
Mortgage Prepayment Rate
Estimation with Machine
Learning

Taiyo Saito

Te
ch

ni
sc

he
Un

iv
er

sit
eit

D
elf

t





Mortgage Prepayment Rate Estimation with
Machine Learning

Author:
TAIYO SAITO (4626869)

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN APPLIED MATHEMATICS

AT THE DELFT UNIVERSITY OF TECHNOLOGY

Delft, July 13, 2018

Supervisor: Prof. Dr. Ir. C.W. Oosterlee, TU Delft
Thesis committee Dr. Ir. L.A. Grzelak, TU Delft

Dr. P. Cirillo, TU Delft
Ir. F. Mulder, Rabobank

An electronic version of this thesis is available at http://repository.tudelft.nl/.

.

http://repository.tudelft.nl/




ABSTRACT

The aim of this thesis is to forecast the evolution of the prepayment rate in a mortgage portfolio. In the
Netherlands, people with a loan have the possibility to repay (part of) their outstanding loan before
the due date. These prepayments make the length of the portfolio of loans stochastic, which creates
problems in the refinancing policy of the bank, and affects the Asset & Liability Management. More-
over, interest rate risk arises from prepayments, meaning that being able to forecast the prepayment
rate can increase the performance of the hedging strategy of a bank.
Given the magnitude of the mortgage portfolio in the balance sheet of a bank, estimating the prepay-
ment rate is therefore crucial. There are two kinds of models in the literature, the optimal prepay-
ment model, which sees prepayment as a consequence of rational behavior (e.g. prepayments are
always exercised at an optimal time), and the exogenous model which also takes into account other
macroeconomic variables, client specifics and loan characteristics. Our focus will be on the second
kind of techniques, precisely we will approach the problem as a classification task that will be carried
out with two different machine learning techniques: Random Forests and Artificial Neural Networks.
Since prepayments are rare events, this leads to an imbalanced data set framework. The imbalance
between classes creates complications in the development of the algorithm, hence ad hoc corrections
are applied to solve them.

Keywords: Neural networks, Random Forests, Conditional Prepayment Rate, Imbalanced Data Set,
Mortgages.
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1
INTRODUCTION

A mortgage is the most common way to obtain a consistent amount of money in a short time period
to cover a big expense, e.g. the purchase of a house. A mortgage is a contract between two parties, the
mortgagee which usually is a bank and the mortgagor which is the person or company who asks for
the loan. The mortgagee is the lender, the one that lends the money, and in exchange of this service
receives an interest part calculated on the amount (notional) borrowed by the mortgagor.
Mortgagors have the possibility to repay part of the notional before the agreed time, these anticipated
payments of the notional part are called prepayments. This opportunity to prepay makes the duration
of a portfolio of mortgages stochastic. It could be that the expected cash flows for a mortgage do not
match the actual registered cash flows. Therefore, the prepayment option is a risk for the lender. In
particular, two kinds of risks arise from it: liquidity risk and interest rate risk.

In order to cover itself against the prepayment risk, a bank must be able to forecast the prepay-
ment rate for the coming years in order to implement some effective hedging strategies.
To predict when people are going to prepay, two main approaches are available: an optional theo-
retical model and an exogenous model. The first approach only takes into account financial aspects,
therefore according to this model people will prepay only when it is economically convenient, e.g.
the interest rate in the market is lower than the one paid on the mortgage. However, people do not
always follow a rational reasoning when it comes to prepay their mortgage, so a model of this kind is
not able to thoroughly explain the general prepayment behavior. The latter approach is instead able
to take into account both financial and non-financial related information about the clients. These are
methods based on data analysis. A data set with information related to the mortgages, the clients and
macroeconomic factors is needed in order to generate such a model.

In this thesis, our focus is on exogenous configurations. The purpose of our work is to develop
an innovative model which is able to predict the conditional prepayment rate for a portfolio of mort-
gages given a set of input features.
To fulfill our goal, we will use two common machine learning techniques: artificial neural networks
and random forests. Although we are in the context of time series forecasting, we decide to tackle
this problem as a classification task. To solve it, models based on logistic regression are already im-
plemented. We will to take these models a step further by using more complex statistical tools which
should be able to achieve better performance due to their capability of learning complicated nonlin-
ear relationships between the input features and the output target.
Following this approach, the data set that we have can be divided in two classes: the class of the

1



2 1. INTRODUCTION

observations that have prepaid and the class of observation that have not prepaid. Prepayment ob-
servations are definitely less frequent than the observations for non prepayments. More precisely,
prepayment samples account for less than the 2% of the total number of available observations. This
means that the dimensions of the two classes are really different and this class imbalance leads to
several problems in the development of the models. In fact, classification algorithms are in general
biased towards the majority class. This problem can be tackled with some specific corrections applied
both to the algorithm and to the data set.

The novelties stay in the fact that with these models we are able to tackle the prepayment problem
both at a single loan level and at a portfolio level, and we achieve that by applying some statistical
techniques to let the algorithms learn in an imbalanced framework as well. This set of techniques is
largely used in practice, for instance in medicine for disease detection or also in banks for fraud detec-
tion, where having an imbalanced dataset is standard. We apply those procedures to the prepayment
problem in mortgages in an innovative way. In particular, how these corrections affect the algorithms
is investigated in order to maintain the marginal probabilities in the output of the models, which is a
fundamental property we want to preserve in our framework. This aspect is not treated in the other
settings since the interest is always on the single observation and never on the whole average level.
The general background on which the model is thought and developed is the Dutch mortgage mar-
ket. This model is tailored to some specific characteristics that derive from the structure of Dutch
mortgages. For instance, the presence or absence of penalties for prepayments. In the Netherlands
people can prepay up to 20% of the notional each year without a penalty, and prepayments due to
movement are always free of charge.
Moreover, the model has been adapted to the particular kind of portfolio that we are dealing with.
Therefore, tailor made variables are added to the models in order to enhance the performance when
applying the models to our framework.

1.1. OUTLINE
In chapter 2, we start with an introduction of the Dutch mortgage market followed by general notions
regarding mortgages and prepayments needed to understand the rest of the work. Then, we introduce
the prepayment risk and explain how it affects the balance sheet of a bank. Last, we give a description
of the existing literature about prepayments. In particular, the most common causes for prepayment
in the literature are introduced and an idea of the existing prepayment models, based both on survival
analysis and logistic regression, is given to the reader.

Chapter 3 can be divided in two parts. The first part starts with a description of the data set. A
brief description of all the variables is then given. Then, some plots that show the distribution of the
prepayment observations against some of the important variables are displayed.
In the second part of the chapter, the problem of having an imbalanced data set is explained and the
various techniques to tackle this complication are introduced. Last, the impact of these modifications
is taken into account.

In chapter 4, we give the reader the required theoretical background in order to understand the
models that we develop. It starts with a general description of data analysis techniques and of dif-
ferent kinds of learning. Then, the focus goes to artificial neural networks, in particular to fully con-
nected feedforward networks. A section with details about the adaptation of the algorithm to a rare
class problem is present as well.
At this point, we also introduce decision trees and the theory behind them. This is done because
trees are at the base of random forests. In fact, random forests are the second type of machine learn-
ing techniques that we use, and they are found to be a collection of decision trees. Also for random
forests, a section with an explanation of the correction for rare class problems is present.

Chapter 5 starts with a motivation for the choice of the approaches, followed by a detailed descrip-
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tion of the model for the forecasting of the prepayment rate. Then, there is a section related to the
practical implementation of the models.
The chapter ends with a presentation of the results and of the performance obtained by the models in
predicting the prepayment rate. Moreover, also a sensitivity analysis is performed in order to assess
the confidence in the final output.

We conclude in chapter 6. First, we sum up the findings and the results of our work and give our
final considerations. Then, there is a section with indications for possible directions to follow for
future research on this topic.





2
MORTGAGES AND PREPAYMENTS

In this chapter we will give an overview of the Dutch mortgage market and explain what is prepayment
and why it is a risk for the bank.

2.1. DUTCH MORTGAGE MARKET
In the Dutch market, the mortgage portfolio of lenders is formed by 7.7 million households. 83% of
the Dutch homeowners has a mortgage debt with their house as a collateral. The total mortgage debt
was EUR 637 billion in 2013 [1]. The mortgages have fixed a interest rate for a period of time, cho-
sen by the borrower, which can vary between one and thirty years. In general, fixed interest rates for
shorter times are lower than the ones for longer periods. Usually, the fixed time is five or ten years. A
new interest rate is set on the reset date [2].
The mortgage market in the Netherlands is strongly influenced by tax facilities and a strictly regulated
rental segment. As reported by the Nederlandse Vereniging van Banken (NVB) in [1], just 56% of the
houses are in the owner-occupied segment and that is a low percentage compared to other coun-
tries in the euro-zone. Moreover, interest paid in loans for the main house is deductible from pre-tax
income for thirty years. It means that Dutch mortgagors use up to 51% of their taxation to pay the
interests on the loan. This factor has substantially increased the homeownership from 48% in 1993
to 56% in 2013. Clearly, these are not the only factors that have driven this rising demand. Increasing
incomes, very low interest rates and the possibility of basing the mortgage on two incomes have also
fueled this growth.
The tax benefit ensures that most mortgages are constructed to obtain the maximum gain from this
taxation system. This is translated in the stipulation of interest only (I/O) mortgages, in which no pay-
ment of the notional is due during the loan period. These kinds of mortgages become popular in the
eighties and are characterized by a life insurance. Since the crisis in 2008, savings accounts in which
the sum to repay the loan is accumulated are accompanied to I/O mortgages. In such mortgages, no
repayment happens during the lifetime of the loan, therefore the benefit from the tax deduction is
the greatest possible since the notional is not reduced, but at the same time this account guarantees
the repayment of the entire notional at the end date. Moreover, from a mortgagor point of view, the
rate paid every month (interest+notional in the savings account-interest received from the savings
account) is the same as for an annuity. Since 2013 regulations about tax deductibility have changed,
deductibility is possible only in annuity mortgages and this change has made I/O mortgages unattrac-
tive.

A highly regulated rental segment and the tax facilities have led to high portfolio Loan to Value
(LTV) ratios and created a large difference between Loan to Income (LTI) ratios calculated on net and
gross income. Threshold values for the LTI indicator at origination are calculated each year based

5



6 2. MORTGAGES AND PREPAYMENTS

on interest rate and purchasing power. In 2014, a cap of 104% has been set for LTV, this maximum
will be decreased to 100% in 2018. These laws are, according to the OECD (2011) reports, ones of the
most strict versions in Europe. LTV ratios have increased by 20% from 2006 to 2013 mainly due to a
constant decline of the house value.
Using these two variables it is possible to identify four buckets of mortgages: one with low LTV and
low LTI which has low default risk, one with low LTV and high LTI which is more risky but losses in
case of default are usually low, one with high LTV and low LTI which is as risky as the second group but
will incur in a greater loss, and finally the riskiest group which is the one formed by high LTV and high
LTI [3]. Of course high values of LTI and LTV in themselves are not risky, they are just indicators of
possible consequences in case of a negative economic situation like a crisis. For instance, a high LTV
ratio means that there is a higher risk that the mortgagor will not be able to repay the debt if he/she
decides to sell the house, whether it is for a personal choice or forced by the bank. If the notional of
the loan exceeds the value of the underlying house, it is said that "the households suffer from negative
home equity, their mortgages are ’underwater’"[1]. This situation is not necessarily bad for the lender,
but it slows down the housing market. Another factor which contributes to that is portability. In fact,
most of the mortgages in the Netherlands are portable, which is translated by the fact that a borrower
who decides to move to a new house can transfer the mortgage from one house to the other.

2.1.1. DIFFERENT KINDS OF MORTGAGES

In general, mortgages in the Netherlands have a fixed rate for a determined period. This fixed period
could have different lengths, from one to thirty years, but the more common choice is a value between
five and ten years. The end of this period takes the name of reset date, since there is a reset of the
interest rate.
The three most common kinds of mortgages in the Netherlands, regarding the composition of the
monthly installments, are:

• Annuity mortgage: it has fixed monthly payments for the length of the fixed interest rate period.
The amount is fixed, but its composition changes. Close to the start of the mortgage, most of
the amount is made up by interest and just a small amount is repayment. With these payments
the remaining notional decreases and so does the interest to be paid. Therefore, as time passes,
the interest part gets smaller and more and more of that monthly amount goes for repaying the
notional.

• Linear mortgage: it has decreasing monthly payments. In fact, every month the borrower pays
a fixed amount of notional plus the interest part which decreases every time. This means that
it has higher initial payments and reduces the actual debt faster than an annuity.

• Bullet mortgage: it has fixed monthly payments which consist only in the interest part. The
notional is entirely repaid at the end of the mortgage. This kind of mortgage was often used in
the past due to the high tax incentives given by the state on loan interests. Usually, this kind of
loan is associated with a money savings account in which people put the money to repay the
notional at maturity.

It is also possible to choose whether to have a fixed or variable interest rate. If it is chosen to be
variable, it will follow the current rate of the lender, if it is chosen fixed, it will stay the same for a
determined period of time. Usually, most of the mortgagors opt for a fixed rate, which is slightly
higher, for several years in order to mitigate interest rate risk.

2.2. PREPAYMENT RISK
Mortgagors have the possibility to repay (part of) the notional before the due date, these kinds of
anticipated and unexpected payments are called prepayments. This makes the duration of the mort-
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gage portfolio stochastic, which creates complications in the refinancing policy of the lender (the
mortgagee). The bank is usually interested in the prepayment rate on a portfolio level, not of a single
mortgage.
Prepayment is a risk from the point of view of the issuer of the loan. A prepayment option is an option
which “reflects the difference between the value of the outstanding loan repayments at the interest
rate at the time of prepayment for the remaining term of the loan minus the amount of the loan then
outstanding (which is the value of the outstanding loan repayments at the original loan interest rate)”
[4]. If the interest rate goes down then the option is in the money (positive payoff), if it goes up then
the option is out of the money. The exercise price of this call option is equal to the loan outstanding.
Rationally, the call should be exercised only if the difference mentioned above is positive since, oth-
erwise, the option is worth more if you don’t exercise it. Meaning that it is more convenient to put
money in a savings account rather than prepay the mortgage. People do not always act economically
rationally though, from now on we will use the term non-rational to identify something that differs
from the economically rational behavior explained earlier.

An American call option on an amortizing reducing term swap could be a good instrument to
hedge the prepayment option, but the ideal hedge instrument may not exist. For instance, even as-
suming that the durations of the financing and of the loan are perfectly matched, suppose a 20 years
mortgage at 4% is financed with a 20 years bond paying 3.5%. If the interest goes down to 3%, the
borrower will refinance at the new rate prepaying the old mortgage and opening a new one at the
lower rate. However, the bank will still have the obligation of paying 3.5% interest on the bond used
to finance the first loan. Moreover, since the price of the perfect hedge instruments is equal to the
cost of the prepayment option, if this instrument existed, it could be used to price the option [4].
The possibility to prepay exposes the bank to prepayment risk, which can be divided in two classes
[5]:

• Interest rate risk: it arises because fixed rate mortgages are usually hedged against interest rates
changes using Interest Rate Swaps (IRS). The bank receives the floating rate and pays the fixed
one, this means that a prepayment may expose the bank to the possibility of paying a fixed rate
on the derivative which is higher than the one obtained on the new loans.

• Liquidity risk: it arises from the fact that the liquidity profile of a bank is strongly influenced by
the maturity profile of mortgages conditional to prepayments. An incorrect estimation of this
quantity leads to the risk of under or over funding and of higher long-term liquidity costs.

Since prepayments are such a big risk for the bank, it is fundamental to be able to predict the condi-
tional prepayment rate (CPR), which is the proportion of the principal of a pool of loans assumed to
prepay in each period, in order to better forecast future cash flows.
When modeling mortgage prepayments, as touched upon earlier, we cannot just use rational princi-
ples to evaluate contracts (e.g. prepay only when the interest rate goes down), but we have to take
into account also behavioral aspects, and hence have a behavioral approach. In such a model we
take into account factors usually estimated through statistical analysis, in order to explain effects that
otherwise could not have been explained. These kinds of techniques are called exogenous models,
in opposition to optimal prepayment models that see prepayments just as a consequence of rational
behavior, e.g. prepayment is always exercised at an optimal time by the borrower.
For these reasons, rather than using a rational prepayment model for which the prepayment rate de-
pends just on the rate evolution, an empirical model which is capable of taking into account other
factors is chosen. This CPR is a function of some variables like the refinance incentive, the seasoning,
the age of the loan, etc, and can be estimated by means of some statistical tools which we will explain
later. The output of these models is then used to build a hedging portfolio with instruments that have
a notional that adjusts according to this CPR.
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2.2.1. DIFFERENT KINDS OF PREPAYMENTS

Besides prepayments, we can also have a loss of part of the notional. This is what is called a default
event, and the amount lost takes the name of loss given default (LGD). From an interest rate perspec-
tive, this is different from a prepayment event though, that is because there is no payment.
Prepayments are gathered in two main categories inside a bank’s Assets & Liabilities Management
(ALM) department [6]:

• Redemption: it is when a customer pays back part of the notional. Redemptions may be sched-
uled as part of the amortization scheme, or not. If they happen on the mortgage rate reset date,
then there is no interest rate risk since the entire notional would have been repriced anyway.
However, if they do not occur on a reset date, then it is early and we have interest rate risk. Early
full redemptions can occur due to the death of the client, the insurance pay-out following the
collateral destruction, movement to another house, or voluntarily. A partial early redemption
is always voluntary.

• Repricing: it is when the interest rate on a mortgage changes. This could be due to the amorti-
zation scheme, the remaining interest rate fixed period, or the client rating changes. Repricing
could be both scheduled and unscheduled. Unscheduled ones could happen due to move-
ment, salvaging after default or death of one of the debtors, when the client has the possibility
to reprice or to stick to the current client rate, or even voluntarily by request of the client.

2.2.2. PREPAYMENTS AND PENALTIES

A prepayment can occur with or without a penalty. Usually in the Netherlands it is possible to pre-
pay up to 20% (10% in certain kinds of contracts) a year without penalty and prepayments due to
movement are always free of penalty. Therefore, penalties may occur for voluntary early partial or full
redemptions, and for voluntary repricing if they exceed the threshold.
If there is a penalty, prepayments do not bear interest rate risk, because theoretically the present value
stays the same and therefore there is no delta associated to the prepayment. This is due to the fact that
penalties should be enough to cover the loss derived from the prepayment. However, the expected
cash flows change relevantly, therefore penalized prepayments are still relevant and need to be taken
into consideration in a different way from free prepayments.
Moreover, prepayments that happen at a reset date are penalty free.

