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ABSTRACT

Vegetation water content (VWC) is an important parameter for sustainable land and wa-
ter management. In agriculture, VWC can be used to monitor drought and assess crop
productivity. Being able to monitor VWC is important to reduce agricultural vulnerability
and scientifically manage agricultural water use. Due to the dense in-situ networks are
expensive and have difficulties in capturing the large spatial variability of VWC. There-
fore, remote sensing has great potential in VWC monitoring. With the application of
remote sensing, worldwide data with coarse or fine spatial and temporal resolution can
be extracted with relatively low cost. Vegetation Optical Depth (VOD), extracted from
the radar remote sensing observations, is a dimensionless parameter that highly related
to VWC. Thus, VOD can be used as an indicator for VWC. The present research aims to
thoroughly analyze the relation between VOD and VWC. High temporal backscatter data
and detailed field experiment data of soil moisture and vegetation water content during
a full growing season of corn (between 18 April 2018 to 13 June 2018) were used. Correla-
tions between VOD and VWC were analyzed. The result shows that VOD is highly related
to V W Cbulk . However, the linear relation between VWCbulk and VOD is only valid be-
fore the heading stage at both co- and cross-polarization. Then, random forest machine
learning was conducted to determine the sensitivity of VOD to the water content of dif-
ferent parts of the plant. This sensitivity analysis contains two parts: a) the sensitivity
of VOD to the water content of different vegetation components and b) The sensitivity
of VOD to stem and leaf water content at different heights. The results of a) show that
VOD is more sensitive to stem and leaf water content in the vegetative stage whereas
more sensitive to ear water content during the reproductive stage. Besides, stem, leaf
and ear water content can better capture the VOD variation during the vegetative stage.
The result from b) suggests that VOD can provide information about the vertical distri-
bution of moisture inside the canopy. Finally, a cross-comparison was conducted be-
tween VOD and other commonly used vegetation indicators, which includes NDVI and
Cross-Ratio. VOD is available regardless of cloud conditions and is, therefore, more reli-
able than NDVI. Compared with cross-ratio, VOD is better related to vegetation moisture
dynamics.

xvii





1
INTRODUCTION

Vegetation Water Content (VWC) is an important parameter in sustainable land and wa-
ter management. It can be used in assessing agricultural productivity as well as to mon-
itor drought and to avoid bushfire [3]. Besides, vegetation water content is critical for
soil moisture retrieval based on microwave remote sensing. The ability to estimate VWC
will lead to improved soil moisture estimations, which is important for quantifying the
global energy, water, and carbon cycles [4]. There are many components of bulk vegeta-
tion water content (VWCbulk ), like leaf water content and stem water content. The bulk
vegetation water content is the total mass of water in the above-ground components of
the plant per unit area [5]. Take this definition as a format, we can easily define the other
components of vegetation water content.

To describe vegetation water content with remote sensing, the Normalized Vegeta-
tion Difference Index (NDVI) is often used in optical remote sensing. NDVI can also be
related to canopy attributes like the Leaf Area Index (LAI). However, NDVI is measured
in the optical (visible) part of the electromagnetic spectrum, so there are several factors
that may limit NDVI for the vegetation water content study. Signal received by sensors
are affected by atmosphere, cloud, geometric misregistration, anisotropic reflectance ef-
fects as well as electronic errors [6]. Thus, products with spectral reflectance and index
usually contain noise from the background (e.g., soil and exposed water bodies) [7]. Be-
sides, NDVI only senses the top of the canopy [8][9][10] and measures mostly the canopy
greenness [11].

In microwave remote sensing, backscatter observations from a vegetated surface is
influenced by vegetation water content [12]. Compared with optical remote sensing,
microwaves with frequencies between 0.3 GHz and 100 GHz can get rid of the influ-
ence of clouds and measure overnight. Thus, these observations have the potential to
be used for all-weather monitoring of regional vegetation canopy. In the microwave
domain, Vegetation Optical Depth (VOD) is often used to describe the transparency
of vegetation cover, which is highly related to the total water content [13]. In passive
microwave remote sensing, the Land Parameter Retrieval Model (LPRM) is often used
to retrieve the VOD [14]. However, the resolutions of the passive remote sensing are

1



1

2 1. INTRODUCTION

low (up to 50*30km), which is better suited for large scale vegetation monitoring. For
field-scale applications, active microwave remote sensing with finner resolution is pre-
ferred [15][16][17]. In active remote sensing, the TU-Wien VOD estimation method can
be used for VOD retrieval [1]. This method consists of two main models, the TU-Wien
soil retrieval algorithm and the Water Cloud Model (WCM). The vegetation correction
is estimated by the TU-Wien soil moisture retrieval algorithm. This algorithm retrieves
soil moisture from multi-incidence angle backscatter data. The slope and curvature ob-
tained from the relationship of backscatter and incidence angle can be used to estimate
the vegetation correction. Then, convert the vegetation correction into VOD values with
the Water Cloud Model (WCM).

1.1. THE RELATION BETWEEN VOD AND BULK VEGETATION

WATER CONTENT
VWCbulk is assumed proportional to microwave VOD of the above-ground biomass canopy
[18].

V OD = b ∗V W Cbulk (1.1)

The parameter b in Equation 1.1 depends on the vegetation structure and microwave
frequency as well as polarization [19]. A b-factor is often assumed as constant and deter-
mined by crop type. Thus, in different growth stages of the plant, the static b-factor may
induce errors. So, can this linear model describe the relationship between VWCbulk and
VOD in the entire growing season? However, our understanding of the relation between
VOD and VWCbulk is not sufficient. Therefore, this is a problem that needs to be solved.

1.2. AIM OF THE RESEARCH
The aim of this research is to improve the understanding of the relationship between
VOD and bulk vegetation water content. In order to better understand this relation, es-
timated VOD from tower-based high temporal backscatter observations and detailed in-
situ field measurements are used in this study. The radar backscatter data used in this
research is from the University of Florida L-band Automated Radar System (UF-LARS).
UF-LARS returns normalized radar backscatter (σ0) data at four polarization combina-
tions (HH, VV, HV, and VH) and an azimuth range of 0° to 180° with an azimuthal resolu-
tion of 9° every 15 minutes. Besides the dense radar data, from 18 April 2018 to 13 June
2018 (an entire growing season of corn), a detailed field experiment in vegetation water
content, soil moisture measurement of the corn field was conducted. This high temporal
resolution of radar bascatter observations as well as the detailed soil moisture and vege-
tation water content data give us an opportunity to study the relation between VOD and
VWCbulk . Further, sensitivity analysis of VOD to a) water content of different vegetation
components (stem, leaf, ears) as well as b) water content of leaf and stem located at dif-
ferent height of the canopy are conducted. The research questions are therefore defined
as follow:
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1. Can the TU-Wien VOD estimation method be adapted to estimate VOD from backscat-
ter at single-incidence angle?

In the TU-Wien VOD estimation method, the vegetation correction is determined
by multi-incidence angle backscatter observations. However, the radar data from
UF-LARS only contains observations from incident angle at 40°. But, in this re-
search, we have the soil moisture measurement that the TU-Wien VOD estimation
does not have. Because of the difference between initial data sets, the TU-Wien
VOD estimation method needs to be adapted in this research. In order to let the
adaptation reasonable, we explain and compare the theoretical principles and as-
sumptions of the TU-Wien VOD estimation method before and after adaptation.
Then, we discuss whether the adapted version is credible and feasible.

2. What is the relation between VOD and VWCbulk in the entire growing season? Does
the linear relation hold true in the entire growing season?

By making a scatter plot in different growth stages, a thorough study of the relation
between VOD and VWCbulk is conducted. Statistical analysis is performed when
the linear relation holds true, the Ordinary Least Squares (OLS) method is used to
derive the slope and intercept.

3. Bulk vegetation water content comprises many components. Here we only focus on
stem, leaf, and ears. Thus, which vegetation components are the main drivers for
VOD variation? Will this result change in different growth stages? Will this result
also change in different polarization?

This sensitivity analysis is done by using random forest machine learning tech-
niques. Random Forest (RF) models are built in different growth stages. In each
period, the input variables of each RF model are the same, which are stem, leaf,
and ear water content while the response variable of each RF model is different,
which is VOD at HH, VV, and cross-pol, respectively.

4. The moisture inside the canopy is not uniformly distributed. The backscatter will be
influenced by the vertical distribution of moisture. Is the VOD more sensitive to the
particular part of the canopy layer that contains more moisture?

Detailed destructive measurements of the water content profile will be used as
input variables to a RF model to identify which attributes at which height have the
most influence on VOD variation.

5. Apart from VOD, Cross-Ratio is also a commonly used indicator for vegetation wa-
ter content in the microwave frequency region. Besides, NDVI in the spectrum region
is also an often used vegetation water content indicator. What is the difference be-
tween VOD, CR, and NDVI? Can they all sufficiently describe the vegetation water
content within the canopy?

Here, we compare the sensitivity of VOD, CR and NDVI to vegetation water con-
tent.
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1.3. THESIS OUTLINE
In this thesis, a theoretical background is given in Chapter 2. This chapter provides rel-
evant background knowledge and theories for vegetation optical depth retrieval. Then,
models in TU-Wien VOD estimation method are explained. In Chapter 3, a general de-
scription of the project site is given. Besides, the in-situ measurements which are needed
for the VOD retrieval are mentioned. In Chapter 4, the methodology used during this re-
search is discussed. After this, the results of this research are presented in Chapter 5.
Finally, the research questions will be answered and a conclusion on this thesis is given
in Chapter 6.



2
THEORETICAL BACKGROUND

The main focus of the first part of Chapter 2 provides relevant background knowledge
and theories for vegetation optical depth retrieval. Then, in the second part of this chap-
ter, models used to estimate VOD in this study are explained, which helps to understand
the result and discussion in the following chapter.

2.1. PHYSICAL PRINCIPLES OF VOD RETRIEVAL

2.1.1. PHYSICAL PRINCIPLES OF GROUND-BASED SCATTEROMETERS
The interaction of electromagnetic radiation with matter is fundamental to remote sens-
ing. The measure of received signal strength is the most important in remote sensing de-
vices. Here, in this section, we just attempt to provide an overview of some most relevant
knowledge that will be sufficient for understanding this research.

THE RADAR EQUATION

The fundamental relation between the characteristic of the radar, the target, and the
received signal is called the radar equation:

Pr = Pt Gt Arσ

(4π)2R4
(2.1)

The power Pt is transmitted by an antenna with gain Gt , the spreading loss 1
(4πR2

t )
is

the reduction of power density associated with spreading of the power over a sphere of
radius R surrounding the antenna. Radar has two spreading loss factors, one loss hap-
pens when the power transmitted toward the scatterer 1

(4πR2
t )

and the other loss happens

when the power reradiated by the scatterer 1
(4πR2

r )
. If we assume the Rt = Rr , then the

total distance is 2R and the total loss factor is 1
((4π)2R4)

. Ar is the effective aperture of the

receiving antenna. σ is the scattering cross-section which is associated with the individ-
ual scatterer. Scatter cross-section is a function of the directions of the incident wave and
the wave towards the receiver, as well as the scatterer shape and dielectric properties.

5
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Further, the differential scattering coefficient (or backscatter cross-section) is de-
fined as the average value of individual scatterer cross-section per unit area. The value
of backscatter cross-section in the linear domain is given by:

σ0 = 〈 σi

4Ai
〉 (2.2)

where the angle brackets represent the operation of calculating the integral mean of the
variables within it.

Because the backscatter cross-section can vary by several orders of magnitude, the
backscatter cross-section is converted to the power domain and explained in dB, the
converting function is given by:

σ0(dB) = 10∗ log(σ0(
m2

m2 )) (2.3)

DIELECTRIC PROPERTIES

The dielectric constant (denoted as ε) is one of the properties of the medium used to
describe the propagation of electromagnetic radiation in the material. For the case of a
uniform homogeneous medium that does not absorb energy from an electromagnetic
wave propagating through it, a dielectric constant is a real number. However, for the
materials neither perfect conductive nor perfect transparent to the electromagnetic ra-
diation, energy loss happens when the wave propagating through the medium, the di-
electric constant is represented as a complex number [20] [21]:

ε= ε′+ε′′ (2.4)

where ε′ and ε′′ are referred to as the real and imaginary part of the dielectric con-
stant. The real part of the dielectric constant is the permittivity of the material, which
determine the velocity and wavelength of the refracted wave. The imaginary part is the
dielectric loss factor, which describes the absorbed energy by the medium when the elec-
tromagnetic wave propagating through.

