
Accelerating t-SNE using a uniform grid-based approximation

Milan Otten1

Supervisor: Martin Skrodzki1, Responsible Professor: Elmar Eisemann1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Milan Otten
Final project course: CSE3000 Research Project
Thesis committee: Elmar Eisemann, Martin Skrodzki, Gosia Migut

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Dimensionality reduction is an important task in
high-dimensional data visualisation. Among the
popular algorithms for achieving this is t-SNE,
which aims to preserve local neighbourhoods
in the lower-dimensional embeddings. While
t-SNE traditionally works in Euclidean space,
embedding in hyperbolic space offers several
advantages, specifically for data of arbitrary
size and exponential growth, such as tree-based
structures. We propose a new solution to
approximate and accelerate the calculation of
t-SNE gradients using a uniform grid structure.
This new method produces embeddings with
better neighbourhood preservation than previous
solutions, while also providing better runtime
performance.

1 Introduction
Data from real life are often high-dimensional datasets. In
order to get an overview of such data, we need to reduce the
dimensionality, such that it can be displayed in 2 dimensions
in an image. Using a popular linear algorithm such as
Principal Component Analysis (PCA) has drawbacks. For
instance, it is ”not useful in capturing sample distributions
spread on complex manifolds” [1]. A better, and widely
used algorithm for dimensionality reduction is t-distributed
Stochastic Neighbour Embedding (t-SNE), as it aims to
preserve local neighbourhoods in the data points. However,
t-SNE is designed for points in Euclidean space, which
misses out on several positive properties of embedding into
hyperbolic space instead. Hyperbolic space is a curved space
which expands exponentially as you move away from the
centre. It is especially well-suited for embedding arbitrary
size data due to its essentially infinite area, while still being
visualisable in a single image. Several methods have already
been proposed to use hyperbolic space as a candidate for
embedding trees into [2].

Modern Euclidean space embeddings use acceleration
methods that make the process of creating an embedding
much faster. However, hyperbolic space embeddings are
hard to optimise, as accelerations for Euclidean space do
not directly translate to hyperbolic space. This prevents the
use of mean values and interpolation, which are important to
Euclidean optimisations, such as the Barnes-Hut scheme [3]
which accelerates t-SNE by building a quadtree on the data.

To extend Barnes-Hut to hyperbolic space, previous
research [4] shows two things. First, it defines formulae
to approximate the gradient for t-SNE in hyperbolic space.
Second, it proposes the use of a polar quadtree [5] on the
hyperbolic embedding of the data on the Poincaré disk.
However, this is only one of many possible acceleration
structures on the Poincaré disk space. We propose the use
of a uniform grid structure on the Euclidean projection of the
Poincaré disk for approximating the t-SNE gradient. Such
a structure would provide a runtime linear in the number of
points, at the cost of a more coarse approximation.

2 Background
This section introduces the concepts and algorithms that this
research is based on. Specifically, we discuss the Poincaré
Disk model, which we will use as our hyperbolic space for
embedding data into. We introduce t-distributed Stochastic
Neighbour Embedding as a way of embedding data, and
Barnes-Hut as a method of optimising this process. Finally,
we will discuss the idea of a uniform grid structure and its
applications.

2.1 Poincaré Disk Model
We will be working in hyperbolic space, for which there are
several models available. The research [4] that this paper is
based on uses the Poincaré disk model, which is very suitable
for embedding arbitrarily sized data, as it is conformal and
maps all points to a 2-dimensional unit disk. Intuitively,
distances get exponentially bigger closer to the edge of the
disk. The Poincaré space has an infinite size and points on the
edge of the disk would be ’at infinity’. This is what allows
us to embed data of arbitrary size and exponential growth
into a single 2-dimensional disk. Figure 1 shows how the
hyperbolic distance increases with Euclidean distance from
the centre of the disk.

Figure 1: Left: Comparison of Euclidean distance from the centre
of the disk compared to the hyperbolic distance at the same point.
The hyperbolic distance would grow to infinity, but the Euclidean
distance is stopped at 0.9999.
Right: Visualisation of the hyperbolic space using a constant pattern.
Source: Weisstein, Eric W. ”Poincaré Hyperbolic Disk.” From
MathWorld–A Wolfram Web Resource. https://mathworld.wolfram.
com/PoincareHyperbolicDisk.html.

Formally, the Poincaré disk is defined as the space D ={
y ∈ R2 : ∥y∥ < 1

}
with Euclidean metric:

gDy = λ2
yg

E , where λy =
2

1− ∥y∥2
(1)

Points where ∥y∥ = 1 are not included since this would
imply the point is at infinity, and the distance calculation
would include a division by 0.

The hyperbolic distance between two points a and b is
defined as:

dH(a,b) = cosh−1

1 + 2
∥a− b∥2(

1− ∥a∥2
)(

1− ∥b∥2
)


(2)

https://mathworld.wolfram.com/about/author.html
https://mathworld.wolfram.com/
https://mathworld.wolfram.com/PoincareHyperbolicDisk.html
https://mathworld.wolfram.com/PoincareHyperbolicDisk.html

2.2 t-distributed Stochastic Neighbour Embedding
A popular algorithm for embedding high-dimensional data in
a lower-dimensional space while preserving neighbourhoods
is t-distributed Stochastic Neighbour Embedding (t-SNE)
[6]. Intuitively, t-SNE first calculates an initial embedding
of the data in the lower-dimensional space using principal
component analysis (PCA) [7] after which it performs
gradient descent on the Kullback-Leibler divergence. This
can be interpreted as negative and positive forces between
each pair of points. The negative forces push points apart,
while the positive forces attract points that are close in the
high-dimensional space, which aims to bring them close in
the lower-dimensional embedding. Using these forces as
a gradient, gradient descent is performed until a (locally)
optimal solution is found.

