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Abstract

The present paper proposes a set of blending edmtstexpressed in lamination parameter space,
applicable during the continuous optimisation ahpasite structures. Thicknesses and ply
orientations of large composite structures arendfteally optimised in response to unequal spatial
load distribution. During this process, ensurirg&ural continuity is essential in order to acleiev
designs ready to be manufactured. Single stepiataskquence optimisations relying on
evolutionary algorithms to enforce continuity, thgh the application of blending rules, are prone to
the curse of dimensionality. By contrast, multigstgtimisation strategies including a continuous
sub-step can optimise composite structures witkamable computational effort. However, the
discrepancies between continuous and discrete igatiion step result in performance loss during
stacking sequence retrieval. By deriving and apglyilending constraints during the continuous
optimisation, this paper aim is to reduce the gemfoce loss observed between optimisation levels.
The first part of this paper is dedicated to thevdgion of blending constraints. The proposed
constraints are then successfully applied to almaack blending problem in the second part of this
paper. Numerical results demonstrate the achieveaferear-optimal easy-to-blend continuous
designs in a matter of seconds.

Keywords: Composite materials, Blending, Lamination parterss Optimisation, Variable Stiffness

l. Introduction

The significant weight saving potential achievablth tailored composite structure is now well-
recognised amidst the scientific community. Thesittive to manufacture strong yet lightweight
structures is also resulting in the increasingafsmmposite materials in many engineering
applications. Moving from metals to composite dinoes has, however, brought forward a
considerable new set of challenges including nélwréamechanisms, added complexity and the
increased number of design variables. These havie lihe development of a broad range of
composite design guidelines and optimisation mettbd2].

Over the last decade, it has become evident thahispng composite structures raises several
difficulties. Amongst these, the non-convex fibnglke design space, mixed-integer design variables
and, manufacturability constraints have been reisegras major obstacles [3, 4]. In this paper the
authors focus on one of the manufacturing condtamamely the blending constraint. First

" Corresponding author. Email addreB8.M.J.Macquart@tudelft.{T. Macquart) , Tel.: +31619918984



introduced by Kristindottir et al.[5], blendingéssential to ensure structural continuity and avoid
stress concentration during the design of largepamite structures, where thicknesses and ply
orientations are often locally optimised. Single anulti-step optimisation strategies have been
proposed to solve the complex problems of compasitesture optimisation. Single optimisation
methods such as guide-based designs [6] and stps&guence tables [4] are strictly limited to the
generation of designs satisfying blending constsaiflithough successful on small scale problems,
these approaches result in highly constrained agdition with prohibitively high computational cost.
On the other hand, multi-step optimisation straegiivide the optimisation of composite structures
into faster and simpler-to solve sub-optimisatiooltems [7, 8]. Commonly used are bi-step
optimisation strategies which separate the continamd discrete optimisations [9, 10]. Employing
intermediate design variables (e.g. lamination patars), the optimisation is reformulated into a
continuous convex optimisation for which fast cagemce towards a global optimum is guaranteed
[11]. Following the continuous optimisation, a Highonstrained discrete optimisation is usually
employed to retrieve ready-to-manufacture stackemuences closely matching the continuous
optimisation output results.

Optimal designs obtained after the continuous dptition generally show the significant
improvements achieved by composite structures upetal-based designs [8]. Nevertheless,
retrieving a feasible and manufacture-ready stacg&eguence closely matching the continuous results
often turns out to be challenging, if not impossildi2]. That is, the manufacture of large composite
structure is subject to numerous constraints tieahat readily applicable at the continuous
optimisation step. Constraints are most often natiegl into evolutionary algorithms (i.e. the disere
optimisation) in which they can be easily handlddwever, running a lightly constrained continuous
optimisation followed by a highly constrained dieger search can result in high disparities between
the two optimisation steps. The likelihood of awmigglent of the optimal continuous design existing
in the highly constrained design space is therafoteguaranteed. As a consequence, this design
spaces disparity will often result in performanassl of the optimised structure during stacking
sequence retrieval. In view of the above, the dith® present paper is to derive a set of contisuou
blending constraints in order to achieve more séalcontinuous design, and therefore reduce e lo
of performance observed during stacking sequerigeval.

The rest of this paper is structured as followstiBe Il serves as a brief literature review omidieg
rules. The derivation of blending constraints imilaation parameter space is addressed in Section ||
The proposed constraints are applied to a benchamitisation problem in Section IV while the
output of this investigation are summarised in idacy.

II. Blending Rules

Various blending definitions have been proposed thwelast decade. In his work, Adams et al.[6]
consider only inner or outer blending, where theeimost or outermost plies are dropped as shown in
Figure 1.a. Van Campen et al.[13] introduce twerahtive blending definitions, namely the
generalised and relaxed generalised blendinguesdrdited in Figure 1.b. In the former, two adjacent
laminates are blended if all the plies of the thstrpanel are also present in the other panels. The
relaxed generalised blending consider two laminblisded if there are no discontinuous plies in
physical contact. In the present study, the geisecblending definition of Van Campen et al.[13] i
followed.
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Figure 1 - (a) Outward and inward blending, andgémeralised (I and Il) and relaxed generalised (Il
and Il) blending. Original figures from [13].

