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Abstract
Colorectal cancer (CRC), one of the leading causes
of mortality, is challenging to diagnose. By using
metagenomic analysis with machine learning meth-
ods, this can be done in a non-invasive manner. In
this research, a neural network has been trained on
relative pathway abundance data, a way to mea-
sure the functional potential of a microbiome, in
order to find biomarkers for colorectal cancer. The
accuracy achieved by the neural network is 57%.
The most important features used by the model are
compared to established biomarkers in literature.
Besides overlapping pathways, this research also
found new potential biomarkers for CRC.

1 Introduction
Colorectal cancer (CRC), characterized by the uncontrolled
growth of cells in the colon or rectum, ranks as the second
leading cause of cancer-related mortality in the western world
(Vidnes et al., 2013). Diagnosis of CRC with the current
methods, like colonoscopy, an invasive procedure, is rather
challenging (Vega et al., 2015). Mentioned research also indi-
cates that the available models used for predicting CRC eval-
uate the symptoms, which presence means the cancer is not in
the earliest stages anymore. An non-invasive way of predict-
ing the presence of CRC is by applying machine learning and
feature selection on metagenomic data, of which one route is
described in this paper.

By looking at human data of microbiome composition,
early stages of diseases can be predicted (Xu et al., 2020).
The human body contains trillions of microbes, of which a
lot of data is available (Dai et al., 2021). Some indicators for
the presence of diseases are already found by using different
kinds of machine learning (Marcos-Zambrano et al., 2021).
According to this research, for CRC in specific a lot of statis-
tic methods and random forests are used to find biological
markers.

The problem this research project tackles, is to verify the
biological markers that have already been found for CRC by
implementing a different type of machine learning which has
not been used yet in the process of finding the indicators.
This problem is worth to solve, because it is important for the
early detection and prevention of CRC. If indicators in the
microbiome composition are known, the detection and pre-
vention of CRC is easier and more affordable (Bin Ashraf et
al., 2020).

Many studies have been done in this area already, espe-
cially in the broader sense for the generation of metagenomic
data and search for indicators for different sorts of diseases
(Marcos-Zambrano et al., 2021). In this article, a lot of stud-
ies that have been done to find biomarkers are listed. The
main machine learning method used there is random forests.
Different kinds of biomarkers have been found, including
144 species and 75 genera, the taxonomic category between
species and families, (Dai et al., 2021) but also functional
markers (Loftus et al., 2021). Functional markers refer to
specific genetic features that are associated with particular

functional traits or activities in the microbiome. Especially
functional markers are useful to predict CRC is suggested
by multiple studies (Allali et al., 2018) (Wirbel et al., 2019)
(Loftus et al., 2021) (N.-N. Liu et al., 2022). The more ad-
vanced machine learning techniques like neural networks and
deep learning are underrepresented (Marcos-Zambrano et al.,
2021). This is why this research focuses on applying a neural
network to functional data.

There are some pathway abundances that stand out for peo-
ple with CRC compared to healthy people according to liter-
ature, of which in this paragraph a few are mentioned. Path-
way abundances are a way to measure the functional potential
of a microbiome, they are a quantitative measurement of the
relative levels of pathways (series of interconnected biochem-
ical reactions or processes). First of all virulence factors and
peptide degradation are more present, and functions involved
in amino-acid biosynthesis are less present in the CRC gut
microbiome (Loftus et al., 2021). Wirbel et al. (2019) sug-
gested pathways for the degradation of amino acids, mucins
and organic acids have a higher abundance in the CRC gut
microbiome. Besides this, Zhang et al. (2020) suggested the
pathway involved in cell motility has higher abundance in the
CRC gut microbiome than in the control microbiome while
the pathway involved in carbohydrate metabolism was less
present. Finally, the aromatic amino acid metabolism is asso-
ciated with CRC (Yachida et al., 2019). Besides this this re-
search also found that sulfide-producing pathways are abun-
dant in CRC gut microbiomes.

This research project aims to investigate whether neural
networks with wrapper methods for feature selection can be
utilized to analyze a metagenomic dataset in order to verify
functional biological markers for the disease CRC. This pa-
per tries to answer (i) how a logistic regression model with
a wrapper for feature selection can be implemented, trained,
and tested on a metagenomic dataset to classify diagnosed
and healthy samples, (ii) how a neural network model with
a wrapper for feature selection can be implemented, trained,
and tested on a metagenomic dataset to classify diagnosed
and healthy samples, (iii) how the neural network model per-
forms on evaluation metrics such as the confusion matrix, ac-
curacy, precision, recall, and F1 score when compared to the
logistic regression baseline model and finally, (iv) what the
most significant features identified by the feature selection
process in the metagenomic dataset are, and if they align with
the biomarkers mentioned in existing literature.