More precisely, it takes high dimensional input data
{x1, x2, ..., xn} ∈ Rd, which are interpreted as probabilities,
with

pj|i =

exp(−||xi−xj ||2)
2σi∑

k ̸=i
exp(−||xi−xk||2)

2σ2
i

, pij =
pj|i + pj|i

2

Where pi|i = 0 and σi is the variance of the Gaussian
function centred on points xi, which is a term derived from
the user-provided ’perplexity’ variable for this algorithm.

The gradient used for gradient descent is calculated per
point as follows:

δC

δyi
= 4

∑
j ̸=i

(pij − qij)
(
1 + ∥yi − yj∥2

)−1

(yi − yj) .

(3)
Which can be written as

δC

δyi
= 4

∑
j ̸=i

pijqijZ (yi − yj)−
∑
j ̸=i

q2ijZ (yi − yj)


(4)

with Z =
∑

k ̸=ℓ

(
1 + ∥yk − yℓ∥2

)−1

. On the right side
of the equation are two sums. The left sum are the ’positive
forces’ and the right sum are the ’negative forces’, which pull
and push the points.

2.3 Barnes-Hut
A widely used algorithm for speeding up n-body simulations
is Barnes-Hut [8]. It can be used in many different simulation
contexts [9], [10], [11]. In t-SNE, it can be used to speed
up the calculation of the gradient, specifically the negative
forces. It builds a quadtree on the data, creates a summary of
the points in a quadrant for every level, and uses this summary
to approximate forces for points that are far away, relative to
the size of the quad. This way, the error from approximating
is low, while still avoiding the exact calculation of many
points [3]. Figure 2 illustrates the process of summarisation.
Left is the exact method: the force is calculated between the
green point and all other points. Right is the approximation:
the centre in orange is calculated once, and the force is
calculated between the green point and this centre.

Figure 2: An illustration of the summarisation performed by
Barnes-Hut, during the calculation of the forces acting on the green
point. Left is the exact method, right is the approximation.

2.4 Uniform grid
A popular way of dividing up space for speeding up various
calculations is the uniform grid [12]. It is widely used in
simulation [13], [14], [15] for its simplicity, specifically in
lower dimensions as is common in simulations of real-life
phenomena. The main idea is that some space is divided
into cells of equal size, which can then be used for limiting
calculations to certain cells, or approximating underlying
data.

A problem with the uniform grid is that it does not work
well with sparse data, as it leaves many cells containing no
points, which could result in less optimisation from using
the uniform grid. A similar data structure would be a
non-uniform grid, which aims to provide more cells in areas
with more points. Another way of curbing the effects of this
problem will be discussed in Section 4.1.

3 Related work
In the following sections, we highlight some solutions for
dimensionality reduction and for accelerating t-SNE.

3.1 Dimensionality Reduction Techniques
Techniques for reducing the dimensionality of data can be
split into linear and non-linear methods [16]. Linear methods
are generally used for exploring global structures in the data,
while non-linear methods aim to preserve local structures
[17].

Principal Component Analysis (PCA) and Linear
Discriminant Analysis (LDA) are very popular linear
techniques. LDA is generally considered better, but PCA
can outperform LDA with small datasets. PCA is also less
sensitive to variations between datasets [18]. However, linear
techniques generally suffer from information loss and the
inability to handle non-linear data well.

t-SNE is a non-linear technique, useful to us for its
neighbourhood preservation qualities [6]. Locally Linear
Embedding (LLE) is another non-linear method focused
on preserving local neighbourhoods which works by using
linear reconstructions of local neighbourhoods [19]. A
fast and scalable non-linear technique is uniform manifold
approximation and projection (UMAP), which aims to
preserve both local and global neighbourhoods [20].

3.2 t-SNE Acceleration
While t-SNE is precise and gives embeddings that effectively
visualise high-dimensional datasets, it is naively O(n2) due
to having to calculate the force between every possible pair
of points. This has a significant impact on the runtime of
the algorithm, making it infeasible for big datasets. There
are many approaches for accelerating t-SNE. Most methods
depend on the same Barnes-Hut idea: summarising multiple
points as a single point to avoid many calculations [3]. For
example, using a forest of balanced LSH (locality-sensitive
hashing) trees [21]. LSH is a technique that aims to
cluster similar items into the same ”buckets” using a hashing
function.

An important base for this research has been the
implementation of Barnes-Hut for t-SNE in hyperbolic space
[4]. This method involves the use of a polar quadtree on the
Poincaré disk model for hyperbolic space. The polar quadtree
used is similar to a regular quadtree, but creates cells in a
radial manner from the centre of the disk. It also uses the
properties of distance in hyperbolic space to keep the cells
similarly sized when considered in hyperbolic space.

Research has been done to implement and thoroughly
optimise Barnes-Hut running on the GPU using CUDA [22].
Much action was taken to ensure efficient memory access
patterns and optimal use of all available resources on the
GPU.

Another approach has been proposed which approximates
the repulsive forces by splatting kernel textures on the data
points. This allows this calculation to be performed as a series
of tensor operations that can be performed efficiently on the
GPU [23].

Finally, a method that involves building a pair of
spatial hierarchies on the data which are then traversed
simultaneously to approximate the forces has also been
proposed and evaluated [24].

4 Uniform Grid for Approximating t-SNE
We propose a data structure that can be used as an alternative
to the polar quadtree proposed in previous research [4] for
approximating forces in t-SNE. We first formally define
the data structure and subsequently show how it is used to
accelerate t-SNE.

