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Abstract 
The present paper proposes a set of blending constraints expressed in lamination parameter space, 
applicable during the continuous optimisation of composite structures. Thicknesses and ply 
orientations of large composite structures are often locally optimised in response to unequal spatial 
load distribution. During this process, ensuring structural continuity is essential in order to achieve 
designs ready to be manufactured. Single step stacking sequence optimisations relying on 
evolutionary algorithms to enforce continuity, through the application of blending rules, are prone to 
the curse of dimensionality. By contrast, multi-step optimisation strategies including a continuous 
sub-step can optimise composite structures with reasonable computational effort. However, the 
discrepancies between continuous and discrete optimisation step result in performance loss during 
stacking sequence retrieval. By deriving and applying blending constraints during the continuous 
optimisation, this paper aim is to reduce the performance loss observed between optimisation levels. 
The first part of this paper is dedicated to the derivation of blending constraints. The proposed 
constraints are then successfully applied to a benchmark blending problem in the second part of this 
paper. Numerical results demonstrate the achievement of near-optimal easy-to-blend continuous 
designs in a matter of seconds. 
 
Keywords:  Composite materials, Blending, Lamination parameters, Optimisation, Variable Stiffness 

I. Introduction 

The significant weight saving potential achievable with tailored composite structure is now well-
recognised amidst the scientific community. The incentive to manufacture strong yet lightweight 
structures is also resulting in the increasing use of composite materials in many engineering 
applications. Moving from metals to composite structures has, however, brought forward a 
considerable new set of challenges including new failure mechanisms, added complexity and the 
increased number of design variables. These have led to the development of a broad range of 
composite design guidelines and optimisation methods [1, 2].  
 
Over the last decade, it has become evident that optimising composite structures raises several 
difficulties. Amongst these, the non-convex fibre angle design space, mixed-integer design variables 
and, manufacturability constraints have been recognised as major obstacles [3, 4]. In this paper the 
authors focus on one of the manufacturing constraints, namely the blending constraint. First 
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introduced by Kristindottir et al.[5], blending is essential to ensure structural continuity and avoid 
stress concentration during the design of large composite structures, where thicknesses and ply 
orientations are often locally optimised. Single and multi-step optimisation strategies have been 
proposed to solve the complex problems of composite structure optimisation. Single optimisation 
methods such as guide-based designs [6] and stacking sequence tables [4] are strictly limited to the 
generation of designs satisfying blending constraints. Although successful on small scale problems, 
these approaches result in highly constrained optimisation with prohibitively high computational cost. 
On the other hand, multi-step optimisation strategies divide the optimisation of composite structures 
into faster and simpler-to solve sub-optimisation problems [7, 8]. Commonly used are bi-step 
optimisation strategies which separate the continuous and discrete optimisations [9, 10]. Employing 
intermediate design variables (e.g. lamination parameters), the optimisation is reformulated into a 
continuous convex optimisation for which fast convergence towards a global optimum is guaranteed 
[11]. Following the continuous optimisation, a highly constrained discrete optimisation is usually 
employed to retrieve ready-to-manufacture stacking sequences closely matching the continuous 
optimisation output results. 
 
Optimal designs obtained after the continuous optimisation generally show the significant 
improvements achieved by composite structures upon metal-based designs [8]. Nevertheless, 
retrieving a feasible and manufacture-ready stacking sequence closely matching the continuous results 
often turns out to be challenging, if not impossible [12]. That is, the manufacture of large composite 
structure is subject to numerous constraints that are not readily applicable at the continuous 
optimisation step. Constraints are most often integrated into evolutionary algorithms (i.e. the discrete 
optimisation) in which they can be easily handled. However, running a lightly constrained continuous 
optimisation followed by a highly constrained discrete search can result in high disparities between 
the two optimisation steps. The likelihood of an equivalent of the optimal continuous design existing 
in the highly constrained design space is therefore not guaranteed. As a consequence, this design 
spaces disparity will often result in performance loss of the optimised structure during stacking 
sequence retrieval. In view of the above, the aim of the present paper is to derive a set of continuous 
blending constraints in order to achieve more realistic continuous design, and therefore reduce the loss 
of performance observed during stacking sequence retrieval. 
 
The rest of this paper is structured as follows. Section II serves as a brief literature review on blending 
rules. The derivation of blending constraints in lamination parameter space is addressed in Section III. 
The proposed constraints are applied to a benchmark optimisation problem in Section IV while the 
output of this investigation are summarised in Section V. 

II. Blending Rules 

Various blending definitions have been proposed over the last decade. In his work, Adams et al.[6] 
consider only inner or outer blending, where the innermost or outermost plies are dropped as shown in 
Figure 1.a. Van Campen et al.[13]  introduce two alternative blending definitions, namely the 
generalised and relaxed generalised blending as illustrated in Figure 1.b. In the former, two adjacent 
laminates are blended if all the plies of the thinnest panel are also present in the other panels. The 
relaxed generalised blending consider two laminates blended if there are no discontinuous plies in 
physical contact. In the present study, the generalised blending definition of Van Campen et al.[13] is 
followed. 
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(a)    (b)  
 

Figure 1 - (a) Outward and inward blending, and (b) generalised (I and II) and relaxed generalised (II 
and III) blending. Original figures from [13]. 