The first application of blending in composite opsation has been performed by Kristinsdottir et
al.[5]. Starting from a set of well-defined in-p&atoads, the most loaded panel is identified as the
thickest laminate. Laminates from other paneldlaea obtained by progressively dropping plies from
this thickest laminate. This “less-then-or-equdlktending rule results in a highly constrainedlgb
optimisation problem with mixed-integer variables Wwhich Kristinsdottir et al.[5] proposed an
improved hit-and-run optimisation strategy. In d®utinvestigation, Liu and Haftka [14] used a
constrained bi-level optimisation to enforce couityn. Employing a limited number of ply angles,
they proposed a continuity constraint expresselegatio of common ply angles between adjacent
panels. Soremekun et al.[15] proposed a methoddlaggd on a two-step genetic algorithm (GA). In
the first step, an optimisation without blendingus to determine the minimum number of plies
required in each panel. The second optimisation tiselowest number plies found in step 1 to create
a base laminate spanning the entire structurepideess is then repeated for other group of panels
with common number of plies until the final desigmeached. Adams et al.[6] introduced yet another
blending approach, namely the guide-based bleniimgilarly to the “less-then-or-equal-to”

blending rule, a guiding stack is defined for thiekest laminate from which other panel laminates
are obtained by dropping plies. On the other hdrelguide-based approach reformulates the
optimisation problem so as to remove explicit caaists by adding a small number of design
variables in order to ensure blending. Adams @]giroposed using a single-step GA to solve the
optimisation problem. All of the above mentionedimgsation enforce blending during discrete
optimisation. To the best of our knowledge, no regmbstudies have proposed the application of
blending constraints in lamination parameter spaceontinuous composite optimisation.

Derivation of Blending Constraints

Blending constraints in lamination parameter (Lpgce are derived in this section. The notation used
for LP is first introduced before the reader isdgwi through the derivation of blending constraiats
in-plane and out-of-plane LPs. A general blendiogstraints, valid for any combinations of LPs, is
presented at the end of Section Il

The lamination parameters of a N-ply laminate buiiit of discrete plies of constant thicknesses and
ply anglesf(2) are calculated as follows:

N
1 (1.a)
AR E NZ[cos(zei).sin(zei).cos(49i).sin(40i)]
i=1
27 (2.b)
(AAAAARASE )2 Z(le — Z2 1)[cos(26;),sin(26,), cos(46;) , sin(46;)]
i=1




N (1.c)

(1:;)3 Z;(Zl3 - Z?_l)[cos(ZGi) ,sin(26;), cos(46;),sin(49,)]

(VlD: VZD: V3D, V4_D) —

where,
Z;=—-N/2+1i (2)

1. SingleIn-Plane Lamination Parameter Blending Constraint

The key idea behind the derivation of blending t@ists in LP space is to quantify the change in
LPs due to ply-drops. The ply-drop notation usedughout this section is presented in Figure 2.

Y ]----- 1 Ply-drop ----

1 1

X Ply-drop '
; :

v 1

! 1

! 1

: 1
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Plate A (N-X) Plate B (N) ' Plate C (N-1)

Figure 2 - Ply-drop illustration for N, N-1 and Npfies

We begin by investigating the difference in theilzation parameter ¥ due to 1 ply-drop. We
denote \F(N_l)the value of \* after 1 ply-drop as in (3). The change ii \due to the ply removal
can be quantified according to (4), where the sugcrefers to the removed ply.

1 N-1
Vi oy = 7 z c0s(26,) 3)
i=1

N-1

1 1 1
A _ A A _
AVi N)>(N-1) Vi w) Vi w-1) NCOS(Zej) + (ﬁ - m) z cos(26;) 4)

i=1

The maximal and minimal values of (4) respectivaygur for P, ; 6, 1= [0° 90°] and for §, ; 0, ]=
[90° 0°] at which the magnitude is:

G5, ” AV s ” = 2N )

Equation (5) is verified by generating stackingustces and computing the change in the lamination
parameter V* due to 1 ply-drop. The results are shown in Fégifor three pools of stacking
sequences: one pool of randomly generated lamioh®3 plies, a second of all symmetric 0/45/90
laminates of 16 plies, and a last pool of extreamihates of 20 plies. In this context, extremersefe

to laminate for which aly; are equal to each other. It is important to nboét the maximal change in
LPs (see Equation (4)) always occurs for an extriaiménate.
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Figure 3 - Normalised change in lamination paraméteé due to 1 ply-drop

Generalising the above results to a random numbémdy-drops we obtain:

N
1
VlA(N—X) :m Z COS(ZG,:) (6)
i=X+1
X N
A _yA A 1 1 1

AVE vy = Vi ~ Vi e = ﬁz cos(26;) + (ﬁ - m) z cos(26;) (7)

j=1 i=X+1

Equation (7) reaches its maximal value for the seomdiguration aﬁVlA(N)q(N_D at which the
maximal change in the lamination parameter due pdyXdrops is proportional to the ply-drop ratio
(X/N):

b0 ”AVlA(N)ﬁ(N—X) ” = 2(X/N) (8)

Carrying out the equivalent calculations for thenaining in-plane LPs (i.e. M 4) it can be shown
that:

A — A — A —
|47 v | = 3|4V v | = e[ | = 20070 ©

According to (9), four individual blending consints can therefore be set as follows:

AVE yowry < 2(X/N), fork =1,2,34 (10)

Constraints (10) define the maximal change in Lirside which no blended solution can be found. It
should, however, be noted that constraints (10yang conservative since the occurrence of extreme
laminates is unlikely.

2. Coupled In-Plane Lamination Parameters Blending Constraints

Results presented in the previous section onlyidenshe variation of one LP. The simultaneous
changes in any combination of in-plane LPs dudyalpops are investigated herein. We start by
investigating the simultaneous change ifi ¥nd \4* by introducing the in-plane Euclidian distance:

. 2 2
ip _ A A 11
ElZ(N)—»(N—X) - \/ (AVl UV)—’(N—X)) + (AVZ (N)a(N—X)) (11)



Similarly to individual LPs, it can be shown thlétmaximal Euclidean distance of (11) also occurs

for an extreme laminate (subscriptt). As a results, one can expand the first term utigesquare
root as follows:

2

X N
2 1 1 1
[(AV{‘(NHN_X))EH] = NCOS(ZBJ-) z 1+ (ﬁ TN X) cos(26;) Z 1 (12)
j=1 i=X+1

which simplifies to (13) wherC;, €3] = [cos(26;) , cos(26;)]. We introduce the notatiofy (6;, 6;)
to denote the sum of cosine and sine functioneXtreme laminates where the subsdkipgfers to
the lamination parameters considered (i.e. 1,d,48.

(AW )| = G2 + €3 = 2646) = /MY (6,.60) (13)

Carrying out the same procedure for the second, wubstituting in (11) and setti§;, S3] =
[sin(26;), sin(26;)], the Euclidean distance becomes:

. 2
(B o) | = Gz |2+ c2 = 20,0 + 2+ SE= 25150 | = /M a(6,6)  (14)

from (AVlA_X)Z from (AVZA_X)Z

Maximizingflz(ej, Bi), the maximum in-plane Euclidean distance (11)&shown to be:

e (B o) | = # /MY (15)

According to the above derivation, the change @limination parameters;/and \&* must satisfy
constraint (16). The Euclidian distance (11) iaided to the radius of the feasible lamination

parameters space reachable due to ply-dropsiasalted in Figure 4 for a 5-ply laminate and & ply

drop.
A z A 2 2 16
(Vo) + (BVA o) — 4 X/ND? <0 (16)
1 s
7 ~. @ Starting 5-ply
7 N Laminate
0.5+ /
! \-\ o Feasible 4-ply
! . Laminates
<, 0 - [
> !
\ 1 Feasible
\ ’ Blended LP
-0.5 1 N\, . Space
————— Feasible LP
_1 T T T 1 Space
-1 -0.5 0 0.5 1
VA

Figure 4 - lllustrative example of the reduced iigdlasblended lamination parameter space of a
stacking sequence of 5 plies due to 1 ply-drop



Generalising the Euclidean distance to all foyslane LPs, one obtains:

4

(El“;?"*(N)—»(N—X))2 = 2 (AV’CA (N)ﬁ(N—X))Z (17)
k=1

With the following derivation:

. 2
|(EBauyovn), | = GNP+ €2 —20i0) + (57 453 - 2559 + (18)

(CF + C% — 2C3C4) + (5§ + 5§ — 25,84)] = (X/N)*f1234(6;, 6;)

In which, the coefficients are given:
[C1,C,,C3,C4 ] = [cos(29j), cos(49j), cos(28;),cos(46;)] (29)

[S1,52,83,54 1 = [sin(26;),sin(46;), sin(26,), sin(46;)] (20)
As previously, the maximal value of (18) is ach@wvenen maximising, (ej, Bi). This results can be

generalised to any possible combination of in-plang@nation parameters considered when
calculating the Euclidean distance. The generalisedtraint is:

(E'ipuvw(N—X))z = (X/Ny° <g}%)ff "(ef’ei)> (21)

for which the maximal values ﬁ(ej, Bl-) for all the in-plane LPs combinations are give @ble 1
andf,34(6;,6;) is plotted as an example in Figure 5.

