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Abstract 

The structures which HMC installs offshore are fabricated onshore and subsequently moved onto a 

barge or ship, seafastened and then transported to the offshore location. The process of moving a 

structure from the onshore quayside to the barge or ship is called the load-out. This load-out can be 

performed by lifting, skidding or using a trailer (SPMT). This thesis research focused only on a 

skidded load-out onto a barge. 

During the load-out the weight of the jacket or topside is gradually transferred from the quay to the 

barge. The barge gradually takes more of the load so ballast water needs to be continuously pumped 

or discharged depending on the location of the structure and the location of the ballast tank concerned. 

Improper ballasting during this process will cause the alignment between the quay and the barge to be 

disrupted which in turn causes peak loads in the topside or jacket and the barge. It is questioned if 

there are more suitable ballasting methods or a structural solution in order to lower these peak loads? 

It is also modeled what the effects are of quayside stiffness and the best method to model this 

stiffness.  

Therefore a 2-D representation of the entire load-out is made. This model will be made using the 

finite element method, via a numerical model, in MATLAB. A base case load-out of a topside will be 

applied to this model. Using this model, optimizing the ballast configuration will be researched. 

Several different criteria for the optimization were tested and its different effects on the forces during 

the load-out were researched and quantified. The structural solution of relocating the skidbeams to an 

area of lower deck stiffness was also tested and the results studied. The effects of the quayside 

stiffness and modelling methods were also quantified using the 2-D MATLAB model. 

The conclusion derived from the optimizations is that there are other ballast configurations which 

perform better in reducing the peak forces experienced during the load-out. The key to these 

optimizations is that they keep the barge-quay alignment as perfect as possible. If a critical element is 

present in the load-out the ballast configuration can be adjusted to lower the forces in this specific 

element. The results of the simulation in which the skidbeams were relocated show that this approach 

has no beneficial effects in reducing the forces during the load-out, mainly due to the presence of the 

transverse bulkheads in het barge. Furthermore for the modelling of the quayside it was proven that 

especially when using a low stiffness quayside, modelling the quayside without taking into account 

the foundation layer stiffness is inaccurate and can lead to lower forces in the model than which occur 

in reality. 
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1 Introduction 
 

1.1 General introduction 
 

This thesis is performed for Heerema Marine Contractors hereafter named HMC. HMC is a world 

leading marine contractor with a track-record of over 50 years of successful projects in the oil and gas 

industry. HMCs core business is the transportation, installation and removal of all sort of offshore 

structures linked to the oil and gas sector. To complete these projects HMC owns some of the world’s 

biggest semi-submersible crane vessels. The SSCVs Thialf and Hermod and the DCV Balder. These 

vessels have very large deck areas and unique capacities in heavy lifting and motion behaviour which 

has earned HMC a superior reputation when it comes to station keeping and workability. In recent 

years HMC has also become a big player in the instalment of subsea pipelines and subsea structures 

reaching ultra-deep water depths. Especially since the addition of the deep-water construction vessel, 

the Aegir, this monohull vessel can install subsea pipelines and perform complex infrastructure 

projects in ultra-deep water.  Besides these vessels HMC operates several supporting barges. Some 

are only suitable as cargo barges but HMC also owns several launch barges (for launching a jacket 

offshore) and float-over barges (for placing the topside onto the jacket offshore). These barges are 

involved in a lot of HMC projects. One of these barges, the H-851 barge , will return in more depth 

later on in this thesis. 

The installation of almost all bottom founded offshore production platforms occurs in the same 2 

steps. These two steps are the installation of the substructure, which carries the weight of the topside, 

and the installation of the topside, which houses the production capabilities and the personnel. See 

Figure 1-1 for the distinction between topside and substructure.  

 

Figure 1-1 Topside and Substructure 

Often the topside and the substructure are transported to the offshore location by barge. For this to be 

possible the topside as well as the substructure first needs to be transported from the onshore 

production facility or yard onto the barge. This process is called the load-out and will be topic of this 

thesis.   
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The load-out process is more complex than simply sliding it off the quay onto the barge. Since most 

structures in the offshore industry are of a very large scale and weight, the weight of the structure to 

be transported will affect the draft, structural integrity of the barge and the stability of the barge.  

Once arrived at the offshore location the substructure can be slid of the barge by ballasting the barge 

in such a way that the angle which the barge makes with the sea level is sufficient enough for the 

interface between substructure and barge to overcome the friction force. Once the substructure is 

floating in the water it can then be upended by an SSCV and placed on the ocean floor.  

In case of a topside, it can be lifted onto the substructure at the offshore location by an SSCV or, and 

this is the case for more heavy topsides, it is placed onto the substructure by the float-over method. 

This method enthrals ballasting the barge with the topside on it between the substructure legs 

gradually transferring the load from barge to substructure.  

1.2 Problem statement 
 

The structures which HMC installs are fabricated onshore and subsequently loaded-out onto a barge, 

seafastened and then transported to the offshore location. The load-out can be performed by lifting, 

skidding or using a trailer (SPMT) however this research will only focus on a skidded load-out. 

Transferring a topside from the quay to the barge poses several problems. During the load-out the 

weight of the jacket or topside is gradually transferred from the quay to the barge. The barge 

gradually takes more of the load so ballast water needs to be continuously pumped or discharged 

depending on the location of the structure and the location of the ballast tank concerned.  

Improper ballasting during this process will cause the alignment between the quay and the barge to be 

disrupted. Misalignment of the barge and the quay in turn can cause peak loads in the barge and via 

the skidbox and the deck support frame throughout the entire topside. These peak loads during the 

load-out can overstress certain elements of the barge and the topside plus the skidbox and it is 

imperative therefore that the loads which occur during the load-out are reduced as much as possible 

be it either by adjusting the ballasting methods or by using a structural solution. 

How the weight of the topside during the load-out is exactly distributed also is dependent on the 

quayside stiffness. There is a need to know what the effects are of the quayside stiffness on the loads 

exerted on the barge and topside during the load-out. The effects of the quayside stiffness on the 

earlier mentioned methods to reduce the loads also need to be modelled.  

1.3 Thesis approach 
 

The approach taken in this thesis in order to attack the problems stated in the problem statement is as 

follows. First a 2-D representational model of the entire load-out process will be constructed. This 

model will be made using the finite element method in the software program called MATLAB. Every 

element which is off influence to the load-out shall be modelled. The quay, barge and topside 

including the skidbox and deck support frame shall be modelled by using Timoshenko beam 

elements. The model is then applied to a base case scenario of a topside load-out. The properties such 

as stiffness and weights of all structures are loaded into the model from external sources. The entire 

load-out shall be modelled using 113 steps from the topside being fully on the quay until its final 

position on the barge. The model can’t be verified with a real world situation so in order to verify its 

results the results of an extensive 3-d model of a load-out are used. 
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Using the model for the base case scenario, several options are undertaken in order to see how the 

peak forces during the load-out can be reduced. The forces will first be optimized by creating new 

ballasting methods with the help of the model. Several of these methods will be proposed each with 

different criteria for optimization. The effects of these new optimizations on the barge and topside 

structures will be compared with the standard ballast configuration and with each other.  

Structural optimizations which hope to achieve the same goal as the ballast optimizations are also 

tested using the MATLAB model. The effect of these structural changes will also be monitored and 

compared to the original structural configuration.  

The influence of uncertainties in quayside stiffness and its effects on the loads during the load-out will 

also be monitored. The effects this has on the optimizations are yet unknown and also need to be 

accounted for.  

1.4 Structure of this report 
 

In chapter 1 a general introduction to this thesis report is given. The problem statement and thesis 

objective was given. The structure of the report is also given in this chapter.  

In chapter 2 a step back is taken. The process of the load-out is looked at as a whole. All the facets of 

the load-out will be looked at in this chapter. A look is also taken at the various ways a structure can 

be loaded-out onto a transport barge and the applicability and benefits of each method.  

Chapter 3 will give a detailed description of the base case load-out used in this research. A description 

of the Heerema barge H-851 will be given. This is HMCs biggest load-out barge. It has been used 

successfully in the past for various projects. The H-851 is used for the heaviest structures so the load-

outs in which this barge is involved are the most critical and challenging load-outs. The structural 

details of the barge which are relevant for the model will be given. This especially means the location 

and capacity of the longitudinal bulkheads as well as the transverse web frames. The location and size 

of the ballast tanks will also be presented as well as the capacity of the pumps. The Wheatstone 

topside and its aspects will also be presented in this chapter. 

In chapter 4 the core of this thesis report Since the load-out process has been described and the 

structural details of the barge involved are known, the model can be made using MATLAB. This is 

done in chapter 4. In this chapter a detailed description of the MATLAB model is given. Furthermore 

the theoretical background of the model will be extensively explained in this chapter. At the end of 

this chapter verification of the model is given.  

In chapter 5 the model will be used to investigate new ballasting configurations. The goal of these 

new configurations will be to reduce the forces exerted on the barge and topside during the load-out. 

Several optimizations will be presented each having different base criteria. The results of these 

optimizations shall be compared with each other and with the standard ballast configuration used in 

the base case.  

Chapter 6 will be a continuation of the same goals as which were set in chapter 5. Reducing the loads 

on the topside and on the barge. However in this chapter the possibilities of another method to reach 

this goal are researched. The main question is, is there a structural solution which reduces the loads 

during the load-out? Relocating the skidbeam in order to make the connection between skidbox and 

barge less stiff might be this solution. These effects are researched in chapter 6. 
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In chapter 7 the effects of the quayside stiffness on the displacements and forces of/on the topside, 

skidboxes and barge will be researched. These effects aren’t properly quantified yet and with the help 

of the MATLAB model this will be achieved. 

Finally in chapter 8 we will talk about the conclusions which can be drawn from this thesis research 

Also recommendations for future research is given as well in chapter 9 for future load-outs.  Possible 

improvements to the MATLAB model will also be discussed.  
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2 Load-out procedure  
 

As mentioned earlier this thesis focuses on the load-out procedure. In this chapter a look shall be 

taken at the various load-out possibilities and methods. A more in depth look will be taken at the 

skidded load-out since this method is the focus of this thesis.  

2.1 Alternative Load-out methods 
 

A load-out can be performed in multiple ways. First 2 distinctly different methods are looked at. 

These are a lifted load-out and a trailered load-out. All two of these methods pose different challenges 

and offer different solutions. The focus of this thesis lies mainly with the skidded load-out. The lifted 

load-out and trailered load-out will only briefly be looked at but will not be incorporated into the 

model. 

2.1.1 Lifted load-out 

With this method cranes positioned on the quayside or cranes positioned on the barge or ship itself 

will lift the structure to be loaded-out and place it onto the transportation barge or ship as can be seen 

in Figure 2-1. 

 

Figure 2-1 Lifted load-out 

This method can only be used for structures with a low weight or is used for structures which are cut 

up in several pieces and which are then assembled offshore. This method of load-out poses different 

challenges compared to the other two methods. For example a failure in the cables of the lifting crane 

can have enormous consequences. This is can result in a complete loss of the structure and in case of a 

floating crane also of this crane. The ballasting procedure in this method is also completely different. 
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There is no need any more for the barge to be aligned with the quayside. The barge will however take 

the full load in a shorter time span since the full structure is placed on it at once contrary to the other 

methods where the structure gradually moves onto the barge. . In the case where the cranes are on the 

barge or ship itself a big roll moment is exerted on the ship, which needs to be countered by the 

ballast configuration. Cable failure in this situation would cause the ship to roll to the other side due 

to the loss of load on the quay side. Usually buoyancy cans are attached to the other side of the ship in 

order to counter this event.  

This method isn’t used for large offshore structures like a single topside although for smaller objects 

this method is a proved and successful method for load-outs. 

2.1.2 Trailered load-out 

A trailered load-out is a load-out method by which the structure is placed onto a platform vehicle with 

a large array of wheels. Almost always, the trailers used are so called self-propelled modular 

transporters or for short SPMT. These SPMTs have a grid of several computer controlled wheels, 

each individually controlled. Each wheel is also adjustable in ride height via a cylinder attached to 

each wheel. This allows for the platform on which the structure is positioned to remain flat which 

allows an evenly weight distribution even when moving on an unevenly train. For example the “step” 

between the quayside and a barge during a load-out.  

The trailered load-out is used very often in the offshore industry. It is a method which can be easily 

scaled up for larger constructions just by using more SPMTs. In Figure 2-2 the load-out of a 

petrochemical module with the help of SPMTs can be seen. 

 

Figure 2-2 Trailered load-out 

Though the trailered load-out is often used in the offshore industry to transport large structures from 

quay to barge it has its limitations up to a certain weight class. The very high weight topsides aren’t 

suited for a SPMT load-out. These require a different method. In these cases a skidded load-out is 

used which is the topic of this thesis research.  
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2.2 Skidded load-out 
 

For structures in the very high weight range (+ 25000mT) the skidded load-out is the preferred 

method. With a skidded load-out the structure is placed on skidshoes or a skidbox. Usually jackets are 

placed on skidshoes and a topside is placed on a skidbox, which is a long box shaped beam which 

transfers the weight from the DSF to the barge and quay. This box shape, usually there are two, is 

skidded from the quay onto the barge over so called skidbeams, seen in Figure 2-3. These skidbeams 

introduce the forces into the barge in an appropriate way not damaging the deck. Since the skidded 

load-out involves overcoming a lot of friction the skidbeam is lined with Teflon plating in order to 

reduce the friction coefficient. These Teflon plates can be seen in Figure 2-3 on the right. Usually 

extra grease is added to reduce the friction coefficient even further.  

 

Figure 2-3 Skidbeams on a barge 

The pulling power generated to move a 40.000mT construction against the friction comes from 

hydraulic strand jacks. These strand jacks are attached to the front of the skidbox, as can be seen in 

Figure 2-4. Steel cables which run through these strand jacks run towards the bow of the barge where 

they are attached to the so called deadman anchor. This anchor, seen in Figure 2-5 is fixed firmly to 

the deck of the barge. The steel cables are first tensioned to see whether or not all cables receive the 

same amount of tension.  
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Figure 2-4 Strand jack attachment front skidbox 

 

Figure 2-5 Deadman anchor 

Once the barge has been cleared of any obstacles the skidding can commence. The strand jacks at the 

front of the skidbox start pulling the cable through the strand jacks towards the back. Like a rope 

climber the topside slowly starts to move onto the barge. Meanwhile the ballast has to be constantly 

monitored by an operator. This is done via a computer keeping a close watch to the barge heel and 

trim. As the topside inches towards the final destination on the barge, ballast water has to constantly 

discharged via discharge pipes, seen in Figure 2-6, in order to keep the draft of the barge stable 
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Figure 2-6 Ballast discharge pipes 

When the topside arrives on its final position on the barge, preparations have to be taken to prepare it 

for transportation to the offshore location. The topside is fixed into positions and other constructions 

are welded into place. 
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3 Base Case scenario 
 

In this chapter the base case to which the load-out model will be applied is described. The context in 

which this operation is carried out will also be explained. The tested load-out will be a load-out which 

was performed at the DSME yard in Okpo, South Korea. 

3.1 Base case field 
 

The base case field will be the Wheatstone development. The Wheatstone development consists of the 

Wheatstone and WA-16R/17R (Iago) offshore gas fields. Production from these fields is transported 

to a Central Processing platform where the gas is dehydrated and the condensate dewatered, from 

there it is transported through a pipeline to an onshore LNG plant in Western Australia. The field is 

located on the north western shelf offshore Western Australia in 70m to 80m of water depth. The 

operator of the field is Chevron Australia Pty Ltd. 

Daewoo Shipbuilding and Marine Engineering (DSME) have awarded HMC with the contract to 

install and transport the Steel gravity structure and the topside. The topside was fabricated at the 

DSME yard in Okpo, South Korea and after the load-out which will be analyzed in this report, 

transported to Western Australia on the HMC barge H-851.The offshore installation of the topside 

was done by float-over in the 4
th
 quarter of 2014. The H-851 was maneuvered between the SGS 

columns and by deballasting the barge to a lower draft the topside was placed on the SGS.   

3.2 HMC barge H-851 
 

The load-out at the DSME yard in Okpo is performed onto the HMC barge H-851. This barge plays a 

major role in this report since it is the only barge to which the model will be applied.  

3.2.1 H-851 history and function 

The H-851 launch barge was built by Daewoo shipbuilding and Heavy Machinery in South-Korea. It 

was designed and built for HMC. The barge is named after its length, being 851 feet. The barge was 

launched on 25
th
 of July 1987. At the time of its launch it was the largest barge in the world and it 

remains till this day.  

The first project for which the barge was used was the transportation and launch of the Bullwinkle 

jacket in 1988. This was a record breaking project. It was installed at a water depth of 412 meter and 

with a weight of 49375 mT it still is the heaviest jacket in the world.  
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Figure 3-1 Bullwinkle on H-851 at Corpus Christi 

After the Bullwinkle launch the H-851 was used on various other jacket launches. It was also used for 

the dismantling of the Brent Spar. It has also launched several compliant towers. The H-851 was 

initially built as a launch barge. The tilting beams at the aft of the barge are a testimony to this. 

However in 2011 HMC decided it wanted to expand the functions of the H-851. Rising sea level and 

increasing awareness of environmental risks caused designers to increase the required platform air 

gap. Increasing air gaps and increasing topsides weight required larger barges for transport and 

installation. So a large barge with ample stability and a large deck would fulfill these needs. HMC 

decided to use the H-851 for the float-over operation of North Rankin B. This 23600mT topside with 

an air gap of 28 meter required a barge with the dimensions of the H-851. The large width of the H-

851 makes it perfect for transportation however the barge needed to be sufficiently narrow to fit into 

the jacket slot. The barge was therefore modified with the following set of goals: optimizing float-

over capability, maximizing the launch and transport capacity and minimizing the effect on tow speed 

and behavior. The first 100 meters were made narrower from 63 meter to 42 meters in width. Now 

smaller topsides can be position on the narrow bow for installation at jackets with smaller slots. The 

narrowing of the barge led to a minor reduction in transport and launch capacity but it was concluded 

that the pros outweighed the cons.  

The new modified H-851has the following capabilities: 

 Install ultra-heavy weight topsides of at least 23,600mT with its center of gravity 50mabove 

the barge keel, while being exposed to transport wave heights of Hs = 8.5m. 

 Install topsides up to 30,000mT 

 Launch and transport large jackets over 35,000mT. 

 Transport multiple facilities at the same, saving the multiple transports to remote areas. 

 Carry huge amount of installation equipment on its large deck area. 

 Reach transit speeds between 6-8 knots. 
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The H-851 can transport ultra-heavy weight structure with a high center of gravity due to its sheer 

size which causes to have sufficient stability during transport. It also has sufficient margin for any 

future increases in weight or in the center of gravity height of the topside of a project. The use of a 

large barge is also useful not only during transport but also for the installation. A lot of float-overs are 

tide dependent due to the limits in barge depth which can limit the window of installation due to not 

having enough freeboard after load-transfer. The H-851 with its depth of 15 meters won’t encounter 

this problem.  

The deck of a barge which is performing a float-over operation can be very crowded with equipment. 

Another advantage of the H-851 is the very large deck space. The experience from float-over 

operations is that sufficient deck space is required for the complex mooring systems. During the float-

over mooring wires are connected to the substructure to minimize the loads on the substructure.  

The aft of the H-851 is built very strong due to the forces which are exerted upon it during a jacket 

launch.  

A problem during load-out with the H-851 is the huge tilting beam at the stern. The solution to this is 

that the rocker arms are removed and in its place infill pieces are placed. They fill the gap between the 

skidbeams at the level side of the barge and the skidbeams at the quayside. So for every load-out of a 

topside the rocker beams have to be cut off and infill pieces are welded into place.  

 

Figure 3-2 Infill pieces 

The general dimensions of the barge can be seen in Figure 3-3. Here the tilting beams can be seen on 

the top left whilst they are still in place. During the load-out they are removed. It can also be seen that 

the bow of the H-851 is narrower than the stern making it ideal for float-over operations at narrower 

jacket slots.  
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Figure 3-3 General dimensions H-851 

3.2.2 HMC barge H-851 weight 

An important aspect of the barge in order to model its behavior is the weight distribution of the barge. 

The basic weight of the barge without any project specific material on it is known to be 35081 mT. 

The weight of the project material is also known and so is its location. The tilting beams are also 

included because in this project the tilting beams are also transported together with the topside. In 

Table 3-1 an overview is given on how much the major weight components contribute to the total 

weight. As can be seen the project specific material weight totals 10519 mT so it is an important 

factor to take into account. This will be used in the model described in chapter 4.  