4.1 Uniform Grid
Our proposed data structure for approximating forces in
t-SNE is the uniform grid, applied to the 2D embedding of
all data points onto the Poincaré disk. This data structure
consists of a uniform grid of non-overlapping and equally
sized rectangles (grid cells) in Euclidean space, that in total
covers the entire area of all data points. This means that
each data point is in exactly one grid cell. We have data
points {y0,y1, ...,yn}, each grid cell has a set of members
mi = {yj ,yℓ, ...,yk} and a centre ci ∈ R2, which is the
hyperbolic geometric mean of all points in the cell. We say
that a data point is a member of a grid cell if it is in the area
of the grid cell. Because each point is a member of exactly
one grid cell, we have that

∑
i |mi| = n for n points. The

centres are determined after all members have been found,

using a formula that approximates the Fréchet-mean of the
member points, which provides an accurate mean with regard
to hyperbolic space. Then,

m({vj}) =
∑
j

(
γ(vj)∑

l(vℓ)γ(vℓ)

)
vj

With γ(x) = 1√
1−||x||2

and v the coordinates of x interpreted

in the Klein model. Translation to and from the Klein model
is shown below, with p the function to translate from the
Poincaré model to the Klein model, and k the function to
translate from the Klein model to the Poincaré model.

p(x) =

(
2 · x1

1 + x2
1 + x2

2

,
2 · x2

1 + x2
1 + x2

2

)

k(x) =

(
2 · x1

1 +
√

1− x2
1 − x2

2

,
2 · x2

1 +
√
1− x2

1 − x2
2

)
Setting up the uniform grid is done in O(n+m) time, with n
the number of points and m the number of grid cells.

Usage of the Uniform Grid
Previous research [4] proposes the following definition of an
equation for the gradient in hyperbolic space:

δCH

δyi
= 4

∑
j ̸=i

pijq
H
ijZ

H δdHij
δyi

−
∑
j ̸=i

(
qHij
)2

ZH δdHij
δyi


(5)

qHij =

(
1 +

(
dHij
)2)−1

∑
k ̸=ℓ

(
1 +

(
dHij
)2)−1 , (6)

dHij = dH(yi,yj) (7)

δdHij
δyi

=
4
((

∥yj∥2 − 2 ⟨yi,yj⟩+ 1
)
yi/α− yj

)
αβ
√
γ2 − 1

, (8)

where ZH =
∑

k ̸=ℓ

(
1 + dH

2

ij

)−1

The uniform grid is used when calculating the negative
forces, which is the second sum on the right side of Equation
5. In each of the following formulae used to describe the
uniform grid functionality, a g is added to the superscript
of previously defined variables, so as to differentiate these.
Equation 9 shows the new gradient formula. This shows
the operation of our new solution: instead of calculating the
negative forces between each point, we calculate the negative
force from each point to the centre ci of each grid cell. This
force is then multiplied by the number of members in the
grid cell. Any grid cells with no members are not taken into
account for the calculation. Where previously the distance
between each point was used, dgHij = dH(yi, cj) is used,
which is the hyperbolic distance between point i and grid cell

j. This means that there is no exact force calculation between
any two points, but only a much faster approximation.

δCgH

δyi
= 4

∑
j ̸=i

pijq
H
ijZ

H δdHij
δyi

−

4
∑

1≤j≤m

(
qgHij

)2
ZgH|mj |

δdgHij
δyi

(9)

qgHij =

(
1 +

(
dgHij

)2)−1

∑
k ̸=ℓ

(
1 +

(
dgHij

)2)−1 , (10)

δdgHij
δyi

=
4
((

∥cj∥2 − 2 ⟨yi, cj⟩+ 1
)
yi/α− cj

)
αβ
√
γ2 − 1

(11)

Grid Size Optimisation
We fit the grid to be the bounding box of the points for each
iteration, shown in figure 3. This is necessary because the
initial embedding of t-SNE is concentrated in the centre of the
disk, which would result in many cells containing no points.
By fitting the grid to the points, the points are more evenly
divided over the grid. A result of this is that the size of each
grid cell is minimised which decreases the maximum error
from summarising the points in a grid cell, which in turn
increases accuracy.

Figure 3: The uniform grid fitting to data concentrated near the
centre. Left: before optimisation. Right: after optimisation.

4.2 Proof of Correctness
The uniform grid approximates the exact solution more
closely as the number of grid cells increases. As this grows
to infinity, the approximation approaches the exact solution.
This is because as the number of grid cells increases, more
points will be the only point in a grid cell. When this happens,
calculating the force to the grid cell will be equivalent to
calculating the force to the point directly, since the mean of
the grid cell will be exactly equal to the point position. When
the number of grid cells is sufficient such that each point is
the only point in its cell, the force calculation is equal to the
exact solution.

5 Evaluation
This section aims to evaluate different parts of the proposed
solution and compare them to previous solutions using
analysis and experiments. Specifically, we compare
our uniform grid-accelerated t-SNE with the exact t-SNE
calculation (no acceleration) and quadtree-accelerated t-SNE.
We do this by first analysing and comparing the expected
runtime complexity of our algorithm. Then, we will discuss
experiments aimed at testing the accuracy and actual runtime
of our algorithm and comparing the results with the other
algorithms.

5.1 Experimental setup
For the following experiments, we have used four different
datasets. The first is MNIST, which contains 70,000
handwritten numbers in the form of small images. The others
all contain data obtained from single-cell RNA sequencing.
The Planaria and C.Elegans datasets contain gene expression
atlases. The Myeloid dataset contains synthetic data instead
[25]. Table 1 includes more information about each dataset.

Name Data Type # Points # Dim. # Cl.
MNIST images 70,000 784 10
MYELOID8000 single-cell 8,000 11 5
PLANARIA single-cell 21,612 50 51
C ELEGANS single-cell 89,701 20,222 37

Table 1: Dataset Information

The exact settings for the running setup are equal to the
default settings used in the previous research [4]. This means
that we perform 250 steps of early exaggeration, meaning
the attractive forces between the points are multiplied by a
constant value of 12. After this, we perform up to 750 steps
of regular gradient descent, which is stopped earlier if a point
moves too far from the centre of the disk.