2.2.3. CONDITIONAL PREPAYMENT RATE

The conditional prepayment rate is the mortgage prepayment rate and is equal to the proportion of
the pool of loans notional that is assumed to be prepaid in each period. The CPR is an annual quan-
tity and the higher it is, the faster mortgagors are expected to repay their loans.
Considering that mortgages could prepay monthly, we need a prepayment rate which is updated
monthly as well. This quantity indicates the monthly prepayment rate of the pool of mortgages and
takes the name of single monthly mortality rate (SMM). It is defined as the amount prepaid during that
month divided by the notional then outstanding. It is related to the CPR by the following relation:

CPR = 1− (1−SM M)12. (2.1)

2.2.4. CPR AND HEDGING

In this section, we explain more technically why it is important to know the future values of the CPR
and how it comes into play in a bank strategy.
In order to reduce the interest rate risk introduced by prepayments, banks hedge their position by
pairing each mortgage with interest rate swaps. However, if a prepayment occurs, the expected cash
flows of the hedge do not match the ones of the loan anymore. In order to fix this problem in our
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hedging strategy, we can use an Index Amortizing Swap (IAS) that receives the prepayment rate as in-
put. This way the notional adjusts accordingly to the one of the portfolio of mortgages, and therefore
the bank is able to exchange the correct amount of the fixed rate for the floating one in the hedging
strategy.
We now explain in the detail how an IAS works in order to clarify where the CPR is plugged in in the
strategy. Index Amortizing Swaps are over the counter interest rate swaps. Their amortization scheme
is not deterministic but determined by a function of one or more variables such as the interest rate,
the seasonality, or other endogenous characteristics. In particular, we want the notional of the IAS to
to replicate the notional of the mortgage, so as in Equation 2.2:

Nti = Nti−1 (1−CP−CPR), (2.2)

where Nti is the notional at time i , and CP is the quantity that takes into account the contractual
payments. We see immediately that in order to calculate that amount, the only quantity that is not
known is the CPR.
This is where the prepayment models come into play. Using them it is possible to derive the CPR
which is then used to model the notional of the IAS that replicates the loan in the hedging strategy.

2.3. GENERAL DRIVING FACTORS
There are many different determinants for prepayments, in fact many variables have influence over
the borrowers’ decision to prepay or not. These factors could be related to:

• Borrower specific characteristics: age, kind of employment, marital status, income.

• Loan specific characteristics: notional, mortgage age, mortgage rate, collateral, penalty.

• Macroeconomic information: unemployment rate, housing market, divorce rate, month of the
year.

Some of the incisive variables are the following ones.
As shown in [2], the refinancing incentive is a key determinant of prepayment. A precipitous decrease
of market rates may spark the prepayment option. Not the whole pool of mortgages will act as one,
some mortgagors will refinance fast, others will not since the refinancing incentive is sometimes non-
rationally managed. This phenomenon is known in literature as the burnout effect, and it is due to
the difference in borrowers’ behavior. In front of a refinancing incentive some will prepay, these are
the fast and aware mortgagors. The rest of the mortgagors in the pool may be the slow and not aware
ones. In the future, therefore, the pool will be less sensitive to other refinancing occasions, the pool
of loans is burned out [7].
Another possible driver of prepayment is related to the loan age. The Seasoning effect represents the
probability of selling the house as the loan age increases [2]. Usually, a S-shaped relation exists be-
tween the loan and its age. In fact, prepayments rarely occur immediately after origination, then they
will start to grow until they reach a peak, and eventually they will reach a steady level till maturity. This
seasoning is also related to the housing market, during a consistent economic growth more money
will circulate and more houses will be sold leading to more prepayments due to relocation. In averse
market conditions, these kinds of prepayments will be fewer, and prepayment caused by default will
increase.
The presence of some kind of penalty influences the prepayment behavior as well. In fact, if the
spread between the current interest rate paid on the mortgage and the market value is not big enough,
it could be that the gain from refinancing the loan is not large enough to cover the penalty applied in
case of prepayment. In the Netherlands no penalty is applied in case of prepayment when moving to
a new house, and it is possible to prepay up to 20% of the original loan every year penalty-free.
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Prepayments are also correlated with the month of the year, this effect is called seasonality. This
could be linked to the fact of a cyclical trend in house sales. Moreover, from our data, the months De-
cember and January have a particular effect on voluntary prepayments. The explanation of this could
be that in December there are more curtailments and relocations due to a tax related cause. In fact,
in this way closing costs, which are tax deductible, paid before the end of the year could be deducted
from the income of that year. In addition, workers receive Christmas bonuses in December and it is
not unlikely that a prepayment which happened in late December is registered in January.
Housing turnover is another cause of prepayments. In fact, selling a home will usually trigger a pre-
payment, unless the loan is portable or is assumable, which means that the new owner of the house
can assume the obligations of the loan stipulated by the old owner of the house. Even if the mortgage
has those two properties, it is still possible a prepayment will occur due to more favorable interest
rate at the moment of the selling.
Other variables like the LTV (Loan To Value) ratio and the geographic location seem to be important
from [8]. It is observed that loans with low LTV are more likely to prepay opposed to loans with higher
LVT. Moreover, mortgagors behavior is influenced by macroeconomic factors, such as the unemploy-
ment rate or the house prices, which are geographically sensitive.

Another factor that could influence the prepayments is the coupon or lock-in effect [9]. It is the
effect of a low coupon on the ongoing loan which results in a slowing down of turnover related speeds.
In fact, if the coupon is low compared to the actual market rate, people who move will keep their
current mortgage if it is portable or transfer it to the new owner if it is assumable. Nevertheless, even
if the loan is not portable nor assumable, the big difference between the present coupon and the one
on the mortgage could dissuade the borrower to move.
It has been observed that mortgagors behavior is influenced by their point of view on current rates
compared to the past. When the rates go down to multiyear lows, prepayments due to refinancing
grow more compared to an increase in the refinancing incentive only. This effect has been named
the media effect [9]. It looks like information about these lows in loan rates makes the people realize
more about their chances to refinance, and at the same time pushes mortgagees to solicit possible
refinancers.
In [10] is shown that a small outstanding principal balance is an indication of more prepayments. In
addition, the purpose and the kind of the loan are also influential. They found out that mortgages
originated to purchase a home have higher possibility of prepayment. Also, the down payment made
at the origination of the loan influences its contract rate, this means that a big down payment will
imply a lower rate and, therefore, a resistance to prepayment.
Another factor that could be important in order to forecast prepayment behavior is whether or not the
loan has been originated through intermediaries. In particular, in [11] it is said that loans obtained
through intermediaries are more likely to prepay since these intermediaries have the information
about the mortgage and are more alert to a good opportunity to refinance since they will receive a
commission on that.

2.4. EXISTING PREPAYMENT MODELS
As touched upon earlier, there are two main approaches to prepayment rate estimation. One that
uses optional theoretical models and one that uses exogenous models. The first kind of approach
just contemplates financial considerations, which means that a mortgagor would prepay only if the
actual value of the asset is greater than the remaining mortgage notional plus the transaction costs.
Basically, the prepayment option is seen as a call option, which is assumed to be exercised only under
optimal conditions. This kind of approach removes all the irrational behavior though. It has been
shown in [5] that including behavioral aspects in the model helps obtaining better overall results. In
fact, the data reveals that often mortgages are prepaid when the rate on the loan is lower than the
prevailing mortgage rate in the market, and it is not uncommon that mortgagors do not prepay when
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it may be optimal to do so. This is particularly true for the retail mortgage market in which the average
mortgagor does not have knowledge of market theory.
This leads us to the second kind of models, the exogenous ones which in turn are divided in two main
categories based on the two most used statistical frameworks that are applied. These two models
are survival analysis and logistic regression. In the last years, approaches using machine learning
algorithm are also considered [8].

2.4.1. SURVIVAL ANALYSIS

In this framework, we are interested in finding the time to event, in this case the prepayment event,
and its distribution which is dependent on the hazard rate [12]. With the survival analysis we are able
to obtain the probability distribution for the duration of the mortgage, in fact we can model the time
until the occurrence of a certain event. The link between the survival function and the covariates is
expressed on the basis of the proportional hazard model. The hazard rate is given by the probability
of a mortgage termination at time t given the non occurrence of that event until time t:

h(t , x) = lim
∆t→0

P (t ≤ T < t +∆t |T ≥ t )

∆t
= h0(t )e−X ′

i tβ. (2.3)

Writing the hazard rate as in equation (2.3) allows us to separate the survival function and the covari-
ates to analyze the relationship between them. h0(t ) captures the distribution function of the failure
time when the explanatory variables are equal to 0 (the base rate). It is a reflection of the prepayment
rate and varies with the mortgage age (seasoning effect). The second part includes the effects of the
explanatory variables on the hazard rate, and it incorporates loan and time specific effects.
The survival function is defined as the probability to survive up to time t:

S(t , x) = e−H(t ,x),

where H(t , x) =∑
t h(t , x) is the cumulative hazard function.

Combining the results, we obtain the cause-specific density for a mortgage which is terminated at
time t:

f (t , x) = h(t , x)S(t , x).

Therefore, the log likelihood of the competing risk model is similar to the one of the multinomial logit
(MNL) model and is given by:

lnL(β) =∑
i

∑
t

di t ln f (t , x).

In this competing risk model, the analysis can be divided in two parts: the MNL part determines the
cause of death and the hazard model determines the overall risk. When h0 is small relative to the
effect of the covariates then the competing risk model and the MNL are comparable.
The competing risk models have difficulties in including time varying covariates in the analysis [6].
The major drawback of MNL, though, is the implicit assumption of independence between consecu-
tive observations. In fact, they are not independent since are observations related to the same mort-
gage.

2.4.2. LOGISTIC REGRESSION

Logistic regression in one of the most common techniques to solve classification problems. In our
specific case, we are going to see whether a mortgage will prepay (Yi = 1) or not (Yi = 0). Since Yi can
only be either 0 or 1, it is distributed as a Bernoulli random variable:

Yi |Xi = xi ∼ Bernoulli(pi ),
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where pi is modeled as:

logit(pi ) =β0 +
k∑

j=1
β j xi j ⇔ pi ≡ P (Yi = 1|X = x) = eβ0+∑k

j=1β j xi j

1+eβ0+∑k
j=1β j xi j

,

and where logit(p) = log( p
1−p ) is called the logistic function. The name logistic regression comes from

the fact that this model uses this function.
The likelihood function L(β) for this random variable is the one for a Bernoulli random variable, and
is given by:

L(β) =
m∏

i=1
pi (β)Yi (1−pi (β))1−Yi .

From this, keeping in mind that pi = 1

1+e
−β0−

∑k
j=1

β j xi j
= g (β0 +∑k

j=1β j xi j ), we can define the log-

likelihood as:

l (β) =
m∑

i=1

(
Yi ln(g (β ·xi ))+ (1−Yi ) ln(1− g (β ·xi ))

)
.

The values for β̂, the weights, are obtained by minimizing the cost function, which is derived by the
log-likelihood and is given by:

J (β) =− 1

m

m∑
i=1

(
Yi ln(g (β ·xi ))+ (1−Yi ) ln(1− g (β ·xi ))

)
. (2.4)

Contrary to survival analysis, logistic models are able to include time varying covariates. The assump-
tions for logistic regression are:

• the Yi s are independently (conditioned) distributed as a Bernoulli,

• the Yi are binary,

• a linear relation between the logit of the response variable and the explanatory variables,

• homoscedasticity is not needed,

• the error must be independent but need not be normally distributed.

2.4.3. THE DUTCH SITUATION

An early empirical approach to estimate the CPR in the Dutch mortgage market is made by Van Bussel
(1998). It was a pool level method based on a very small data set that reached unsatisfying results. In
more recent times, models were developed following the same approach used all over the world. Alink
(2002) managed to obtain a meaningful data set from the Dutch bank SNS and analysed it using a logit
model. Charlier and Van Bussel (2003) developed a model based on survival analysis, more precisely
on the proportional hazard model. A different kind of approach is tried by Hayre (2003), precisely it
is a descriptive study which uses partial correlations between home sales, defaults, curtailments and
refinancing.



3
DATA SET AND FRAMEWORK

In the previous chapter, we introduced all the general and more qualitative concepts, like what it
means to prepay a mortgage, what is the prepayment rate, and explained famous driving factors for
prepayments in the literature.
We develop a model based on machine learning techniques which requires a data set to be trained on.
In this chapter, we introduce the data set we are working on, giving some insights on the actual data
to see if we find a match between what expected and the real observations. Moreover, we tackle the
problem of class imbalance for our specific situation. A data set in a classification context is imbal-
anced if the amount of observations belonging to one class is way larger than the amount belonging
to the other class.

3.1. DATA SET
The data set contains monthly observations for the time period that goes from February 2011 to
February 2016 for each mortgage loan part. Observations regarding June 2011, August 2012, Octo-
ber 2013, December 2014, and February 2016 are not available in the set because they were removed
during the data set construction to have some out of sample observations. The data set consists of
more than 90 million observations and more than 20 independent explanatory variables regarding a
multitude of loan contracts and rates, and client characteristics. The data set has been cleaned from
observations with missing or impossible values, e.g. a negative value for the variable related to the
age of the mortgage, and from not significant outliers.
Due to computational limits, all the results and images shown in the following sections of this chapter
are obtained from a subset of the entire data set. More precisely, it is a subset of ten million observa-
tions which we assume to be a feasible representation of the whole portfolio of mortgages.

3.1.1. DEPENDENT VARIABLES

In this section, we will introduce the dependent variables, which correspond to the prepaid amount
in Euro by each mortgage in each month. In the data set, prepayments are grouped in four categories
based on the type and on the cause of prepayment.
The four categories are the following:

• Early Redemption Movement: a redemption before the reset date due to movement of the mort-
gagor to another house.

• Early Redemption Voluntary: a voluntary redemption before the reset date.

• Early Repricing Movement: a repricing before the reset date due to movement of the mortgagor
to another house.

13
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• Early Repricing Voluntary: a voluntary repricing before the reset.

Voluntary prepayments categories gather all the prepayments for every reason but movement. In
particular, a prepayment associated with an address change in the same month, or two months prior
or after that month has been categorized in the movement class.
From these quantities, it is first possible to obtain the single month mortality rate as:

SMM =
∑Ncl i ent s

i=1

∑Ti
t=1

∑4
j=1(Prepaid Amount in Eurosi ,t , j )∑Ncl i ent s

i=1

∑Ti
t=1(Starting Balancei ,t )

, (3.1)

where the index i refers to the particular client, t indicates a specific month, and j represents one
of the four causes. Therefore, the Prepaid Amount in Eurosi ,t , j is the amount prepaid by client i at
time t for cause j . Starting Balancei ,t is the notional outstanding for client i at time t . Basically it is
like considering the portfolio as a huge mortgage with a different starting balance every month. This
corresponds to determining an average of the prepayment rate weighted by the associated notional.
Then, from this quantity we can derive the CPR, which is an annualized quantity, using equation (2.1).
It is possible to see the composition of the total CPR due to all the causes. It is worth to notice that
voluntary prepayments are definitely more frequent than the ones for movement and that almost all
the prepayments are redemptions. This is the reason why instead of building four different models,
one for each group, we build only two different models, one for voluntary and one for movement
prepayments, where there is no distinction between repricing and redemption.

Moreover, by analysing the dependent variables it was possible to see that around 9 out of 10
prepayments due to movement are full prepayments. While, for voluntary prepayments the opposite
is true. Precisely, there are many small prepayments but more frequently.

3.1.2. INDEPENDENT VARIABLES

There are more than twenty independent variables, which are related to clients’ specifics, mortgage
characteristics, or macroeconomics factors. In this section, we will proceed presenting some of the
variables. In particular, the variables that are found to have the most predictive power in literature as
explained in part in chapter 2.

We would like to start taking into account the relationship that exists between prepayments and
market interest rate, since it should be the main driving factor theoretically speaking. In particular,
we are going to analyse the interest rate incentive which is defined as the difference between the rate
on the mortgage and the current market rate. Therefore, if this quantity is positive, it means that the
interest rate went down and it is reasonable to prepay the mortgage. On the contrary, if this quantity
is negative, it means that the rate went up and therefore it is probably better to invest money rather
than using them to prepay.
As we would expect from a rational point of view, in Figure 3.1 the number of prepayments, both for

voluntary and movement, increases as this interest rate difference becomes more positive. The effect
is more visible for voluntary prepayments, this makes sense considering that people do not usually
move just because of a more favorable interest rate condition.
Moreover, as touched upon earlier, people do not always prepay following a logical reasoning. This
was the main motivation to abandon option theoretical models in favor of statistical ones. The data
supports this assumption. In fact, in Figure 3.1 it is possible to see a considerable amount of prepay-
ments for both causes associated to negative values of the interest rate incentive.

The next variable that we are taking into account is time, more precisely how prepayments are
distributed over time. In Figure 3.2, a clear seasonal pattern emerges. In particular, as touched upon
earlier in chapter 2, the months of December and January have a considerable higher number of pre-
payments. Going a bit deeper in the analysis, we discover that the main contribution to this seasonal
pattern is given by voluntary prepayments. There is no clear seasonality in movement. In order to
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Figure 3.1: Prepayments behavior over time.

take into account this seasonality, indicator variables for the months of December and January are
used in the models. Precisely, these two variables assume the value one if the observation took place
in one of those two months, zero otherwise. The yellow bar which should represent December 2014
is not present just because we do not have information about that particular month in the data set,
not because there is not a higher number of prepayments.
Moreover, a not steep but constant upward trend is visible. As time passes, the average number of
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Figure 3.2: Prepayments behavior over time.

prepayments increases. Doing a more thorough examination, we can find two main contributions to
the trend. One is related to voluntary prepayments and could be explained by the media effect de-
scribed in section 2.3. In fact, since after the crisis in 2008 we are experiencing a situation of constant
decrease of the interest rates, a situation of multiyear lows, and this triggers more and more prepay-
ments. The second one is related to movement prepayments. From data emerged a decisive upward
trend in prepayment due to movement, way steeper than the one for voluntary. However, even if a
steep increase in movement prepayment could lead to the idea that the low frequency upward trend
in the total CPR is just because of movements, it is not. In fact, since this class of prepayments ac-
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counts for just a small percentage of the total prepayments (≈ 30%), the impact on the total CPR is
comparable for the two class.