This report describes the research leading up to the an-
swers to the questions in multiple sections. Multiple feature
selection techniques are compared in terms of performance
for the logistic regression and neural network model. The
most important selected features are presented and compared
to biomarkers for CRC in literature.

2 Materials and Methods
2.1 Programming language and tools
The software has been developed in the programming lan-
guage Python (version 3.10), in combination with Scikit
Learn (version 1.2.2) (Buitinck et al., 2013), as this pack-
age is easy to use, has high performance and is docu-



mented well (Pedregosa et al., 2011). Libraries used for
the research are: Pandas (version 1.5.3) (pandas develop-
ment team, 2020), NumPy (version 1.23) (Harris et al., 2020),
Matplotlib (version 3.7.1) (Hunter, 2007), Seaborn (version
0.12.2) (Waskom, 2021) Scipy (version 1.10.1) (Virtanen et
al., 2020), Pip (version 23.0.1) (“pip: The Python package
installer”, n.d.) and mRMR (version 0.2.6) (“mrmr: mRMR
(minimum-Redundancy-Maximum-Relevance) for automatic
feature selection at scale”, n.d.).

2.2 Data and metadata
The data used to train the models on is from CuratedMetage-
nomicData (Pasolli et al., 2017), a package providing curated
human microbiome data. The dataset used is a fecal shotgun
metagenomic study of CRC with 616 runs (“Available stud-
ies”, n.d.), called YachidaS 2019 (Yachida et al., 2019). The
data is collected from 616 unique people from Japan, with
the following study conditions: Adenoma, carcinoma surgery
history, CRC and control. The data shows relative abundance
for pathways. Pathway abundance data was used as many re-
search suggested this data is useful to predict CRC (Allali et
al., 2018) (Wirbel et al., 2019) (Loftus et al., 2021) (N.-N. Liu
et al., 2022). The samples with CRC are used as case samples
and the ademona and carcinoma surgery history samples are
not used, such that 509 samples are left. Only CRC and con-
trol data is used because this way the split between case and
control is more even, as is visible in Figure 1a. Besides this
it is unclear if the samples with carcinoma surgery history are
healthy now or still have CRC.

The data is further preprocessed by merging columns of
species from the same pathway abundance together, adding
up the values. Only the pathway description is left in the
column names, so the bacterial taxonomy is not there. This
is done because now the selected features can be compared
directly to pathways associated with CRC in literature and
it is reduces the amount of features. Also the unintegrated
and unmapped feature columns are removed, as these do not
provide useful information and are presumably very different
per data set. This ensures the amount of features is reduced
from 31291 to 506.

Some insights about study conditions, age and gender of
the participants for the data collection are plotted. In Figure
1a the counts of samples with the different study conditions is
visible, whereas in respectively Figure 1b the age is plotted
together with the study conditions. The graph shows the data
is spread evenly over age, which means the model will not
be biased towards a certain age. The genders are also evenly
represented.

2.3 Feature selection
Feature selection is applied because it can improve the perfor-
mance of the model, the predictors are faster and the underly-
ing process which generated the data is more understandable
(Guyon and Elisseeff, 2003). For this research, amongst oth-
ers wrapper methods Recursive Feature Elimination (RFE)
and Forward Feature Selection (FFS) are applied for feature
selection as they are commonly used (Kaushik, 2016). RFE is
for both the neural network and the logistic regression model
wrapped around a logistic regression model with L1 penalty,

(a) Distribution of the study conditions of the participants involved in
the data collection: CRC, control, adenoma and carcinoma surgery his-
tory.

(b) Distribution of the age and study condition of the participants in-
volved in the data collection. Per age group, counts of CRC (in blue)
and Control (in yellow) samples are plotted.

Figure 1: Distributions of study conditions.

saga solver and a C value of 1. FFS is for both models
wrapped around a logistic regression model with L1 penalty,
liblinear solver and a C value of 10. Besides wrapper meth-
ods, the filter methods variance filtering and minimum Re-
dundancy Maximum Relevance (mRMR) are used in order to
compare to in terms of performance.