Table 3-1 Weight overview of H-851 during Wheatstone load-out 

 

3.2.3 Barge longitudinal strength 

The second important property of the barge is its stiffness. As was mentioned earlier, the model, 

which will be described in chapter B, will be a 2-D representation of the load-out seen from the side 

of the barge (perpendicular to the length direction of the barge). Therefore to exactly know the 

longitudinal stiffness of the barge is paramount to get accurate results. The barge is divided into 105 

sections with a length of 2.5 meters for all sections except the first and the last which are 1.25 meters 

in length. This is chosen because as can be seen in Figure 3-4 the barge has 106 web frames and each 

web frame divides the barge into a section with a different profile and thus a different strength.  
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Figure 3-4 Web frame numbering in the barge 

Although the web frames are taken as to decide how to divide the barge, they aren’t important for the 

longitudinal strength of the barge. The web frames are simply too narrow to really contribute 

significantly to the longitudinal strength. Their function is mainly to withstand torsional forces around 

the x-axes.  

In calculating the longitudinal stiffness of the barge a look is only taken at the major structural 

components which contribute to the longitudinal stiffness. The effects of other components in the 

barge such as piping are neglected. Also holes in the plating for piping and ballast flow are neglected.  

The major structural components can be divided into two classes: plating and stiffening. The major 

plating forms the outsides of the barge, so the deck, bottom and side shells.  Other important major 

plating are the longitudinal bulkheads inside the barge which can be seen in Figure 3-5. From these 

bulkheads the barge gains a significant portion of its longitudinal stiffness. From the figure one can 

also see that the stern of the bow is relatively stiff despite the fact that it is less deep.   

 

Figure 3-5 Longitudinal Bulkheads 
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Stiffening is also added at the deck and the bottom and also contributes to the longitudinal strength of 

the barge. Below the calculation for one section of the barge is given as an example of the method 

used for all sections of the barge. 

The method of calculating the longitudinal stiffness per section is using simple structural mechanics. 

In Figure 3-6 a schematized version of a barge section is given. In it one can see the side shells (ss), 

the deck, the bottom plate and the longitudinal bulkheads (lbh), all parts are considered to be 

rectangular. 

 

Figure 3-6 Schematized version of barge cross section 

Then the moment of inertia of each part is calculated plus adding Steiner’s rule 

Equation 3-1 

𝐼𝑧 =
1

12
𝑏ℎ3 + 𝐴 ∗ 𝑎2 

In which b is the width, h the height and a the distance in the vertical plane from the c.o.g. of the part 

to the c.o.g. of the entire section. There are 72 stiffeners on the deck and bottom plates at the stern 

section of the barge and 54 at the bow section of the barge. These also need to be added to the total 

moment of inertia of each section.  

This has been done for all sections, giving the longitudinal strength over the barge. The resulting 

maximum allowable bending moment and shear force can be seen in Figure 3-7 and Figure 3-8.  

 

Figure 3-7 Maximum bending moment 
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Figure 3-8 Maximum shear force 

As can be seen in the previous figures the maximum allowed bending moment and shear force have 

the same allowable tolerances in both directions. A negative bending moment has the same maximum 

value as a positive bending moment for each section; same applies to the shear force. Therefore in this 

thesis, especially in chapter 5 where optimizations are performed, no preference is given for the barge 

either being loaded in a negative or positive moment or shear force.   

3.2.4 Ballast system of the H-851 

One of the most important factors during the load-out is the ballasting of the barge. The ballasting 

needs to make sure that the correct draft is maintained as to keep the barge and quay as much aligned 

as possible. Also the heel and trim of the barge need to stay within certain limits.  

The barge is equipped with an internal ballast system consisting of four ballast pumps capable of 

ballasting at a rate of 2000cu.m per hour will be used as contingency. Two pumps are located in the 

main pump room, and two pumps are located in the auxiliary pump room. The combined maximum 

ballast rate will be 8200 tons per hour. However, under MWS guidelines for redundancy purposes, the 

total flowrate at any one stage will be limited to 4100 tons per hour. 

Both ballast systems are controlled and monitored from a control station on the barge deck with 100% 

redundancy in the barge’s integrated control room. The lay-out of the ballast system can be seen in 

Figure 3-9. From the central pump room in the bow of the barge a main pipeline runs through the 

center of the barge towards all ballast tanks.  

 

Figure 3-9 Ballast tanks lay-out 

The capacity of each tank can be seen in Table 3-2.  
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Table 3-2 Capacity of water ballast tanks 

 

The procedure when ballasting for the load-out is to assume the ballast tanks can be at least 3% full 

and up to a maximum of 97%. The model which will be described later on will be 2-D, therefore how 

the ballast is distributed over the width of the barge is unimportant in the model. Seen in 2-D there are 

11 ballast tanks. All are the summations of the ballast tanks over their respective number of frames, 

thus ballast tank 1 is the summation of all the ballast tanks in section frames 0-9, so ballast tanks 11C, 

11PSC, 11PSW, 11SBC and 11SBW. Doing this for all the ballast tanks we get the possible load by 

meter for each section of barge, keeping in mind the range in which between the ballast tanks can be 

filled. This is summarized in Figure 3-10 

 

Figure 3-10 Ballast range line load 

For each load-out a new ballast plan needs to be calculated. In this plan, the ballast configuration is 

given for each load-out step. The amount of steps is also project dependent. For the base case scenario 
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the ballast configuration wasn’t determined by HMC themselves. This was outsourced to another 

company called ALE. The ALE ballast plan is seen as the standard ballast configuration in this thesis. 

The summary for the ALE ballast plan can be seen in Figure 3-11.  

 

Figure 3-11 Ballast plan base case load-out 

As can be seen the standard ballast plan distinguishes 22 steps for the load-out. The MATLAB model 

consists of 113 steps. The steps which correspond with a step from the standard ballast configuration 

are matched and given the same ballast value. For the steps in between, interpolation with the help of 

MATLAB for the ballast values is used. What also needs to be taken into account is that for each 

stage the tide height is different and thus the draft of the barge is different. Same as with the ballast 

values, this too is interpolated in order to get the tide height and thus the draft for all the 113 steps.   

3.3 Base case topside 
 

The base case platform will be the largest offshore gas processing platform ever installed in Australia, 

with a topside weight of about 37,000 tons. The topside is located 28m above sea level and is 

designed to withstand 12-storey waves. 

 

Figure 3-12 Wheatstone topside at its final offshore location 
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For the load-out the topside will be supported by a deck support frame. The DSF supports the deck at 

the deck support units of which there are 8 in this set-up. The DSF can be seen in Figure 3-13, 

 

Figure 3-13 Deck support frame 

More technical background for the base case topside shall be given in chapter 4 where the MATLAB 

model is described. How the stiffness of the topside is implemented into the model is explained in 

Appendix B.    
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4 FEM-Model 
 

In this chapter the model which was built of the load-out is explained. First a short description of the 

used theory is given. This is then applied to the model. The software which is used for this model is 

MATLAB which is ideal for numerical simulations. At the end of the chapter a verification of the 

model is provided.  

4.1 FEM theory 
 

Finite Element Analysis, hereafter named FEA is method which can be used for a variety of field 

problems using a numerical solution. Field problems require that we determine the spatial distribution 

of one or more dependent variables. In this case displacements and stresses over a barge or skidbox. A 

field problem can be described by differential equations or by integral expressions. The FEM is 

named after the finite elements which can be seen as very small pieces of a structure. In each of these 

elements a field quantity has a simple spatial variation described by a polynomial term. The actual 

variation is more complex so the FEA provides an approximation of the exact solution. The finite 

elements are connected at so called nodes. Connecting all these elements together and a structure is 

formed. The arrangement of these elements over the structure is called the “mesh”. This mesh is 

represented numerically by a system of equations who’s unknown can be solved at the nodes. These 

nodal values are values of the field quantities and depending on the type of field also its first 

derivatives. The solution for nodal quantities in combination with the assumed field quantities in any 

given element completely determines the spatial variation of the field in that element. Thus the field 

quantity over the entire structure is approximated element by element in piecewise fashion. An FEA 

doesn’t provide an exact solution however by increasing the number of elements the solution can be 

improved until it almost resembles the exact solution.  

The solution to a static structure equation is [𝐾]{𝐷} = {𝑅}. In which D represents the nodal degrees 

of freedom, R represents the nodal forces and K represents the combination of all the element 

matrices. This can also be seen as[𝐾]−1{𝑅} = {𝐷}. In order to solve these structure equations first the 

element matrix K needs to be determined.  

The type of element chosen for the model will be a 2D beam element. This type of element has a node 

at both ends. Both nodes have 3 degrees of freedom being vertical displacement, horizontal 

displacement and rotation, u,v and θ. The nodal rotations are normal to the xy-plane. An example of 

such an element can be seen in See Figure 4-1  
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Figure 4-1Beam element in xy plane 

Forming the correct element matrix is of the utmost importance. The method of forming the element 

matrix will now be explained in detail 

Interpolation forms a continuous function that is correct at a certain number of points and satisfies 

prescribed conditions. In FEA these points are the nodes of elements and the conditions are nodal 

values of a field quantity. The nodal values often aren’t exact and even if they are the interpolation 

results provide an approximation at the inter laying locations. The interpolating functions in FEA are 

almost always polynomials.  

Using a generalized degree of freedom ai, the interpolating polynomial with a dependent variable ϕ 

and independent variable x can be written as: 

𝜙 =∑𝑎𝑖𝑥
𝑖

𝑛

𝑖=0

     𝑜𝑟   𝜙 = [𝐗] {𝐚}  

In which 

[𝑋] = [1 𝑥 𝑥2 𝑥𝑛]   and     {𝑎} = [𝑎0 𝑎1 𝑎2 𝑎𝑛]𝑇 

In which n is dependent on the level of interpolation. So n=1 for linear, 2 for quadratic and 3 for 

cubic. The relation between nodal values {𝝓𝒆} and the ai can be seen as. 

{𝝓𝒆} = [𝐀]{𝐚} 

In which [𝐀] is [𝐗] evaluated at the appropriate nodal location.  

{𝜙} = [𝐍]{𝝓𝒆}  𝑤ℎ𝑒𝑟𝑒 [𝐍] = [𝐗][𝐀]
−1 

Each Ni in the matrix N is a so called shape function. Each shape function gives the interpolated 

𝜙 = 𝜙(𝑥) when the corresponding 𝜙𝑖 has the value unity and all the others are zero. In a complete 

structure the values of 𝝓𝒆 will be in matrix {𝐃}. So solving for {𝐃} gives the nodal values in each 

element.  

Now the formulas for the element stiffness matrix and for load vectors can be derived using the 

principle of virtual work, other methods can also be used but for cases with structural mechanics the 

principle of virtual work will be sufficient. 

The principle of virtual work is stated in the form: 

∫{𝛿𝜺}{𝜎} 𝑑𝑉 = ∫{𝛿𝐮}𝑇{𝐅} 𝑑𝑉 + ∫{𝛿𝐮}𝑇{Φ}𝑑𝑆 
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The displacements {𝑢} can be interpolated using the following form: 

{𝐮} = [𝐍]{𝐝} 

And so the strains {𝑢} can be written as: 

{𝛆} = [𝛿][𝐍]{𝐝} 

The matrix which is formed by [𝛿][𝐍] is called the strain displacement matrix. Hereafter symbolized 

by [𝐁]. From the previous equations we get.  

{𝛿𝐮}𝑇 = {𝛿𝐝}𝑇[𝐍]𝑇      𝑎𝑛𝑑      {𝛿𝛆}𝑇 = {𝛿𝐝}𝑇[𝐁]𝑇 

Combining these with the known stress-strain relation we get: 

{𝛿𝐝}𝑇 (∫[𝐁]𝑇[𝐄][𝐁] 𝑑𝑽{𝐝} − ∫[𝐁]𝑇[𝐄] {𝛆𝟎}𝑑𝑉 + ∫[𝐁]
𝑇 {𝛔𝟎}𝑑𝑉 − ∫[𝐍]

𝑇 {𝐅}𝑑𝑉 − ∫[𝐍]𝑇 {𝚽}𝑑𝑉)

= 0 

d isn’t a function of coordinates and so isn’t included in the integrals. Equation has to be correct for 

any value {𝛿𝐝} of the equilibrium configuration so we can say 

[𝐤]{𝐝} = {𝐫𝒆} 

With the element stiffness matrix being: 

[𝐤] = ∫[𝐁]𝑇[𝐄][𝐁] 𝑑𝑉 

And the load vector applied to the structure nodes including all sources except element deformation 

is: 

{𝐫𝒆} = ∫[𝐍]
𝑇 {𝐅} 𝑑𝑉 + ∫[𝐍]𝑇 {𝚽}𝑑𝑉 +∫[𝐁]𝑇[𝐄] {𝛆𝟎} 𝑑𝑉 − ∫[𝐁]

𝑇 {𝛔𝟎}𝑑𝑉 

If the previous equations are applied to a beam element somethings change. Now stress and strain are 

replaced with bending moment M and curvature κ. In the previous equation the integrand of the first 

integral becomes (𝛿𝜅)𝑇𝑀 𝑑𝑥. The other characteristics of a beam element are: 

𝑀 = 𝐸𝐼𝑧𝜅  ,      𝜅 =
𝑑2𝑣

𝑑2𝑥
     ,    𝑣 = [𝐍]{𝐝}    ,        𝜅 = [𝐁]{𝐝} 

Where v is the vertical displacement or lateral displacement of the beam. To form the element matrix 

first the shape functions need to be found. The degrees of freedom at the nodes for a beam element are 

the lateral displacement of each node and the rotation at each node. So {𝐝} becomes:   

{𝐝}  = (

𝑣1
𝜃1
𝑣2
𝜃2

) 

As mentioned earlier the 4 shape functions can be determined by choosing each degree of freedom 

with value unity and the remaining d.o.f. zero. The corresponding 4 equations are the 4 shape 

functions. See Figure 4-2 for the shape functions  
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Figure 4-2 shape functions for a beam 

Now that the shape functions are know the strain displacement matrix can be formed ,keeping in mind 

that [𝐁] =
𝑑2

𝑑𝑥2
[𝐍] since we are looking at a bending beam.  

[𝐁] =
𝑑2

𝑑𝑥2
[𝐍] = [ −

6

𝐿2
+
12𝑥

𝐿3
  −

4

𝐿
+
6𝑥

𝐿2
  

6

𝐿2
−
12𝑥

𝐿3
  −

2

𝐿
+
6𝑥

𝐿2
   ] 

To form the element stiffness matrix equation mentioned earlier is used replacing E with EI. 

[𝐤] = ∫ [𝐁]𝑇[𝐄𝐈][𝐁]
𝐿

0

𝑑𝑥 

Assuming that EI is constant over one element the element stiffness matrix for a beam element is: 

[𝐤] =

(

 
 
 
 
 
 

12𝐸𝐼

𝐿3
6𝐸𝐼

𝐿2
−12𝐸𝐼

𝐿3
6𝐸𝐼

𝐿2

6𝐸𝐼

𝐿2
4𝐸𝐼

𝐿

−6𝐸𝐼

𝐿2
2𝐸𝐼

𝐿
−12𝐸𝐼

𝐿3

6𝐸𝐼

𝐿2

−6𝐸𝐼

𝐿2

2𝐸𝐼

𝐿

12𝐸𝐼

𝐿3
−6𝐸𝐼

𝐿2

−6𝐸𝐼

𝐿2
4𝐸𝐼

𝐿 )

 
 
 
 
 
 

 

The nodal loads are: 

{𝒓𝒆} = (

𝐹1
𝑀1
𝐹2
𝑀2

) 

A quick verification of the element matrix can be given by using the forget-me-nots. This is done 

below for v1 and only k(1,1) and k(2,1). v1 is assumed to be unity in this example and the other d.o.f. 

zero.  
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𝑣1 = 1:    
𝐤(1,1)𝐿3

3𝐸𝐼
−
𝐤(2,1)𝐿2

2𝐸𝐼
= 1  𝑎𝑛𝑑 𝜃1 = 0:    

𝐤(1,1)𝐿2

2𝐸𝐼
−
𝐤(2,1)𝐿

𝐸𝐼
= 0 

 

To satisfy both equations we get: 

𝐤(1,1) =
12𝐸𝐼

𝐿3
     𝑎𝑛𝑑       𝐤(2,1) =

6𝐸𝐼

𝐿2
 

To obtain the nodal loads for a uniform downward load q over the length of the barge we can use the 

direct method, so the forces are ql/2 and ql2/2 however we can also use the second integral in 

equation BB, in which {Φ}=-q and dS=ds. Both give the same results as one would expect. 

In order to allow the beam to stretch as well as bend axial translations at both nodes still needs to be 

added to the model. Therefore stiffness matrix [k] is expanded to a 6x6 matrix. Looking at a bar under 

an axial force at both nodes, see Figure 4-3, the following equations are derived. 

𝐴𝐸

𝐿
(𝑢1 − 𝑢2) = 𝐹1  𝑎𝑛𝑑   

𝐴𝐸

𝐿
(𝑢2 − 𝑢1) = 𝐹2    

 

Figure 4-3 Bar under axial forces 

The bending stiffness terms are also adjusted to take into account the transverse shear deformation 

thus creating a Timoshenko beam element. The final matrix received can be seen in Figure 4-4.[1] 

 

Figure 4-4 Final Beam element matrix 
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4.2 MATLAB model of the load-out process 
 
The knowledge from the previous paragraph will now be applied to the load-out of the topside onto 

the barge H-851. To be able to put a complex process like the load-out into a numerical model in 

MATLAB several assumptions have to be made: 

 The model is made to be a 2-D presentation of the load out. Seen from the side view of the 

barge 

 Yaw, sway and roll of the barge are not taken into account. 

 All components are Timoshenko beam-models 

The model of the load out is composed of three main structures; the barge H-851, the topside 

Wheatstone and the quay. Each will be independently formed and have its own structure stiffness 

matrix, d.o.f. and force vector. These three components will then be combined to form one large 

system with one system stiffness matrix Ksys.  

4.2.1 Barge model 

The model of the barge will form the base of the entire model. The barge is modeled as a beam which 

is supported on springs, see Figure 4-5 

 

Figure 4-5 Barge model continuous 

The springs represent the buoyancy force exerted by the water onto the barge. The deeper the draft the 

higher the buoyant force will be. The current is also taken to be a constant. The required draft is 

therefore known. To set the barge deck at zero the hydrostatic force equal to the median draft is also 

applied onto the barge, this force isn’t constant over the entire length of the barge due to a difference 

in width of the barge and due to the bow being slightly “rounded” upwards. The only forces which are 

exerted in a downward direction on the barge are the barge’s own weight and the ballast water in each 

tank. The height of the quay is taken to be the zero point.  

The model seen in Figure 4-5 needs to be discretized to be able to use in the numerical model. The 

barge is there for subdivided into beam elements, see Figure 4-6. 

 

Figure 4-6 Barge model discrete 

The barge is divided into 208 beam elements. This division is chosen because as was shown in 

chapter 3 the barge consists of 105 frame sections with varying EI with the first and last element with 

a length of 1.25 meters.. Thus each element has a length of 1,25 meter. Except for the first and the last 
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element, each of the 105 frame sections is thus represented by 2 beam elements. Since the total barge 

length is 260 meters this is deemed to be a fine enough meshing to be accurate.  

After the discretization the buoyancy springs are now attached at each node, a node being the 

connection between each beam element. Each spring represents the buoyancy force exerted on the 

barge over a length of 1.25 meters, except for the first and last spring attached to the barge, these 

represent only half an element and thus represent 0.625 meters. The spring stiffness is represented by 

k Buoyancy.  

𝑘𝐵𝑢𝑜𝑦𝑎𝑛𝑐𝑦 = 𝑏𝑢𝑜𝑦𝑎𝑛𝑐𝑦 𝑠𝑡𝑖𝑓𝑛𝑒𝑠𝑠 =  𝜌 ∗ 𝑔 ∗ 𝑤 ∗ 1.25 

In which  

𝜌= Density of water 

g= Gravitational constant 

w= Width of the barge at section 

The mean draft force is analogous to the buoyancy force described above. It too represents 1.25 

meters of hydrostatic force exerted on the barge in the positive direction except for the first and the 

last nodal force which represent 0.625 meters. However because the previous equation referred to a 

stiffness and this refers to a force, this equation is multiplied by the mean draft to get the hydrostatic 

force exerted on the barge by the mean draft.  

