

Delft University of Technology

4-D parity codes for soft error correction in aerospace applications

Imran, Muhammad; Al-Ars, Zaid; Gaydadjiev, Georgi N.

DOI
10.1109/IDT.2011.6123111
Publication date
2011
Document Version
Final published version
Published in
2011 IEEE 6th International Design and Test Workshop (IDT)

Citation (APA)
Imran, M., Al-Ars, Z., & Gaydadjiev, G. N. (2011). 4-D parity codes for soft error correction in aerospace
applications. In 2011 IEEE 6th International Design and Test Workshop (IDT) (pp. 104-109). Article
6123111 (International Design and Test Workshop). IEEE. https://doi.org/10.1109/IDT.2011.6123111

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/IDT.2011.6123111
https://doi.org/10.1109/IDT.2011.6123111

4-D Parity Codes for Soft Error Correction in

Aerospace Applications

Muhammad Imran Zaid Al-Ars Georgi N. Gaydadjiev
Laboratory of Computer Engineering, Faculty of EE, Mathematics and CS

Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands

E-mail: z.al-ars@tudelft.nl

Abstract—In order to reduce the overall system cost, the

aerospace industry has been increasingly using commercial off

the shelf components in their products. The sensitivity of these

products to radiation induced soft errors becomes a major

concern. In this paper, we propose a method to increase the

reliability of a given off the shelf component by manipulating

the software-based error correction algorithm of its already

existing 4-D parity codes. The paper shows that using this

approach, it is possible to correct triple bit adjacent errors,

without adversely affecting the performance or memory usage.

I. INTRODUCTION

In its short history, space exploration has made extensive

use of modern electronics and computerized devices on its

missions. The space environment, however, is particularly

harsh, as it is characterized by radiation, extreme temperatures

and zero pressure [1]. The increased radiation requires using

a special kind of Radiation Hardened ICs (RHICs) for space

applications.

Due to the high cost of RHICs and the limited number

of manufacturers, the trend of the space industry has been

shifting towards using more Commercial Off The Shelf (COTS)

components and enabling them for space applications. COTS

components are designed and manufactured according to nor-

mal, commercial business practices and are characterized by

low cost. COTS components require short development time

and, therefore, reduce the overall system cost.

Reliability is a major concern when using COTS compo-

nents in space or military applications. The reliability issue in

COTS components can be solved in a number of ways, one of

which is the use of Error Detection And Correction (EDAC)

schemes. These EDAC schemes can either be implemented in

hardware or in software.

In this paper, we focus on software implemented EDAC

schemes. Section II presents some background information

about the space environment and techniques to ensure reliabil-

ity. In Section III, EDAC codes used in space applications are

discussed. Section IV proposes a novel technique which can

improve the error correction capability of an already existing

EDAC scheme. Experimental results are presented in Section

V. Finally, a brief summary and conclusions are given in

Section VI.

II. BACKGROUND

The successful accomplishment of any space mission de-

pends very much on the correct operation of electronic

equipment installed onboard. Proper operation in space poses

various challenges, such as limited power, extreme temperature

and most importantly cosmic radiation, which reduces the

reliability of electronic components. The main focus of this

paper is to mitigate the effects of radiation and ensure the

fault-free operation of electronic equipment onboard.

A. Radiation

Radiation is a process of emission of energy in the form

of waves or particles. There are various types of radiation

depending upon the type of the emission source, properties

and purposes of the emission, etc. We discuss here the impact

of radiation on normal operation of electronic circuits. Out

of many effects produced by ionizing radiation, single event

effects and the total ionization dose are two phenomena which

occur frequently in space electronics.

1) Single Event Effects: Single Event Effects (SEEs) are

caused by single energetic particles. Striking of these high

energy particles produces ionization within the semiconductor

material of an IC. This ionization results in transient or

permanent errors. Generally, SEEs can be divided in three

classes according to their impact on ICs:

• Single Event Upset (SEU);

• Single Event Latchup (SEL);

• Single Event Burnout (SEB).

2) Total Ionization Dose: Another effect due to the ra-

diation is the Total Ionization Dose (TID). When radiation

passes through the semiconductor material, electron-hole pairs

are created within the oxide (insulating) layers present in the

device. Due to their higher mobility, electrons disappear almost

immediately while holes remain trapped. These holes change

the gate-to-channel potential in Complementary Metal Oxide

Semiconductor (CMOS) devices which results in threshold-

voltage shifts. Secondly, creation of traps due to radiation,

increases surface recombination velocity at the interfaces,

causing the increase in leakage current. This phenomenon

degrades the overall performance of an IC in terms of power

consumption and sometimes results in total circuit failure [2].

