy(r) (x) is solved by formulating it into a
mixed-integer linear programming (MILP) problem in
(EC.2.8), as discussed in Lemma EC.2.8. The MILP
problem can be solved efficiently by state-of-the-art
solvers such as Gurobi (Gurobi Optimization 2020)
that uses the so-called branch-and-bound (BnB) algo-
rithm. We refer the reader to Remark EC.2.9 for a brief
description of the BnB algorithm.

We name Algorithm 1 the ECP method because
every constraint (also known as cut) generated in Line
7 does not restrict the feasible set of (3.1) and hence is
exterior to the feasible set. We refer the reader to Sec-
tion EC.2.2 for detailed discussions about various
aspects of Algorithm 1. Specifically, Remark EC.2.10
explains the inputs of Algorithm 1, and Remark
EC.2.11 discusses the differences between Algorithm 1
and the conceptual algorithm 11.4.1 in Goberna and
López (1998). Under the assumption that the inputs
of Algorithm 1 are specified according to Remark
EC.2.10, Theorem 3.4 shows the properties of Algo-
rithm 1, whose proof is provided in Appendix A.1.

Theorem 3.4 (Properties of Algorithm 1). Let Assump-
tion 3.2 hold. Assume that x and φ are specified as stated in
Remark EC.2.10. Then, the following statements hold.

(i) If Assumption 2.1 holds, thenφ(r) is nondecreasing in r. At
any stage of Algorithm 1, s(r) ≤ 0 andφ(r) ≤ φ( f ) ≤ φ(r) − s(r).

(ii) If Assumption 2.1 holds, then Algorithm 1 terminates
after finitely many iterations with an ε-optimal solution
(c?,y?) of (2.2) and φ( f )LB ≤ φ( f ) ≤ φ( f )UB with φ( f )UB−
φ( f )LB ≤ ε.

(iii) If Line 16 of Algorithm 1 is reached, then Assumption
2.1 is violated, and Problem (3.1) is unbounded.

Remark 3.5. In Section 3.2, under the more restrictive
assumption that Ω � {x ∈ R

d : 0 ≤ x ≤ x} for some x > 01

(see Assumption 3.6), we show that Algorithm 1 also
produces an ε-optimal solution to the right-hand side of
(2.3), which corresponds to the most extreme pricing
measure in the original model-free superhedging prob-
lem. This will be explained in detail in Corollary 3.8.

3.2. CPWA Payoff Functions on
Bounded Domains

In the second setting, we adopt similar but more
restrictive assumptions than in the first one.
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Assumption 3.6 (Setting 2).We assume the following:

(i) The space Ω is given by Ω � {x ∈ R
d : 0 ≤ x ≤ x} for

x � (x1,: : : , xd)T > 0;
(ii) The payoff functions f and (gj)j�1:m are CPWA func-

tions onΩ;
(iii) It holds that φ( f ) <∞ and φ(−f ) <∞.

Algorithm 2 (Accelerated Central Cutting Plane (ACCP)
Algorithm (Under Assumption 3.6))

Input: p,p, (gj)j�1:m, f, X(0) ⊂Ω, x, φ, φ, c?(0), y?(0),
c > 0, y > 0, ε > 0, τ > ε, 0 ≤ γ < 1, 0 < ζ < 1, 0 < δ ≤ 1
Output: φ( f )UB, φ( f )LB, c?, y?, c†, y†, X†, X

1 r← 0, φ(0) ← φ− τ, φ(0) ← φ, flag← false.
2 Mark all elements ofX(0) as active and removable.
3while φ(r) −φ(r) > ε

4 r← r+1, φ(r)← φ(r−1), φ(r)← φ(r−1),φ(r)←
φ (r)+φ(r)

2 , c?(r) ← c?(r−1), y?(r) ← y?(r−1).
5 if flag is true then
6 φ(r) ← (φ(r) +φ(r))=2.
7 X← ⋃

0≤l≤r−1{x ∈ X(l) : x is marked active}.
8 Compute the Chebyshev center of σ(c,y,φ(r),

φ(r),X) by solving an LP problem.
9 if the LP problem in Line 8 is infeasible then

10 φ(r) ←min{c+ 〈y+,p〉 − 〈y−,p〉 : (c,y+,y−)
satisfies σ(c,y, −∞,∞,X)} (which is an
LP problem). Let (c†,y+†,y−†) be a mini-
mizer of this LP problem.

11 y† ← y+† − y−†, X† ← X.
12 Mark all elements of

⋃
1≤l≤r−1X(r) as

removable.
13 ρ(r) ← −1, X(r) ← ∅.
14 Skip to the next iteration.
15 Let (c(r),y+(r),y−(r)) be the Chebyshev center

and let ρ(r) be the radius of the largest
inscribed ball of σ(c,y,φ(r),φ(r),X).

16 y(r) ← y+(r) − y−(r).
17 Formulate the global minimization problem:

minimize c(r) + sy(r) (x) subject to 0 ≤ x ≤ x into
an MILP problem (see (EC.2.8)). Solve it with
relative gap tolerance ζ. Let s(r) be its approx-
imate optimal value. Let s(r) be its lower
bound at termination.

18 X(r) ← {x : (x, (λk), (ζk), (δk,i), (ιk,i)) is an inte-
ger feasible solution found by the BnB algo-
rithm while solving (EC.2.8) such that c(r)+
sy(r) (x) ≤ δs(r)}. Mark all elements of X(r) as
active and removable.

19 if c(r) +π(y(r)) − s(r) < φ(r) − ε then
20 φ(r) ← c(r) +π(y(r)) − s(r), c?(r) ← c(r) − s(r),

y?(r) ← y(r).
21 if s(r) ≥ 0 then
22 Mark all elements of

⋃
1≤l≤rX(l) as

removable.
23 Skip to the next iteration (Line 3).
24 if flag is true then

25 flag← false.
26 Mark all elements of X(r) as nonremovable,

and skip to the next iteration (Line 3).
27 flag← true.
28 for each 0 ≤ l ≤ r such that ρ(r) < γρ(l) do
29 for each x ∈ X(l) marked as removable do
30 if c(r) + 〈y(r),g(x)〉 − (1+ ||g(x)||22)

1
2ρ(r) >

f (x) then
31 Set x as inactive.

32 φ( f )UB ← φ(r), φ( f )LB ← φ(r), c? ← c?(r), y? ← y?(r),
X← ⋃

0≤l≤r{x ∈ X(l) : x is marked active}.
33 if φ( f )UB < φ then
34 return the problem (3.1) is unbounded.
35 else
36 return φ( f )UB, φ( f )LB, c?, y?, c†, y†, X†,X.