The force at the nodes which represents the own weight of the barge plus the ballast is discretized 

differently than the buoyancy force. The weight of the barge and ballast differ per element as was 

seen in chapter 3. The force at each node represents half of the distributed load on the beam to the left 

and half of the beam to the right, with the buoyancy this didn’t matter because both were the same, 

now however this distinction needs to be made. 

𝐹𝑊+𝐵 = (
𝑞𝑙𝑒𝑓𝑡 + 𝑞𝑟𝑖𝑔ℎ𝑡

2
) ∗ 1.25 

In which 

q left +q right = distributed load on beam left and right of node 

F W+B = Nodal load for weight of barge plus ballast. 

For the horizontal forces at the nodes the same method is used as for the vertical forces. So the 

distributed load on half of each neighboring element is added. The only horizontal forces which are 

directly applied onto the barge itself will be the friction loads at the Deadman anchor caused by the 

skidding force of the topside onto the barge. As explained in chapter BBB the load-out is a quasi-

static process thus the topside isn’t always skidding and so friction forces aren’t always present.   

Now that the model is complete the discretized beam on springs can be expressed in a matrix. The 

standard 2-D beam element matrix was given in Figure 4-4. The springs at each node still need to be 

incorporated into this matrix. The springs can also be seen as a vertical force acting on the node. Since 

Fv=k*uv  the springs for kbuoyancy need to be inserted in the stiffness matrix at the elements (2,2) and 

(5,5) since these describe the direct relationship between the vertical force at the nodes and the 

vertical displacement just like the springs. See Equation 4-1 for the beam matrix equation. 
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Equation 4-1 Matrix including springs 

𝑨𝑬

𝑳
 

𝟎 𝟎 
−
𝑨𝑬

𝑳
 

𝟎 𝟎 

𝟎 12𝐸𝐼

(1 + 𝛷)𝐿3

+ 𝑘𝑏𝑢𝑜𝑦𝑎𝑛𝑐𝑦 

6𝐸𝐼

(1 + 𝛷)𝐿2
 

0 
−

12𝐸𝐼

(1 + 𝛷)𝐿3
 

6𝐸𝐼

(1 + 𝛷)𝐿2
 

𝟎 6𝐸𝐼

(1 + 𝛷)𝐿2
 

(4 + 𝛷)𝐸𝐼

(1 + 𝛷)𝐿
 

0 
−

6𝐸𝐼

(1 + 𝛷)𝐿2
 
(2 − 𝛷)𝐸𝐼

(1 + 𝛷)𝐿
 

−
𝑨𝑬

𝑳
 

0 0 𝐴𝐸

𝐿
 

0 0 

𝟎 
−

12𝐸𝐼

(1 + 𝛷)𝐿3
 −

6𝐸𝐼

(1 + 𝛷)𝐿2
 

0 12𝐸𝐼

(1 + 𝛷)𝐿3

+ 𝑘𝑏𝑢𝑜𝑦𝑎𝑛𝑐𝑦 

−
6𝐸𝐼

(1 + 𝛷)𝐿2
 

𝟎 6𝐸𝐼

(1 + 𝛷)𝐿2
 

(2 − 𝛷)𝐸𝐼

(1 + 𝛷)𝐿
 

0 
−

6𝐸𝐼

(1 + 𝛷)𝐿2
 
(4 + 𝛷)𝐸𝐼

(1 + 𝛷)𝐿
 

 

The next beam element expands the matrix to a 9x9 matrix because only one node gets add. The 

matrix of the new beam element is added to the previous causing element (1,1) to be added to element 

(4,4) of the previous.  

Repeating this process for all the 208 beam elements that make up the barge model and thus a 

stiffness matrix for the whole barge is received. See matrix Equation 4-2  for the matrix with a size of 

209*3 rows by 209*3 columns. This matrix will be used in the rest of model when more structures are 

added. The color shading is added because later on multiple matrices will be added so the color is to 

clarify which is which. The numbers in the corners are to clarify matrix size. 

Equation 4-2 

1  727 

 

 Ux1  Fx1 

    Uy1  Fy1 

    UΦ1  Mz1 

    ⁞  ⁞ 

 K Barge  ● ⁞ = ⁞ 

    ⁞  ⁞ 

    Ux209  Fx209 

    Uy209  Fy209 

727    UΦ209  Mz209 

 

4.2.2 DSF + Topside + Skidbox  

 

The next addition to the model of the barge will be the topside plus the deck support frame including 

the skidboxes. The topside and deck support frame will also be a beam model. The construction of 

this model however is much more complex since these aren’t just beams attached to each other in one 
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direction all in the same way. Here we have nodes which are connected to multiple beams thus 

making it more complex.  

The topside is supported by the deck support frame during the entire load-out. The deck support frame 

transfers the weight of the topside onto the skidboxes which in turn transfer the weight via the 

skidbeams onto the barge and quay.  

The construction of the DSF + topside + skidboxes needs to be made applicable in this model. The 

main thing that needs to be done is to turn this 3-d construction into a 2-D beam model. In the 

transition from 3-d to 2-d several assumptions will be made, which will be explained per section. 

These assumptions cause the model to be less of a representation of reality. The goal is to still stay as 

accurate as possible. 

The topside forms a complex 3-D structural model. The forces caused by the weight are guided 

through smaller structural members towards the main structural frame. In Figure 4-7 and Figure 4-8 

what is deemed to be the main structural frame is highlighted in red. Clearly distinguishable are the 

three deck level; the lower deck level, the intermediate deck level and the upper deck level. In the 

front view 3 different “cells” can be seen, in the side view 6 cells are taken to be a part of the main 

structural frame. This main structural frame will be used in the MATLAB model, the smaller 

structural members will be neglected. All the forces will be directly applied onto the main structural 

frame.  

 

Figure 4-7 Front view topside+DSF 
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Figure 4-8 Sideview Topside+DSF 

The 3-D main structural frame now needs to be made into 2-D. Therefore the front view from Figure 

4-7 is used. The forces as well as the stiffness of the structural members seen in the side view are 

superimposed onto each other to get an accurate representation. The transformation from the 3-D 

model to the 2-D model including the stiffness calculations for all the members, the superposition of 

the forces and the weight distribution can be seen in Appendix B: Topside configuration. 

Via the DSU’s the weight of the topside is guided to the deck support frame. Just like the topside the 

deck support frame needs to transform into a 2-D representation. For the deck support frame all 

members are taken into account as they are all part of the main load bearing structure. The side view 

shown in Figure 4-9 forms a correct presentation of a part of the deck support frame model used. 

 

Figure 4-9 DSF dimensions, front view 

However as can be seen in Figure 4-8 there is also a frame section connecting the two sides of deck 

support frame. So a vertical member is added in the center each mid-section connecting the DSU to 

the skidbox. In the actual DSF the members enter the skidboxes at an angle introducing forces in the 

z-direction, this is neglected in the 2-d representation. The transformation from 3-D to 2-D and the 

superposition of the elements is explained more elaborate in Appendix B: Topside configuration. 

Finally the skidboxes need to be added to the DSF and topside. The skidboxes are responsible for the 

final transfer of weight of the topside onto the timber in the skidbeams. In the model the skidbox is 
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assumed to be homogenous throughout. As can be seen in Figure 4-9 this isn’t the case in reality as 

there are several vertical flanges inside the boxes, however these do not contribute significantly for 

the longitudinal stiffness.  

Bothe skidboxes have the exact same lay-out, since the model in M is 2-D the EI value of one skidbox 

is multiplied by two to get the representation of both skidboxes in the model. To calculate the stiffness 

of the skidbox a simple hand calculation is performed. The profile of the skidbox can be seen in 

Figure 4-10. Using the equation below, the stiffness of the skidbox can be easily found using the 

values seen in Figure 4-10.  

Equation 4-3 

𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 =
1

12
∗ 𝑏 ∗ ℎ3 + 𝐴2 ∗ 𝑧 

 

Figure 4-10 Profile of the skidbox 

Since the skidboxes play in important role in the model later on when the effects of optimizations will 

be discussed, their allowed shear forces and moments are calculated too.  

Allowable shear force 

The stresses resulting from shear force can be calculated using the equation below. The maximum 

allowed stress is known so with the help of Figure 4-10 the maximum allowed shear force can be 

calculated. 

Equation 4-4 

𝜎𝑚𝑎𝑥,𝑠ℎ𝑒𝑎𝑟 =
𝑉 ∗ 𝑆𝑧
𝑏 ∗ 𝐼

 

In which: 

σmax,shear =0.4*fy=0.4*340=136 N/mm
2
 

V  = Shear force 

Sz  = Static moment sliding element 

b  = width at cross section halfway 

I  = moment of inertia of skidbox 

Using the values which can be derived from Figure 4-10 the maximum allowed shear force over the 

skidbox is calculated to be: 8.1*10^4 kN. 
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Allowable bending moment 

The same as was done for the shear force is repeated for the maximum allowed bending moment [2]: 

Equation 4-5 

𝜎𝑚𝑎𝑥,𝑏𝑒𝑛𝑑𝑖𝑛𝑔 =
𝑀 ∗ 𝑧

𝐼
 

In which: 

σmax,bending = 0.66*fy=0.66*340=224.4 N/mm
2
 

M  = bending moment on skidbox 

z  = half the height of the skidbox 

I  = moment of inertia of skidbox 

Using Equation 4-5 and with the values derived from Figure 4-10 the maximum allowed bending 

moment is found to be; 159.74 MNm.  

Care should be taken that these forces aren’t exceeded. A special note will be made in this report in 

the occasion that it does. 

With the skidbox added the structure of topside, DSF and skidbox is now complete. The topside, DSF 

and skidbox are later on combined with the barge and the quay. Therefore the nodes of the skidbox 

need to align with the nodes of the barge. Both structures are beam elements and since the barge 

consists of beam elements with the size of 1.25 meters it is only logical that the skidbox will have 

beam elements with a size of 1.25 meters too. This way all the nodes of the skidbox will always align 

with a node on the barge. See Figure 4-11. Every step in which the skidbox moves further up the 

barge equals one node further along the barge thus every step is 1.25 meters.  

 

Figure 4-11 skidbox - barge connection 

The connection between the skidbox and the barge is formed by springs at every overlapping node. 

These springs resemble the stiffness of the deck in combination with the timber in the skidbeams. The 

value for this spring stiffness will be the topic of chapter 7, here the deck stiffness will be further 

clarified. For now it suffices to mention that the stiffness of the wood is calculated using the following 

formula: 

𝑘𝑤𝑜𝑜𝑑 =
𝑁

∆𝑡
=
𝐸𝐴

𝑡
=
1430 ∗ 106 ∗ 4

0.3
= 1.9 ∗ 1010𝑁/𝑚 
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In which: 

E = Young’s modulus of wood 

A = Area over which force is applied 

t = thickness of wood layer 

The deck stiffness is given for now to be 1.8*10^9 N/m (received using SACS analysis) and at the 

transverse bulkheads to be 3.354*10^9, however a deeper analysis of the deck will be performed in 

chapter 6. For combining this with the wood stiffness to form the springs connecting the skidbox and 

the barge the following equation is used: 

(
1

𝑘𝑤𝑜𝑜𝑑
+

1

𝑘𝑑𝑒𝑐𝑘
)
−1

= 𝑘𝑐𝑜𝑛 = 1.644 ∗ 10
9 

In which: 

kwood  = Stiffness wood 

kdeck = Stiffness barge deck 

kcon = Stiffness connecting spring barge-skidbox 

When combining the topside and the barge another force factor comes into play which needs to be 

added into the model. As could be seen in chapter 3 a skidded load-out works by attaching cables 

from an anchor at the front of the barge to the skidboxes. If the strand jacks are engaged a normal 

force and moment is applied at the deadman anchor. This force is constant over the entire load-out 

since the pulling force required stays the same. This pulling force is equal to the friction coefficient 

times the weight of the whole topside structure. The friction coefficient was determined to be 0.10 so 

the pulling force at the deadman anchor is 0.10*weight topside+DSF. The created moment’s arm is 

equal to the distance from the center of the barge to the point where the cables attach at the deadman 

anchor, seen in Figure 4-12 

 

Figure 4-12 Deadman Anchor connection to barge 

This same amount of friction force is also applied to the interaction between the bottom of the 

skidbox and the skidbeams. The total friction force is distributed evenly over the length of skidbox. 

However the location of the skidbox, as in how much of it is on the quay and how much is on the 

barge, changes for each step of the load-out. Thus the normal force and moment which are applied 

onto the barge and quay also change for each step. The arm of the moment due to the friction of the 

skidbox onto the barge is equal to the distance from the center of the barge to the deck.  
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For combining both structures, the barge and the whole topside system, Equation 4-2 is expanded 

with the stiffness matrix equation of the topside system. Both are structures are beam models so they 

can be simply combined in the same matrix. In matrix Equation 4-6 the approach for this is shown. 

Equation 4-6 Stiffness matrix equation topside and barge 

          

 K Topside      U Topside  F Topside 

      ●  =  

          

    K Barge   U Barge  U Barge 

          

 

Both matrices are now still uncoupled. The springs which were seen in Figure 4-11 connecting the 

skidbox to the barge still need to be incorporated inside the matrix. The springs actually couple the 

displacements of the barge with the forces on the topside and vice versa. For example if the barge 

would move in a positive y-direction the springs would compress and so exert a force on the topside 

system. In the matrix they would be in the position which was previously empty, see  

Equation 4-7 Stiffness matrix incl. connection springs 

          

 K Topside   K T-B   U Topside  F Topside 

      ●  =  

          

 K T-B   K Barge   U Barge  U Barge 

          

The matrix which represents the connecting springs K T-B changes for each step of the load-out since 

the amount of nodes as well as which nodes are connected change for each step. See Equation 4-8 for 

the above right connection matrix. 

Equation 4-8 Connection stiffness matrix per step 

         

 Kspring        

 ↑        

 ↑        

 Kspring   Kspring     

 ↑        

 ↑        

 Kspring → → Kspring → → Kspring  

         

In the first step only the last node of the skidbox and the first node of the barge are connected, which 

is in the bottom left of the matrix. As the skidbox travels further up the barge more nodes are 

connected. The matrix seen above covers only the first three steps in this process. For the lower left 

connecting matrix the transpose of this matrix is formed.  

 

 



P a g e  | 35 

 

 Thesis N.L.M. Verhoef  

4.2.3 Quayside 

The final structure that needs to be added to the model is the quayside. The quay will also be modeled 

as a beam supported on springs. See Figure 4-13. 

 

Figure 4-13 Quay modeled as beam elements 

The beam itself will represent the concrete foundation slab of the quay. The springs represent the 

characteristics of the ground below. The stiffness matrix for the quay will look identical to the 

stiffness matrix for the barge and the skidbox, with a spring support on every node. The beam element 

size will also be 1.25 meters, analogous to the skidbox beam element size because of node alignment. 

Further characteristics for the quay will be the topic of chapter 7. Until chapter 7 the HMC method 

will be used which means that the stiffness of the foundation slab is set to zero and the value for the 

stiffness of the soil below set to 26579mT/m/m, which is the assumed stiffness by HMC at the DSME 

yard. 

Incorporating the quay into the total system gives the final system seen in Figure 4-14 

 

Figure 4-14 Total system including topside, barge and quay 

The connection between the skidbox and the quay is formed by springs at every overlapping node. 

These springs represent the wood inside the skidbeam.  
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Integrating the quay into the total system is done analogous to the method used in incorporating the 

topside into the barge. Giving the following matrix equation: 

Equation 4-9 

             

 K quay   K q-t   0   U Quay  F Quay 

             

             

 K q-t   K topside   K t-b  ● U Topside = F Topside 

             

             

 0   K t-b   K Barge    U Barge  F Barge 

             

 

In which the matrix K q-t form the connection matrix between the quay and the skidbox, this matrix 

differs per load-out step similar to the matrix in Equation 4-8. 

4.2.4 Springs iteration 

The springs connecting the skidbox to the quay and the barge still need to be adjusted. Normal springs 

work in tension and compression but the springs in this model only act in compression. If for example 

there is a gap between the surface of the skidbox and the barge the springs would still exert a tension 

force on the skidbox and the barge. Therefore the springs which are in tension need to be removed. 

This is an iterative process. Removing springs in one location might cause the springs in another 

location to transform from being in compression to being in tension. The method of incorporating this 

into the model is described in Figure 4-15 
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Figure 4-15 For-loop spring iteration 

The first run is performed with all the springs being active. From this the displacements of the barge, 

quay and skidbox is received. Depending on the location of the spring the displacement of the skidbox 

and the displacement of the quay and barge respectively is compared. If the displacement of the barge 

or quay is larger than the displacement of the skidbox in a downwards direction the spring is turned 

off.  

The script for setting the springs to zero was tested by using an upper bar connected to a lower bar via 

the connection springs, same as in the model with the barge and the skidbox. The lower bar has a 

force on it causing a certain displacement and the upper bar has no forces on it. In Figure 4-16 the 

upper graph shows the displacement of both bars without the script which sets the springs in tension 

to zero and the lower graph shows the displacement of the bars while using the script. 

First run model with all springs active, performed 
in a for loop. The vector for springs is multiplied by 
vector Zspring, which is a vector of ones at the 
start of iteration setting springs to on or off. 

Displacements of barge, quay and skid box is 
received 

For each spring the displacement of the corresponding nodes are subtracted 
to check for tension in springs as such: 

w_con=w_skid-w_barge (displacement skid - displacement barge)  

w_con=w_skid-w_quay (displacement skid - displacement quay) 

Zspring(1:x)=w_con<=0 

Zspring is adjusted, where springs were in tension 
value is set to 0, now another loop starts multiplying 
the spring vector with Zspring setting some springs 
to zero 
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Figure 4-16 Spring iteration example 

4.3 Method of verification of the model  
 

To test whether or not the model is an accurate representation of the real life situation described in 

chapter 3 the model needs to be verified. Unfortunately however HMC has no data available on barge 

displacements or measured forces during the load-out of the base case topside or any other topside 

load-out for that matter. So verifying the model with the actual situation wasn’t possible. 

However the base case load-out was analyzed extensively and a complete 3-D model has been made, 

see fig. This model was made using FEMAP.  
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Figure 4-17 3-D FEM model 

This model was made for 9 load out steps, each of these steps will also be used to verify the 

MATLAB model by comparing the displacement of the barge in the FEM model to the displacements 

of the barge in the MATLAB model. Unfortunately due to this model not being accessible anymore 

due to HMC changing FEM software this is the only method to verify the model. The 9 load-out steps 

which were used for this model are: 

• Step 1, front DSF at x = 6.125m* (at frame 2, 9% on barge) 

• Step 2, front DSF at x = 16.125m* (at frame 7, first intermediate stern wedge support) 

• Step 3, front DSF at x = 31.125m (section break stern wedge/skid way fore of DSF) 

• Step 4, front DSF at x = 49.250m (section break in skid way fore of DSF) 

• Step 5, front DSF at x = 56.125m (75% on barge) 

• Step 6, front DSF at x = 74.875m (100% on barge) 

• Step 7, front DSF at x = 94.250m (section break in skid way fore of DSF) 

• Step 8, front DSF at x = 106.750m (section break stern wedge/skid way aft of DSF) 

• Step 9, front DSF at x = 140.500m (final position on barge) 

The results which the model gave for these stresses have actually been verified with the actual load-

out. Several strain gauges were in place during the base case load-out and the results predicted by the 

model proved to be quit close to the measured values. In Figure 4-18 an example is given for the 

resemblance in the values between the model and the strain gauge measurements in ballast tank PS6 

for all the 9 steps.  
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Figure 4-18 Verification of 3-D model with reality 

“The strain gauge data and the FEM results match very well at higher strain levels for both linear and 

shear strains, but the rosette gauge output appears to give significant differences with respect to the 

FEM results.” [2] 

These local stresses aren’t included in the MATLAB model so can’t be used as verification since the 

MATLAB model mostly focuses on global forces and displacements. That is why the barge 

displacements is used. These displacements do not match the displacement during the actual load-out 

due to the fact that another ballast configuration is used for the FEM model. For verifying the 

MATLAB model this ballast configuration is also used.  The results for the barge displacements for 

each of the 9 steps can be seen in Figure 4-19 

 

Figure 4-19 Results 3-D model 

It shows the displacement of the barge CL longitudinal BKHD at deck level for each load-out step. 