All experiments are performed on a computer with an Intel
Xeon E3-1240v3 at 3400 MHz, 32GB of DDR3 RAM at 1600
MHz and an NVIDIA GeForce GTX 1080 at 1607 MHz with
8GB of GDDR5X RAM and 2560 CUDA cores.

5.2 Accuracy of the Proposed Solution
To test the accuracy of the proposed solution, we
use a precision metric which measures neighbourhood
preservation. It gives a percentage of the points for which the
1 ≤ n ≤ 30 closest neighbours in high-dimensional space
are also in the 30 closest neighbours in the final embedding.
For a perfect embedding, we would expect a precision of 1.0
for every n, but this is often not possible, which is why we
compare to the precision of the exact calculation performed
on the GPU and the previous quadtree solution. We use a
GPU-based exact calculation since it is infeasible to run the
previous CPU-based exact calculation for high point counts
due to its runtime.

Effect of Grid Size on Accuracy
For this experiment, we look at our algorithm at different grid
sizes, where we show the average of the precision values
at each grid size. This will help us make an informed

choice about the number of grid cells we should use to get
a good trade-off between runtime efficiency and accuracy. As
can be seen in Figure 4, the additional precision gained by
increasing the grid size levels out quickly. It also shows that
an increasing number of points does not require an increasing
number of grid cells to get optimal precision. Instead, around
10,000 to 15,000 grid cells seems to be optimal for all tested
point counts, and more grid cells do not provide greater
precision. Appendix B shows this experiment for the other
datasets. Notable is that this number of grid cells seems
optimal for these datasets too. A possible explanation for this
is that around this level is where the grid gets so fine that
additional granularity would not increase the precision more,
as the error is already so low due to the small size of the grid
cells. The optimal number of grid cells may still differ for
other datasets, meaning that this number should be found per
dataset for optimal performance and accuracy trade-off.

Figure 4: Average precision achieved of embedding different size
datasets at different grid sizes.

Figure 5: Runtimes of embedding different size datasets at different
grid sizes.

Figure 6: Runtimes of embedding using different numbers of grid
cells.

Comparing the Accuracy of the Proposed Solution

This experiment aims to compare the accuracy of the uniform
grid-based solution with the exact and quadtree-based
solution in terms of accuracy. We do this by computing
an embedding of 4 different datasets with every algorithm
and comparing the recall/precision graphs of each. Figure 8
shows the actual embeddings created for the MNIST dataset.
The other embeddings can be found in Appendix C. Figure
7 shows that our solution results in higher precision and
recall for every single dataset that has been tested. This
result is unexpected because the uniform grid is used as an
approximation of the exact solution. It is possible that our
solution is less susceptible to getting stuck in suboptimal local
minima, as our rougher method of approximation may cause
us to overshoot small local minima.

Figure 7: Comparison of the recall/precision graph of each
algorithm with four different datasets.

Figure 8: Embeddings of the MNIST dataset (70,000 data points) produced by the exact solution (left), quadtree-based solution (centre),
uniform grid-based solution (right).

5.3 Time Acceleration
Now we will focus on comparing the theoretical time
complexity of the proposed solution, and experimentally
verifying the findings. We are interested in the total time
taken to create a full embedding, as this is the closest to a
realistic usage scenario.

Asymptotic Time Complexity
We will now discuss the asymptotic time complexity of our
proposed solution, specifically the gradient calculation, as
this is where our solution differs from previous work. The
time complexity depends on two variables. Let n be the
number of points for which we are computing an embedding,
and m the number of grid cells used. The gradient calculation
is performed in two main steps. First the generation of the
uniform grid, and second the calculation that uses it.

Time Complexity of Grid Generation Generating the grid
is done in O(n +m) time. First, it requires looping over all
points to find the bounding box of the data, which becomes
the bounding box of the grid. Then, it requires looping over
all points to find the grid cell each point belongs to, which
is done in O(n), as finding the grid cell for a single point is
done in constant time. Secondly, it requires calculating the
centres for each grid cell, which is done in O(m) time.

Time Complexity of Gradient Calculation Finding
the gradient for a single point is done in O(m) time, as
our solution loops over each grid cell and calculates the
negative force to it, which is done in constant time. Since
the gradient calculation must be performed for each point,
we find that calculating the negative forces can be done in
O(n · m) time. Previous work [4] has already shown that
calculating the positive forces can be done in O(n), provided
the probabilities matrix is sparse.

In total, this means that the runtime complexity of the
gradient calculation using the uniform grid is O(n ·m).

Effect of Grid Size on Runtime
This experiment focuses on finding to what capacity the
chosen grid size affects the runtime of the algorithm.

Theoretically, the runtime should increase linearly with the
number of grid cells. Figure 5 shows that for the grid
sizes that were tested, the runtime seems to follow a rather
logarithmic pattern. This may be because we are not able to
leverage the full power of the GPU at low grid sizes, meaning
part of the larger grid size will be compensated for by the
GPU taking on more load.

Comparison to Previous Solutions
We experimentally compare the runtime of our solution
with the GPU-based exact solution and the previous
quadtree-based solution. We do this by running each on
different numbers of data points and plotting the average
runtime of 3 embeddings of each method at each point count.
Figure 9 shows the results of this experiment. We can see
that our method is much faster at every number of points and
grows more slowly, meaning it will be relatively faster than
the quadtree at higher numbers of points. This is because at
a set number of grid cells, the runtime complexity is linear
in the number of points, while the quadtree-based solution is
log-linear in the number of points.