Table 1 - Maximal values 91((9,-, HL-) for all combination of in-plane lamination parasrst

values ofk Corresponding Combination of max fk( 6;)
Lamination Parameters
lor2or3or4orl2or34 \brV,orVsorV,orVy,Vsor V3V, 4
13 or 23 V3 0r Vo Vs 5.1443
14 or 24 or 123 or 124 or. V,V40r VoV, 0r V4,Vo,Vi0r V,Vo,Va 6.95

134 or 234 or 1234 or Vi,Va, V4 0r Vo,V3,Vi0r Vi,Vy, Vi, V4
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Figure 5 - Coefficient functioﬁk(Gj, 6;) for the combination of all in-plane lamination pareters

For sake of clarity, the spherical constraint (€40 be visualised in reduced dimensions when only
considering the change of three of the in-plan@ration parametesV;? Ws-1) (k=1,2,3) as
shown in Figure 6.

herical . Normalised
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Figure 6 - Normalised Euclidean distance for exgdaminates contained into a sphere of radius 1
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Verification

The proposed spherical constraint (21) considaihig-plane lamination parameters is how
evaluated. For that purpose, a computer experigquantifying the ease of a guide-based genetic
algorithm in retrieving the stacking sequence 2ftdended laminates problem is devised. The first
laminate is attributed a feasible stacking sequémrcehich its LPs are calculated. The second
laminate LPs are then obtained by disturbing tret Faminate LPs with a random vector of variable

norm. Next, the GA performance is evaluated whilgying the disturbance vector norm so as to
obtain LPs inside and outside the spherical coinstdarived.



Computer Experiment

(A) Define the initial number of Plies (N), ply- (AB) N

drops (X) and the spherical constraint

coefficient @) (C%
(B) Generate a random stacking sequence of N +ALP(a)

plies LP,—> LPy_, (D)

(C) Calculate the laminate corresponding v \
lamination parameters (I (E) }
N - X

4
4
4
4

N< 4

(D) Randomly disturb LR in order to generate a
set of lamination parameter for the second
patch LR .x such that the disturbance Patch 1

satisfies: |ALP|| < a[ V6.25(X/N)].

Patch 2

(E) Employ the GA to retrieve a blended stackingueege matching the LPs. The fitness function
is defined is defined agiitness = RMS (LP,y; — LP;4)
WhereLP,y,; = [LPy,LPy_x] andLPg4 = [LPg4y,LPgs; 1. LPg4; andLPg,, denotes the LPs
retrieved by the GA.

(F) Calculate the GA retrieval error index ) defined as the average of the best finesses

obtained for each GA runs (i.8;,): Eingex = Nifof‘ min(Fitness (i))
GA

Figure 7 - Computer Experiment for verificationtbé proposed spherical constraint (21)

The computer experiment is run for three examplesra/the number of plies N is set to 40, the
number of repeated GA rubg;, is set to 20, X is respectively (2,4 and 10) anslvariable. The GA
attempts to match the continuous LPs by designiegded stacking sequences with ply angles
multiples of 15 (i.e. 0°, £15°,+30°, +45°, £60°,57 90°). The GA retrieval error indexes are pldtte
as functions of the spherical constraint coeffitiehin Figure 8. As can be observed in this figure,
the GA error index increases rapidly if the blemgdionstraint (21) is not satisfied. These results
demonstrate the potential loss of performance wbirhoccur when retrieving stacking sequences
while trying to match LPs obtained from an uncaaisted continuous (i.e. no-blending constraints)
optimisation. Results presented in Figure 8 algmssts that performance loss will remain low as
long as the blending constraint is satisfied.

0.6 -
% 0.5 Infeasible Blending Space
T 04 > ——X/N =0.05
o 03 ——XIN=0.1
g 0.2
D) —0—XIN=0.25

0.1

2 3
Spherical Constraint Coefficient (o)

Figure 8 - Error index of the guide-based GA asrafion of
the spherical constraint coefficiemt



3. Coupled In-plane Out-of-plane Lamination Parameter s Blending Constraints

We have demonstrated, through the previous sectioatsthe change in lamination parameters due to
ply-drops is limited. However, only in-plane lamiiom parameters were considered. In this Section,
we propose a blending constraint which takes sanelbusly into account all change in in-plane and
out-of-plane lamination parameters. Since for napgtiications the coupling between in-plane and
out-of-plane stiffness matrices is not desirabidy gymmetric laminates are considered for the oést
this paper. Consequently, the number of ply-drepestricted to positive integers multiple of 2 (i.
N-2X) as shown in Figure 9.

X=1

X=3

Mid-plane

Plate A (N-6) 1 Plate B (N) Plate C (N-2)

Figure 9 - Ply-drop illustration for symmetric lamaites
(X is an integer, 2X is the number of ply-drops)

Similarly to Equation (10) for in-plane laminatiparameters, it can be calculated that individu&l ou
of-plane lamination parameters have to satisfyfdHewing constraint:

X X\? x\?
AV2 o vm < [£1(6,,60) 2 <3 5)-6(5) +4(5) ) . fork=1234 (22)

Note that thefk(ej,ei) function appears in both in-plane and out-of-pleoestraints. Hence, one

can easily combine constraints for in-plane andofytlane blending. The general hypersphere
constraint is given:

r 2 3 \ ; N
[ R L I e e )

In—Plane

Out—of—Plane

Equation (23) is the final constraint derivatioeggnted in this paper. It is a general equatiochvhi
can be reduced to all previously presented rebyl@mply substituting thé, (6]-, GL-) function values
from Table 1. An application of the derived contios blending constraints is now proposed.