This location was chosen to make the rotational effects as little as possible since there is no rotation of 

the barge in the MATLAB model. It is clear that the stern shows no vertical displacement during step 

1 to 5, when there is still a part of the DSF on the quayside. Next for step 6 to 9 the deformation 

[m] 
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transforms from a hogging to a sagging shape as can be expected when the DSF travels from stern to 

mid-ship position. 

The MATLAB model consists of 113 steps, of these 113 steps the corresponding 9 steps are extracted 

and the barge deformation for those steps is shown in the graph below.  

 

Figure 4-20 Verification of displacement for model 

As can be seen the results from the FEM model and the MATLAB model resemble each other. 

However the results aren’t exactly the same. There are several causes for this problem. The major 

difference is the fact that the FEM-model is a 3-D model and the MATLAB model is a 2-D model. 

The second big difference is that the MATLAB model will neglect local effects and local stiffness’s 

and focuses on the global stiffness and displacements.  The MATLAB model is much less complex 

compared to the FEM model.  
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5 Ballast optimization 
 

In order to reduce the forces during the load-out on the topside as well as on the barge, the ballast 

configuration during each step of the load-out is calculated with the help of the MATLAB-model. It is 

believed that an optimization of the ballast configuration can lead to lower displacements of the barge 

and thus lower forces compared to the standard ballast plan. The methods used to achieve this ballast 

configuration optimization are described in this chapter. 

5.1 Least squared method 
 

The goal of the optimization is to keep the barge as level as possible through optimization of the 

ballast configuration. The deflection from this level barge needs to be as low as possible over the 

length of the total barge. The level barge also needs to align with the quayside. Supposed the level 

quayside is taken to be zero, we then have the following least-squares problem: 

𝑚𝑖𝑛‖𝑈𝐵𝑎𝑟𝑔𝑒‖
2
 

With the help of the MATLAB optimization toolbox this can be solved. The method to solve 

constrained linear least-squares problems is with the help of the “lsqlin” command. This command 

solves least-squares curve fitting problem of the form: 

Equation 5-1  

𝑚𝑖𝑛𝑥‖𝐶 ∙ 𝑥 − 𝑑‖
2 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {

𝐴 ∙ 𝑥 ≤ 𝑏,
𝐴𝑒𝑞 ∙ 𝑥 = 𝑏𝑒𝑞,
𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏

 

The above two constraints aren’t used in this situation but the constraint 𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏 is used. The 

values for these constraints depend on the corresponding ballast tanks. The algorithm used to solve 

the above equation is the “trust-region-reflective” algorithm. This algorithm is ideally suited for a 

situation in which there are only upper and lower bounds and no linear inequalities or equalities. 
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5.2 Reconfiguring the matrix to least squares method 
 

In order to optimize the ballast configuration for the displacements of the barge, the model needs to be 

rewritten. The model is all written in one matrix as was described in chapter 4. To optimize for the 

displacements of the barge by ballast adjustment these two factors need to be “isolated” from the 

model.   

The whole system in short can be represented as mentioned in chapter 4: 

Equation 5-2 

             
 K quay   K q-t   0   U Quay  F Quay 

             
             
 K q-t   K topside   K t-b  ● U Topside = F Topside 
             
             

 0   K t-b   K Barge    U Barge   F Barge 
             

 

Using the inverse of the stiffness matrix this is rewritten into:  

Equation 5-3  

              
  (K quay)

-1 
  (K q-t)

-1 
  0   F Quay  U Quay 

              
              

inv  (K q-t)
-1 

  (K topside)
-1 

  (K t-b)-
1 

 ● F Topside = U Topside 

              
              
  0   (K t-b)

-1 
  (K Barge)

-1 
   F Barge  U Barge 

              

  

Here it is very important to note that (K Barge)
-1

 doesn’t represent the inverse of only K Barge by itself, it 

represents the cells in the inverse matrix which in the normal matrix are represented by K Barge.  

The first optimization is performed with the intention of keeping the displacements of the barge as 

low as possible, therefore we are only interested in the section U Barge. On the forces side the only 

section which will change with the optimization is F Barge since this section contains the ballast forces. 

These need to be isolated from the other forces so that the ballast forces can be optimized. The least 

squares problem is rewritten into: 

𝑚𝑖𝑛‖𝑈𝐵𝑎𝑟𝑔𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑏𝑎𝑙𝑙𝑎𝑠𝑡 − 𝑈𝐵𝑎𝑟𝑔𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑇𝑜𝑝𝑠𝑖𝑑𝑒+𝐵𝑎𝑟𝑔𝑒 𝑤𝑒𝑖𝑔ℎ𝑡‖
2
 

UBarge Topside+Barge weight is calculated taking the whole system with all the forces excluding the ballast 

forces. UBarge ballast, the displacement of the barge due to ballast forces, requires rewriting the matrix in 

order to isolate the ballast forces. The least squares problem is: 

𝑚𝑖𝑛‖𝐾 ∗ 𝐹𝐵𝑎𝑙𝑙𝑎𝑠𝑡 − 𝑈𝐵𝑎𝑟𝑔𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑇𝑜𝑝𝑠𝑖𝑑𝑒+𝐵𝑎𝑟𝑔𝑒 𝑤𝑒𝑖𝑔ℎ𝑡‖
2
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The problem is now of the same form as Equation 5-1. K is equal to C, FBallast is equal to x and  

UBarge due to topside+barge weight is equal to d. In which K hasn’t been determined yet and FBallast is the 

unknown for the algorithm is trying to solve. 

K needs to describe the direct relationship between F Barge and U Barge neglecting all other forces. This 

is given by the matrix which is formed by the K Barge section of the inverse system matrix which is 

called (K Barge)
-1

. By isolating the relevant sections of the total system matrix the following matrix 

equation is received. 

Equation 5-4 

          Fx1   
          Fy1   

          FM1   
          ⁞   
    (K Barge)

-1
     ● ⁞ = U Barge 

          ⁞   
          Fx209   

          Fy209   
          FM209   

 

The ballast forces act in one direction only in this model so the horizontal force Fy and the moment FM 

can be removed from the equation. The matrix (K Barge)
-1 

needs to be adjusted accordingly by erasing 

the corresponding columns and rows in the matrix. Thus the following equation is formed: 

Equation 5-5 

    Fy1  Uy1 

    Fy2  Uy2 

    Fy3  Uy3 

    ⁞  ⁞ 

  (K Barge, Vertical forces)
-1

  ● ⁞ = ⁞ 

    ⁞  ⁞ 

    Fy207  Uy207 

    Fy208   Uy208 

    Fy209  Uy209 

 

Equation 5-5 represents a direct relation between the ballast forces at all 208 elements of the barge 

and the displacement of these elements, so the vertical displacement of the barge and the ballast 

forces are now isolated from the total system. One more change needs to be made however. As was 

seen in chapter 4, there are 11 ballast tanks in our model which all extent for several elements. Fy1 and 

Fy2 for example therefore need to have the same value. The matrix equation is therefore adjusted in 

such a way that the forces on each element are replaced by ballast tanks 1 to 11. It is known which 

elements correspond with which ballast tank, this is summarized in Table 5-1 
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Table 5-1 Ballast tanks and the corresponding elements 

Ballast 1 Element 1:17 

Ballast 2 Element 28:37 

Ballast 3 Element 38:57 

Ballast 4 Element 58:77 

Ballast 5  Element 78:97 

Ballast 6 Element 98:117 

Ballast 7 Element 118:137 

Ballast 8 Element 138:157 

Ballast 9 Element 158:177 

Ballast 10 Element 178:197 

Ballast 11 Element 197:208 

 

To use these ballast tanks in the force vector the matrix equation needs to be adjusted, in particular the 

stiffness matrix used in Equation 5-5. Since in the force vector Fy1 to Fy17 are combined, the columns 

1 to 17 from (K Barge, Vertical forces)
-1

 are added together to form (K Barge, Ballast tank forces)
-1

 . The final formed 

stiffness matrix (K Barge, Ballast tank forces)
-1

 is a 209x11 matrix and the matrix equation becomes: 

Equation 5-6 

  Ballast 1  Uy1 

  Ballast 2  Uy2 

  Ballast 3  Uy3 

  ⁞  ⁞ 

 (K Barge, Ballast tank forces)
-1

 ● ⁞ = ⁞ 

  ⁞  ⁞ 

  Ballast 9  Uy207 

  Ballast 10  Uy208 

  Ballast 11  Uy209 

 

The optimization is bounded by the values which the ballast tanks can assume. The line load per 

ballast section was already calculated in chapter 4. The guideline which says that the ballast tanks 

should be maximum 97% filled and lowest 3% filled is adhered to. The values for the upper and lower 

boundaries used in MATLAB can be seen in Table 5-2. 

Table 5-2 Upper and lower boundaries of ballast tanks 

 Lower boundary (lb) Upper boundary (ub) 

Ballast 1 -5727944*0.97 -5727944*0.03 

Ballast 2 -8852240*0.97 -8852240*0.03 

Ballast 3 -9075466*0.97 -9075466*0.03 

Ballast 4 -9066618*0.97 -9066618*0.03 

Ballast 5  -6236668*0.97 -6236668*0.03 

Ballast 6 -9018353*0.97 -9018353*0.03 

Ballast 7 -5930194*0.97 -5930194*0.03 

Ballast 8 -5919325*0.97 -5919325*0.03 

Ballast 9 -5918118*0.97 -5918118*0.03 

Ballast 10 -2166705*0.97 -2166705*0.03 

Ballast 11 -4136913*0.97 -4136913*0.03 

 

As the current optimization is the first in a series it shall be denoted optimization A.  



P a g e  | 46 

 

 Thesis N.L.M. Verhoef  

5.2.1 Optimization A “Barge level” results 

The first optimization is the optimization in which the barge will remain as level as possible, it is 

expected that this optimization will be most beneficial for the forces in barge compared to the other 

optimizations. Step 40 is considered first as this is considered an important step during the load-out, 

although other could also have been chosen. In Figure 5-1 the barge deflection can be seen with the 

optimized ballast and the standard ballast. The optimization does what it is intended to do and that is 

keeping the barge as level as possible. Since the deflections aren’t that steep in the optimized ballast 

situation the moment is also lower as can be seen in Figure 5-2. The highest moment in the optimized 

situation is -0.63 GNm where as in the standard situation the highest moment is -3.2 GNm. This leads 

to a peak moment reduction in the barge equal to 19% of the original value. 

 

Figure 5-1 Barge deflection Standard vs Optimized 

 

Figure 5-2 Moment over Barge Standard vs Optimized ballast configuration 

  



P a g e  | 47 

 

 Thesis N.L.M. Verhoef  

The shear force in the barge is also reduced significantly as can be seen in Figure 5-3. 

 

Figure 5-3 Shear force over Barge Standard vs Optimized ballast configuration 

However what can also be seen is that with this optimization in this specific case, the barge level at 

the alignment with the quay drops below the quay level. This will cause the skidbox to lose support 

just past the quay. The skidbox will now deflect downwards, as can be seen in Figure 5-4 

 

Figure 5-4 Skidbox deflection Standard vs Optimized ballast configuration 

The effects of this on the moment over the skidbox can be seen in Figure 5-5. 
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Figure 5-5 Moment distribution over skidbox Standard vs Optimized 

Due to the skidbox in the optimized situation deflecting downwards first instead of upwards 

immediately, there is a distinct negative peak moment first followed by a positive peak moment where 

the skidbox slowly deflects upward. The positive peak moment increases with the optimization from 

38 MNm to 55 MNm, which is an increase of 44%, so for step 40 the optimization forms no 

improvement for the moment over the skidbox. At other locations on the skidbox the moment 

however is reduced with the optimization. 

 

Figure 5-6 Shear force distribution over skidbox Standard vs Optimized 

As can be expected from the moment distribution, the shear force also shows an increase at the barge-

quay connection. However the peak shear force is reduced from -4.2*10^4 kN to-3.6*10^4 kN which 

is a reduction of 15% 

Concluding it can be said that for step 40 in the load-out this optimization is beneficial to reduce the 

peak moment in the barge but not in the skidbox. However the goal wasn’t to reduce the peak moment 
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of only the barge but also for the topside, represented here by the skidbox. Because the optimization 

isn’t beneficial for step 40 doesn’t mean that this is the case for every of the other load-out steps, in 

the MATLAB model there are 113 steps. Now a look is taken at the peak moment for the barge and 

skidbox for each section for all the load-out steps. This way it is possible to see what the effects of the 

optimization are for the overall load-out. Negative and positive moment is considered equally 

damaging so for the sake of drawing a conclusion from the following graphs only the absolute value 

for the moment is shown. 

  

Figure 5-7 Maximum moment per section of barge 

In Figure 5-7 it could be seen that the maximum moment per section of barge is significantly reduced. 

This is mostly due to the sagging which the barge does in the standard ballast configuration but 

doesn’t do in the optimized version. These results were expected with this type of optimization. The 

resulting reduction in peak moment is from 8.1 GNm to 2.5 GNm which is a reduction of 70%. The 

maximum shear force is also reduced as can be seen in Figure 5-8.  

 

Figure 5-8 Maximum shear force per section barge 
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The results for the maximum moment per section of the skidbox aren’t as clear-cut as it is for the 

barge as can be seen in Figure 5-9. The effects of the optimization clearly benefit the last section of 

the skidbox the most with a reduction from 66 MNm to 21 MNm in the last peak. In the 0m to 40m 

range however the optimization negatively influences the max moment. The highest peak moment for 

optimization equals 78 MNm whilst for the standard ballast configuration the highest peak moment 

was 66 MNm albeit in a different location on the skidbox.  

 

Figure 5-9 Maximum moment per section skidbox 

Almost the same can be said for the maximum shear force seen in Figure 5-10. In order to understand 

these results better it is also interesting in which step the maximum moment occurs for the barge and 

the skidbox, this can be seen in Figure 5-11.  

 

Figure 5-10 Maximum shear force per section skidbox 
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Looking at Figure 5-11 it is evident that for the optimized ballast configuration the highest maximum 

moment occurs in the steps in which the skidbox is still partially on the quay. After step 61, which is 

the step where the skidbox leaves the quay and is placed on the barge, the maximum moment in the 

optimized situation becomes very small due to the fact that the barge forms a level platform. In the 

standard situation one can identify the increasing sagging of the barge as the skidbox travels along the 

barge in both figures. The skidbox will “form” after the deformation of the barge and will also have a 

sagging shape. For the barge the optimization performs very well for all the steps, the increasing 

sagging for steps 61+ which occur in the standard ballast configuration don’t occur at all in the 

optimization. 

 

Figure 5-11 Maximum moment per step for skidbox 

This increasing sagging of the barge can also clearly be seen in Figure 5-12. Especially after step 66 

the maximum moment over the barge keeps increasing. 

 

Figure 5-12 Maximum moment per step for barge 
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So concluding it can be said that considering all the load-out steps the optimization in which the barge 

is kept as level as possible is very beneficial for the barge with a reduction in maximum moment of 

almost 6 GNm. However for the skidbox there is an increase in the peak moment using this 

optimization. As could be seen in the graphs about the maximum moment per step in the skidbox, the 

steps in which the skidbox is still partially on the quay causes high moments in the skidbox using 

optimization A. It is believed that an optimization which puts more emphasis on keeping the 

alignment between quay and barge as perfect as possible whilst maintaining a level barge is a more 

suitable optimization for the ballast arrangement during the load-out. This is the topic of the next 

paragraph. 
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5.3 Optimization of Barge to Quay connection alignment 
 

A crucial point in the load-out process of a topside as well as a jacket is the alignment of the barge 

with the quay. Misalignment at this point can lead to very high stresses in the barge as well as the 

topside. For example if the deck of the barge extends beyond the level of the quay causing the edge of 

the barge to “carry” very high loads because at the quayside the topside will be unsupported. 

The optimization in the previous paragraph was based on keeping the barge as level as possible, 

meaning the average deflection of the barge was overall as close to 0 as possible. Another 

optimization can however be made, which makes sure that the alignment between the barge and the 

quay is perfect. It is to be expected however that this condition creates a worse performance in 

keeping the barge level meaning the results from the least squares method will be worse thus the 

deflections overall of the barge will increase. To achieve this a look back is taken at Equation 5-1. In 

the previous optimization the only boundaries that were imposed on the linear least squared method 

used in MATLAB were the lower and upper bound which could be achieved by the ballast forces. In 

this section an addition is made to these bounds. 

Looking back at Equation 5-1, the linear equality constraints Aeq*x=beq which were previously 

ignored are now used to force perfect alignment between barge and quay. This will be achieved by 

isolating the displacement at the stern of the barge in Equation 5-6. In the matrix Equation 5-7 below 

Uy1 should be equal to the opposite of the displacement caused by the forces excluding the ballast 

force added with the displacement of the last node of the quayside. Therefore Uy1 is isolated from the 

other displacements as shown below by taking the first row of (K Barge, Ballast tank forces)
-1 

and multiplying 

it with the ballast vector so Uy1 is received. 

Equation 5-7 

Row 1  Ballast 1  Uy1 

  Ballast 2  Uy2 

  Ballast 3  Uy3 

  ⁞  ⁞ 

 (K Barge, Ballast tank forces)
-1

 ● ⁞ = ⁞ 

  ⁞  ⁞ 

  Ballast 9  Uy207 

  Ballast 10  Uy208 

  Ballast 11  Uy209 

 

The linear equality constraints Aeq will now represent the first row of the matrix K Barge, and beq 

which represents Uy1 will be equal to the opposite of the displacement of the first node of the barge 

when the ballast force is excluded added with the displacement of the quayside.  

5.3.1 Results 

With this optimization the results are expected to improve significantly for the skidbox. First a look 

will be taken what the effects will be on step 40 as this makes it easy to compare with the previous 

optimization. The results on both the barge and the skidbox with the new optimization, which is called 

optimization B, will be compared to the results of optimization A and the standard ballast 

configuration.  
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Figure 5-13 Deflection of barge for step 40, optimization A&B 

It can be seen that in the case of step 40 the supposed sacrifice which is made in barge deflection due 

to the optimization now having to take into account another boundary condition doesn’t happen as 

severe as was expected. The average deflection in Optimization B is larger than for optimization A 

but it still performs better than the standard ballast configuration. The effects on the moment 

distribution for the barge can be seen in Figure 5-14. Here it can be seen that for optimization B the 

maximum moment in the barge is higher than for optimization A, so here a significant sacrifice is 

made, although it still outperforms the standard ballast configuration in terms of absolute maximum 

moment. Compared to optimization A the highest moment increases from 0.45GNm to 2.6 GNm 

which is an increase of 577%.  

 

Figure 5-14 Moment over barge for step40, Optimization A&B 

The results of the effects on the shear force over the barge are similar to the effects on the moment. 

The shear force increases compared to optimization A and is more similar to the standard ballast 

configuration as can be seen in Figure 5-15. 
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Figure 5-15 Shear force over barge for step40, Optimization A&B 

For Optimization A step 40 gave a high moment in the skidbox due to incorrect alignment of barge 

and quay. Optimization B is aimed specifically to reduce this misalignment. It can be seen in Figure 

5-16 that the deflection of the skidbox is definitely less than in the standard configuration and it 

doesn’t have the drop off which occurs at the quay-barge connection (which for step 40 is at 28.75m) 

with optimization A.  

 

Figure 5-16 Deflection of skidbox for step 40, Optimization A&B 

The effects on the moment distribution over the skidbox will thus also be significant. As can be seen 

in Figure 5-17 the reduction in moment compared to both optimization A and the standard situation is 

very large. A reduction of 61% compared to A (from 55 MNm to 21 MNm) and a reduction of 44% 

(from 38 MNm to 21 MNm) compared to the standard configuration. It also performs better for the 

shear force as can be seen in Figure 5-18. Especially around the barge-quay connection the shear 

force over the skidbox is significantly reduced.  
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Figure 5-17 Moment over skidbox for step 40, Optimization A&B 

 

Figure 5-18 Shear force over skidbox for step 40, Optimization A&B 

So for step 40, optimization B performs much better with a lower peak moment for the skidbox. 

However it does make sacrifices in terms of maximum moment in the barge.   

