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Development of a data-driven framework for monitoring corrosion 
under droplets
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Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, Delft 2628CD, the Netherlands
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A B S T R A C T

Understanding localized corrosion under atmospheric droplets is critical, yet previous studies have mostly 
focused on single-droplet systems or general trends, leaving the role of individual droplets within multi-droplet 
environments yet to be explored. Here, we present a fully automated, image-based, data-driven framework for 
analyzing corrosion progression under thousands of droplets simultaneously. Using time-resolved optical im
aging and pre-trained large vision models for droplet segmentation, we construct per-droplet color features and 
propose a probability-based representation of corrosion product formation in inner and outer regions of interest. 
This approach overcomes the limitations of binary classification by capturing the continuous and spatially 
heterogeneous nature of corrosion product formation. Applied to carbon steel exposed to over 1500 pre-sprayed 
1 M NaCl droplets of various sizes, the method reveals that the probability of corrosion product presence strongly 
depends on droplet size, with larger droplets more likely to exhibit products both under and around the droplet 
footprint. Moreover, corrosion products in the outer region can appear independently of under-droplet corrosion, 
suggesting a role for inter-droplet interactions. By transforming raw imaging data into physically meaningful per- 
droplet metrics, this work offers a scalable platform for investigating localized corrosion kinetics and 
morphology in complex, real-world droplet populations, opening new opportunities for connecting droplet 
formation and population behavior to local and overall atmospheric corrosion rates.

1. Introduction

Droplet-based electrolytes play a crucial role in atmospheric corro
sion, especially during its initial stages [1–9]. In multi-droplet systems, 
electrochemical activity at the solid-liquid interface is influenced not 
only by droplet size and shape but also by their spatial distribution [10].

Previous studies have primarily focused on single droplets, using 
electrochemical techniques such as polarization tests [3–5,11], elec
trochemical impedance spectroscopy (EIS) [3,11], electrochemical noise 
(EN) [11] analysis, and wire beam electrode (WBE) [1,12] setups to 
study corrosion kinetics. These experiments often rely on precisely 
controlled droplet placement, with optical microscopy used to track 
corrosion product formation over time. For example, Rahimi et al. [11]
combined EIS, polarization, and EN with optical imaging for studying 
corrosion kinetics under a single droplet to examine its link with elec
trolyte evaporation, droplet geometry, and ion concentration. Analytical 
models [3,13,14] and finite element modeling (FEM) [14,15] simula
tions have also been developed to simulate electrolyte spreading, ion 
transport, and potential fields, although they often rely on assumptions 

such as fixed droplet shapes, idealized boundary conditions, or 
steady-state behavior.

Some studies have extended this approach to multi-droplet config
urations. Larger droplets have been linked to higher corrosion proba
bility and distinct corrosion types [6,7]. As corrosion progresses, 
secondary spreading can lead to formation of a thin electrolyte layer 
surrounding the original droplet footprint [9], which enables 
inter-droplet interactions that further affect corrosion dynamics. Van 
den Steen et al. [10] introduced an FEM framework incorporating 
droplet size distributions and geometries to estimate global corrosion 
rates. While it accounts for heterogeneity, it assumes steady-state con
ditions and excludes inter-droplet interactions or time-resolved corro
sion product evolution. Other works have combined imaging with 
kinetic measurements to study corrosion under droplet exposure [2,7, 
16,17]. For instance, Weissenrieder and Leygraf [7] used QCM and 
optical microscopy to observe corrosion spreading from a single droplet 
to adjacent regions. While this study provided valuable mechanistic 
insight into corrosion spreading dynamics, the analysis was limited to 
isolated droplet and focused primarily on the propagation event. More 
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recently, Zhang et al. [2] correlated electrical resistance (ER)-based 
corrosion depth with droplet size distributions as analyzed from in-situ 
optical imaging. However, this work did not resolve corrosion progres
sion at the individual droplet level.

These studies illustrate the value of image-based analysis in corro
sion research and highlight the potential for a method that treats optical 
microscopy images as a quantitative source. A key step toward this is 
defining a reliable image-derived indicator that reflects corrosion 
activity.

Corrosion products offer such an indicator. Their visual appearance, 
which is usually through color and texture changes, makes them useful 
for non-invasive tracking into corrosion progression across large droplet 
populations. In the Evans model, corrosion products accumulate at the 
droplet center-periphery interface [18]. Other work has shown corro
sion products formation both under and outside the droplet [6,7,12]. 
The distribution and appearance of corrosion products reflect localized 
electrochemical activity [11,19], making them suitable for kinetic and 
mechanistic analysis.

To quantify these changes across thousands of droplets, a robust 
image analysis pipeline is required. This includes: 

• Segmentation of individual droplets;
• Extraction of relevant features;
• Numerical and statistical analysis of corrosion patterns.