The dielectric constant of soil depends on moisture content, bulk density, soil type,
temperature, salinity, and microwave frequency [22]. Dry soil has a dielectric constant of
ε≈ 4, whereas liquid water has a dielectric constant of ε≈ 80 for frequencies lower than
10 GHz[23]. With the large contrast between them, the increase of the moisture con-
tent will lead to increase in soil dielectric constant. The relationship between volumetric
soil moisture content and soil dielectric constant is almost linear, except at low moisture
content. The non-linearity at low moisture content is caused by the strong bond be-
tween the surfaces of soil particles and the thin film of water (bond water). These bonds
will limit the free rotation of the water molecules [24]. When soil moisture content in-
creases, both the real and imaginary part of the dielectric constant increases. However,
the increasing rates of these two components are frequency dependent. The increasing
rate of the real component is higher at a lower frequency, while the increasing rate of
the imaginary component is higher at a higher frequency [25]. The dielectric constant
of vegetation is influenced by water content, microwave frequency, salinity, and tem-
perature [26] [27]. ε′ of water is more than one order larger than ε′ of bulk vegetation
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material, and ε′′ of water is several orders of magnitude larger than ε′′ of bulk vegeta-
tion. Therefore, the water content of vegetation will influence the dielectric constant of
vegetation [27]. A dual-dispersion model describe the dielectric constant of vegetation
εv as a additive of three components: (a) a non-dispersive residual component εr , (b) a
free water component v f wε f , where v f w is the volume fraction of free water, ε f is the
dielectric constant of free water and (c) a bulk vegetation-bond water component vbεb ,
where vb is the volumetric fraction of the bulk vegetation-bond water mixture and εb is
its dielectric constant [28].

SURFACE AND VOLUME SCATTERING FROM A VEGETATED SURFACE

When electromagnetic wave impinges from above on the boundary between two differ-
ent mediums, part of the incident wave is scattered back and the others are transmit-
ted into the lower medium. On one hand, if the lower medium is homogeneous or can
be considered as such, the scattering will only happen at the surface boundary. This is
called surface scattering. On the other hand, if the lower medium is inhomogeneous or
is a mixture of different dielectric properties, then part of the transmitted wave will be
scattered back by the inhomogeneities. The scattered wave may cross the boundary and
enter into the upper-medium. In volume scattering, the scatter takes place within the
volume of the lower medium. The mechanism of volume scattering will cause a redis-
tribution of the energy in the transmitted wave into other directions and result in a loss
from the transmitted wave [29].

There are several patterns of surface scattering when the boundary between two
mediums is a smooth-surface boundary. The reflection is called specular reflection and
can be described with Fresnel reflection laws. When the boundary surface is a little bit
rougher, part of the incident wave will be reflected in the specular direction and the rest
will be scattered in all directions. When the surface continues getting rougher, the scat-
tered part is getting more and more important. Finally when the surface approaches the
Lambertian surface, which scatters all the radiation incident on it. The Rayleigh criterion
shown below can be used to identify a rough surface:

h > λ

8∗ cosθ
(2.5)

where h is the mean height of surface variations, λ is wavelength, and θ is the inci-
dent angle. Roughness depends on the wavelength and incident angle. A surface may be
considered as rough by an electromagnetic wave with shorter wavelength like an optical
wave, while it may seem very smooth by an electromagnetic wave with longer wave-
length like a microwave.

Volume scattering can be observed if microwave radiation penetrates into a medium.
The penetration depth is defined as the distance when the incident power attenuates to
1
e (exponential coefficient). Effective penetration depth can be determined by dielectric
properties of the medium. The wavelength (or, we can say the frequency) determines
the value of penetration depth (δp ). The formula is given by:

δp
∼= λ

p
ε′

2πε′′
(for materials with

ε′′

ε′
< 0.1) (2.6)
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This approximate formula is applicable to most natural materials except water. For
electromagnetic wave with a longer wavelength, the penetration depth tends to be longer.
Besides wavelength, moisture content (represented by dielectric constant) also influ-
ences the penetration depth. The penetration depth will decrease with increasing mois-
ture content. Direct estimation of penetration depth is hard because the size of vegeta-
tion components such as stems and leaves are mostly of the order of magnitude of the
wavelength or even larger. Besides, the effective dielectric constant of the vegetation
canopies inside the equation is difficult to estimate. However, indirect estimation of the
penetration depth of the vegetation canopy can be obtained by comparing the backscat-
tering coefficient at incidence angle close to nadir for bare soil and vegetated soil sur-
faces. These observations show that the penetration depth of mature crops during the
green stage is several meters at frequencies around 1 GHz and decreases to one meter
or even less at frequencies above 10 GHz [29]. The significant factors that influence the
penetration depth of the vegetation canopy at a given frequency are the geometry of the
canopy, the moisture content of the canopy and the volume of vegetation material per
unit volume of the canopy [29]. It is obvious that the penetration depth is a dynamic
value during the growing season of the plants. Take corn as an example. When the corn
is during its fruit-filling stage with lower water content, the penetration depth can be
higher compared with the period when the corn is green, fresh and lush.

The discussion above introduces two main scattering mechanism, the total backscat-
ter from a vegetated soil surface is generally a combination of volume scattering in the
canopy layer and the surface scattering by the underlying soil surface when the air-
vegetation boundary is not important [30]. In addition to penetration depth just dis-
cussed, the contribution of these two components to total backscattering depends on
some other key factors, which include the height of the canopy, frequency, and inci-
dence angle of the radar signal. For surface scattering, backscattering decreases rapidly
with increasing incidence angles close to nadirs (under this condition, the decreasing on
a very rough surface is less rapid compared with the smooth surface). Whereas, volume
scattering decreases very slowly with increasing incidence angle. Therefore, at incidence
angle close to nadirs, the relative importance of surface scattering and volume scatter-
ing are expected to be comparable. When the incidence angle increasing, unless the
frequency is in the lower part of the microwave spectrum and/or the water content of
the vegetation canopy is small, volume scattering is dominant [29]. When the incidence
angle is between 35° to 40°, the path length of the microwave propagate through the veg-
etation canopy becomes longer. Thus the backscatter from vegetation contributes more
to the total backscatter [31]. Whereas having the incidence angle below 30° reduces the
path length and maximize the backscatter from the soil surface, which is preferable for
soil moisture retrieval [32].

2.2. VEGETATION OPTICAL DEPTH
The main focus of this research is on Vegetation Optical Depth (VOD). This section de-
scribes the TU-Wien VOD estimation method applied in this study. The VOD is a mea-
sure of the opacity of a vegetation canopy for radiation passing through. Besides, it
can also be seen as an ecological indicator that is closely related to the above ground
biomass water content [24] and provides information complementary to visible-near
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infrared vegetation indices [33], which are often limited by the effects of atmosphere,
background soil conditions, and saturation at high levels of vegetation [34]. The mi-
crowave measurements are sensitive not only to the leafy part of vegetation properties
but also to the properties of the overall vegetation canopy when the microwave sensor
can penetrate it [34].

2.2.1. THE APPLICATION OF VOD
Microwave remote sensing is not only sensitive to vegetation water content, but also
to soil moisture content. However, the way to separate these two components is not
straightforward. VOD can help to parameterize the influence of the canopy layer. When
the effect of VOD is taken into account properly, the prediction accuracy of a soil mois-
ture retrieval model will increase. For example, the transmissivity of the vegetation which
is defined in terms of the vegetation optical depth is used to describe the vegetation ef-
fect in [24]. Besides, VOD is directly related to bulk vegetation water content, and this
relation is approximate as a linear [18], in which the slope is considered constant and
depends on microwave frequency, canopy type, and structure [19]. VOD is also a use-
ful indicator of vegetation state and variability since the biomass of vegetation provides
available storage of water, VOD can be used as a proxy of biomass [35]. Also, VOD is
helpful for crop monitoring. It can help determine vegetation phenology [36], and the
crop water stress [12].

2.2.2. THE DERIVATION OF VOD
The TU-Wien VOD estimation method is used in this study. We convert the vegetation
correction of TU-Wien soil moisture retrieval algorithm into VOD estimations using a
Water Cloud Model.

WATER CLOUD MODEL

Previous researches [25] [30] [37]suggest that the total backscatter from the vegetated
soil is a combination of the soil backscatter attenuated by the vegetation cover, direct
backscatter from the canopy layer and the interaction between the canopy and the un-
derlying soil surface. The backscatter from the vegetation canopy is affected by vege-
tation 3-D structure and water content (related to biomass) [38]. It is impossible for a
scattering model to describe each vegetation component’s geometry, location and di-
electric constant inside the canopy volume in details. Also, it is difficult for a model to
describe the scattering properties of each element inside the canopy. Therefore, approx-
imations are needed to simplify the problem as well as to establish a model that can be
applied to a class of canopies with similar geometries [29].

A rather simple model called Water Cloud Model (WCM) that models the vegetation
backscatter coefficient of a canopy layer was established by Attema and Ulaby in 1978.
In this model, the vegetation volume is assumed to be filled with uniformly distributed
identical scatterers. In WCM, the scattering properties of each vegetation element are
treated as a whole and are related to the volumetric water content of the canopy. How-
ever, the multiple scattering which describes the interaction between soil and vegetation
cover is generally neglected in WCM [30]. Therefore, the WCM is a zeroth-order radiative
transfer solution which the total backscatter (σ0) from a canopy consists of backscatter
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from vegetation cover (σ0
veg ) and backscatter from the underlying soil (γ2σ0

soi l ) [17].

σ0 =σ0
veg +γ2σ0

soi l (2.7)

σ0
veg = B ∗ cosθ(1−γ2)) (2.8)

γ2 = exp(
−2τ

cosθ
) (2.9)

Where γ2 in Equation 2.7 is an attenuation factor that represents the two-way vege-
tation transmissivity. This γ2 can be calculated by Equation 2.9 with vegetation optical
depth (τ) as one of the variables. B in Equation 2.8 is a parameter related to the single
scattering albedo ω, which for small isotropic scatterers take the value of 3ω

4 . The σ0
soi l

in Equation 2.7 is the backscatter from bare soil. One way to estimate σ0
soi l is by the

linear model between soil moisture and the backscatter coefficient. The University of
Kansas used truck-mounted scatterometer systems to observe bare soil field with differ-
ent surface roughnesses and soil textures. When the roughness and soil texture were set,
a linear relation was found between radar backscatter coefficient and volumetric soil
moisture(Mv ) in the upper 2 to 5 cm of soil. The linear correlation coefficients ρ was
typically in the order of 0.9.

σ0
soi l = K ∗Mv +C (2.10)

Where K and C are the slope and intercept, Mv is volumetric soil moisture (because
the dielectric constant of wet soils is proportional to the number of water dipoles per
unit volume, the preferred measure for soil moisture is volumetric) [29].

TU-WIEN SOIL MOISTURE RETRIEVAL ALGORITHM

TU-Wien soil moisture retrieval Algorithm is an empirical model based on the change
detection method (refers to the method of analyzing sufficient long-term data of the in-
terested area in order to identify differences in the state of land features). This algorithm
retrieves soil moisture from multi-incidence angle backscatter data. One basic assump-
tion for the change detection model is that the backscatter coefficient expressed in dB
is linearly related to surface soil moisture content [39]. Besides, the slope and curvature
of σ0(θ) are assumed only influenced by vegetation density [1]. The radiation energy
received by the scatterometer sensor increases with incident angle approaching nadir.
However, for the vegetation-cover soil, the change of vegetation density, vegetation type,
as well as the change of vegetation geometry will influence the shape of incidence angle
dependency of backscatter (see in Figure 2.1). At lower incidence angles, the backscatter
is lower for vegetated-soil compared with bare soil condition. This is because the vegeta-
tion cover above tends to attenuate the underlying soil backscatter. At higher incidence
angles, the volume scattering resulting in a larger total backscatter than for bare soil.
Therefore, at some incident angles, the backscatter from the dormant vegetation layer
and fully grown canopy layer will cross over (see in Figure 2.1). These incidence angles
are the so-called cross-over angles. In the TU-Wien soil moisture retrieval algorithm, it
assumes the effect of vegetation is minimum at these cross-over angles. Then, the dry
and wet references (denoted as σ0

dr y and σ0
wet ) which represent the historically driest

and wettest conditions with minimum vegetation effects are derived using the slope,
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curvature and cross-over angles obtained from σ0 (θ) relationship. Since soil moisture
and vegetation both lead to an increase in backscatter, σ0

wet is more or less independent
to vegetation status. Besides, it represents the saturated soil condition. Therefore, the
value of σ0

wet can be set as a constant value through the entire growing season. As for
σ0

dr y , it increases and decreases simultaneously with vegetation growth and senescence.

Hence, the difference between dry and wet references shows the sensitivity to soil mois-
ture dynamics. And the change of this sensitivity can be used as vegetation correction.

In simple radiative transfer models, for example, the Water Cloud Model introduced
in the section 2.2.2, the influence of vegetation cover are governed by the two-way veg-
etation transmissivity which weights the relative contribution of surface scattering and
volume scattering. Although the TU-Wien model uses a different way of parameteriza-
tion, the aim and function of the vegetation correction are the same.

Figure 2.1: Relation between backscatter and incidence angle with relation to soil moisture and vegetation
after [1]

2.2.3. ESTIMATING VOD FROM WATER CLOUD MODEL( WCM)
The difference between dry and wet reference (calculated with Equation 2.11) is the sen-
sitivity to changes in surface soil moisture content.

∆σ0(t ) =σ0
wet (t )−σ0

dr y (t ) (2.11)

Where σ0
wet (t ) and σ0

dr y (t ) represent the wet and dry reference values at a certain time

point t , respectively.
Since the backscatter in decibels has been found to be linearly related to soil mois-

ture content and the backscatter noise is independent of the absolute backscatter, all the
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Figure 2.2: Illustration of three components of backscatter, the dry reference, wet reference, and static
components from the TU-Wien algorithm.

calculation based on the idea of the TU-Wien soil moisture algorithm is calculated in the
decibels domain.