Next the performance over the whole load-out needs to be compared. Just like with the previous 

optimization the maximum moment per section for both the skidbox and the barge will be the 

indicator to which the optimizations will be compared, the same will be done for the shear force. First 

a look is taken at the performance for the barge, seen in Figure 5-19. The expected sacrifice 

optimization B would make compared to optimization A for the maximum moment in the barge for all 

the steps isn’t as significant as was expected. Apparently the extra boundary condition doesn’t affect 

the optimization as much as was expected, as the increase compared to optimization A only equals 0.4 

GNm. 
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Figure 5-19 Maximum moment in barge per section, Optimization A&B 

For the maximum shear force in the barge the sacrifice which optimization B makes compared to 

optimization A is more significant, as can be seen in Figure 5-20. Especially in the 100-150 meter 

range the difference is significant. The highest shear force for optimization B is 148 MN whilst for 

optimization A this was only 93 MN.  

 

 

Figure 5-20 Maximum shear force in barge per section, Optimization A&B 
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For the skidbox optimization B was expected to perform much better compared to both optimization 

A and the standard configuration. It can be seen in Figure 5-21 that this reduction in maximum 

moment for optimization B is very significant. A reduction of 67% is achieved for the peak moment 

compared to optimization A (from 78 MNm to 25 MNm) and a reduction of 62% (from 65 MNm to 

25 MNm) compared to the standard optimization.  

 

Figure 5-21 Maximum moment in skidbox per section, Optimization A&B 

As can be seen in Figure 5-22 the maximum shear force per section is also reduced over all the 

sections using optimization B. The highest shear force is reduced from 5.8 *10^4 kN using 

optimization A to 2.8*10^4 kN using optimization B.  

 

Figure 5-22 Maximum shear force in skidbox per section, Optimization A&B 

It is also interesting to look at the maximum moment per step for the barge and the skidbox. Here the 

shear force is omitted because the “per step” comparison gives a similar picture for the maximum 

moment per step and the maximum shear force per step. The maximum moment per step can be seen 

in Figure 5-23 for the barge and in Figure 5-24 for the skidbox. It can clearly be seen that especially 
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for the skidbox the most critical steps in the standard configuration and in optimization A are 

completely reduced with optimization B. Where optimization A still showed a high moment as long 

as the skidbox was still partially on the quay, using optimization B these high moments are 

completely gone. For the barge it can be seen that as long as the skidbox is still partially on the quay 

the maximum moment it experiences is slightly higher than compared to optimization A, however this 

difference is marginal compared to the difference with the standard ballast configuration for steps 

61+.  

 

Figure 5-23 Maximum moment in barge per step 

 

Figure 5-24 Maximum moment in skidbox per step 
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5.4 Optimization of Topside rotations 
 

In the previous two paragraphs the norm to which the ballast was optimized was the barge aligning 

with the quay and being as level as possible. However other optimizations can be made. The 

optimization where the barge is as level as possible doesn’t necessarily have to be the optimum 

situation for the forces in the topside or jacket which is being loaded-out. In this model the forces in 

the topside are also taken into account and thus can also be optimized.  

The norm which will be used for the optimization will be the rotations at 4 specific points in the 

topside-DSF connection, see Figure 5-25. It is assumed that keeping the rotation at these points as low 

as possible will result in reducing the forces over the entire topside.   

 

Figure 5-25 4 locations which form the standard for optimization 

 The optimization will strive to keep these rotations to a bare minimum. The method to achieve this is 

similar to the method which was used in paragraph 5.2. The linear least squares method is used once 

again. The goal of the optimization is: 

𝑚𝑖𝑛‖𝛷𝑇𝑜𝑝𝑠𝑖𝑑𝑒‖
2
 

Which is divided into the rotations caused by the ballast forces and the rotations due to all other 

factors: 

𝑚𝑖𝑛‖𝛷𝑑𝑢𝑒 𝑡𝑜 𝑏𝑎𝑙𝑙𝑎𝑠𝑡 −𝛷𝑇𝑜𝑝𝑠𝑖𝑑𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑇𝑜𝑝𝑠𝑖𝑑𝑒+𝐵𝑎𝑟𝑔𝑒 𝑤𝑒𝑖𝑔ℎ𝑡‖
2
 

Which is rewritten into: 

𝑚𝑖𝑛‖𝐾 ∗ 𝐹𝐵𝑎𝑙𝑙𝑎𝑠𝑡 −𝛷𝑇𝑜𝑝𝑠𝑖𝑑𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑇𝑜𝑝𝑠𝑖𝑑𝑒+𝐵𝑎𝑟𝑔𝑒 𝑤𝑒𝑖𝑔ℎ𝑡‖
2
 

Just like with optimization A, the matrix K still needs to be determined. How to get to this matrix 

equation is explained below. The starting point is once again the matrix Equation 5-3. 

This time the relationship which is sought after is the one between the ballast forces, FBallast, and  

U Topside. This is a difference from previous relation. In the matrix equation the section from the 

stiffness matrix which represents this relation is denoted by (K T-B)
-1 

which is cell (2,3). (Remember 

that this matrix is the inverse so this section isn’t only the connecting springs). So the matrix equation 

which is received is: 
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Equation 5-8 

          Fx1   
          Fy1  U Quay 

          FM1   
          ⁞   
    (K t-b)

-1
     ● ⁞ = U Topside 

          ⁞   
          Fx209   

          Fy209   U Barge 
          FM209   

 

From this matrix equation the relevant forces and displacements need to be derived. The relationship 

which is sought after is once again between the vertical forces on the barge and differing from the 

previous case the rotational displacement of specific points on the topside. Therefore only the relevant 

columns and rows are selected. For columns these are 2:3:209 and for rows 3:3:209.  

Equation 5-9 

      Fy1  UΦ1 

      Fy2  UΦ2 

      Fy3  UΦ3 
      ⁞  ⁞ 
  (K t-b,Vertical forces)

-1
   ● ⁞ = ⁞ 

      ⁞  ⁞ 
      Fy207  UΦ207 

      Fy208   UΦ208 
      Fy209  UΦ209 

 

Similar as was done in the previous paragraph this needs to be rewritten into a matrix equation where 

only the 11 ballast tanks are in the force vector: 

Equation 5-10 

      Ballast 1  UΦ1 

      Ballast 2  UΦ2 

      Ballast 3  UΦ3 
      ⁞  ⁞ 
  (K t-b, Ballast forces)

-1
   ● ⁞ = ⁞ 

      ⁞  ⁞ 
      Ballast 9  UΦ207 

      Ballast 10   UΦ208 
      Ballast 11  UΦ209 

 

5.4.1 Results for optimization “DSU con” 

This optimization is different compared to the previous 2 optimizations in that this optimization has 

no direct relation with the deflections of the barge. Just like with previous optimizations first a look 

will be taken at step 40 before looking at the load-out as a whole.  

An important question which will be answered in this paragraph is how does optimizing for these 4 

points of the topside construction influence the barge. Since optimization C is for other factors than 

keeping the barge as level as possible it is expected that their might be negative effects on the barge 

peak moment. However just like with the previous optimizations all strive for the same principle but 

put the emphasis on other variables. All optimizations namely strive to keep the alignment between 
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barge and quay as good as possible. This in turn will probably minimalize the rotation in the 4 points 

of the upper bar. 

Again a first run is done for step 40 in the MATLAB model. Since optimization B proved more 

successful than optimization A, optimization “DSU con” will only be compared to the standard and 

optimization B. It is to be expected that optimization “DSU con” will outperform both optimization B 

and the standard for step 40 for rotation of the 4 nodes since that is the focus of this optimization. 

Looking at Figure 5-26 this is confirmed. The optimization is very effective and there hardly is any 

rotation at all in the 4 DSU connection nodes. 

 

Figure 5-26 Rotation of 4 DSU connections, Standard, Opt. B and DSU con 

The moment over the barge will suffer with this optimization compared to the other optimization 

since the variables to which the current optimization is performed are not directly linked to the barge. 

This can be seen in Figure 5-27. For step 40 the performance for the barge is much worse than it was 

using optimization B or the standard ballast configuration. The increase in peak moment in the barge 

for this step is 230% ( from 3 GNm to 9.9 GNm in absolute values)  
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Figure 5-27 Moment over barge for step 40, Standard, opt. B and opt. DSU con 

Also for the shear force in the barge the results using optimization “DSU con” are much worse 

compared to optimization B and the standard ballast configuration as can be seen in Figure 5-28. The 

increase in peak shear force is almost 95% (from 105 MN to 205 MN ). 

 

Figure 5-28 Shear force over barge for step 40, Standard, opt. B and opt. DSU con 

Since the skidbox and the DSU connection are directly linked via the DSF it is expected that reducing 

the rotations in the 4 DSU nodes will also be effective in reducing the rotation and thus the moment in 

the skidbox. As can be seen in Figure 5-29 the moment in the skidbox is especially reduced with 

optimization “DSU con” from 0 meters up unto the quay-barge connection. For step 40 this is at 26.25 

meters of the skidbox. The peak moment in this step however is almost the same for optimization B 

and “DSU con”. It is also in the same location, at around 57 meters. The peak moment for 

optimization “DSU con” is -28 MNm compared to -25 MNm for optimization B.  
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Figure 5-29 Moment over skidbox for step 40, Standard, opt. B and opt. DSU con 

The shear force results are , as expected, similar to the results for the moment  in the skidbox in that 

up until the barge-quay connection the optimization “DSU con” performs better than the other 

optimization and the standard ballast configuration. However for the latter part of the skidbox the 

results for the optimization are similar or worse than optimization B and the standard ballast 

configuration.  

 

Figure 5-30 Shear force over skidbox for step 40, Standard, opt. B and opt. DSU con 

Just like with the previous optimizations the effects will be looked at for the overall load-out as well. 

These are expected to be similar to the results which were found for only step 40. In Figure 5-31 it 

can be seen that optimizing for the rotation in the DSU connection works very effective in reducing 

these rotations until the point where they almost don’t happen at all during the entire load-out.  
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Figure 5-31 Maximum rotation per DSU connection, Standard, opt. B and DSU con 

However as can be seen in Figure 5-32 the optimization performs worse for the skidbox than the 

standard and optimization B when looking at the highest peak moment. Considering the construction 

used this is an unexpected result as limiting the rotation at the DSU connection would also limit the 

rotation in the skidbox and thus cause a lower moment there. This needs further inquiry.  

 

Figure 5-32 Maximum moment per section of the skidbox, Standard, opt. B and DSU con 

The same can be said for the maximum shear force per section of the skidbox. The performance of 

optimization “DSU con” is worse than optimization B in terms of the highest peak moment. This was 

to be expected from the results for the maximum moment per section of the skidbox. However what is 

of interest is that the maximum allowable shear force, 8.1*10^4 kN, is exceeded by the first peak by 

0.4*10^4 kN. The cause of this will be investigated later on. 
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For the peak moment in the barge this optimization performs much worse compared to optimization B 

as can be seen in Figure 5-33. This was to be expected due the criteria for the optimization having no 

direct relationship with the deflection of the barge. This optimization will keep the barge level on the 

section where the skidbox is but neglects the level of deflection for the rest of the barge. The peak 

moment is even worse to that for the standard ballast configuration. This is mostly due to the steps 

where the skidbox is still on the quay. It was seen with further analysis that the front of the barge is 

deflected downwards significantly for these steps causing a high moment in the barge. For the later 

steps the moment in the barge is comparable with optimization B since a high moment there would 

mean a lot of sagging and this would translate to rotation at the DSU connections 

 

Figure 5-33 Maximum moment per section in barge 

As is to be expected from Figure 5-33 the results for the maximum shear force per section in the barge 

will also be worse than compared to optimization B. As can be seen in Figure 5-34, the maximum 

shear force is higher for almost every section of the barge with the peak shear force reaching 203 MN 

compared to a max of 144 MN for optimization B.  
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Figure 5-34 Maximum shear force per section in barge 

Coming back to the higher than expected moment in the skidbox, a view is taken at the highest 

moment per step in Figure 5-35. It can be seen that the worse performance is mostly down to a couple 

of steps, step 60 in particular. Since this result is unexpected a closer look is taken to step 60.  

 

Figure 5-35 Maximum moment per section of the barge, Standard, opti B and DSU con 

For step 60 the skidbox deflection can be seen below. At step 60 only 1 node is still attached to the 

quayside, this is the utmost left point in the graph of Figure 5-36. The nodes just to the right of the 1 

node attached to the quay are unsupported because the barge is ballasted lower with this algorithm. At 

this unsupported section the first member of the DSF is connected. This causes a large deflection at 

this point causing a very large moment in the first part of the skidbox as can be seen in Figure 5-37. 
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Figure 5-36 Deflection of skidbox for step 60 

 

Figure 5-37 Moment over skidbox, step 60 

As can be seen in Figure 5-38 the rotation for the 4 DSU connections is the lowest using the current 

optimization method. The maximum moment peak at step 60 thus isn’t an error or glitch in the 

algorithm. The algorithm does what it is supposed to do in this step, unfortunately due to the 

unsupported section of the skidbox aligning with the location where a member of the DSF is 

connected a high peak moment is created. The shear force peak resulting from this is 8.5*10^4 kN 

which surpasses the maximum allowable shear force for the skidbox. This optimization therefore is 

not suited in its current form for the base case scenario. A solution could be to manually adjust it for 

step 60. Despite this flaw it is believed that this optimization can definitely have its benefits since the 

goal, which was to reduce the rotations, was achieved.  
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Figure 5-38 Rotation DSU connections 

5.4.2 Conclusion from the optimizations 

The results for the optimizations are summarized in Table 5-3. It contains all the maximum forces in 

the barge and the skidbox for each optimization. 

Table 5-3 Summarization of maximum force per optimization 

 Opt A Opt B Opt “DSU con” Standard 

Max M in barge 2.6 GNm 3 GNm 10.1 GNm 8.2 GNm 

Max V in barge 93 MN 144 MN 203 MN 135 MN 

Max M in skidbox 78 MNm 25 MNm 121 MNm 65 MNm 

Max V in skidbox 5.8*10^4 kN 2.8*10^4 kN 8.5*10^4 kN 5.8*10^4 kN 

 

The same table is repeated using unity check, dividing the maximum value with the allowable value. 

Since the location of each peak is different for each optimization and the allowable forces aren’t 

constant over the barge either, the allowable forces by which is divided is also different for each 

optimization. For the skidbox the allowable forces are considered constant over the length as was 

calculated in paragraph 4.2.2. 

Table 5-4 Summarization of maximum force per optimization, unity check 

 Opt A Opt B Opt “DSU con” Standard 

Max M in barge 0.15 0.18 0.59 0.4861 

Max V in barge 0.31 0.41 0.30 0.20 

Max M in skidbox 0.49 0.16 0.76 0.41 

Max V in skidbox 0.72 0.34 1.05 0.72 

 

Concluding this paragraph it can be said that Optimization B is the superior method overall. It 

performs well in reducing the peak moments in the barge as well as in the skidbox. Optimization 

“DSU con” can be useful as well. The method used for achieving optimization “DSU con” can also be 

applied to other elements in the entire system making it an interesting alternative. If for example a 

certain element is known to be critical the optimization “DSU con” can be applied to that element. 

However it needs to be kept in mind that the other structures are still to be within their allowable 

forces.  
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5.5 Effects of the optimization on the ballast procedure 
 

In the MATLAB model each step in the process is independent of the previous step. For the 

optimizations this means that for each step a new optimization is calculated. Therefor it is of interest 

to investigate the percentage of how much the ballast tank is filled in each step. It is possible due to 

the nature of the optimizations that in one step the ballast tank is almost completely filled whilst in the 

next it is almost completely empty. This is an unwanted situation and is one of the flaws of 

calculating the ballast optimizations using this method.  

The process of checking the effects of the optimizations on the filling of the ballast tanks is checked 

for each optimization.  

5.5.1 Optimization A 

The results for optimization A can be seen in Figure 5-39 and Figure 5-40. The graphs are separated 

between tanks 1-6 and 7-11 with the only reason being to improve graph visibility. In the graphs it 

can be seen that for each step small adjustments are made. However for each tank a general trend can 

be seen which shows no major jumps, so from filled at 97% to 3%. The lack of major jumps in the 

tank percentages is positive because this would require a very large pump capacity. The solution for 

the small corrections can be to filter out these results and use the general trend for each tank. These 

small corrections would still be there if the optimizations were constructed in such a way that there is 

a dependency between the steps for the percentage in which the ballast is filled. For example if for 

each step the percentage for which the ballast tank is filled can only vary with 10 percent from the 

previous step, it is expected that minor adjustments will still happen. 

  

 

Figure 5-39 Ballast tank (1-6) percentage for all steps of optimization A 
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Figure 5-40 Ballast tank (7-11) percentage for all steps of optimization A 

5.5.2 Optimization B 

The results for optimization B can be seen in Figure 5-38Figure 5-41 and Figure 5-42. It can be seen 

that the results are remarkably different when compared to optimization A. Optimization B doesn’t 

have the small differences seen in Optimization A. However whereas Optimization A didn’t show any 

major jumps in the general trend of the graphs, these jumps can be seen in Optimization B. Almost all 

tanks are both almost empty and full during a single load-out. This requires a so much pump capacity 

which is almost unattainable. 

 

Figure 5-41 Ballast tank (1-6) percentage for all steps of optimization B 
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Figure 5-42 Ballast tank (7-11) percentage for all steps of optimization B 

5.5.3 Optimization “DSU con” 

The results for optimization “DSU con” can be seen in Figure 5-43 and Figure 5-44. It can be seen 

that with this optimization big jumps in percentages occur quite often. Especially around steps 20 to 

40 the steps are very radical. In this optimization some tanks are also going from completely full to 

completely empty in one step, for example step 38 for tank 5. This optimization however doesn’t have 

the small corrections which could be seen for optimization A.  

 

Figure 5-43 Ballast tank (1-6) percentage for all steps of optimization “DSU con” 
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Figure 5-44 Ballast tank (7-11) percentage for all steps of optimization “DSU con” 

 Concluding it can be said that the model in its current form doesn’t give an ideal ballasting situation. 

Although the optimizations are theoretically possible when there is infinite available time, in the real 

world some optimizations would simply result in too much ballasting time which is unwanted for a 

host of practical reasons (employees time, weather window, keeping up with the current becomes a 

factor). Therefore the model would have to be adjusted by making the boundaries of the optimization 

depend on the ballast situation of the previous step.  

5.6 Other optimization possibilities 
 

As stated earlier each optimization for each step is à mathematical solution. There may be many other 

possibilities which are able to achieve the same requirements. For example looking at step 40 for 

optimization A. Optimization A’s goal was to keep the barge as level as possible. However the results 

for the deflection of the barge seen in Figure 5-45 satisfy this least squares problem equally as much. 

This is a pure hypothetical case and isn’t checked if this is possible considering the boundaries set by 

the size of the ballast tanks. 

 

Figure 5-45 Hypothetical other optimization result 
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Each optimization is dependent on the starting point, from there it iterates to a solution. To check if 

there is more than one optimization result possible, the starting point is changed. For the 

optimizations used earlier the starting point was a situation in which the ballast tanks were completely 

empty. If the starting value is changed the boundaries have to change with them. If for example the 

starting point is changed to the ballast tanks being 50 % full, the boundaries for each ballast tank 

change to +47% and -47% of the full ballast tank.  

 It was tested that when using a starting point different than zero ballast present in the ballast tank, if 

the resulting optimization would be different. The result was that varying the starting point has 

absolutely no effect on the resulting optimization. Apparently, despite the different starting position, 

the optimization converges to the same best solution for the given boundaries.      
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6 Barge Deck Stiffness 
 

In this chapter a look is taken at the stiffness of the deck of the barge. This is an essential part of the 

model because this forms the connection between the topside and the barge. It transfers the loads 

exerted by the topside into the construction of the barge. The stiffness of the deck isn’t homogenous 

over the whole surface off the barge due to the presence of the transverse and longitudinal bulkheads. 

The software SACS is used to calculate the deck stiffness at various points. This knowledge is than 

applied to see what the effects are of relocating the skidbeams to an area of lower deck stiffness. 

6.1 Transverse deck stiffness 
 

For calculating the transverse deck stiffness use is made of a software program called SACS. SACS is 

a software program for the offshore industry. It’s a standard FEM program using beam and plate 

elements. It was specifically designed for the offshore industry by Bentley and can apply offshore 

specific loading. It also contains up to date international design code coverage.  

The cross section of the barge is different varying from stern to bow. Therefor multiple SACS models 

of cross sections of the barge exist. HMC uses 3 models for the cross section of the barge. One is a 

typical mid-ship section representing frames 31-56. The second section represents frames 65-88, 

which is a representation of the section after the narrowing of the barge. The last section represents 

the front of the barge (frames 89-99). Due to the final position of the topside on the barge not 

exceeding frame 65, only the mid-ship section (frames 31-56) will be used.  