Figure 9: Runtime comparison between different methods at
different numbers of data points.

6 Responsible Research
In this section, we will discuss the ethical aspect of this
research. Specifically, we will go over transparency in
the algorithm and its results in Section 6.1. We will also
discuss the safety and privacy of the data used in Section
6.2. We show how we make sure that our research is
reproducible by others in Section 6.3. Finally, we discuss
the use of Artificial Intelligence (AI) and Large Language
Models (LLMs) throughout the research and writing of this
paper in Section 6.4.

6.1 Ethical Considerations
This section will discuss the ethical considerations regarding
the understandability and interpretability of both the system
and its results.

Transparency of Algorithm Operation
All steps of the algorithm are explained in this paper,
and in more detail in the readme of the publicly available
GitHub repository1. The code is also fully documented and
elaborated on in comments in the code.

Iterative improvements of the algorithm and important
decisions made in the process are always based on the results
of extensive experiments that test any options. Through the
use of GitHub, every iteration of the algorithm’s development
is publicly available, including a small description of each
iteration.

Implications of Incorrect Usage
It needs to be clear to any user of the algorithm that
generally no perfect embedding of higher-dimensional data
can be made in 2 dimensions. This means that while the
embedding is generally able to show neighbourhoods in
higher-dimensional data, the embedding may not always be
fully representative of the dataset. Incorrect interpretation
of the embeddings could result in misinterpretation of the
overall dataset, leading to possible incorrect conclusions.
The algorithm should be used exclusively for exploratory
data analysis and visualisation, such as finding underlying
structures or relationships in the dataset.

The aforementioned readme file also includes a section
about interpreting results from the algorithm which aims to
reduce the impact and frequency of result misinterpretation.

6.2 Data Privacy and Confidentiality
This research and its experiments contain no data that is not
publicly available, and no personal data has been gathered of
any person. No data contains anything that can be traced back
to any particular person.

6.3 Reproducibility of Methods
We have taken several steps to ensure that all results and
conclusions in this paper can be verified by peers, as we
believe this is very important to any scientific research.

1https://github.com/Milan7843/hyperbolic-tsne

Code and Data Availability
The code for this project including the experimental setup is
available on GitHub2. The datasets are not included, but these
can be downloaded using the links in the readme.

Reproducibility
Running the experiments requires a CUDA-compatible
NVIDIA graphics card and an installation of CUDA, due to
the use of CUDA for implementing GPU acceleration. The
readme file of the GitHub shown above outlines the steps for
running the program on any dataset, as well as how to run
the experiments. All Python dependencies required can be
installed by anyone for free, as shown in the setup section of
the readme.

Reliability and Validity of Results
Each experiment that can vary in results due to external
circumstances, such as the state of the computer or variations
in the dataset sample, is run multiple times and the results
are averaged. To curb the remaining influence of the
computer state, we run no other programs than those required
for running the experiments. When testing the difference
between two or more options, we always make sure to only
change the thing under testing between each experimental
run.

The algorithms are fully tested on 4 full datasets, so that no
algorithm is favoured due to higher suitability for a specific
dataset. The result of this can be found in section 5.

6.4 Use of LLMs During Research and Writing
LLMs such as ChatGPT are very popular for writing and
researching but come with risks such as uncited information.
Transparency of the use of such models in research may hold
researchers more accountable and prevent misuse.

Throughout this research, ChatGPT has been used in the
following ways:

1. Helping with writing code.
It has helped me write and debug code faster. This
was particularly useful in finding correct syntax when
working with new technologies, specifically Cython and
CUDA. Note that in no instance has any LLM written
a large piece of code to be used directly in the final
codebase. Most use was for achieving a quick prototype
or base of a part of the code, which is rewritten later.
All code written by any LLM is thoroughly manually
checked and verified.

2. Helping brainstorm ideas.
ChatGPT has also been used to brainstorm ideas for
improving and testing the code. For example, ideas on
how to optimise the code or how the algorithm could be
improved.

3. Helping with ideas in writing.
While writing, I found the use of ChatGPT useful for
coming up with important points for items that should
be touched on in a section. This was only done for
a select few sections, specifically the Abstract, the

2https://github.com/Milan7843/hyperbolic-tsne

https://github.com/Milan7843/hyperbolic-tsne
https://github.com/Milan7843/hyperbolic-tsne

Introduction, the Uniform Grid, and the Responsible
Research sections. Under no circumstance has any text
written by any LLM been used directly in the final text.

4. Writing BibTeX references.
Some websites do not offer simple access to BibTeX
references of an article, where ChatGPT can come in
and generate it from the information on the page. After
verification, we used such references in this paper.

5. Providing quick feedback on writing.
Finally, we used ChatGPT for the purpose of getting
feedback on a newly written section. This provided us
with insight into the flow of the text, and if any important
points were missing. This was not done for all sections.

A full list of all prompts made to an LLM for the purpose
of this research, including any results from them can be found
in Appendix A.

7 Conclusions and Future Work
In this paper, we have presented an alternative to the previous
data structure used to accelerate embedding high-dimensional
data in a 2-dimensional hyperbolic disk using t-distributed
Stochastic Neighbour Embedding (t-SNE). We have shown
that the uniform grid is a viable fit for accelerating the
gradient calculation of this algorithm. Our experiments have
shown that our solution not only accelerates this important
step of t-SNE but also produces embeddings with better
neighbourhood preservation. At a set number of grid cells,
the runtime complexity of the proposed solution is linear
in the number of points, while the previous quadtree-based
solution is log-linear in the number of points.