Let us introduce a version of the ACCP method
inspired by Betrò (2004), detailed in Algorithm 2. In
Algorithm 2, we maintain and update a sequence of
lower bounds (φ (r))r≥0 of φ( f ), a sequence of upper

bounds (φ(r))r≥0 of φ( f ), and polytopes in R
2m+1 that

are denoted by σ(c,y,φ(r),φ(r),X), which have the form

σ(c,y,φ(r),φ(r),X)
:� {(c,y+,y−) : |c| ≤ c, 0 ≤ y+ ≤ y, 0 ≤ y− ≤ y,

φ(r) ≤ c+ 〈y+,p〉 − 〈y−,p〉 ≤ φ(r),

c+ 〈y+ − y−,g(x)〉 ≥ f (x), ∀x ∈ X}, (3.3)

where c, y specify a bounding box, φ(r) and φ(r) spec-
ify the lower and upper bounds on c+π(y+ − y−), and
X ⊂Ω specifies a collection of feasibility constraints.
In Algorithm 2, φ(r) is between the lower bound φ(r)

and the upper bound φ(r) and is used as a speculative
upper objective cut. The idea of Algorithm 2 is that
(φ (r))r≥0 is a nondecreasing sequence of lower bounds

that approaches φ( f ) from below, whereas (φ(r))r≥0 is
a nonincreasing sequence of upper bounds that
approaches φ( f ) from above. These facts will be made
clear later in Theorem 3.7. Algorithm 2 has various
advantages over Algorithm 1. Most importantly, the
MILP problem in Line 17 of Algorithm 2 only needs to
be solved approximately with a large error tolerance,
and some linear constraints are removed in Line 31 to
make solving the LP problem in Line 8 faster. We refer
the reader to Betrò (2004) and section 11.4 of Goberna
and López (1998) for further discussions.

A crucial step of Algorithm 2 is to compute the Che-
byshev center, that is, the center of the largest
inscribed ball, of the polytope σ(c,y,φ(r),φ(r),X) in
Line 8. It is well known that the Chebyshev center of a
polytope can be computed by solving an LP problem
(e.g., the problem (Qr) before the conceptual algorithm
11.4.2 of Goberna and López 1998).
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We refer the reader to Section EC.2.3 for detailed dis-
cussions about various aspects of Algorithm 2. Specifi-
cally, Remark EC.2.13 explains its inputs, and Remark
EC.2.14 discusses the differences between Algorithm
2 and the ACCP algorithm by Betrò (2004). Assum-
ing that the inputs of Algorithm 2 are specified
according to Remark EC.2.13, Theorem 3.7 shows
the properties of Algorithm 2, whose proof is pro-
vided in Appendix A.2.

Theorem 3.7 (Properties of Algorithm 2). Let Assump-
tion 3.6 hold. Assume that φ, φ, c?(0), y?(0), c, y are
specified as stated in Remark EC.2.13. Then, the following
statements hold.

(i) If Assumption 2.1 holds, then φ(r) is nondecreasing in
r, φ(r) is nonincreasing in r. Moreover, at any stage of Algo-
rithm 2, φ(r) ≤ φ( f ) ≤ φ(r), and c?(r) + 〈y?(r),g〉 ≥ f holds.

(ii) If Assumption 2.1 holds, then Algorithm 2 terminates
after finitely many iterations with an ε-optimal solution
(c?,y?) of (2.2) and φ( f )LB ≤ φ( f ) ≤ φ( f )UB with φ( f )UB−
φ( f )LB ≤ ε.

(iii) If Assumption 2.1 holds, then c†, y† and X† are defined
when Algorithm 2 terminates. If |c†| < c and −y < y† < y,
then the following LP problem with decision variables (μx)x∈X† :

maximize
∑
x∈X†

μx f (x)

subject to
∑
x∈X†

μx � 1, p ≤ ∑
x∈X†

μxg(x) ≤ p,

μx ≥ 0 ∀x ∈ X† (3.4)

has an optimal solution (μ?
x)x∈X† . Let μ? be a finitely sup-

ported measure defined by μ? :�∑
x∈X†μ?

xδx. Then, μ
? is

ε-optimal for the right-hand side of (2.3).
(iv) If Line 34 of Algorithm 2 is reached, then Assumption

2.1 is violated, and Problem (3.1) is unbounded.

Theorem 3.7(iii) explicitly provides a pricing measure
that is an ε-optimal solution to the original model-free
superhedging problem. The ECP method (Algorithm 1)
is also applicable in Setting 2 with Line 1 removed. It has
the same property as Theorem 3.7(iii), which is detailed
in the next corollary and proved in Appendix A.2.

Corollary 3.8. Under Assumption 2.1 and Assumption
3.6, Algorithm 1 (with Line 1 removed) terminates after
finitely many iterations, and the following LP problem with
decision variables (μx)x∈X:

maximize
∑
x∈X

μxf (x)

subject to
∑
x∈X

μx � 1, p ≤∑
x∈X

μxg(x) ≤ p,

μx ≥ 0 ∀x ∈ X (3.5)

has an optimal solution (μ?
x)x∈X. Define the finitely sup-

ported measure μ? by μ? :�∑
x∈Xμ?

xδx. Then, μ? is
ε-optimal for the right-hand side of (2.3).

Remark 3.9. Under Assumptions 3.2 and 3.6, the
payoff functions of the traded derivatives and the tar-
get derivative f must be CPWA functions. Thus, the
proposed Algorithms 1 and 2 are unable to directly
treat derivatives with non-CPWA payoff functions,
such as digital and power options. Hence, it would be
necessary to first approximate these payoff functions
by CPWA functions to treat such derivatives using the
proposed algorithms. Existing studies have proposed
methods to treat non-CPWA payoff functions under
more restrictive assumptions. Bertsimas and Popescu
(2002) develop a method to compute the price bounds
on a single vanilla call option given moments of the
underlying asset price. Moreover, in the multi-asset
setting, they show that the theoretical time complexity
to compute the price bounds is polynomial when all
payoff functions are the sum of a CPWA function and
a quadratic function, under the assumption that all of
the CPWA functions share the same partition of Rd and
that the number of polyhedra in the partition is polyno-
mial in the number of assets and the number of traded
derivatives. However, this assumption is rather restric-
tive because the presence of a fixed number of traded
vanilla options written on each asset incurs a partition
of Rd in which the number of polyhedra is exponential
in the number of assets. In Daum and Werner (2011), a
method is developed to compute the price bounds on a
basket call option given the prices of vanilla call and
put options and the prices of single-asset digital and
power options. In this setting, because of the structure
of the basket call option, the global optimization prob-
lem associated with the LSIP problem can be reduced to a
sequence of one-dimensional global optimization prob-
lems that can then be efficiently solved.

On the computational side, our assumption that all
derivatives have CPWA payoff functions makes it
possible to formulate the global minimization prob-
lem associated with the LSIP problem (3.1) into an
MILP problem, which then allows us to efficiently
solve the LSIP problem in high-dimensional situations
(e.g., when d � 60) using state-of-the-art solvers. On
the practical side, the exclusion of derivatives with
non-CPWA payoff functions does not harm the
applicability of the methods we have developed
because most relevant financial derivatives have
CPWA payoff functions (see Example EC.2.1). Let us
point out that many trading platforms of digital
options are unregulated, some adopt ethically ques-
tionable practices, whereas the involved risk is any-
how difficult to manage and hedge. Because of these,
the trading of digital options has been banned in
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many countries including Australia,2 Canada,3 Israel,4

and all European Union (EU) countries.5 Power
options, on the other hand, are conceptual financial
derivatives that are not traded in real markets.

