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Understanding localized corrosion under atmospheric droplets is critical, yet previous studies have mostly
focused on single-droplet systems or general trends, leaving the role of individual droplets within multi-droplet
environments yet to be explored. Here, we present a fully automated, image-based, data-driven framework for
analyzing corrosion progression under thousands of droplets simultaneously. Using time-resolved optical im-
aging and pre-trained large vision models for droplet segmentation, we construct per-droplet color features and
propose a probability-based representation of corrosion product formation in inner and outer regions of interest.
This approach overcomes the limitations of binary classification by capturing the continuous and spatially
heterogeneous nature of corrosion product formation. Applied to carbon steel exposed to over 1500 pre-sprayed
1 M NaCl droplets of various sizes, the method reveals that the probability of corrosion product presence strongly
depends on droplet size, with larger droplets more likely to exhibit products both under and around the droplet
footprint. Moreover, corrosion products in the outer region can appear independently of under-droplet corrosion,
suggesting a role for inter-droplet interactions. By transforming raw imaging data into physically meaningful per-
droplet metrics, this work offers a scalable platform for investigating localized corrosion kinetics and
morphology in complex, real-world droplet populations, opening new opportunities for connecting droplet

formation and population behavior to local and overall atmospheric corrosion rates.

1. Introduction

Droplet-based electrolytes play a crucial role in atmospheric corro-
sion, especially during its initial stages [1-9]. In multi-droplet systems,
electrochemical activity at the solid-liquid interface is influenced not
only by droplet size and shape but also by their spatial distribution [10].

Previous studies have primarily focused on single droplets, using
electrochemical techniques such as polarization tests [3-5,11], elec-
trochemical impedance spectroscopy (EIS) [3,11], electrochemical noise
(EN) [11] analysis, and wire beam electrode (WBE) [1,12] setups to
study corrosion kinetics. These experiments often rely on precisely
controlled droplet placement, with optical microscopy used to track
corrosion product formation over time. For example, Rahimi et al. [11]
combined EIS, polarization, and EN with optical imaging for studying
corrosion kinetics under a single droplet to examine its link with elec-
trolyte evaporation, droplet geometry, and ion concentration. Analytical
models [3,13,14] and finite element modeling (FEM) [14,15] simula-
tions have also been developed to simulate electrolyte spreading, ion
transport, and potential fields, although they often rely on assumptions
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such as fixed droplet shapes, idealized boundary conditions, or
steady-state behavior.

Some studies have extended this approach to multi-droplet config-
urations. Larger droplets have been linked to higher corrosion proba-
bility and distinct corrosion types [6,7]. As corrosion progresses,
secondary spreading can lead to formation of a thin electrolyte layer
surrounding the original droplet footprint [9], which enables
inter-droplet interactions that further affect corrosion dynamics. Van
den Steen et al. [10] introduced an FEM framework incorporating
droplet size distributions and geometries to estimate global corrosion
rates. While it accounts for heterogeneity, it assumes steady-state con-
ditions and excludes inter-droplet interactions or time-resolved corro-
sion product evolution. Other works have combined imaging with
kinetic measurements to study corrosion under droplet exposure [2,7,
16,17]. For instance, Weissenrieder and Leygraf [7] used QCM and
optical microscopy to observe corrosion spreading from a single droplet
to adjacent regions. While this study provided valuable mechanistic
insight into corrosion spreading dynamics, the analysis was limited to
isolated droplet and focused primarily on the propagation event. More
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recently, Zhang et al. [2] correlated electrical resistance (ER)-based
corrosion depth with droplet size distributions as analyzed from in-situ
optical imaging. However, this work did not resolve corrosion progres-
sion at the individual droplet level.

These studies illustrate the value of image-based analysis in corro-
sion research and highlight the potential for a method that treats optical
microscopy images as a quantitative source. A key step toward this is
defining a reliable image-derived indicator that reflects corrosion
activity.

Corrosion products offer such an indicator. Their visual appearance,
which is usually through color and texture changes, makes them useful
for non-invasive tracking into corrosion progression across large droplet
populations. In the Evans model, corrosion products accumulate at the
droplet center-periphery interface [18]. Other work has shown corro-
sion products formation both under and outside the droplet [6,7,12].
The distribution and appearance of corrosion products reflect localized
electrochemical activity [11,19], making them suitable for kinetic and
mechanistic analysis.