Out of many effects produced by ionizing radiation, Single

Event Upsets (SEUs) and the Total Ionization Dose are two

978-1-4673-0469-6/11/$25.00 ©2011 IEEE 104

Authorized licensed use limited to: TU Delft Library. Downloaded on January 31,2022 at 13:38:21 UTC from IEEE Xplore. Restrictions apply.

phenomena which occur frequently in space electronics. There

are various techniques to mitigate these effects and redundancy

is one of them which improves the system reliability. Different

forms of redundancy are briefly discussed here.

B. Redundancy in Computing Systems

Redundancy can be defined as ”addition of resources,

information or time to the system beyond what is needed

for normal operating conditions” [3]. In the past, duplication

of components was considered the only form of redundancy.

Today, redundancy can manifest itself in several forms like

hardware redundancy, software redundancy, time redundancy

and information redundancy.

Any one of these four forms of redundancy can be imple-

mented in order to maintain or improve the system reliability.

Hardware redundancy is implemented by replicating the hard-

ware modules. This does not only increase the cost of the

electronic subsystem, but also the mass and power budget.

Software redundancy involves writing extra lines of code in

software to verify the correct magnitude of signal. Whereas, in

time redundancy, fault tolerance is achieved at the expense of

extra time. Information redundancy requires extra information.

Information redundancy is mainly implemented by EDAC

codes. The use of EDAC codes for space applications has

been in practice for last four decades. In this paper, we restrict

ourselves to EDAC codes as a good alternative to improve

system reliability. EDAC codes used in space applications are

briefly discussed in Section III.

III. ERROR DETECTION & CORRECTION CODES

There are various types of error correcting codes available,

but we will discuss here only those which have been previously

implemented in space applications. Some general concepts and

several basic terms are discussed here for error detection and

correction codes.

If we have n bits, there are 2n unique codewords that can

be constructed. Similarly k data bits can take 2k different

forms. If k < n, then the remaining n− k bits can be used as

redundant bits or parity bits in the codeword. These parity bits

contribute towards the error detection and correction property

of any code. The terms parity bits, check bits or redundant

bits are used interchangeably for the same concept in error

coding literature. We will use the term parity bits for these

and represent them by notation c, throughout our paper. The

number of data bits in the codeword determines the code rate,

which can be defined as, ”the measure of relative amount of

information which is transmitted in each codeword” [4].

Code Rate = R =
Data bits

Total number of bits
=

k

n
(1)

where k are data bits and n is total number of bits in the

codeword.

Another important measure to compare the two codes is the

bit overhead. The Bit Overhead (BO) can be defined as, ”the

ratio of parity bits to data bits”. Bit overhead determines the

percentage of redundancy in the codeword.

Bit Overhead = BO =
Parity bits

Data bits
=

c

k
(2)

If we have two n-bit binary codewords where a = a1a2...an
and b = b1b2...bn, The Hamming Distance dh, between a

and b is defined as, ”Minimum number of bits in which a and

b differ from each other” [4].

A. Hardware vs Software EDAC Implementation

EDAC codes play an important role in improving the impact

caused by SEUs and hence the system reliability. These

EDAC codes are usually implemented in hardware, but require

extended memory bus architecture to accommodate parity

bits and additional encoding/decoding circuitry. In low-cost

projects, system can be designed using COTS components

which do not support built-in EDAC schemes. EDAC codes

can also be implemented in software. Data is encoded using

these EDAC codes and resulting parity bits are stored. These

parity bits are periodically checked to detect and correct the

soft errors caused by radiation [5]. Throughout this paper, we

will assume any EDAC code on data memory of size (m x k)
32 x 16 bits.

B. Types of EDAC Codes

Various types of EDAC codes are used in computers,

communication systems and in space applications. Here we

will describe a few of software implemented EDAC codes to

protect the onboard memory from radiation. The codes used

in space applications are as follows:

• Hamming codes;

• Parity codes;

• Rectangular parity codes;

• Four-dimensional parity codes;

• Golay codes;

• BCH codes.