Remark 3.10. Algorithms 1 and 2 both solve a
sequence of constrained optimization problems which
are relaxations of the LSIP problem (3.1), where the
semi-infinite constraint is reduced to finitely many con-
straints. This approach is known as the discretization
method. Instead of enforcing these constraints strictly,
there is an alternative discretization method in which
the constraints are replaced by penalty functions (Coope
and Price 1998, Auslender et al. 2009). In this method, a
sequence of unconstrained optimization problems is
solved. We refer the reader to Auslender et al. (2015) for
a comparison of different variants of this method.
Another approach that is based on penalization is the
integral-type penalization method (Borwein and Lewis
1991a, b; Lin et al. 1998; Auslender et al. 2009). This
approach transforms the original LSIP problem into an
unconstrained convex optimization problem with an
integral-type penalty term, which can be subsequently
solved by the stochastic (sub)gradient descent (SGD)
algorithm. This is similar to a recent approach
adopted for solving optimal transport, martingale
optimal transport, and related problems (De Gennaro
Aquino and Bernard 2020; Eckstein et al. 2020, 2021;
Eckstein and Kupper 2021). We have empirically
tested the integral-type penalization plus SGD approach
in our problem and found that it is unstable and
highly sensitive to the initialization and the hyper-
parameter settings of the SGD algorithm.

4. Numerical Experiments and Results
In this section, we perform three experiments using
synthetically generated derivative prices and one
experiment using real market data (i) to demonstrate
the performance of the proposed approaches under
these settings, (ii) to quantify the effect of the addi-
tional information from traded multi-asset options
on the width of the no-arbitrage gap, that is, the dif-
ference between the upper and lower model-free bounds,
and (iii) to show that the proposed algorithms are
capable of detecting arbitrage opportunities in a finan-
cial market.

We refer the reader to Section EC.2.4 in the online
appendices for details about the implementation of the
proposed numerical algorithms. The code used in this
work is available on GitHub.6 In the subsequent numeri-
cal experiments, we consider financial derivatives with
the following CPWA payoff functions, whose represen-
tations are discussed in Example EC.2.1.

(i) Trading in the ith asset: g(x) � xi.
(ii) Vanilla call option on the ith asset with strike

κ > 0: g(x) � (xi − κ)+.

(iii) Basket call option with weights w ∈ R
d
+ and

strike κ > 0: g(x) � ∑
i wixi − κ( )+.

(iv) Spread call option with weights w ∈ R
d\Rd

+ (e.g.,
w � ei − ej) and strike κ ∈ R, e.g., g(x) � (xi − xj − κ)+.

(v) Call-on-max (rainbow) option on assets i1, : : : , il
with strike κ ≥ 0: g(x) � [(xi1� xi2� : : :� xil) − κ]+.

(vi) Call-on-min (rainbow) option of assets i1, : : : , il
with strike κ ≥ 0: g(x) � [(xi1 �xi2 � : : : � xil) − κ]+.

(vii) Best-of-calls option of assets i1, : : : , il with strikes
κ1, : : : ,κl ≥ 0: g(x) � (xi1 − κ1)+�(xi2 − κ2)+�: : :�(xil − κl)+.

Moreover, in the numerical experiments with syn-
thetically generated prices, we consider market mod-
els of the following type:

• The marginal distribution of the price of an asset at
terminal time is a log-normal distribution. Under Set-
ting 2, the ith marginal distribution is truncated to
[0,xi] for i � 1, : : : ,d.

• The dependence structure among the marginals of
the d assets at terminal time is a t-copula with a positive
definite correlationmatrix C and ν degrees of freedom.

Given these market models, the prices of the single-
asset derivatives listed previously can be computed in
closed-form by taking the discounted expectations of the
corresponding payoff functions (with respect to a pricing
measure). We have assumed that the interest rate is
equal to zero for the sake of simplicity. For the multi-
asset derivatives listed previously, we approximate their
prices via Monte Carlo integration by randomly generat-
ing one million independent samples from the copula
model and subsequently using these samples to approxi-
mate the expectations of the payoff functions. The mar-
kets models are also used to compute reference prices for
the target derivatives (with payoff f ). However, they are
not used in the computation of the model-free bounds.
In the computation of the bounds, the only information
used are the prices of single- and multi-asset derivatives
that are synthetically generated from these market mod-
els. To simulate an incomplete market with the presence
of bid–ask spread, we specify multiple market models
with different parameters and subsequently take the
minimum (respectively, maximum) price of a derivative
among its prices under all models as the bid (respec-
tively, ask) price of the derivative.

Under the market models described previously, the
pricing measure μ̂ has strictly positive density with
respect to the Lebesgue measure on Ω. Moreover, the
way the prices of derivatives are generated guarantees
that μ̂ ∈Q. Therefore, Assumption 2.1 holds by Propo-
sition EC.1.3.

4.1. Experiment 1
In this experiment, we consider a financial market
with five assets (d � 5). We consider Setting 2 (i.e.,
Assumption 3.6), where Ω � [0, 100]5. Our goal is to
compute the model-free lower and upper price
bounds for a call-on-max option with payoff function
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f (x) � (x2�x3�x4 − κ)+, where the strike price κ ranges
from 0 to 10 with an increment of 0.2. We assume that
a total of 439 financial derivatives are traded in the
market (m � 439). These include the following:

• The five assets x1,x2,x3,x4,x5.
• Vanilla call options on the five assets with strikes

1, 2, : : : , 10.
• Basket call options with the following weights and

strikes 1, 2, : : : , 10: 1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5

( )T
, 1

4 ,
1
4 ,

1
4 ,

1
4 ,0

( )T
, 1

4 ,
1
4 ,

1
4 ,0,

1
4

( )T
,

1
4 ,

1
4 ,0,

1
4 ,

1
4

( )T
, 1

4 ,0,
1
4 ,

1
4 ,

1
4

( )T
, 0, 14 ,

1
4 ,

1
4 ,

1
4

( )T
, 1

3 ,
1
3 ,

1
3 ,0,0

( )T
,

0, 13 ,
1
3 ,

1
3 ,0

( )T
, 0,0, 13 ,

1
3 ,

1
3

( )T
, 0, 12 ,

1
2 ,0,0

( )T
, 0, 12 ,0,

1
2 ,0

( )T
,

0,0, 12 ,
1
2 ,0

( )T
.

• Spread call options with the following weights and
strikes −5, − 4, : : : , 0, 1, : : : , 5: e1 − e2, e1 − e3, e1 − e4,
e2 − e3, e2 − e4, e2 − e5, e3 − e4, e3 − e5, e4 − e5, e2 − e1,
e3 − e1, e4 − e1, e3 − e2, e4 − e2, e5 − e2, e4 − e3, e5 − e3,
e5 − e4.