To quantify these changes across thousands of droplets, a robust
image analysis pipeline is required. This includes:

e Segmentation of individual droplets;
e Extraction of relevant features;
e Numerical and statistical analysis of corrosion patterns.

Traditional segmentation methods (e.g. thresholding [20,21], con-
nected component labeling [2,22]) are being complemented by deep
learning techniques [20]. However, such methods often require labeled
data and extensive computational effort [23]. More recently, large
vision models (LVM), pre-trained across diverse datasets, offer
general-purpose segmentation without task-specific training [24].

This work introduces a fully image-based, automated framework for
analyzing corrosion under more than 1500 NaCl droplets on carbon
steel. Using a pre-trained LVM for segmentation and unsupervised
clustering of extracted features, we develop a probability-based repre-
sentation of corrosion product evolution. This allows continuous
tracking of localized corrosion in both inner and outer droplet regions
over time.

This work serves two purposes: (1) to demonstrate a scalable, auto-
mated approach for quantifying localized corrosion from optical images,
and (2) to investigate how droplet size affects corrosion initiation and
progression within a multi-droplet environment.

2. Experimental methodology
2.1. Sample preparation and corrosion monitoring

Corrosion experiments were conducted on carbon steel samples
under multi-droplet conditions, following the methodology described by
Zhang et al. [2]. The focus of the study was on droplet evolution over
time; therefore, no kinetic measurements were performed.

Carbon steel specimens (1.5cm x 1.5cm, 500 um thickness) were
cut from an EN 10139 DC01-C950 steel sheet using cold cutting. The
composition was 0.12wt% C, 0.6 wt% Mn, 0.05wt% P, 0.045 wt% S,
with Fe as the remainder. Surfaces were mechanically ground using
P800 SiC paper to a roughness of 172.68 + 16.74 nm, measured by
atomic force microscopy (AFM, Dimension Edge Scanning Probe Mi-
croscope, Bruker Corporation, USA). Samples were then stored in a
drying chamber at < 20 % relative humidity for 24 h before exposure.

2.2. Time-lapse imaging

Images were recorded using a Manta G319-C camera (Allied Vision
Technologies GmbH, Germany) fitted with a zoom lens (Zoom 1:6.5W.
D.240 mm, Unitron Ltd., USA), mounted above the sample. Illumination
was provided by an LED ring light. The zoom was fixed throughout the
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experiment, giving a field of view of ~11.65mm x 8.72mm and
capturing ~1600 droplets per frame.

A1 M NaCl solution was sprayed onto the sample surface to generate
droplets, followed by 4 h of free corrosion in a climate chamber. Images
were acquired at 2-minute intervals over 3 h and 20 min. A total of 101
frames were selected to represent the corrosion process.

To correct for lighting variation, histogram matching was applied
across the image sequence to normalize brightness levels. Minor dis-
placements due to mechanical vibrations were corrected using Fast
Fourier Transform (FFT)-based image registration, which aligned all
frames to the first frame before further analysis.

3. Results and discussion
3.1. Development of a data-driven framework

To analyze localized corrosion under thousands of droplets, we
developed a data-driven framework that tracks visual changes over time.
The process consists of three main steps: (1) droplet identification and
segmentation using a pre-trained LVM, (2) feature extraction and clus-
tering (3) probability-based modeling of corrosion product evolution.

3.1.1. Droplets segmentation and ROI definition

Each droplet is treated as an individual electrochemical cell that may
or may not initiate localized corrosion. To analyze the formation and
spread of corrosion products associated with each droplet, two regions
of interest (ROIs) are defined: the inner ROI, corresponding to the initial
droplet footprint, and the outer ROI, representing a surrounding annular
zone with an outer equivalent diameter 9/5 as the inner. This 9/5 ratio is
chosen as a conservative boundary based on the physical behavior of the
droplets observed in our experiment, as addressed in detail under S1 in
the Supplementary Information. In cases where outer ROIs overlap with
the inner ROIs of neighboring droplets, the overlapping areas are
excluded from analysis to avoid ambiguity in region attribution
(Fig. le).

The segmentation process (Fig. 1a-e) begins with the first image in
the time-lapse sequence. A pre-trained vision model, Segment Anything
Model (SAM) [25], identifies individual droplets from the background.
As SAM occasionally merges adjacent droplets (Fig. 1f), we filter masks
based on spatial overlap and convert the remaining masks into binary
format (Fig. 1b). Connected component labeling assigns unique identi-
fiers to each droplet (Fig. 1c-d), which are then tracked throughout the
sequence using brightness-normalized and spatially aligned frames.
Outer ROI are generated via morphological dilation (Fig. 1e).