Traditional segmentation methods (e.g. thresholding [20,21], con
nected component labeling [2,22]) are being complemented by deep 
learning techniques [20]. However, such methods often require labeled 
data and extensive computational effort [23]. More recently, large 
vision models (LVM), pre-trained across diverse datasets, offer 
general-purpose segmentation without task-specific training [24].

This work introduces a fully image-based, automated framework for 
analyzing corrosion under more than 1500 NaCl droplets on carbon 
steel. Using a pre-trained LVM for segmentation and unsupervised 
clustering of extracted features, we develop a probability-based repre
sentation of corrosion product evolution. This allows continuous 
tracking of localized corrosion in both inner and outer droplet regions 
over time.

This work serves two purposes: (1) to demonstrate a scalable, auto
mated approach for quantifying localized corrosion from optical images, 
and (2) to investigate how droplet size affects corrosion initiation and 
progression within a multi-droplet environment.

2. Experimental methodology

2.1. Sample preparation and corrosion monitoring

Corrosion experiments were conducted on carbon steel samples 
under multi-droplet conditions, following the methodology described by 
Zhang et al. [2]. The focus of the study was on droplet evolution over 
time; therefore, no kinetic measurements were performed.

Carbon steel specimens (1.5 cm × 1.5 cm, 500 µm thickness) were 
cut from an EN 10139 DC01-C950 steel sheet using cold cutting. The 
composition was 0.12 wt% C, 0.6 wt% Mn, 0.05 wt% P, 0.045 wt% S, 
with Fe as the remainder. Surfaces were mechanically ground using 
P800 SiC paper to a roughness of 172.68 ± 16.74 nm, measured by 
atomic force microscopy (AFM, Dimension Edge Scanning Probe Mi
croscope, Bruker Corporation, USA). Samples were then stored in a 
drying chamber at < 20 % relative humidity for 24 h before exposure.

2.2. Time-lapse imaging

Images were recorded using a Manta G319-C camera (Allied Vision 
Technologies GmbH, Germany) fitted with a zoom lens (Zoom 1:6.5 W. 
D.240 mm, Unitron Ltd., USA), mounted above the sample. Illumination 
was provided by an LED ring light. The zoom was fixed throughout the 

experiment, giving a field of view of ~11.65 mm × 8.72 mm and 
capturing ~1600 droplets per frame.

A 1 M NaCl solution was sprayed onto the sample surface to generate 
droplets, followed by 4 h of free corrosion in a climate chamber. Images 
were acquired at 2-minute intervals over 3 h and 20 min. A total of 101 
frames were selected to represent the corrosion process.

To correct for lighting variation, histogram matching was applied 
across the image sequence to normalize brightness levels. Minor dis
placements due to mechanical vibrations were corrected using Fast 
Fourier Transform (FFT)-based image registration, which aligned all 
frames to the first frame before further analysis.

3. Results and discussion

3.1. Development of a data-driven framework

To analyze localized corrosion under thousands of droplets, we 
developed a data-driven framework that tracks visual changes over time. 
The process consists of three main steps: (1) droplet identification and 
segmentation using a pre-trained LVM, (2) feature extraction and clus
tering (3) probability-based modeling of corrosion product evolution.

3.1.1. Droplets segmentation and ROI definition
Each droplet is treated as an individual electrochemical cell that may 

or may not initiate localized corrosion. To analyze the formation and 
spread of corrosion products associated with each droplet, two regions 
of interest (ROIs) are defined: the inner ROI, corresponding to the initial 
droplet footprint, and the outer ROI, representing a surrounding annular 
zone with an outer equivalent diameter 9/5 as the inner. This 9/5 ratio is 
chosen as a conservative boundary based on the physical behavior of the 
droplets observed in our experiment, as addressed in detail under S1 in 
the Supplementary Information. In cases where outer ROIs overlap with 
the inner ROIs of neighboring droplets, the overlapping areas are 
excluded from analysis to avoid ambiguity in region attribution 
(Fig. 1e).

The segmentation process (Fig. 1a-e) begins with the first image in 
the time-lapse sequence. A pre-trained vision model, Segment Anything 
Model (SAM) [25], identifies individual droplets from the background. 
As SAM occasionally merges adjacent droplets (Fig. 1f), we filter masks 
based on spatial overlap and convert the remaining masks into binary 
format (Fig. 1b). Connected component labeling assigns unique identi
fiers to each droplet (Fig. 1c-d), which are then tracked throughout the 
sequence using brightness-normalized and spatially aligned frames. 
Outer ROI are generated via morphological dilation (Fig. 1e).

3.1.2. Feature extraction and clustering
The color and spatial distribution of corrosion products serve as 

important indicators of the underlying corrosion process. These visual 
features can provide insight into the severity of corrosion and the 
possible composition of the corrosion products [11]. The darkening 
observed is a well-known characteristic of the formation of iron oxi
de/hydroxide layers on steel, which have low optical reflectivity. To 
directly validate that this optical darkening corresponds to corrosion in 
our experiments, post-mortem SEM-EDS analysis is performed on a 
representative sample (see section S2 in the Supplementary Informa
tion), which confirms that the dark regions are composed of iron- and 
oxygen-rich corrosion products.