• Call-on-max (rainbow) options on the following 6
groups of assets and strikes 0, 1, : : : , 10: {x1,x2,x3,x4,x5},
{x1,x2,x3,x4}, {x2,x3,x4,x5}, {x2,x3}, {x2,x4}, {x3,x4}.

The bid and ask prices of the assets and derivatives
are synthetically generated from the market models
specified in Section EC.3.1. We consider five cases,
where we use certain subsets of the traded derivatives
to compute the model-free lower and upper price
bounds for the target derivative:

Case 1 (denoted asV): we use only vanilla options;
Case 2 (V+B): we use vanilla and basket options;
Case 3 (V+B+S): we use vanilla, basket, and spread

options;
Case 4 (V+B+S+R): we use vanilla, basket, spread

and call-on-max (rainbow) options;
Case 5 (V+R): we use vanilla and call-on-max options.
We compute the lower and upper bounds of the

call-on-max option with payoff function f using the
ECP method (Algorithm 1 with Line 1 removed) and
the ACCP method (Algorithm 2). The inputs of the
two algorithms for this experiment are specified in
Section EC.3.1.

Figure 1 shows the computed lower and upper
price bounds of the call-on-max option with different
strikes, along with their reference bid and ask prices.
Let us point out that the price bounds computed by

Figure 1. (Color online) Experiment 1: Model-Free Lower and Upper Price Bounds of Call-on-Max Options with Strikes
Between 0 and 10

0 1 2 3 4 5 6 7 8 9 10

strike

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

pr
ic

e

ECP

reference bid price
reference ask price
LB (V)
UB (V)
LB (V+B)
UB (V+B)
LB (V+B+S)
UB (V+B+S)
LB (V+B+S+R)
UB (V+B+S+R)

0 1 2 3 4 5 6 7 8 9 10

strike

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

pr
ic

e

ACCP

reference bid price
reference ask price
LB (V)
UB (V)
LB (V+B)
UB (V+B)
LB (V+B+S)
UB (V+B+S)
LB (V+B+S+R)
UB (V+B+S+R)

2.8 3 3.2 3.4 3.6 3.8 4 4.2

strike

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

pr
ic

e

Magnified

reference bid price
reference ask price
LB (V)
UB (V)
LB (V+B)
UB (V+B)
LB (V+B+S)
UB (V+B+S)
LB (V+B+S+R)
UB (V+B+S+R)

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

strike

1

1.5

2

2.5

3

3.5

pr
ic

e

With Case V+R

reference bid price
reference ask price
LB (V)
UB (V)
LB (V+B)
UB (V+B)

LB (V+B+S)
UB (V+B+S)
LB (V+B+S+R)
UB (V+B+S+R)
LB (V+R)
UB (V+R)

Notes. (Bottom left) Magnified version of a part of the top right. (Bottom right) Magnified version of a part of the top right with the Case V+R
included.
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the two algorithms are almost identical. Indeed, we
have checked that all the absolute differences between
the bounds computed by the two algorithms are
below ε � 0:001. This is a consequence of Theorem
3.4(ii) and Theorem 3.7(ii) and confirms the correct-
ness of the computed price bounds.

The following observations ensue from the price
bounds computed in this example (Figure 1). (i) The
price bounds in Cases 1–4 are distinct, and the gap
between the lower and upper bounds shrinks when
the prices of more traded derivatives are added. This
means that observing the market prices of more traded
derivatives substantially restricts the class of possible
pricing measures Q and reduces the no-arbitrage gap
between the bounds. On the dual side (2.2), this can be
equivalently interpreted as having the information
about more traded derivatives provides more ways to
subreplicate and superreplicate the given payoff func-
tion and thus makes the gap between the subreplica-
tion price and the superreplication price smaller. (ii)
The addition of rainbow options (R) in Case 4 results
in a significant reduction of the no-arbitrage gap. For
example, in Case 4, when the strike is 3.2, the upper
bound is 2.07% higher than the reference ask price and
the lower bound is 7.88% lower than the reference bid
price. The respective percentages in Case 3 are 15.09%
and 26.39% for the upper and lower bounds. The rea-
son is that the traded call-on-max options provide
more information to determine the price of the target
derivative because they are similar in structure to the tar-
get derivative. This becomes concrete when one considers
the dual optimization problem (2.2), where these call-on-
max options offer direct ways to subreplicate and super-
replicate the target payoff, for example, (x2�x3 − κ)+
≤ (x2�x3�x4 − κ)+ ≤ (x1�x2�x3�x4 − κ)+. (iii) Conversely,
the addition of spread options (Case 3) to vanilla and
basket options (Case 2) only yields a significant
improvement to the bounds for small strikes (≤ 4),
because spread options with large strikes are not
traded in the market. (iv) In all cases, we observe that
the no-arbitrage gap is significantly smaller for the
(integer) strikes, where traded derivative prices are
present. In the bottom left panel of Figure 1, for exam-
ple, the upper bounds in Case V+B+S+R almost
touches the reference ask prices at strikes 3 and 4,
being only 0.47% and 0.30% higher than the respective
reference ask prices, whereas for the lower bound, the
gap is very small at the same strikes, being 3.67% and
1.82% lower than the respective reference bid prices.
Conversely, for the intermediate strikes between 3 and
4, for example, when the strike is 3.4, the gap grows to
3.05% for the upper bound and to 13.42% for the lower
bound. This is because all the traded options in the
synthetic financial market have integer strike prices. In
the dual optimization problem (2.2), one needs to
interpolate traded options with integer strike prices to

subreplicate and superreplicate the call-on-max option
with noninteger strike prices. Therefore, whenever
possible, practitioners should include in the sub- and
superreplicating portfolios derivatives with the same
strike price as that of the target derivative to reduce
the no-arbitrage gap. (v) As observed from the bottom
right panel of Figure 1, the upper bounds in Case 5
(V+R) coincide with the upper bounds in Case 4,
whereas the lower bounds in Case 5 coincide with
Case 3 for strikes between 0 and 1.8, coincide with
Case 4 for strikes between 2.6 and 10, and fall
between Case 3 and Case 4 for strikes between 2 and
2.4. This shows that, although the inclusion of more
derivatives produces tighter bounds than fewer deriv-
atives, derivatives with similar payoff structure pro-
vide more improvement than other derivatives.
Therefore, because the computation of price bounds is
faster when fewer derivatives are included in the sub-
and superreplicating portfolios, practitioners should
prioritize including derivatives with payoff structure
similar to that of the target derivative when the com-
putation time is limited.

4.2. Experiment 2
In this experiment, we consider a financial market
with 60 assets (d � 60). We consider Setting 2 (i.e.,
Assumption 3.6) where Ω � [0,100]60. We use Algo-
rithms 1 and 2 to compute the model-free lower and
upper price bounds for a call-on-min option on the
first 50 of 60 assets, with the strike price ranging
from zero to one, with an increment of 0.1. The pur-
pose of this experiment is to demonstrate that Algo-
rithms 1 and 2 work even when the number of assets
is large.