3.1.2. Feature extraction and clustering

The color and spatial distribution of corrosion products serve as
important indicators of the underlying corrosion process. These visual
features can provide insight into the severity of corrosion and the
possible composition of the corrosion products [11]. The darkening
observed is a well-known characteristic of the formation of iron oxi-
de/hydroxide layers on steel, which have low optical reflectivity. To
directly validate that this optical darkening corresponds to corrosion in
our experiments, post-mortem SEM-EDS analysis is performed on a
representative sample (see section S2 in the Supplementary Informa-
tion), which confirms that the dark regions are composed of iron- and
oxygen-rich corrosion products.

To track these changes, each ROl is first interpolated to a fixed size of
32 x 32 pixels using a high-quality bicubic interpolation (cv2.INTER -
CUBIC) to preserve feature integrity and masked to exclude non-droplet
regions (Fig. 2a). Three feature engineering strategies are then applied
to extract color information from the inner and outer ROIs: (1) radial
segmentation, where pixels are grouped by angular sectors (Fig. 2b); (2)
concentric segmentation, where pixels are grouped based on radial
distance from the droplet center (Fig. 2¢); and (3) autoencoder-based
encoding [26,27], where unsupervised neural networks are trained
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Fig. 1. ROI extraction workflow for droplet-induced corrosion analysis: (a) Initial droplet image used for segmentation (b) Binary mask of droplet locations after
post-processing (c) Time-lapse tracking of droplet-covered areas (d) Tracked droplet segments at selected exposure times (e) Inner and outer ROIs for a representative
droplet, with overlapping regions excluded (f) Segmentation artifacts in SAM output, where adjacent droplets are merged.

separately for inner and outer ROIs (Fig. 2d). The feature engineering
strategies are chosen to capture key physical characteristics of corrosion
patterns. The concentric segmentation method aligns with the classic
Evans droplet model, which describes distinct, concentric anodic and
cathodic zones due to the oxygen gradient along droplet radius. The
radial segmentation method emphasizes the asymmetrical nature of
real-world corrosion where corrosion usually initializes at localized
defects. Autoencoder is included as a data-driven approach to learn
more complex spatial patterns without domain-specific assumptions.

For radial/concentric methods, we compute the mean and variance
of RGB channels per subgroup. To account for the observation that
corrosion products within an outer ROI are often unevenly distributed
[12], which typically appears in localized areas rather than forming a
uniform ring around the droplet, we also extract grayscale gradient
featured for the outer ROIs: (1) the mean and variance of all pairwise
pixel intensity differences, which capture the overall variation and
contrast within the region; and (2) a normalized intensity histogram
computed over 5 bins spanning the full grayscale range [0, 255] which
provides a coarse representation of the pixel intensity distribution.

The total number of features for the segmentation-based methods
therefore scales with the number of segments chosen. For the autoen-
coder method, two autoencoders are trained separately on inner and
outer ROIs to extract the same number of features from each ROL A
detailed description of the procedures can be found in S3 under the
Supplementary Information.

Based on a multi-stage optimization process, the concentric seg-
mentation method is selected for final analysis. A subsequent grid search
evaluated by the Silhouette score determines that the ideal parameters
are 5 segments for the inner ROIs and 2 for the outer ROIs. The final
number of Principal Components (PCs) is determined to be 5 for both
regions to retain over 90 % of the variance from the complete dataset.
The detailed methodology for the entire selection and optimization
process is provided in S4 under the Supplementary Information.

K-means++ clustering groups ROIs into corrosion and non-corrosion
types. The results (Fig. 3a-b) show clear separation, the choice of 2

clusters is determined to be optimal as it yields the highest Silhouette
score for both regions (see Figure S5 in Supplementary Information S4).
The resulting Silhouette scores of 0.72 for inner ROIs and 0.53 for outer
ROIs validate the clustering quality.

Mapping the reduced feature space back to the original ROIs reveals
that one cluster (green) is associated with a strong presence of corrosion
products, whereas the other (blue) corresponds to droplets with minimal
or no corrosion.

3.1.3. Continuous probability-based mapping of corrosion evolution

While clustering captures final corrosion status, it does not reflect
when corrosion begins or how it progresses. One potential approach to
extract this kinetic information is to perform clustering on the time se-
ries of each droplet’s ROI and assign a binary transition label from “no
corrosion” to “corrosion”. However, this approach oversimplifies the
process and is inadequate for capturing the gradual, heterogeneous
evolution observed in practice (see S5 wunder Supplementary
Information).