 In Figure 6-1 one can see a wireframe representation of this section. The deck, side shells, bottom 

plate and longitudinal bulkheads are clearly distinguishable 

 

Figure 6-1 Web frame model frames (31-56) 

This cross section of the barge is supported on 7 fixed rigid connections, each underneath a side shell 

or longitudinal bulkhead. This way if a force is applied on to the deck there isn’t any movement of the  
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barge itself like in the MATLAB model, thus the nodal displacement of the deck node is pure 

deflection of the deck.  

The method to calculate the deck stiffness from the SACS software is quite simple. From the figure 

can be seen that there are several nodes along the deck. To know the stiffness along the deck a force is 

exerted at a node, SACS then calculates the displacement of the node. Using equation below the 

stiffness KDeck can be calculated.   

 

𝐹𝑜𝑟𝑐𝑒 𝑎𝑡 𝑛𝑜𝑑𝑒

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑛𝑜𝑑𝑒
= 𝐾𝐷𝑒𝑐𝑘 

This is repeated for every single node, see Figure 6-2 for an example of a force exerted on a node in 

SACS. In this situation node 2 of the deck is loaded with a force, in this case a force of 1 kN is used to 

measure the displacement. 

 

Figure 6-2 Applying a force, testing deck stiffness 

This is repeated for every node in the deck. The found stiffness at these nodes can be found in Table 

6-1. 
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Table 6-1Deck stiffness results 

Nodes Frames 31-56 

1 1.45E+09 
2 1.40E+09 
3 6.21E+08 
4 5.34E+08 
5 7.03E+08 
6 1.71E+09 
7 1.84E+09 
8 1.88E+09 
9 8.23E+08 
10 6.58E+08 
11 8.16E+08 
12 1.58E+09 
13 1.85E+09 
14 1.70E+09 
15 8.20E+08 
16 5.39E+08 
17 7.50E+08 
18 1.58E+09 
19 1.87E+09 
20 1.72E+09 
21 7.71E+08 
22 4.47E+08 
23 7.66E+08 
24 1.66E+09 
25 1.82E+09 
26 1.58E+09 
27 8.16E+08 
28 6.57E+08 
29 8.21E+08 
30 1.58E+09 
31 1.84E+09 
32 1.71E+09 
33 7.04E+08 
34 5.34E+08 
35 6.20E+08 
36 1.40E+09 
37 1.45E+09 
 

This can also be put into a graph corresponding with the width of the deck, on an overlay of the 

wireframe. This is done for all cross sections and from Figure 6-3 it can clearly be seen that the deck 

stiffness is highest above the longitudinal bulkheads and lowest at the halfway points between the 

bulkheads. That is why normally high loads on the deck are preferred to be situated along the 

longitudinal bulkheads. This is also the case for the skidbeams during the load-out of a topside. The 

effect of placing the skidbeam on another location will be the topic of the next paragraph. 
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Figure 6-3 Stiffness distribution transeverse 

The above section was primarily focused on the transverse distribution of the deck stiffness but there 

is also a longitudinal distribution of the deck stiffness. This shouldn’t be confused with what was 

mentioned earlier about the various sections. The longitudinal distribution for each section is constant 

only to be interrupted by the transverse bulkheads. The bulkheads form the separation between the 

ballast tanks.  

 

Figure 6-4 Transverse Bulkheads 

The bulkheads can be seen as a wall covering the whole cross section of the barge. This is quite 

different from the sections of barge where the cross section is a web frame as seen in Figure 6-4. The 

deck stiffness at the bulkheads therefore behaves quite different compared to the stiffness at the other 

web frames. To calculate the stiffness at the transverse bulkheads using SACS software isn’t an 

option or necessary. The method used by HMC is simply the stiffness of compression of the material, 

so just calculate it as a normal force on the bulkhead. The resulting stiffness at the bulkhead is 3354 
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kN/mm or 3.354*10^9 N/cm. Just like with the other calculated stiffness, for the MATLAB model the 

stiffness of the wood layer still needs to be incorporated.  

(
1

𝑘𝑤𝑜𝑜𝑑
+

1

𝑘𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑏𝑢𝑙𝑘ℎ𝑒𝑎𝑑
)
−1

= 𝑘𝑐𝑜𝑛 𝑎𝑡 𝑇𝐵𝐻𝐷 = 2.8508 ∗ 10^9 

 

6.2 Effects of changing skidbeam location 
 

The normal situation during the load-out is that the forces caused by the topside on the barge are 

transferred via the skidbeams to the longitudinal bulkheads as most as possible. This causes the 

stiffest connection. The reason for this is that applying the loads at the deck strongpoints allows for 

the loads to travel safely into the barge structure. Applying very high loads at for example the half-

way point in between the longitudinal bulkheads puts unnecessary stresses in the deck. However if 

during the load-out the forces would be led to the areas of the barge in between the LBHD it can be 

shown that the resulting stresses in the deck are within the range that is acceptable.  

It is expected that changing the skidbeam location transversely over the barge will have an effect on 

the load-out. The deck as mentioned earlier forms the connection between the barge and the skidbox. 

In the MATLAB model this connection is formed by springs. If the forces of skidbeams are no longer 

transferred to the hardpoints on the deck but to the less stiff points this will change the way the barge 

and the skidbox interact. Lowering the stiffness of the connection between barge and skidbox might 

be beneficial to the forces on the skidbox and thus the topside. This due to the fact that the forced 

displacements caused by the barge onto the skidbox are reduced. This is visualized in Figure 6-5. 

 

Figure 6-5 Deck stiffness comparison 

In Figure 6-5 the upper sketch is a representation of a load-out situation with rigid deck, so very stiff 

deck, and the bottom sketch shows the situation with a lower stiffness of the deck. In this example in 

which the quay is lower than the barge having a lower stiffness of the deck results in a smoother 

“smoother” transition of the skidbox over the barge and the quay.  

In order to quantify these assumptions use is made of the MATLAB model. The possible stiffness’s of 

the deck and the corresponding locations are known from previous paragraph. Several locations and 

stiffness’s are chosen for evaluation. The point in the load-out which is chosen for evaluation will be 

step 4, also the effects on the total load-out is watched.  
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In the original situation the stiffness of the deck is formed by the average of the stiffness at the 4 

LBHD which is 1.84E+9. If the skidbeams are to be placed at the least stiff deck location and the 

forces transferred there, an average stiffness of the deck of 6E+9 is received which is approximately 

1/3 of the stiffness of the standard situation. Keep in mind that these values in the MATLAB model 

are incorporated with the wood layer. The effects are of changing the deck stiffness to the 

displacement of the skidbox is first viewed.  

 

Figure 6-6 Skidbox displacement with varying deck stiffness 

In Figure 6-6 the displacement of the skidbox during step 40 with various deck stiffness’ is shown. At 

step 4 the first 26.25 meter of the skidbox are still on the quay, the rest is on the barge. This transition 

can clearly be seen in the figure. It can also be seen in Figure 6-6 that decreasing the deck stiffness by 

1/3 by relocating the skidbox has little effect on the displacement of the skidbox. The displacement 

caused by the barge is quite large in this example, causing the effect of decreasing the deck stiffness 

to be neglectable since this is in order size much smaller. Since the effects on the displacement are 

minimal, the effect on the moment over the skidbox is also expected to be minimal. This can be seen 

in Figure 6-7.  



P a g e  | 81 

 

 Thesis N.L.M. Verhoef  

 

Figure 6-7 Moment over Skidbox, varying deck stiffness 

So reducing the deck stiffness by almost (1/3) causes the peak moment in the area surrounding  the 

barge-quay transition (20 m to 50 m) to decrease with 10 MNm, and for overall peak moment to 

decrease from 40 MNm to 36 MNm which equals a reduction of 10%. For the shear force over the 

skidbox the effects aren’t very significant either as can be seen in Figure 6-8. The largest peak force 

which was around 12 meters shows a very minimal change.   

 

Figure 6-8 Shear force over Skidbox, varying deck stiffness 
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The effects to the moment on the barge are very minimal to non-existent as can be seen in Figure 6-9. 

The results of the shear force are therefore omitted because no significant effect is recorded.  

 

Figure 6-9 Moment over barge for step 40, skidbeam movement 

The reduction of the peak moment for step 40 was 10 percent. For this step relocating the skidbeams 

proved effective in reducing the peak moment in the skidbox in a certain area. This doesn’t 

necessarily have to be the case for all the steps. The problem is that relocating the skidbeams only 

changes the deck stiffness between the transverse bulkheads. To gain a proper insight into the effects 

overall the 2 deck stiffness are plotted but also included is a plot in which the skidbeams are relocated 

and the transverse bulkheads are given the same stiffness as the rest of the deck. This is a hypothetical 

situation but is sketched in order to clarify certain effects.  

For all the steps combined the peak moment per section of skidbox are shown in Figure 6-10. 

 

Figure 6-10 Maximum moment per section, various deck stiffness 
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It can be seen that reducing the deck stiffness is ineffective in reducing the peak moments in the 

skidbox, even significantly increasing the peak moment especially at the first connection and last 

connection to the DSF. These same results can be seen in Figure 6-11 for the maximum shear force 

per section. Reducing the deck stiffness is also ineffective in reducing the peak shear force in the 

skidbox. 

 

Figure 6-11 Maximum shear force per section, various deck stiffness 

In order to gain more insight in this effect a look is taken to the peak moment in the skidbox per step, 

seen in Figure 6-12 

 

Figure 6-12 Maximum moment per step, various deck stiffness 

 In Figure 6-12 it can be seen that as long as the skidbox is still partially on the quay the effects of 

decreasing the barge deck stiffness by relocating the skidbeams is minimal. When the skidbox is fully 
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on the barge however an effect can be seen. The explanation for this is as follows. After step 61 the 

barge will increasingly start to sag. The skidbox will have to “follow” this shape. The softening effect 

which was explained earlier can’t not come to full effect because of the TBHDs. It can be seen that 

the effects of the TBHD is significant. When these TBHDs are given the same stiffness as the rest of 

the deck, the maximum moment will decrease. If the barge deck is less stiff the skidbox will not have 

to follow this forced displacement as much causing a lower peak moment for steps 61 and above. 

Concluding it can be said that relocating the skidbeam to the area of the deck with the lowest stiffness 

has no positive effect on the peak moment in the skidbox. The transverse bulkheads neglect the effect 

that reducing the deck stiffness has on the peak moment in the skidbox.   
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7 Quayside Stiffness  
 

Initially the topside+DSF is located fully on the quay before it is transferred to the barge during the 

load-out. The properties of the quay have an influence on the load distribution during the load-out. Up 

until now the model used the quayside stiffness used by HMC. In this chapter the effects of the 

quayside properties on the force during the load-out will be investigated using the MATLAB model. 

The quay used in the base case is the quay from the base case topside load-out, at the Daewoo 

Shipbuilding and Marine Engineering yard at Okpo, South Korea. Unfortunately not a lot of data was 

available about the quayside at the DSME yard.  

7.1 HMC model with varying stiffness 
 

HMC uses the most simple model for the quay. Hereby the quay is modeled as a set of uniform 

independent springs with an assumed stiffness of 26579mT/m/m. This model neglects the fact that a 

load on a certain area of quay also effects the displacement of the surrounding area right next to it. 

This model will first be used to test the effects of different quayside stiffness on the load-out. The 

quayside stiffness used by HMC will be set to 100%, the range of stiffness’s will be set as a 

percentage of the original stiffness. A look is taken at a broad range from fully rigid, to 10%, and 5% 

and 1 % of the HMC value. The deflection of quay, barge and skidbox and also the moment 

distribution over the barge and skidbox will be discussed.  

First the effects of the quayside stiffness on the forces distribution during the load-out are checked for 

the standard ballast configuration in step 40 to get an understanding of what is happening during 

changing quayside stiffness.  

As can be seen in Figure 7-1 the quay will deflect more when the stiffness drops. The difference 

between fully rigid and the value used by HMC don’t differ that much. What can clearly be seen in 

this example is that the springs of the quay are independent in this model causing a steep difference 

between the area affected by the skidbox and the area just to the left of it. In reality however this isn’t 

the case.  
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Figure 7-1 Quayside deflection vs quayside stiffness 

The deflection of the skidbox also changes significantly with a significant reduction of quayside 

stiffness as can be seen in Figure 7-2. Using also Figure 7-3 it is interesting to note that a decrease in 

quayside stiffness also causes the barge to deflect down in this example. The barge will be pushed 

down more by the weight of the topside as the quayside stiffness reduces. So what doesn’t happen in 

this case is that the skidbox on the quay will deflect downwards and the part on the barge will remain 

the same causing a steeper inclination in skidbox deflection, as one might have expected. Contrary to 

this the effect of reducing quayside stiffness leads to a more smooth transition between quay and 

barge.  

 

Figure 7-2 Skidbox deflection vs quayside stiffness 
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Figure 7-3 Barge deflection, vs quayside stiffness 

This more smooth transition translates into a lower peak moment around the barge-quay connection 

(at 26.25m for step 40) as can be seen in Figure 7-4, however this effect isn’t very significant. For the 

highest peak moment at the first DSF connection the contrary is the case since here a fully rigid quay 

has the lowest moment.  

 

Figure 7-4 Moment over skidbox vs quayside stiffness 

The effects on the forces on the barge were also tested but despite the changes of the barge deflection 

there was no significant effect on the moment distribution. The effect on the peak moments over the 

entire load-out until the barge leaves the quay will be investigated next. For the entire load-out until 

step 61 the peak moment results vs the quay stiffness are seen below: 
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Figure 7-5 Maximum moment per section, vs Quayside stiffness 

It can be seen from Figure 7-5 that the effect of reducing the quay stiffness differs from the back of 

the skidbox towards the front of the skidbox. For the first 37.5 meters the effect is that a reduction of 

the quay stiffness leads to a lower peak moment in the skidbox. For the latter 37.5 it’s the other way 

around as a reduction of the quay stiffness here leads to a higher peak moment, most noticeably at 1% 

of the original value. The effects on the shear force is omitted since these results proved to be in line 

with the results for the maximum moment.  In order to gain more insight into the peak moment over 

the skidbox, the peak moment over the skidbox per step is also shown.  

 

Figure 7-6Maximum moment skidbox per step, vs quay stiffness 

Here it can be seen that the high peak moment for 1% quay stiffness seen in Figure 7-5 was mostly 

down to step 10 to 35. This was investigated further to see what is happening at that location. Only 

the deflection of the skidbox is shown, see Figure 7-7. The explanation for the high moment in these 



P a g e  | 89 

 

 Thesis N.L.M. Verhoef  

steps is that due to the low quay stiffness the skidbox deflection becomes a steep curve downwards 

until the part that is in contact with the barge can’t continue this trajectory and has to flick upwards, 

this in turn causes a high moment in this location. This could also be seen in Figure 7-5 because the 

high moment at 1% quay stiffness was mostly focused at the last 35 meters of the skidbox. 

 

Figure 7-7 Deflection of skidbox for step 15, vs quay stiffness 

 

7.2 Adjusted Winkler model 
 

In the previous paragraph the springs in the quay had no connection to each other meaning that the 

stiffness of a single piece of soil has no relationship to what’s happening to the soil around it. In this 

paragraph we will investigate what the effect is of using a different model, one in which the springs 

are coupled by the foundation layer. This difference is seen in Figure 7-8. 

 

Figure 7-8 Winkler model (left) vs HMC model (right) 

The effects of the quayside foundation stiffness, so of the beam representing the foundation layer and 

not the springs below, have been checked and the effects are minimal using the original HMC 

quayside stiffness. The displacements of the foundation beam are too small for the stiffness of this 

beam to have a significant effect on the load-out.  

In order to see the full effects the 5% quay stiffness is selected for step 40. An initial estimate is 

calculated for a reinforced concrete foundation, this calculation can be seen in appendix C. The other 

stiffness’s for the foundation are expressed as a percentage of the estimation from appendix C. A fully 

rigid foundation is also included. The calculated stiffness from the example has an EI for the 

foundation of 2.57*10
11

 Nm
2
. 
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The deflection of the quay is looked at first in Figure 7-9. It can be seen that there is a distinct 

difference in quayside displacement between the HMC method and the calculated method set at 

100%. The deflection is less the more rigid the foundation because with a rigid foundation, areas of 

the soil which aren’t directly under the skidbox are carrying the load as well. However in at the end of 

the quay it is the other way around. This also affects the deflection of the skidbox as can be seen in 

Figure 7-10. The smooth transition between barge and quay is damped by a more rigid foundation. 

This is due to the deflection being less but also the angle between barge and quay is negatively 

affected. The effect is different from reducing the quay stiffness, there the skidbox just had a larger 

deflection overall.  

 

Figure 7-9 Deflection of quay, step 40, various foundation stiffness 

 

Figure 7-10 Deflection of skidbox, step 40, various foundation stiffness 
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The effects this shift in foundation stiffness has on the moment over the skidbox isn’t uniform over 

the skidbox as can be seen in Figure 7-11. For the skidbox section on the barge there is hardly any 

difference although here the effect is the more rigid the foundation the higher the moment over the 

skidbox but these effects are marginal. For the section on the quay a significant effect can be seen 

however. Especially for the first few meters the effects on the moment distribution are very large. A 

difference of 62 MNm between the 1% stiffness and the fully rigid occurs. The reason for this can be 

seen in the quay deflection. The deflection of the quay has a very steep curve for the first 5m of 

skidbox in the 100%,10% and 1% stiffness results. It can be seen that the skidbox wants to follow that 

curve. This in turn creates a high peak moment at this section of skidbox for these stiffness values. 

 

Figure 7-11 Moment over skidbox, step 40, various foundation stiffness 

In Figure 7-12 it can be seen that the results for the shear force over the skidbox are in conjunction 

with the results for the moment over the skidbox in that here too the impact of varying the foundation 

stiffness has significant effects for the part of the skidbox still located on the quayside. 

 

Figure 7-12 Shear force over skidbox, step 40, various foundation stiffness 
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The overall results for the skidbox for the entire load-out are discussed next. In Figure 7-13 it can be 

seen that the results are in line with the results for step 40 alone, in that the effects of the foundation 

stiffness mostly affect the first half of the skidbox. Looking at the first peak, which is around the first 

connection with the DSF, the HMC method shows by far the lowest maximum moment, with a value 

of 93 MNm for the 100% stiffness and a value of 41 MNm for the HMC value. The HMC method 

thus results in a very significant underestimation of the forces for the gives quay stiffness. The reason 

for this already became apparent for step 40.  

 

Figure 7-13 Maximum moment per section of the skidbox, various foundation stiffness 

The results for the shear force, as seen in Figure 7-14 show comparable results. Here too, a very 

significant difference between the 100% stiffness value and the HMC value can be seen. The 

maximum shear force at 100% for the first peak is 6.9*10^4 kN whilst for the HMC value this is far 

less with 3.3*10^4 kN.  

 

Figure 7-14 Shear force over skidbox, step 40, various foundation stiffness 
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The effects per step are only looked at for the maximum moment as this will give a sufficient enough 

picture of the distribution of the forces over the steps. From Figure 7-15 it can be seen that the major 

differences occur after step 27. From there the maximum moment per step starts to diverge for each 

different stiffness with the HMC method showing the lowest maximum moment. The reason for this 

is that before step 27 the part of the quay on which the skidbox is positioned shows the same 

deformation for varying stiffness as can be seen in Figure 7-16 

 

Figure 7-15 Maximum moment per step of the skidbox, various foundation stiffness 

 

Figure 7-16 Deflection of quay, various foundation stiffness, step 23 

The most important conclusion which should be drawn from this research into varying foundation 

stiffness is that not taking into account the stiffness of the foundation layer can lead to a severe 

underestimation of the forces involved, especially in combination with a quayside which has a low 

soil stiffness.  
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8 Conclusions  
 

This thesis research has dealt with many aspects which are involved in the load-out. The ballast 

configuration, the quayside and the deck of the barge; the effects of these aspects all have been 

included in the model and were extensively analyzed. In this section conclusion will be drawn from 

the previous thesis research. 