A total of 400 financial derivatives are traded in the
market (m � 400). These financial derivatives include
the following: the 60 assets, 180 vanilla call options
(V), three basket call options (B), 147 spread call
options (S), and 10 call-on-min options (R). The bid
and ask prices of the assets and derivatives are syn-
thetically generated using the market models speci-
fied in Section EC.3.2. For simplicity, we only consider
Cases V+B+S and V+B+S+R in this experiment. The
inputs of the two algorithms for this experiment are
detailed in Section EC.3.2.

Figure 2 shows the computed lower and upper
price bounds for the call-on-min option with different
strikes, along with the reference bid and ask prices.
Once again, the price bounds computed by the two
algorithms are almost identical, and we checked that
all the absolute differences between the bounds com-
puted by the two algorithms are below ε � 0:001. The
following observations ensue from this example,
which are mostly in line with the observations from
the previous one. (i) The price bounds in the two cases
are distinct, and the addition of more information
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improves the bounds and reduces the no-arbitrage
gap. (ii) The addition of traded prices of call-on-min
options results in a significant improvement of the
bounds because the payoffs used for sub- and super-
replicating and the target payoff are of the same type.
(iii) However, in this high-dimensional example, we
notice that the lower price bounds in Case V+B+S are
identically zero, showing that the traded vanilla,
basket, and spread options do not provide enough
information for a nontrivial lower price bound of the
call-on-min options and that it is not possible to sub-
replicate the payoff of a call-on-min option with
these traded options. Therefore, we conclude once
again that, whenever possible, practitioners should
include in their sub- and superreplicating portfolios
not only as many derivatives as possible but also
as many derivatives with similar payoff structure
as possible.

Table 1 shows the total number of LP and MILP
problems solved throughout this experiment by the
two algorithms. The ACCP algorithm achieved con-
vergence faster than the ECP algorithm in this experi-
ment. Moreover, in the ACCP algorithm, the MILP
problems were only approximately solved with rela-
tive gap tolerance ζ � 0:8, as explained in Remark
EC.2.13. As a result, the ACCP algorithm was much
faster than the ECP algorithm in this experiment.

4.3. Experiment 3
In this experiment, we want to demonstrate how the
fundamental theorem can be combined with the numeri-
cal algorithms developed to detect arbitrage opportuni-
ties in the financial market. We consider the case where
the no-arbitrage assumption (Assumption 2.1) does not

hold and use Algorithm 2 to detect the presence of arbi-
trage opportunities in the market. We can actually detect
a very delicate form of arbitrage because we consider a
financial market with several single-asset options and
two multi-asset options; the multi-asset options are
priced within their own no-arbitrage intervals, that is,
when considered separately from each, there is no arbi-
trage in the market. However, when they are considered
together, an arbitrage opportunity arises, and this is
detected by the numerical algorithm. This experiment is
inspired by similar examples in (Tavin 2015, section 4)
and (Papapantoleon and Yanez Sarmiento 2021, section
5.2); in their setting, the marginals of the pricing measure
are given.

We consider Setting 2 (Assumption 3.6) where
Ω � [0, 100]5, and consider the five assets x1, x2, x3, x4,
and x5 and vanilla call options on the five assets with
strikes 1, 2, : : : , 10 as the traded financial derivatives.
In addition, we include a call-on-min option on the five
assets with strike 1 and a put-on-min option on the
five assets with strike 4. The bid and ask prices of the
single-asset derivatives are synthetically generated using
the method specified at the beginning of Section 4.

We set the bid and ask prices of the call-on-min
option as 0.83 and 0.85, respectively. As for the put-
on-min option, we set its bid and ask prices as 3.18
and 3.20, respectively. Subsequently, we let f � 0 and
run Algorithm 2 with ε � 0:001, τ�1, γ � 0:1, ζ � 0:8,
δ � 0:7, c � 100, y � 100 · 1, φ � φ � 0. When only the
call-on-min option is considered a traded multi-
asset option, Algorithm 2 terminates without reach-
ing Line 34, and the outputs satisfy φ( f )LB > −0:001,
φ( f )UB � 0. Similarly, when only the put-on-min op-
tion is considered as traded multi-asset option, Algo-
rithm 2 terminates without reaching Line 34, and
the outputs again satisfy φ( f )LB > −0:001, φ( f )UB � 0.
These numerical results imply that there is no arbitrage
opportunity in the market with the single-asset deriva-
tives and the call-on-min option, as well as in the market
with the single-asset derivatives and the put-on-min
option. However, when the single-asset derivatives
together with both the call-on-min option and the
put-on-min option are considered as traded options,

Figure 2. (Color online) Experiment 2: Model-Free Lower and Upper Price Bounds for a Call-on-Min Option with Strikes
Between Zero and One
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Table 1. Experiment 2: Total Number of LP and MILP
Problems Solved by the Two Algorithms

Algorithm Problem V+B+S V+B+S+R
ECP LP 4,789 3,339

MILP 4,789 3,339
ACCP LP 1,639 1,714

MILP 1,461 1,574
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Algorithm 2 reaches Line 34 before termination, indicat-
ing the violation of Assumption 2.1 and the presence of
an arbitrage opportunity, as stated by Theorem 3.7(iv).
The detected arbitrage strategy is given by c? and y?,
which specify a portfolio with nonnegative payoff such
that c? +π(y) < 0.

In Experiment 4 (see Section 4.4), a similar proce-
dure for detecting arbitrage opportunities using Algo-
rithm 1 is applied to Setting 1 (Assumption 3.2) where
bid and ask prices of traded derivatives are obtained
from real market data. This demonstrates the real-
world applicability of the proposed algorithms for
arbitrage detection.

4.4. Experiment 4
In this experiment, we use real market prices of Euro-
pean call and put options written on the Dow Jones
Industrial Average (DJIA) index and European call
and put options written on the 30 constituent stocks
of the DJIA index. This type of market data has been
considered by Hobson et al. (2005b), d’Aspremont
and El Ghaoui (2006), and Peña et al. (2010b, 2012) for
illustration.

4.4.1. Data Collection. The following market prices
(corresponding to the closing prices on April 5, 2021,
at 1600 hours EDT) were collected from Market-
Watch7 on April 6, 2021.

• The prices of the 30 constituent stocks of the DJIA.
• The bid and ask prices of the call and put options

written on the 30 constituent stocks of the DJIA with
expiration date May 21, 2021.

• The bid and ask prices of the call and put options
written on the SPDRDow Jones Industrial Average ETF
Trust (symbol: DIA), which is an exchange traded fund
(ETF) that tracks the DJIA index. These DIA options are
regarded as basket options written on the 30 constituent
stocks with equal weights wDIA :� 0:0658. The weight
wDIA is equal to 1

100 of the inverse of the Dow divisor8

calculated based on the stock prices on April 5, 2021.