To address this, we convert PCA-reduced features into continuous
probability curve for each ROI over time. As illustrated in Fig. 4, the K-
Means++ classifier effectively separates the ROIs into distinct clusters
but treats all samples within a cluster equally, disregarding variations
within each group. To overcome this limitation, we replace the discrete
cluster labels with a probability distribution that reflects the likelihood
of each sample belonging to the identified clusters.

e-dacn)
01(A) = —aer Lo dacy
e—d(A,Cz)
0:(A) = aaen  e-dacy €]

with d(A,C,) = 1| > wi(A; — Cai)® Va e {1,2}
i=1

This probabilistic approach is based on the weighted distances
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Fig. 2. Feature engineering strategies for ROI analysis, using the final image in the time-lapse sequence. All ROIs are resized to 32 x 32 pixels. Only droplet-covered
(unmasked) regions are included. (a) ROI masking to remove background pixels. (b) Radial segmentation of pixels by angular sector. (¢) Concentric segmentation of
pixels by radial distance. Regarding b and c, for illustration, each ROI is divided into four subgroups. (d) Autoencoder-based feature extraction trained separately for
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Fig. 3. K-means++ clustering of PCA-reduced features for (a) inner ROIs and (b) outer ROIs. The plot is shown in space defined by the first two PCs for illustrative
purposes. Cluster separation corresponds to corrosion vs. non-corrosion categories, normalized using MaxAbs (inner) or MinMax (outer) scaling.

between a sample and each cluster center. As shown in Eq. (1), the
distances to the centers of the blue and green clusters, denoted as
d(A,C;) and d(A,C,) are calculated using weights representing the
normalized explained variance ratio obtained during PCA. A negative
sign is applied to reflect the inverse relationship between distance and
cluster membership probability.

A SoftMax operation is then applied to convert these opposite dis-

tances into probabilities: 1 (A) and 02 (A), representing the likelihood of
A belonging to the blue or green cluster, respectively. This trans-
formation ensures that the two probabilities sum to 1 and amplifies the
contrast between samples when one cluster is clearly more likely than
the other.

By extending the method to the entire droplet recording, for each
droplet, we obtain a time series of probabilities:
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Fig. 4. Probability-based representation of corrosion status for two inner ROI
data points (A and B), based on weighted distance to cluster centers (C1 and C2)
in PCA space. Colors match cluster assignments in Fig. 3.

e px,: the likelihood of corrosion product in the inner ROI at time t
e py.: same for the outer ROI

The validity of using end-frame cluster centers to analyze the entire
time series is confirmed with a consistency check, which is detailed in S6
under the Supplementary Information. This yields a smooth temporal
profile of corrosion product evolution (Fig. 5) which enables detailed
analysis of initiation, progression, and stabilization on a per-droplet
basis.

3.2. Application of the framework

With the framework, covering segmentation, feature extraction,
unsupervised clustering, and probability-based tracking, in place, we
now apply it to analyze the spatiotemporal behavior of corrosion across
a large droplet population. We first examine representative cases, then
assess population-wide corrosion kinetics, and finally investigate how
droplet size influences both corrosion type and evolution.

3.2.1. Representative corrosion behaviors

To illustrate typical corrosion patterns, we begin with two droplets
categorized as corroding or non-corroding based on the clustering re-
sults from the final image (Section 3.1.2). Fig. 5 shows their probability
curve (a-b: corroding, c-d: non-corroding) over time, as derived from the
framework introduced in Section 3.1.3. In Fig. 5a, the inner ROI prob-
ability px (light blue solid curve) rises gradually and stabilizes near 1.0
by 50 min, indicating substantial accumulation of corrosion products. A
Savitzky-Golay filter [28,29] is applied to extract the general trend from
the original data. The smoothed trend (orange curve) is consistent with
image darkening over time and highlights three key kinetic features:
transition onset (vertical dark blue dashed line), plateau start (vertical
yellow dashed line), and midpoint between them (vertical red dashed
line). From these points, we extract key kinetic descriptors: the transi-
tion interval is the duration between the onset and the start of the
plateau. The transition slope is defined as the average rate of change of
the probability during this interval, calculated from the smoothed curve.
A steeper slope indicates a more rapid stabilization of corrosion products
accumulation. Once the plateau is reached, no significant visual changes
are observed, which aligns with the stabilization of px.