 
The first application of blending in composite optimisation has been performed by Kristinsdottir et 
al.[5]. Starting from a set of well-defined in-plane loads, the most loaded panel is identified as the 
thickest laminate. Laminates from other panels are then obtained by progressively dropping plies from 
this thickest laminate. This “less-then-or-equal-to” blending rule results in a highly constrained global 
optimisation problem with mixed-integer variables for which Kristinsdottir et al.[5] proposed an 
improved hit-and-run optimisation strategy. In another investigation, Liu and Haftka [14] used a 
constrained bi-level optimisation to enforce continuity. Employing a limited number of ply angles, 
they proposed a continuity constraint expressed as the ratio of common ply angles between adjacent 
panels. Soremekun et al.[15] proposed a methodology based on a two-step genetic algorithm (GA). In 
the first step, an optimisation without blending is run to determine the minimum number of plies 
required in each panel. The second optimisation uses the lowest number plies found in step 1 to create 
a base laminate spanning the entire structure. The process is then repeated for other group of panels 
with common number of plies until the final design is reached. Adams et al.[6] introduced yet another 
blending approach, namely the guide-based blending. Similarly to the “less-then-or-equal-to” 
blending rule, a guiding stack is defined for the thickest laminate from which other panel laminates 
are obtained by dropping plies. On the other hand, the guide-based approach reformulates the 
optimisation problem so as to remove explicit constraints by adding a small number of design 
variables in order to ensure blending. Adams et al.[6] proposed using a single-step GA to solve the 
optimisation problem. All of the above mentioned optimisation enforce blending during discrete 
optimisation. To the best of our knowledge, no reported studies have proposed the application of 
blending constraints in lamination parameter space for continuous composite optimisation. 

III. Derivation of Blending Constraints 

Blending constraints in lamination parameter (LP) space are derived in this section. The notation used 
for LP is first introduced before the reader is guided through the derivation of blending constraints for 
in-plane and out-of-plane LPs. A general blending constraints, valid for any combinations of LPs, is 
presented at the end of Section III.  
 
The lamination parameters of a N-ply laminate built out of discrete plies of constant thicknesses and 
ply angles θ(z) are calculated as follows: 
 

����, ���, ���, ���	 = 1�
�cos�2��� , sin�2��� , cos�4��� , sin�4�����
���  

����, ��� , ���, ���	 = 2����
���� − �� �� 	�cos�2��� , sin�2��� , cos�4��� , sin�4�����
���  

 

(1.a) 

  

(1.b) 

 

Blending Definition Used 
in the Present Paper 
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���!, ��!, ��! , ��!	 = 4����
���� − �� �� 	�cos�2��� , sin�2��� , cos�4��� , sin�4�����
���  

 (1.c) 

 
where, �� = −�/2 + $  (2) 

1. Single In-Plane Lamination Parameter Blending Constraint 

The key idea behind the derivation of blending constraints in LP space is to quantify the change in 
LPs due to ply-drops. The ply-drop notation used throughout this section is presented in Figure 2. 
 

 
Figure 2 - Ply-drop illustration for N, N-1 and N-X plies 

 
We begin by investigating the difference in the lamination parameter V1

A  due to 1 ply-drop. We 
denote V1

A
(N-1) the value of V1

A after 1 ply-drop as in (3). The change in V1
A due to the ply removal 

can be quantified according to (4), where the subscript j refers to the removed ply. 
 

����%&'� = 1� − 1
 cos�2���� �
���   (3) 

 

∆����%�→�%&'� = ����%� − ����%&'� = 1� cos�2�*	 + +1� − 1� − 1,
 cos�2���� �
���   (4) 

 
The maximal and minimal values of (4) respectively occur for [θj ; θi ]= [0° 90°] and for [θj ; θi ]= 
[90° 0°] at which the magnitude is: 
 max01,02 3∆����%�→�%&'�3 = 	2/�  (5) 

 
Equation (5) is verified by generating stacking sequences and computing the change in the lamination 
parameter V1

A  due to 1 ply-drop. The results are shown in Figure 3 for three pools of stacking 
sequences: one pool of randomly generated laminates of 20 plies, a second of all symmetric 0/45/90 
laminates of 16 plies, and a last pool of extreme laminates of 20 plies. In this context, extreme refers 
to laminate for which all �� are equal to each other. It is important to note that the maximal change in 
LPs (see Equation (4)) always occurs for an extreme laminate. 
 