Hamming (12,8,3) is Single Error Correction (SEC) code

which can correct single error in each codeword of the block.

Parity codes can have Single Error Detection (SED) property

in each codeword of memory array. Rectangular parity codes

operate on whole block and have capability to make single

error correction any where in the whole block instead of single

codeword. Four-Dimensional (4-D) parity codes are also ap-

plied on whole block of data instead of individual codewords.

They have Double Error Correction (DEC) capability. Golay

and BCH codes are examples of cyclic codes. Both of these

codes have Triple Error Correction (TEC) capability and they

operate on single codeword.

C. Space & Time Complexity of EDAC Codes

All the above discussed software implemented EDAC codes

are summarized in Table I. The table presents the bit overhead,

code rate, space and time complexity and error detection &

correction capability of each code. All mentioned codes except

105

Authorized licensed use limited to: TU Delft Library. Downloaded on January 31,2022 at 13:38:21 UTC from IEEE Xplore. Restrictions apply.

TABLE I

COMPARISON OF EDAC CODES.

Error Bit Code Complexity Error
Correcting Overhead Rate Time Space Correction

Code Capability

Hamming(12,8,3) 50.00% 66.67% O(mn) O(mn) SEC

Parity 6.25% 94.12% O(mn) O(mn) SED

Rectangular parity 12.50% 91.43% O(mn) O(mn) SEC

4-D parity 18.75% 84.21% O(mn) O(mn) DEC

Golay(23,12,7) 91.67% 52.17% O(mk) O(2k) TEC

BCH(31,16,7) 93.75% 51.61% O(k2) O(mn) TEC

Golay and BCH codes have linear time and space complexity.

Golay codes implement look up tables requiring exponential

space complexity. Look up tables dramatically reduce the time

complexity of Golay codes and they require linear time. BCH

codes which implement Galois fields require quadratic time

complexity and linear space complexity. In the next section,

we discuss the novel approach which can improve the error

correction capability of already existing 4-D parity codes.

IV. IMPROVING THE RELIABILITY OF 4-D PARITY CODES

This section presents a novel approach which improves the

error correction capability of already existing 4-D parity codes.

It also helps to mitigate the multiple-bit errors caused by

radiation. We conclude this section by comparing proposed

4-D parity codes with other triple error correcting codes.

A. Novel Approach for Error Detection and Correction

Multiple Bit Upsets (MBUs) potentially pose more threat

to system reliability than SEUs because certain EDAC codes,

such as the Hamming code, are not able to correct more

than one error in the same word [6], [9]. MBUs can be

corrected through multiple-bit error correction codes, a few

of them were discussed in Section III. These EDAC codes,

for multiple bit error correction require large memory area

and more time for their implementation as compared to single

error correction codes. We need to investigate some ways

by which the error correction capability of a code can be

improved with minimal overhead in space & computational

activity.

Here we present a novel approach, which can improve the

error correction capability of already existing 4-D parity codes.

Using this novel approach, we can correct three adjacent errors

instead of two without seriously affecting the performance.

Most importantly, this improvement does not incur any extra

parity bits in the code, meaning the same code rate and bit

overhead is required to correct three adjacent bits in error.

B. Innocent Bit Definition

Here first of all, we introduce the concept of ”innocent

bit” in four-dimensional parity codes. In case of innocent bit,

horizontal and vertical parity check lines point to data bit in

error which is actually not erroneous. This occurs when three

adjacent bits are in error as illustrated in Figure 1(a). Single

bit error is shown in Figure 1(b) to make a fair comparison

1 1 0 1 1 0 0

1 0 0 0 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1 0 0 1 1 1 0

0 1 1 0 0 1 0

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1

1

1

1

1

(a)

1 1 0 1 1 0 0

0 0 1 0 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

0 1 0 1 1 1 0

1 0 0 0 0 1 0

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1

1

1

1

1

(b)

Fig. 1. (a) Triple bit error (innocent bit) (b) Single bit error

between the two. If we compare the row, column and diagonal

parity indication of innocent bit (h = v = d = 1) and single

bit error case (h = v = d = 1), we can note that the

single error indication in row, column and diagonal in both

cases. Here h, v and d represents horizontal, vertical and

diagonal number of bits in error. Careful observation shows

here that diagonal bit error indication in case of innocent bit

(d1 6= h1 + v1) is not similar to the single bit error case,

where d1, h1 and v1 show the occurrence of first erroneous

bit in diagonal, horizontal and vertical lines respectively. In

general for single bit errors, we have (d1 = h1 + v1) and

intersection of row, column and diagonal point to the same

bit position in error. But in Figure 1(a), intersection of row,

column and diagonal does not point to same bit position. So

we can observe that when (h = v = d = 1 and d1 6= h1+v1),
it is not a single bit error.