The third variable we are going to analyse is the client age. For this plot, we are dividing volun-
tary and movement prepayments. The reason we do that is because they behave quite differently.
For voluntary, we have a slowly increasing trend until a peak at around age 55, then it starts going
down to reach a plateau. This is reasonable because it makes sense that people in their fifties have
enough money to prepay bigger parts of the notional. Regarding movement prepayments, the rela-
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Figure 3.3: Prepayments behavior over time.

tion between input and output is different. We have a peak around the age of 30, then it goes down
and starts to grow again around the age of 70. This behavior for movement prepayments also makes
sense. In fact, people in their thirties start to build a family and they probably need a bigger house.
Moreover, it is normal that with age people die or are not able to take care of themselves anymore so
they will move to some helping facilities.
To help the model improve its performance, we defined a new variable starting from the age of the
client. The main idea is to cluster in the same group observations which are similar. More precisely,
the goal is to treat observations with different client age but similar amount of prepayments as the
same, as it appears to be for some of the values from Figure 3.3. The new variable that we call AgePat-
tern is defined as follow:

AgePattern = |30−|30−Client Age||.

Figure 3.4: AgePattern variable

In Figure 3.4, the values assumed by ’AgePattern’ for values of the client age that go from 20 to 85 with
pace 5 are shown. It is clear that the values that it assumes are in agreement with the pattern shown
in Figure 3.3. This variable will show to be meaningful in improving forecasting results of our models.

The next one we are going to consider is a macroeconomic variable related to the housing mar-
ket. In particular, it is the variable that takes into account the house sales in the Netherlands. The
prepayment behavior with respect to this variable can be seen in Figure 3.5. Also in this case, the be-
havior we expected is manifested in the data. On one hand, there is no relation between the number
of houses sold and voluntary prepayments. On the other hand, the average number of prepayments
for movement is positively correlated with home sales, as one increases so does the other.
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Figure 3.5: Prepayments behavior over time.

Last, we analyze the distribution of prepayments related to the original notional of the mortgage.
From Figure 3.6, it emerges that owners of mortgages with bigger original balance voluntarily prepay
more than the ones with a small loan. Regarding prepayments due to movement, they are almost
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Figure 3.6: Prepayments behavior over time.

constant over the different values of the original notional. There is a small peak around a notional of
Euro 200.000.

ADDITION OF A MACROECONOMIC VARIABLE

In order to follow the low frequency upward trend which is present in the CPR evolution, we include
a variable which is positively correlated with it. From the Centraal Bureau voor de Statistiek (CBS)
website, we were able to look at the development of some macroeconomic indexes that have been
found meaningful in prepayment prediction literature [8].
The trend we described is present particularly in movement prepayment. Therefore, the first variable
we take into account is related to the number of movements that occurs within the Netherlands.
Indeed, a positive correlation between these two quantities exists. When the CPR starts to increase,
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so does the amount of movements. However, our goal is to forecast future values of the CPR, and we
are not able to forecast this variable with certainty in order to feed it to the model to make predictions.
Hence, we look for a variable with a lagged relationship with the CPR. The unemployment rate in the
Netherlands reveals to be the variable we are looking for. In fact, from Figure 3.7 it is clear that a
positive lagged correlation exists. In detail, there appears to be a three years lag and the choice is not
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Figure 3.7: Unemployment rate and CPR evolution comparison.

randomly taken. In fact, the forecasting horizon we are interested in is indeed three years. In this
way we are able to exactly know the value of the unemployment rate in the time horizon we want to
forecast.

PREPAYMENT INDICATOR VARIABLE

People who prepaid once are more likely to prepay again. For this reason, we would like to introduce
a categorical variable which tells us whether a determinate mortgage already prepaid in the past or
not. However, since we are interested in forecasting the following three years, we need to introduce a
third class and a three years lag in the indicator. With these adjustments, we know the values for this
variable up to three years in the future for each mortgage.
In particular, the three categories are built as follows:

1. Class = 1: the mortgage age is greater than 3 years and no prepayment occurred in the time
frame between origination and three years before the observation is taken.

2. Class = 2: the mortgage age is smaller or equal to 3 years

3. Class = 3: the mortgage age is greater than 3 and a prepayment already occurred in the time
frame between origination and three years before the observation is taken.

Even though the amount of information gained from this variable is not as big as it would be in the
case of just two classes, a mortgage already prepaid or it did not, its contribution to the final value of
the CPR is meaningful and therefore it is worth to introduce it.

3.1.3. SETS CONSTRUCTION

When training a statistical model, it is common practice to divide the whole data set in subsets to see
the generalization power of the algorithm, in particular to assess overfitting. We divide the data set in
three subsets:
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• Training set: is the set used to train the models.

• Validation set: is the set used to select the best among all the trained models.

• Test set: is the set used to assess the generalization power of the model chosen in the validation
part.

These three sets are obviously disjoint in the sense that no observation can be in two different sets at
the same time. In particular, the training set accounts for 60% of the observations, and validation and
test sets account for 20% each. The latter two are created by randomly taking observations from the
data set, and what is left becomes the training set.

NEW OBSERVATIONS

New observations for the period that goes from February 2016 until April 2017 become available. For
this reason, we create a new set that we call forecasting set which contains just the observations for
that time period. The scope of having such a data set is to assess the forecasting power of the model
testing it on observations that are disjoint in the time dimension.

3.2. IMBALANCED DATA SET
The prepayment observations in the data set account for just approximately 1.5% of the total number
of observations. Therefore, we can say that prepayments are rare events. If we approach the CPR
estimation as a classification problem, where one class is the Prepayment class and the other is the
noPrepayment class, then the size of the two classes is significantly different. This imbalance usually
leads to an underestimation of the probability of belonging to the rare class and an overestimation of
the probability of belonging to the majority class.
In classification problems literature, e.g. [15], [16], we talk of an imbalanced data set when the amount
of observations of one class is significantly smaller than the amount of the other class, e.g. under 5%
of the total number of observations belongs to one class. High imbalance is really common in real
world problems where the model goal is to find rare but important cases. This kind of framework
is identified as anomaly detection problem, and the prediction of prepayment events in a pool of
mortgages is one of these cases, where most of the mortgages will not prepay and just a small part
will do.
If we have this kind of data set, a usual machine learning algorithm could be inaccurate and get the
wrong results. This is because of what the algorithm usually does, and that is to improve the overall
classification accuracy reducing the error. However, assessing the performance of the model this way
does not work when we are handling imbalanced data sets. In fact, standard classifiers are biased in
the direction of the majority class, and it can happen that the minority class is considered as noise. In
support to this, in Figure 3.8 a possible example of class conditional distributions for an imbalanced
data set is presented. It shows that observations from the rare class are gathered in local regions
among all the other samples and are therefore hard to get [17]. For instance, if just 1% of the data
set belongs to one class and the model classifies all the observations as belonging to the majority
class eliminating the minority class as noise, an accuracy of 99% is achieved. However, the model is
completely useless because it can not see any rare event, which is what the user is actually interested
in. For these reasons, instead of focusing on maximizing the accuracy, we should focus on optimizing
the area under the curve (AUC) of the Receiver Operator Characteristic (ROC) curve. From now on,
we will refer to this measure simply as AUC. AUC is often used as evaluation metric in imbalanced
class problems, therefore it makes sense to directly optimize it in the training process. Moreover, the
explosion of the amount of data in recent years resulted in many large scale rare class (RC) problems.
There are two different approaches in handling this problem. One is to act at the data level, which
means to apply re-sampling techniques to the data set before feeding it to the model. The second
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Figure 3.8: Example of class conditional distributions.

one is to act at an algorithmic level, which means to improve the classification algorithm. It is very
common to combine this two approaches in order to get the best results [18].

A HEURISTIC EXPLANATION

In this section, we give an explanation to why imbalanced data sets lead to under and overestimation
of the class probabilities. Let’s assume a setting with two imbalanced classes and just one explana-
tory variable. In Figure 3.9 it is possible to see the classes distributions. On the left side there is the

Figure 3.9: Class conditional distributions.

conditional distribution for the majority class X |Y = 0 with the distribution as a dotted line. On the
right side there are the few positive cases indicated as vertical lines and the corresponding distribu-
tion X |Y = 1. Because of the high amount of observations belonging to the majority class, we are able
to precisely identify the dotted distribution, while our approximation for the density of the minority
class is not precise and is usually biased towards too small tails [11]. In fact, what happens is that,
given the higher number of zeros with respect to ones, the right tail of the distribution X |Y = 0 is well
captured while the left tail of the X |Y = 1 distribution is poorly approximated. This means that if we
want to find a threshold on X to optimize the division between zeros and ones, this quantity is chosen
in relation to the maximum likelihood estimator and would probably be positioned on the left of the
last or second last positive observation starting counting from the right.

3.2.1. DATA LEVEL METHODS

In this section, we will present some methods that focus on re-sampling the initial data set. The goal
of doing this is to either increase the frequency of the rare event class or decrease the frequency of the
majority class.

UNDER-SAMPLING

Random under-sampling is a method which achieves a balanced data set by randomly removing some
samples that belong to the majority class. This way, we solve the problem of having an imbalanced
data set and reduce the run time and the hardware demand, but there are two major flaws in this
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technique. The first one is that we can potentially discard useful information which could be impor-
tant for the classification process. The second is that the selected random sample could be biased,
therefore not representative of the entire population.

OVER-SAMPLING

Random over-sampling is a method which achieves a balanced data set by randomly adding one or
more duplicate observations from the minority class. On one hand, this technique does not lead to
any information loss, and usually outperforms under-sampling. On the other hand, it could lead to
an increase of computational and storage costs, and it increases the likelihood of overfitting. In fact,
although the rules used by the classifier could seem accurate, they actually just deal with the same
repeated samples.
There is a smarter way to do over-sampling, that is to generate minority samples using some inter-
polation techniques between minority samples that are close together. Using this more advanced
method of over-sampling, we are able to avoid the overfitting problem, and to extend the boundaries
of this class making the data set even more balanced.

3.2.2. ALGORITHMIC LEVEL METHODS

In this subsection, we fix this same problem but by modifying the classification algorithm in order to
make it able to handle imbalanced data sets. The main goal with these methods is to enhance the
performance of single classifiers.

THRESHOLD METHOD

In binary classification problems, the output of the model is usually a number between 0 and 1 and
it could be interpreted as a probability. The probability of belonging to one class, y = 0, or the other,
y = 1. Therefore, the model could be more or less sure about how to classify different samples. Then,
observations are associated to one class or the other using a threshold. Usually this threshold is cho-
sen to be 0.5, any observation with output smaller than the threshold belongs to the y = 0 class and
any greater one to the other class. Moving this threshold affects the classification process. For in-
stance, selecting a bigger threshold means that we want a greater degree of certainty in order to clas-
sify an observation in the y = 1 class.

ONE-CLASS LEARNING

In a normal classification problem, the goal of the algorithm is to identify and classify observations in
different classes learning from a data set containing all the elements from the different classes. The
goal of a one-class classification algorithm is to identify a class of observations among all the others,
but learning from a data set containing just the observations belonging to that class.
RIPPER (Repeated Incremental Pruning to Produce Error Reduction) is an algorithm which builds its
rules by adding more and more conditions until no negative observations are covered. It will come
up with rules for every class, starting from the rarest class, which is why it is easy and possible to
learn rules just for the minority class. This method is particularly effective when the data set is highly
imbalanced and there is a high dimensional noisy feature space. This method can be related to an
aggressive features selection model, and it is often preferred since it is less expensive to apply.

COST SENSITIVE LEARNING

Another approach to have different costs included in the decision-making process is to introduce
"fixed and unequal misclassification costs between classes" [18]. We consider a cost matrix in which
the element λi j is the cost of classifying an element from class j as belonging to class i . The diagonal
of this matrix is usually formed by zeros since there is no cost for correct classification. In the light of
this, we define a conditional risk given by:

R(αi |x) =∑
i
λi j P (ν j |x).
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The meaning of the formula is that the misclassification cost depends on a fixed part, λi j , and on
an uncertain part, the posterior probability related to our uncertain knowledge of the true class of x.
Hence, in this method to minimize our cost we choose the class ν j which minimizes the conditional
risk.

BOOSTING ALGORITHMS

A boosting algorithm is an iterative method which gives different weights to the training distribution
every iteration. In each iteration, the weights related to incorrectly classified observations increase,
and the ones associated with the correct classified ones decrease. This way, the learning algorithm is
forced to focus more on misclassified examples in the following iteration. This boosting should im-
prove the classification performance of the rare class since it is more prone to error than the common
class, and therefore the weights associated to the minority class increase. Another possibility could
be to directly penalize more heavily misclassification errors for the minority observations in order to
reduce the bias towards the common class [19]. AdaBoost and Rare-Boost are two of these techniques
[18].

3.2.3. ASSESSING THE POWER OF THE ALGORITHM

The prediction obtained with the algorithm could either be right or wrong. If it is correct, then it
means that whether we predict success, y = 1, when the observation is a success and this is called a
true positive, or we predict a failure, y = 0, when it is a failure and this is called a true negative. Also if
we are wrong we can have two different kinds of errors, a false positive is when we predict y = 1 but it
is y = 0, and a false negative is the other way around, as can be easily observed from Table 3.1.

Predicted Class

Actual
Class

0 1
0 True Negatives False Positives
1 False Negatives True Positives

Table 3.1: Confusion matrix

Once defined these 4 concepts, we can define 3 tools to assess the output of the algorithm:

• Accuracy= True Positives+True Negatives
Total Observations

• Precision= True Positives
Predicted Positives = True Positives

True Positives+False Positives

• Recall= True Positives
Actual Positives = True Positives

True Positives+False Negatives

On one hand, Recall is computed as the number of true positives divided by the number of actual
positive observations, which represents the percentage of observations that belongs to the positive
class that is actually classified as such. On the other hand, Precision is obtained by dividing the num-
ber of true positives by the total number of positive outcomes, which represents the percentage of
observations which is classified in the positive class that actually belong to that class. It is important
to have a good balance between these two values. The reason to introduce these two quantities is im-
mediately obvious. For instance, if we consider again a case where one class accounts for just 1% of
the total number of observations, the naive algorithm which classifies every observation as belonging
to the majority class (the negative one) achieves an accuracy of 99%, but the values of Precision and
Recall are zero.
An accurate way to find a compromise between Precision and Recall is to define the score F1 = 2 PR

P+R
(P=Precision and R=Recall), which is the harmonic mean of these two quantities. Then, the algorithm
with higher F1 score is chosen.
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As mentioned at the beginning of section 3.2, AUC is another measure that is suitable in our context.
We will now present how this quantity is empirically derived and explain its meaning.
The ROC curve shows the classification ability of a binary classifier as the threshold that divides the
two classes is varied. It is obtained by plotting the true positive rate (Recall) against the false positive
rate, which is equal to (1− Specificity) and Specificity represents the proportion of actual negative
samples that are classified as such.
The AUC can be empirically computed with the following formula:

AUC = 1

m+m−

∑
i :yi=1

∑
j :y j=0

1(ŷ(xi ) > ŷ(x j )),

where ŷ(·) represents the output of the model given the input ·, m+ and m− represent the number of
observations belonging to the majority and minority class respectively, and 1 is the indicator func-
tion.
Hence, the AUC of a classifier can be interpreted as the probability that the classifier will rank a ran-
domly chosen positive example higher than a randomly chosen negative example:

AUC = P (ŷ(x+) > ŷ(x−)).

Therefore, the higher this value, the better. Ideally, we would like to have its value to be equal to one.
If that is the case, it would mean that we are able to find a certain threshold with which we are able to
correctly classify all the observations in the set.

3.2.4. EFFICIENCY OF THE ADJUSTMENTS

In this section, we would like to briefly show how models are adjusted in order to obtain better per-
formance and how in general machine learning algorithms achieve a superior level of Accuracy, Pre-
cision and Recall. To do that, we applied a logistic regression (LR), an artificial neural network (ANN)
and a random forest (RF) to the fraud detection data set downloaded from Kaggle.com. Only the re-
sults are shown in this section to underline the efficiency of the corrections. A more thorough and
detailed explanation of the applied corrections will be given in Chapter 4.
The data set has 284.807 observations, which represent the credit card transactions of European card
holders for two days in the month of September 2013. We choose this data set because it is highly im-
balanced, in fact the positive class, which represents the fraud transactions, accounts for just 0.172%
of the total data set (492 frauds).

To train the model, we took a subset of 49000 observations from the initial data set in order to have
a ratio between the two classes of 1:100. Moreover, weights are added to the loss function to achieve
even more balance. Then, we split the subset in a training, validation and test set. Each of the last
two sets accounts for 20% of the observations, and the first one of the remaining 60%. After training
the models and choosing the best one on the validation set, we test this model on the test set but also
on the whole data set. The results for the model without corrections were poor, the accuracy stayed
quite high but the values for Precision and Recall were close to zero. Meaning that the imbalanced
data set indeed biased the model outcomes toward the majority class. In Table 3.2, the performance
of the best model for each technique on the test set and on the whole data set is shown.
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Precision Recall F1 score AUC Accuracy
LR Test 0.9213 0.7663 0.8367 0.8828 0.9967

Data set 0.5167 0.7541 0.6231 0.8764 0.9983
ANN Test 0.9100 0.8505 0.8792 0.9248 0.9974

Data set 0.7023 0.9349 0.8021 0.9671 0.9989
RF Test 0.9574 0.8411 0.8955 0.9203 0.9980

Data set 0.8697 0.9634 0.9142 0.9816 0.9992

Table 3.2: Results

We have to keep in mind that we are dealing with an imbalanced data set and, therefore, looking just
at the accuracy could be misleading. In fact, even if the values for it are almost equal across the three
models, the other indicators tell us that machine learning techniques are better performing on this
imbalanced data set than logistic regression. For instance, the higher value for Precision means that
the algorithm better learns the fraud transaction events. In fact, in logistic regression for the whole
data set we obtain a Precision of ≈ 51%, which means that almost every other observation classified
as fraud, it is not actually a fraud. This ratio reduces to 1 every 3 and 1 every 5 observations for the
machine learning approaches. Moreover, another confirmation comes from higher values of Recall
which are translated by the fact that the second kind of approach is better able to identify frauds. In
logistic regression, one fourth of the frauds is missed by the algorithm against a 5% for the other two
methods.

3.3. HOW TO TAKE INTO ACCOUNT THE CORRECTIONS
In the previous section, we introduced the issue of having an imbalanced data set and gave some
insights about possible corrections to apply to the model in order to cope with this problem. In par-
ticular, we introduced two main classes of adjustments: one that acts on a data level, and the other
one that acts on an algorithmic level. Both kinds of modifications affect the characteristics and the
output of the model. Therefore, we investigate how the algorithm is affected in order to be able to
take into account these changes.
Every alteration has its specific effects. In this section, we are going to take into account how cor-
rections on a data level influence the models. We will take into account algorithm modifications in
Chapter 4 since to understand these second kind of changes a deeper understanding on how the
models work is needed.