    

Plate A (N-X) Plate C (N-1) Plate B (N) 

X Ply-drop 

1 Ply-drop 
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Figure 3 - Normalised change in lamination parameter V1

A due to 1 ply-drop 
 
Generalising the above results to a random number of X ply-drops we obtain: 

����%&5� = 1� − 6 
 cos�2����
��78�   (6) 

∆����%�→�%&5� = ����%� − ����%&5� = 1�
cos�2�*	7
*�� + +1� − 1� − 6, 
 cos�2����

��78�   (7) 

 
Equation (7) reaches its maximal value for the same configuration as ∆����%�→�%&'� at which the 

maximal change in the lamination parameter due to X ply-drops is proportional to the ply-drop ratio �6/��: 
 max01,02 3∆����%�→�%&5�3 = 2�6/��				  (8) 

 
Carrying out the equivalent calculations for the remaining in-plane LPs (i.e. V2,3,4

A) it can be shown 
that: 
 max01,02 3∆����%�→�%&5�3 = max01,02 3∆����%�→�%&5�3 = max01,02 3∆����%�→�%&5�3 = 2�6/��  (9) 

 
According to (9), four individual blending constraints can therefore be set as follows: 
 ∆�9��%�→�%&5� ≤ 2�6/��	,					for	= = 1,2,3,4   (10) 

 
Constraints (10) define the maximal change in LPs outside which no blended solution can be found. It 
should, however, be noted that constraints (10) are very conservative since the occurrence of extreme 
laminates is unlikely.  

2. Coupled In-Plane Lamination Parameters Blending Constraints 

Results presented in the previous section only consider the variation of one LP. The simultaneous 
changes in any combination of in-plane LPs due to ply-drops are investigated herein. We start by 
investigating the simultaneous change in V1

A and V2
A by introducing the in-plane Euclidian distance: 

 

?���@���→�� 5� = AB∆����%�→�%&5�C� + B∆����%�→�%&5�C�  
(11) 
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Similarly to individual LPs, it can be shown that the maximal Euclidean distance of (11) also occurs 
for an extreme laminate (subscript Ext). As a results, one can expand the first term under the square 
root as follows: 
 

DB∆����%�→�%&5�CEFGH� = I1� cos�2�*	
17
*�� + +1� − 1� − 6, cos�2��� 
 1�

��78� J�  (12) 

 

which simplifies to (13) where �K�, K�� = LMNO�2�*		, MNO�2���P. We introduce the notation Q9��*, ��	 
to denote the sum of cosine and sine functions for extreme laminates where the subscript k refers to 
the lamination parameters considered (i.e. 1, 2, 3 or 4).  
 

DB∆����%�→�%&5�CEFGH� = �6/����K�� + K�� − 2K�K�� = 	 �6/���Q���*, ��	  (13) 

 
Carrying out the same procedure for the second term, substituting in (11) and setting �R�, R�� =LO$S�2�*	, O$S�2���P, the Euclidean distance becomes:  

 

TB?���@���→�� 5�CEFGU� = �6/��� V�K�� + K�� − 2K�K��WXXXXXYXXXXXZ
[\]^	B∆_̀ a&bCc

+ �R�� + R�� − 2R�R��WXXXXXYXXXXXZ
[\]^	B∆_ca&bCc

d = �6/���Q����*, ��	  (14) 

 

Maximizing Q����*, ��	, the maximum in-plane Euclidean distance (11) can be shown to be: 

 max�e,�$ TB?12$f ���→��−5�C�U = 4	�6/��2  (15) 

 
According to the above derivation, the change in the lamination parameters V1

A and V2
A must satisfy 

constraint (16). The Euclidian distance (11) is associated to the radius of the feasible lamination 
parameters space  reachable due to ply-drops as illustrated in Figure 4 for a 5-ply laminate and 1 ply-
drop. B∆����%�→�%&5�C� + B∆����%�→�%&5�C� − 4	�6/��� ≤ 0 

 (16) 

 

 
Figure 4 - Illustrative example of the reduced feasible blended lamination parameter space of a 

stacking sequence of 5 plies due to 1 ply-drop 
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Generalising the Euclidean distance to all four in plane LPs, one obtains: 

 
With the following derivation: 
 

TB?�����@ ���→�� 5�CEFGU� = �6/�����K�� + K�� − 2K�K�� 	+	�R�� + R�� − 2R�R�� +	�K�� + K�� − 2K�K�� + �R�� + R�� − 2R�R��� = �6/���Q������*, ��	    (18) 

 
In which, the coefficients are given: �K�, K�, K�, K�	� = �MNO�2�*	, MNO�4�*	, MNO�2���, MNO�4����	  (19) 

[R�, R�, R�, R�	� 	= �O$S�2�*	, O$S�4�*	, O$S�2���, O$S�4����  (20) 

 

As previously, the maximal value of (18) is achieved when maximising Q9��*, ��	. This results can be 

generalised to any possible combination of in-plane lamination parameters considered when 
calculating the Euclidean distance. The generalised constraint is:  
 

B?9�@���→�� 5�C� ≤ �6/��� +max01,02 Q9��*, ��	,   (21) 

 

for which the maximal values of Q9��*, ��	 for all the in-plane LPs combinations are given in Table 1 

and Q������*, ��	 is plotted as an example in Figure 5. 