1 1 0 1 1 0 0

1 0 1 0 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1 0 1 1 0 1 0

0 1 1 1 1 1 0

1 0 1 0 0 1 1

1 0 0 1 0 1 1

1

0

1

1

1

(a)

1 1 0 1 1 0 0

0 0 1 0 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

0 1 0 1 1 1 0

1 0 0 0 0 1 0

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1

1

1

1

1

(b)

Fig. 2. (a) Triple bit error (innocent bit) (b) Single bit error

We confirm our observation by another example which is

illustrated in Figure 2. First part of the figure shows an

innocent bit but this time the three errors are occurring at

different positions. These all three errors mock up to innocent

bit pointing to the same bit position indicated in Figure 1(a).

In this case too, we have h = v = d = 1 but d1 6= h1 + v1.

Up till now, we can detect innocent bit errors whether it is

due to three errors at the top-right position of innocent bit

or at the bottom left position of innocent bit. But innocent

bit can also manifest itself in the form where d2 = h1 + v1.

This is shown in Figure 3. In this case, row, column and

diagonal parity check lines intersect at the same bit position

106

Authorized licensed use limited to: TU Delft Library. Downloaded on January 31,2022 at 13:38:21 UTC from IEEE Xplore. Restrictions apply.

1 1 0 1 1 0 0

0 1 1 0 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1 0 1 1 0 1 0

0 1 1 0 1 1 0

1 0 0 1 0 1 1

1 0 0 1 0 1 1

0

1

1

1

1

(a)

1 1 0 1 1 0 0

0 1 1 0 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1 0 0 1 1 1 0

0 1 0 1 1 1 0

1 0 0 0 1 1 1

1 0 0 1 0 1 1

0

1

1

1

1

(b)

Fig. 3. Examples of innocent bit (Triple-bit error).

but in reality that bit is not in error. We can note here that

instead of d1 = h1 + v1 we have d2 = h1 + v1. Moreover,

instead of single diagonal parity bit in error, we have three

diagonal parity bits in error (h = 1, v = 1, but d = 3).
This is clearly different from the single error bit because in

single error bit case we have h = v = d = 1 and d1 = h1+v1.

In light of the discussion above, we propose here a novel

strategy which can differentiate between single and triple bit

errors. If row, column and diagonal parity check bits point

to the same location, checking neighboring diagonal bits will

differentiate between single and triple bit errors. This is best

explained in the code given here.

/* Calculate horizontal,vertical & diagonal

parity bits, compare these to stored parity

bits using XOR operation. Calculate no.

of bits differing in each parity line; */

if(h=v=d=1){

if (d1=h1+v1){

Single bit error = TRUE;

}

if (d1 != h1+v1){

Triple bit error = TRUE;

}

}

if(h=v=1 AND d=3 AND d2=h1+v1){

Triple bit error = TRUE;

}

In the pseudocode above, we first determine the number of

errors in each of horizontal, vertical and diagonal parity bits.

If single error occurs in each of these parity check lines and

bit position of diagonal parity bit is the sum of horizontal and

vertical parity bit positions (d1 = h1 + v1), there is single

error, otherwise triple bit error has occurred. In other case,

if horizontal and vertical parity bits show single error and

diagonal parity bits show 3 errors, we check if the bit position

of second diagonal parity bit is the sum of horizontal and

vertical parity bit positions (d2 = h1+ v1). If the condition is

true, triple bit error has occurred.

Here an important point to note is that we can detect the

occurrence of innocent bit regardless of the way three error

bits orientate themselves. We can correct the triple bit errors as

shown in Figure 1 and 2. This can be done by examining the

diagonal bits. If we have (h = v = d = 1 and d1 6= h1 + v1)
and d1 − 2 = 1, we can confirm that three bits in error are at

the top-right position of innocent bit as shown in Figure 1(a).