Among data level methods, the one that turns out to be the most effective is, without any doubt,
undersampling. As touched upon earlier, this technique consists in removing some observations
from the majority class in order to achieve a balanced data set.
We explained in section 3.1.3 how the data set has been divided in four subsets and that the main as-
sumption in this procedure is that the observations in all the sets are drawn from the same population
and have indeed the same distribution. When we undersample the majority class in the training set, a
procedure that is widely used in the context of imbalanced data sets [20], we violate this very assump-
tion. The training set is now balanced, while the validation and test sets are still imbalanced and have
therefore different distributions. Having different distributions in the various sets is a known problem
in statistical analysis and has been tackled many times in related literature, [21], [22].
In fact, undersampling implies a change in the prior distribution of the training set and this biases
the posterior probability of the classifier. This kind of problem is called prior probability shift and
happens when the distribution over y changes while everything else remains the same [23].
Balancing the data set is a sample selection bias problem with a known selection bias, since we in-
troduced it, and we want to investigate the entity of this bias that occurs when undersampling the
majority class.
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A relationship between the output of the classification, which represents the posterior probabili-
ties, of a model trained on the balanced set and of one trained on the unmodified set exists [24]. We
will now proceed to show this relation. Let’s define a random binary selection variable s that takes the
value 1 if the sample is in the undersampled set and 0 otherwise. Then, assume that undersampling
the majority class does not change the within class distributions. From the Bayes’ rule we have that
the output probabilities of the model are given by the following formula [24]:

p(y = 1|x, s = 1) = p(s = 1|y = 1)p(y = 1|x)

p(s = 1|y = 1)p(y = 1|x)+p(s = 1|y = 0)p(y = 0|x)
,

and since p(s = 1|y = 1) = 1 because all the samples belonging to the positive class are in the under-
sampled set, we have:

p(y = 1|x, s = 1) = p(y = 1|x)

p(y = 1|x)+p(s = 1|y = 0)p(y = 0|x)
.

Denoting the probability of choosing a negative sample while undersampling as β = p(s = 1|y = 0),
the posterior probability of being in the positive class for the original set as p = p(y = 1|x), and the
posterior probability of being in the positive class in the undersampled set as ps = p(y = 1|x, s = 1),
we can rewrite the previous equation as:

ps = p

p +β(1−p)
. (3.2)

In equation (3.2), the relationship between ps , which represents the output of the model trained on
the undersampled set, and p, which represents the output we should expect for a model applied to
the non-undersampled set, is shown. It is trivial to obtain the expression for p as a function of ps :

p = βps

βps −ps +1
. (3.3)

Now, we are able to preserve marginal probabilities for the classes in the validation and test sets even
when applying a model which is trained on a subsampled set. β is the parameter that represents the
amount of samples removed while undersampling.
The β parameter in equation (3.3) is quite informative. For instance, β= 1 is the upper bound and it
means that no undersampling is done, in fact, it results in p = ps . The lower bound is β= N+

N− , where
N+ and N− are the number of positive and negative observations respectively in the original data set.
Such a value corresponds to a balanced set, it is like the data set is undersampled until N+ = N−.
Hence, β is an indicator of the degree of balancedness achieved. As β decreases from 1 towards N+

N− ,
the training set that we will obtain becomes more and more balanced.
If we call p ′ the bias corrected posterior probability that we obtain from the empirical quantity ps

using equation (3.3):

p ′ = βps

βps −ps +1
,

and, as before, we call p the actual posterior probability for the original set,
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Figure 3.10: Posterior probabilities.

we observe from Figure 3.10 that p ′ is indeed able to approximate the initial posterior p.

In Figure 3.11 it is possible to see in practice what happens when we train on an undersampled set
and then we try to apply the model to a set in which the original ratio between classes is maintained.
In the left picture, it is possible to see the model applied to a set in which the ratio between classes
is the same as the one in the set we used to train the model. The prediction is quite accurate and on
scale.
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(a) Result on the undersampled set
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(b) Result on the set without undersampling

Figure 3.11: Results of the model for both the not and the undersampled set.

In the right picture, we see the results of the model applied to a set S which has the initial ratio
between classes, the one before undersampling. It means that in this set the amount of observations
belonging to the majority class is way bigger than before. Now, rare class observations account just
for 1.5% of the total. This is what practically means a change in the prior. Now, since the proportion
of ones is way smaller, it is normal that the model overestimates the output.
If we apply the correction introduced earlier in the chapter, the results that we obtain for the same set
S are shown in Figure 3.12.
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Figure 3.12: Results on the non undersampled set with the correction.

It appears from the plot that the correction is indeed effective. The same model goes from the poor
performance shown on the left in Figure 3.11 to the results illustrated in Figure 3.12. It is normal that
the overall performance on the non undersampled set is slightly worse than the one on the training
set. In fact, in the set S there are many observations that were never seen before by the algorithm.
Therefore, it is understandable that it can approximate the final plot a bit less precisely.





4
STATISTICAL AND COMPUTER SCIENCE

MODELS

In the previous chapters, we introduced the prepayment rate, explained that it is important for a
bank to estimate this quantity for the hedging strategies, gave some insights on what causes the pre-
payments, and introduced the data set.
As stated earlier, the purpose of this thesis is to build a model which is able to make a forecast of the
CPR for the coming 3 years. The model that will be developed is based on machine learning tech-
niques, and in this chapter we present the theoretical background needed for our goal. In the first
part of the chapter, some general information about machine learning are displayed. Then, we give
a theoretical explanation of how neural networks and random forests work with a specific section in
which the modifications made to the model for this specific problem are explained.

Machine Learning has become more and more popular in the last years, but, what is it? It is, to
quote Arthur Samuel’s definition, the "Field of study that gives computers the ability to learn with-
out being explicitly programmed". Samuel was a pioneer in artificial intelligence and was the one
who coined the term Machine Learning in 1959 [25]. The origin of this field of study can, therefore,
be traced back to the 1950s, it is not something that has popped up in the recent years. The main
reason behind the recent popularity is linked to the increasing computational capacity of nowadays
PCs and the increasing availability of digitalized data. In fact, the main goal of a machine learning
algorithm is to learn from and make predictions on data with the peculiarity of taking data-driven
decisions rather than following program directives. Machine learning can perform the tasks of linear
and logistic regression, but can take them a step further. For instance, it is able to take into account
a considerably larger amount of data and predictors, and is capable of understanding more complex
nonlinear relations between input and output.

4.1. DIFFERENT KINDS OF MACHINE LEARNING
In order to give a better insight in Machine Learning, we would like to give a more formal and precise
definition that was given in the late 1990s by Tom Mitchell [25]. He defined a well posed machine
learning problem as: "A computer program is said to learn from experience E with respect to some
task T and some performance measure P, if its performance on T, as measured by P, improves with
experience E". We give an example to help the reader understand the definition.
Let’s suppose that we want to develop a program which is capable to classify emails as spam or not
spam on the base of what the user did or did not mark as spam. In this setting, the task T obviously is
to divide emails in spam and not spam, the experience E is watching the user selecting which emails
are or are not spam, and the measure P is the fraction of emails correctly labeled as spam/not spam by
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the program. It is worth to notice that a correct choice of the measure P is fundamental. For instance,
if the program identifies all the emails as spam, of course it identifies all the spam emails, but it would
be useless. We want a good compromise between marking all spam emails as spam, and marking not
spam email as not spam. Our measure needs to be more sensible than the simplistic one we stated
earlier.

A big data set is given to every machine learning algorithm in order for it to train itself. The way it
does this task is not always the same though. Depending on the way it works, it is possible to identify
two broad categories:

• Supervised learning: In the training data set both the inputs and the correct outputs are present,
and the objective is to learn how to properly map future inputs into the correct outputs. An
example could be the aforementioned one about the spam emails, where both the input, infor-
mation about the email, and the associated label, spam/not spam, are given to the algorithm in
order to be trained.

• Unsupervised learning: In the training data set the correct outputs are not present anymore,
the goal now is to find similarities, patterns and structures and then group the data into clus-
ters. This clustering can be the goal itself, or the means to an end. An example could be market
segmentation, data about clients are fed to the algorithm and it tries to identify groups of cus-
tomers to make, for instance, targeted ads.

Within these two big classes, another classification, based on the machine learning tasks and the
kinds of problems the algorithm can solve, exists. The first two classes belong to the category of
supervised learning problems, while the last two to the unsupervised ones:

• Classification: is a problem where the output can assume one of finitely many possible values.
The spam email example is one of this kind.

• Regression: is a problem where the output is a continuous value. An example could be an al-
gorithm which receives data about houses and their selling prices, and learns how to correctly
price houses.

• Segmentation: is a problem where the goal is to learn the structure of the data and build clusters
of comparable elements. The market segmentation is an example of this kind.

• Network Analysis: is a problem where the goal is to identify nodes in a network and define their
importance and their role. An example of this could be found in social network analysis.

4.1.1. BASIC TERMINOLOGY

In this part, we will focus more on supervised learning, both regression and classification types.
When we feed data to the algorithm, it will train itself to replicate the desired given outputs, but the
goal is actually to train it in order to be able to make predictions on different data from the one used
for training. This is a complicated task, and we assume that the unseen data is somehow similar to
the one in the training set. In particular, we assume that the distribution of the population for the
training set is representative of the full population and indeed of the test set. In this way, if a model
performs well on the data we can see, then it should also work for the new data.
We said "it should work" because of a major problem known in literature as overfitting [26]. In every
data set there are both observations and noise, our goal is to separate the two in order to fit the data in
the best way possible. However, trying to perfectly explain as many inputs as possible by doing overly
complex assumptions often leads to consider also the noise in the building of the model, which will
result in a poor prediction for data which is not present in the training set. This is the phenomenon
of overfitting, which is characterized by a large gap between the error obtained in the training set and
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the one in the test set. This happens because a model that overfits the data will perfectly explain the
training set (small error) but it will struggle to make predictions on a new data set (test set).
This kind of problem is associated with high variance, which is intended as the error due to small
variations in the training set. Basically, it means that random noise is taken into account by the algo-
rithm in the modeling process.
We have the opposite problem when we are dealing with underfitting, that is when the model cannot
follow the underlying trend of the data. These kinds of errors are the result of a too simple model, for
example if we try to fit a linear model to data which is not linear. This kind of problem is associated
with high bias instead, which is the error which derives from erroneous assumptions in the learning
algorithm that leads to miss some relevant relations between data points. It is fundamental to find
the right trade off between bias and variance.

4.2. ARTIFICIAL NEURAL NETWORKS
Artificial neural networks (ANNs), or in this context simply neural networks, are computational sys-
tems which try to roughly mimic the networks of neurons in a biological brain [27]. A big advantage
of this method is the fact that it uses the basic not computationally expensive operations (e.g. basic
logic operations, multiplications, additions) to solve complex problems that are not linear or mathe-
matically not well posed.

4.2.1. THE NEURONS

A neuron is the essential unit which processes information in a neural network architecture. It is
possible to see a scheme of a neuron in Figure 4.1, in which it is possible to identify three main com-
ponents:

Figure 4.1: Model of a neuron

• Synapses: a set of connecting channels each characterized by its own weights. An input signal,
before reaching the neuron, passes through these synapses and it is multiplied by the weights.
In particular, the input signal xi that has to go through neuron j is weighted by the weight w j i .

x1, x2, . . . , xm ⇒ w j 1x1, w j 2x2, . . . , w j m xm .

• Adder: an adder which is able to sum all the input variables after they have been weighted in
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the synapses. Usually a linear combiner is used, i.e.,

u j =
m∑

i=1
w j i xi .

• Activation function: inside the neuron, the quantity v j = u j +b j , which is the weighted sum
of the inputs plus the bias term b j , is passed through the activation function which is used in
order to limit the range of the output of the neuron.

y j =ϕ(v j ),

Alternatively, we can reformulate the previous formulas as follows:

v j =
m∑

i=0
w j i xi ⇒ y j =ϕ(v j ),

which is equivalent to the previous formulation. More precisely, a synapses has been added and
its input is x0 = 1 and the corresponding weight is w j 0 = b j , which correspond to the bias in the
precedent formula.
Synapses weights are found during the training of the algorithm, activation functions are chosen by
the user. There are different kinds of activation functions which we will now introduce.

ACTIVATION FUNCTIONS

It is possible to identify three basic categories of activation functions:

1. Threshold functions:

ϕ(v j ) =
{

1 if v j ≥ 0

0 if v j < 0
.

This kind of neuron has the all or none property since it is either completely activated, when
the weighted sum is positive, or not activated at all when that sum is negative.
One variation of this kind of activation function is given by the largely used Rectifier Linear Unit
(ReLU) function, which has the following form:

ϕ(v j ) =
{

v j if v j ≥ 0

0 if v j < 0
= max(o, v j ).

2. Piecewise linear functions:

ϕ(v j ) =


1 if v j ≥ 1

2

v j if − 1
2 < v j < 1

2

0 if v j <−1
2

,

where in the linear region the amplification factor is chosen to be one. This is a sort of approx-
imation of nonlinear amplifier. Threshold functions are special forms of these class activation
functions.

3. Sigmoid functions: the graphs of these kind of functions is s-shaped and strictly increasing but
with a good balance between linear and non linear part.
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Figure 4.2: Sigmoid function.

One of the most used functions for this class is the logistic function:

ϕ(v j ) = 1

1+e−v j
.

It is common to choose such functions for their smoothness, in fact this implies that small
changes in the weights will not affect significantly the output. We want this property since
making small changes in the weights and biases is how the algorithm trains to improve the
output, this is how the network is learning. Moreover, another desired property is that they are
bounded, the logistic function has value in [0,1] for instance. Anyway, the sigmoid function is
not the only choice [28].

4.2.2. STRUCTURE OF AN ANN
There are different ways to combine these basic units, the neurons, to form a network. In particular,
the networks we implement are multilayer feedforward networks.
In this kind of architecture, the neurons are organized in layers. We can distinguish three kinds of
layers, as it is clear from Figure 4.3.

Figure 4.3: Example of a simple neural network.

The first layer, the one that receives the inputs, is called input layer, which consist of N1 = 6 input
neurons in this picture; the last one is called output layer, which in our case consists of N4 = 1 output
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neuron. In the middle we have n hidden layers with Nl hidden nodes, which are called like that since
they are neither an input nor an output (for instance, for the example in the previous page we have
n = 2, N2 = 4, N3 = 3). Hidden neurons are applied in series to the observations between input and
output and this enables the network to extract higher order statistics [29].
In this example of ANN, and in general for feed forward networks, the input of one layer is given by
the output from the previous one, except for the input layer for which the inputs are the observations
from the data set. In addition, this means that the output of each layer is used as input by the next
layer besides for the output layer. The output from the last layer represents the overall result of the
network. These kinds of ANNs are called feed forward neural networks since no loops are involved in
the network. Moreover, they are often referred to as multilayer perceptrons as well.
The network shown in Figure 4.3 is fully connected. This means that each node in each layer is con-
nected to every other node in any adjacent layer.

4.2.3. LEARNING PROCESS

The learning process includes three main steps. First, the network is fed with the data in order to be
triggered. Second, the network changes its parameters according to some decision rules or loss func-
tions as a consequence of this titillation. Third, the network is now different from how it was before
having processed the data since the parameters in the architecture have changed.
There are various learning rules, in feedforward neural networks an error correction learning is im-
plemented. This rule is known as error back propagation algorithm, and it enables the multilayer
perceptron to solve complex problems. This kind of learning rule is only possible in supervised learn-
ing. We will now explain how it works.
There are two different and distinct parts in the computation of artificial neural networks with back-
propagation. The first one is known as forward pass, the second one as backward pass. In the forward
pass, the information travels from left to right and the weights are not modified. In the backward pass,
the information travels from right to left and it is at this stage that the weights are modified. Once the
model is trained, data passes through the model as in the forward pass.

FORWARD PASS

Assume we have x1, . . . , xm samples as inputs and let’s call a1
i = xi ,∀i , the inputs for the first hidden

layer. Then, for each hidden node in each hidden layer we first have:

v l
j =

Nl−1∑
i=0

w l
j i al−1

i , ∀ j = 1, . . . , Nl ,∀ l = 2, . . . ,L−1.

Then, after that the input is weighted and summed, the activation function is applied:

al
j =ϕ(v l

j ), ∀ j = 1, . . . , Nl ,∀ l = 2, . . . ,L−1.

This function is, in general, nonlinear as shown above, hence it allows the algorithm to learn nonlin-
ear relations between the data. Then, this al

j output is used as input for the l +1 layer and we repeat

this procedure for every layer. For the output layer, we have l = L and aL
j coincide with y j which is the

final output of the model:

vL
j =

NL−1∑
i=0

wL
j i aL−1

j , ∀ j = 1, . . . , NL ,

y j = aL
j =ϕ(vL

j ) =ϕ
(

NL−1∑
i=0

wL
j i aL−1

i

)
, ∀ i = 1, . . . , NL .

Now, if we call y j (n) the output of the output layer of the network for the vector of observations x(n),
where n represents a time step in the iterative training process, a comparison between this output
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and the target output d j (n) can be made, and an error is calculated as:

e j (n) = d j (n)− y j (n). (4.1)

Then, through this quantity a whole mechanism comes into play which will make adjustments on
the weights of each neuron with the aim of achieving an output signal which is the closest possible
to the desired target at each iteration. This goal is practically achieved by minimizing a cost function
which depends on the error that we defined earlier. After the forward pass, it is now time for the
back-propagation part.

4.2.4. BACK-PROPAGATION

The back-propagation starts at the last layer and moves backwards to the first one passing through
each neuron and calculating the gradient in each of it. During this procedure the weights are modified
according to some rules.
From the quantity defined in equation (4.1), it is possible to introduce an error measure for the output
layer which depends on e j (n) defined by:

E (n) = 1

2

∑
j∈C

e2
j (n),

where C represents the set of all the neurons belonging to the same layer. Then, if we iterate the
process N times for training, each one of these iterations is called epoch, we can sum the errors at
each iteration and divide that quantity by N and obtain the average error Eav . This quantity is what
we call cost function and it is a function of the bias level and of the neuron weights. Basically, the
algorithm will try to adjust the parameters in order to minimize this quantity Eav at each epoch.
In a back-propagation algorithm, the correction term∆w j i (n) of the synaptic weights is proportional
to the partial derivative of the error with respect to the weights. This proportionality factor represents
the sensitivity factor which indicates the direction of search in the space:

∆w j i =−η ∂E (n)

∂w j i (n)
, (4.2)

where η is the learning rate parameter that regulates the speed of the back-propagation. After some
calculations, we can derive the following form for the partial derivative [29]:

∂E (n)

∂w j i (n)
=−e j (n)ϕ′

j (v j (n))yi (n). (4.3)

The minus sign is for the gradient descent in the weight space.
It follows from equations (4.2) and (4.3) that:

∆w j i = ηδ j (n)yi (n), (4.4)

where δ j (n) = e j (n)ϕ′
j (v j (n)) is the local gradient. The computation of δ j requires the knowledge of

the derivative of the activation function, for this reason we require this function to be differentiable.
Now, we can define two distinct cases, one if neuron j belongs to one of the hidden layers and one if
the neuron belongs to the output layer. The latter case is easy since it is possible to directly calculate
the error as a difference between output and target. It is more complex for the hidden neurons be-
cause it is hard to understand which neuron has to be rewarded or penalized. To solve this, the error
is back-propagated through the network.