 

Table 1 - Maximal values of Q9��*, ��	 for all combination of in-plane lamination parameters 

Values of k 
Corresponding Combination of 

Lamination Parameters 
max01,02 Q9��*, ��	 

1 or 2 or 3 or 4 or 12 or 34 V1 or V2 or V3 or V4 or V1,V2 or V3,V4 4 

13 or 23 V1,V3 or V2,V3 5.1443 
14 or 24 or 123 or 124 or 

134 or 234 or 1234 
V1,V4 or V2,V4 or V1,V2,V3 or V1,V2,V4 

or V1,V3,V4 or V2,V3,V4 or V1,V2, V3,V4 
6.25 

 

B?�����@ ���→�� 5�C� =
B∆�9��%�→�%&5�C��
9��   (17) 
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Figure 5 - Coefficient function Q9��*, ��	 for the combination of all in-plane lamination parameters  

 
For sake of clarity, the spherical constraint (21) can be visualised in reduced dimensions when only 

considering the  change of three of the in-plane lamination parameters ∆�9��%�→�%&5� (k = 1,2,3) as 

shown in Figure 6.  

 
Figure 6 - Normalised Euclidean distance for extreme laminates contained into a sphere of radius 1 

 
 
Verification 
The proposed spherical constraint (21) considering all in-plane lamination parameters is now 
evaluated. For that purpose, a computer experiment quantifying the ease of a guide-based genetic 
algorithm in retrieving the stacking sequence of a 2-blended laminates problem is devised. The first 
laminate is attributed a feasible stacking sequence for which its LPs are calculated. The second 
laminate LPs are then obtained by disturbing the first laminate LPs with a random vector of variable 
norm. Next, the GA performance is evaluated while varying the disturbance vector norm so as to 
obtain LPs inside and outside the spherical constraint derived. 
  

Spherical Constraint 
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Figure 7 - Computer Experiment for verification of the proposed spherical constraint (21) 
 
The computer experiment is run for three examples where the number of plies N is set to 40, the 
number of repeated GA runs NGA is set to 20, X is respectively (2,4 and 10) and α is variable. The GA 
attempts to match the continuous LPs by designing blended stacking sequences with ply angles 
multiples of 15 (i.e. 0°, ±15°,±30°, ±45°, ±60°, ±75°, 90°). The GA retrieval error indexes are plotted 
as functions of the spherical constraint coefficient (α) in Figure 8. As can be observed in this figure, 
the GA error index increases rapidly if the blending constraint (21) is not satisfied. These results 
demonstrate the potential loss of performance which can occur when retrieving stacking sequences 
while trying to match LPs obtained from an unconstrained continuous (i.e. no-blending constraints) 
optimisation. Results presented in Figure 8 also suggests that performance loss will remain low as 
long as the blending constraint is satisfied. 
 

 
Figure 8 - Error index of the guide-based GA as a function of 

 the spherical constraint coefficient α 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5

G
A

 E
rr

or
 In

de
x

Spherical Constraint Coefficient (α)

X/N = 0.05

X/N = 0.1

X/N = 0.25

Infeasible Blending Space

Computer Experiment 
 

(A) Define the initial number of Plies (N), ply-
drops (X) and the spherical constraint 
coefficient (α) 

(B) Generate a random stacking sequence of N 
plies 

(C) Calculate the laminate corresponding 
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patch  LPN - X such that the disturbance 
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N
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Patch 1     Patch 2 
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(E) Employ the GA to retrieve a blended stacking sequence matching the LPs. The fitness function 
is defined is defined as: u$vSwOO = xyR	�lm]z* − lm{�	                   
Where lm]z* =	 �lm� , lm� 	7� and lm{� =	 �lm{��, lm{��		�. lm{�� and lm{�� denotes the LPs 
retrieved by the GA. 

(F) Calculate the GA retrieval error index (Eindex) defined as the average of the best finesses 

obtained for each GA runs (i.e. �{�): ?�|}~F = ���a∑ min�u$vSwOO	�$�	��a���  
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3. Coupled In-plane Out-of-plane Lamination Parameters Blending Constraints 

We have demonstrated, through the previous sections, that the change in lamination parameters due to 
ply-drops is limited. However, only in-plane lamination parameters were considered. In this Section, 
we propose a blending constraint which takes simultaneously into account all change in in-plane and 
out-of-plane lamination parameters. Since for most applications the coupling between in-plane and 
out-of-plane stiffness matrices is not desirable, only symmetric laminates are considered for the rest of 
this paper. Consequently, the number of ply-drops is restricted to positive integers multiple of 2 (i.e. 
N-2X) as shown in Figure 9. 