To track these changes, each ROI is first interpolated to a fixed size of 
32 × 32 pixels using a high-quality bicubic interpolation (cv2.INTER_
CUBIC) to preserve feature integrity and masked to exclude non-droplet 
regions (Fig. 2a). Three feature engineering strategies are then applied 
to extract color information from the inner and outer ROIs: (1) radial 
segmentation, where pixels are grouped by angular sectors (Fig. 2b); (2) 
concentric segmentation, where pixels are grouped based on radial 
distance from the droplet center (Fig. 2c); and (3) autoencoder-based 
encoding [26,27], where unsupervised neural networks are trained 
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separately for inner and outer ROIs (Fig. 2d). The feature engineering 
strategies are chosen to capture key physical characteristics of corrosion 
patterns. The concentric segmentation method aligns with the classic 
Evans droplet model, which describes distinct, concentric anodic and 
cathodic zones due to the oxygen gradient along droplet radius. The 
radial segmentation method emphasizes the asymmetrical nature of 
real-world corrosion where corrosion usually initializes at localized 
defects. Autoencoder is included as a data-driven approach to learn 
more complex spatial patterns without domain-specific assumptions.

For radial/concentric methods, we compute the mean and variance 
of RGB channels per subgroup. To account for the observation that 
corrosion products within an outer ROI are often unevenly distributed 
[12], which typically appears in localized areas rather than forming a 
uniform ring around the droplet, we also extract grayscale gradient 
featured for the outer ROIs: (1) the mean and variance of all pairwise 
pixel intensity differences, which capture the overall variation and 
contrast within the region; and (2) a normalized intensity histogram 
computed over 5 bins spanning the full grayscale range [0, 255] which 
provides a coarse representation of the pixel intensity distribution.

The total number of features for the segmentation-based methods 
therefore scales with the number of segments chosen. For the autoen
coder method, two autoencoders are trained separately on inner and 
outer ROIs to extract the same number of features from each ROI. A 
detailed description of the procedures can be found in S3 under the 
Supplementary Information.

Based on a multi-stage optimization process, the concentric seg
mentation method is selected for final analysis. A subsequent grid search 
evaluated by the Silhouette score determines that the ideal parameters 
are 5 segments for the inner ROIs and 2 for the outer ROIs. The final 
number of Principal Components (PCs) is determined to be 5 for both 
regions to retain over 90 % of the variance from the complete dataset. 
The detailed methodology for the entire selection and optimization 
process is provided in S4 under the Supplementary Information.

K-means++ clustering groups ROIs into corrosion and non-corrosion 
types. The results (Fig. 3a-b) show clear separation, the choice of 2 

clusters is determined to be optimal as it yields the highest Silhouette 
score for both regions (see Figure S5 in Supplementary Information S4). 
The resulting Silhouette scores of 0.72 for inner ROIs and 0.53 for outer 
ROIs validate the clustering quality.

Mapping the reduced feature space back to the original ROIs reveals 
that one cluster (green) is associated with a strong presence of corrosion 
products, whereas the other (blue) corresponds to droplets with minimal 
or no corrosion.

3.1.3. Continuous probability-based mapping of corrosion evolution
While clustering captures final corrosion status, it does not reflect 

when corrosion begins or how it progresses. One potential approach to 
extract this kinetic information is to perform clustering on the time se
ries of each droplet’s ROI and assign a binary transition label from “no 
corrosion” to “corrosion”. However, this approach oversimplifies the 
process and is inadequate for capturing the gradual, heterogeneous 
evolution observed in practice (see S5 under Supplementary 
Information).

To address this, we convert PCA-reduced features into continuous 
probability curve for each ROI over time. As illustrated in Fig. 4, the K- 
Means++ classifier effectively separates the ROIs into distinct clusters 
but treats all samples within a cluster equally, disregarding variations 
within each group. To overcome this limitation, we replace the discrete 
cluster labels with a probability distribution that reflects the likelihood 
of each sample belonging to the identified clusters. 

σ1(A) =
e− d(A,C1)

e− d(A,C1) + e− d(A,C2)

σ2(A) =
e− d(A,C2)

e− d(A,C1) + e− d(A,C2)

with d(A,Ca) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
wi(Ai − Ca,i)

2

√

∀a ∈ {1,2}

(1) 

This probabilistic approach is based on the weighted distances 

Fig. 1. ROI extraction workflow for droplet-induced corrosion analysis: (a) Initial droplet image used for segmentation (b) Binary mask of droplet locations after 
post-processing (c) Time-lapse tracking of droplet-covered areas (d) Tracked droplet segments at selected exposure times (e) Inner and outer ROIs for a representative 
droplet, with overlapping regions excluded (f) Segmentation artifacts in SAM output, where adjacent droplets are merged.
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between a sample and each cluster center. As shown in Eq. (1), the 
distances to the centers of the blue and green clusters, denoted as 
d(A,C1) and d(A,C2) are calculated using weights representing the 
normalized explained variance ratio obtained during PCA. A negative 
sign is applied to reflect the inverse relationship between distance and 
cluster membership probability.