OUTPUT LAYER

If neuron j belongs to the output layer, then the error e j (n) is immediately computed. Once the error
is available, it is easy to calculate the local gradient δ j (n) as:

δ j (n) = e j (n)ϕ′
j (v j (n)).
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HIDDEN LAYER

If neuron j belongs to a hidden layer, then its desired output is unknown. The error must be cal-
culated taking into account all the errors in the connected neurons, and here is where the back-
propagation gets harder. The local gradient has a different form now, because ∂E (n)

∂y j (n) 6= e j (n). It is

possible to calculate that partial derivative and arrive at the form [29]:

∂E (n)

∂y j (n)
=−∑

k
δk (n)wk j (n),

where the subscript k refers to the layer in the immediate right of hidden layer j .
Therefore, we have that the final formulation of the back-propagation for neuron j in a hidden layer
is:

δ j (n) =ϕ′(v j (n))
∑
k
δk (n)wk j (n).

BACK-PROPAGATION WITH BINARY CROSS ENTROPY LOSS

In classification problems, a different cost function is used. More precisely, what we use is the binary
cross entropy loss and using this form implies changes in the back-propagation algorithm. The binary
cross entropy loss has the following form:

E (n) = ∑
j∈C

[−d j (n) ln(y j (n))− (1−d j (n)) ln(1− y j (n))
]

,

where, again, C represents the set of all the neurons belonging to the same layer. We can decompose
the derivative of the error with respect to the weights as:

∂E (n)

∂w j i (n)
= ∂E (n)

∂y j (n)

∂y j (n)

∂v j (n)

∂v j (n)

∂w j i (n)
.

These quantities are easy to calculate and result in the following for a node in the output layer [30]:

∂E (n)

∂w j i (n)
= (y j (n)−d j (n))ϕ(vi (n)) = (y j (n)−d j (n))yi (n),

and in the following form for a node in a hidden layer:

∂E (n)

∂w j i (n)
=∑

k
(yk (n)−dk (n))wk j (n) y j (n)(1− y j (n))︸ ︷︷ ︸

ϕ′(v j )

ϕ(vi (n)) =

=ϕ′(v j (n))
∑
k
δk (n)wk j (n)yi .

4.3. MACHINE LEARNING VS REGRESSION
We would like to say, from the beginning, that a model which is overall better than another model in
every circumstance does not exist. Linear and logistic regression have fewer parameters to train than
an ANN for the same inputs, but they are only able to get linear relations between the independent
and the dependent variables. It is true that it is possible to complicate the regression model by adding
some terms which are transformations of the predictors, nevertheless we do not know the functional
form that explains these relations in advance and, therefore, rather than making subjective guesses
it is better to learn it from the data, as a machine learning algorithm would do. In theory an ANN
should be able to automatically model nonlinearities, the universal approximation theorem states
that a feed forward network with just one hidden layer and a finite number of nodes can approximate
continuous functions under some assumptions. More precisely, let N0 be the number of input nodes,
N = NL be the number of output nodes, and in general Nl the number of nodes in layer l , the theorem
states [29]:



4.3. MACHINE LEARNING VS REGRESSION 37

Theorem 1. Let ϕ(·) be a nonconstant, bounded, and monotonically-increasing continuous function.
Let IN0 denote the N0-dimensional unit hypercube [0,1]N0 . The space of continuous functions on IN0 is
denoted by C (IN0 ). Then given any function f ∈ C (N0 ) and ε > 0, there exists an integer N and sets of
real constants αi , bi , and wi j , where i = 1. . . , N1 and j = 1, . . . , N0 such that we may define

F (x1, . . . , xN0 ) =
N1∑

i=1
αiϕ(

N0∑
j=1

wi j x j +bi ),

as an approximate realization of the function f (·); that is,

|F (x1, . . . , xN0 )− f (x1, . . . , xN0 )| < ε,

for all x1, x2, . . . , xN0 that lie in the input space.

The first equation in the theorem represents the output of a single hidden layer perceptron:

• the network is formed by an input layer of m0 nodes and a hidden layer of m1 neurons. x1, . . . , xN0

are the inputs,

• the weights of the i th hidden node are wi 1, . . . , wi N0 , and the bias is bi ,

• α1, . . . ,αN1 are the weights of the output layer, and the output of the network is a linear combi-
nation of the outputs of the hidden layer.

This means that "a single hidden layer is sufficient for a multilayer perceptron to compute a uniform ε

approximation to a given training set" [29]. This is just an existence theorem, it does not say anything
about this model being optimal in the sense of computational time for training, or generalization.
The main advantage is, therefore, the capability of neural networks to see complicated nonlinear
relations, even if they need lots of data to be trained on in order to do so. Moreover, if the number of
predictors is large, a machine learning algorithm can be trained fast with many input variables while
it is harder for simple regression. On the other hand, training a simple regression requires less data
and it is, in general, faster.

4.3.1. LOGISTIC REGRESSION AS NEURAL NETWORK

In this section, we would like to show how logistic regression can be replicated through the means of
a simple neural network. We would like to do that to underline the fact that classic logistic regression
is a simple model in comparison to what one can achieve with artificial neural networks.
We proceed showing that a simple neural network with identity activation in the input layer, no hid-
den layers and the logistic function as activation function in the one and only output node is mathe-
matically identical to a logistic regression.
For the input layer we have, as stated before, that a1

i = xi . Now, there are no hidden layers, so these
outputs ai become the input for the output layer (L = 2) and we obtain:

vL
j =

NL−1∑
i=0

wL
j i aL−1

i =
N1∑

i=0
w2

j i xi , ∀ j = 1, . . . , N1.

Each of these v2
j is then transformed using the activation function, which is chosen to be the logistic

function ϕ(x) = 1
1+e−x , obtaining the following output:

y j = a2
j =ϕ(v2

j ) =ϕ
(

N1∑
i=0

w2
j i xi

)
= 1

1+e
−

(∑N1
j=0 w 2

j i xi

) , ∀ i = 1, . . . , N1,
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which is exactly the same one of the logistic regression.
Moreover, if we select the binary cross entropy loss for the network and we pick as activation function
the logistic function, we notice that the cost function that is minimized in this problem is the same
as the one for logistic regression. In fact, given that NL = N2 = 1, and ϕ(·) is the logistic function we
have:

E =− 1

N1

N1∑
i=1

[
yi ln(ϕ(w2 ·xi ))+ (1− yi ) ln(1−ϕ(w2 ·xi ))

]
.

This formulation is indeed equal to the one for logistic regression expressed in equation (2.4).

4.3.2. ADVANTAGES OF NEURAL NETWORKS

The strength of neural networks lies in their parallel distributed structure, and their ability to learn
from the data. This capability to learn is what makes a neural network so attractive to users, who
are generally interested in applying the model on never seen before observations and are therefore
looking for generalization properties.
Some important features of neural networks are:

• Nonlinearity: it is possible to have linear or nonlinear neurons, therefore it is not uncommon
to have nonlinear networks. This is a particular kind of nonlinearity though. In fact, it is not
distributed throughout the network. In general, nonlinear relations are learned throughout the
layers in the network. It is the subsequent application of linear functions that is translated to
the ability of catching nonlinearity.

• Input-Output relation: in supervised learning, the one we are going to use, the network is
trained modifying the weights in each neuron using a set of labeled training observations. Each
observation has a set of unique characteristics which correspond to the input, and a label of the
desired outcome which represents the target vector. Then, the network is trained feeding it with
observations randomly chosen from the set. While training, the neuron weights are modified
according to an appropriate statistical rule in order to achieve the smallest difference possible
between the actual target and the output of the model. This output is obtained by applying the
network to the corresponding input. This procedure is repeated until we have no significant
change in the weights anymore. The network creates an input-output mapping for the specific
problem and without taking into account any prior assumption on the data.

• Adaptivity: artificial neural networks have the ability to adapt the neuron weights with changes
in the training environment. It is possible to retrain an already trained network in order to
take into account the small changes in the environment. Moreover, if the environment is non
stationary, it is possible to modify the weights in real time. In general, the more adaptive the
model, given that we have stability, the better the performance on a nonstationary setting.
This trade off between adaptivity and stability of the model is known in literature as stability-
plasticity dilemma [29].

• Fault tolerance: artificial neural networks have the possibility of being fault tolerant, or able to
perform robust computations, meaning that their performance deteriorates slowly under ad-
verse conditions. In fact, if a neuron is damaged, the quality of the model is affected. However,
the damage has to be really extensive in order to seriously ruin the final results. This particular
structure of neural networks helps with the handling of contextual information as well [31].

4.4. DECISION TREES
To use Merriam-Webster definition, a decision tree is "a tree diagram which is used for making de-
cisions in business or computer programming and in which the branches represent choices with as-
sociated risks, costs, results, or probability". A tree is a flowchart structure where the nodes are an
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assessment on the attribute, the branches are the outcome of the assessment, and each leaf (final
node) is a class label. The whole path from root to leaf is the classification rule, and it allows the user
to go from the information about an observation to the classification of its target value.
More formally, let’s say that we want to predict a class Y from the input X1, X2, . . . , Xn . To do that, we
build a decision tree, and at each node we apply a test to one of the input Xi . Conditional on the
outcome of the test, we will move either towards the left or the right sub-branch. In the end, a leaf
node will be reached where the prediction is done.

Definition 1. A binary rooted tree is a graph in which any two nodes are connected by exactly one path,
one of the nodes is been selected to be the root and all the branches move away from the root. Moreover,
each node has exactly two children as the tree is binary.

Figure 4.4: Example of a simple decision tree.

A visual example of a simple decision tree can be observed in Figure 4.4. For this case, the first slit
in the root node is made looking whether the income is bigger or smaller than $ 30K. Then each child
node is split using some other variables.

4.4.1. ADVANTAGES OF DECISION TREES

There are many factors that contribute to the attractiveness of decision trees in real world applica-
tions. The most important are the following:

• No parametrization: decision trees are non parametric models, which means that are able to
model the complex relationship between input and output without the need of a priori assump-
tions.

• Heterogeneous data: decision trees are able to handle different kinds of variables, e.g. categor-
ical and continuous variables, at the same time.

• Feature selection: feature selection in trees is intrinsically made in the building of the trees.
This means that trees are robust with respect to non relevant variables and noise.

• Easiness of interpretation: trees are easy to understand even for non statisticians. Moreover,
they are robust to outliers and errors in the target vector.

4.4.2. TREE CREATION

When handling data with complicated nonlinear relations, global models, such as regression, are
complicated to build and when one manage to do it they are often confusing. An alternative ap-
proach is to partition the space in smaller subspaces where the relations between the variables are
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simpler. Then, the subspace is partitioned again until a space in which it is possible to fit really sim-
ple models is reached. This procedure is called recursive partitioning. Decision trees are an example
of recursive partitioning. Each leaf of the partition represents a subspace and has a model which ap-
plies only to itself. This means that a point Xi belongs to a leaf if Xi falls in the subspace related to
that leaf. To see which subspace the variable belongs to, one has to start from the starting node (root)
and follow the tree [32]. Cause of the way they are built, if there are two different observations which
are identical in the input space but their target is different, then trees are not able to correctly predict
both the observations.
To build a good tree, we have to find a good partitioning of the data set. By doing so, we try to max-
imize the information the variable Xi gives about the dependent variable Y . First, we start finding
the assessment on variable Xi which gives the maximum information on Y , this will become the root
node. In the root node the assessment takes place and the observations split in two sub-nodes. Then,
the same procedure is repeated recursively for each child node. This means that a tree uses one fea-
ture at the time, if more features are equally predictive, which one is taken into account first is an
arbitrary decision or a matter of chance.

SPLITTING CRITERIA

There are different criteria based on which to split the samples at each node. We will now present a
couple of them, the first one is quite intuitive and it will give the reader an idea of what is happening,
while the second one is the most commonly used in practice [33].
The first criterion consists in minimizing an error defined as follows. Let’s introduce the variance for
leaf c as:

Vc = 1

nc

∑
i∈c

(
yi − 1

nc

∑
i∈c

yi

)2

.

Then we can define the sum of squared errors for the tree T as:

S = ∑
c∈leaves(T )

ncVc . (4.5)

The splits are then performed minimizing the sum of squared errors S.
The other possibility for the splitting is using the Gini impurity. This indicator tells us how common it
is to incorrectly classify a randomly chosen observation if it was randomly classified according to the
distribution of targets in the set. It is practically computed making the sum of the probabilities for an
observation with label i to be correctly classified, pi , times the probability of a wrong classification of
that observation, 1−pi . If we are in a binary classification setting, then the Gini impurity is computed
as:

Gini =
2∑

i=1
pi (1−pi ) = 1−

2∑
i=1

p2
i .

STOPPING CRITERIA

A stopping criterion must be chosen carefully in order to achieve a good compromise between per-
formance and complexity. Too big and complex structures could capture noise and lead to overfitting
for example.
The main stopping criteria used are the following:

• Setting the minimum amount p of observations in every leaf.

• Setting the minimum amount q of observations in each node in order to have a split.

• Setting a threshold δ for the decrease in the impurity after a split. Basically the algorithm stops
splitting if the amount of information gained is less than a certain threshold.
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• Setting a limit D to the depth of the tree.

All these are free parameters for the user to tune in order to find the right trade-off. Too large trees will
have a larger generalization error due to overfitting, while too small trees will lose some information
from the data resulting in a larger generalization error as well.
We can now write the recursive algorithm as follows:

Algorithm 1 Decision Tree Construction

1: procedure
2: c=createNode()
3: while TreeDepth<D do
4: Compute S as in equation (4.5)
5: if ∀xc : xc ∈ Class(y = 0) or ∀xc : xc ∈ Class(y = 1) then:
6: The node is a leaf node
7: return
8: Find the binary split that reduces S the most
9: Compute the impurity reduction ∆i

10: Count the number of observations in each child node cL and cR

11: if ∆i < δ or cL < q or cR < q then:
12: The node is a leaf node
13: return
14: Set the child node as the parent node

The problem with this simple algorithm is that it may stop too early. A way to overcome these is-
sues is to use cross-validation. The data set is split in a training and a validation set, and the algorithm
is applied to the training set putting the thresholds to q = 1, and δ= 0, meaning that we generate the
biggest possible tree. This tree is generally too big and will overfit the data, that is why we will then
use the validation set to perform cross-validation to prune the tree. Pruning means to cut some leafs
or branches from the tree, which means reducing the dimension of the tree. To do that, we look at the
error calculated on the validation set for each pair of leaf nodes that has the parent node in common,
and see if by eliminating these two nodes the total error would reduce. If that happens, we prune
the tree which means that the two leaf nodes are eliminated and the parent node becomes a leaf,
otherwise no pruning is done.

4.5. RANDOM FORESTS
Random forests are machine learning techniques used for both classification and regression. They
are a collection of Decision Trees generated using random samples of the data. Random forests are
able to handle the variance-bias trade off, and to reduce both bias and variance. They reduce bias
using lots of predictors, in fact a random forest is able to handle more predictors than observations,
and reduce variance by averaging the results obtained in all the different trees that form the forest.
The main assumption behind this methodology is that a group of models with weak predictive power
can be put together to obtain one with strong predictive power. Each decision tree, which forms a
random forest, is created different from the other. These trees are generated using a starting data
set, in which both independent (features) and dependent (outcome) variables are present (super-
vised learning) [34]. During the construction of each tree, before the splitting of each node we take
a random sample of predictors as possible choice to define the split. Using this random sample of
predictors at each split makes the fitted values across trees more independent. Moreover, randomly
building these trees implies that each predictor has multiple possibilities of being chosen to define
a split. And in these occasions, often the dominant predictors are not included which means that
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variables with less predictive power could still be included in some fit. Therefore, all these trees are
randomly generated, but they have a common feature. For every tree k, a random vector Θk is cre-
ated independent from the other Θi but with the same distribution. The k th tree is then built using
the training set and Θk , which results in a classifier h(x,Θk ), where x is the input vector [33]. When a
many trees are created, they vote for the most popular class. This procedure is called Random Forest.

Definition 2. A random forest is a classifier consisting of a collection of tree-structured classifiers {h(x,Θk ),
k = 1. . . } where the {Θk } are independent identically distributed random vectors and each tree casts a
unit vote for the most popular class at input x. [33]

These Θk , that we have just introduced, represent both the way to randomly select with replace-
ment observations from the data set, and the way to randomly select without replacement the pre-
dictors for each split. Θk is a collection of integers.

4.5.1. BIAS-VARIANCE DECOMPOSITION

It is possible to decompose the expected generalization error in three components:

1. Noise: it is the residual error. It is not dependent on the model or on the training set, and could
be considered as a lower bound for the generalization error for any model.

2. Bias: it measures the distance between the average prediction of the model and the true value
of the parameter.

3. Variance: it represents the volatility in the predictions over the training sets.

This division is made to better assess underfitting and overfitting. Usually, high bias and low variance
are associated with underfitting, while high variance and low bias are associated with overfitting. In
order to achieve good results, we need to find the right trade-off between these two quantities.
In order to reduce the generalization error, a reduction in the prediction variance is needed whilst
keeping the related bias at the same level or keeping the increase moderate. A way to easily do that is
to build ensemble methods, random forests belong to this class.

ENSEMBLE METHODS

Ensemble methods are a combination of multiple models. They combine the results of each model to
form a final prediction which has more predictive power than any of the single methods on their own.
There are various reasons why ensembles usually work better than single models. A statistical reason
is that when the data set is not informative enough, it is possible to find different models with the
same performance, and averaging over all the models help reducing the risk of picking the wrong hy-
pothesis. There is also a computational reason, in fact single models can have greedy assumptions or
can find local optima. On the contrary, ensembles use models that are trained from different starting
points and therefore can have a better approximation of the complete unknown underlying function.
Moreover, in most of the cases the function we are trying to find is so complex that a single model
cannot represent it, while a combination of methods could be able to predict this function.
Random forests belong to this class of methods and, in particular, are an ensemble of decision trees
grown randomly and independently from one another. The reason why trees are aggregated in forests
is because usually a tree classifier suffers from low bias and high variance (overfitting), and gathering
them in an ensemble method reduces this variance. In fact, it can be proven [35] that the component
related to the random effects in the decomposition of the variance is inversely proportional to the
number of trees. This means that for the number of trees tending to infinity, this variance term would
go to zero. Therefore, increasing the number of trees actually reduces the overall variance. It has been
shown that after a certain amount of trees, a plateau for the performance of the model is reached
meaning that the results obtained are not enough to justify the higher computational costs [33].
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Once all the trees are created, each one independently from the other, every one of them casts a vote
on the observations. The final result for the forest is obtained by averaging each single result over all
the trees.