IV. Application - Eighteen-panel Test Problem

In this section, the proposed continuous blendotstraints are applied to a bi-step structural
optimisation problem. The 18-panel horseshoe tedilem [15] is used as a benchmark case study.
Local loads, panel dimensions and material propedre fully known as shown in Figure 10. The
panels thicknesseg and out-of-plane lamination paramet¥ér8andV,;” are design variablesi).

The optimal design must minimise the structure Wwefg4) while satisfying the buckling load factor
constraint (25) for each panel

10
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min f(dv) = min ) t, (24)
subject to,

1-4,<0, for p=1[123,..,18] (25)
in which,

_n? (D115 (/)" + 2(Dizp + 2Dss ) (/) (/b,)° + Doz (n/b,) ']

> 5 (26)
Nyp (m/ ap) + Ny p ("/ bp)

p

where the subscrigtdenotes the panel numbét,,, andN,,,, are the stress resultants in the
longitudinal and transverse directions dhg, are the bending stiffness matrix terms of eaclepan
Parameters, andb, denote the panel dimensions whiteandn respectively refer to the number
half wave length along theandy directions. As for the original problem statemehé stiffness
matrix termsD; 4 andD, are assumed to be zero.

18in. L 20in. N
457mm F  508mm |

E 2 3 a 5 @
N, =-270 N, = -250 N, =210 al| R
= N, =-325 N, = -200 N, =-100 3|3
< |E N, = -700 N, =-375 3
§ 8 Nv =-400 Ny =-360 6 7 8
© N, =-305 N, =-290 N, = -600
N, = -360 N, =-195 N, = -480
¥
9 10 y

E, = 141GPa (20.5Msi)
E, = 9.03GPa (1.31Msi)

N, =-1100 N, =-900 _ ;
N, = -600 N; = -400 G, = 4.27GPa (0.62Msi)
X Vip = 0.32
Ply thickness = 0.191mm (0.0075 inch)
1 12 13 14 15
N, =-330 N, =-190 N, = -300
N, =-330 N =-205 N =-610
y Yy y
N =-375 N, = -400
N, =-525 N, =-320 16 17 18
N, =-815 N, =-320 N, = -300
Ny= 1000 Ny=-180 Ny=v410

Figure 10 - Eighteen-panel blending test probles}, [l and N loads are in Ibf/in (x 175.1 for N/m)

Selecting the blending constraints specific todighteen-panel test problem out of the general

constraint formula (23), we have:
2 3 4 5

(2 ) = w4 2(9(5) —36(5) +o0(5) —(5) “6(%)6)]“’”‘:1'3 @)

and

11



3 4 5

() <8700 o -2 G - o)) e

whereNi andNj refer to two of the 18 panels, and the ply-drogh@kness ratidX /N) between the
panels is:
Xy N —N, N; t;

j ) )
= —1-J=1-2 29

Note that in order to have a smooth analytical tramg, the continuous thicknesses are used to
calculate the ply-drop ratio instead of the coroesjing rounded values of the number of plies in
Equation (29). As demonstrated in Section llI, teximal changes in LPs occur for extreme
laminates. Since the default constraints (27) @8yl fitha = g = 1 are likely to be over-
conservative, the variable coefficiemt®indg are introduced in order to investigate the immddthe
constraints sphere radius on the optimisation t&sul

The proposed blending constraints (27) and (28spinerical constraints which limit the change in
LPs between laminates as a function of the laménthiekness ratio. However, enforcing these
constraints when optimising both thicknesses arsldifultaneously results in a non-convex
optimisation problem. One algorithm, presentedifigure 11, is proposed to solve this optimisation
problem.

Set Initial guess [ty ...t1g] [VP, . VEig] [VP, .. VL]
Set Design Variables Boundaries [0.0075; 0.75] [—1; 1] [-1; 1]
Define the number of GA runs: Nga

Set Sphere Radius coefficient values a and g

v

Run Unblended Gradient-based
Optimisation (Obj. minimise weight)

Optimal design Xo
v

Run Blended Gradient-based
Optimisation Starting from Xo
(Obj. minimise weight)