Vegetation optical depth from the active microwave observations can be computed
by bringing the dry and wet references into the Water Cloud Model [1]. Here, we call this
VOD retrieval method as the TU-Wien VOD estimation method. Since dry and wet ref-
erences intrinsically include the changes in vegetation density, the difference between
dry and wet references (∆σ0) shows the sensitivity to soil moisture dynamics. And the
change of ∆σ0 can be used as vegetation correction. While in WCM, the vegetation cor-
rection is represented by γ2 which is directly related to VOD (τ). Thus, if we replace γ2

with∆σ0, we can relate VOD to the dry and wet references. Notice that, when bringσ0
wet

and σ0
dr y into the Water Cloud Model, both of them need to be firstly converted into the

linear domain.

∆σ0(t ) =∆σ0
s ∗exp(

−2τ

cosθ
) (2.12)

∆σ0
s = M ax(σ0

s,wet (t ))−Mi n(σ0
s,dr y (t )) (2.13)

Which can be solved for τ as

τ(t ) = cosθ

2
∗ ln(

∆σ0
s

∆σ0(t )
) (2.14)

Where, in Equation 2.12, ∆σ0(t ) (m2/m2) is the difference between σ0
wet (t ) (m2/m2)

and σ0
dr y (t ) (m2/m2) at certain time point t . ∆σ0

s (also in the linear domain) in Equa-

tion 2.13 represents the maximum range in bare soil backscatter values which is only
related to soil moisture dynamics. This parameter is assumed constant through time.
Mi n(σ0

s,dr y (t ) is also known as the static component.

As shown in Figure 2.2, at the beginning of the growing season, there is no vegetation
cover on the soil surface, the dry reference equals to the static component. The differ-
ence between dry and wet references (∆σ0) is the largest which means the sensitivity to
soil moisture is the highest. Then, the dry reference increases simultaneously with the
corn canopy growth which leads to the decrease of ∆σ0. On one hand, the change of
∆σ0 reflects the vegetation growth reduces the sensitivity to soil moisture. On the other
hand, this shows the vegetation state and its dynamic.



3
CASE STUDY AREA

In this chapter, the general information of the exact study area is shown. Besides, the
data sets collected during the field campaign which are relevant to our research are ex-
plained. All measurements displayed in this section are necessary for the following VOD
retrieval.

3.1. GENERAL INFORMATION

The study was performed at the UF/IFAS Extension Plant Science Research and Educa-
tion Unit (PRSEU), Citra, Florida, USA (29.4°N, 82.17°W). Florida is a hot-humid region.
The rainy season runs from around May 1 to as late as November [40]. The dimension
of the study cornfield is 100 m * 65 m and the location is shown in Figure 3.1. The sweet
corn (type BSS0977 ATTRIBUTE 100M) was planted on 13 April 2018 and harvested on
18 June 2018. The growing season lasted for 72 days. The plant density of the cornfield is
6.6 plants/m2, the plant spacing is 7 plants/m, and the row spacing is 0.925 m.

3.1.1. METEOROLOGICAL DATA

The meteorological data were obtained from a weather station from Florida Automated
Weather Network (FAWN) at the Plant Science Research & Education Unit. From this
weather station, meteorological data is obtained every 15 minutes. The weather sta-
tion collects data such as soil temperature (◦C) at 10 cm depth, air temperature (◦C) at a
height of 60 cm, 2 m and 10 m, relative humidity (%), rainfall (inches). In this research,
we mainly focused on precipitation data, soil moisture data and dew point. The dew
point temperature at 2 m (◦C) has been calculated with the air temperature (◦C) at 2 m
and the relative humidity (%) [2]. Figure 3.2 shows some information about the irriga-
tion, precipitation and dew. The exact time of irrigation, precipitation and dew of a day
can be found in [41].

13
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Figure 3.1: The location of the case study corn field. Source [2]

Figure 3.2: The irrigation, precipitation and dew information during the growing season. The blue bars
represent the precipitation (mm/d) happened in the date showed in x-axis. The pink and green bars do not

represent the amount of dew or irrigation. When pink bar appears it means dew appeared on that day. When
green bar appears it just indicates irrigation was conducted on that day.
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3.1.2. THE UNIVERSITY OF FLORIDA L-BAND AUTOMATED RADAR SYSTEM
The University of Florida L-band Automated Radar System (UF-LARS) returns radar backscat-
ter (σ0) data at four polarization combinations (HH, VV, HV, and VH) and an azimuth
range of 0° to 180° with an azimuthal resolution of 9° every 15 minutes resulting in 21
collected spatial samples. The antenna incidence angle was set to 40°, while the height
was at 16.2m giving a footprint of an arc which has a size of 1033.77m2, based upon the
6 dB beamwidth (see in Figure 3.3). Since theoretically, HV equals VH, here, the cross-
polarization signal stands for the averaged value of HV and VH observations (See in Fig-
ure 3.4).

Figure 3.3: UF-LARS in corn field mounted on the 25 m Genie platform

Notice that, the in-situ backscatter data at HH polarization contains some noise at
the beginning of the growing season (see magnified detail in Appendix A). The noise is
caused by some currently unsolved issues during the backscatter data processing. This
will influence the flowing analysis in HH polarization mode. Therefore, compared with
VV and cross-polarization, the results from HH polarization is less credible.

3.1.3. SOIL TEXTURE
At the Plant Science Research & Education Unit of the University of Florida, the compo-
sition of the top layer of the soil consists of approximately 94% sand, 2% silt, 3% clay, and
2% organic matter, where the percentages are given on a weight basis [42].
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Figure 3.4: Volumetric soil moisture data and LAI data (top) as well as backscatter data at co- and
cross-polarization (bottom)

3.1.4. SOIL MOISTURE

The root zone soil moisture is measured with 10 calibrated EC-5 sensors. The sensors
were installed in each pit at 5, 10, 20 40 and 80 cm depth. The root zone moisture was
measured throughout the season with an interval of 15 minutes. Previous investigations
[43] [44] assumed that the radar response is governed by the moisture in the surface 0 to
5 cm layer of the soil. While the effective soil depth responsible for the radar return is
shallower than 5 cm for very wet soil and deeper than 5 cm for very dry soil. Therefore,
characterizing the moisture content by a fixed layer, 5 cm in depth, has been found to
be an adequate approximation [43] [44]. Thus, in this study, averaged 5 cm depth soil
moisture of two pits are used.

3.1.5. GROWTH STAGES OF THE CORN (BBCH STAGES)
Corn is a broadleaf plant and has different vegetation structures in the entire growing
season. The campaign was conducted from 13 April to 18 June. The BBCH-scale is used
to identify the phenological development stages of plants ("Growth stages of mono-and
dicotyledonous plants") [45]. Appendix B shows the detail description of each stage [46].
The growing season of a corn consists of many stages, which can be divided into two ma-
jor parts: (1) the vegetative stage (BBCH 10 – BBCH 59), and (2) the reproductive stage
(BBCH 61 – BBCH 99). During the vegetative stage, the plant elongates and the leaves de-
velop (tasseling is the last phase of the vegetative stage). During the reproductive stage,
the fruit develops and ripens. In the case study area, from 13 April to 18 June, the main
growth stages of corn include leaf development, stem elongation, inflorescence emer-
gence and development of fruit, which is BBCH 13 to BBCH 73. The growth stage of
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the corn was determined with the use of the BBCH staging Manual [46]. The dates of
different BBCH stages are shown in Figure 3.6.

Around April 25th and 27th , BBCH=13 is reached, when three leaves are visible and
the plant height is around 12.9 cm. The leaf development stage is ended around May
16th when 9 or more leaves are unfolded (BBCH=19), the height of the plant is around
71.6 cm. The stem elongation stage begins on May 18th (BBCH=30), the plant height
is around 84.1 cm. The inflorescence stage begins on May 23th (BBCH=51) with plant
height around 125.9 cm, and the end of this stage is reached on May 30th (BBCH=59)
with the plant height around 170.9. Then, the flowering stage begins on June 1st (BBCH=63)
and ends around June 8th (BBCH=67), the height of the plant is around 189.7 cm and
198.9 cm respectively. Finally, the development of fruit stage is reached on June 11th

(BBCH=71)with the plant height of 205.9 cm and ends on June 18th (BBCH=79) with the
plant height of 208.8 cm (see in Figure 3.5).

3.1.6. VEGETATION WATER CONTENT OF CORN

The VWC was measured 4 times per week during the experiment. The measurement
schedule was 6 A.M. on Monday, Wednesday and Friday, 6 P.M. on Wednesday from 27
April to 13 June 2018. The samples were weighted, both fresh and after drying. All the
samples were put in the oven at 60°C for one week. Bulk vegetation water content values
were determined from the difference between fresh and dry biomass by Equation 3.1.
Where η is the plant density, mdr y and mwet stand for the measured weight of dry and
wet biomass respectively. Besides, destructive sampling was performed by dividing the
samples into stem, leaf, ear, tiller and tassel. Then the water content of these destructive
parts of the plant were measured using the same procedure like bulk vegetation water
content. Finally, the vegetation water content was interpolated in order to get a complete
temporal variation in the growing season (see in Figure 3.6).

V W C = η∗ (m f r esh −mdr y ) (3.1)

Where the unit of η is the number of plants /m2. The unit of m f r esh and mdr y is kg.

3.1.7. LEAF AREA INDEX (LAI)
The leaf area index (LAI) is a dimensionless quantity that describes the characteristics
of plant canopies quantitatively. It is generally defined as the one-sided green leaf area
of plants per unit ground surface area (m2/m2) in broadleaf canopies. Once a week,
canopy geometry measurements were conducted on four to eight plants, including the
maximum leaf length (lmax ) and width (wmax ) for all leaves. The assumption was made
that a leaf had an ellipse shape, the leaf area can be calculated by Equation 3.2. The
leaves and the rest of the plant were dried in the oven at 60°C for one week to measure
the dry weight of the leaf and the dry biomass of the sample. The fraction of leaf (Fl ea f )
was determined by calculating the ratio of leaf dry weight to sample dry biomass. The
specific leaf area (SLA) was determined by calculating the ratio of leaf area to the dry
mass of the leaves. Then, the total dry biomass (DM = η∗mdr y ) measured in section
3.1.6 was used to calculate LAI with Equation 3.3. The values of LAI is shown in Figure
3.4.
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Figure 3.5: Pictures of corn during different growth stages



3.1. GENERAL INFORMATION

3

19

Figure 3.6: Contributions of different vegetation components to VWCbulk

Alea f = lmax ∗wmax ∗π (3.2)

L AI = DM ∗Fl ea f ∗SL A (3.3)

Where the unit of lmax and wmax is m. The unit of Fl ea f is kg /kg . The unit of DM is
kg /m2 and the unit of SLA is m2/kg .





4
METHODOLOGY

In this chapter, methods that are used to achieve the research aim are addressed. This
chapter will begin with how the TU-Wien VOD estimation method is adapted to esti-
mate VOD from backscatter observations at a single incidence angle. Then, the retrieval
method of other vegetation indicators selected by this research is explained. After that,
the method used to investigate the relation between VOD and VWC is explained, which
helps to improve the understanding of the relationship between VOD and water content
of the canopy layer in the next chapter.

4.1. ESTIMATING VEGETATION OPTICAL DEPTH
In ground campaigns, tower- and truck-based scatterometers are applied to study the
sensitivity of backscatter to soil moisture, vegetation structure, and vegetation water
content dynamics under different frequency, polarization, and incidence angle. The data
collected by ground-based scatterometers are typically in plot scale. Moreover, because
of the high temporal resolution (diurnally, daily, or over the entire growth cycle) of the
collected data, the ground-based scatterometers are ideal for the collection of multi-
temporal datasets with high temporal resolution [17]. The ground-based UF-LARS was
used to obtain backscatter observations every 15 minutes. The high temporal backscat-
ter observations collected over a growing season of corn are used to estimate VOD here.

The aim of this section is to obtain VOD value at every radar retrieval time step at dif-
ferent polarization modes. The general idea of VOD retrieval in this study is firstly using
the TU-Wien soil moisture retrieval method to obtain the vegetation correction which is
represented by the dry and wet references. Secondly, vegetation optical depth from ac-
tive microwave observations is calculated by ingesting the derived vegetation correction
into the Water Cloud Model. However, in the TU-Wien soil mositure retrieval algorithm,
multi-looking direction ability of scatterometer is used to describe the incidence angle
behavior of the backscatter signal as a seasonal function. The vegetation correction is
determined based on the slope and curvature of σ0(θ), and cross-over angles. Thus, this
cannot directly applied to the single-incidence backscatter data we have. Thus, the TU-
Wien VOD estimation method needs adaptations. However, unlike the TU-Wien VOD
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estimation method, we have the auxiliary in-situ soil moisture data which will help us
to estimate the dry and wet references without the multi-incidence angle data. The flow
chart (see in fig 4.1) provides you a general understanding of how the VOD time series is
derived. More details are provided in the flowing sections.