A SoftMax operation is then applied to convert these opposite dis

tances into probabilities: σ1(A) and σ2(A), representing the likelihood of 
A belonging to the blue or green cluster, respectively. This trans
formation ensures that the two probabilities sum to 1 and amplifies the 
contrast between samples when one cluster is clearly more likely than 
the other.

By extending the method to the entire droplet recording, for each 
droplet, we obtain a time series of probabilities: 

Fig. 2. Feature engineering strategies for ROI analysis, using the final image in the time-lapse sequence. All ROIs are resized to 32 × 32 pixels. Only droplet-covered 
(unmasked) regions are included. (a) ROI masking to remove background pixels. (b) Radial segmentation of pixels by angular sector. (c) Concentric segmentation of 
pixels by radial distance. Regarding b and c, for illustration, each ROI is divided into four subgroups. (d) Autoencoder-based feature extraction trained separately for 
inner and outer ROIs.

Fig. 3. K-means++ clustering of PCA-reduced features for (a) inner ROIs and (b) outer ROIs. The plot is shown in space defined by the first two PCs for illustrative 
purposes. Cluster separation corresponds to corrosion vs. non-corrosion categories, normalized using MaxAbs (inner) or MinMax (outer) scaling.
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• pX,t : the likelihood of corrosion product in the inner ROI at time t
• pY,t : same for the outer ROI

The validity of using end-frame cluster centers to analyze the entire 
time series is confirmed with a consistency check, which is detailed in S6 
under the Supplementary Information. This yields a smooth temporal 
profile of corrosion product evolution (Fig. 5) which enables detailed 
analysis of initiation, progression, and stabilization on a per-droplet 
basis.

3.2. Application of the framework

With the framework, covering segmentation, feature extraction, 
unsupervised clustering, and probability-based tracking, in place, we 
now apply it to analyze the spatiotemporal behavior of corrosion across 
a large droplet population. We first examine representative cases, then 
assess population-wide corrosion kinetics, and finally investigate how 
droplet size influences both corrosion type and evolution.

3.2.1. Representative corrosion behaviors
To illustrate typical corrosion patterns, we begin with two droplets 

categorized as corroding or non-corroding based on the clustering re
sults from the final image (Section 3.1.2). Fig. 5 shows their probability 
curve (a-b: corroding, c-d: non-corroding) over time, as derived from the 
framework introduced in Section 3.1.3. In Fig. 5a, the inner ROI prob
ability pX (light blue solid curve) rises gradually and stabilizes near 1.0 
by 50 min, indicating substantial accumulation of corrosion products. A 
Savitzky-Golay filter [28,29] is applied to extract the general trend from 
the original data. The smoothed trend (orange curve) is consistent with 
image darkening over time and highlights three key kinetic features: 
transition onset (vertical dark blue dashed line), plateau start (vertical 
yellow dashed line), and midpoint between them (vertical red dashed 
line). From these points, we extract key kinetic descriptors: the transi
tion interval is the duration between the onset and the start of the 
plateau. The transition slope is defined as the average rate of change of 
the probability during this interval, calculated from the smoothed curve. 
A steeper slope indicates a more rapid stabilization of corrosion products 
accumulation. Once the plateau is reached, no significant visual changes 
are observed, which aligns with the stabilization of pX.

Fig. 5b shows the corresponding outer ROI probability pY , which also 
increases and stabilizes around 0.8, confirming corrosion product 
accumulation beyond the droplet footprint. This is further supported by 
the corresponding image sequences showing the evolution around the 

droplet periphery.
A comparative analysis of Figs. 5a and b indicates that corrosion 

product formation begins earlier in the inner ROI than in the outer ROI. 
This observation aligns with the findings of Wang et al. [12], who re
ported that while pitting and uniform corrosion tend to occur within or 
near the droplet periphery, while minor corrosion processes may 
develop outside the droplet over time.

In contrast, Figs. 5c and d depict a droplet where no significant 
corrosion product formation occurs. In Fig. 5c, pX curve initially rises to 
approximately 0.4, then declines to near zero after 100 min. Image in
spection suggests that this behavior can be related to the droplet drying 
process. In our previous work [2], we have shown that certain contact 
angles can lead to optical effects such as ring-shaped illumination or 
reflection/refraction patterns that darken the droplet edge. Although 
these effects are not distinctly observable here due to resolution limits, 
the early dark rim is evident and fades over time as the droplet dries and 
the contact angle decreases. The pY curve (Fig. 5d) remains consistently 
low, fluctuating range between 0.0 and around 0.1, which confirms the 
absence of corrosion product formation in the outer ROI of this droplet.