Fig. 5b shows the corresponding outer ROI probability py, which also
increases and stabilizes around 0.8, confirming corrosion product
accumulation beyond the droplet footprint. This is further supported by
the corresponding image sequences showing the evolution around the
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droplet periphery.

A comparative analysis of Figs. 5a and b indicates that corrosion
product formation begins earlier in the inner ROI than in the outer ROL.
This observation aligns with the findings of Wang et al. [12], who re-
ported that while pitting and uniform corrosion tend to occur within or
near the droplet periphery, while minor corrosion processes may
develop outside the droplet over time.

In contrast, Figs. 5¢ and d depict a droplet where no significant
corrosion product formation occurs. In Fig. 5c, px curve initially rises to
approximately 0.4, then declines to near zero after 100 min. Image in-
spection suggests that this behavior can be related to the droplet drying
process. In our previous work [2], we have shown that certain contact
angles can lead to optical effects such as ring-shaped illumination or
reflection/refraction patterns that darken the droplet edge. Although
these effects are not distinctly observable here due to resolution limits,
the early dark rim is evident and fades over time as the droplet dries and
the contact angle decreases. The py curve (Fig. 5d) remains consistently
low, fluctuating range between 0.0 and around 0.1, which confirms the
absence of corrosion product formation in the outer ROI of this droplet.

These representative cases illustrate the outcomes where either both
ROIs show significant accumulation or neither does. Apart from that, our
framework also quantitatively describes other distinct corrosion pat-
terns reported in the literature. For example, Soulie et al. [30] observed
that corrosion products under a 1 M NaCl droplet is predominantly
confined within the droplet footprint. This corresponds to a high px
plateau and low py in our representation. Conversely, Weissenrieder
et al. [7] described corrosion that initiates at the periphery of the droplet
and propagates outward, forming filiform-like corrosion morphology.
Risteen et al. [6] further demonstrated that such behavior is strongly
influenced by droplet size. Within our framework, this would manifest
as a high final py plateau and a low py.

While clustering on the end-of-exposure image (Section 3.1.2) pro-
vides an initial corrosion/non-corrosion categorization, a more physi-
cally meaningful definition based on the full time-resolved probability
curves will be adopted in the following analysis, where ROI corrosion
status is determined based on their long-term behavior. An ROI is
considered “corroding” if its probability curve (px or py) shows a sus-
tained transition and stabilizes at a high plateau (p > 0.5) which in-
dicates a sustained existence of corrosion products. Conversely, a “non-
corroding” ROI is one where the probability remains low. The robustness
of the choice regarding the probability threshold and plateau duration
for end-stage plateau detection is demonstrated by a sensitivity analysis
in the Supplementary Information under S7.

3.2.2. Comparative temporal analysis of corrosion progression in inner and
outer ROIs

The data-driven framework allows a direct comparison of corrosion
kinetics (i.e. transition midpoint, transition intervals, and transition
slopes) between inner (X) and outer (Y) ROIs. We focus on ROIs that
develop a clear, sustained presence of corrosion products, defined by the
probability curve stabilizing at a plateau over 0.5.

Fig. 6 show that corrosion products on average appear earlier and
accumulate faster in inner ROIs. This observation is consistent with in-
dividual cases discussed in Section 3.2.1. In Fig. 6a, the histogram of
transition midpoints shows that the kernel density estimation (KDE) for
px peaks earlier than for py, indicating faster initiation in the inner re-
gion. Fig. 6b shows that the transition intervals (onset to plateau) are
also shorter for py, suggesting a faster corrosion stabilization. This is
further supported by Fig. 6¢, where the KDE of transition slopes is
steeper for px, confirming faster corrosion product accumulation in the
inner region.

Fig. 7a compares two representations of corrosion product occur-
rence over time: the “soft representation”, based on average probability
values (solid curves), and the “hard representation”, based on the binary
classification of whether p > 0.5 at each time step. Fig. 7a also suggests
that another contributing factor of px peaks at a higher value than py in
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Fig. 5. Representative corrosion probability curves and corresponding ROI images. (a) Inner ROI (px) for a corroding droplet, with raw (blue) and smoothed
(orange) curves, and marked onset, midpoint, and plateau. (b) Outer ROI (py) for the same droplet. (¢) Inner ROI probability for a non-corroding droplet. (d) Outer

ROI probability for the same non-corroding droplet.