4.5.2. RANDOM FOREST CONSTRUCTION

Let X be the random variable that represents the predictors, and Y the random variable that repre-
sents the actual class for the data. Now, suppose we have a random forest classifier, f (X ,Θ). Then, we
can define the margin function as in [36]:

mr (X ,Y ) = PΘ( f (X ,Θ) = Y )−max
j 6=Y

PΘ( f (X ,Θ) = j ),

where f (X ,Θ) is a set of classifications which varies because of the random mechanism imposed by
Θ. This margin function is, therefore, the probability of a correct classification over trees minus the
maximum probability over trees of an incorrect one. The larger the margin, the more confidence in
the prediction.
Using the margin function it is possible to define the generalization error:

g = PX ,Y (mr (X ,Y ) < 0).

Here, P is the probability over the space represented by X and Y . Basically, the generalization error
focuses on what happens to the margin function for different realizations of the observation, and
represents the probability of going from one class to another. A high probability is an indication that
the assigned class is not stable over random samples from the same population.
It is proven by Breiman in [33] that the estimated generalization error converges to the population
generalization error as the number of trees increases. The population generalization error is:

PX ,Y (PΘ( f (X ,Θ) = Y )−max
j 6=Y

PΘ( f (X ,Θ) = j ) < 0),

which represents the probability that a vote will be overturned. This implies that as the number of
trees grows, the random forest will less likely overfit the data.
If different realizations of the observation are taken into account, then the value of the margin func-
tion for a random forest changes for each realization. However, if we take the expected value of the
margin function for different realizations, then the strength of a random forest could be defined as:

s = EX ,Y [mr (X ,Y )].

The bigger this expected value is, the better.
Breiman shows that an upper bound exists for the generalization error, and it is equal to:

g∗ = ρ̄(1− s2)

s2 ,

where ρ̄ is the average correlation over realizations of the data and trees. Clearly, we would like this
quantity to be small, and s to be close to 1. This formula also shows that the upper bound for the
generalization error depends on the strength of the single trees and on the correlation between them
in term of the margin function.
Moreover, the generalization error does not increase with the number of trees. This information and
the fact that there is no overfitting for an increased number of trees lead to generally prefer more trees
rather than fewer trees.
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RANDOM FEATURES

In order to improve accuracy and generalization, the features used to split in every node are chosen
randomly among a set of features. This results in a reduction of the correlation ρ̄ while maintaining
the predictive power. Some of the properties related to this procedure are the following:

• It is faster than doing bagging or boosting because it is easily parallelized.

• It makes the tree more robust to noise and outliers.

• It allows the user to give an estimate of the correlation and the variables importance.

4.5.3. FEATURE IMPORTANCES

In random forests it is possible to directly rank the importance of an input variable [37]. Random
forests are an ensembles of decision trees, and each node of a tree can be seen as a condition on a
variable that splits the data set in two subsets with a common characteristic. The split is performed
in order to reduce the impurity in the most effective way. While training a tree it is therefore possible
to see which variable has the biggest influence on the impurity decrease.
More technically, if we define the decrease in impurity in a generic node as ∆I (si , t ), where t repre-
sents the node we are considering and si represent the splitting decision associated to variable xi ,
then it is possible to introduce the variable that measures the importance of feature i as follow:

M(xi ) = ∑
t∈T

∆I (si , t ), (4.6)

where T represent one tree of the forest. Then, to obtain the importance for the forest we must find
this quantity for each tree and average it over all the trees. The larger this quantity, the better. In fact,
a big value of M(xi ) means that we have a big decrease in the impurity, which is our final goal.

4.6. HOW TO TAKE INTO ACCOUNT ALGORITHMIC CORRECTIONS
Now that we have presented all the theoretical notions in the previous sections, it is possible to go
into the details of how these machine learning models have been adapted to our particular needs.
In particular, in this section we are going to describe how the outcome of the classification model is
affected by changes in the algorithm and therefore in the building process. The most effective correc-
tion turns out to be cost sensitive learning for this specific case. The main idea behind this technique
is to make the model focus more on rare class observations reducing the bias towards the majority
class. To do that, some modifications are introduced in the loss function or in the optimization of the
model. Specifically, different weights for the different classes are added. More practically, the intro-
duction of these weights enables the algorithm to assign different costs to different errors. While the
algorithm is training, a misclassification of a prepayment observation, i.e. classifying as noPrepay-
ment a prepayment observation, is this way interpreted more expensive than a misclassification of
the noPrepayment class.

4.6.1. ASSESS CORRECTIONS IN NEURAL NETWORKS

In this section, we analyse how the basic algorithm for a neural network is modified in the case we are
dealing with a classification problem on a highly imbalanced data set.
In this framework, the correction is applied to the loss function. Two weights are added in order to
obtain a cost sensitive loss which penalizes the error for the rare class more than the ones for the
majority class.

We start by introducing the most commonly used loss function for classification problems [38].
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That is the binary cross entropy loss and is defined as follows:

l =− 1

n

∑
i

yi ln

(
pi

1−pi

)
− 1

n

∑
i

ln(1−pi ) =

=− 1

n

∑
i

yi ln(pi )− 1

n

∑
i

(1− yi ) ln(1−pi ),
(4.7)

where yi is the realization of the observation and pi = P (yi = 1|x), which represents the probability
of belonging to the class y = 1 and it is given by the output of the model. It is easy to understand why
this is a common loss function for a binary classification problem. The first term is related to the error
for the class y = 1, in fact it is zero whenever the observation we are considering has target yi = 0. On
the contrary, the second term only exists when the target label is yi = 0 and therefore it assesses the
performance on the y = 0 class. The output probability is then magnified in the loss function using
the logarithm, which allows the user to pass from values of pi in [0,1] to values that span in [0,+∞).
Moreover, a property of the binary cross entropy loss is that it preserves marginal probability, which
means that the average of the predicted probabilities equals the average proportion of ones in the
target vector:

1

n

∑
i

yi = 1

n

∑
i

p̂i . (4.8)

This is a property particularly needed in our framework as it will be better explained in the results
chapter.
Now, we show the validity of this property in the simple case of no weights added. In general, the goal
is to minimize this loss w.r.t. the weights β. In equation (4.7) no β appears, but it is already hidden in
that formulation.
In fact, keeping in mind that the following relationship holds:

ln

(
pi

1−pi

)
=βT xi ,

it is straightforward to derive the formulas for pi and 1−pi as functions of β:

• pi = 1

1+e−β
T xi

, • 1−pi = e−β
T xi

1+e−β
T xi

.

At this point, we have to solve the set of equations obtained by taking the partial derivatives of the
loss function displayed in equation (4.7) w.r.t. the weights:

∂l

∂βk
= 0, k = 0, . . .K .

Observing that the values of the derivatives are:

• ∂ln(pi )
∂βk

= xi k
e−β

T xi

1+e−β
T xi

, • ∂ln(1−pi )
∂βk

= −xi k

1+e−β
T xi

.

we obtain the following formulation for a general partial derivative of the loss function:
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xi k pi .
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Therefore, the weights β̂ (the hat quantities are the actual values obtained for the parameters after
the training) must satisfy the following equation:

1

n

∑
i

yi xi k = 1

n

∑
i

xi k p̂i ,

where p̂i is pi calculated using β̂ instead of β. This is true thanks to the property of invariance of the
MLE.
Hence, if xi k is a constant term for some k (k = 0 the intercept), then we can simplify it to obtain the
following relation:

1

n

∑
i

yi = 1

n

∑
i

p̂i ,

which as the same form as equation (4.8). This is translated by the fact that the average response rate
in the data is equal to the average predicted probability of the model and therefore these marginal
probabilities are indeed maintained [39].

Now, we will consider the case in which the weights are added and examine how this property is
affected. In the light of what has been said, if our goal is to give different losses to observations be-
longing to different classes, then it is straightforward where to apply the weights in the loss function.
In fact, as stated earlier, this loss function has two terms and each one is related to the error of a par-
ticular class.
The addition of two different weights to achieve different misclassification errors, changes the loss as
follows:

lw =− 1

n
w1

∑
i

yi ln(pi )− 1

n
w0

∑
i

(1− yi ) ln(1−pi ), (4.9)

where w0 and w1 are the weights associated respectively to the negative (y = 0) and positive (y = 1)
class. This change implies that the set of equations to obtain the value of the weights changes and
therefore also the relation between the target vector and the output of the model. The new form for
the derivative of the weighted log-likelihood is the following:

∂lw
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If, again, xi k includes a constant term, the intercept, then also the p̂i are constant for those obser-
vations. Therefore, the weighted form of the loss function implies the following new relationship
between the output of the neural network and the target vector:

1

n

∑
i

yi = 1

n

∑
i

w0p̂i

w1 + (w0 −w1)p̂i
.

This means that the average response rate in the data is equal to the average of the above function of
the predicted probabilities of the model.
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In Figure 4.5 we see in practice what has been explained so far. In the left picture, we see the effects
of adding weights in the loss function. From the plot it is clear that the model is overestimating the
proportion of ones and this is in line with what expected. In fact, adding weights has the goal of
putting more emphasis on the minority class y = 1, which is translated by the fact that the output
probabilities are shifted towards one and therefore tend to be higher on average.
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(a) Result without any correction
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(b) Result with the correction

Figure 4.5: Artificial neural network results with and without corrections.

However, it appears that the pattern of the data is recovered from the algorithm, even if the scale is
influenced by the weights.
In the right picture, the results for the same model with the correction applied are shown. Now, the
desired properties of preserving marginal probabilities is respected. In fact, the model is able to follow
both the trend and the scale of the observed quantity.

4.6.2. ASSESS CORRECTIONS IN RANDOM FORESTS

In this section, the effects of the corrections on random forests are taken into account and are anal-
ysed. The weights in this kind of model play a different role and they are not inserted in the loss
function, since we do not have one when working with forests. Weights come into play in two differ-
ent steps of the algorithm. First, they are taken into account at each node split in the Gini criterion
for splitting. Second, the weights occur when calculating the probability of belonging to one class in
the leafs of each tree.

We start taking into account the effects on the splitting rule. The normal Gini criterion measures
how often a randomly picked observation would be not correctly classified if it was randomly assigned
to a class according to the distribution of labels in the set. It is defined as follows:

Gini =∑
i

fi (1− fi ) = 1−∑
i

f 2
i , (4.10)

where fi is the fraction of elements in the whole group belonging to class i . In order to give a more op-
erative way to calculate the Gini measure we need to introduce some quantities. Let’s define the sum
of all the observations in a potential child node c as tc =∑

i ni , where ni is the number of observations
in class i . The impurity of the child node is then given by:

ic = 1−∑
i

(
ni

tc

)2

. (4.11)

Then, we define the impurity of the entire potential split as:

Gini =∑
c

(
tc

tp

)
ic ,

where tp is the total of all observations in the parent node, and tc as in Equation 4.11.
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Now, we introduce the weights and show how the Gini measure is affected. Let’s define the weighted
sum of all the observations in a potential child node c as t w

c =∑
i wi ni , where ni is the number of ob-

servations in class i and wi is the weight assigned to class i . The impurity of the child node is then
given by:

i W
c = 1−∑

i

(
wi ni

t w
c

)2

.

Again, we can define the impurity of the entire potential split as:

Giniweighted =∑
c

(
t w

c

t w
p

)
i w

c ,

where t w
p is the weighted total of all observations in the parent node. Basically, it is the fraction of

the total weighted observations in the parental node which is in each child node c multiplied by its
impurity. Then, the potential split which has the lowest impurity is chosen. These changes help
enhance the performance of the algorithm without shifting the average outcome of the model.

We now proceed to analyse the effects of the second correction. It is at this stage, with this mod-
ification, that the weights scale the output probabilities of the random forest. In fact, the final result
of a random forest is obtained by averaging the results for each observation for each tree, but each
single result of each tree is influenced by the weights.
At this point, we present how the output probabilities for each tree are calculated. Suppose that in a
leaf node we have a observations belonging to class y = 0 and b observations belonging to class y = 1.
Then, for that node, all the observations have a probability of belonging to class y = 1 equal to:

P (y = 1) = b

a +b
.

If weights are added, let’s say w0 and w1 for the class y = 0 and y = 1 respectively, then the probability
of belonging to class y = 1 changes and assumes the following expression:

Pw (y = 1) = w1b

w0a +w1b
. (4.12)

From the two equations above, we can derive the relationship between P (y = 1) and Pw (y = 1) taking
advantage of the relation that exists between a and b. From equation (4.12), it is possible to derive
the following formula:

a = w1

w0

1−Pw (y = 1)

Pw (y = 1)
b.

Knowing this, we can relate P (y = 1) and Pw (y = 1), in fact:

P (y = 1) = b

a +b
= b

w1
w0

1−Pw (y=1)
Pw (y=1) b +b

= w0Pw (y = 1)

w1 + (w0 −w1)Pw (y = 1)
. (4.13)

Therefore, the relations between the outcome for the weighted model and the outcome for the general
model is given by equation (4.13). It means that if we use the above function of the weighted outcome
of each tree and then average over the whole forest, we obtain results in which the weighting has
already been taken into account.

In Figure 4.6 it is possible to see in practice the effects of the weighting and of the corrections for
the random forests. In the left picture, we see the effects of adding weights in the training process
of the random forest. From the plot it is clear that the model is overestimating the proportion of
ones and this is in line with what is expected. In fact, adding weights has the goal of putting more
emphasis on the minority class y = 1. This is translated in the fact that the output probabilities are
shifted towards one and therefore tend to be higher on average.
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(a) Result without any correction
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(b) Result with the correction

Figure 4.6: Random forest results with and without corrections

However, also for random forests, it appears that the pattern of the data is recovered from the
algorithm, even if the scale is influenced by the weights.
On the right picture, the results for the same model with the correction applied are shown. Now,
the desired properties of preserving marginal probabilities is respected. In fact, the model is able to
follow both the trend and the scale of the observed quantity.





5
THE MODEL AND THE RESULTS

In the previous chapters, we introduced the theoretical knowledge and financial notions needed to
develop a model to forecast the prepayment rate. In this chapter, we are going to present the details of
the models that have been developed to forecast the CPR. In particular, we explain why this specific
approach has been chosen and how we use a classification learning method in order to forecast a
time series. Then, we will display the results that we obtained.

5.1. WHY A CLASSIFICATION APPROACH
The prepayment rate can be considered to be a time series. Usually, time series forecasting is solved
with the help of univariate methods in which it is assumed that the future values of the time series
depend only on the present and past values of the series [40]. Moreover, it is also common to use a
multivariate model in which also additional time series variables are added to the model in order to
enhance the performance.
Nevertheless, a data set with more than 90 million observations is available. It contains a lot of infor-
mation about the clients, the mortgages and macroeconomic factors. We are interested in an exoge-
nous approach, which takes into account individual characteristics, to give an insight in the prepay-
ment behavior of mortgagors. In order to use all the information available, a time series forecasting
has been immediately abandoned. In fact, in such an approach most of the information available
would go lost.
The information that we have spans from February 2011 to January 2016 for a total of 56 months. The
months are just 56 since some of them are missing as explained in section 3.1. This means that in
a time series forecasting framework, the 90 million lines that are available would be reduced to just
56 observations, one for each month available. Moreover, all the information related to the clients
or to the mortgages for a single month would go lost. In fact, either they are not take into account
at all, or an average of the observations for each characteristic is considered, losing all the informa-
tion on a single level. In addition, the average values for most variables are really similar between
different months in which the prepayment rate is different, meaning that no useful information can
be extracted this way.

Another possible approach is to use survival analysis to predict when the prepayment event is go-
ing to happen. The main reason why this approach is discarded is that it is not able to generalize its
predictions for the forecasting set. In fact, when the model is applied to a set of observations that is
disjoint in time the model fails as shown in Figure 5.1. Moreover, there is another drawback, but to
explain it we need to first make a distinction.
We aim to forecast the prepayment rate of a portfolio of mortgages, but the information that we have

is related to each single mortgage. This means that we can approach this problem looking at a loan

51
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Figure 5.1: Results for a model based on survival analysis.

level, so basically aiming to understand whether each single mortgage is going to prepay or not and
then aggregate the results, or looking at a portfolio level, where we are interested in the average value
of the portfolio rather than on each individual. The main goal is to forecast the CPR, therefore more
weight is given to the portfolio level. However, being able to correctly forecast each loan on a single
level would be more insightful and efficient. In fact, if we know everything on a loan level, it is then
easy to pass to the portfolio level while the other way around is not possible.
Going back to survival analysis, the drawbacks that we mentioned are related to the fact that the
model is indeed able to follow the path of the CPR on the test set, but it is unable to learn which ob-
servations are more likely to prepay. It is just able to capture the average level of the total prepayment
rate without giving any added information regarding the single mortgages. This behavior is also vis-
ible from Figure 5.1 where it appears clear that the model is just predicting the average value for the
CPR and is completely unable to forecast any peaks in the prepayments pattern.

In order to overcome the problems stated earlier, we decide to use a different kind of approach
from the ones already introduced. The model that will be developed is a three factor model based on
classification. The choice of this approach is made following two main reasons. The first one is that
this kind of approach allows us to incorporate behavioral and macroeconomic aspects to the model.
The second one is that since we are focusing on classifying each single observation as belonging to
one class or the other, we will have more insight also in a single loan level. Moreover, developing
machine learning algorithms to complete this task, no need for assumptions in the distributions of
the data set is needed.

5.2. THE MODEL
In this section we introduce in more detail the model and its characteristics. As touched upon earlier,
it is a three factor model and each factor assesses a different aspect of the prepayment event. A sim-
plified visual formula for the CPR can be seen in Figure 5.2. We will now proceed to introduce each
term and explain its purpose.

Figure 5.2: CPR formula.
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5.2.1. FIRST FACTOR:"CLASSIFICATION OUTPUT"
The first factor is the one that assesses whether a certain observation, a mortgage, is going to prepay
or not. This first factor is the one that influences the final value of the predicted CPR the most. In fact,
all the characteristics in the CPR pattern, like the seasonality, the upward trend or all the small peaks,
are caught by the model at this stage through this classification problem. It is possible to achieve
these results taking advantage of the property of preserving marginal probabilities in classification.
In fact, assuming that all prepayment observations are full prepayments, this first factor would be
enough to forecast the CPR. This is because the CPR would coincide with the proportion of ones that
is given to the model as a target vector. However, most of the observations in the data set are partial
prepayments, therefore a corrective term to take that into account is needed.