Remark 4.1. Although Experiments 1 and 2 have
demonstrated that one should gather the market pri-
ces of as many derivatives as possible to obtain tight
price bounds, exotic options such as spread options,
call-on-max options, and call-on-min options are usu-
ally only traded in over-the-counter (OTC) markets.
Therefore, the prices of these exotic options are not
publicly available, and we are thus unable to collect
real market data of this type.

4.4.2. Data Preprocessing. We apply a procedure
using Algorithm 1 to detect whether arbitrage opportu-
nities are present with the bid and ask prices of call and
put options written on each of the stocks and on DIA,
similar to Experiment 3. We found that the prices of

DIA options are arbitrage-free, whereas arbitrage
opportunities are present among the prices of options
written on 5 of the 30 underlying stocks. Before pro-
ceeding to the next step of the experiment, we adjust
the bid and ask prices slightly to remove these arbi-
trage opportunities. In this process, the l1-norm of the
price adjustment is minimized to encourage sparsity
in the same spirit as Cohen et al. (2020). We refer the
reader to Section EC.3.3 in the online appendices for
details of this arbitrage removal process. After this
process, 27 of the 4,304 prices have been adjusted, and
the largest change (in absolute value) is $0.38. This
shows that only very few options were mis-priced, and
the market was close to being arbitrage-free.

4.4.3. Experimental Setting. We consider Setting 1
(Assumption 3.2) and let Ω � R

30
+ . We rank the 30 con-

stituent stocks of the DJIA index based on the market
capitalization of the respective companies; that is, in
(x1,: : : , x30)T ∈Ω, x1 corresponds to the stock price of
the company with the highest market capitalization,
and x30 corresponds to the stock price of the company
with the lowest market capitalization. Our goal is to
use Algorithm 1 to compute the model-free lower and
upper price bounds of two basket call options with
the following payoff functions:

f1(x) �
∑30
i�6

wDIAxi

( )
− κ

[ ]+
,

f2(x) �
∑10
i�1

1:2wDIAxi

( )
+ ∑20

i�11
wDIAxi

( )
+ ∑30

i�21
0:8wDIAxi

( )
− κ

[ ]+
,

(4.1)

where κ is the strike price that is varied in this experi-
ment. Therefore, f1 is the payoff of a basket call option
written on DIA with the five largest companies in
terms of market capitalization excluded (i.e., a basket
option written on a subset of the 30 constituent stocks
of the DJIA index); f2 is the payoff of a basket call
option written on a weight-adjusted version of DIA,
where the weights of the 10 largest companies are
increased by 20% and the weights of the 10 smallest
companies are decreased by 20%.

After preprocessing, we are left with the following
2,152 traded financial derivatives (m � 2,152):

• 980 vanilla call options and 980 vanilla put options
written on the 30 stocks.

• 96 basket call options and 96 basket put options
written on DIA.

We consider four different cases when computing
the model-free lower and upper bounds. In the first
three cases, denoted by V(25%), V(50%), and V(100%),
we randomly select 25%, 50%, and 100% of the vanilla
options, respectively. In the fourth case, denoted by
V(100%)+B, we use all vanilla and basket options. The
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inputs of the ECP algorithm for this experiment are
similar to those in Experiment 1.

4.4.4. Experimental Results. Figure 3 shows the com-
puted model-free upper and lower price bounds of
the two basket call options with payoff functions f1
and f2 defined in (4.1). When pricing the first basket
call option f1, the results from the first three cases
show that, when more vanilla options are considered,
the uncertainty about the marginals of the pricing
measure decreases and the model-free upper and
lower price bounds are improved, where the improve-
ments of the upper bounds are much more noticeable
compared with the lower bounds. In Case V(100%)+B,
when other basket options are considered in addition
to the vanilla options, the upper price bounds are fur-
ther improved for large strikes, and the lower price
bounds are improved substantially, especially for
strikes between $260 and $280. Compared with Case
V(100%), the inclusion of basket options results in a
maximum reduction of $5.59 in the no-arbitrage gap
when the strike is $275, which reduces the gap by
54.7%. The results when pricing the second basket call
option f2 are in line with the results from pricing f1,
and the improvements of the upper and lower price
bounds in Case V(100%)+B are more significant across
all strikes. Compared with Case V(100%), the inclu-
sion of basket options results in a maximum reduction
of $9.79 in the no-arbitrage gap when the strike is
$338, which corresponds to a reduction of 79.4%. We
conclude from these observations that when pricing a
derivative using real market data, the inclusion of
more traded derivatives in the sub- and superreplicat-
ing portfolios, especially derivatives whose payoff
structures are similar to the target derivative, can pro-
duce substantial improvements to the arbitrage-free

price bounds, and that the proposed algorithms are
applicable to real market data.
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Appendix A. Proofs of the Main Results

A.1. Proof of Theorem 3.4

Proof of Theorem 3.4. By the assumption about φ in
Remark EC.2.10, there exist c0 and y0 such that c0 +
〈y0,g〉 ≥ −f and φ � −c0 −π(y0). For any c and y such
that c+ 〈y,g〉 ≥ f , it holds that c0 + c+ 〈y0 + y,g〉 ≥ 0 and
thus 〈y0 + y,g〉 −π(y0 + y) ≥ −c0 − c−π(y0 + y). By Assump-
tion 2.1, −c0 − c−π(y0 + y) ≤ 0, and therefore −c0 − c ≤
π(y0 + y) ≤ π(y0) +π(y); thus, φ � −c0 −π(y0) ≤ c+π(y).
This implies that φ ≤ φ( f ). Let (ĉ, ŷ+, ŷ−) be an optimizer of
(3.1), which exists because of Theorem 2.4(ii). We have ĉ +
π(ŷ+ − ŷ−) � φ( f ) > φ− τ. Let σ(r) denote the system of lin-
ear inequalities σ at iteration r. Proposition EC.2.6 states
that infx∈Rd

+
sy(x) > −∞ if and only if y ∈ R

m satisfies all con-
straints in σ̃. It hence holds by Line 2 that (ĉ, ŷ+, ŷ−) satis-
fies all constraints in σ(r) for all r. Consequently, we have

φ(r) � inf
(c,y+,y−) satisfies σ(r)

{c+π(y+ − y−)} ≤ ĉ +π(ŷ+ − ŷ−) � φ( f ):
(A.1)

The variable φ(r) is nondecreasing in r because more con-
straints are added to σ. Moreover, by Proposition EC.2.4(iv)
and the assumption on x, for any y ∈ R

m that satisfies all

Figure 3. (Color online) Experiment 4: Model-Free Lower and Upper Price Bounds for Basket Call Options
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constraints in σ̃, it holds that infx∈Rd
+
sy(x) � inf0≤x≤xsy(x). By

Definition 3.3, for all r and for any x ∈Ω,

c(r) − s(r) + 〈y(r),g(x)〉 − f (x)
� c(r) − c(r) − inf

0≤x′≤x
{sy(r) (x′)} + 〈y(r),g(x)〉 − f (x)

� 〈y(r),g(x)〉 − f (x) − inf
x′∈Rd

+
sy(r) (x′)

� 〈y(r),g(x)〉 − f (x) − inf
x′∈Rd

+
〈y(r),g(x′)〉 − f (x′)
{ }

≥ 0, (A.2)

and thus by Line 8, φ(r) − s(r) � c(r) − s(r) +π(y(r)) ≥ φ( f ).
This and (A.1) also show that s(r) ≤ 0. We have proved
statement (i).