Similarly, if we have (h = v = d = 1 and d1 6= h1 + v1)
and d1 + 2 = 1, we are sure that this time three bits in error

are at the bottom-left position of innocent bit as shown in

Figure 2(a). At the moment, we can only detect if triple bit

errors occur as shown in Figure 3. It is not possible to correct

these triple bit errors without extra parity bits. The pseudocode

given above is only for their detection, which will of-course

improve the reliability by signaling the erroneous situation and

not detecting and correcting it as a single bit error.

C. Triple Bit Error Correction

It is mentioned in Section III that 4-D parity codes can

correct a maximum of two errors. Putting some additional

computations and comparisons in the code, we can correct,

not all but most of the triple bit errors. Triple bit errors can

be classified in two categories, adjacent errors and scattered

errors. We are more interested in adjacent errors because they

are expected to occur more frequently due to multiple bit

upsets. Each of them is discussed as follows.

1) Adjacent Errors: Detection and correction of innocent

bit is one type of adjacent errors that can occur in onboard

memory. Triple bit adjacent errors can also manifest them-

selves in the single row, column or in diagonal. We propose

here another strategy by which we can correct any three

adjacent errors occurring in the same row, column or diagonal.

All these three possibilities are shown in Figure 4. The strategy

1 1 1 1 0 0 0

0 1 0 0 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

0 1 1 0 0 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1

1

1

1

1

1 1 1 0 1 0 0

0 0 1 0 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1 0 1 1 0 1 0

0 1 1 1 1 1 1

1 0 1 1 0 1 0

1 0 0 1 0 1 1

0

0

1

1

1

1 0 1 1 1 0 0

0 0 1 0 1 1

1 0 0 1 0 1 1

1 1 0 1 0 1 0

1 0 0 0 0 1 0

0 1 1 1 1 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1

1

1

1

1

(a) (b) (c)

Fig. 4. Triple bit adjacent errors in same (a) row, (b) column and (c) diagonal

is that if we observe a single error in row parity line (h = 1)
and triple error in column (v = 3) and diagonal parity line

(d = 3), we are sure that three bits in the same row are in

error. Although row parity line is showing a single bit error but

due to modulo 2 sum (3 mod 2 = 1), we can observe only a

single error in the row parity. Column parity bits and diagonal

parity bits confirm this triple bit error by showing three error

in each of them. While implementing the code for correcting

errors , we shall use the row address three times with each of

the column and diagonal bits (d1 = h1+v1, d2 = h1+v2 and

d3 = h1 + v3).
Using this strategy, we can detect and correct any odd

number of errors. But this will lead to large number of

107

Authorized licensed use limited to: TU Delft Library. Downloaded on January 31,2022 at 13:38:21 UTC from IEEE Xplore. Restrictions apply.

comparisons so here for the sake of simplicity, we restrict

ourselves to only three errors. Similarly, if three error bits

occur in a column, row and diagonal parity bits will show

three errors but column parity bits will show only single bit

error(v = 1, d = h = 3). Using the same approach described

above, we can also correct triple bit errors in a diagonal

(h = v = 3, d = 1).
2) Scattered Errors: All double bit scattered errors can be

corrected using 4-D parity codes [8]. But all triple bit scattered

errors cannot be corrected using this approach. We can only

correct a few scattered errors using 4-D parity codes. This

is shown in Figure 5. In simple words, if each of the three

errors occur in unique row, column and diagonal, only those

scattered errors can be corrected using 4-D parity codes.

1 0 1 1 1 0 0

0 0 0 0 1 1

1 0 0 1 0 1 1

1 0 0 0 0 1 0

1 1 0 1 0 1 0

0 1 1 1 1 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1

0

1

1

1

1 0 1 0 0 0 0

0 1 1 1 1 1

1 1 0 1 0 1 0

1 0 0 1 1 1 0

1 0 0 1 0 1 1

0 1 1 1 1 1 1

1 0 0 1 0 1 1

1 0 0 1 0 1 1

1

1

1

1

1

(a) (b)