The values for this factor are obtained by means of a binary classification in which we assign each
sample to the Prepayment or noPrepayment class. The inputs to the model are the information about
the mortgage and the target value is 1 if the mortgage prepays, either it is a partial or a full prepay-
ment, and 0 otherwise.
Precisely, we do not focus on the final assigned class, but directly on the output of the model which
can be interpreted as the probability of belonging to the class. The reasons are mainly twofolds: the
first one is that probabilities are more informative than the single class, output probabilities of 0.6
and of 0.9 would assign the sample to the same class but if the output is 0.9 the model is more certain
about its collocation. The second one is that the property derived in chapter 4 states that the average
proportion of ones is equal to the average of the output probabilities, and not to the average predicted
proportion of ones.

Two different models are developed at this stage, one to forecast the CPR component due to move-
ment prepayments and one for the voluntary prepayments component. These two models are obvi-
ously different, however, they are based on the same statistical methods. This means that two dif-
ferent random forests and two different neural networks are trained for movement and voluntary
prepayments respectively. The only difference between them is the choice of the parameters.

5.2.2. SECOND FACTOR: "HEIGHT OF PREPAYMENT"
The second factor assesses the height of the prepayments, it checks whether the prepayment was
partial or full. The addition of this term is needed since the first factor is not able to learn whether a
prepayment happens or not and its magnitude at the same time. In fact, as mentioned in the previous
section the first term is built in a way that considers all prepayments as full.
Since the nature of prepayments due to movement and voluntary is quite different, two completely
distinct factors are introduced for the two classes of prepayments.

MOVEMENT

In the class of movement prepayments, approximately 80% of the observations belonging to this class
represents a full prepayment. It means that most of the prepayments for this reason are full. For this
reason, the correction term that needs to be applied is small, since approximating every prepayment
as full would be an accurate approximation of reality in this case.
Following this reasoning, we decide to use a constant term to adjust the model given by:

hM = E[CPRM ].

Basically, hM is the average value of the CPR for the observations that have prepaid due to movement.

VOLUNTARY

In the voluntary prepayment class, the ratio between partial and full prepayment is quite different
from the one for movement. This time, most of the prepayments are partial. Full prepayments ac-
count for just about 15% of the total observations. Therefore, this time we need to apply a bigger
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correction to the first term of the formula.
To assess the size of a prepayment we develop a new classification model. In particular, it is again
a classification problem but this time the two classes are not Prepayment and noPrepayment. The
classes now are prepayments less or equal than 20% of the starting notional, and prepayments greater
than 20%. This threshold of 20% has been selected because it is the threshold for applying a penalty
or not in the Netherlands. Therefore, it is expected that small prepayments without penalty could
have different characteristics than bigger prepayments where a penalty comes into play and there-
fore simply a positive refinancing incentive would not be enough to convince a mortgagor to prepay.
In fact, if a penalty exists, a small incentive can not cover the costs that derive from it.

Before presenting the second factor for voluntary prepayments hV , we need to introduce some
other quantities. First, let’s define the average of the prepayment rates for observations that have
prepaid less than 20% of the starting balance as E<20%. Analogously, we define E>20% as the average
of the prepayment rates for samples that have prepaid more than 20%. Now, if we call the output of
the model ŷ , then ŷ represents the probability that the corresponding observation has prepaid more
than 20% of the starting notional. The probability that a sample prepays less than 20% is then given
by 1− ŷ . Having defined these quantities, it is possible to obtain a formula for the second term:

hV = ŷE>20% + (1− ŷ)E<20%. (5.1)

The quantity in equation (5.1) is different for each observation and it depends on the likelihood of the
observation to belong to one class or the other.

5.2.3. THIRD FACTOR:"STARTING BALANCE"
In Figure 5.2 the third factor is called starting balance, and it represents the notional on which the
prepayment rate is based. It has been added to weigh the CPR for the notional of the mortgage.
This way loans with a bigger notional have a bigger impact on the total CPR as it makes sense. In
order to present the value of the CPR as a percentage, the total predicted amount prepaid for each
month is divided by the total amount outstanding for that month. We are able to calculate an average
prepayment rate for the whole portfolio following this procedure.

5.3. VARIABLE SELECTION
In our data set, we have more than 25 variables available as stated in chapter 3. In order to reduce
the storage and computational costs, we decide to perform some variable selection. The first model
to determine the first factor introduced in the previous section is a simple logistic regression. In
fact, doing that gives a first impression of which variables are important and to have a lower bound
for the performance of the algorithm, since we expect machine learning to work better than logistic
regression. The variable selection has been done using the LASSO (Least Absolute Shrinkage and
Selection Operator) method [41]. The variables that reveal to be meaningful in predicting the CPR for
logistic regression are the ones that we presented in chapter 3 as meaningful in the literature.

NEURAL NETWORKS

In neural networks it is more complicated to look into the models because of their black box con-
struction. Therefore, it is more complicated than in logistic regression to assess if and how each input
affects the final output of the problem. A property of neural networks is that they should be able to
perform variable selection automatically within themselves. In fact, what happens inside the network
is that the neurons in the first layer tend not to be activated in the long run if the variable that enters
is not meaningful for the prediction process. "not activate" means that the neuron outputs a 0.
Nevertheless, in order to not overfit the model and keep it computationally less expensive, we want
to perform a variable selection. We start by training a model with all the available variables, then
the ones that result not meaningful in the literature and in the logistic regression are shocked to see
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whether the results are affected or not. If the results do not change, then the variable is also removed
and an ulterior control of the output is made. If no change occurs, then we consider that variable
as meaningless in the prediction process of the model. It is interesting to notice that the removal of
some variables actually increased the performance of the model especially in the test and forecasting
set. This may be due to the fact that a greater number of variables tends to overfit the training set.
Following this procedure, the resulting variables are shown in Table 5.1 and Table 5.2.

1 Original Notional 6 Age of the client
2 Interest rate incentive 1 7 Months to reset
3 Age of the mortgage 8 Indicator for December
4 Already prepaid once 9 Indicator for January
5 Interest rate incentive 2 10 Age of the client

Table 5.1: Independent Variables for Voluntary prepayments

1 Age of the mortgage 6 Mortgage type
2 AgePattern 7 Months to reset
3 House sales 8 Age of the client
4 Original Notional 9 Rate age linear
5 Interest rate incentive 1 10 Unemployment rate

Table 5.2: Independent Variables for movement prepayments

RANDOM FORESTS

Regarding random forests, it is possible to get insight in the importance that each input variable has
in the model. As touched upon in section 4.5.3, a quantity M(xi ) defined in equation (4.6) exists that
represents the decrease in impurity that we obtain by splitting using that variable.
In the light of this, the procedure we follow for variable selection is the following. We train a forest
using all the predictors and compute the importance for each feature. Then, the variables with an
importance significantly lower than the others are removed. The first tree built using more than 20
predictors is computationally really expensive and takes a long time to be trained. By removing one
or two variables at the time, we reduce the set of significant variables for the two models until all the
remaining features are too meaningful to be removed.
The variables that have been selected result to be the same as for the neural networks, therefore the
reader can have a look at Table 5.1 and Table 5.2. For random forests, in addition we can look at the
importance of these features.
A plot of the feature importances for both models is shown in Figure 5.3.
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Figure 5.3: Plot of the feature importances for the random forests
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The red bars show the importance of the features in the forest, while the black lines are a rep-
resentation of their inter-tree variability. The numbers under the columns identify the variables as
introduced in the tables, e.g. 1 for voluntary corresponds to the original notional.
It is worth noticing that for the movement model the variable for the unemployment rate has the
smallest importance, but it is fundamental in order to catch the upward trend present in movement
prepayments.

5.4. IMPLEMENTATION AND RESULTS

In this section, we explain how the models are implemented and describe the choice of the parame-
ters. Everything has been implemented in Python.

We start by developing an algorithm to build neural networks, and experiment it on some simple
test data set like the Iris data set. The performance achieved on this set is comparable to the one ob-
tained using a network built using the Python library Keras. All the network presented in the following
sections have been implemented using the Keras library though due to computational limitation of
our code.
For random forests, we use the well known Scikit-learn library which contains the ensemble module
with which is possible to build ensemble based methods for both classification and regression.

5.4.1. ERROR MEASURE

In the development of both models, the hardest part is to find a compromise between performances
on a loan level and on a portfolio level. Which corresponds to finding a balance between the classi-
fication performance, correctly classify the observations, and the goodness of the approximation of
the CPR.
The value for the annualized monthly CPR is obtained from the output of our models by averaging the
prepayment rate of each single observation. However, during training the model it is not possible to
take into account a measure of the error that we are making in estimating the CPR. In fact, this would
mean that the algorithm should be able to group observations from the same month, average them
and confront them with the value of the CPR for that month, which is not even an input to the model.

Before proceeding in showing an example of this phenomenon, we would like to introduce a mea-
sure of the goodness of the prediction of the CPR. In fact, we already introduced ways to assess classi-
fication performance in section 3.2.3, but we are still missing one to assess the distance between the
CPR we estimated and the one we observed.
Let’s define the error for method i at time t as Erri t = |yt − ŷi t |, where yt is the observed value and ŷi t

is the value predicted by model i . Then, we can introduce the average error over time for model i as:

Erri = Et [Erri t ]. (5.2)

This quantity represents the average distance between the predictions and the observed values in
absolute terms. Clearly, we would like this quantity to be as small as possible.

In some cases, we obtain a model which is forecasting the CPR poorly while achieving classifica-
tion results that are better than other models. An example of this can be seen in Figure 5.4, in the
left picture the plot for the model with better classification performance is shown, while in the right
graph the plot for the one with a better approximation of the CPR is displayed.
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(a) Model with better classification performance
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(b) Model with better approximation of the CPR

Figure 5.4: Examples of the difference between looking at it on a portfolio or loan level.

When we talk about classification performance, we refer to the AUC. The Auc for the left graph is
of 69% and for the right one of 67%, meaning that the left one performs better for this measure. While
when we talk about CPR estimation error we refer to the formula in equation (5.2). This error is clearly
smaller for the right graph, meaning it is better at forecasting the CPR.
Both plots are subdivided in two parts by a vertical line, this line separates the test set from the fore-
casting set. Therefore, on the left side of each graph the results on the test set, never seen before
observations but on the same time frame, are shown. On the right part, the results on the forecasting
set, never seen before and disjoint in time observations, are shown.

5.4.2. IMPLEMENTATION

In this section, we give some details about the specifics for the implementation of the models. For
both movement and voluntary prepayments we worked on subset of 10 million observations taken
from the full dataset. This is done due to computational limitations of our machines.

VOLUNTARY

We start by giving the details for the model for voluntary prepayments. In order to achieve a more
balanced dataset, we start applying some data level techniques. The one that results to be the more
effective is undersampling. Two different approaches for the undersampling are tested, the first one
is to remove observations which are far from the decision boundaries of the algorithm since they
should be considered less relevant in the learning process of the algorithm [18]. The other one is
random undersampling, which means randomly removing observations from the majority class. The
results achieved applying both methods are comparable, therefore we decide to go for random un-
dersampling to reduce the total computational time.

In the data set, the voluntary prepayment observation are ≈ 1.5% of the total number, so that we
are indeed in an imbalanced data set framework. The ratio between observations of the two classes
in this subset is the same as the one for the full dataset.
The undersampling has been performed until reaching a ratio of Prepayment-noPrepayment obser-
vations of 1 to 4. This value has been selected as a compromise between the training times and the
effectiveness of the correction. In this way, we had enough observations to get a significant training
while maintaining low the computational costs.
It follows that we have a value for the β parameter introduced in equation (3.2) that is equal to 0.061.
The reader can notice that multiplying the total number of observations by β, the number obtained
is equal to more or less 4 times the number of observations in the prepayment class.

A perfect balance between classes is then achieved with the corrections on an algorithmic level.
The correction we apply at this stage is based on cost sensitive learning. We modify the loss function
as shown in equation (4.9) in order to give different magnitudes to different kinds of errors.
Let us call w0 the weight related to the class y = 0, the noPrepayment class, and w1 the weight associ-
ated to the class y = 1, the Prepayment class. Then, a common choice for the weights is the following
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[42]. If we call n0 the number of observations in the noPrepayment class, n1 the number of samples
in the other one, and N the total number of observations in the set, the weights are defined as follows:

wi = N

ni
, i = 0,1.

For our framework, this means w0 = 1.25 and w1 = 5. We start from these two values, however we
experiment also with different combinations. The values that turn out to have the best performance
for the neural network are w0 = 1 and w1 = 4, while for the random forest are w0 = 1 and w1 = 5.

As for the set of parameters related to the models themselves, we test different combinations for
both random forests and neural networks. We then take the set of parameters with the best compro-
mise between classification performance and goodness in the estimation of the CPR.
Some of the settings for the neural networks together with the respective performance are visible in
Table 5.3. In the table some abbreviations are used such as: #HL stands for number of hidden layers,
#HN stands for number of hidden nodes, and TT stands for training time and it is expressed in sec-
onds. The other parameters refer to the weights (w0 : w1), the batch dimension which represents how
many observations are taken into account before updating the gradient in back propagation, and the
number of epochs which represents the number of iterations in the training process.

Weights Batch Size #HL #HN #Epochs TT (s) Precision Recall F-Measure Accuracy AUC
1:4 128 1 20 200 462 0.0244 0.5114 0.0465 0.6577 0.6442
1:4 128 2 20 200 588 0.0266 0.4783 0.0504 0.6329 0.6491
1:4 128 1 30 200 476 0.0269 0.4616 0.0508 0.6484 0.6498
1:4 128 2 30 200 608 0.0269 0.4561 0.0507 0.6276 0.6477
1:4 64 1 30 200 592 0.0274 0.4497 0.0516 0.6377 0.6474
1:4 64 2 30 200 784 0.0250 0.5074 0.0477 0.6519 0.6473
1:4 128 5 20 200 871 0.0397 0.2584 0.0688 0.5464 0.6471
1:4 128 10 10 200 1508 0.0976 0.0853 0.0911 0.5475 0.6401
1:3 128 1 30 200 448 0.0409 0.2340 0.0696 0.5301 0.6456
1:5 128 1 30 200 452 0.0197 0.7067 0.0383 0.7307 0.6460

Table 5.3: Results on the validation set for different settings of the artificial neural network for voluntary prepayments

The combination that reveals to be the best is the highlighted one. The reader must keep in mind
that the selected model is not the one with the best performance in every measure. A grater impor-
tance is given to the AUC for example, and also the results on the test and forecasting set are taken
into account for the final selection.
For every model, the values for precision are low, which means that we classify some noPrepayment
observations as prepayments. This looks like it is unavoidable due to the class imbalance present in
the data set. Such values for recall mean that we are able to correctly predict more than half of the
observation for prepayments. The AUC is the parameter we look at the most, since due to the imbal-
anced data set is the one that better assesses the performance.
Adding complexity to the model does not help the performance, it just increases the computational
time. Performance are not increased from a reduction of the batch size either.

While for the random forest the reader should look at Table 5.4. Also in this table we use some
abbreviations. #SF stands for number of splitting features which represents the dimension of the set
among which the algorithm randomly choose the feature that uses to split the node. Min Split stands
for the minimum amount of observations that we must have in a node to split it. Min leaf stands for
the minimum amount of samples that we require in a leaf node. The quantities TT and weights are
the same as in Table 5.3. The only remaining parameter is the one that represents the number of trees
in the forest.
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Weights #Trees #SF Min Split Min Leaf TT (s) Precision Recall F-Measure Accuracy AUC
1:5 200 4 30 30 100 0.0307 0.6368 0.0585 0.6959 0.7175
1:5 200 4 50 50 95 0.0273 0.6630 0.0525 0.6640 0.7267
1:5 200 4 70 70 91 0.0260 0.6847 0.0501 0.6141 0.7001
1:5 200 6 30 30 140 0.0318 0.6297 0.0605 0.7096 0.7136
1:5 200 6 50 50 133 0.0285 0.6639 0.0547 0.6592 0.7131
1:5 200 6 70 70 127 0.0267 0.6792 0.0514 0.6275 0.7049
1:5 200 8 50 50 169 0.0292 0.6627 0.0559 0.6673 0.7174
1:5 200 8 70 70 164 0.0272 0.6766 0.0523 0.6352 0.7087
1:4 200 4 50 50 95 0.0331 0.5355 0.0624 0.7576 0.7071
1:6 200 4 50 50 94 0.0235 0.7561 0.0455 0.5290 0.7068

Table 5.4: Results on the validation set for different settings of the random forest for voluntary prepayments

Again, the combination of parameters we use is the one highlighted in the table. The results are
similar to the ones of Table 5.3. The training times for the random forests are generally smaller than
for neural networks.

MOVEMENT

In this section the details for the model for prepayments due to movement are presented. Again, we
start from data level techniques to achieve a more balanced set. As for the voluntary prepayment
framework, we decide to apply random undersampling.

In the data set, we expect less movement than voluntary prepayments from the CPR composition
showed in chapter 3. Therefore, for this setting we have classes that are even more imbalanced.
The undersampling has been performed until reaching a ratio of Prepayment noPrepayment obser-
vations of 1 to 9 this time. This value has been selected as a compromise between the training times
and the effectiveness of the correction. The ratio is smaller in this occasion, the decision for this value
is made in order to have enough observations to effectively train the model.
This time, the value for the β parameter is equal to 0.014. As we would expect, it is smaller than the
one for movement. In fact, the number of observations to remove is bigger even though the ratio is
smaller. In this occasion, multiplying the total number of observations for β, the number obtained is
equal more or less to 9 times the number of observations in the prepayment class.

Like in the setting for voluntary prepayments, a perfect balance between classes is then achieved
with the corrections on an algorithmic level. We use cost sensitive learning in this setting as well.
We make the same considerations on the weights w0 and w1 as in the previous section. The values
that turn out to have the best performance are the same for both models, and they are equal to w0 = 1
and w1 = 10.

As for the set of parameters related to the models themselves, we test different combinations as
explained in the previous section.
Some of the settings for the neural networks are visible in Table 5.5. For a more detailed explanation
on the meanings of the headers of the columns please refer to the explanation made for Table 5.3.