The first topic which will be looked at is the ballast configuration optimizations. Three different 

optimizations were performed each with its own criteria. The first optimization was optimization A 

which performed the best of all the optimizations in terms of keeping the forces in the barge as low as 

possible. However this came with the downside that it didn’t perform very well in keeping the forces 

in the skidbox as low as possible, even performing worse than the standard ballast configuration. The 

second optimization, optimization B, put more emphasis on the barge-quay alignment hereby 

sacrificing performance in keeping the forces in the barge as low as possible. This optimization still 

performed better than the standard ballast configuration in keeping the forces in the barge as low as 

possible although it didn’t perform as well in this area as optimization A. However optimization B 

also performed a lot better than the standard ballast configuration in keeping the forces in the skidbox 

as low as possible. Optimization B thus combined the best of both worlds in performing well for the 

two different criteria. The final optimization which was performed differed significantly from the 

previous two optimizations. This optimization focused entirely on keeping the rotations as low as 

possible on 4 strategic chosen positions in the topside. Keeping the rotations low at those locations 

will result in low forces in the topside deck. This optimization did succeed in keeping these rotations 

very low until the point where they don’t happen at all. However it, surprisingly, didn’t succeed in 

reducing the forces in the skidbox although it has to be pointed out that this was mostly due to one 

step in the load-out process. Unsurprisingly, the results for the barge were the worst using this 

optimization. It had the highest peak forces of all the optimizations and the standard ballast 

configuration. Which optimization is superior to the other is project dependent. In the base case 

optimization B was chosen to be superior because it performed well in all criteria. However load-outs 

in which the barge is the limiting factor due to a very heavy topside might be better suited for the use 

of optimization A and load-outs where critical elements in the topside can be identified might be 

better suited for optimization “DSU con” 

A structural solution which could help in reducing the forces during the load-out was also investigated 

with relocating the skidbeams to a position on the barge with lower stiffness. This investigation 

showed that this has no beneficial effects on the forces, contrary the forces became even higher when 

using the lower stiffness. This was due to the fact that the transverse bulkheads, which are hard points 

on the deck, remain in place. Lowering the stiffness in between these hard points causes the peak 

forces at these hard points to become even higher.  

The effects of the quayside stiffness were also investigated for the base case scenario. Although the 

effects on the forces in the barge were minimal the effects on the forces in the skidbox were 

significant. Although no unambiguous result can be given as the effects of the lower stiffness depends 

on each situation individually, it can be said that changing the stiffness of the quay has significant 
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effects and that a precise figure needs to be known for quayside stiffness when carrying out a load-out 

in order to properly model the expected forces. It could also be seen that when adding the stiffness of 

the quayside foundation to the model the results changed significantly for lower stiffness quaysides 

and that neglecting this effect could lead to an underestimation of the forces involved.  
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9 Recommendations 
 

The model made in this thesis research has the potential to be improved even further. The current 

models strength lies in its simplicity to make fast load-out optimizations for a 2-D situation. These 

results can then be used as an indication for the real world 3-D situation. The current MATLAB 

model however can also be modified into a 3-D MATLAB model. The method for this which is 

recommended is to use 2 beams for the barge which are similar to the one beam used in this model for 

the barge. These beams are then interconnected with other beams. The same needs to be done with the 

DSF, topside and skidboxes. In the 3-D model one would have 2 skidboxes sliding over 2 barge 

beams. This new model would also take into account torsion forces and roll of the barge. It would also 

provide a better indication of the transverse distribution of the ballast, something which the current 

model ignores.  

In the model each step of the load-out is independent and the factor of time doesn’t play any role. This 

is a proper method because the load-out can be seen as a quasi-static process because the speeds 

involved are so low. However for the ballast optimizations this approach has a downside. For each 

step in the load-out, the ballast optimization is performed independently of the previous step. This can 

cause a ballast tank to be empty in one step, be filled in the next and be empty again in the following 

step. This is an unwanted situation because this causes the whole process to take even more time due 

to the max pump capacity. It is therefore recommended that for future research in each step a 

dependency on the previous step’s ballast situation is incorporated into the model. 

Recommendations for future load-outs: 

Looking at the results for the ballast optimizations, it can be stated that significant improvements can 

be achieved by using a different ballasting configuration. It could also be seen that the forces 

experienced during the load-out are well within the limits of the designated structures for every 

optimization except “DSU con”.  

Therefore it is recommended that for future load-out procedures critical elements are identified within 

the barge, topside and DSF which is already the procedure now. The ballast configuration can then be 

adjusted accordingly to reduce the stress on this critical element. The method used for this is similar 

as was performed in Optimization “DSU con”. However it is project dependent on which ballast 

optimizations, B or C, is the best choice. 

It is also recommended that in the future the method of modelling the quay is changed. As was shown 

in chapter 7 modelling the quay as independent springs is incorrect. Modelling the quay as a 

foundation beam supported by springs led to significant changes in the case of low quay stiffness. 

Although for a topside load-out a low stiffness quay is unlikely, it should be taken into account in 

other load-outs which might take place from a low stiffness quay.  
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Appendices 
 

Appendix A: MATLAB model 
Below the MATLAB code is given for the entire model. Excluded from this code is all the code 

which returns the plots, also the code which builds the topside and DSF is excluded.  

 

clc 

clear all 

  

%number of topside nodes 

d=25; 

  

%number of quaynodes 

q=60+1; 

%number of nodes next to dsf and barge 

l=d+q; 

%number of elements barge 

j=208 ; 

%number of elements skidbox 

k=60; 

%each spring(kcon,khydro,kquay) is the continuos value, 

%% INPUTS 

Ball=zeros(11,4); 

eib=xlsread('importantbargeattributes0.xlsx','H1:H105')'; 

EIb=repmat(eib,2,1);EIb=EIb(:); 

EIb(1)=[];EIb(209)=[]; 

  

%Force along the barge;ballast and own weight 

w=xlsread('importantbargeattributes9.xlsx','Y1:Y105')'; 

W=repmat(w,2,1);W=W(:); 

W(1)=[];W(209)=[]; 

%ballast%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% 

bal=xlsread('ballastarrangement1.xlsx','AT1:BC208'); 

Bal=transpose(bal); 

Ballast=interp1([0 6 14 26 40 46 61 76 86 113],Bal,0:113); 

Ballast=transpose(Ballast); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% 

%correction for buoyant force 

cor=ones(j,1); 

cor(1:124)=0.97*1025*9.81*63*11.2; 

cor(124:200)=0.97*1025*9.81*42*11.2; 

cor(201:208)=0.7*1025*9.81*42*11.2; 

  

%Lengths 

%DSF values 
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AEs=0.3*(10^12)*ones(k,1); 

EIs=1*1.31754*200*10^9*ones(k,1); 

EIq=2.54*10^11*ones(q,1); 

%EIq=1*ones(q,1); 

Ls=1.25*ones(k,1); 

  

  

%values topside 

AE12=[4.57073E+11 4.24733E+11 4.24733E+11 4.57073E+11]; 

AE2=[2.04431E+11 1.11951E+11 59933733849]; 

 AE4=[29966866924 1.96436E+11]; 

AE2=1*ones(4,1); 

AE4=1*ones(4,1); 

AE6=[4.57073E+11 4.24733E+11 4.24733E+11 4.57073E+11]; 

 AE8=[1.86791E+11 1.11951E+11 59933733849]; 

 AE10=[29966866924 1.99609E+11]; 

AE8=1*ones(4,1); 

AE10=1*ones(4,1); 

EI12=[2.57743E+12 2.13999E+12 2.13999E+12 2.57743E+12]; 

 EI2=[1.08491E+12 5.01655E+11 2.58268E+11]; 

 EI4=[2.58268E+11 1.16352E+12]; 

%EI12=1*ones(4,1); 

EI2=1*ones(4,1); 

EI4=1*ones(4,1); 

EI6=[2.57743E+12 2.13999E+12 2.13999E+12 2.57743E+12];  

 EI8=[1.11807E+12 5.01655E+11 2.58268E+11]; 

 EI10=[2.58268E+11 1.06218E+12]; 

EI6=ones(4,1); 

EI8=1*ones(4,1); 

EI10=1*ones(4,1); 

L12=7.5*ones(4,1); L2=11.52*ones(4,1); 

L4=12.2*ones(4,1);L6=8.5*ones(4,1); L8=12.2*ones(4,1); 

L10=11.52*ones(4,1); 

AEU=4.25102E+11*ones(6,1); 

AEL=4.0104E+11*ones(6,1); 

AEC=2.5088E+11*ones(6,1); 

AEDSU=4.2468E+11; 

EIc=59064800000*ones(6,1); 

EIu=1.99187E+11*ones(6,1); 

EIl=1.81079E+11*ones(6,1); 

EIdsu=1.19777E+13; 

LsU=8.75*ones(6,1); 

LsL=8.75*ones(6,1); 

LsC=8.75*ones(6,1); 

LsDSU=0.5; 

AED=[1.13551E+11 1.13551E+11 1.13551E+11 75987272309 

75987272309]; 

EId=[8.67365E+11 8.67365E+11 8.67365E+11 3.95371E+11 

3.95371E+11]; 

LsD=[14.23 12.1 14.23 13 13]; 

AE0=75987272309; 
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Ls0=17.5; 

EI0=3.95371E+11; 

 

  

Lq=1.25*ones(q,1); 

  

  

kquay=0.05*1.3*10^9*ones(q,1); 

AE=1*(10^12)*ones(j,1); 

kcon=zeros(k+1,1); 

%horizontalspring 

kx=zeros(j); 

kx(1)=10; 

%% STORE FUNCTIONS 

w_bargeindex=zeros(209,61); 

w_skidboxindex=zeros(61,61); 

M_skidboxindex=zeros(61,61); 

M_bargeindex=zeros(209,61); 

V_bargeindex=zeros(208,61); 

V_skidboxindex=zeros(60,61); 

theta_upperbarindex=zeros(4,61); 

  

%% Video 

% vidObj = 

VideoWriter('\\ALECTO\users$\nickyve\desktop\1to6skid.avi');     

% vidObj.FrameRate=1; 

% open(vidObj); 

%% start run  

%x is number of connections between skid and barge 

for x=40; 

    %% MODEL connectionsprings 

    %Input 

    z=ones(k+1,6); 

%spring test 

  

    for spring=1:6 

%Define connection between skidbox and barge+quay 

    kcon_barge=1.644*10^9*ones(j+1); 

   kcon_quay=1.9*10^10;  

   kcon_infill=1.644*10^9; 

   kcon_barge(1:25)=kcon_infill; 

   kcon_barge(37:20:197)=2.8508*10^9; 

    

    

    

 if x<=61 

   kcon(1:k+1-x)=kcon_quay; 

   kcon(k+1-(x-1):k+1)=kcon_barge(1:x); 

   else 

       kcon(1:k+1)=kcon_barge(x-60:x); 

 end 
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    kcon_list=zeros(1,3+3*k); 

    kcon=z(1:k+1,spring).*kcon; 

%forming kcon_list 

    for i=1:k+1 

        P=[0 kcon(i)*1.25 0]; 

        kcon_list(-2+3*i:3*i)=P; 

    end 

  

    kcon_list(2)=kcon_list(2)*0.5; 

    kcon_list(3*k+2)=kcon_list(3*k+2)*0.5;   

  

     

  

  

%number of nodes besides the skidbox see figure drawing ! 

%% Deck 

Kdeck=zeros(3*21); 

  

  

%Forming 3 decks 

  

%Center 

for i=1:6 

     

Kselement_deckC=[AEC(i)/LsC(i) 0 0 -AEC(i)/LsC(i) 0 0; 

    0 (12*EIc(i)/(LsC(i)^3)) 6*EIc(i)/LsC(i)^2 0 -

12*EIc(i)/LsC(i)^3 6*EIc(i)/LsC(i)^2; 

    0 6*EIc(i)/LsC(i)^2 4*EIc(i)/LsC(i) 0 -6*EIc(i)/LsC(i)^2 

2*EIc(i)/LsC(i); 

    -AEC(i)/LsC(i) 0 0 AEC(i)/LsC(i) 0 0; 

    0 -12*EIc(i)/LsC(i)^3 -6*EIc(i)/LsC(i)^2 0 

(12*EIc(i)/(LsC(i)^3)) -6*EIc(i)/LsC(i)^2; 

    0 6*EIc(i)/LsC(i)^2 2*EIc(i)/LsC(i) 0 -6*EIc(i)/LsC(i)^2 

4*EIc(i)/LsC(i)]; 

  

Kdeck(-2+3*i:3*i+3,-2+3*i:3*i+3)=Kdeck(-2+3*i:3*i+3,-

2+3*i:3*i+3)+Kselement_deckC; 

end  

  

%Upper 

for i=1:6 

     

Kselement_deckU=[AEU(i)/LsU(i) 0 0 -AEU(i)/LsU(i) 0 0; 

    0 (12*EIu(i)/(LsU(i)^3)) 6*EIu(i)/LsU(i)^2 0 -

12*EIu(i)/LsU(i)^3 6*EIu(i)/LsU(i)^2; 

    0 6*EIu(i)/LsU(i)^2 4*EIu(i)/LsU(i) 0 -6*EIu(i)/LsU(i)^2 

2*EIu(i)/LsU(i); 

    -AEU(i)/LsU(i) 0 0 AEU(i)/LsU(i) 0 0; 

    0 -12*EIu(i)/LsU(i)^3 -6*EIu(i)/LsU(i)^2 0 

(12*EIu(i)/(LsU(i)^3)) -6*EIu(i)/LsU(i)^2; 
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    0 6*EIu(i)/LsU(i)^2 2*EIu(i)/LsU(i) 0 -6*EIu(i)/LsU(i)^2 

4*EIu(i)/LsU(i)]; 

  

Kdeck(19+3*i:3*i+24,19+3*i:3*i+24)=Kdeck(19+3*i:3*i+24,19+3*i:

3*i+24)+Kselement_deckU; 

end 

%Lower 

  

for i=1:6 

     

Kselement_deckL=[AEL(i)/LsL(i) 0 0 -AEL(i)/LsL(i) 0 0; 

    0 (12*EIl(i)/(LsL(i)^3)) 6*EIl(i)/LsL(i)^2 0 -

12*EIl(i)/LsL(i)^3 6*EIl(i)/LsL(i)^2; 

    0 6*EIl(i)/LsL(i)^2 4*EIl(i)/LsL(i) 0 -6*EIl(i)/LsL(i)^2 

2*EIl(i)/LsL(i); 

    -AEL(i)/LsL(i) 0 0 AEL(i)/LsL(i) 0 0; 

    0 -12*EIl(i)/LsL(i)^3 -6*EIl(i)/LsL(i)^2 0 

(12*EIl(i)/(LsL(i)^3)) -6*EIl(i)/LsL(i)^2; 

    0 6*EIl(i)/LsL(i)^2 2*EIl(i)/LsL(i) 0 -6*EIl(i)/LsL(i)^2 

4*EIl(i)/LsL(i)]; 

  

  

Kdeck(40+3*i:3*i+45,40+3*i:3*i+45)=Kdeck(40+3*i:3*i+45,40+3*i:

3*i+45)+Kselement_deckL; 

end 

     

 

%Force Matrix 

   

%% DSF 

  

%Matrix forming 

    Kskid1=zeros(3+3*k); 

    

%Skidbox is modeled with springsupport,  

    for i=1:k 

    %Constructing stiffness matrix and fill in elements 

    Kselement=[AEs(i)/Ls(i)+kx(i) 0 0 -AEs(i)/Ls(i) 0 0; 

    0 (12*EIs(i)/(Ls(i)^3)) 6*EIs(i)/Ls(i)^2 0 -

12*EIs(i)/Ls(i)^3 6*EIs(i)/Ls(i)^2; 

    0 6*EIs(i)/Ls(i)^2 4*EIs(i)/Ls(i) 0 -6*EIs(i)/Ls(i)^2 

2*EIs(i)/Ls(i); 

    -AEs(i)/Ls(i) 0 0 AEs(i)/Ls(i) 0 0; 

    0 -12*EIs(i)/Ls(i)^3 -6*EIs(i)/Ls(i)^2 0 

(12*EIs(i)/(Ls(i)^3)) -6*EIs(i)/Ls(i)^2; 

    0 6*EIs(i)/Ls(i)^2 2*EIs(i)/Ls(i) 0 -6*EIs(i)/Ls(i)^2 

4*EIs(i)/Ls(i)]; 

    Kskid1(-2+3*i:3*i+3,-2+3*i:3*i+3)=Kskid1(-2+3*i:3*i+3,-

2+3*i:3*i+3)+Kselement; 

    end 
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Kdsf=zeros(3+3*k+3*4); 

Kdsf(3*4+1:3+3*k+3*4,3*4+1:3+3*k+3*4)=Kdsf(3*4+1:3+3*k+3*4,3*4

+1:3+3*k+3*4)+Kskid1; 

  

%bovenste bar connection 

for i=1:3 

   Kselement_dsfu=[AE0/Ls0 0 0 -AE0/Ls0 0 0; 

    0 (12*EI0/(Ls0^3)) 6*EI0/Ls0^2 0 -12*EI0/Ls0^3 

6*EI0/Ls0^2; 

    0 6*EI0/Ls0^2 4*EI0/Ls0 0 -6*EI0/Ls0^2 2*EI0/Ls0; 

    -AE0/Ls0 0 0 AE0/Ls0 0 0; 

    0 -12*EI0/Ls0^3 -6*EI0/Ls0^2 0 (12*EI0/(Ls0^3)) -

6*EI0/Ls0^2; 

    0 6*EI0/Ls0^2 2*EI0/Ls0 0 -6*EI0/Ls0^2 4*EI0/Ls0]; 

  

  

Kdsf(-2+3*i:3*i+3,-2+3*i:3*i+3)=Kdsf(-2+3*i:3*i+3,-

2+3*i:3*i+3)+Kselement_dsfu; 

end 

  

%insert dsf 

beta=[-121.8 -90 -58.2 -111.43 -68.57]; 

  

 

%Constructing force vector and fill in elements 

weight_dsf=4218*1000*9.81; 

Tdsf=weight_dsf/75; 

  

qs=Tdsf*ones(k,1); 

% qs(1:30)=qs(1:30)*0.8*T; 

% qs(31:60)=qs(31:60)*1.2*T; 

  

    Fskid=zeros(3+3*k,1); 

for i=1:k 

    %Felement=[-q(i)*L(i)/2; -q(i)*L(i)^2/12; -q(i)*L(i)/2; 

q(i)*L(i)^2/12]; 

    Fselement=[0; -qs(i)*Ls(i)/2; 0;0; -qs(i)*Ls(i)/2; 0]; 

    Fskid(-2+3*i:3*i+3)=Fskid(-2+3*i:3*i+3)+Fselement; 

end 

    Fdsf=zeros(3*4+3+3*k,1); 

    Fdsf(2,1)=-9810000;Fdsf(5,1)=-9810000;Fdsf(8,1)=-

9810000;Fdsf(11,1)=-9810000; 

    Fdsf(3*4+1:3*k+3+3*4)=Fskid; 

     

         

%% Combining DSF+skidbox and deck 

  

Ktopside=zeros(3+3*k+3*d); 

Ktopside(1:3*21,1:3*21)=Kdeck; 

Ktopside(64:3+3*k+3*d,64:3+3*k+3*d)=Kdsf; 

%connecting the deck to the DSF via DSU 
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KselementDSU=[AEDSU/LsDSU 0 0 -AEDSU/LsDSU 0 0; 

    0 (12*EIdsu/(LsDSU^3)) 6*EIdsu/LsDSU^2 0 -12*EIdsu/LsDSU^3 

6*EIdsu/LsDSU^2; 

    0 6*EIdsu/LsDSU^2 4*EIdsu/LsDSU 0 -6*EIdsu/LsDSU^2 

2*EIdsu/LsDSU; 

    -AEDSU/LsDSU 0 0 AEDSU/LsDSU 0 0; 

    0 -12*EIdsu/LsDSU^3 -6*EIdsu/LsDSU^2 0 

(12*EIdsu/(LsDSU^3)) -6*EIdsu/LsDSU^2; 

    0 6*EIdsu/LsDSU^2 2*EIdsu/LsDSU 0 -6*EIdsu/LsDSU^2 

4*EIdsu/LsDSU]; 

  

    beta=-90; 

T=[cosd(beta) sind(beta) 0 0 0 0; 

  -sind(beta) cosd(beta) 0 0 0 0; 

    0 0 1 0 0 0; 

    0 0 0 cosd(beta) sind(beta) 0; 

    0 0 0 -sind(beta) cosd(beta) 0; 

    0 0 0 0 0 1]; 

   

KselementDSU_T=transpose(T)*KselementDSU*T; 

  

for e=1:4 

      