 
 

Figure 9 - Ply-drop illustration for symmetric laminates  
(X is an integer, 2X is the number of ply-drops) 

 
Similarly to Equation (10) for in-plane lamination parameters, it can be calculated that individual out-
of-plane lamination parameters have to satisfy the following constraint: 
 

∆�9!�%�→�%&�5� ≤ AQ=��e, �$				2�3 +6�, − 6+6�,2 + 4+6�,3� 	,									for	= = 1,2,3,4  (22) 

 

Note that the  Q9��*, ��	 function appears in both in-plane and out-of-plane constraints. Hence, one 

can easily combine constraints for in-plane and out-of-plane blending. The general hypersphere 
constraint is given: 
 

B?=$f,NNf���→��−5�C2 ≤ Q=��e , �$	 ���
�+26� ,2WYZ�S−m��Sw

+ 4�9 +6�,2 − 36 +6�,3 + 60 +6�,4 − 48 +6�,5 + 16 +6�,6�WXXXXXXXXXXXXXXXYXXXXXXXXXXXXXXXZ��v−NQ−m��Sw ���
�

  (23) 

 
Equation (23) is the final constraint derivation presented in this paper. It is a general equation which 

can be reduced to all previously presented results by simply substituting the Q9��*, ��	 function values 

from Table 1. An application of the derived continuous blending constraints is now proposed. 

IV. Application - Eighteen-panel Test Problem 

In this section, the proposed continuous blending constraints are applied to a bi-step structural 
optimisation problem. The 18-panel horseshoe test problem [15] is used as a benchmark case study. 
Local loads, panel dimensions and material properties are fully known as shown in Figure 10. The 

panels thicknesses v@ and out-of-plane lamination parameters ��!and ��! are design variables (dv). 

The optimal design must minimise the structure weight (24) while satisfying the buckling load factor 
constraint (25) for each panel 

Mid-plane 

Plate A (N-6) Plate B (N) 

X= 1 
X= 3 

Plate C (N-2) 
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min Q����	 = min
 v@��
@��   (24) 

 
subject to, 
 1 − �@ ≤ 0 ,    for    f = �1,2,3,… ,18�  (25) 

 
in which, 

�@ = �� D���,@��/�@	� + 2����,@ + 2���,@	��/�@	��S/�@	� + ���,@�S/�@	�H�F,@��/�@	� +��,@�S/�@	�   (26) 

 
where the subscript p denotes the panel number, �F,@ and ��,@ are the stress resultants in the 

longitudinal and transverse directions and	��*,@ are the bending stiffness matrix terms of each panel. 

Parameters �@ and �@ denote the panel dimensions while m and n respectively refer to the number 

half wave length along the x and y directions. As for the original problem statement, the stiffness 
matrix terms ��� and ��� are assumed to be zero. 

 
Figure 10 - Eighteen-panel blending test problem [15], Nx and Ny loads are in lbf/in (× 175.1 for N/m) 
 
Selecting the blending constraints specific to the eighteen-panel test problem out of the general 
constraint formula (23), we have: 

B∆�9!�%��→�%��C� ≤ n	4 �4 �9 +6�,� − 36 +6�,� + 60 +6�,� − 48 +6�,� + 16 +6�,��  , for	= = 1,3  (27) 

and  

y 

x 

E1  = 141GPa  (20.5Msi) 
E2  = 9.03GPa  (1.31Msi) 
G12  = 4.27GPa (0.62Msi) 
v12  = 0.32 
Ply thickness = 0.191mm (0.0075 inch) 

457mm 508 mm 

61
0 

m
m

 
305 m

m
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B∆�13� ����→����C� ≤ ¡	5.1443 �4�9 +6�,� − 36+6�,� + 60+6�,� − 48+6�,� + 16+6�,�� 	  (28) 

 
where Ni and Nj refer to two of the 18 panels, and the ply-drop or thickness ratio �6/�� between the  
panels is: 6¢£�¢ = �¢ −�£�¢ = 1 − �£�¢ = 1 − v£v¢  (29) 

 
Note that in order to have a smooth analytical constraint, the continuous thicknesses are used to 
calculate the ply-drop ratio instead of the corresponding rounded values of the number of plies in 
Equation (29). As demonstrated in Section III, the maximal changes in LPs occur for extreme 
laminates. Since the default constraints (27) and (28) with n = ¡ = 1 are likely to be over-
conservative, the variable coefficients n and ¡ are introduced in order to investigate the impact of the 
constraints sphere radius on the optimisation results. 
 
The proposed blending constraints (27) and (28) are spherical constraints which limit the change in 
LPs between laminates as a function of the laminates thickness ratio. However, enforcing these 
constraints when optimising both thicknesses and LPs simultaneously results in a non-convex 
optimisation problem. One algorithm, presented in in Figure 11, is proposed to solve this optimisation 
problem.  