These representative cases illustrate the outcomes where either both 
ROIs show significant accumulation or neither does. Apart from that, our 
framework also quantitatively describes other distinct corrosion pat
terns reported in the literature. For example, Soulie et al. [30] observed 
that corrosion products under a 1 M NaCl droplet is predominantly 
confined within the droplet footprint. This corresponds to a high pX 
plateau and low pY in our representation. Conversely, Weissenrieder 
et al. [7] described corrosion that initiates at the periphery of the droplet 
and propagates outward, forming filiform-like corrosion morphology. 
Risteen et al. [6] further demonstrated that such behavior is strongly 
influenced by droplet size. Within our framework, this would manifest 
as a high final pY plateau and a low pX.

While clustering on the end-of-exposure image (Section 3.1.2) pro
vides an initial corrosion/non-corrosion categorization, a more physi
cally meaningful definition based on the full time-resolved probability 
curves will be adopted in the following analysis, where ROI corrosion 
status is determined based on their long-term behavior. An ROI is 
considered “corroding” if its probability curve (pX or pY) shows a sus
tained transition and stabilizes at a high plateau (p > 0.5) which in
dicates a sustained existence of corrosion products. Conversely, a “non- 
corroding” ROI is one where the probability remains low. The robustness 
of the choice regarding the probability threshold and plateau duration 
for end-stage plateau detection is demonstrated by a sensitivity analysis 
in the Supplementary Information under S7.

3.2.2. Comparative temporal analysis of corrosion progression in inner and 
outer ROIs

The data-driven framework allows a direct comparison of corrosion 
kinetics (i.e. transition midpoint, transition intervals, and transition 
slopes) between inner (X) and outer (Y) ROIs. We focus on ROIs that 
develop a clear, sustained presence of corrosion products, defined by the 
probability curve stabilizing at a plateau over 0.5.

Fig. 6 show that corrosion products on average appear earlier and 
accumulate faster in inner ROIs. This observation is consistent with in
dividual cases discussed in Section 3.2.1. In Fig. 6a, the histogram of 
transition midpoints shows that the kernel density estimation (KDE) for 
pX peaks earlier than for pY , indicating faster initiation in the inner re
gion. Fig. 6b shows that the transition intervals (onset to plateau) are 
also shorter for pX, suggesting a faster corrosion stabilization. This is 
further supported by Fig. 6c, where the KDE of transition slopes is 
steeper for pX, confirming faster corrosion product accumulation in the 
inner region.

Fig. 7a compares two representations of corrosion product occur
rence over time: the “soft representation”, based on average probability 
values (solid curves), and the “hard representation”, based on the binary 
classification of whether p > 0.5 at each time step. Fig. 7a also suggests 
that another contributing factor of pX peaks at a higher value than pY in 

Fig. 4. Probability-based representation of corrosion status for two inner ROI 
data points (A and B), based on weighted distance to cluster centers (C1 and C2) 
in PCA space. Colors match cluster assignments in Fig. 3.
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Fig. 6c might be explained by the generally high values of pX compared 
to pY . This is also theoretically valid, as corrosion product coverage is 
often more substantial in the inner ROI, making it more likely to exhibit 
either a strong presence or complete absence of corrosion products 
which leads to more extreme higher pX values.

The “soft” and “hard” representation can be described with Eqs. (2) 
and (3): 

pt
a =

1
Na

∑Na

i=1
pt

i,a where Na = #
(
aend = 1

)
∀a ∈ {X,Y} (2) 

Fract
a =

1
Na

∑Na

i=1
1
(

pt
i,a > 0.5

)
=

nt
a

Na
where nt

a = #(at = 1) ∀a ∈ {X,Y}

(3) 

where Na denotes the number of droplets containing corrosion products 
in the inner or outer ROI at the final stage, while pt

i,a represents the 
dynamic probability of corrosion product existing in the inner or outer 

ROI of droplet i at time t, and nt
a stands for the number of droplets 

containing corrosion products in the inner or outer ROI at time t. at = 1 
and aend = 1 explicitly mean inner (a = X) or outer (a = Y) ROI shows 
presence of corrosion product at time t and by the end of exposure.

The close match between the two, as shown in Fig. 7a, confirms that 
the probability-based representation provides a soft yet accurate 
approximation of the corrosion fraction. The two curves follow a similar 
overall trend, with the probability-based curve initially being slightly 
higher and later slightly lower than the fraction-based curve. This 
behavior reflects the nature of the probability assignment: droplets 
located near cluster boundaries in feature space receive intermediate 
probability values rather than discrete 0 or 1 labels. As a result, the 
probability-based representation exhibits a smaller dynamic range 
compared to the binary count, while preserving the overall shape of 
corrosion evolution. Importantly, although the global averages are 
similar, the “soft representation” offers finer-grained, per-droplet in
formation, which captures gradual corrosion transitions that would be 
lost under “hard representation”. This relationship is further supported 