4.1.1. DRY AND WET REFERENCE DETERMINING
Some adaptations are needed in order to apply the idea of using dry and wet references
to represent the vegetation correction with single-incidence angle backscatter observa-
tions. In this study, with the auxiliary soil moisture data the simple linear model in-
troduced in section 2.2.2 can be applied, which relates the backscatter coefficient with
volumetric soil moisture (Mv ). In this model, we assume the corn field as bare soil con-
dition and the variation of backscatter is only caused by soil moisture change. Once
the linear model at a certain time step is built, the dry and wet references can be deter-
mined by substituting the smallest and largest Mv into the linear model. The purpose of
estimating dry and wet references using the slope and curvature ofσ0(θ) as well as cross-
over angles is also to reduce the influence of vegetation cover. Therefore, when we have
single-incidence angle backscatter data as well as the in-situ soil moisture data, we can
build the linear model between the backscatter coefficient and volumetric soil moisture
to estimate dry and wet references.

EXCLUDING THE LESS DYNAMIC SOIL MOISTURE DATA

When the soil is extremely dry, the value of volumetric soil moisture will concentrate on
a certain range. Thus, the scatter plot of soil moisture and backscatter will look like a
’cloud’ of points. From the mathematical point of view, if we try to fit a line through this
’point cloud’, the result can be arbitrary. Thus, in order to avoid this situation, we need to
exclude the soil moisture and the corresponding backscatter data when the soil moisture
is less dynamic.

EXCLUDING BACKSCATTER INFLUENCED BY VEGETATION SURFACE WATER

Surface soil moisture changes rapidly within hours to days whereas the vegetation wa-
ter content varies within several days to weeks [21]. In this study, we assume that the
short term variation of backscatter is mainly caused by soil moisture variation. However,
the presence and disappearance of interception on the canopy layer will also cause the
backscatter fluctuates which is not related to soil moisture dynamics. Especially when
the vegetation canopy is getting lush and dense, the interception on the canopy layer
cannot be neglected. To avoid mistaking the short term variations of backscatter caused
by vegetation surface water as the variations caused by soil moisture dynamics, data in
the period that precipitation, irrigation, and dew happen when the vegetation cover is
dense enough is also excluded before all the calculations begin. In this study, the canopy
is considered as dense when it covers the soil surface. We call it canopy closure. The
date of canopy closure is determined based on LAI, BBCH stages, and in-situ photo at
the corn field. Here, the closure date is set as 18 May, with LAI = 2.09, BBCH stage = 30
and the in-situ photo of the canopy is shown in Figure 4.2).

With single-incidence angle backscatter observations, before the determination of
dry and wet references, backscatter and soil moisture data need to be selected based on
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Figure 4.1: Flow chart of VOD retrieval
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the criteria above. Only when the data exclusion is appropriate, the determined dry and
wet references are reasonable.

Figure 4.2: In-situ photo of corn field at 2018-05-18

ORDINARY LEAST SQUARES (OLS) METHOD

After all the assumptions are met, the OLS method is used to derive the linear model
(see in Equation 4.1) between Mv and σ0

t for every radar retrieval time. When the linear
model at a certain time is built, bring the smallest and largest soil moisture of the entire
growing season into the model, with the derived slope and intercept, the dry and wet
references at this time point are calculated with Equation 4.2 and Equation 4.3.

σ0(t ) = K (t )∗MV +C (t ) (4.1)

σ0
dr y (t ) = K (t )∗Mv (mi n)+C (t ) (4.2)

σ0
wet (t ) = K (t )∗Mv (max)+C (t ) (4.3)

Whereσ0
wet (t ) andσ0

dr y (t ) are the wet and dry references at each radar retrieval time

point t, K(t) and C(t) are the slope and intercept of the linear relation at time point t.
Mv (mi n) and Mv (max) are the minimum and maximum volumetric soil moisture con-
tent in the entire growing season. In this study, the value of Mv (mi n) and Mv (max) is
0.11 and 0.26 respectively.

In order to have one dry and one wet reference value every 15 minutes(radar system
returns signal every 15 minutes), the linear model is applied to a sliding window with
specific size.
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SLIDING WINDOW METHOD

The sliding window method of finite window size, making the algorithm a finite impulse
response filter and is suitable for analyzing a statistic over a finite duration of data. In the
sliding window method, a window of specified length (denoted as Len), moves over the
radar backscatter data and the corresponding volumetric soil moisture data with a step
length (denoted as ∆t ) of 15 minutes (same with the radar retrieval interval). Then the
linear relation between Mv and the σ0 is derived over the data within the window. The
output relation is derived by all the input data within the window, which are samples
Len−∆t

2 before the central time t as well as samples Len+∆t
2 after the central time t . The

output linear relation for each window is considered to represent the linear relation be-
tween Mv and σ0 at the central time t of the current window. However, at some central
time t (located at the start and the end of the time series), they do not have enough pre-
vious or subsequent data to fill the Len, then the algorithm neglects these central time
points and no linear relations are derived. Figure 4.3 can help to understand the slid-
ing window method. And Figure 4.4 shows how the linear model is applied to a certain
window.

Figure 4.3: Illustration of sliding window method

DETERMINATION OF THE WINDOW LENGTH (Len)
The window length (Len) defines the length of Mv and σ0 data over which the ordinary
least squares algorithm derives the linear relation. If Len is large, the result calculated is
closer to the stationary static of the data. Thus, for data without rapid changes, the longer
window size can help to obtain a smoother static. Here, the purpose is using the derived
linear relation to estimate dry and wet references at each central time point. Recall that
the dry and wet references in the TU-Wien soil moisture algorithm are the backscat-
ter that minimizes the influence of vegetation and assume the change of backscatter is
mainly a result of soil moisture variations. Therefore, the temporal patterns of computed
σ0

dr y (t ) and σ0
wet (t ) are expected to better reflect the changes in backscatter due to soil

moisture variations. According to the assumption that the soil moisture dynamics in
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Figure 4.4: Example of how the linear model is applied to a certain sliding window. The window length of this
plot is 5-day and the central time point is 2018-05-13 11:29:00 am. The blue dots in the plot are the samples

inside this 5-day window with volumetric soil moisture (VSM) as the independent variable and backscatter as
the dependent variable. The red line is the linear relation between VSM and backscatter derived by the OLS
method. This linear relation with slope=90.87 and intercept=-21.13 is assumed as the linear relation at the

central time point of this window
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short time period, the expected size of window length needs to be as short as possible.
However, from a mathematical perspective, if Len is too short, Mv values do not have
enough variations, the regression will be fitting a line through a ‘cloud’ of points, the lin-
ear relation is not credible. It is clear that choosing an appropriate Len will improve the
accuracy of the linear regression and further produce a more reasonable estimation of
the temporal pattern of dry and wet references. In this research, after trial and error, a
5-day Len is set.

GOODNESS OF FIT

When the linear relation of every radar retrieval time point is obtained, the goodness-of-
fit test is used to examine how well the linear model fits the data. In OLS, a test based
on the coefficient of determination (denoted as R2) is often used [47]. In this study, in
order to make the estimation of dry and wet reference more credible, a threshold of R2

is set as 0.5 (while for HH polarization, the threshold is set as 0.2, because the noise ap-
pears in the beginning period of the growing season). The linear relation at a certain
time step with the R2 less than 0.5 is excluded from the subsequent calculation. How-
ever, for the purpose of keeping the time series of dry and wet reference as complete as
possible, Cook’s distance D is introduced in the OLS to detect and remove the outliers
inside the window. Each element in the Cook’s distance D is the normalized change in
the fitted response values due to the deletion of an observation [48]. The Cook’s distance
of observation i is calculated by:

Di =
∑n

j=1(ŷ j − ŷ j (i ))

p ∗MSE
(4.4)

where ŷ j is the j th fitted response value.ŷ j (i ) is the j th fitted response value, where the
fit does not include observation i . MSE is the mean squared error. p is the number of
coefficients in the regression model.

If the Cook’s distance D value of one sample point is larger than 4
p , this point is usu-

ally considered as an outlier. Here, the outliers in backscatter data are more likely repre-
senting the fluctuation and noise caused by the vegetation surface water.

After removing the outliers from the sampled window, the R2 of that derived linear
relation at a certain time point will be improved. Thus, more time point can meet the
threshold and be used for further estimation.

TIME SERIES OF SLOPE AND INTERCEPT OF THE LINEAR RELATION

After filtering the linear relations obtained in the growing season with a set threshold,
those linear relations with R2 higher than threshold are retained. Then, we can get the
time series of both slope and intercept from the retained linear relations. To smooth
the slope and intercept time series, a 5-day moving average is applied. Then, with the
smallest and largest Mv of the entire growing season as well as the obtained slope and
intercept time series, dry and wet references can be determined.

4.1.2. ESTIMATING VOD FROM WATER CLOUD MODEL( WCM)
After determining the dry and wet references, VOD can be estimated with Equation 2.11
to Equation 2.14. Recall the previous discussion of setting wet reference as a constant
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value through the growing season, in this study, we exclude the largest 5% and the small-
est 5% of theσ0

wet (t ), then the average value of the restσ0
wet (t ) is set as the representative

value of the wet reference of the growing season (denoted as σ0
wet ,con). Then, Equation

2.11 can be written as Equation 4.5.

∆σ0(t ) =σ0
wet ,con −σ0

dr y (t ) (4.5)

Besides, in this study, at the beginning of the growing season, the corn field is in bare
soil condition. Therefore, the ∆σ0

s can be computed with Equation 4.6.

∆σ0
s =σ0

wet ,con −Mi n(σ0
dr y (t )) (4.6)

Unlike multi-incidence angle backscatter observations using incidence angle behav-
ior of backscatter signal as a seasonal function, single-incidence backscatter observa-
tions use the variation of backscatter sensitivity to soil moisture to indicate the vege-
tation growth and senescence. At the beginning of the growing season with less veg-
etation, the backscatter is more sensitive to soil moisture. When the vegetation cover
grows thicker, the sensitivity reduces. When the vegetation cover fades, the sensitivity of
backscatter to soil moisture recovers. The dry and wet references are determined based
on the slope and intercept time series and can be used as vegetation correction. Then,
VOD is estimated by bringing this vegetation correction into the Water Cloud Model with
Equation 2.14.

4.2. OTHER VEGETATION INDICES

4.2.1. CROSS-RATIO

The UF-LARS radar system collects radar backscatter at four polarization combinations
(HH, VV, HV, and VH). Polarization may contain information about the form and the
orientation of small scattering elements which compose the surface or target. Ulaby and
Moore used the University of Kansas microwave active and passive spectrometer (MAPS)
from 4 to 8 GHz in the experiment, the result shows that lower frequencies horizontally
polarized backscatter is more sensitive to soil moisture [17]. Srivastava et.al [49]found in
their experiment that L-band, backscatter in HV-polarization mode was most sensitive
to vegetation water content and can be used as a good estimator of VWC. HH polariza-
tion is more sensitive to surface scattering, while cross-polarization is more sensitive to
volume scattering and VV polarization is the combination of HH and cross-polarization
[50]. Therefore, backscatter at HH-polarization mode is better for ground parameter re-
trieval, and cross-polarization is better for vegetation parameters retrieval.

However, Brown’s study at C-band [51]shows that soil backscatter returns at VH po-
larization are probably caused by double scattering (stem-ground), the double-bounce
scattering may exceed the direct backscatter from the soil [52]. Under this situation, the
Cross-Ratio is introduced. The determination of CR is based on Equation 4.7 in the linear
domain. Then, all CR values are converted to the logarithmic domain.

C R (dB) = 10∗ log(
V H (m2/m2)

V V (m2/m2)
) (4.7)
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Compared with co-polarization, backscatter at cross-pol. increases more strongly
due to the volume scattering, which means CR will also increase due to the increase of
volume scattering. Besides, CR can reduce the double-bounce effect. Apart from that,
CR probably reduces errors associated with the radar system (e.g. error caused by the
radar system stability) or environmental influence (e.g. error associated with soil mois-
ture variability). This will make CR a more stable parameter compared with either VV-
or cross-polarization backscatter coefficient [50]. Thus, CR can be used as an estimator
for crop monitoring. However, a challenge of using the Cross-Ratio is the soil roughness
and vegetation structure. Rough soil surface can lead to depolarization which will have
the same CR value as a vegetated surface. Vegetation structure influence on backscatter
signals and the structure of crops changes throughout the growing season [53]. Thus,
there are more drivers than vegetation water content that cause the variation of CR.

4.2.2. NDVI
The Normalized Difference Vegetation Index (NDVI) is a simple graphical indicator that
can be used to analyze remote sensing measurements. Because of its simplicity, effi-
ciency and high spatial resolution, the NDVI is the most commonly used vegetation in-
dex currently [54]. NDVI is defined as:

N DV I = N I R −RED

N I R +RED
(4.8)

Where NIR and RED represent the amounts of near-infrared and red light, respec-
tively, reflected by the above-ground biomass and captured by the sensors installed on
the satellite. For healthy vegetation, chlorophyll inside the green vegetation reflects
more near-infrared and green lights and absorbs more red and blue light. Whereas, the
mesophyll leaf structure absorbs the near-infrared light. Thus, the value of NDVI indi-
cates the amount of photosynthetically active vegetation. NDVI values range between -1
and 1, the higher the NDVI, the healthier the vegetation will be, while the negative value
indicates the absence of vegetation [55].