Fig. 6¢ might be explained by the generally high values of px compared
to py. This is also theoretically valid, as corrosion product coverage is
often more substantial in the inner ROI, making it more likely to exhibit
either a strong presence or complete absence of corrosion products
which leads to more extreme higher px values.

The “soft” and “hard” representation can be described with Egs. (2)
and (3):

— 1 A
P = N—aZilp;a where N, = #(a™ = 1) Va € {X, Y} 2
Frac!, ZN" < > 0. 5) L where n}, = #(a' = 1) Va € {X, Y}
N pla - Na - ?
3

where N, denotes the number of droplets containing corrosion products
in the inner or outer ROI at the final stage, while p;, represents the
dynamic probability of corrosion product existing in the inner or outer

ROI of droplet i at time t, and n} stands for the number of droplets
containing corrosion products in the inner or outer ROI at time t. a* = 1
and ¢ =1 explicitly mean inner (a = X) or outer (a = Y) ROI shows
presence of corrosion product at time t and by the end of exposure.
The close match between the two, as shown in Fig. 7a, confirms that
the probability-based representation provides a soft yet accurate
approximation of the corrosion fraction. The two curves follow a similar
overall trend, with the probability-based curve initially being slightly
higher and later slightly lower than the fraction-based curve. This
behavior reflects the nature of the probability assignment: droplets
located near cluster boundaries in feature space receive intermediate
probability values rather than discrete 0 or 1 labels. As a result, the
probability-based representation exhibits a smaller dynamic range
compared to the binary count, while preserving the overall shape of
corrosion evolution. Importantly, although the global averages are
similar, the “soft representation” offers finer-grained, per-droplet in-
formation, which captures gradual corrosion transitions that would be
lost under “hard representation”. This relationship is further supported
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by Fig. 7b, which shows a mostly linear correlation between the two
representations over time, validating Eq. (4):

t

%‘;:aa.thaJrﬁa Va € {X,Y, XY} (4)
Eq. (4) can be further extended to droplets that show corrosion

products at both inner and outer ROIs at the end of exposure, as vali-

dated by Fig. 7c. To explore the interaction between inner and outer

ROIs, we focus on droplets that have already developed corrosion in one

region at certain time and investigate the fraction that simultaneously

exhibit corrosion in both regions ('S‘—;(Y or %Y). Within the “soft represen-
tation”, the joint probability of corrosion in both ROIs (piy,) is
approximated as the product of the individual probabilities (p}x and p; )
since they are separately analyzed and therefore statistically indepen-
dent. Eq. (5) shows the correlation between the “soft” and “hard” rep-
resentations by applying Eq. (4) to three groups of droplets: those
showing corrosion in the inner ROI (a = X), the outer ROI (a = Y), and
both ROIs (a = XY) at end of exposure.
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Fig. 7d presents the evolution of co-corrosion for inner and outer
ROIs. The red curves, representing the co-development analysis
regarding inner ROIs, stabilize above 0.6. This indicates that the ma-
jority of those droplets showing corrosion products at inner ROI also
develop corrosion products at their outer ROI. This observation supports

earlier findings by Wang et al. [12], suggesting that under-droplet
corrosion often propagates outward due to electrochemical or diffu-
sional effects.

In contrast, the blue curves show that only 40 % of the droplets
exhibiting corrosion in the outer ROI also show corrosion in the inner
ROL. This suggests that outer-region corrosion may occur independently
of corrosion under the main droplet footprint. One hypothesis is that this
is potentially due to inter-droplet interactions or diffusion of chemical
species between neighboring droplets. A target analysis shows that the
droplet spatially clustering behavior can both slightly increase the
overall probability and accelerate the onset of outer ROI corrosion, as
detailed under S8 in the Supplementary Information. Another explana-
tion is that these independent outer corrosion events are governed by
other factors such as corrosion initiating at the three-phase boundary of
a single droplet and subsequently propagating outward, as previously
observed by Risteen et al. [6] and Weissenrieder et al. [7]

In summary, the comparative temporal analysis reveals distinct ki-
netic profiles and propagation pathways for the inner and outer ROIs.
The statistical analysis of the kinetic descriptors demonstrates that
corrosion product formation initiates earlier and stabilizes more rapidly
in the inner region. Furthermore, the analysis of co-development frac-
tions shows an asymmetric relationship: while under-droplet corrosion
has a high probability of propagating outward, a significant portion of
outer-region corrosion occurs independently. These findings suggest a
primary “inner-to-outer” corrosion mechanism, supplemented by an
independent initiation process at the droplet periphery.