 
Figure 11 - Algorithm 1 for composite optimisation including blending constraints  

Set Initial guess                              �v�…v���        L��,�! …��,��! P L��,�! …��,��! P 
Set Design Variables Boundaries   �0.0075; 	0.75� �−1; 	1�       			�−1; 	1� 
Define the number of GA runs: NGA  

Set Sphere Radius coefficient values  n and ¡ 

Run Unblended Gradient-based 
Optimisation (Obj. minimise weight) 

 

Run Blended Gradient-based 
Optimisation Starting from X0  

(Obj. minimise weight) 

Optimal design X0 

Repair Optimal Design Thickness to 
Ensure Symmetric Laminates Only 

Run Blended Gradient-based 
Optimisation with Fixed Thickness 

Starting from XR 

(Obj. maximise buckling factors) 

Repaired design XR 

Run NGA Guide-based Genetic Algorithms 
with Fixed Thicknesses  

(Obj. matching LPs, Symmetric 
Laminates and ∆° =15) 

Optimal design X1 

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

Continuous  
Optimisations 

Discrete  
Optimisation 
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Algorithm 1 first optimises the structure design (thicknesses and LPs) without blending constraints. In 
step 2, the unblended optimal design X0 is used as the starting point of the blended optimisation (i.e. 
constraints (27) and (28) are active). The blended optimised design is stored in X1. Up to this point, 
thicknesses remained continuous design variables during the optimisation. In step 3, a repair function 
rounds up the thicknesses of X1 to an even number of plies. The repaired design (XR) lamination 
parameters are optimised one last time while thicknesses are fixed (i.e. step 4). The propose 4 steps 
process from 1 to 4 is only one of the possible methods which can be used for integrating blending 
constraints into the continuous optimisation in order to achieve a more realistic continuous design. 
Investigating the impact of other approaches on the final continuous design is outside the scope of the 
present work. 
 
Following the continuous optimisations, a guide-based GA is used to retrieve a blended stacking 
sequence. Since it is expected that the final continuous design (i.e. end of step 4)  will be more 
realistic due to the application of blending constraints, it is likely that a close equivalent of this design 
can be found in the fibre angle space. In order to take advantage of this design equivalence and to 
avoid the computation of a potentially expensive fitness function, the guide-based GA objective is to 
match the LPs of the optimal continuous design. 
 
MATLAB R2014b (The MathWorks, Inc  Natick, MA, USA) was used to develop Algorithm 1. The 
fmincon gradient-based optimisation tool provided by MATLAB was chosen to solve the smooth 
continuous optimisation problems. An in-house code has also been developed for the guide-based 
stacking sequence retrieval. Results obtained at each step of Algorithm 1 for a specific set of inputs 
are shown in Appendix A while the general results are presented in Figures 12,13 and 14. In these 
figures, the dashed line labelled ‘Optimal Continuous Design (Step 1)’ denotes the optimal results 
achieved at the end of step 1. This is the minimum weight design satisfying buckling constraints. On 
the other hand, the solid line ‘Optimal (No Continuous Blending Constraints)’ refers to the design 
obtained at the end of step 5 while skipping step 2 (i.e. no continuous blending constraint enforced). 
This solid line serves as a reference to evaluate the improvement achieved due to the application of 
our blending constraints. During results generation it was observed that because constraints (27) and 
(28) are coupled, the minimum spherical coefficients between n and ¡ generally dominates the 
behaviour of the final results. For this reason, results are presented as a function of the minimal 
spherical radius coefficient.  
 

 
 

Figure 12 - Final number of plies obtained after optimisation (Step 5) 
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Figure 13 - GA retrieval error index �?�|}~F�. The lowest the value, the closer GA is matching the 

continuous LPs (Step 5) 
 

 

 
Figure 14 - Average of the maximal buckling constraint violation after GA (Step 5) 

 
We first study the impact of the default constraints (i.e. n = ¡ = 1) on the optimisation results. As 
can be seen in Figure 12, the same number of plies is obtained with and without the application of the 
default value constraints (27) and (28). By contrast, it can be observed in Figures 13 and 14 that even 
the application of the default constraints results in a more realistic continuous design and a significant 
decrease in performance loss during stacking sequence retrieval. These results clearly highlight the 
benefit achieved by applying the proposed blending constraints during the continuous optimisation. 
Moreover, further improvement are observed when reducing the  minimum spherical coefficients. 
 
As shown in Figure 12, the number of plies of the optimal continuous design increases as the 
spherical constraint coefficients decrease. This result is to be expected since the minimal feasible 
weight (i.e. unblended optimal design) can only increase due to the addition of blending constraints. 
Likewise, a correlation between the capability of the GA to retrieve a matching stacking sequence (i.e. 
low error index) and the spherical constraint coefficients is observed in Figure 13. This observation 
confirms that constraining the change in LPs ease the retrieval of a stacking sequence for the 
benchmark test problem (i.e. generalisation of the results presented in Figure 8). To which extent the 
problem should be constrained in order to obtain a reasonable trade-off between the added number of 
plies and the continuous design increase feasibility remains, however, to be investigated. 
 