Although the NDVI is not an intrinsic physical quantity, it is indeed correlated with
certain physical properties of the vegetation canopy: leaf area index (LAI), fractional
vegetation cover, vegetation condition and biomass [8]. There are some drawbacks of
NDVI. Firstly, NDVI is limited by atmospheric effects, NDVI is sensitive to the attenua-
tion by cloud, cloud shadows or aerosols. Secondly, the sensitivity between NDVI to LAI
becomes weaker with LAI increasing and beyond a threshold which typically between 2
and 3. Then, the effects of soil brightness and color may produce a large NDVI variabil-
ity. Finally, the NDVI only sense the top layer of the canopy [8] [9] [10]. Although the
VOD and NDVI show some correlation across spatial and temporal scales, they are fun-
damental measures of different vegetation properties. The VOD measured by microwave
observations is an integral measure of vegetation water content and structural effect [11]
while NDVI measures the canopy greenness.

In this study the NDVI values are obtained by combining the NIR and Red band of
the Sentinel 2 data from the Google Earth Engine. The high cloud occurrence in the case
study will influence the value of NDVI. To avoid the effect of the cloud, function to mask
clouds uses the cloud mask information in the Sentinel-2 QA60 band. The cloud mask
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enables cloudy and cloud-free pixels to be identified. The mask includes both dense
clouds and cirrus clouds with an indicator specifying the cloud type. When the cloud
mask is set as 0, it represents the cloud-free pixel [56][57].

4.3. THE RELATION BETWEEN VOD AND VEGETATION WATER

CONTENT
As mentioned before, VOD is closely related to water content in the above ground plant
components. Previous studies suggest that VOD and bulk vegetation water content are
linearly related to each other. However, in this study we try to find out whether this linear
relation holds true through the entire growing season of the corn. VOD at co- and cross-
polarization are analyzed here.

First, the vegetation water content of different vegetation components (denoted as
VWCi ) are interpolated into a 15 minutes interval dataset as shown in Figure 3.6. Then,
we have one VOD value and one VWCi at every radar retrieval time. The relation between
VWCi and VOD at different polarization modes will be clear after making a scatter plot
that VWCi as x-coordinate and VOD as y-coordinate. If the linear relation holds true in
certain growth stages, the OLS method is used to derive the linear relation. R2 of each
linear relation is reported to show how well the linear model fits the data. R2 equals the
square of the Pearson correlation coefficient between the observed and modeled values
of the dependent variable.

4.4. IDENTIFYING THE DRIVERS OF TEMPORAL VOD VARIA-
TIONS

4.4.1. RANDOM FOREST MACHINE LEARNING
In sensitivity analysis (a) The sensitivity of VOD to water content of different vegetation
components, (b) The sensitivity of VOD to the stems water content at different height
and (c) The sensitivity of VOD to the leaf water content at different height are further
quantified using a supervised random forest (RF) machine learning technique. In order
to compare VOD with CR, the sensitivity analysis of CR using the RF model is conducted
in the same way as VOD.

A random forest classifier is an ensemble classifier that consists of many decision
trees. RF technique generates a random sample of the original data with replacement
(bootstrapping) and uses a user-defined number of the randomly selected subset of vari-
ables to determine node splitting. In the supervised mode, RF will run as a classifier
and will measure the importance of all variables as well as the ability of each variable
to classify the data appropriately. Supervised classifiers are more robust compared to
the model-based approaches [58]. The supervised classifiers can learn and find out the
characteristics of the response variable from the provided training samples and then ap-
ply the learned characteristics in the unclassified data. The RF has the advantage that
it does not make any assumptions about the relation between the input and the output
variables and can be used for nonlinear multiple regression [1]. Besides, RF can limit
over-fitting without substantially increasing error due to bias.

Here, the additional RF functions called feature importance are used to identify the
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most important input variables for the response variable. There are two popular ap-
proaches for feature ranking. Mean Decrease in Gini (MDG) and Mean Decrease Accu-
racy (MDA). The MDG measures how much a variable reduces the Gini impurity metric
in a particular class [59][60]. However, when using MDG, several things need to keep in
mind. Firstly, when the data set has two or more correlated features, any of them can be
used in the RF model as a predictor, with no preference of one over another. But once
they are all selected as predictors, the use of one of them will significantly reduce the
importance of others since the impurity they can effectively remove is already removed
by the first feature. As a result, the reported feature importance of them will be lower.
Secondly, MDG is biased toward preferring variables with more categories. In this study,
the input variables are not independent of each other. Thus, we used MDA as the fea-
ture selection method. MDA measures the impact of each feature on the accuracy of
the model. The general idea in MDA is first to randomly permute (simply shuffles the
array along the timeline. The order of the sub-arrays has changed, but its contents re-
main unchanged) the values of each feature and then take account of the decrease of the
model accuracy after permutation. Obviously, permutation of the unimportant feature
will result in small impact on model accuracy while the permutation of the important
feature will lead to clearly decrease in model accuracy. In this study we use function
r2_score in python to estimate the accuracy between the modeled and actual value. Best
possible score is 1.0 and it can be negative because the model can be arbitrarily worse.
Thus, when negative value appears, the input can not explain the target at all. A con-
stant model that always predicts the expected value of response variable, disregarding
the input features, would get a R2 score of 0.0. The MDA between the original data and
permuted data is calculated by:

MD A = accur ac y −accur ac yper mute

accur ac y
(4.9)

In the sensitivity analysis, we want to use the MDA as ranking method to find out
which component of the vegetation water content is more important to VOD. Three sen-
sitivity analysis are conducted in both vegetative and reproductive stage.

• (a) Three RF models are built. The input variables of all three models are the stem
water content (VWCstem), leaf water content (VWClea f ), and ear water content
(VWCear ). The response variable of the three models is VOD at HH polarization,
VV polarization and cross-polarization respectively.

• (b) Three RF models are built. The input variables of all three models are stem
height 0-20 cm, stem height 20-40 cm, stem height 40-60 cm, stem height 60-80
cm, stem height 80-110 cm, stem height 110-140 cm, and stem height 140-170 cm.
The response variable of the three models is VOD at HH polarization, VV polariza-
tion and cross-polarization respectively.

• (c) Three RF models are built. The input variables of all three models are leaf 1-4,
leaf 5-7, leaf 8-10, leaf 11-13, leaf 14-15. The response variable of the three models
is VOD at HH polarization, VV polarization and cross-polarization respectively.
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In order to compare the differences between VOD and CR, sensitivity analysis to
identify the drivers of CR variations are conducted as well in both vegetative and repro-
ductive stage.

• (a) The input variables are the stem water content (VWCstem), leaf water content
(VWCl ea f ), and ear water content (VWCear ). The response variable is CR.

• (b) The input variables are stem height 0-20 cm, stem height 20-40 cm, stem height
40-60 cm, stem height 60-80 cm, stem height 80-110 cm, stem height 110-140 cm,
and stem height 140-170 cm. The response variable is CR.

• (c) The input variables are leaf 1-4, leaf 5-7, leaf 8-10, leaf 11-13, leaf 14-15. The
response variable is CR.

Within all these random forest models, 300 decision trees with a maximum depth of
30 are trained. After building the RF, the analysis of the feature importance can be con-
ducted, which quantifies the relative importance of the different variables for estimating
VOD at different polarization modes in different growth stages. The variable importance
quantifies the reduce of model accuracy when this variable is permuted. It can give us
a general idea that which input variables have more effect on VOD. Notice that, the wa-
ter content of different vegetation components is correlated in some ways, therefore, the
MDG is not suitable to rank the features. In this study, the feature importance is calcu-
lated by MDA. The feature importance calculated by MDG is shown in appendix D, the
ranking is different from the result using MDA.

The Out-Of-Bag (OOB) score is calculated to assess the performance of the models.
In the RF, every tree uses bootstrap sampling, this means that every tree in the forest is
built on about 63% of the available data, leaving the remaining approximately 37% which
is the OOB data. The OOB score is the average R2 calculated from the trees that do not
contain a certain value for response variable in the respective bootstrap sample [53]. In
this study, RF is not recommended for VOD prediction because the sample size is not
large enough. However, the feature importance function of RF can be used to identify
the drivers of the VOD variation.



5
RESULTS AND DISCUSSION

This chapter describes and discusses the results. First, the time series of dry, wet refer-
ences as well as the time series of VOD of the corn field are shown. Second, the temporal
variation of VOD during the growing season is discussed. Next, the time series of other
vegetation indicators is compared with VOD. Then, the relation between VOD and VWC
is explored. Lastly, we will move to the sensitivity analysis which tries to discover which
component of bulk vegetation water content has more influence on VOD variations at
different BBCH stages.

5.1. ESTIMATING VEGETATION OPTICAL DEPTH

SLOPE AND INTERCEPT DERIVATION

In this study, the R-squared returned by the OLS method is used to evaluate the goodness
of fit. We set a threshold of R-squared and assume that a linear relation is credible when
its R-squared is higher than this threshold. The threshold at VV and cross-polarization
is set as 0.5 while the threshold at HH polarization is set as 0.2. This lower threshold is
because we considered the noise contains in HH polarization (see in Appendix A) will
affect the fitting result. Thus, compared with VV and cross-polarization we have to lower
the standard at HH polarization in order to keep the temporal variation of slope and
intercept relatively complete.

In Figure 5.1 and Figure 5.2, with threshold = 0.5, slope and intercept time series at
VV polarization is more complete compared with other polarization modes. This means
the linear relation can apply better in VV polarization. When the vegetation cover is less
dense (before May 11th , LAI ≤ 2.1, BBCH before 18), the slope value of VV polarization
is higher compared with other polarization modes, which means during this period VV
polarization is more sensitive to Mv . However, when vegetation cover is thicker (After
May 30th , LAI ≥ 3.4, BBCH after 59),the slope value of cross-polarization is higher com-
pared with other polarization modes, which means during this period cross-polarization
is more sensitive to Mv .There is an obvious gap that starts around May 17th and ends
around the end of May. In this period, precipitation happens in most time of a day (the

33
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Figure 5.1: The time series of slope derived by OLS at every radar time step with goodness of fit higher then set
threshold. Y-axis is the value of slope(k), x-axis is the time, and the color of each dot indicates the goodness of

fit)

exact time of precipitation can be found in [41]), this influence the linear relation be-
tween backscatter and Mv . However, VV polarization is less vulnerable in this situation.
In Figure 5.2, the intercept (C) time series shows a rising trend from the start to the end
of the growing season. The C value is an indicator of the total backscatter. Clearly, the
growth of vegetation cover will result in an increase in backscatter. Therefore, as the
vegetation becomes more luxuriant, the time series of C also shows an upward trend.

In Figure 5.1 and Figure 5.2, there are fluctuations as well as unreasonable spikes
with extreme large or small values in the slope and intercept time series. The slope and
intercept time series are affected by the linear model prediction accuracy, continuous
precipitation, and the uncertainty of radar or soil moisture sensor. Therefore, in order
to get a smoother time series, a 5-day moving average is applied to reduce the noise in
slope and intercept time series. Smoothed time series is shown in Appendix C).
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Figure 5.2: The time series of intercept derived by OLS at every radar time step with goodness of fit higher
then set threshold. Y-axis is the value of intercept(C), x-axis is the time, and the color of each dot indicates the

goodness of fit)

5.1.1. DRY AND WET REFERENCES TIME SERIES

After obtaining the slope and intercept of the linear relation at every radar retrieval time,
we can determine the dry and wet references by substituting the smallest and largest
volumetric soil moisture into these linear relations.

The dry and wet references are shown in Figure 5.3, some backscatter values are
much higher than the wet reference line and some backscatter values are slightly lower
than the dry reference. As discussed in section 4.1.1, in order to meet the assumption
of this study, backscatter data under the extremely dry condition and backscatter dur-
ing precipitation, irrigation and dew after the closure date are all excluded before the
calculation starts.

The variation of the dry reference is related to the growth of the vegetation layer. At
HH polarization, the dry reference keeps growing before BBCH=63 and becomes sta-



5

36 5. RESULTS AND DISCUSSION

Figure 5.3: The dry reference, wet reference, and static component at HH (top), VV(middle) and
cross-polarization(bottom)

ble after that. At VV polarization, the dry reference rises after BBCH=15 and keeps the
growing trend until BBCH=53. Then it stays relatively stable after BBCH=53. At cross-
polarization, the dry reference keeps rising before BBCH=55 and stays relatively stable
after that. The rapid growth of dry reference at co- and cross-polarization all happens
within the vegetative stage, while the variation of dry reference is small during the re-
productive stage. Before 11 May, the difference between the dry and wet references are
larger in VV polarization. Besides, the rising of the dry reference at VV polarization ap-
pears later compared with other polarizaiton modes. Thus, backscatter at VV polariza-
tion is more sensitive to soil moisture. From Figure 5.3, the difference between the dry
and wet references at co- and cross-polarization can indicate the variation of vegetation
cover reasonably.