Weights Batch Size #HL #HN #Epochs TT (s) Precision Recall F-Measure Accuracy AUC
1:10 128 1 4 200 65 0.0029 0.6463 0.0058 0.7192 0.6899
1:10 128 2 4 200 75 0.0025 0.7384 0.0051 0.7283 0.6829
1:10 128 1 10 200 69 0.0028 0.6472 0.0057 0.6911 0.6879
1:10 128 2 10 200 82 0.0029 0.6434 0.0058 0.6754 0.6866
1:10 64 1 4 200 81 0.0030 0.6163 0.0060 0.6817 0.6849
1:10 64 2 4 200 92 0.0035 0.5271 0.0070 0.6813 0.6742
1:10 128 5 4 200 130 0.0036 0.5058 0.0072 0.7019 0.6554
1:10 128 10 4 200 192 0.0017 0.5935 0.0034 0.6826 0.6631
1:9 128 1 4 200 66 0.0038 0.5174 0.0075 0.6211 0.6799

1:11 128 1 4 200 70 0.0031 0.6318 0.0061 0.7302 0.6888

Table 5.5: Results on the validation set for different settings of the artificial neural network for movement prepayments

The combination that reveals to be the best is the highlighted one. The considerations for these
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results are similar to the one for Table 5.3. It is worth noticing how a greater imbalance in the classes,
for movement the ratio Prepayment-noPrepayment is of 1/9 while for voluntary is 1/4, lead to lower
values of precision. The training times are smaller just because the training set is smaller due to data
limitations.

While for the various settings in the random forest framework, the reader should look at Table 5.6.
For an explanation of the headers please refer to Table 5.4.

Weights #Trees #SF Min Split Min Leaf TT (s) Precision Recall F-Measure Accuracy AUC
1:10 200 3 20 20 24 0.0045 0.3895 0.0090 0.8520 0.6987
1:10 200 3 40 40 23 0.0039 0.4884 0.0077 0.7835 0.7015
1:10 200 3 60 60 21 0.0036 0.5310 0.0071 0.7462 0.6970
1:10 200 6 20 20 39 0.0049 0.3740 0.0096 0.8669 0.6980
1:10 200 6 40 40 38 0.0039 0.4574 0.0078 0.8005 0.6976
1:10 200 6 60 60 35 0.0037 0.5155 0.0074 0.7631 0.6985
1:10 200 8 40 40 52 0.0041 0.4671 0.0082 0.8062 0.6949
1:10 200 8 60 60 49 0.0038 0.5078 0.0075 0.7687 0.6954
1:9 200 3 40 40 23 0.0043 0.4612 0.0086 0.8064 0.6872

1:11 200 3 40 40 55 0.0039 0.4884 0.0077 0.7735 0.6981

Table 5.6: Results on the validation set for different settings of the random forest for movement prepayments

Again, the combination of parameters we used is the one highlighted in the table.

5.4.3. RESULTS

In this section, we proceed to show the results obtained in the prediction of the CPR. To obtain the fi-
nal value for each month, the predicted values of the CPR from the same month are clustered together
and then averaged. Our models are actually forecasting the single month mortality rate introduced
in equation (3.1). Nevertheless, the results show the values for the annualized CPR obtained applying
equation (2.1) to our estimation.

We start presenting the results obtained for voluntary prepayments. A plot for the estimated pre-
payment rate due to voluntary causes can be observed in Figure 5.5. In the picture, the results related
to a logistic regression are visible as well. All the corrections and new variables are used in the logistic
regression, and the reason why we are showing these results is to see whether machine learning algo-
rithms actually perform better than standard logistic regression both in terms of AUC and the error
measure defined in (5.2).
The graph is divided in two parts by a vertical blue line. In the left part of the graph, it is possible to

see the performance of the models on the test set. While on the right part, the results for the forecast-
ing set are shown.
In Table 5.7 the results for the AUC and the error measure defined by equation (5.2) are displayed.
The abbreviations are as follows: LR stands for logistic regression, ANN for artificial neural networks,
and RF for random forest.

Method Set AUC Error
LR Test 68.4%

0.9491%
Forecasting 63.1%

ANN Test 69.5%
0.6955%

Forecasting 63.9%
RF Test 69.8%

0.7068%
Forecasting 64.4%

Table 5.7: Values of Error and AUC for voluntary models.

Both machine learning models perform slightly better than the logistic regression. In particular, it
seems that the neural network performs a bit better on a portfolio level, i.e. smaller error, while the
random forest is more accurate on a loan level, i.e. higher AUC.
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Figure 5.5: Results for voluntary CPR.

We proceed to show the results for the movement prepayment models as well. In Figure 5.6, the
same division in two parts of the graph as in Figure 5.5 is performed. Also in this case, we are present-
ing the results obtained with a simple logistic regression. The values for the error measure defined in
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Figure 5.6: Results for movement CPR.

(5.2) and for the AUC related to these models can be found in Table 5.8.
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Method Set AUC Error
LR Test 66.3%

0.5520%
Forecasting 64.0%

ANN Test 68.6%
0.4915%

Forecasting 66.6%
RF Test 68.8%

0.4872%
Forecasting 67.7%

Table 5.8: Values of Error and AUC for movement models.

We notice that all the models perform better for forecasting the movement prepayments rather
than the voluntary ones, in fact we have higher values for the AUC and smaller values for the error
measure. Moreover, also in this occasion the machine learning techniques are performing better
than logistic regression.
In this example the random forest is the method that works best both on a loan level and on a portfolio
level.

Last, we present the results for the total CPR, so for the prepayment rate for both causes. The plot
is shown in Figure 5.7 and is obtained by summing the results obtained by the two models. The same
division is made here as well.
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Figure 5.7: Results for the total CPR.

In this graph we can appreciate both the seasonality, typical for voluntary prepayments, and the
upward trend that starts late 2014 shown in the movement prepayment rate.
This time, in Table 5.9 just the values of the error measure are shown.

Method Set Error
LR Whole time frame 1.2636%
ANN Whole time frame 0.9761%
RF Whole time frame 0.9697%

Table 5.9: Values of Error for the total CPR.

Again, better results are achieved by machine learning techniques. The method that works best
is the random forest. It improves the results of the prediction of the CPR of ≈ 0.3% on average for
each month. Such a small improvement could seem like meaningless, but we have to keep in mind
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that these are absolute errors and we are dealing with percentages, therefore it is significant. In fact,
considering a portfolio of 150 billion, which is a plausible quantity, a 0.3% difference in the CPR is
translated by a difference in the expected amount prepaid of 450 million. Such a quantity has an im-
pact on the hedging strategy of a bank when calculating the amortizing notional of the IAS introduced
in equation (2.2).

5.5. SENSITIVITY ANALYSIS

In this section we perform a sensitivity analysis to assess the degree of confidence in our forecasts.
In particular, this analysis will be performed on the random forests because it is the method with the
best performance.

5.5.1. CONFIDENCE

The plot of the estimation of the CPR together with its confidence intervals for voluntary prepayments
can be seen in Figure 5.8. In the picture, the 95% confidence intervals are shown. The observed value
for the CPR is not always within these intervals.
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Figure 5.8: Plot of the results with a 95% confidence interval.

In order to make sure that all the values of the observed CPR are in the confidence intervals of the
prediction, we need to lower the confidence to 90%. As expected, for the same degree of confidence
we have slightly larger intervals for the forecasting set. At the peaks the intervals are always the widest
due to a greater variability of the values of the CPR.

For the movement prepayments model based on random forests the results with the respective
95% confidence intervals are displayed in Figure 5.9.
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Figure 5.9: Plot of the results with a 95% confidence interval.

Also in this case, the observed values of the CPR are not always contained in the confidence inter-
vals. The considerations made earlier for the plot for voluntary prepayments apply to this model as
well. In the forecasting set part, the prediction seems a bit off and that could be due to the significant
change in the prior distribution respect to the training set. For a more detailed explanation of this
phenomenon please refer to appendix B.

5.5.2. PARTIAL DEPENDENCE PLOT

In this section, we give an insight in how the random forests are working. In particular, we show how
the input variables affect the output of the models. A way to do that is through the partial dependence
plot.
A partial dependence plot shows how each variable in the input affects the prediction of the model.
It is calculated by changing the value of the variable under consideration while keeping all the others
the same, and then looking at how the predictions change. These plots show the variation in the
output, therefore negative values are also shown meaning that the output would have been less than
the average for that value of the input variable we are considering.

We show the partial dependence plots for a couple of variables which appears to have a great im-
portance in the prediction process of the forest.
We start by showing in Figure 5.10 and in Figure 5.11 the plots for the effects of the interest rate in-
centive and the original notional of the mortgage in the random forest developed for voluntary pre-
payments.
In the graphs, each cross represents an observation, if it is green it means that for bigger values of the
variable the corresponding output increases, if it is red it means the opposite. The thicker line with
yellow details is the line that represents the overall relation between output and input, and it is ob-
tained by averaging the other thinner lines which represent the behavior of clusters of observations,
plotting a line for each observation results in an unreadable graph and is therefore avoided.
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Figure 5.10: Partial dependence plot for the interest rate incentive in movement prepayments.

It appears that negative values of the incentive do not influence the prepayments on average since
positive and negative components cancel each other out. Then, at 0 we have that for bigger values of
the incentive the prepayments increase until reaching a plateau.

Figure 5.11: Partial dependence plot for the original notional in movement prepayments.

Regarding the plot related to the original notional we can see that in general a bigger original no-
tional results in more chances to prepay, but that after a certain amount, i.e. ≈ 30K , the impacts stays
stable.

Now, we proceed to show the partial dependence plots for the movement prepayments model.
The results for the age of the mortgage and the house sales variables are displayed in Figure 5.12 and
in Figure 5.13.
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Figure 5.12: Partial dependence plot for the mortgage age in voluntary prepayments.

For the age of the mortgage, we see that small values of the age are strictly associated to non pre-
payment events. Moreover, in general the age of the mortgage has negative correlation with the out-
put of the model.

Figure 5.13: Partial dependence plot for the house sales in voluntary prepayments.

In the graph related to the house sales, the observations are distributed in a specific way due to
the nature of the variable, being a macroeconomic variable it just assumes a discrete set of values for
each observation. Moreover, the reader can see that, for a higher number of houses sold, the output
increases which is translated by more prepayments, as one would expect.



6
CONCLUSION AND OUTLOOK

In the previous chapters, we explained how we developed a model based on machine learning to
predict the prepayment rate in a mortgage portfolio. In this section we proceed to give a summary of
our work and then to draw a conclusion. A section with recommendations for future research is also
present.

6.1. SUMMARY AND CONCLUSION
Throughout this thesis we have investigated the exogenous prepayment models to forecast the pre-
payment rate. The CPR, conditional prepayment rate, has been introduced and explained in chapter
2 together with the basic notions of a mortgage contract and of a prepayment option. Then, we ex-
plained that interest rate risk arises from prepayments due to their influence in the hedging strategy
of a financial institution, and what are some famous drivers for prepayments in the literature.
An insight on the existing methods to forecast the CPR is carried out. In particular we did not focus on
option theoretical models but on exogenous models. Most of the existing methods were based on lo-
gistic regression and survival analysis. We decided to have a classification approach rather than using
survival analysis because of its limitations in generalize the results on data never seen before. A time
series analysis approach was also investigated but discarded due to the loss of behavioral information
in the implementation of such a method.

We continue introducing the data set that we use to train our models. In particular, we show how
most of the phenomena we would expect from literature are actually present in our data set as well.
For instance, we show how for higher values of the interest rate incentive we actually have more pre-
payments, but also that a significant amount of prepayments is present for negative values of it mean-
ing that people do not always act following only economically rational principles.
Moreover, looking at the distribution of prepayments against some of the variables we were able to
create a variable, related to the age of the mortgagors, which ended up being of greater impact in the
performance of the models. Also a macroeconomic variable is introduced to help the model in fol-
lowing some low frequency trend. This variable is introduced with a lag, meaning that an observation
for today has the value for that macroeconomic factor of three years ago, in order to be able to use the
models for forecasting.
Then, we proceed to explain the problem of having a data set which has imbalanced classes, the pre-
payment observations account for just ≈ 1.5% of the number of total observations. Some techniques
to tackle this problem are introduced, and their effects on the final results are shown. In particular it
is shown how undersampling affects the prior distribution in the data and which corrections must be
made in order to take that into account.

In chapter 4, we gave the theoretical background needed in order to develop such a model. The
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details on how an artificial neural network and a random forest work are shown. Then, how these
algorithms have been modified to adapt to our particular problem is explained. What was done was
basically adding weights in the loss function or in the impurity function in order to give different
weights to different kinds of error. This means that classifying a prepayment observation in the no-
Prepayment class has a bigger impact in the total loss, or in the total decrease of the impurity, than
classifying a non prepayment observation as Prepayment. This makes sense since algorithms tend to
be biased towards the majority class and in this way a greater focus goes the the rare class.

The model that we used to forecast the CPR is now introduced. It is a three factor model in which
each factor assesses a different aspect of prepayments: the first one determines whether a mortgage
will prepay or not, the second one assesses the magnitude of this prepayment, whether it will be full
or not, and the third one is the one that weights the previous quantity for the notional amount, a big-
ger loan has a greater influence on the amount prepaid.
The model we developed was able to follow the general behavior of the observed CPR. The seasonality
was well learned thanks to the use of indicator variables for the months interested in the seasonality.
In addition, the slow upward trend is learned by the model as well. All the smaller peaks, the high fre-
quency components, were not properly caught probably because too random to be predicted without
overfitting.
Among the models, the ones based on machine learning techniques performed better than the one
based on logistic regression both in terms of absolute error and in terms of AUC. In particular, the one
based on random forest resulted to be the model with the best performance reaching a result that is
on average 7.5% more accurate than logistic regression. This is translated by an average improve-
ment of 450 million in the estimation of the amount prepaid for each month. This enhancement in
the forecast impacts the hedging strategy of a financial institution.

6.2. FUTURE RESEARCH
One of the main limitation of the models developed within this thesis is the framework on which they
are trained. What we mean is that our data set spans from 2011 to 2016, and in these years we just
experienced lower and lower values for the interest rate. Therefore, it would be interesting to see how
the models behave in a scenario where the interest rate is increasing.

Another limitation of the models is their incapability of adapting to shifts in the prior distribution
of the target vector. Such a phenomenon is quite common in real life dataset. For instance, in our
case we experience a constant growth in the prepayment rate and therefore the prior distribution of
the forecasting set is significantly different from the one of the training and test set. Looking into
techniques that are able to predict the new prior given the performance of the model on the new set
would, in our opinion, greatly enhance the prediction power of the algorithm.

Moreover, we believe that the addition of new variables could be really beneficial in order to en-
hance the performance of the model. We say that after seeing the benefit brought by the addition of
the unemployment rate variable.
Some of the variables that could be interesting to add are the loan to value ratio, the purpose of the
loan, and another macroeconomic variable, like one that is related to the region of origination of the
loan. It is expected that different areas have different kinds of mortgagors behaviors.

Last, the revolutionary change in this kind of approach would be to incorporate in the training
algorithm a quantity that assesses the goodness of the approximation of the CPR. Being able to take
into account in the loss function or in the impurity calculation how far our prediction is from the
observed CPR would allow the models to modify themselves accordingly. This procedure would result
in better results in the estimation of the CPR.
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A
TIME SERIES APPROACH

We make an attempt to predict the CPR with the means of a time series forecasting model. The time
dedicated to this model was limited.
In this framework, the future values of the time series depend only on present and past values of the
series itself. Therefore, what we do is to extract the values of the CPR from the dataset, obtaining
therefore 56 observations which represent the subsequent values of the CPR over a time period of
more or less 5 years. These values are both the input and the output. The output is always the ob-
servation at time t +1, while for the input we have different possibilities. We can decide how far to
look in the past values, meaning that we decide how many past observations the model receives for
training, e.g. if we decide two time steps in the past, it means that to forecast the t +1 observation we
give as input the observations at time t and t −1. This quantity is called look back window.
This kind of approach has been practically implemented with a neural network using the Keras library
in Python. The network is a single layer network built with LSTM (long short-term memory) neurons
since they are well suited for predicting time series. The reasons are multiple:

• Due to the ability of storing information, it is really good at recognizing patterns

• It allows multiple inputs. This means we can use correlated time series in the training process
as well.

• It allows an easy selection of the look back window.

The results we obtain are displayed in Figure A.1. It appears that the results obtained by the classifi-

Figure A.1: Results for the time series based model.

cation based methods are better than the ones obtained using this model.
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B
CHANGE IN THE PRIOR DISTRIBUTION.

It sometimes happens that observations in the training set do not reflect the real a priori probability
of the target classes of the real data observations we would like to analyse. This could lead to bad
performance of the models when applied to real world data sets.

Suppose we have two classes {ω0,ω1}. Let’s call p̂t (ω1) = N1
Ntot

the a priori probability for the training

set, given by the proportion of ones in the data set. If we train a classifier, we can define its output
posterior probability as p̂t (ωi |x). Let us also define p(x|ωi ) as the within class densities and suppose
they do not change between training and test set. Subscript t stands for training.
Then, the Bayes’ theorem says that [22]:

p̂t (x|ωi ) = p̂t (ωi |x)p̂t (x)

p̂t (ωi )
,

where p̂t (x) the probability density function for the training.
If the prior changed, the corrected formula for the a posteriori probability then becomes:

p̂(x|ωi ) = p̂(ωi |x)p̂(x)

p̂(ωi )
,

where p̂(ωi ) are the new a priori probabilities and p̂(x) the new probability density function.
Keeping these formulations in mind, assuming that we know the new a priori probability, we can
derive the following formula for the corrected a posteriori probability p̂(ωi |x):

p̂(ωi |x) =
p̂(ωi )
p̂t (ωi ) p̂t (ωi |x)∑n

j=1
p̂(ω j )
p̂t (ω j ) p̂t (ω j |x)

We observe the effects of this correction in the following plots. In Figure B.1 the results of an early
model without the correction is shown. We can see that the average value of the target in the training
part, left part, represented by the black horizontal line is way smaller than the average value in the
right part. Due to its nature, the model tends to stay around this average also in the forecasting set
resulting in bad predictions.
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Figure B.1: Results without the correction.

If we calculate the new prior for the forecasting set from the data and we plug it in in the previous
formulation, we obtain the results shown in Figure B.2.

Figure B.2: Results with the correction.

Now, the prediction is really accurate. In fact, the behavior of the prepayments is learned by the
model, the problem is in the prior shift.
In the real setting, we are interested in forecasting a future quantity and therefore we do not know the
new prior. It is therefore not possible to apply this correction directly.
We develop the algorithm shown in [22] to estimate the new prior from the results of the model on the
test set. The performance of our model are not good enough to obtain an enough accurate esteem of
the new prior. The possibility of following this path to enhance the results of the models is therefore
abandoned at this stage.
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