Fig. 5. (a) & (b) Triple bit scattered errors

D. Analysis of the Proposed Scheme

We have proposed a novel scheme which can improve the

error detection and correction capability of already existing 4-

D parity codes. The summary of our proposed strategy is given

in Table II. The first row in the table shows the number and

TABLE II

SUMMARY OF 4-D PARITY CODES

Row Column Diagonal
No. Type of Error parity parity parity

check check check

1 Single bit error h1 v1 d1

d1 ≡ h1 + v1

2 Innocent bit error
(a) d1 6= h1 + v1 h1 v1 d1

(b) d2 ≡ h1 + v1 h1 v1 d1d2d3

3 Double bit errors h1h2 v1v2 d1d2

scattered

4 Double bit adjacent errors
(a) same row 0 v1v2 d1d2

(b) same column h1h2 0 d1d2

(c) same diagonal h1h2 v1v2 0

5 Triple bit adjacent errors
(a) same row h1 v1v2v3 d1d2d3

(b) same column h1h2h3 v1 d1d2d3

(c) same diagonal h1h2h3 v1v2v3 d1

6 Triple bit scattered errors
Only if (d1 ≡ h1 + v1) h1h2h3 v1v2v3 d1d2d3

AND (d2 ≡ h2 + v2)
AND (d3 ≡ h3 + v3)

bit positions affected when single error occurs. The necessary

condition for this case is that position of diagonal parity

bit should be the sum of horizontal and vertical parity bit

positions. If this condition is not satisfied, then it represents

innocent bit error which is shown in the next row of the table.

In double bit scattered errors, each of three parity check lines

will show double errors. For double bit adjacent errors, any

two out of three parity lines will show double errors. For

example, if there are two adjacent error in the same row, then

corresponding horizontal parity bit will not show an error but

vertical and diagonal parity bits will show double errors.

We have already discussed in detail triple bit adjacent and

scattered errors. Here an important thing to note is that we

have not considered the system parity bit in our modified 4-

D scheme. Taking into account system parity bit in our code

will increase the number of comparisons and its complexity.

We assume that probability of error in parity bits (horizontal,

vertical and diagonal parity bits) is less in comparison to data

bits and ignoring system parity bit will have negligible effect

on performance.

The implementation of a scheme using 4-D to detect and

correct the errors listed in Table II needs some calculation

and therefore incurs a slight computational overhead. However,

as shown in the table, we just need some extra comparisons

which require a constant computation time. As a result the

total time overhead required to implement the proposed error

correction technique on a given set of data is still linear

O(mn). This means that our novel strategy uses the same

number of redundant bits and can correct most of triple bit

errors without changing the code rate and bit overhead. At

the same time, the needed computational overhead is nothing

more than a few extra computations which do not adversely

affect the overall complexity.

As mentioned earlier in this section, 4-D parity codes

implementing our approach cannot correct all triple bit errors.

We have focused here on mitigation of adjacent errors that

are caused by multiple bit upsets. Adjacent errors are more

important due to their increasing trends [6].

V. EXPERIMENTAL RESULTS

Here we compare the 4-D parity codes implementing our

novel approach with other triple bit error correcting codes.

This comparison is based on bit overhead, code rate, error

correction capability and time & space complexity. This com-

parison is presented in Table III. We state our comparison with

TABLE III

COMPARISON OF TRIPLE BIT ERROR CORRECTING CODES.

Error Bit Code Complexity
No. Correcting Overhead Rate

Code Space Time

1 Golay(23,12,7) 91.67% 52.17% O(2k) O(mk)
2 BCH(31,16,7) 93.75% 51.61% O(mn) O(k2)
3 4-D 18.75% 84.21% O(mn) O(mn)

Parity Code

BCH (31,16,7) codes because they require less memory for

their implementation as compared to Golay (23,12,7) codes.

108

Authorized licensed use limited to: TU Delft Library. Downloaded on January 31,2022 at 13:38:21 UTC from IEEE Xplore. Restrictions apply.

In Table III, we can clearly observe that for the same error

correction capability, the proposed 4-D parity codes are better

by approximately 75% than BCH(31,16,7) codes in terms

of bit overhead for the same memory size. With respect

to code rate, the proposed 4-D parity codes out-performed

BCH(31,16,7) codes by approximately 30%. The proposed

4-D parity scheme requires linear time complexity whereas

BCH codes require quadratic time complexity. Golay codes

also require linear time complexity but exponential space

complexity which is not feasible in low-cost space projects.

In the following we list the advantages and disadvantages

of the proposed 4-D parity codes. The advantages are:

• High code rate;

• Low bit overhead;

• Linear time & space complexity;

• Easy encoding and decoding;

• Easily applicable to any size of memory.