5.1.2. VOD TIME SERIES

Typically, values of VOD for agriculture crops have generally be given as less than one
[61]. While, in this study, the magnitude of estimated VOD at both co- and cross-polarization
seems less than expected. However, VOD values are very sensitive to dry and wet refer-
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Figure 5.4: VOD at co- and cross-polarization(top) and transmissivity at co- and cross-polarization(bottom)

ence values. Based on the discussion in section 5.1.1, dry and wet references are reason-
able and can indicate the vegetation variability. Besides, we use the variation of VOD to
reflect the water content variation in the vegetation canopy. Hence the temporal varia-
tion of VOD is more important than its actual values.

From Figure 5.4, at HH polarization, VOD begins to increase at BBCH=13 until BBCH=30
while another increasing period is from BBCH=53 until BBCH=63 at a larger rate. The
former is in the leaf development stage which coincides with the increase of the bulk
vegetation water content(see in Figure 3.6). The latter is in the heading stage where
no rapid increasing of bulk vegetation water content happens. Thus, this rapid change
of VOD may be related to the moisture redistribution inside the canopy in the head-
ing stage. Then, VOD is relatively stable from BBCH=30 to BBCH=53, while the bulk
vegetation water content is still increasing. From BBCH=63 to the end, VOD only in-
creases slightly, and the bulk vegetation water content also increases a bit in this period.
At VV and cross-polarization, the VOD has similar trend, which can be divided into two
parts. From BBCH=13 to BBCH around 53, VOD grows more rapidly. This period is in the
leaf development stage and stem elongation stage and coincides with the rapid increase
of bulk vegetation water content. From BBCH around 53 to the end, the rate becomes
lower. This rate change happens at the beginning of the heading stage of the corn. How-
ever, the time that the rate becomes lower appears later at the cross-pol. than in the VV
pol., which indicates the VOD at VV polarization is more likely to be affected by heading.
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For VOD at VV and cross-polarization, their variation correlated well with bulk vege-
tation water content before BBCH=53. While VOD at HH polarization, its variation cor-
relates well only before BBCH=30. This indicates that the structure change of corn has
more influence on VOD at HH polarization.

5.2. CROSS-RATIO AND NDVI TIME SERIES
In this study, except for VOD, we also select CR and NDVI as vegetation indicators. The
temporal variation of CR and NDVI can be seen in Figure 5.5 and Figure 5.6.

5.2.1. CROSS-RATIO

Figure 5.5: Volumetric soil moisture and LAI(top) and backscatter at VV and cross-polarization as well as CR
values(bottom)

In Figure 5.5, we can observe that the CR increases with vegetation. CR starts to
increase from BBCH=13 and this growth ends at BBCH=51. The value of CR increases
from -18 dB to -12 dB in this period. This increasing period covers the leaf development
stage and the stem elongation stage. The average VWCbulk at BBCH=51 is 3.5 kg /m2 and
LAI of this day is 3.4. Then from BBCH=51 to BBCH=55, CR grows a little. After BBCH=55,
the increasing trend stops and starts to decrease rapidly. And from BBCH=65 to BBCH
around 71, the increasing trend of CR re-emerges. However, the time series of CR also
shows fluctuations due to soil moisture dynamics clearly. Thus, at L-band, the effect of
soil moisture is not reduced much as expected.

In BBCH=13 to BBCH=51, both LAI and VWCbulk grows rapidly. The increasing CR
correlated to LAI and VWCbulk in this period. After BBCH=51, the LAI exceeds 3, the
sensitivity of CR to LAI is lost. A similar threshold of LAI was also found by Jiao et.al
[62]. From BBCH=53 to BBCH=71, unlike VOD time series in Figure 5.4, CR time series
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has both increase and decrease periods. Bulk vegetation water content in Figure 3.6 also
shows the similar increase and decrease almost in the same period. Thus, CR correlates
better to VWCbulk in this late growing period, which firstly decreases from BBCH=59 to
BBCH=65 and then increases from BBCH=65 to BBCH=71(see in Figure 3.6). This shows
that after the tassel fully emerged and separate, CR can respond to small changes in bulk
VWC.

The time series of CR indicates: firstly, the soil moisture effect on CR is not reduced
much, this may due to the L-band has larger penetration depth and the backscatter is
more sensitive to soil moisture content. Secondly, from BBCH= 13 to BBCH=55, the sen-
sitivity of CR to vegetation growth(from -18 dB to -12 dB) is less compared with backscat-
ter at cross-polarization(from -35 dB to -10 dB). Thirdly, compared with VOD, after the
heading stage, CR responses to small changes in VWCbulk . Fourthly, when LAI exceeds 3,
the sensitivity of CR to LAI is lost. Lastly, the noise of CR at the beginning of the growing
period may be caused by the structural change due to leaf development.

5.2.2. NDVI
Because of the cloud influence in the case study area, only six valid values of NDVI were
obtained during the growing season(see in Figure 5.6). In the NDVI time series, there
are two strange points. One is on April 19th , one day after the corn is planted. The
NDVI value of this day is even larger than the NDVI value after the corn emergence. The
other point is on May 29th, the NDVI value at that day is similar to the NDVI value at
the start of the growing season. Theoretically, the variation of vegetation canopy with
time is in a small range, the time series of NDVI is expected to be smooth. However, the
signal received by sensors is affected by the atmosphere, cloud, geometric misregistra-
tion, anisotropic reflectance effects, electronic errors [6]. Hence, the NDVI time series
may contain some noise. If the time series is dense enough we could use a smoothing
method to remove the noise. However, within this short growing season, the amount of
NDVI samples is far from sufficient. Thus, it is hard for us to draw valuable conclusions
form this NDVI time series. In this case, the NDVI is less reliable compared with radar
data.

Figure 5.6: Blue dots are NDVI values during the growing season obtained from Google Earth Engine
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5.3. THE RELATION BETWEEN VOD AND VWCbulk
From Figure 5.7, it is clear that the linear relation between VOD and VWCbulk does not
always hold true during the entire growing season of the corn at both co- and cross-
polarization. The relation between VWClea f and VOD, VWCstem and VOD hold true at
co- and cross-polarization before BBCH=51. For VODear and VOD, the linear relation
holds true from BBCH=63 to BBCH=71. The non-linearity of VOD and VWCbulk after
BBCH=51 is mainly due to the ear emergence. In this period, the influence of moisture
redistribution inside the canopy on VOD variation is obvious. Notice, at HH polarization,
before BBCH=51, the relation between VOD and VWCbulk (also stem, leaf water content)
is less linear visually. This is caused by the large range of the y-axis. If we only focus on
the data before BBCH=51, then the linear relation is obvious(see the scatter plot in ap-
pendix E). Table 5.1 to Table 5.4 show the linear relation derived by ordinary least square
method.

Figure 5.7: Scatter plots show the relation between VOD and VWC (This figure contains three rows, the y-axis
of each row is HH-, VV- and cross-polarization (from top to bottom), respectively. As for the four columns of

this figure, the x-axis of each column is bulk, stem, leaf and ear water content (from left to right), respectively.
Then in every subplot, the color of each point represents the BBCH growth stage. Because ears emerge in the

later part of the growing season. Therefore, the y-axis of the fourth column (with grey background) in this
figure does not start from 0 )

From Figure 5.7, for bulk vegetation water content, when it hits 3.64 kg /m2 , the
linear relation is not valid. For stem and leaf water content, the ending point of the
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Polarization Slope Intercept R2

HH 0.033 0.027 0.858
VV 0.022 0.002 0.989

Cross 0.020 0.004 0.983

Table 5.1: The slope, intercept and R2 calculated by OLS to describe the linear relation between VOD and
VWCbulk from BBCH=13 to BBCH=51

Polarization Slope Intercept R2

HH 0.050 0.030 0.827
VV 0.034 0.003 0.977

Cross 0.030 0.005 0.968

Table 5.2: The slope, intercept and R2 calculated by OLS to describe the linear relation between VOD and
VWCstem from BBCH=13 to BBCH=51

Polarization Slope Intercept R2

HH 0.159 0.023 0.875
VV 0.104 -0.001 0.985

Cross 0.093 0.002 0.981

Table 5.3: The slope, intercept and R2 calculated by OLS to describe the linear relation between VOD and
VWClea f from BBCH=13 to BBCH=51

Polarization Slope Intercept R2

HH 0.016 0.343 0.964
VV 0.017 0.071 0.942

Cross 0.020 0.086 0.899

Table 5.4: The slope, intercept and R2 calculated by OLS to describe the linear relation between VOD and
VWCear from BBCH=63 to BBCH=71
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linear relation is 2.31 and 0.78 kg /m2 respectively. As for the ear water content, the linear
relation is not valid when ear water content lower than 0.17 kg /m2. Therefore, at both
co- and cross-polarization, the linear relation between VWCbulk and VOD is valid only
before the heading stage.

The slopes of these linear relationships indicate the sensitivity of VOD to water con-
tent of different vegetation components. From Table 5.1, VOD at HH polarization is more
sensitive to bulk vegetation water content. However, the R2 of the linear model at HH po-
larization is smaller compared with linear model either at VV or cross-polarization. This
may caused by the noise contains in the backscatter observations at HH polarization.

In summary, the VOD is highly related to VWCbulk . The linear relation between VWCbulk

and VOD is not completely wrong. Before BBCH=51, their relationship can be described
by a linear model with a static slope. However, after BBCH=51 especially when the ear
emergence, this simple relation cannot be used anymore. During the period when the
linear relation is true, VOD at HH-polarization is more sensitive to VWCbulk .

5.4. SENSITIVITY ANALYSIS OF VOD USING RANDOM FOREST

5.4.1. THE SENSITIVITY OF VOD TO WATER CONTENT OF DIFFERENT VEG-
ETATION COMPONENTS

The Random Forest model is used to elucidate the sensitivity of VOD to water content
in stems, leaves, and ears. According to the result from section 5.3, the linear relation
between VOD and VWCbulk does not always hold true in the growing season. Therefore,
we conduct the sensitivity analysis in the vegetative stage and the reproductive stage
respectively in order to see the drivers of VOD in different growth stages. In each period,
three RF models are built. The input variables are VWCstem , VWClea f , and VWCear and
the response variable is VOD at HH, VV and cross-polarization respectively. The result
of the Out-of-Bag scores (OOB score) and values of feature importance are displayed in
Table 5.5 and Figure 5.8.

BBCH=13∼BBCH=59

Polarization H H V V cr oss −pol
OOB score 0.999476 0.999667 0.999810

BBCH=59∼BBCH=71
Polarization H H V V cr oss −pol
OOB score 0.949115 0.989968 0.985738

Table 5.5: The OOB score result of RF models with the response variable: VOD at co- and cross-polarization
respectively and the Input variables: VWCstem , VODstem , and VODear at vegetative and reproductive stage

In the vegetative stage, stem water content and leaf water content are the most im-
portant features at both co- and cross-polarization. This is obvious because there is al-
most no moisture in ear in this period. Although they are equally important, the feature
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Figure 5.8: Feature importance of RF model for VOD and water content of different vegetation components
(Each subplot is the result of one RF model, every bar in the subplots stands for the feature importance of one

input variable of this RF model (stem, leaf and ear water content). For the three rows of this figure, the
response variable for each row is VODH H , VODV V , and VODcr oss (from top to bottom), respectively. As for

the two columns of this figure, the growing stage for each column is BBCH=13 to BBCH=59, BBCH=59 to
BBCH=71 (from left to right), respectively)
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importance of stem water content is slightly larger. However, at HH polarization, the
feature importance of ear is unexpectedly large. From Figure 5.4, we can see that unlike
VV and cross-polarization, a rapid increase of VOD at HH polarization happens between
BBCH=53 to BBCH=63. In this period, ear emerged and the water content gradually in-
creases though the amount is negligible compared with stem and leaf(see in Figure 3.6).
However, in this period the water content of leaf is almost stable and the stem water con-
tent decreases from BBCH=53 to BBCH=59. From BBCH=53 to BBCH=59, the increasing
trend of ear water content coincides with the rapid growth of VOD at HH polarization.
This may cause the high value of the feature importance of ear water content at HH po-
larization.

In the following reproductive stage, the ear water content becomes the most impor-
tant feature at both co- and cross-polarization. At HH polarization mode, the impor-
tance of leaf water content reduces massively, while at VV- and cross-polarization, the
importance of stem water content decrease sharply. Here, the RF results also prove that,
ear plays an important role in VOD variations.

The OOB scores of all RF models are higher than 0.9(see in Table 5.5) which demon-
strates that these vegetation water content have the ability to explain the variation of
VOD. However, the OOB score at the reproductive stage is relatively small compared
with the vegetative stage. This may indicate that other variable also shows influence
on VOD besides the vegetation water content. It is the variation of the structure of the
corn, which reduces the sensitivity of VOD to vegetation water dynamics.