A possible improvement could be to use a non-uniform
grid instead, which may provide better accuracy at the cost of
added complexity of setting up the grid. More research could
be done into the application of this uniform grid structure
to t-SNE in non-hyperbolic space. While the arguments
regarding the increase of runtime performance will still hold,
it would be interesting to see if the accuracy remains better
than existing methods. It is possible that the increase in
accuracy is only observed in hyperbolic space.

References
[1] Ayush Soni, Akhtar Rasool, Aditya Dubey, and Nilay

Khare. Data mining based dimensionality reduction
techniques. In 2022 International Conference for
Advancement in Technology (ICONAT), pages 1–8,
2022.

[2] Radoslav Sarkar. Low distortion delaunay embedding
of trees in hyperbolic plane. In Marc van Kreveld and
Bettina Speckmann, editors, Graph Drawing, volume
7034 of Lecture Notes in Computer Science, pages
355–366. Springer, Berlin, Heidelberg, 2011.

[3] Laurens van der Maaten. Accelerating t-sne using
tree-based algorithms. Journal of Machine Learning
Research, 15(93):3221–3245, 2014.

[4] Martin Skrodzki, Hunter van Geffen, Nicolas F. Chaves
de Plaza, Thomas Höllt, Elmar Eisemann, and Klaus
Hildebrandt. Accelerating hyperbolic t-sne, 2024.

[5] Moritz von Looz, Henning Meyerhenke, and Roman
Prutkin. Generating random hyperbolic graphs in
subquadratic time. pages 467–478, 12 2015.

[6] Laurens van der Maaten and Geoffrey Hinton.
Viualizing data using t-sne. Journal of Machine
Learning Research, 9:2579–2605, 11 2008.

[7] Dmitry Kobak and George C. Linderman. Initialization
is critical for preserving global data structure in both
t-sne and umap. Nature Biotechnology, 39:156–157,
Feb 2021.

[8] Josh Barnes and Piet Hut. A hierarchical o(n log n)
force-calculation algorithm. Nature, 324(6096):446 –
449, 1986.

[9] Ilia Marchevsky, Evgeniya Ryatina, and Alexandra
Kolganova. Fast barnes–hut-based algorithm in
2d vortex method of computational hydrodynamics.
Computers and Fluids, 266, 2023.

[10] Salim Rukhsar and Anil Kumar Tiwari. Barnes–hut
approximation based accelerating t-sne for seizure
detection. Biomedical Signal Processing and Control,
84, 2023.

[11] E. Ryatina and A. Lagno. The barnes - hut-type
algorithm in 2d lagrangian vortex particle methods.
volume 1715, 2021.

[12] Christer Ericson. Real-Time Collision Detection.
Morgan Kaufmann Publishers, San Francisco, CA,
2005. Chapter 7, Spatial Partitioning, pages 285–299.

[13] Sol Ha, Nam-Kug Ku, Myung-Il Roh, and Kyu-Yeul
Lee. Cell-based evacuation simulation considering
human behavior in a passenger ship. Ocean
Engineering, 53:138 – 152, 2012.

[14] Rongzhen Xiao, Zhiping Wang, Changsheng Zhu, and
Li Feng. Simulation of atypical dendrite growth in
ni-cu binary alloy with phase-field method. Journal of
Computational and Theoretical Nanoscience, 9(9):1495
– 1499, 2012.

[15] Tsz Ho Wong, Geoff Leach, and Fabio Zambetta.
Virtual subdivision for gpu based collision detection
of deformable objects using a uniform grid. Visual
Computer, 28(6-8):829 – 838, 2012.

[16] Shuzhi Su, Gang Zhu, and Yanmin Zhu. An orthogonal
locality and globality dimensionality reduction method
based on twin eigen decomposition. IEEE Access,
9:55714 – 55725, 2021.

[17] Long Cheng and Chenyu You. Hybrid non-linear
dimensionality reduction method framework based on
random projections. page 43 – 48, 2016.

[18] Aleix M. Martinez and Avinash C. Kak. Pca versus lda.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(2):228 – 233, 2001.

[19] S.T. Roweis and L.K. Saul. Nonlinear dimensionality
reduction by locally linear embedding. Science,
290(5500):2323 – 2326, 2000.

[20] Etienne Becht, Leland McInnes, John Healy,
Charles-Antoine Dutertre, Immanuel W H. Kwok,
Lai Guan Ng, Florent Ginhoux, and Evan W. Newell.
Dimensionality reduction for visualizing single-cell
data using umap. Nature Biotechnology, 37(1):38 – 47,
2019.

[21] Marek Orliński and Norbert Jankowski. Fast t-sne
algorithm with forest of balanced lsh trees and hybrid
computation of repulsive forces. Knowledge-Based
Systems, 206, 2020.

[22] Martin Burtscher and Keshav Pingali. An efficient cuda
implementation of the tree-based barnes hut n-body
algorithm. GPU Computing Gems Emerald Edition, 12
2011.

[23] Nicola Pezzotti, Julian Thijssen, Alexander
Mordvintsev, Thomas Höllt, Baldur Van Lew,
Boudewijn P.F. Lelieveldt, Elmar Eisemann, and
Anna Vilanova. Gpgpu linear complexity t-sne
optimization. IEEE Transactions on Visualization and
Computer Graphics, 26(1):1172 – 1181, 2020.

[24] Mark Van De Ruit, Markus Billeter, and Elmar
Eisemann. An efficient dual-hierarchy t-sne
minimization. IEEE Transactions on Visualization
and Computer Graphics, 28(1):614 – 622, 2022.

[25] Jan Krumsiek, Carsten Marr, Timm Schroeder, and
Fabian J. Theis. Hierarchical differentiation of myeloid
progenitors is encoded in the transcription factor
network. PLoS ONE, 6(8):e22649, 2011. Received:
March 16, 2011; Accepted: June 27, 2011; Published:
August 10, 2011.