T
Optimal design X1

v

Repair Optimal Design Thickness to
Ensure Symmetric Laminates Only

T
Repaired design Xr
v

Run Blended Gradient-based
Optimisation with Fixed Thickness
Starting from Xgr

Continuous (Obj. maximise buckling factors)
Optimisations Step 4

Step 1

Step 2

Step 3

Discrete t

Optimisation Run Nga Guide-based Genetic Algorithms
with Fixed Thicknesses

(Obj. matching LPs, Symmetric
Laminates and A° =15) Step 5

Figure 11 - Algorithnil for composite optimisation including blending cmaits

12



Algorithm 1 first optimises the structure design (thicknesse$s LPs) without blending constraints. In
step 2, the unblended optimal designiXused as the starting point of the blended apétion (i.e.
constraints (27) and (28) are active). The blerajsanised design is stored in.XUp to this point,
thicknesses remained continuous design variablesgiine optimisation. In step 3, a repair function
rounds up the thicknesses oftd an even number of plies. The repaired desig) lnination
parameters are optimised one last time while tleskas are fixed (i.e. step 4). The propose 4 steps
process from 1 to 4 is only one of the possiblehods which can be used for integrating blending
constraints into the continuous optimisation inesrb achieve a more realistic continuous design.
Investigating the impact of other approaches orfitta¢ continuous design is outside the scope ef th
present work.

Following the continuous optimisations, a guidedatb&A is used to retrieve a blended stacking
sequence. Since it is expected that the final naotis design (i.e. end of step 4) will be more
realistic due to the application of blending coaisits, it is likely that a close equivalent of thissign
can be found in the fibre angle space. In ord¢ake advantage of this design equivalence and to
avoid the computation of a potentially expensiteefss function, the guide-based GA obijective is to
match the LPs of the optimal continuous design.

MATLAB R2014b (The MathWorks, Inc Natick, MA, USA) was used to develop Algorithin The
fmincon gradient-based optimisation tool provided by MATRAvas chosen to solve the smooth
continuous optimisation problems. An in-house cloale also been developed for the guide-based
stacking sequence retrieval. Results obtainedcit g&p of Algorithii for a specific set of inputs
are shown in Appendix A while the general resulesm@esented in Figures 12,13 and 14. In these
figures, the dashed line labelled ‘Optimal Continsi®esign (Step 1)’ denotes the optimal results
achieved at the end of step 1. This is the minimgight design satisfying buckling constraints. On
the other hand, the solid line ‘Optimal (No Contns Blending Constraints)’ refers to the design
obtained at the end of step 5 while skipping st@pe2no continuous blending constraint enforced).
This solid line serves as a reference to evaltlénprovement achieved due to the application of
our blending constraints. During results generaitioras observed that because constraints (27) and
(28) are coupled, the minimum spherical coeffigdrgtweemr andf generally dominates the
behaviour of the final results. For this reasosuls are presented as a function of the minimal
spherical radius coefficient.

480 -
3 Highly Constrained Lighlty Constrained
o 470
S
= 460 8 5
= 8
€ 450 - o
2 8
T 440 - Optimal (No Continuous Blending Constraints) o
o430 o e e e e e e
Optimal Continuous Design (Step 1)
420 1

0 01 02 03 04 05 06 07 08 09 1

Minimum Spherical Constraint Coefficient

Figure 12 - Final number of plies obtained aftdirofsation (Step 5)
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Figure 13 - GA retrieval error inde¥;,,4.,.)- The lowest the value, the closer GA is matchimg t
continuous LPs (Step 5)

0.2 1 Optimal (No Continuous Blending Constraints)

Improvement
0.15 4 Dud to the Application of Continuous Blending Constraints

8 8

o
=
1

0.05

08
. 8
0

Average of the Maximal
Buckling Constraint
Violation Eq.(25)

0.1 02 03 04 05 06 07 08 09 1
Minimum Spherical Constraint Coefficient

Figure 14 - Average of the maximal buckling constraiolation after GA (Step 5)

We first study the impact of the default constraifite.a = f = 1) on the optimisation results. As
can be seen in Figure 12, the same number ofipl@stained with and without the application of the
default value constraints (27) and (28). By contriasan be observed in Figures 13 and 14 that eve
the application of the default constraints results more realistic continuous design and a sigauifi
decrease in performance loss during stacking seguetrieval. These results clearly highlight the
benefit achieved by applying the proposed blendimmgstraints during the continuous optimisation.
Moreover, further improvement are observed whencied) the minimum spherical coefficients.

As shown in Figure 12, the number of plies of tp&mal continuous design increases as the
spherical constraint coefficients decrease. Thesltes to be expected since the minimal feasible
weight (i.e. unblended optimal design) can onlyéase due to the addition of blending constraints.
Likewise, a correlation between the capabilityled GA to retrieve a matching stacking sequence (i.e
low error index) and the spherical constraint dogfhts is observed in Figure 13. This observation
confirms that constraining the change in LPs elaseadtrieval of a stacking sequence for the
benchmark test problem (i.e. generalisation oféselts presented in Figure 8). To which extent the
problem should be constrained in order to obtaesonable trade-off between the added number of
plies and the continuous design increase feagibédinains, however, to be investigated.