Fig. 5. Representative corrosion probability curves and corresponding ROI images. (a) Inner ROI (pX) for a corroding droplet, with raw (blue) and smoothed 
(orange) curves, and marked onset, midpoint, and plateau. (b) Outer ROI (pY) for the same droplet. (c) Inner ROI probability for a non-corroding droplet. (d) Outer 
ROI probability for the same non-corroding droplet.
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by Fig. 7b, which shows a mostly linear correlation between the two 
representations over time, validating Eq. (4): 

nt
a

Na
= αa • pt

a + βa ∀a ∈ {X,Y,XY} (4) 

Eq. (4) can be further extended to droplets that show corrosion 
products at both inner and outer ROIs at the end of exposure, as vali
dated by Fig. 7c. To explore the interaction between inner and outer 
ROIs, we focus on droplets that have already developed corrosion in one 
region at certain time and investigate the fraction that simultaneously 
exhibit corrosion in both regions (nt

XY
nt

X 
or n

t
XY

nt
Y
). Within the “soft represen

tation”, the joint probability of corrosion in both ROIs (pt
i,XY) is 

approximated as the product of the individual probabilities (pt
i,X and pt

i,Y) 
since they are separately analyzed and therefore statistically indepen
dent. Eq. (5) shows the correlation between the “soft” and “hard” rep
resentations by applying Eq. (4) to three groups of droplets: those 
showing corrosion in the inner ROI (a = X), the outer ROI (a = Y), and 
both ROIs (a = XY) at end of exposure. 

nt
XY
nt

a
= ka •

nt
XY

NXY
•

Na

nt
a
= ka •

(
αXY •pt

XY +βXY
)
/

(
αa •pt

a +βa
)
≈ ka •pt

XY

/

pt
a

whereka =
NXY

Na
∀a∈{X, Y}

andpt
i,XY = pt

i,X •pt
i,Y ∀i∈{1, ...,NXY}

(5) 

Fig. 7d presents the evolution of co-corrosion for inner and outer 
ROIs. The red curves, representing the co-development analysis 
regarding inner ROIs, stabilize above 0.6. This indicates that the ma
jority of those droplets showing corrosion products at inner ROI also 
develop corrosion products at their outer ROI. This observation supports 

earlier findings by Wang et al. [12], suggesting that under-droplet 
corrosion often propagates outward due to electrochemical or diffu
sional effects.

In contrast, the blue curves show that only 40 % of the droplets 
exhibiting corrosion in the outer ROI also show corrosion in the inner 
ROI. This suggests that outer-region corrosion may occur independently 
of corrosion under the main droplet footprint. One hypothesis is that this 
is potentially due to inter-droplet interactions or diffusion of chemical 
species between neighboring droplets. A target analysis shows that the 
droplet spatially clustering behavior can both slightly increase the 
overall probability and accelerate the onset of outer ROI corrosion, as 
detailed under S8 in the Supplementary Information. Another explana
tion is that these independent outer corrosion events are governed by 
other factors such as corrosion initiating at the three-phase boundary of 
a single droplet and subsequently propagating outward, as previously 
observed by Risteen et al. [6] and Weissenrieder et al. [7]

In summary, the comparative temporal analysis reveals distinct ki
netic profiles and propagation pathways for the inner and outer ROIs. 
The statistical analysis of the kinetic descriptors demonstrates that 
corrosion product formation initiates earlier and stabilizes more rapidly 
in the inner region. Furthermore, the analysis of co-development frac
tions shows an asymmetric relationship: while under-droplet corrosion 
has a high probability of propagating outward, a significant portion of 
outer-region corrosion occurs independently. These findings suggest a 
primary “inner-to-outer” corrosion mechanism, supplemented by an 
independent initiation process at the droplet periphery.

3.2.3. Influence of droplet size on corrosion probability
With the corrosion behaviors classified in a scale-invariant manner, 

the influence of the original, physical droplet size can now be system
atically investigated. Droplet size plays a critical role in determining 
droplet-induced corrosion by influencing not only the likelihood of 

Fig. 6. Statistical comparison of corrosion kinetics between inner (red) and outer (blue) ROIs for droplets classified as corroding at the end of the exposure. (a) 
Transition midpoint. (b) Transition intervals (onset to plateau). (c) Transition slopes.
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corrosion the occurrence but also the type and rate of corrosion pro
gression [4,6,18,31]. A previous study [6] has shown that for carbon 
steel, the probability of Evans-type corrosion increases with droplet size, 
with a threshold beyond which nearly all droplets exhibit this corrosion 
mode.

In the context of the present study, this behavior corresponds to pX 
stabilizing at a high plateau, regardless of the evolution of pY . 
Conversely, corrosion products that primarily from outside the droplet 
footprint, represented by pY stabilizing at a high plateau while pX re
mains low, are more frequently associated with smaller droplets. This 
trend is evident in Fig. 8.