If Algorithm 1 terminates, then by (A.2), it holds for all
x ∈ R

d
+ that c? + 〈y?,g(x)〉 − f (x) � c(r−1) − s(r−1) + 〈y(r−1),g(x)〉

− f (x) ≥ 0. Therefore, (c?,y?) is feasible for (2.2) and φ( f )LB ≤
φ( f ) ≤ φ( f )UB follows directly from statement (i). We have
s(r−1) ≥ −ε at termination, and thus, φ( f )UB −φ( f )LB ≤ ε and
(c?,y?) is ε-optimal. We now show that Algorithm 1 ter-
minates. Proposition EC.2.4(iv) states that there exists a
partition C of {x ∈ R

d : 0 ≤ x ≤ x}, such that each C ∈ C is a
polytope,

⋃
C∈CC � {x ∈ R

d : 0 ≤ x ≤ x}, and that for all y ∈
R

m, sy(·) is an affine function when restricted to each
C ∈ C. Let9 F :� {F≠ ∅ is a face of some C ∈ C}. By theorem
18.2 of Rockafellar (1970),

⋃
F∈F

relint(F) � ⋃
C∈C

C � {x ∈ R
d
+ : 0 ≤ x ≤ x}: (A.3)

Moreover, by theorem 19.1 of Rockafellar (1970), |F| <∞.
Let x(r) be a minimizer of the MILP problem in Line 11,
that is, c(r) + sy(r) (x(r)) � s(r). We prove that either Algorithm
1 terminates, or for each F ∈ F, there exists at most one r ∈
N such that x(r) ∈ relint(F). Suppose, for the sake of contra-
diction, that Algorithm 1 does not terminate and that there
exists r, l ∈ N, r < l, and x(r),x(l) ∈ relint(F) for some F ∈ F.
Because x(r) ∈ X(r), we have c(l) + sy(l) (x(r)) ≥ 0 by Line 7. We
also have c(l) + sy(l) (x(l)) � s(l) < 0, because otherwise, Algo-
rithm 1 will terminate at the lth iteration. For every λ ∈ R,
let xλ :� (1−λ)x(r) +λx(l). Because x(r),x(l) ∈ relint(F), there
exists λ̂ > 1 such that xλ̂ ∈ F ⊂ C. Because c(l) + sy(l) (·) is an
affine function when restricted to the set C, we have by
c(l) + sy(l) (x(r)) ≥ 0 and c(l) + sy(l) (x(l)) < 0 that

c(l) + sy(l) (xλ̂ ) � (1− λ̂)(c(l) + sy(l) (x(r)
))+ λ̂

(
c(l) + sy(l) (x(l)

))
≤ λ̂

(
c(l) + sy(l) (x(l))

)
< c(l) + sy(l)

(
x(l)

)
,

contradicting the fact that x(l) is a minimizer of the MILP
problem in Line 11. Because for each r, x(r) ∈ relint(F) for
some F ∈ F as a consequence of (A.3), and because |F| <∞,
Algorithm 1 terminates eventually. The proof of statement
(ii) is now complete.

Finally, if Line 16 of Algorithm 1 is reached, then
φ > φ(r−1) − s(r−1). By (A.2), c(r−1) − s(r−1) + 〈y(r−1),g〉 ≥ f . By
the assumption about φ in Remark EC.2.10, there exist
c0 and y0 such that c0 + 〈y0,g〉 ≥ −f and φ � −c0 −π(y0).
Hence, we have c0 + c(r−1) − s(r−1) + 〈y0 + y(r−1),g〉 ≥ 0, and

thus

〈y0 + y(r−1),g〉 −π(y0 + y(r−1)) ≥ −c0 − c(r−1) + s(r−1) −π(y0 + y(r−1))
≥ −c0 −π(y0) − c(r−1) + s(r−1) −π(y(r−1))
� φ−φ(r−1) + s(r−1) > 0,

which is a violation of Assumption 2.1. The proof is now
complete. w

A.2. Proofs of Theorem 3.7 and Corollary 3.8

Proof of Theorem 3.7. If Assumption 2.1 holds, then by
the same argument as in the proof of Theorem 3.4(i),
φ ≤ φ( f ). Hence, φ(0) ≤ φ( f ) ≤ φ(0) and c?(0) + 〈y?(0),g〉 ≥ f
follow from our assumptions. For r ≥ 1, suppose that
φ(r−1) ≤ φ( f ). Then, φ(r) ≠ φ(r−1) only when Line 10 is

reached. This implies that σ(c,y,φ(r−1),φ(r),X) � ∅. By the
assumption in Remark EC.2.13, there exists an optimizer
(ĉ, ŷ+, ŷ−) of (3.1) that satisfies |ĉ| ≤ c − 1, 0 ≤ ŷ+ ≤ y − 1,
0 ≤ ŷ− ≤ y − 1. In particular, ĉ + 〈ŷ+ − ŷ−,g(x)〉 ≥ f (x) for all
x ∈ X and

ĉ + 〈ŷ+,p〉 − 〈ŷ−,p〉 � ĉ +π(ŷ) � φ( f ): (A.4)

By (A.4) and by the assumption that φ(r−1) ≤ φ( f ), it holds
that σ(c,y,φ(r−1),φ(r),X) � ∅ implies φ(r) < φ( f ). Therefore,

by Line 10, φ(r) > φ(r) > φ(r−1). Because (ĉ, ŷ+, ŷ−) also satisfies

all constraints in the LP problem in Line 10, we have, again by
(A.4), that φ(r) ≤ φ( f ). By induction, we have proved that φ(r)

is nondecreasing in r and φ(r) ≤ φ( f ) for all r.
For r ≥ 1, φ(r) ≠ φ(r−1), c?(r) ≠ c?(r−1), or y?(r) ≠ y?(r−1) only

if Line 20 is reached. By Line 19 and Line 20,
φ(r) < φ(r−1). By the same reasoning as in the proof of
Theorem 3.4(i) in Equation (A.2), we have c?(r) +
〈y?(r),g〉 ≥ f and φ(r) ≥ φ( f ). We have thus proved state-
ment (i).
If Assumption 2.1 holds and Algorithm 2 terminates,

then φ( f )LB ≤ φ( f ) ≤ φ( f )UB and the feasibility and ε-opti-
mality of (c?,y?) follow directly from statement (i) and
Line 3. Thus, we only need to show that Algorithm 2 termi-
nates. Notice that the strong Slater condition in theorem 1 of
Betrò (2004) holds because one may take (ĉ, ŷ+, ŷ−) defined
earlier and choose any 0 < η < 1