Figure 14 presents the average (over 10 GAs) ofvtitet buckling factors obtained after stacking

sequence retrieval. Similarly to Figure 13, theséaction of buckling constraints is seen to im@o
as the spherical constraints coefficient decreddss.is a direct consequence of the application of
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blending constraints resulting in more realistid @asier-to-blend designs. However, note that while
the optimal continuous design always satisfies lglkconstraints, the retrieved stacking sequences
never fully satisfy all constraints (i.e. positivenstraint violation). This is explained as followas the
end of step 4, the continuous optimisation reaahdssign which is located on the boundary of the
feasible continuous domain satisfying both blending buckling constraints. The GA, by matching
LPs instead of evaluating buckling factors, caryaldgrade or exactly match the continuous design
performance. It is, therefore, necessary to intcedusafety factoiSF) for the proposed algorithms to
achieve a final blended design satisfying all bingkkbonstraints. This can be effortlessly
implemented by modifying (25) as follows:

1(SF) =2, <0, for p=[123,..,18] (30)

A near optimal results achieved after stacking eage retrieval employing this method is presented
in Figure 15 and Table 2. Results are obtained aitening Algorithm 1 with the inputs set tg;N=
1,0=0.2,$=0.2 and a safety factor of 5 @F = 1.05). As can be seen in Figure 15, the optimal
design LPs obtained at the end of the continuotisgation (i.e. step 4) while enforcing blending
constraints are located in the neighbourhood @fisistep GA results reported in the literaturegi4,

In addition to facilitate the retrieval of a blendistacking sequence, these results indicateltbat t
application of continuous blending constraintstfa@ horseshoe benchmark problem also effectively
reduce the design search space around the glotdalabpT he retrieved stacking sequence is also
closely located to the two previous results presabint literature.

1 \ 7 / ---- LP Feasible Space
0.8 1\ 1 7
06 1 / s Adams et al. (2004)
0.4 \ . 2
\ /
\
. 0.2 \ 1 7 + lIrisarri et al. (2014)
» 0 \ T T // 1
\
- - /
02 -1 \\\0'5 b 0'5/ 1 A Unblended Continuous
-04 o &+ . 4 Design (X0)
/
-0.6 \% t'# cé?y e S ¢ Final Continuous Design
-0.8 N2 ‘dgo //‘ (Step 4)
-1 S~_L=

O Retrieved Stacking
V,P Sequence Results (Step 5)

Figure 15 - Results comparison with the literafdred]
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Table 2 - Retrieved design example (the unsatigfiezkling factor constraints forn=m =1 are
shown in bold)

Nplies
(460)
1 34 -0.0296 -0.7379 -0.1128
2 28 -0.0442 -0.6930 0.0172
3 22 -0.2993 -0.6202 -0.2154
4 20 -0.2865 -0.6330 -0.3243
5 16 -0.3219 -0.5654 -0.1274
6
7
8
9

Panel V,° VA (1-4,)

22 -0.2993 -0.6202 -0.0922
20 -0.2865 -0.6330 -0.2827
26 -0.1060 -0.6946 -0.1289
38 0.0105 -0.7203 -0.0071
10 36 -0.0284 -0.7262  -0.0840

11 30 -0.0360 -0.7504  -0.0557
12 28 -0.0442 -0.6930 0.0214

13 22 -0.2993 -0.6202 -0.1434
14 18 -0.3601 -0.5295 -0.0430
15 26 -0.1060 -0.6946  -0.0943

16 32 -0.0620 -0.7444 -0.1173
17 20 -0.2865 -0.6330 -0.3010
18 22 -0.2993 -0.6202 0.0094

V. Conclusion and Future Work

The present paper focuses on the application ofdblg constraints during the design of composite
structures. Multi-step optimisation strategies emlg a continuous and discrete optimisation step
suffer from performance drops due to the desigeespiéscrepancy between the two optimisation
steps. In general, the continuous optimisatiomgtglly or not constrained while the discrete
optimisation is highly constrained. By deriving ifltng constraints applicable to continuous
composite optimisation, the gap between the coatiawand discrete optimisation levels can be
reduced and the overall optimiser performance aswd.

In the first part of this paper, the authors pr@poew blending constraints formulated in the
lamination parameter space. Constraints for alptiog of in-plane and out-of-plane lamination
parameters have been derived by quantifying thémmax change in lamination parameters resulting
from ply-drops. Conservative spherical constra@sed on these maximal values where
subsequently proposed. It was observed that camstfar in-plane lamination parameters obey a
simple linear relationship between the ply-drojorand the change in lamination parameters (see
Equation (10)). Constraints for individual changdamination parameters were also shown to be
easily extendable to any combination of in-plané aut-of-plane lamination parameters (23).