Figure 14 presents the average (over 10 GAs) of the worst buckling factors obtained after stacking 
sequence retrieval. Similarly to Figure 13,  the satisfaction of buckling constraints is seen to improve 
as the spherical constraints coefficient decreases. This is a direct consequence of the application of 
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blending constraints resulting in more realistic and easier-to-blend designs. However, note that while 
the optimal continuous design always satisfies buckling constraints, the retrieved stacking sequences 
never fully satisfy all constraints (i.e. positive constraint violation). This is explained as follows: at the 
end of step 4, the continuous optimisation reaches a design which is located on the boundary of the 
feasible continuous domain satisfying both blending and buckling constraints. The GA, by matching 
LPs instead of evaluating buckling factors, can only degrade or exactly match the continuous design 
performance. It is, therefore, necessary to introduce a safety factor (SF) for the proposed algorithms to 
achieve a final blended design satisfying all buckling constraints. This can be effortlessly 
implemented by modifying (25) as follows: 
 1�Ru� − �@ ≤ 0 ,    for    f = �1,2,3,… ,18�  (30) 

 
A near optimal results achieved after stacking sequence retrieval employing this method is presented 
in Figure 15 and Table 2. Results are obtained after running Algorithm 1 with the inputs set to NGA = 
1, α=0.2, β=0.2 and a safety factor of 5 % �Ru = 1.05�. As can be seen in Figure 15, the optimal 
design LPs obtained at the end of the continuous optimisation (i.e. step 4) while enforcing blending 
constraints are located in the neighbourhood of single-step GA results reported in the literature [4, 6]. 
In addition to facilitate the retrieval of a blending stacking sequence, these results indicate that the 
application of continuous blending constraints for the horseshoe benchmark problem also effectively 
reduce the design search space around the global optimal. The retrieved stacking sequence is also 
closely located to the two previous results presented in literature. 
 

 
Figure 15 - Results comparison with the literature [4, 6] 
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Table 2 - Retrieved design example (the unsatisfied buckling factor constraints for n = m = 1 are 

shown in bold) 

Panel 
Nplies 
(460) 

V1
D V3

D (1 − �@) 

1 34 -0.0296 -0.7379 -0.1128 
2 28 -0.0442 -0.6930 0.0172 
3 22 -0.2993 -0.6202 -0.2154 
4 20 -0.2865 -0.6330 -0.3243 
5 16 -0.3219 -0.5654 -0.1274 
6 22 -0.2993 -0.6202 -0.0922 
7 20 -0.2865 -0.6330 -0.2827 
8 26 -0.1060 -0.6946 -0.1289 
9 38 0.0105 -0.7203 -0.0071 
10 36 -0.0284 -0.7262 -0.0840 
11 30 -0.0360 -0.7504 -0.0557 
12 28 -0.0442 -0.6930 0.0214 
13 22 -0.2993 -0.6202 -0.1434 
14 18 -0.3601 -0.5295 -0.0430 
15 26 -0.1060 -0.6946 -0.0943 
16 32 -0.0620 -0.7444 -0.1173 
17 20 -0.2865 -0.6330 -0.3010 
18 22 -0.2993 -0.6202 0.0094 

 

V. Conclusion and Future Work 

The present paper focuses on the application of blending constraints during the design of composite 
structures. Multi-step optimisation strategies employing a continuous and discrete optimisation step 
suffer from performance drops due to the design space discrepancy between the two optimisation  
steps. In general, the continuous optimisation is lightly or not constrained while the discrete 
optimisation is highly constrained. By deriving blending constraints applicable to continuous 
composite optimisation, the gap between the continuous and discrete optimisation levels can be 
reduced and the overall optimiser performance increased. 
 
In the first part of this paper, the authors propose new blending constraints formulated in the 
lamination parameter space. Constraints for all coupling of in-plane and out-of-plane lamination 
parameters have been derived by quantifying the maximum change in lamination parameters resulting 
from ply-drops. Conservative spherical constraints based on these maximal values where 
subsequently proposed. It was observed that constraints for in-plane lamination parameters obey a 
simple linear relationship between the ply-drop ratio and the change in lamination parameters (see 
Equation (10)). Constraints for individual change in lamination parameters were also shown to be 
easily extendable to any combination of in-plane and out-of-plane lamination parameters (23).  
 