A Prompts Used to Interact with LLMs and
Their Impact

1. ”how do i check if a pycuda resource handle is still valid
so i can safely free it”
From this prompt I got no concrete answer but got
inspired for a solution based on a try/catch statement that
worked.

2. ”what else is there to mention about barnes hut [my
section about Barnes-Hut]”
From this prompt I got a list of ideas for items to include
in the section. I did not implement any of these.

3. ”is there any mathematical notation for the size of a
set?”
Helped me find the notation: |m|.

4. ”what else can i mention [my section on the uniform
grid]”
From this prompt I got a list of ideas for items to include
in the section. From this I got the idea of talking about
how the uniform grid is used for collision detection and
comparing it to the non-uniform grid.

5. ”what else can i say here in my research? [my section
on Data Privacy and Confidentiality]”
Nothing new was added fom this prompt.

6. ”I’m doing research into embedding high-dimensional
data into a 2d poincare hyperbolic disk. specifically,
im accelerating part of the t-SNE algorithm used for
this by making a new data structure for the barnes-hut
acceleration. Now, I need to write a ’Related research’
section that notes 2 or so specific topics and references
existing solutions for it. could you start off by giving me
2 topics? No need to write anything else yet, just the
topics”
This prompt gave me the following two topics:
”Hyperbolic Embedding Techniques” and ”Barnes-Hut
Algorithm in t-SNE”. I ended up going with
”Dimensionality Reduction Techniques” and ”t-SNE
Acceleration” instead.

7. ”write the subsections that should be in this section
(only the titles)
\section{Responsible Research} Reflect on the ethical
aspects of your research and discuss the reproducibility
of your methods.
Note that although in many published works there is no
such a section (it may be part of some meta-information
collected by the journal, or part of the discussion
section), we require you to think (and report) about this
as part of this course.”
Followed up with ”can you write some bullet points for
each section that i would need to touch on”
From this, I got the ideas to write about Transparency of
Algorithm Operation, Implications of Incorrect Usage,
Data Privacy and Confidentiality, Reproducibility of
Methods, Code and Data Availability, Reproducibility,
Reliability and Validity of Results. Further follow up

gave me some ideas for what to write in each of these
sections.

8. ”numpy generate integer from 0 to 99”
Gave me code to generate the integers [0, 99].

9. ”how do i adjust this function to load data of the
following form? [data]
X = np.loadtxt(str(Path.joinpath(full path,
”amazon data.txt”)), delimiter=” ”)”
I needed to load a dataset in a different format than
what the current loader could do. This prompt ended
up giving me no real answers and I solved it myself.

10. ”when using two columns in latex, how do i make a
figure go over both columns at the top of a page?”
Gave me LaTeX code to do this.

11. ”can you intuitively explain the initial embedding
process of t-sne”
This prompt gave me more insight into t-SNE.

12. ”i have a gpu program that has a curve that first climbs
fast from 90 to 120 with higher iteration count in a gpu
program, but then increases much less fast from 2000
iterations onward, how could this be?”
This prompt gave me more insight into why this
phenomenon could be occuring, but no definitive
answers.

13. ”tell me why poincare disk hyperbolic space would be
good for embedding arbitrary size and exponential data
(e.g. a tree structure)”
This prompt gave me more insight, but no information
from it has been used directly.

14. ”precision recall graph explain”
While short, this prompt gave me insight into the idea
behind a precision recall graph, and how it can be
interpreted. This is important, as such a graph is a
good way of showing the performance of an embedding
algorithm, and should be interpreted correctly.

15. ”how do i make the runtimes text spread over all
columns [LaTeX code]”
This prompt gave me the right LaTeX code to format
part of a table correctly.

16. ”how do i give this latex image a number and a caption
\includegraphics[scale=0.6]{precision 40k.png}”
This prompt taught me how to properly place a figure
into my paper.

17. ”define a python function that uses plt to plot some
points connected by a line (x axis range from 1 to n with
n data points)”
From this prompt, I got a decent first prototype for a
function that I needed. I did need to refine it and to make
it work correctly with my data.

18. ”im running this code on the gpu, but i think thread
divergence makes it run really really slow. How could
i make it run faster? [my GPU code]”
No new insights were gathered.

19. ”in latex, say i have x \in R2, how would you denote
taking the x coordinate or y coordinate?”
This prompt got me the idea to make x1 and x2 the x and
y coordinate respectively.

20. ”can you help me figure out why this is so slow? [GPU
code for calculating positive forces]”
From this prompt I gathered that the most probable
reason for the slow code would be the thread divergence
and irregular memory access patterns.

21. ”roughly how long should it take to transfer 1.2MB of
data to the gpu?”
From this prompt, I got the insight that the runtime of
the operation of transferring so little data from the CPU
to the GPU should be negligible compared to other code.
Therefore, I ruled this out as a potential bottleneck.

22. ”in cython, how can i just get the time in seconds”
After some follow-up questions, I gathered no new
insight and decided on a different approach.

23. ”how to run nsight on a python scrip that uses pycuda”
No insights were gathered.

24. ”can you write some code that makes it so that
the ‘points‘ array are re-ordered according to the
‘result indices‘ array, you may assume that the
‘result indices‘ contains all indices exactly once”
From this prompt I got some code for a small experiment
to identify a potential bottleneck. The code generated is
since no longer in use.

25. ”here is the kahan summation algorithm for decreasing
floating point errors [algorithm]
could you implement it on my algorithm, specifically for
the summation of thread sQ [my own code]”
This prompt gave me code for a small experiment to
see if this Kahan Summation algorithm could potentially
solve a precision error I was encountering. It did not
end up making a significant difference and the code
generated is no longer in use.