Fig. 8a presents the distribution of droplets across size bins, along 
with the fraction exhibiting corrosion at either the inner or outer ROIs by 
the end of exposure. The size bins are defined as uneven ranges to avoid 
excessively low droplet counts in the larger size categories. A monotonic 
increase in corrosion fraction can be observed with increasing droplet 
diameter for both inner and outer ROIs. While smaller droplets dominate 
the population, density-normalized histograms (Fig. 8b) and cumulative 
density functions (Fig. 8c) confirm that this trend is not an artifact of 
population imbalance. Specifically, in Fig. 8b, the KDE curves for 
droplets classified as Xend = 0 or Yend = 0 peak at much smaller value 
than that for either Xend = 1 or Yend = 1. The cumulative distribution 
curves in Fig. 8c further support this trend: droplets without corrosion 
products in the inner or outer ROI reach a plateau at lower diameters 
compared to those with corrosion (Xend = 1 or Yend = 1).

The finding that the probability of developing optically detectable 
corrosion increases with droplet size is a real physical phenomenon and 
not simply an artifact of optical detection limits. This trend is consistent 
with the previous study [6] that uses direct profilometry to measure 
metal volume loss, where the trend that the fraction of drops showing 

corrosion increases with drop size is also observed. This confirms that 
while trace electrochemical activity might exist, the likelihood of sig
nificant and visible corrosion initiation is strongly size-dependent.

Comparing corrosion development in the inner versus outer ROIs, it 
is observed that the presence of corrosion products in the inner ROI is 
more strongly associated with larger droplet sizes. As shown in Fig. 8a, 
the fraction of droplets exhibiting corrosion at the inner ROI increases 
more steeply with droplet size compared to the outer ROI. In contrast, 
droplets exhibiting corrosion at the outer ROI appear across a broader 
size range, maintaining a relatively higher fraction even at intermediate 
droplet sizes (Fig. 8a). This observation is further supported by the 
density-normalized size distributions (Fig. 8b) and cumulative density 
functions (Fig. 8c), where droplets with inner ROI corrosion (Xend = 1) 
are shifted toward larger diameters relative to those with outer ROI 
corrosion (Yend = 1), which suggests that corrosion at the outer ROI may 
be less dependent on individual droplet size and more influenced by 
inter-droplet interactions or diffusional processes.

In Fig. 8d-f, the droplet behavior based on ROI is categorized into 
three types: non-corroding (Xend = 0 and Yend = 0), Evans-like corrosion 
(Xend = 1, no matter of Y), and corrosion localized outside the droplet 
footprint (Xend = 0 and Yend = 1), based on the previous investigation 
[6]. Overall, the probability of a droplet undergoing corrosion increases 
with its size, with Evans-type corrosion becoming dominant beyond a 
critical droplet diameter. Corrosion localized only in the outer ROI may 
be due to inter-droplet effects or diffusion of corrosion products from 
neighboring droplets. This phenomenon is more frequently observed in 
droplets of intermediate size. As presented Fig. 8f, when the droplet 
diameter exceeds approximately 360 µm, nearly all droplets exhibit 
signs of corrosion, and above 650 µm, all corrosion predominantly fol
lows the Evans-like pattern.

Fig. 7. Comparison of “soft” (probability-based, solid lines) and “hard” (binary classification, dashed lines) corrosion representations. (a) Temporal evolution of 
average corrosion status for inner (red) and outer (blue) ROIs. (b) Correlation between soft and hard representations for droplets showing corrosion product at inner 
(red) and outer (blue) ROIs at the end of exposure. (c) Correlation between the two representations for droplets showing corrosion product at both inner and outer 
ROIs at the end of exposure (d) Co-development of corrosion in both ROIs, expressed for droplets corroding in the inner (red) or outer (blue) ROI.
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These observations confirm that droplet size is a critical factor gov
erning both the likelihood and the dominant mode of corrosion, with 
larger droplets favoring under-droplet (Evans-like) corrosion, while 
intermediate-sized droplets may promote corrosion in surrounding re
gions due to inter-droplet interactions or product diffusion.

3.2.4. Influence of droplet size on corrosion characteristics over time
The previous section focused on the influence of droplet size on 

whether corrosion occurs and type of corrosion by the end of the 
exposure, while droplet size also has a significant impact on corrosion 
kinetics. Jiang et al. [3] have reported that the cathodic limiting current 

Fig. 8. Influence of droplet size on corrosion probability and type. (a) Droplet counts (bars) and corrosion fractions (lines) by size bin for inner (red) and outer (blue) 
ROIs. (b) Normalized size distributions for corroding vs. non-corroding droplets in each ROI. (c) Cumulative distributions of droplet size for the same categories in 
(b). (d) Fractions of Evans-like (red) and outer-only (blue) corrosion types by size bin. (e) Normalized size distributions for non-corroding (green), Evans-like (red), 
and outer-only (blue) corrosion types. (f) Corresponding cumulative distributions shown in (e).