This scheme has following disadvantages:

• Applicable to blocks of memory;

• Error correction capability per block;

• Need to process whole blocks of data to detect or correct

errors.

We have indicated here that error correction capability of

4-D parity codes can be improved with a few additional

comparisons. This additional overhead does not deteriorate the

code performance in terms of spatial and temporal complexity.

VI. SUMMARY AND CONCLUSIONS

In this paper, we considered the use of commercial

components in low-cost space projects. Specialized radiation

hardened ICs are commonly used in space applications, which

substantially increases the cost of space projects. Commercial

off the shelf components can be used as an alternative, but a

high level of reliability must be ensured. We briefly discussed

various types of redundancy approaches to maintain or

improve the reliability of the system. This reliability can be

improved by software in cases where hardware redundancy

is not feasible. We concluded that software implemented

EDAC codes are a good alternative in low-cost space projects.

In Section III, we discussed commonly used EDAC codes

in space applications. In Section IV, we presented a novel

approach to improve the error correction capability of already

existing 4-D parity codes. We investigated that using this

approach, we can correct triple bit adjacent errors.

The overhead incurred to implement this approach does

not adversely affect the performance in terms of time and

memory usage. We showed that for the same error correction

capability, 4-D parity codes are better by approximately 75%

than BCH(31,16,7) codes in terms of bit overhead for the same

memory size. In terms of code rate, the proposed 4-D parity

codes out-performed BCH(31,16,7) codes by approximately

30%. We applied the proposed 4-D parity codes to peripheral

interface controllers (PIC) to investigate its feasibility in low-

cost space projects. We have investigated that our novel

approach can be implemented in subsystem microcontrollers

which have very limited memory. The application of modified

4-D parity codes for microcontrollers with bigger memory is

obvious [10].

On the basis of our experimental results, we conclude that

4-D parity codes implementing our approach can correct not

all but most of triple bit adjacent errors. The error correction

capability can be further improved using modular approach.

REFERENCES

[1] Craig I. Underwood, Observations of Radiation in the

Space Radiation Environment and Its Effect on Commercial

Off-the-Shelf Electronics in Low-Earth Orbit , Philosophi-

cal Transactions: Mathematical, Physical and Engineering

Sciences, vol. 361, no. 1802, 2003, pp. 193–197.

[2] Sherra E. Kerns et. al, The Design of Radiation-Hardened

ICs for Space: A Compendium of Approaches, Proceedings

of the IEEE, November 1998, pp. 1470–1509.

[3] Barry W. Johnson, Design & Analysis of Fault Tolerant

Digital Systems, Electrical and Computer Engineering ,

Addison-Wesley Longman Publishing Co., Boston, MA,

USA, 1998, ISBN 0-201-07570-9.

[4] Miron Abramovici, Melvin A. Breuer and Arthur D. Fried-

man, Digital Systems Testing and Testable Design, IEEE

Press, New Jersey, USA, 1990, ISBN 0-7803-1062-4.

[5] Premkishore et. al, Modeling the Effect of Technology

Trends on the Soft Error Rate of Combinational Logic,

International Conference on Dependable Systems and Net-

works, 2002.

[6] S. Buchner et. al, Investigation of Single-Ion Multiple-Bit

Upsets in Memories on Board a Space Experiment, vol. 47,

IEEE Transactions on Nuclear Science, June 2000.

[7] Salvatore Gravano, Introduction to Error Control Codes,

Oxford University Press, Oxford, 2001, ISBN 0-19-

856231-4.

[8] Naveen Babu Anne, Utthaman Thirunavukkarasu and

Shahram Latifi, Three and Four-Dimensional Parity-Check

Codes for Correction and Detection of Multiple Errors, In-

ternational Conference on Information Technology: Coding

and Computing (ITCC’04), 2004.

[9] Philip P. Shirvani, Nirmal R. Saxena and Edward J. Mc-

Cluskey, Software-Implemented EDAC protection against

SEUs, vol. 44, IEEE Transactions on Reliability, September

2000.

[10] M. Imran, Using COTS Components in Space Applica-

tions, MSc Thesis no. CE-MS-2006-09, Delft University

of Technology, Delft, The Netherlands, August 2006.

109

Authorized licensed use limited to: TU Delft Library. Downloaded on January 31,2022 at 13:38:21 UTC from IEEE Xplore. Restrictions apply.