3.2.3. Influence of droplet size on corrosion probability

With the corrosion behaviors classified in a scale-invariant manner,
the influence of the original, physical droplet size can now be system-
atically investigated. Droplet size plays a critical role in determining
droplet-induced corrosion by influencing not only the likelihood of
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corrosion the occurrence but also the type and rate of corrosion pro-
gression [4,6,18,31]. A previous study [6] has shown that for carbon
steel, the probability of Evans-type corrosion increases with droplet size,
with a threshold beyond which nearly all droplets exhibit this corrosion
mode.

In the context of the present study, this behavior corresponds to px
stabilizing at a high plateau, regardless of the evolution of py.
Conversely, corrosion products that primarily from outside the droplet
footprint, represented by py stabilizing at a high plateau while px re-
mains low, are more frequently associated with smaller droplets. This
trend is evident in Fig. 8.

Fig. 8a presents the distribution of droplets across size bins, along
with the fraction exhibiting corrosion at either the inner or outer ROIs by
the end of exposure. The size bins are defined as uneven ranges to avoid
excessively low droplet counts in the larger size categories. A monotonic
increase in corrosion fraction can be observed with increasing droplet
diameter for both inner and outer ROIs. While smaller droplets dominate
the population, density-normalized histograms (Fig. 8b) and cumulative
density functions (Fig. 8c) confirm that this trend is not an artifact of
population imbalance. Specifically, in Fig. 8b, the KDE curves for
droplets classified as Xg,g = 0 or Y,,q = 0 peak at much smaller value
than that for either X,,q = 1 or Y,,q = 1. The cumulative distribution
curves in Fig. 8c further support this trend: droplets without corrosion
products in the inner or outer ROI reach a plateau at lower diameters
compared to those with corrosion (Xg,q = 1 or Ypq = 1).

The finding that the probability of developing optically detectable
corrosion increases with droplet size is a real physical phenomenon and
not simply an artifact of optical detection limits. This trend is consistent
with the previous study [6] that uses direct profilometry to measure
metal volume loss, where the trend that the fraction of drops showing

corrosion increases with drop size is also observed. This confirms that
while trace electrochemical activity might exist, the likelihood of sig-
nificant and visible corrosion initiation is strongly size-dependent.

Comparing corrosion development in the inner versus outer ROIs, it
is observed that the presence of corrosion products in the inner ROI is
more strongly associated with larger droplet sizes. As shown in Fig. 8a,
the fraction of droplets exhibiting corrosion at the inner ROI increases
more steeply with droplet size compared to the outer ROI In contrast,
droplets exhibiting corrosion at the outer ROI appear across a broader
size range, maintaining a relatively higher fraction even at intermediate
droplet sizes (Fig. 8a). This observation is further supported by the
density-normalized size distributions (Fig. 8b) and cumulative density
functions (Fig. 8c), where droplets with inner ROI corrosion (X,g = 1)
are shifted toward larger diameters relative to those with outer ROI
corrosion (Y., = 1), which suggests that corrosion at the outer ROI may
be less dependent on individual droplet size and more influenced by
inter-droplet interactions or diffusional processes.

In Fig. 8d-f, the droplet behavior based on ROI is categorized into
three types: non-corroding (Xe,q = 0 and Y,,q4 = 0), Evans-like corrosion
(Xena = 1, no matter of Y), and corrosion localized outside the droplet
footprint (X.,g = 0 and Y,,q = 1), based on the previous investigation
[6]. Overall, the probability of a droplet undergoing corrosion increases
with its size, with Evans-type corrosion becoming dominant beyond a
critical droplet diameter. Corrosion localized only in the outer ROI may
be due to inter-droplet effects or diffusion of corrosion products from
neighboring droplets. This phenomenon is more frequently observed in
droplets of intermediate size. As presented Fig. 8f, when the droplet
diameter exceeds approximately 360 um, nearly all droplets exhibit
signs of corrosion, and above 650 um, all corrosion predominantly fol-
lows the Evans-like pattern.
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These observations confirm that droplet size is a critical factor gov-
erning both the likelihood and the dominant mode of corrosion, with
larger droplets favoring under-droplet (Evans-like) corrosion, while
intermediate-sized droplets may promote corrosion in surrounding re-
gions due to inter-droplet interactions or product diffusion.