Fig. 9. Effect of droplet size on corrosion kinetics. (a-b) Transition midpoints and intervals for inner ROIs. (c) Average pX evolution for droplets of different sizes. 
Only inner ROIs with corrosion product presence at the end of exposure are included in (a)-(c). (d-e) Transition midpoints intervals for outer ROIs. (f) Average pY 

evolution for droplets with different sizes. Only outer ROIs with corrosion products presence at the end of exposure are included (d)-(f).
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increases linearly with the inverse of droplet radius, indicating that 
corrosion under larger droplets might be constrained by oxygen con
centration at the solid-liquid interface. Cole et al. [14] have further 
showed that larger droplets exhibit a more pronounced oxygen con
centration gradient along the radius, favoring cathodic reactions near 
the droplet edge. In addition, as droplets evaporate, their initial size 
influences the drying rate and thus the evolution of electrolyte con
centration. Lequien et al. [32] have demonstrated that even within a 
single droplet, local concentration gradients might emerge due to 
enhanced vapor flux at the edges, which induces diffusion, capillary 
flow, and Marangoni flow, all strongly dependent on droplet size. 
Furthermore, the transport and precipitation of corrosion products, both 
inside and outside the droplet, are also affected by droplet dimensions 
[18].

In this section, we analyze the influence of droplet size on two 
temporal descriptors: the transition midpoint, indicating when corrosion 
products begin to appear, and the transition interval, reflecting how fast 
corrosion product accumulation stabilizes. The metrics are evaluated 
separately for the inner and outer ROIs to extend the previous global 
analysis into a size-dependent context. For consistency, droplet di
ameters are classified into the same ranges as presented in Fig. 8.

Fig. 9 presents normalized histograms of these characteristics across 
droplet size bins. In the inner ROIs, Fig. 9a shows that droplets of in
termediate size (100 µm to 400 µm) tend to reach the transition 
midpoint slightly earlier than smaller (0 µm to 100 µm) or larger 
(400 µm to 800 µm) droplets. Similarly, Fig. 9b reveals that these 
intermediate-sized droplets also exhibit slightly shorter transition in
tervals, suggesting faster stabilization of corrosion product accumula
tion. This behavior may result from an optimal balance between oxygen 
solubility and ionic conductivity. Larger droplets tend to retain volume 
longer and maintain lower chloride concentration, enhancing oxygen 
solubility but reducing electrolyte conductivity. Fig. 9c shows the 
average evolution of pX for droplets of different sizes. Larger droplets 
tend to stabilize at a lower plateau value, possibly due to less uniform 
corrosion product precipitation across the initial footprint.

For outer ROIs, the trend differs. Fig. 9d-e show that larger droplets 
(400 µm to 800 µm) initiate corrosion earlier, while smaller ones (0 µm 
to 100 µm) stabilizes more quickly. Earlier appearance of corrosion 
products in larger droplets can be attributed to enhanced evaporation at 
droplet edges, which results in a higher chloride concentration and 
thereby creating a more aggressive environment that promotes early 
corrosion initiation at the periphery. In contrast, the fast drying of 
smaller droplets cuts off electrolyte supply and accelerates stabilization.

Fig. 9f shows the average evolution of pY across size bins. Larger 
droplets stabilize at slightly higher plateau values than smaller droplets, 
possibly due to the influence of neighboring, actively corroding droplets. 
Corrosion products diffusing from adjacent droplets may accumulate in 
the outer ROI and compensate for the dilution effect caused by the larger 
areas. This diffusion-driven mechanism helps explain the stronger 
corrosion signal in the outer ROI of larger droplets.

These findings highlight that droplet size influences not only the 
likelihood but also the dynamics of corrosion, with distinct temporal 
behaviors observed between inner and outer regions.

4. Conclusions

This study introduced and validated a fully automated, data-driven 
framework for quantifying corrosion under thousands of individual 
droplets using time-lapse optical imaging. By converting raw image data 
into interpretable, probability-based metrics, the method enables a 
quantitative analysis of both the occurrence and kinetics of corrosion on 
a per-droplet basis.

Application of this framework to carbon steel revealed that corrosion 
behavior is strongly size-dependent, with larger droplets exhibiting a 
higher probability of developing significant, optically detectable 
corrosion. The analysis of spatial patterns distinguished two primary 

corrosion pathways: a ’inside-to-outside’ propagation and an indepen
dent corrosion process occurring in the periphery of the droplet. 
Furthermore, the kinetic analysis showed that droplet size also affects 
the onset and rate of corrosion product formation, with distinct behav
iors observed for inner versus outer regions.

By translating raw pixel data into physically meaningful metrics, this 
work provides a scalable platform for investigating localized corrosion 
kinetics and morphology in complex environments. The framework is 
broadly applicable to other surface processes where progression can be 
tracked by visual changes, which offers a powerful tool for high- 
throughput materials analysis.
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