Ktopside(37+6*e:39+6*e,37+6*e:39+6*e)=Ktopside(37+6*e:39+6*e,3

7+6*e:39+6*e)+KselementDSU_T(1:3,1:3); 

Ktopside(61+3*e:63+3*e,61+3*e:63+3*e)=Ktopside(61+3*e:63+3*e,6

1+3*e:63+3*e)+KselementDSU_T(4:6,4:6); 

Ktopside(37+6*e:39+6*e,61+3*e:63+3*e)=Ktopside(37+6*e:39+6*e,6

1+3*e:63+3*e)+KselementDSU_T(1:3,4:6); 

Ktopside(61+3*e:63+3*e,37+6*e:39+6*e)=Ktopside(61+3*e:63+3*e,3

7+6*e:39+6*e)+KselementDSU_T(4:6,1:3); 

end   

% Adding forces on the topside 

  

Fdeck=zeros(3*21,1); 

Fdeck_exc=[-1.3594e+07 -1.3594e+07 -1.4954e+07 -1.6313e+07 -

2.1751e+07 -2.1751e+07 -1.9032e+07 -1.3594e+07 -1.3594e+07 -

1.4954e+07 -1.6313e+07 -2.1751e+07 -2.1751e+07 -1.9032e+07 -

1.3594e+07 -1.3594e+07 -1.4954e+07 -1.6313e+07 -2.1751e+07 -

2.1751e+07 -1.9032e+07]; 

  

for i=1:21 

Fdeck(-1+3*i)=Fdeck(-1+3*i)+Fdeck_exc(i); 

end 

  

Ftopside=[Fdeck;Fdsf]; 
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% Adding connection between skidbox and barge 

Ktopside(3*d+1:3+3*k+3*d,3*d+1:3+3*k+3*d)=Ktopside(3*d+1:3+3*k

+3*d,3*d+1:3+3*k+3*d)+diag(kcon_list); 

%% Model quay 

  

  

Kquay=zeros(3*q); 

  

for i=1:q-1 

Quay_element=[AE(i)/Lq(i) 0 0 -AE(i)/Lq(i) 0 0; 

    0 (12*EIq(i)/(Lq(i)^3))+kquay(i) 6*EIq(i)/Lq(i)^2 0 -

12*EIq(i)/Lq(i)^3 6*EIq(i)/Lq(i)^2; 

    0 6*EIq(i)/Lq(i)^2 4*EIq(i)/Lq(i) 0 -6*EIq(i)/Lq(i)^2 

2*EIq(i)/Lq(i); 

    -AE(i)/Lq(i) 0 0 AE(i)/Lq(i) 0 0; 

    0 -12*EIq(i)/Lq(i)^3 -6*EIq(i)/Lq(i)^2 0 

(12*EIq(i)/(Lq(i)^3))+kquay(i) -6*EIq(i)/Lq(i)^2; 

    0 6*EIq(i)/Lq(i)^2 2*EIq(i)/Lq(i) 0 -6*EIq(i)/Lq(i)^2 

4*EIq(i)/Lq(i)]; 

Kquay(-2+3*i:3*i+3,-2+3*i:3*i+3)=Kquay(-2+3*i:3*i+3,-

2+3*i:3*i+3)+Quay_element; 

  

end 

  

Fquay=zeros(3*q,1); 

  

%% MODEL BARGE 

  

  

   %Input 

    Lb=1.25*ones(j,1); 

    %hydrostatic force along the barge 

  

    khydro=zeros(j,1); 

    khydro(1:124)=1025*9.81*63; 

    khydro(124:208)=1025*9.81*42; 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%BALLAST 

% if spring==1; 

% ball=zeros(j+1,1); 

% elseif spring==2; 

% %  Ballast forces 

% ball(1:17,1)=bal(1); 

% ball(18:37,1)=bal(2); 

% ball(38:57,1)=bal(3); 

% ball(58:77,1)=bal(4); 

% ball(78:97,1)=bal(5); 

% ball(98:117,1)=bal(6); 

% ball(118:137,1)=bal(7); 

% ball(138:157,1)=bal(8); 

% ball(158:177,1)=bal(9); 

% ball(178:197,1)=bal(10); 
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% ball(198:209,1)=bal(11); 

% else 

%    ball(1:17,1)=Ball(1,2); 

% ball(18:37,1)=Ball(2,2); 

% ball(38:57,1)=Ball(3,2); 

% ball(58:77,1)=Ball(4,2); 

% ball(78:97,1)=Ball(5,2); 

% ball(98:117,1)=Ball(6,2); 

% ball(118:137,1)=Ball(7,2); 

% ball(138:157,1)=Ball(8,2); 

% ball(158:177,1)=Ball(9,2); 

% ball(178:197,1)=Ball(10,2); 

% ball(198:209,1)=Ball(11,2); 

%      

% end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%BALLAST 

    qb=W+Ballast(:,x)-cor; 

%qb=W-cor; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%BAllast 

    %Matrix forming 

    Kbarge=zeros(3+3*j); 

    Fbarge=zeros(3+3*j,1); 

    Fbal=zeros(3+3*j,1); 

    %Barge is modeled with the hydrostatic springs already in 

place, these dont 

    %change during the load-out phase.  

    for i=1:j 

    %Constructing stiffness matrix and fill in elements 

    Kbelement=[AE(i)/Lb(i)+kx(i) 0 0 -AE(i)/Lb(i) 0 0; 

    0 (12*EIb(i)/(Lb(i)^3))+khydro(i)*Lb(i)*0.5 

6*EIb(i)/Lb(i)^2 0 -12*EIb(i)/Lb(i)^3 6*EIb(i)/Lb(i)^2; 

    0 6*EIb(i)/Lb(i)^2 4*EIb(i)/Lb(i) 0 -6*EIb(i)/Lb(i)^2 

2*EIb(i)/Lb(i); 

    -AE(i)/Lb(i) 0 0 AE(i)/Lb(i) 0 0; 

    0 -12*EIb(i)/Lb(i)^3 -6*EIb(i)/Lb(i)^2 0 

(12*EIb(i)/(Lb(i)^3))+khydro(i)*Lb(i)*0.5 -6*EIb(i)/Lb(i)^2; 

    0 6*EIb(i)/Lb(i)^2 2*EIb(i)/Lb(i) 0 -6*EIb(i)/Lb(i)^2 

4*EIb(i)/Lb(i)]; 

     

    Kbarge(-2+3*i:3*i+3,-2+3*i:3*i+3)=Kbarge(-2+3*i:3*i+3,-

2+3*i:3*i+3)+Kbelement; 

  

  

    %Constructing force vector and fill in elements 

  

    %Felement=[-q(i)*L(i)/2; -q(i)*L(i)^2/12; -q(i)*L(i)/2; 

q(i)*L(i)^2/12]; 

    Fbelement=[0; -qb(i)*Lb(i)/2; 0;0; -qb(i)*Lb(i)/2; 0]; 

    Fbarge(-2+3*i:3*i+3)=Fbarge(-2+3*i:3*i+3)+Fbelement; 

    end 

    % APPLY MOMENT AT DEADMAN ANCHOR AND AT SKIDBOX. 
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    %at skidbox 

    if x<=61 

    Fbarge(3:3:3*x)=-5.4540*10^6; 

    else 

        Fbarge(3*x-3*60:3:3*x)=-5.4540*10^6; 

    end 

%     %at deadman anchor 

    Fbarge(119*3:3:131*3)=3.3610*10^7; 

   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%BA

LLAST 

%     %%%apply ballast 

%   for i=1:j+1  

%    Fbal(-1+3*i)=Fbal(-1+3*i)+ball(i);     

%  end 

% Fbal(2)=Fbal(2)*0.5; 

% Fbal(626)=Fbal(626)*0.5; 

% Fbarge=Fbarge+Fbal; 

%   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%BALLAST  

    Db=Kbarge\Fbarge; 

    BargeSelf=Db(2:3:3+3*j); 

%% MODEL TOTAL SYSTEM 

% 

Ksys=zeros(6+3*(k+j)+3*l); 

Ksys(1+q*3:3+3*k+3*l,1+q*3:3+3*k+3*l)=Ktopside;  

Ksys(1:q*3,1:q*3)=Kquay; 

  

  

%Model system over time, x represent number of connections 

between barge 

%and skidbox, model valid until step 6 

if x<=61  

kcon_con=kcon_list(3+3*k-(3*x-1):3+3*k); 

%only not applicable for full contact so x=61 or 1 contact 

correct with if 

%loop 

        if x==1 || x==k+1 

            kcon_con(1)=kcon_con(1); 

        else 

        kcon_con(1)=kcon_con(1)*0.5; 

        end 

         

Kcon_upper=diag(-kcon_con,-3-3*k+3*x); 

Kcon_upper2=zeros(3+3*k+3*l,3+3*j); 

Kcon_upper2(1+3*l:3+3*k+3*l,1:3+3*k)=Kcon_upper2(1+3*l:3+3*k+3

*l,1:3+3*k)+Kcon_upper; 

Kcon_lower2=transpose(Kcon_upper2); 

Kcon_barge=diag(kcon_con); 

Kbarge(1:3*x,1:3*x)=Kbarge(1:3*x,1:3*x)+Kcon_barge; 
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%connecting quay and DSF 

Kcon_quay_upper=zeros(3*q,3+3*k); 

diag_kcon_quay=diag(-kcon_list,-3*x); 

Kcon_quay_upper=Kcon_quay_upper+diag_kcon_quay(1:3*q,1:3+3*k); 

Kcon_quay_lower=transpose(Kcon_quay_upper); 

  

%adding kcon to quay 

Kcon_quay=zeros(3*q); 

diagkquay=diag(kcon_list); 

kconquay=diagkquay(1:3*q-3*x,1:3*q-3*x); 

Kcon_quay(3*x+1:3*q,3*x+1:3*q)=Kcon_quay(3*x+1:3*q,3*x+1:3*q)+

kconquay; 

Kquay=Kquay+Kcon_quay; 

  

  

else  

    Kcon_upper=diag(-kcon_list); 

    Kcon_barge=diag(kcon_list); 

    Kcon_upper2=zeros(3+3*k+3*l,3+3*j); 

    %adding to total upper corner 

    Kcon_upper2(1+3*l:3+3*k+3*l,-2+3*(x-60):3+3*k+3*(x-60)-

3)=Kcon_upper2(1+3*l:3+3*k+3*l,-2+3*(x-60):3+3*k+3*(x-60)-

3)+Kcon_upper; 

    %transposing to lower left 

    Kcon_lower2=transpose(Kcon_upper2); 

    %Filling the interconnections into barge matrix diagonals 

    Kbarge(-2+3*(x-60):3*(x-60)+3*k,-2+3*(x-60):3*(x-

60)+3*k)=Kbarge(-2+3*(x-60):3*(x-60)+3*k,-2+3*(x-60):3*(x-

60)+3*k)+Kcon_barge; 

 %still fill in kqconquay otherwise it gives an error later 

    Kcon_quay_upper=zeros(3*q,3+3*k); 

    Kcon_quay_lower=transpose(Kcon_quay_upper); 

end 

  

%Filling the interaction matrices into the systemmatrix 

Ksys(4+3*k+3*l:6+3*(k+j)+3*l,1:3+3*k+3*l)=Ksys(4+3*k+3*l:6+3*(

k+j)+3*l,1:3+3*k+3*l)+Kcon_lower2; 

Ksys(1:3+3*k+3*l,4+3*k+3*l:6+3*(k+j)+3*l)=Ksys(1:3+3*k+3*l,4+3

*k+3*l:6+3*(k+j)+3*l)+Kcon_upper2; 

Ksys(4+3*k+3*l:6+3*(k+j)+3*l,4+3*k+3*l:6+3*(k+j)+3*l)=Kbarge; 

  

Ksys(1:3*q,3*(q+d)+1:3*l+3+3*k)=Ksys(1:3*q,3*(q+d)+1:3*l+3+3*k

)+Kcon_quay_upper; 

Ksys(3*(q+d)+1:3*l+3+3*k,1:3*q)=Ksys(3*(q+d)+1:3*l+3+3*k,1:3*q

)+Kcon_quay_lower; 

Ksys(1:3*q,1:3*q)=Ksys(1:3*q,1:3*q)+Kquay; 

  

  

Fsys=[Fquay;Ftopside;Fbarge]; 

Dsys=Ksys\Fsys; 
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Ksysinv=inv(Ksys); 

DsysBarge=Dsys(4+3*k+3*l:6+3*k+3*j+3*l); 

DsysSkid=Dsys(1+3*l:3+3*k+3*l); 

DsysQuay=Dsys(1:3*q); 

DsysTopside=Dsys(1+3*q:3*q+3*d); 

  

  

  

%% Calculate System Displacements 

  

    w_barge=DsysBarge(2:3:3+3*j); 

    

    theta_barge=DsysBarge(3:3:3+3*j); 

    w_skid=DsysSkid(2:3:3+3*k); 

    theta_skid=DsysSkid(3:3:3+3*k); 

    Length_skid=(0:1.25:75)'; 

    Length_barge=(0:1.25:260)'; 

    w_quay=DsysQuay(2:3:3*q); 

    theta_upperbar=DsysTopside(3*21+3:3:3*25); 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%BALLA

ST 

% %%%Optimization 

% 

KoptBarge=Ksysinv(4+3*k+3*l:6+3*(k+j+l),4+3*k+3*l:6+3*(k+j+l))

; 

% Kop=KoptBarge(2:3:3+3*j,2:3:3+3*j);  

% Kop(:,1)=Kop(:,1).*0.5; 

% Kop(:,209)=Kop(:,209).*0.5; 

% Kopt(:,1)=sum(Kop(:,1:17),2); 

% Kopt(:,2)=sum(Kop(:,18:37),2); 

% Kopt(:,3)=sum(Kop(:,38:57),2); 

% Kopt(:,4)=sum(Kop(:,58:77),2); 

% Kopt(:,5)=sum(Kop(:,78:97),2); 

% Kopt(:,6)=sum(Kop(:,98:117),2); 

% Kopt(:,7)=sum(Kop(:,118:137),2); 

% Kopt(:,8)=sum(Kop(:,138:157),2); 

% Kopt(:,9)=sum(Kop(:,158:177),2); 

% Kopt(:,10)=sum(Kop(:,178:197),2); 

% Kopt(:,11)=sum(Kop(:,198:209),2); 

%  

% lb=[-5727944*1.25;-8852240*1.25;-9075466*1.25;-

9066618*1.25;-6236668*1.25;-9018353*1.25;-5930194*1.25;-

5919325*1.25;-5918118*1.25;-2166705*1.25;-4136913*1.25]; 

% ub=[0;0;0;0;0;0;0;0;0;0;0]; 

% A =[]; 

% b =[]; 

% Aeq =Kopt(1,:); 

% beq =-w_barge(1); 

% bal=lsqlin(Kopt,-w_barge,A,b,Aeq,beq,lb,ub); 

% Ball(1:11,spring+1)=bal; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%BALLAS

T 

%% ITEST 

if x<=61  

w_wood=w_skid(k+1-x+1:k+1)-w_barge(1:x); 

kade=w_skid(1:k+1-x)-w_quay(x+1:q)<=0; 

bak=w_wood<=0; 

z(k+1-x+1:k+1,spring+1)=bak;  

z(1:k+1-x,spring+1)=kade; 

else 

    w_wood=w_skid-w_barge((x-60):(x-60)+k); 

    bak=w_wood<=0;  

    z(1:k+1,spring+1)=bak;  

end 

%for 

optimization%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%BALLAST 

% z(:,2)=1; 

   end  
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Appendix B: Topside configuration 
 

The method for transforming the 3-D topside plus the deck support frame into a 2-D representation 

will be explained in this appendix. First let’s take a look at the topside. As could be seen in chapter 4 

the topside can be simplified into a 3 level framework. The side and front view of the topside will be 

shown again here, now with numbering added for the elements. The vertical member numbering is in 

red and the diagonal numbering is in purple.  

 

Figure A-1 Side view topside 

 

Figure A-2 Front  view topside 

The front view will be the 2-D projection of the topside which will be used in the model. So for 

example vertical member 1 of the front side needs to represent vertical members 1-8 and diagonal 

member 1-9 from the side view. The characteristics of each member in which we are interested, are 

the moment of inertia and the cross sectional area. The method chosen to make the front view 

projection an appropriate representation of the 3-D topside is the principle of superposition. So in the 

example of vertical member 1 in the front view, this means that the values for EI and A of vertical 

members 1-8 and diagonal members 1-9 in the side view are added to give the representation of 

vertical member 1 in the front view. This process is repeated for vertical members 2-4 in the front 

view and their respective corresponding members in the side view.  
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For the diagonal members in the front view the process will be the same. Their respective 

corresponding diagonal members are in the plane of vertical members 1-8 of the side view. For 

diagonal 2,4,6 and 8 there are only 2 corresponding members to be super positioned. These are in the 

plane of vertical member 2 and 7 of the side view. 

The diagonal members in the front view are given the values seen in Table A-1. Each diagonal is 

represented by superposition of all the 7 layers deep diagonals since as can be seen in the side view 

the 8
th
 layer doesn’t have any diagonals. 

Table A-1 Diagonal members front view 

 

 
         

 

The vertical members in the front view are calculated in Table A-2, each vertical member in the front 

view is the superposition of all diagonals and vertical members behind it.. 

Table A-2 
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For the 3 deck level the values for EI and EA are given in Table A-3. Each deck level is also assigned 

a number which represent its cell (numbering from left to right), so lower deck 1 refers to the element 

in the lowest deck in the left cell.  

Table A-3 

Lower deck 1 Inertia*E 1.99187E+11 

Lower deck 1 Area*E 4.25102E+11 

Lower deck 2 Inertia*E 1.99187E+11 

Lower deck 2 Area*E 4.25102E+11 

Lower deck 3 Inertia*E 1.99187E+11 

Lower deck 3 Area*E 4.25102E+11 

Intermediate deck 1 Inertia*E 5.91E+10 

Intermediate deck 1 Area*E 2.5088E+11 

Intermediate deck 2 Inertia*E 5.91E+10 

Intermediate deck 2 Area*E 2.5088E+11 

Intermediate deck 3 Inertia*E 5.91E+10 

Intermediate deck 3 Area*E 2.5088E+11 

Upper deck 1 Inertia*E 1.81079E+11 

Upper deck 1 Area*E 4.0104E+11 

Upper deck 2 Inertia*E 1.81079E+11 

Upper deck 2 Area*E 4.0104E+11 

Upper deck 3 Inertia*E 1.81079E+11 

Upper deck 3 Area*E 4.0104E+11 
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Appendix C: Quayside foundation stiffness 
 

For the calculation of the quayside foundation stiffness a rough estimate is used for the value of EI. A 

foundation thickness of 160 cm is used, a thickness also used at the 2e Maasvlakte [3]. There isn’t 

much data available about the exact quayside characteristics, so assumptions had to be made.  

First assumptions were made about the concrete which is used for the quayside foundation. 

Reinforced concrete is usually used in construction, however the percentage of rebar isn’t known. An 

initial estimate formula which is used in civil engineering to determine the amount of rebar is used in 

this case to determine the EI of the foundation. The level of armament is determined from the values 

in other quaysides. The level of armament used in this quayside is 2.5%. This value is almost the 

maximum amount of rebar which can be applied in concrete since it has no use to use more rebar. The 

reason for this is that the concrete pressure zone will fail before the steel rebar fails, so there is no use 

for more steel rebar.  

For the E-modulus a rough approach is used which is also used in civil engineering: [3] 

𝐸𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑑 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 = 𝐸𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 ∗ 𝑉𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 % + 𝐸𝑠𝑡𝑒𝑒𝑙 ∗ 𝑉𝑠𝑡𝑒𝑒𝑙% = 49.1 𝐺𝑃𝑎 

An important issue is what are the dimensions of the quayside foundation beam in terms of width? 

This means how wide is the section that contributes to the stiffness of the beam. Here a conservative 

approach is chosen in that the width chosen for the quayside foundation beam is equal to the width of 

the skidbeams which transfer the loads into the quayside foundation. The width of each of the 2 

skidbeams is 7.66 meters.  

So now that the dimensions are known the moment of inertia can be calculated using the equation 

below: 

𝐸𝐼𝑓𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 = 𝐸𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑑 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 ∗ (
1

12
) ∗ 2 ∗ 7.66 ∗ 1.63 = 2.57 ∗ 1011 𝑁𝑚2 

 