3.2.4. Influence of droplet size on corrosion characteristics over time

The previous section focused on the influence of droplet size on
whether corrosion occurs and type of corrosion by the end of the
exposure, while droplet size also has a significant impact on corrosion
kinetics. Jiang et al. [3] have reported that the cathodic limiting current
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increases linearly with the inverse of droplet radius, indicating that
corrosion under larger droplets might be constrained by oxygen con-
centration at the solid-liquid interface. Cole et al. [14] have further
showed that larger droplets exhibit a more pronounced oxygen con-
centration gradient along the radius, favoring cathodic reactions near
the droplet edge. In addition, as droplets evaporate, their initial size
influences the drying rate and thus the evolution of electrolyte con-
centration. Lequien et al. [32] have demonstrated that even within a
single droplet, local concentration gradients might emerge due to
enhanced vapor flux at the edges, which induces diffusion, capillary
flow, and Marangoni flow, all strongly dependent on droplet size.
Furthermore, the transport and precipitation of corrosion products, both
inside and outside the droplet, are also affected by droplet dimensions
[18].

In this section, we analyze the influence of droplet size on two
temporal descriptors: the transition midpoint, indicating when corrosion
products begin to appear, and the transition interval, reflecting how fast
corrosion product accumulation stabilizes. The metrics are evaluated
separately for the inner and outer ROIs to extend the previous global
analysis into a size-dependent context. For consistency, droplet di-
ameters are classified into the same ranges as presented in Fig. 8.

Fig. 9 presents normalized histograms of these characteristics across
droplet size bins. In the inner ROIs, Fig. 9a shows that droplets of in-
termediate size (100 um to 400 pm) tend to reach the transition
midpoint slightly earlier than smaller (O um to 100 um) or larger
(400 um to 800 pm) droplets. Similarly, Fig. 9b reveals that these
intermediate-sized droplets also exhibit slightly shorter transition in-
tervals, suggesting faster stabilization of corrosion product accumula-
tion. This behavior may result from an optimal balance between oxygen
solubility and ionic conductivity. Larger droplets tend to retain volume
longer and maintain lower chloride concentration, enhancing oxygen
solubility but reducing electrolyte conductivity. Fig. 9c shows the
average evolution of px for droplets of different sizes. Larger droplets
tend to stabilize at a lower plateau value, possibly due to less uniform
corrosion product precipitation across the initial footprint.

For outer ROISs, the trend differs. Fig. 9d-e show that larger droplets
(400 um to 800 pm) initiate corrosion earlier, while smaller ones (0 um
to 100 ym) stabilizes more quickly. Earlier appearance of corrosion
products in larger droplets can be attributed to enhanced evaporation at
droplet edges, which results in a higher chloride concentration and
thereby creating a more aggressive environment that promotes early
corrosion initiation at the periphery. In contrast, the fast drying of
smaller droplets cuts off electrolyte supply and accelerates stabilization.

Fig. of shows the average evolution of py across size bins. Larger
droplets stabilize at slightly higher plateau values than smaller droplets,
possibly due to the influence of neighboring, actively corroding droplets.
Corrosion products diffusing from adjacent droplets may accumulate in
the outer ROI and compensate for the dilution effect caused by the larger
areas. This diffusion-driven mechanism helps explain the stronger
corrosion signal in the outer ROI of larger droplets.

These findings highlight that droplet size influences not only the
likelihood but also the dynamics of corrosion, with distinct temporal
behaviors observed between inner and outer regions.

4. Conclusions

This study introduced and validated a fully automated, data-driven
framework for quantifying corrosion under thousands of individual
droplets using time-lapse optical imaging. By converting raw image data
into interpretable, probability-based metrics, the method enables a
quantitative analysis of both the occurrence and kinetics of corrosion on
a per-droplet basis.

Application of this framework to carbon steel revealed that corrosion
behavior is strongly size-dependent, with larger droplets exhibiting a
higher probability of developing significant, optically detectable
corrosion. The analysis of spatial patterns distinguished two primary
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corrosion pathways: a ’inside-to-outside’ propagation and an indepen-
dent corrosion process occurring in the periphery of the droplet.
Furthermore, the kinetic analysis showed that droplet size also affects
the onset and rate of corrosion product formation, with distinct behav-
iors observed for inner versus outer regions.

By translating raw pixel data into physically meaningful metrics, this
work provides a scalable platform for investigating localized corrosion
kinetics and morphology in complex environments. The framework is
broadly applicable to other surface processes where progression can be
tracked by visual changes, which offers a powerful tool for high-
throughput materials analysis.
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