26. ”i have an algorithm that calculate forces between some
points and i also implemented in on the gpu using cuda,
but theyre not giving the exact same values? what could
be the cause? [values]”
This prompt gave me insight into the slight differences
in computation on the CPU and the GPU and allowed
me to keep searching for other solutions.

27. ”in cython, given a 2d array of points in poincare
hyperbolic space, calculate the einstein midpoint of
these points (and return the ansnwer in poicnare
hyperbolic space)”
This prompt ended up giving me no particularly good
solution and I ended up simply solving it myself.

28. ”give me the formula for converting from a point on
poincare disk to euclidian space”
This prompt gave me no answer, since this is also not
possible for the Poincaré disk model.

29. ”reserach plan review!! [my research plan]”
Ended up giving me some general guidelines for
improving it, no specific points.

30. ”i have an array of n*n float values, and i want you to
plot them in python with plt in 3f”
This prompt gave me good code for plotting such values,
necessary for displaying the maximum distance values
in the grid.

31. ”in python, given a 1d array containing alternating x
and y points, make a 2D array that contains the points”
This gave me good code to perform this operation.

32. ”in numpy python, write a function that generates an
array of n points with x and y in (-1, 1)”
This prompt gave me good code, necessary for an
experiment.

33. ”write a cython function that takes an array of 2d points,
and divides them over n*n grid squares. assume that the
grid squares are in order from the top left and the points
x and y are in (-1, 1)”
This prompt gave me a very rough outline for this
function. In the final product, I rewrote every single
part to make it compatible with my data and optimise
it. It did give me much insight into what Cython syntax
I could use for certain subtasks of this problem.

34. ”if i had a cuda program that takes some double pointer,
and each seperate thread and block will add stuff to it,
will that go right?” followed up by ”i need to have a
single value that multiple threads can write to (only +=),
how would you do this?”
This prompt gave me the idea of using the ‘addAtomic‘
function in CUDA to prevent mutiple threads attempting
to access the same data at the same time.

35. ”how to time a function in python”
This prompt gave me good code for timing a function in
Python.

36. ”i have a python script in hyperbolicTSNE,
and another python script ‘gpu.py‘ in
hyperbolicTSNE/hyperbolic barnes hut . how do i
import the gpu script”
After some back and forth I managed to get this to work,
but not directly from an answer to any of the prompts,
rather from further research outside of the LLM.

37. ”import python into cython”
This prompt showed me how to import Python code into
a Cython file.

38. ”can you help me understand this code? [some Cython
code from the previous codebase]”
This prompt gave me insight into the Cython code and
helped me understand it and Cython in general better.

39. ”what could indptr be? [code that uses indptr as a
variable]”
This prompt allowed me to understand what the code
I gave was doing exactly. This code was from the

project before I started working on adding my own
implementation.

40. ”say i have a bunch of points, and i would like to
use some data structure on it, such that i can find the
nearest neighbours. i would also like to parallelize the
data structure creation and traversal on the gpu. which
structure should i pick, between k-d tree and uniform
grid? consider all factors, also ease of implementation
and speed (but also other factors not just these)”
This prompt gave me insight into the advantages and
disadvantages of both methods and allowed me to make
an informed decision between them when choosing the
topic of my research.

B Additional Experiments Regarding Number of Grid Cells

Figure 10: Left: Average precision of embeddings of the C Elegans dataset (89,701 data points) at differing point counts. Centre: Runtimes of
embeddings of the C Elegans dataset at differing point counts. Right: Runtimes of embeddings of the C Elegans dataset at differing numbers
of grid cells.

Figure 11: Left: Average precision of embeddings of the Myeloid dataset (8,000 data points) at differing point counts. Centre: Runtimes of
embeddings of the Myeloid dataset at differing point counts. Right: Runtimes of embeddings of the Myeloid dataset at differing numbers of
grid cells.

Figure 12: Left: Average precision of embeddings of the PLANARIA dataset (21,612 data points) at differing point counts. Centre: Runtimes
of embeddings of the PLANARIA dataset at differing point counts. Right: Runtimes of embeddings of the PLANARIA dataset at differing
numbers of grid cells.

C Additional Embeddings

Figure 13: Embeddings of the Myeloid dataset (8,000 data points) produced by the exact solution (left), quadtree-based solution (centre),
uniform grid-based solution (right).

Figure 14: Embeddings of the PLANARIA dataset (21,612 data points) produced by the exact solution (left), quadtree-based solution (centre),
uniform grid-based solution (right).

Figure 15: Embeddings of the C Elegans dataset (89,701 data points) produced by the exact solution (left), quadtree-based solution (centre),
uniform grid-based solution (right).

	Introduction
	Background
	Poincaré Disk Model
	t-distributed Stochastic Neighbour Embedding
	Barnes-Hut
	Uniform grid

	Related work
	Dimensionality Reduction Techniques
	t-SNE Acceleration

	Uniform Grid for Approximating t-SNE
	Uniform Grid
	Usage of the Uniform Grid
	Grid Size Optimisation

	Proof of Correctness

	Evaluation
	Experimental setup
	Accuracy of the Proposed Solution
	Effect of Grid Size on Accuracy
	Comparing the Accuracy of the Proposed Solution

	Time Acceleration
	Asymptotic Time Complexity
	Effect of Grid Size on Runtime
	Comparison to Previous Solutions

	Responsible Research
	Ethical Considerations
	Transparency of Algorithm Operation
	Implications of Incorrect Usage

	Data Privacy and Confidentiality
	Reproducibility of Methods
	Code and Data Availability
	Reproducibility
	Reliability and Validity of Results

	Use of LLMs During Research and Writing

	Conclusions and Future Work
	Prompts Used to Interact with LLMs and Their Impact
	Additional Experiments Regarding Number of Grid Cells
	Additional Embeddings