In summary, although the VOD is highly related to VWCbulk , the main driver of VOD can
be any of the components of the VWCbulk . In the vegetative stage, VWCstem and VWCear

are undoubtedly the most important driver for VOD variations, because the other com-
ponents are not emerging or mature yet. Then, in the reproductive stage, VWCear be-
comes the most important driver although it is not the main contributor to the VWCbulk

at the very beginning. The above situation happens at both co- and cross-polarization
modes. However, in the reproductive stage, the second important driver for VOD varia-
tion is different at co- and cross-polarization. VWCstem occupy this place at HH polar-
ization whereas at VV and cross-polarization VWClea f occupy this place.

5.4.2. THE SENSITIVITY OF VOD TO STEM AND LEAF WATER CONTENT AT

DIFFERENT HEIGHTS
The WCM assumes that the moisture is distributed evenly in the canopy layer. Although
this assumption makes the parameterization of the vegetation layer easier, it is a huge
simplification of reality. In Figure 5.9, it clearly shows that the moisture distribution in
vegetation canopy is not uniform. The stem water content decreases with height. In
the vegetative stage, the stem water content is higher than 0.10 kg /m2 below 110 cm.
In the reproductive stage, the stem water content between 70 to 110 cm becomes rela-
tively dry and most water is concentrated in the lower part of the stem. In general, when
the ear emerges and separates from the stem, the water content of stem at and above
that ear forming point becomes comparatively dry. As for the leaf water content, before
BBCH=30, the leaf water content of every leaf is relatively small. After BBCH=30, leaf 1
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Figure 5.9: Stem(top) and leaf(bottom) water content distribution with height. The top plot shows the stem
water content in kg /m2. Each dot represents the total water content in all stems of a 10-cm stem section. The

y-axis of the each dot stands for the height at the top of that 10-cm stem section. The bottom plot shows the
leaf water content in kg /m2. Each dot represents the total water content of leaves with their collar height

showed in the y-axis.
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to leaf 4 die. After BBCH=51, leaf 8 to leaf 11 contain the most part of the moisture. In
general, since larger leaves often occur at the midsection of the corn, most of the leaf
moisture concentrates at this part as well.

RF modeling is used to unravel the sensitivity of VOD to water content in stem sec-
tions, leaves lumps at different heights respectively. We conduct the sensitivity analysis
both in the vegetative and the reproductive stage.

STEM

In the vegetative stage, according to section 5.4.1, the stem water content is an very im-
portant driver for VOD variation at both co- and cross-polarization. At HH and cross-
polarization, stem water content at height between 80 and 110 cm has a feature impor-
tance higher than 0.2. At VV polarization, stem water content at height 60-80 cm has
feature importance higher than 0.2 (see in Figure 5.10). Thus, HH and cross-polarization
are more sensitive to moisture content in the upper canopy compared with VV polariza-
tion.

In the reproductive stage, according to section 5.4.1, for both VV and cross-polarization,
stem water content is not an important driver for VOD variation anymore. Stem wa-
ter content has a large influence on VOD variation only at HH polarization. Then from
Figure 5.10, we can see that the feature importance ranking at HH polarization is more
reasonable. The water content in the stem section between 0 to 80 cm is the most im-
portant driver to VOD variation. This section of stem also concentrates most moisture
of the stem(see in Figure 5.9). Same as the vegetative stage, HH-polarization is still more
sensitive to the higher canopy. Notice that the feature importance of SH60-80 shows a
value greater than 1 at cross-polarization, which means the accuracy of the model be-
comes negative after randomly permuting the values of that feature. This indicates that
the change of this feature cannot explain VOD variation. Thus, the water content in 60-
80 cm stem section is not important for VOD variation. The OOB scores in the vegetative
stage is slightly larger compared with the reproductive stage (see in Table 5.6). This indi-
cates that RF model has better performance at the vegetative stage.

BBCH=13∼BBCH=59

Polarization H H V V cr oss −pol
OOB score 0.999076 0.999744 0.999798

BBCH=59∼BBCH=71
Polarization H H V V cr oss −pol
OOB score 0.980094 0.954216 0.980536

Table 5.6: The OOB score result of RF models with the response variable: VOD at co- and cross-polarization
respectively and the input variables: the water content of stem sections between a certain height range at

vegetative and reproductive stage

LEAF

In the vegetative stage, according to section 5.3, leaf water content is an important driver
for VOD variation at both co- and cross-polarization. At HH polarization, VOD is more
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Figure 5.10: Feature importance of RF model for VOD and water content of stem section at different height
(Each subplot is the result of one RF model, every bar in the subplots stands feature importance of one input
variable(the water content of a stem section between a certain height range) of this RF model. For the three

rows of this figure, the response variable for each row is VODH H , VODV V , and VODcr oss (from top to
bottom), respectively. As for the two columns of this figure, the growing stage for each column is BBCH=13 to

BBCH=59, BBCH=59 to BBCH=71 (from left to right), respectively
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sensitive to the moisture content in leaf 14 and leaf 15 which locates at the upper canopy.
Besides, the water content in leaf 14 and leaf 15 is relatively dry (see in Figure 5.9). The
feature ranking of moisture content in leaf 14 and leaf 15 is done by firstly permuting its
moisture content then calculating the change in model accuracy. Leaf 14 and leaf 15 lo-
cate around 110 cm in the canopy layer, therefore, we can also say VOD is more sensitive
to moisture change in this part of the canopy. Besides, in this period, stem water con-
tent is also a important driver for VOD variation(see in Figure 5.8). Thus, if we focus on
canopy layer around 110 cm, in Figure 5.10, VOD is more sensitive to moisture in stem
section from 80 to 110 cm. Thus, the higher feature importance value of moisture con-
tent in leaf 14-15 may caused by the VOD sensitivity to stem water content at this height.
Next, at VV and cross-polarization, VOD is more sensitive to the moisture content in leaf
8 to leaf 13. This is also where most part of the moisture in the canopy concentrates.

In the following reproductive stage, according to Figure 5.8, leaf water content is not
an important driver for VOD variation at HH polarization anymore. At VV and cross-
polarization, the moisture content in leaf 5, leaf 6, and leaf 7 is the highest, even higher
than 0.8. Then, the moisture content of leaf 8, leaf 9 and leaf 10 is also an important
driver but with much smaller feature importance. However, the moisture content in leaf
5-7 is much smaller compared with the moisture content in leaf 8-10. Leaf 5-7 locate be-
tween 15 cm and 40 cm in the canopy layer, therefore, we can also say VOD is more sen-
sitive to moisture change in this part of the canopy. From Figure 5.8, the stem is already
not the main driver of VOD variation at VV and cross-polarization in this period. The
remaining vegetation component that has large influence on VOD variation at VV and
cross-polarization is the ear. Therefore, the canopy layer between 15 cm to 40 cm may
contain ear. From Table 5.7, OOB scores in the vegetative stage are larger compared with
reproductive stage. Thus, RF models have better performance at the vegetative stage.

BBCH=13∼BBCH=59

Polarization H H V V cr oss −pol
OOB score 0.999007 0.999770 0.999834

BBCH=59∼BBCH=71
Polarization H H V V cr oss −pol
OOB score 0.984048 0.954216 0.983554

Table 5.7: The OOB score result of RF models with the response variable: VOD at co- and cross-polarization
respectively and the input variables: the water content of leaf lumps between a certain height range at

vegetative and reproductive stage

In summary, VOD is indeed more sensitive to the canopy part that contains more mois-
ture. Thus, it can tell us some information about the vertical moisture distribution of
the canopy. According to the result, at the vegetative stage, VOD is more sensitive to the
stem moisture below 110 cm. At the reproductive stage, VOD is more sensitive to stem
moisture below 80 cm. Moisture redistribution between 80 to 110 cm stem section may
cause by the ear emergence in this part of the canopy. As for leaf, in both vegetative and
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Figure 5.11: Feature importance of RF model for VOD and water content of leaf at different height (Each
subplot is the result of one RF model, every bar in the subplots stands for the feature importance of one input
variable of this RF model (water content of several leaves between a certain height range). For the three rows

of this figure, the response variable for each row is VODH H , VODV V , and VODcr oss (from top to bottom),
respectively. As for the two columns of this figure, the growing stage for each column is BBCH=13 to

BBCH=59, BBCH=59 to BBCH=71 (from left to right), respectively
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reproductive stages, VOD is more sensitive to leaf in the middle part of the canopy (no.8,
9, 10). Although VOD shows sensitivity to the canopy layer that contains more moisture,
VOD is more sensitive to the higher part of this layer, especially at HH polarization.

5.5. SENSITIVITY ANALYSIS OF CR USING RANDOM FOREST

5.5.1. THE SENSITIVITY OF CR TO WATER CONTENT OF DIFFERENT VEGE-
TATION COMPONENTS

In the vegetative stage, stem water content and leaf water content are the most impor-
tant features though the leaf water content is slightly larger. Then, in the following re-
productive stage, the stem and ear water content are the most important driver for CR
variations. The OOB score of the vegetative stage RF model is 0.796312 and the OOB
score of the reproductive stage is 0.765552. Although the OOB score is high, it still can-
not compare with RF models take VOD as the response variable. From Figure 5.12, in the
vegetative stage, similar to VOD as the response variable, stem and leaf water content
are the variables best explaining the variability in CR. In the reproductive stage, unlike
VOD as the response variable, the stem water content has the largest feature importance.
Thus, compared with VOD, CR is less sensitive to ear water content.

Figure 5.12: Feature importance of RF model for CR and water content of different vegetation components
(Each subplot is the result of one RF model, every bar in the subplots stands for the feature importance of one

input variable of this RF model (stem, leaf and ear water content). For the two columns of this figure, the
growing stage for each column is BBCH=13 to BBCH=59, BBCH=59 to BBCH=71 (from left to right),

respectively)

5.5.2. THE SENSITIVITY OF CR TO STEM AND LEAF WATER CONTENT AT

DIFFERENT HEIGHTS

STEM

In the vegetative stage, according to Figure 5.12, stem water content is important to CR
variations. Then, in Figure 5.13, the feature importance of moisture content in the stem
section between 0 and 20 cm is much higher than other input variables. Thus, the mois-
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Figure 5.13: Feature importance of RF model for CR and water content of stem vegetation content at different
height(Each subplot is the result of one RF model, every bar in the subplots stands for one input variable of

this RF model (stem water content at a certain height range). For the two columns of this figure, the growing
stage for each column is BBCH=13 to BBCH=59, BBCH=59 to BBCH=71 (from left to right), respectively)

ture content at this part of the stem section is the main driver of CR variation. From
Figure 5.9, part of moisture concentrates in this stem section.

In the reproductive stage, according to Figure 5.12, stem water content is still impor-
tant to CR variations. However, unlike the vegetative stage, the larger values of feature
importance appear in the upper part(110 cm to 170 cm) of the stem section. From Fig-
ure 5.9, the moisture content of this part is relatively small compared with the lower
part of the stem. Besides, the canopy layer at this height contains less moisture as well.
Thus, this may indicate CR values are more sensitive to moisture in the upper part of the
canopy. The OOB score at the vegetative and reproductive stage is 0.795884 and 0.726938
respectively. RF model has better performance at the vegetative stage.

LEAF

In the vegetative stage, according to Figure 5.12, leaf water content is the main driver
of CR variations. Then, in Figure 5.14, the moisture content in leaf 5-13 has more effect
on the CR changes. The value of feature importance of leaf 5-7 is the highest. Although
the moisture content in leaf 5-7 is relatively small, the moisture content of leaf at the
beginning of the growing period is small as well. Thus, moisture in leaf 5-7 still plays
an important role in the beginning. Then in the reproductive stage, according to Figure
5.12, leaf water content is not an important driver for CR anymore. The OOB score of the
vegetative stage and reproductive stage is 0.788487 and 0.695279 respectively.

In summary, the OOB scores of RF models show that CR is sensitive to VWCbulk but
VOD can do better. Besides, VOD can do better in providing information about moisture
vertically distribution as well. In the vegetative stage, the main driver for CR variation
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Figure 5.14: Feature importance of RF model for CR and water content of leaf vegetation content at different
height(Each subplot is the result of one RF model, every bar in the subplots stands for the feature importance
of one input variable of this RF model (water content of several leaves at a certain height range). For the two
columns of this figure, the growing stage for each column is BBCH=13 to BBCH=59, BBCH=59 to BBCH=71

(from left to right), respectively)

is also the VWCstem and VWClea f but VWClea f is slightly more important. While in the
reproductive stage, VWCear has less effect on CR.
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6.1. CONCLUSION
1. Can the TU-Wien VOD estimation method be adapted to estimate VOD from backscat-

ter at single-incidence angle?

In the TU-Wien VOD estimation method, multi-incidence angle backscatter data
is required to derive the relation between incidence angle and backscatter (σ0(θ)).
Then, the slope and curvature of σ0(θ) as well as the cross-over angles are used to
determine the dry and wet references with the assumption that the effects of veg-
etation cover are minimized and the variation of backscatter coefficient is mainly
caused by the soil moisture variation. In our study, we do not have multi-incidence
angle backscatter data. However, we have in-situ soil moisture data. Thus, we ap-
plied the linear model between volumetric soil moisture and backscatter with the
assumption that the soil moisture is the only variable that causes the backscat-
ter variation. Notice that, when the soil moisture is low and does not vary much
in days, the scatter plot of backscatter against soil moisture will look like a cloud
of points. From the mathematical point of view, the result can be arbitrary when
fitting a line through a cloud of points. Thus, soil moisture data and backscatter
data during the long dry-down period need to be excluded. Especially when the
dry-down period is almost or even longer than the sliding window length we set.