2. Subsequently, one checks
that

|ĉ + η| ≤ c − η, η1 ≤ ŷ+ + η1 ≤ y − η1,
η1 ≤ ŷ− + η1 ≤ y − η1, (ĉ + η) + 〈(ŷ+ + η1) − (ŷ− + η1),g〉 ≥ f + η:

Thus, (ĉ + η, ŷ+ + η1, ŷ− + η1) satisfies the strong Slater condi-
tion. Moreover, under Assumption 3.6, supx∈Ω||g(x)|| <∞.
Suppose, for the sake of contradiction, that Algorithm 2 loops
infinitely and does not terminate. Then, one can deduce that
after finitely many iterations, Line 10 is never reached,
because each time Line 10 is reached, φ(r) −φ(r) ≤
3
4 (φ(r−1) −φ(r−1)) by Line 4 and Line 6. Similarly, Line 20 is
never reached again after finitely many iterations since
each time Line 20 is reached φ(r) −φ(r) ≤ φ(r−1) −φ(r−1) − ε.
The rest of the proof of statement (ii) follows exactly as
the proof of theorem 1 in Betrò (2004).

Neufeld, Papapantoleon, and Xiang: Model-Free Bounds for Multi-Asset Options
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For statement (iii), notice that because φ(0) � φ− τ ≤
φ( f ) − τ < φ( f )LB, Line 10 is reached at least once
before termination. Thus, c† and y† are defined. Let
y+† and y−† be defined in Line 10. Then, by Line 10,
(c†,y+†,y−†) is an optimal solution of the LP problem:

minimize c+ 〈y+,p〉 − 〈y−,p〉
subject to c+ 〈y+ − y−,g(x)〉 ≥ f (x) ∀ x ∈ X†,

− c ≤ c ≤ c, 0 ≤ y+ ≤ y, 0 ≤ y− ≤ y:

(A.5)

Thus, because φ(r) is updated whenever (c†,y†) are updated,
we have φ( f )LB � c† + 〈y+†,p〉 − 〈y−†,p〉, and c† + 〈y+† − y−†,
g(x)〉 ≥ f (x) for all x ∈ X†. Let B̃ :� (c,y+,y−) : −c ≤ c

{
≤ c, 0 ≤ y+ ≤ y, 0 ≤ y− ≤ y}⊂ R

2m+1. By the assumption of
statement (iii), −c < c† < c, 0 ≤ y+† < y, 0 ≤ y−† < y, and we
claim that (c†,y+†,y−†) is also optimal for the following
LP problem:

minimize c+ 〈y+,p〉 − 〈y−,p〉
subject to c+ 〈y+ − y−,g(x)〉 ≥ f (x) ∀x ∈ X†,

y+ ≥ 0, y− ≥ 0:

(A.6)

Suppose, for the sake of contradiction that (A.6) has
optimal solution (̃c, ỹ+, ỹ−) with κ :� c̃ + 〈ỹ+,p〉 − 〈ỹ−,p〉
< φ( f )LB. Then, because φ( f )LB is the optimal value of (A.5),
we have (̃c, ỹ+, ỹ−) ∉ B̃, ỹ+ ≥ 0, ỹ− ≥ 0. Let cλ :� λc† +
(1−λ)̃c, y+λ :� λy+† + (1−λ)ỹ+, y−λ :� λy−† + (1−λ)ỹ−. Then,
there exists some λ ∈ (0,1), such that (cλ,y+λ ,y−λ) � λ(c†,
y+†,y−†) + (1−λ)(̃c, ỹ+, ỹ−) ∈ B̃, cλ + 〈y+λ − y−λ ,g(x)〉 ≥ f (x) for
all x ∈ X†, and cλ + 〈y+λ ,p〉 − 〈y−λ ,p〉 � λφ( f )LB + (1−λ)κ < φ( f )LB,
contradicting the optimality of (c†,y+†,y−†) for (A.5). There-
fore, (c†,y+†,y−†) is also optimal for (A.6), whose corre-
sponding dual LP problem is exactly (3.4). Then, an optimal
solution (μ?

x)x∈X† of (3.4) exists, its corresponding finitely
supported measure μ? is a probability measure that satisfies
πj ≤

∫
Ω

gjdμ? ≤ πj for j � 1, : : : ,m, and thus, μ? ∈Q. More-

over, because of the strong duality of LP problems,∫
Ω

fdμ? � φ( f )LB ≥ φ( f ) − ε by statement (ii), and μ? is

ε-optimal for the right-hand side of (2.3) by Theorem 2.4(iii).
We have completed the proof of statement (iii).

The proof of statement (iv) is exactly the same as the
proof of Theorem 3.4(iii). The proof is now complete. w

Proof of Corollary 3.8. The proof that Algorithm 1 termi-
nates is identical to the proof of Theorem 3.4(ii). Hence, as
in Theorem 3.4(ii), we have φ( f )LB ≥ φ( f ) − ε. Because Line 1
is not used and φ( f )LB ≥ φ− ε > φ− τ, we have that φ( f )LB
is the optimal value of the following LP problem:

minimize c+ 〈y+,p〉 − 〈y−,p〉
subject to c+ 〈y+− y−,g(x)〉 ≥ f (x) ∀x ∈ X � ⋃r−1

l�0
X(l),

whose dual LP problem is exactly (3.5). Consequently, by
the argument in the proof of Theorem 3.7(iii),

∫
Ω

fdμ? �
φ( f )LB ≥ φ( f ) − ε, and μ? is ε-optimal for the right-hand
side of (2.3) by Theorem 2.4(iii). w

Endnotes
1 We adopt the notation x � (x1,: : : ,xd)T > 0⇐⇒ x1 > 0, : : : ,xd > 0:
2 See https://asic.gov.au/about-asic/news-centre/find-a-media-release/
2021-releases/21-064mr-asic-bans-the-sale-of-binary-options-to-retail-
clients/, accessed April 18, 2021.
3 See https://www.investmentexecutive.com/news/from-the-regulators/
binary-options-ban-takes-effect/, accessedApril 18, 2021.
4 See https://www.reuters.com/article/us-israel-binaryoptions-law
making/israel-ban-on-binary-options-gets-final-parliamentary-approval-
idUSKBN1CS2L1, accessed April 18, 2021.
5 See https://www.esma.europa.eu/press-news/esma-news/esma-
agrees-prohibit-binary-options-and-restrict-cfds-protect-retail-investors,
accessed April 18, 2021.
6 See https://github.com/qikunxiang/ModelFreePriceBounds.
7 See http://marketwatch.com.
8 See https://www.investopedia.com/terms/d/dowdivisor.asp, accessed
April 30, 2021.
9 A convex subset C′ of a convex set C ⊆ R

d is called a face of C if
for all λ ∈ (0, 1) and x1,x2 ∈ C, λx1 + (1−λ)x2 ∈ C′ implies that x1 ∈
C′,x2 ∈ C′ (Rockafellar 1970, section 18).
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