In the second part of this investigation, the horseshoe blending test problem was used to provide an 
illustrative application of the newly derived blending constraints. The application of blending 
constraints was shown to result in more realistic optimal continuous designs for which the drop in 
performance between the two optimisation step was successfully reduced. However, to which extent  
the problem should be constrained in order to avoid excessive thickness increase remains unclear. In 
addition to the improve continuous design, the proposed implementation of blending constraint in 
Algorithm 1 has the advantage of reducing the genetic algorithm computational expense by replacing 
a potentially expensive fitness function by a fitness based on lamination parameter matching. 
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The present paper focused on the derivation of blending constraints. The applications of these 
constraints to other composite optimisation problems including the enforcement of additionally 
manufacturing constraints remains to be investigated. Furthermore, more in-depth studies are required 
in order to explain the choice of suitable spherical constraint coefficients resulting in a design space 
that is neither too restricted nor over-conservative.   
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Appendix A. A Step by Step Example for Algorithm 1 
The results obtained at each step of Algorithm 1 for a design case are presented herein. The options 
are set to: NGA = 10, α=0.8, β=1.0 and no safety factor (SF=1�. After generating a random initial 
design and running the unblended optimisation of step 1 we obtain: 
 

Table 3 - Unblended (X0) and blended (X1) continuous design examples 

 Unblended Continuous Design X0 Blended Continuous Design X1 

Panel 
Nplies 

(429.09) 
V1

D V3
D (1 − �@) Nplies 

(430.12) 
V1

D V3
D (1 − �@) 

1 31.73 0.344 -0.763 -1.51E-09 31.73 0.318 -0.798 -2.54E-08 
2 27.12 0.344 -0.763 -1.77E-09 27.12 0.307 -0.811 -3.23E-08 
3 19.95 -0.876 0.534 -2.41E-09 19.95 -0.876 0.534 -3.85E-08 
4 17.60 -0.876 0.534 -2.73E-09 17.60 -0.876 0.534 -4.36E-08 
5 14.89 -0.876 0.534 -3.22E-09 14.89 -0.876 0.534 -5.16E-08 
6 20.67 -0.876 0.534 -2.32E-09 20.67 -0.876 0.534 -3.72E-08 
7 17.79 -0.876 0.534 -2.70E-09 17.79 -0.876 0.534 -4.32E-08 
8 23.56 -0.876 0.534 -2.04E-09 23.60 -0.726 0.053 -3.08E-08 
9 36.75 0.344 -0.763 -1.31E-09 36.75 0.344 -0.763 -2.09E-08 
10 33.87 0.344 -0.763 -1.42E-09 33.87 0.344 -0.763 -2.27E-08 
11 28.50 0.344 -0.763 -1.68E-09 28.58 0.186 -0.931 -1.82E-08 
12 27.16 0.344 -0.763 -1.77E-09 27.16 0.315 -0.802 -2.94E-08 
13 20.36 -0.876 0.534 -2.36E-09 20.36 -0.876 0.534 -3.77E-08 
14 17.26 -0.876 0.534 -2.78E-09 17.26 -0.876 0.534 -4.45E-08 
15 23.81 -0.876 0.534 -2.02E-09 23.87 -0.697 -0.029 -2.86E-08 
16 28.97 -0.876 0.534 -1.66E-09 29.88 -0.239 -0.886 -4.35E-08 
17 17.70 -0.876 0.534 -2.71E-09 17.70 -0.876 0.534 -4.34E-08 
18 21.35 -0.876 0.534 -2.25E-09 21.35 -0.876 0.534 -3.60E-08 
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Table 4 - Final Continuous and retrieved design examples 

  
Final Continuous Design 

 (Step 4) 
GA Retrieved Design  

(Step 5) 

Panel 
Nplies 
(442) 

V1
D V3

D (1 − �@) V1
D V3

D (1 − �@) 

1 32 0.208 -0.843 -0.0064 -0.163 -0.679 0.1164 
2 28 0.092 -0.714 -0.0235 -0.199 -0.636 0.0700 
3 20 -0.722 0.054 -0.0015 -0.546 0.000 0.0601 
4 18 -0.582 -0.228 -0.0385 -0.451 -0.224 0.0151 
5 16 -0.477 -0.235 -0.1564 -0.442 -0.224 -0.1382 
6 22 -0.469 -0.335 -0.1326 -0.410 -0.249 -0.0945 
7 18 -0.582 -0.228 -0.0059 -0.451 -0.224 0.0460 
8 24 -0.597 -0.252 -0.0346 -0.316 -0.421 0.0590 
9 38 0.192 -0.657 -0.0438 0.056 -0.654 -0.0065 
10 34 0.308 -0.776 -0.0053 -0.088 -0.685 0.1091 
11 30 -0.241 -0.816 -0.0108 -0.162 -0.704 -0.0102 
12 28 0.092 -0.714 -0.0191 -0.199 -0.636 0.0740 
13 22 -0.469 -0.335 -0.1856 -0.410 -0.249 -0.1457 
14 18 -0.582 -0.228 -0.1015 -0.451 -0.224 -0.0447 
15 24 -0.597 -0.252 -0.0029 -0.316 -0.421 0.0878 
16 30 -0.241 -0.816 -0.0050 -0.162 -0.704 0.0421 
17 18 -0.582 -0.228 -0.0202 -0.451 -0.224 0.0324 
18 22 -0.469 -0.335 -0.0272 -0.410 -0.249 0.0074 

 
The lamination parameters obtained at the various step of the optimisation are illustrated in Figure 16. 
 

 
Figure 16 - Lamination parameters obtained at steps 1,4 and 5 of Algorithm 1 
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