In the second part of this investigation, the helnse blending test problem was used to provide an
illustrative application of the newly derived bléngl constraints. The application of blending
constraints was shown to result in more realigbiineal continuous designs for which the drop in
performance between the two optimisation step wasessfully reduced. However, to which extent
the problem should be constrained in order to aegassive thickness increase remains unclear. In
addition to the improve continuous design, the psapl implementation of blending constraint in
Algorithm 1 has the advantage of reducing the genetic algoritbmputational expense by replacing
a potentially expensive fitness function by a fiméased on lamination parameter matching.
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The present paper focused on the derivation ofdibgnconstraints. The applications of these
constraints to other composite optimisation prolsiémeluding the enforcement of additionally
manufacturing constraints remains to be investiydearthermore, more in-depth studies are required
in order to explain the choice of suitable sphémoastraint coefficients resulting in a designspa

that is neither too restricted nor over-conseneativ
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Appendix A. A Step by Step Examplefor Algorithm 1

The results obtained at each step of Algorithfor a design case are presented herein. The options
are set toNga = 10, a=0.8, f=1.0 and no safety factoF=1). After generating a random initial
design and running the unblended optimisationey &twe obtain:

Table 3 - Unblended (X and blended (¥ continuous design examples

Unblended Continuous Design X Blended Continuous Desigm X
Nplies b b _ Nplies D D _

1 31.73 0.344 -0.763 -1.51E-09 31.73 0.318 -0.798.54E-08
2 27.12 0.344 -0.763 -1.77E-09 27.12 0.307 -0.811.23E-08
3 1995 -0.876 0.534 -2.41E-09 19.95 -0.876 0.5343.85E-08
4 1760 -0.876 0.534 -2.73E-09 17.60 -0.876 0.5344.36E-08
5 14.89 -0.876 0.534 -3.22E-09 14.89 -0.876 0.5345.16E-08
6 20.67 -0.876 0534 -2.32E-09p 20.67 -0.876 0.5343.72E-08
7 17.79 -0.876 0.534 -2.70E-0D 17.79 -0.876 0.5344.32E-08
8 2356 -0.876 0534 -2.04E-09 2360 -0.726 0.0533.08E-08
9 36.75 0.344 -0.763 -1.31E-09 36.75 0.344 -0.762.09E-08
10 33.87 0.344 -0.763 -1.42E-09 33.87 0.344 -0.762.27E-08
11 28.50 0.344 -0.763 -1.68E-09 28.58 0.186  -0.9311.82E-08
12 27.16 0.344 -0.763 -1.77E-09 27.16 0.315 -0.802.94E-08
13 20.36 -0.876 0.534 -2.36E-09 20.36 -0.876 0.5343.77E-08
14 17.26 -0.876 0.534 -2.78E-09 17.26 -0.876 0.5344.45E-08
15 2381 -0.876 0.534 -2.02E-09 23.87 -0.697 -0.022.86E-08
16 2897 -0.876 0.534 -1.66E-09 29.88 -0.239 -0.886!.35E-08
17 17.70 -0.876 0.534 -2.71E-09 17.70 -0.876 0.5344.34E-08
18 2135 -0.876 0.534 -2.25E-09 21.35 -0.876 0.5343.60E-08
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Table 4 - Final Continuous and retrieved desigmetas

Final Continuous Design GA Retrieved Design
(Step 4) (Step 5)
Nplies
Panel (242) VP vP  (1-1)  VP°  vP  (1-1)

1 32 0.208 -0.843 -0.0064 -0.163 -0.679 0.1164
2 28 0.092 -0.714 -0.0235 -0.199 -0.636 0.0700
3 20 -0.722  0.054 -0.0015 -0.546  0.000 0.0601
4 18 -0.582 -0.228 -0.0385 -0.451 -0.224 0.0151
5 16 -0.477 -0.235 -0.1564 -0.442 -0.224 -0.1382
6 22 -0.469 -0.335 -0.1326 -0.410 -0.249 -0.0945
7 18 -0.582 -0.228 -0.0059 -0.451 -0.224 0.0460
8 24 -0.597 -0.252 -0.0346 -0.316 -0.421 0.0590
9 38 0.192 -0.657 -0.0438 0.056 -0.654 -0.0065

10 34 0.308 -0.776 -0.0053 -0.088 -0.685 0.1091
11 30 -0.241 -0.816 -0.0108 -0.162 -0.704 -0.0102
12 28 0.092 -0.714 -0.0191 -0.199 -0.636 0.0740
13 22 -0.469 -0.335 -0.1856 -0.410 -0.249 -0.1457
14 18 -0.582 -0.228 -0.1015 -0.451 -0.224 -0.0447
15 24 -0.597 -0.252 -0.0029 -0.316 -0.421 0.0878
16 30 -0.241 -0.816 -0.0050 -0.162 -0.704 0.0421
17 18 -0.582 -0.228 -0.0202 -0.451 -0.224 0.0324
18 22 -0.469 -0.335 -0.0272 -0.410 -0.249 0.0074

The lamination parameters obtained at the varitaps &f the optimisation are illustrated in Figufe 1
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Figure 16 - Lamination parameters obtained at stepand 5 of Algorithni
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