Apart from that, vegetation water content varies within several days to weeks. There-
fore, in the TU-Wien VOD estimation method, it assumes that the short-term vari-
ation of backscatter is mainly caused by soil moisture variation. However, vege-
tation surface water will cause the short-term backscatter variation which is not
related to soil moisture dynamics. The effect of surface water on the canopy layer
cannot be neglected especially when the vegetation canopy is getting lush and
dense. Therefore, we use LAI as well as in-situ photograph of the field to deter-
mine when the canopy is thick enough to cover the soil surface and we call this
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day as the closure of the canopy. After the closure of the canopy, in order to avoid
the influence from vegetation surface water, we exclude the soil moisture as well
as the backscatter data when irrigation, precipitation and dew happens.

In summary, if you have soil moisture data, after the adaptation made above, the
TU-Wien VOD estimation method can be applied to single-incidence angle backscat-
ter observations. In single-incidence backscatter observations, the variation of
sensitivity of backscatter to soil moisture are used to indicate the vegetation growth
and senescence. At the beginning of the growing season, vegetation cover is less
dense, the backscatter is more sensitive to soil moisture. When the vegetation
cover grows thicker, the sensitivity reduces. When the vegetation cover fades, the
sensitivity of backscatter to soil moisture recovers. However, this adaptation can
only be used when the auxiliary soil moisture data is available.

2. What is the relation between VOD and VWCbulk in the entire growing season?
Does the linear relation hold true in the entire growing season?

The linear relation between VOD and VWCbulk does not always hold true during
the entire growing season of the corn at both co- and cross-polarization. This lin-
ear relation can be applied during the vegetative stage when stem and water con-
tent are the main driver of the VOD variation. And the slope factor of this linear
relation can be set as a constant value. When the heading stage (BBCH=51) be-
gins, although the value of VWCear is small, the importance of VWCear cannot
be neglected. When VWCear becomes the dominant driver of VOD variability in
the reproductive stage, the previous derived linear relation between VWCbulk and
VOD is not valid anymore.

3. Bulk vegetation water content comprises many components. Here we only focus
on stem, leaf, and ears. Thus, which vegetation components are the main drivers
for VOD variation? Will this result change in different growth stages? Will this
result also change in different polarization?

VWCbulk has many components. VOD is highly related to VWCbulk but the main
driver of VOD variability can be any of these components. In the vegetative stage,
the canopy layer is not very dense. Thus, the estimated VOD values are relatively
small and the total backscatter is dominated by the surface scattering from the
soil surface at both co- and cross-polarization. During this period, the main driver
of the VOD variation is the VWCstem and VWCl ea f . In the following reproduc-
tive stage with a denser canopy, the estimated VOD increases and contribution
of volume scattering from the vegetation cover becomes dominated in the total
backscatter at both co- and cross-polarization. This time, the most important
driver of VOD variation is the VWCear .

In summary, the VWCstem and VWClea f have more influence on VOD variation
in the vegetative stage while the VWCear affects VOD more during the reproduc-
tive stage. This happens at both co- and cross-polarization. However, during the
reproductive stage, the second main driver of VOD variation can be different at
different polarization. At HH-polarization, the VWCstem is the second driver while
at VV and cross-polarization VWClea f is the second driver.



6.1. CONCLUSION

6

55

Besides, from the OOB scores of the RF models in different growing stages, VOD is
better related to VWCstem , VWClea f and VWCear in the vegetative stage. In the re-
productive stage, except for the vegetation water content, other factors such as the
structure of the plant begin to affect the VOD variation and reduce the sensitivity of
VOD to vegetation water content. This happens at both co- and cross-polarization.

4. The moisture inside the canopy is not uniformly distributed. The backscatter will
be influenced by the vertical distribution of moisture. Is the VOD more sensitive
to the particular part of the canopy layer that contains more moisture?

In the vegetative stage, stem and leaf water content are important for VOD vari-
ations. Therefore, we can continue to find which section is the main driver for
VOD variation. In this period, VOD shows more sensitivity to the leaf lump (lo-
cated in the middle of the canopy) and the stem section (below 110 cm) with more
moisture content. In the reproductive, stem water content is more important for
HH pol. while leaf water content is more important for VV and cross-polarization.
Thus, VOD at HH polarization can better describe the vertical distribution of stem
water content while VOD at VV and cross-polarization can better describe the ver-
tical distribution of leaf water content. VOD is more sensitive to the stem section
below 80 cm and more sensitive to leaf lump in the middle part of the canopy.

In summary, VOD is indeed more sensitive to the canopy layer which contains
more moisture. However, VOD is less sensitive to the lower part of this layer than
to the upper part of this layer, especially at HH polarization.

5. Apart from VOD, Cross-Ratio is also a commonly used indicator for vegetation
water content in the microwave frequency region. Besides, NDVI in the spectrum
region is also an often used vegetation water content indicator. What is the dif-
ference between VOD, CR, and NDVI? Can they all sufficiently describe the vege-
tation water content within the canopy?

Because of the cloud influence in the case study area, only a limited number of
NDVI values can be obtained during the growing season. Besides, the NDVI time
series smoothing methods need to be used for reducing noise in NDVI time series
because the signal received by sensors is affected by the atmosphere, cloud, geo-
metric misregistration, anisotropic reflectance effects, electronic errors. However,
during the growing season the NDVI data is far from sufficient. It is hard to draw
valuable conclusions from this time series. Therefore, NDVI is more suitable for
analysis in a longer period like yearly data. In this case, compared with radar data
(CR and VOD), NDVI is less reliable.

Although CR data is sufficient, the soil effect is not effectively removed from the CR
time series. Compared with VOD, firstly, CR is less sensitive to ear water content at
the reproductive stage. Secondly, after tassel fully emerged and separate, CR can
response to small changes in bulk vegetation water content. Besides, although the
OOB scores of all RF models take CR as the response variable is higher than 0.6,
it still cannot compare with OOB scores of RF models take VOD as the response
variable (all higher than 0.9). This indicates that compared with CR, VOD is better
related to vegetation water dynamic.
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6.2. RECOMMENDATION
We made adaptations to the TU-Wien VOD estimation method because we have auxil-
iary soil moisture data. Although this adaptation is feasible, this cannot be used except
for experimental settings. Because, in most cases, we cannot get the soil moisture data
from the area we monitored.

Another recommendation is in the application of the random forest machine learn-
ing technique. The additional function called feature importance is used to rank the
driver of the VOD variation. In our study, the input variables are not independent of
each other. Therefore, it is better to use Mean Decrease Accuracy as the ranking method
instead of the Mean Decrease in Gini. The results based on MDA and MDG can be totally
different. Sometimes the feature ranking results from MDA show that a group of leaves
or a section of the stem may have relatively small moisture content whereas its impor-
tance to VOD variation is extremely large. When a situation like this happens, it does not
always mean errors, we need to check whether there are other vegetation components
in the canopy layer that is analyzed. Although we only focus on estimating feature im-
portance of leaf lumps and stem sections in the RF models, the way we use is actually
estimate the influence of the moisture of one part of the canopy.

Besides, the random forest model in this study is not recommended for VOD predic-
tion. We only use the feature importance function of RF to identify the drivers of the
VOD variation. However, if in the future the sample size is large enough (for example,
samples in different years), then the RF model can be build and used for prediction.
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A
NOISE IN BACKSCATTER

OBSERVATIONS AT HH
POLARIZATION

The vegetation cover is less dense at the beginning of the growing season, however, the
influence of soil moisture change does not show in the backscatter at HH polarization
(the data in red circle in Figure A.1). The backscatter observations at VV and cross-
polarization shows the influence from soil moisutre (the data in green circle in Figure
A.1).
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Figure A.1: The backscatter observations at co- and cross- polarization. The backscatter data inside the red
circle in HH polarization is where the noise appears)



B
GROWTH STAGES FOR CORN

The table in Figure B.1 contains the detail information about different BBCH growth
stages of corn. This table is from the Crop Identification and BBCHStagingManual: SMAP-
12 Field Campaign. Then, the table in Figure B.2 tells information of corn growth stage
conversions. Source from: https://naicc.org/wp/wp-content/uploads/2017/01/
Industry-Recommendations-for-Implementing-EFSA-Guidance-Document-for-Conducting-GM-Crop-Studies.
pdf
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Figure B.1: Table with the description of different BBCH stages for corn (Superscript 1: A leaf may be
described as unfolded when its ligule is visible or the tip of next leaf is visible; Superscript 2: Tillering or stem
elongation may occur earlier than stage 19, in this case continue with principal growth stage 3. Superscript 3:

In maize, tassel emergence may occur earlier, in this case continue with principal growth stage 5)
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Figure B.2: Corn growth stage conversions





C
SMOOTHED SLOPE AND INTERCEPT

TIME SERIES

Figure C.1: The slope time series derived by the OLS with R2 higher than 0.5 (orange dots). And a smoother
slope time series using a moving average of 5-day (blue dots) at different polarization mode(HH

polarization(top left), VV polarization(top right) and cross-polarization(bottom left))
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Figure C.2: The intercept time series derived by the OLS with R2 higher than 0.5 (blue dots). And a smoother
slope time series using a moving average of 5-day (red dots) at different polarization mode(HH

polarization(top left), VV polarization(top right) and cross-polarization(bottom left))



D
MEAN DECREASE IN GINI

These plots show the feature importance calculated with the Mean Decrease in Gini
method. Because the input variables of RF models in this study are not independent
from each other. Thus, MDG is not suitable for feature ranking. The result calculated by
MDG is different compared with the results calculated with MDA.
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Figure D.1: Feature importance of RF model for VOD and water content of different vegetation components
(Each subplot is the result of one RF model, every bar in the subplots stands for the feature importance of one

input variable of this RF model (stem, leaf and ear water content). For the three rows of this figure, the
response variable for each row is V ODH H , V ODV V , and V ODcr oss (from top to bottom), respectively. As for

the two columns of this figure, the growing stage for each column is BBCH=13 to BBCH=59, BBCH=59 to
BBCH=71 (from left to right), respectively)
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Figure D.2: Feature importance of RF model for VOD and water content of stem at different height (Each
subplot is the result of one RF model, every bar in the subplots stands for the feature importance of one input
variable of this RF model (water content of a stem section between a certain height range). For the three rows
of this figure, the response variable for each row is V ODH H , V ODV V , and V ODcr oss (from top to bottom),

respectively. As for the two columns of this figure, the growing stage for each column is BBCH=13 to
BBCH=59, BBCH=59 to BBCH=71 (from left to right), respectively
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Figure D.3: Feature importance of RF model for VOD and water content of leaf at different height (Each
subplot is the result of one RF model, every bar in the subplots stands for the feature importance of one input
variable of this RF model (water content of several leaves between a certain height range). For the three rows
of this figure, the response variable for each row is V ODH H , V ODV V , and V ODcr oss (from top to bottom),

respectively. As for the two columns of this figure, the growing stage for each column is BBCH=13 to
BBCH=59, BBCH=59 to BBCH=71 (from left to right), respectively
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Figure D.4: Feature importance of RF model for CR and water content of different vegetation components
(Each subplot is the result of one RF model, every bar in the subplots stands for the feature importance of one

input variable of this RF model (stem, leaf and ear water content). For the two columns of this figure, the
growing stage for each column is BBCH=13 to BBCH=59, BBCH=59 to BBCH=71 (from left to right),

respectively)

Figure D.5: Feature importance of RF model for CR and water content of stem vegetation content at different
height(Each subplot is the result of one RF model, every bar in the subplots stands for the feature importance
of one input variable of this RF model (stem water content at a certain height range). For the two columns of
this figure, the growing stage for each column is BBCH=13 to BBCH=59, BBCH=59 to BBCH=71 (from left to

right), respectively)
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Figure D.6: Feature importance of RF model for CR and water content of leaf vegetation content at different
height(Each subplot is the result of one RF model, every bar in the subplots stands for the feature importance
of one input variable of this RF model (water content of several leaves at a certain height range). For the two
columns of this figure, the growing stage for each column is BBCH=13 to BBCH=59, BBCH=59 to BBCH=71

(from left to right), respectively)



E
LINEAR RELATION BETWEEN VOD

AND VWC IN CERTAIN GROWTH

STAGES

Figure E.1: Linear relation between V ODH H and V W Cbulk (top left), V ODH H and V W Cl ea f (top right),
V ODH H and V W Cstem (bottom left), V ODH H and V W Cear (bottom right)
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Figure E.2: Linear relation between V ODV V and V W Cbulk (top left), V ODV V and V W Cl ea f (top right),
V ODV V and V W Cstem (bottom left), V ODV V and V W Cear (bottom right)

Figure E.3: Linear relation between V ODcr oss and V W Cbulk (top left), V ODcr oss and V W Clea f (top right),
V ODcr oss and V W Cstem (bottom left), V ODcr oss and V W Cear (bottom right)
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