Wrapper methods are used to select the features for the
model training, for two reasons. First of all, wrapper methods
can be wrapped around any machine learning model, making
it possible to compare the performances of multiple models,
opposed to embedded methods, which are only applicable for
specific models. Besides this, in wrapper methods, differ-
ent combinations of features are compared in terms of per-
formance of the machine learning model used in the actual
training. This enables wrapper methods to always be able
to select the best subset of features, whereas filter methods
might fail to do this (Alshamy and Ghurab, 2020).

Comparing feature selection algorithms can only be done
after implementing the baseline (logistic regression), which is
described in section 2.5, because this way the performance of
the model can be tested against the selected features. Com-
paring the feature selection algorithms is done using 5 fold
stratified cross validation based on accuracy. The cross vali-
dation is stratified to ensure an equal split between case and
control samples in the different partitions. The feature se-
lection techniques are also compared to the performance of
the model on all features. Because of the long training times
of the neural network, it was impossible to do bootstrapping
within the limited time of this research.



2.4 Dimension reduction
Dimension reduction techniques Principal Component Anal-
ysis (PCA) and t-distributed stochastic neighbor embedding
(t-SNE) are used to visualise the data in order to have a linear
and non-linear visualisation. Silhouette scores, representing
the average distance between clusters compared to the aver-
age distance between samples in different clusters, are calcu-
lated to have an indication of clustering quality.

The dimension reduction technique PCA is also applied to
select features. PCA is used to construct 100 linear compo-
nents from the features, enough for approximately 98% of the
variance as can be seen in Figure 2.

Figure 2: Number of principal components vs. cumulative explained
variance.

PCA is only used to compare to as feature selection method
in terms of classification performance, not in terms of found
biomarkers. Using dimension reduction on the data set means
losing the actual features and possibly losing information
about important biomarkers. Even though it is possible to get
back to information about original features (Amoeba, 2017),
the principal components may not correspond to biologically
meaningful features.

2.5 Machine learning models
To be able to see if the neural network implemented as main
focus in this project is a good way to classify the data and find
biomarkers, a logistic regression model was implemented as
baseline. Accuracy, precision, recall and F1 score metrics are
calculated for this algorithm, later described.

Before the algorithm is trained, the features are scaled us-
ing min-max scaling because this scores better than standard
scaling. The train and test data are scaled separately, in order
to prevent for bias.

The best performing hyperparameters for logistic regres-
sion are found using grid search, a crossvalidation on dif-
ferent values for the hyperparameters. The performance for
C values of 0.1, 1.0 and 10 are determined for the liblinear
and saga solvers with L1 regularization and the lbgfs, sag and
newton-cg solvers with L2 regularization.

Table 1: Hyper parameter settings used for logistic regression com-
bined with different feature selection techniques.

Table 2: Hyper parameter settings used for the neural network com-
bined with different feature selection techniques.

The used hyperparameter settings for the logistic regres-
sion model in combination with the different feature selection
techniques can be found in Table 1. RFE step 100 means af-
ter the model is trained, 100 features are eliminated, in stead
of only 1 with default settings. This is done because it took
too much time to select features when eliminating one feature
at a time.

The main algorithm that implemented is a neural net-
work, specifically a multi layer perceptron. The network is
trained on the same preprocessed data as the logistic regres-
sion model is trained on and the metrics used are the same as
mentioned before.

There are two main reasons for choosing a neural network
as classification model. First of all, limited evidence exists
in scientific literature regarding the application of neural net-
works for identifying biological markers to predict CRC. Be-
sides this, neural networks (in this case a multi layer percep-
tron) are successfully used for the finding of biological mark-
ers for other diseases (B. Liu et al., 2022), so it has potential
to be a useful method.

The best performing hyperparameters for the neural net-
work are found using grid search as well. For the activa-
tion function relu and tanh have been applied, alpha values
used are 0.01, 0.1 and 1.0, adam and stochastic gradient de-
scent solvers are evaluated and performance for different set-
tings for the amount of layers and nodes is determined. The
used hyper parameter settings for the neural network model
in combination with the different feature selection techniques
can be found in Table 2.

2.6 Statistical analysis

In order to compare cross validation results, T-tests were
done. If the p-value would lie below 0.05, the difference
would be significant. 0.05 is used, because it is a common
value used in statistics (Glen, n.d.). This value is corrected
using Bonferonni correction (Hayes, 2010) to prevent com-
parisons from incorrectly appearing statistically significant.



2.7 Ranking features based on importance
For both logistic regression and the neural network a metric
is used to determine which of the used features are the most
important. For logistic regression the absolute coefficients
are used as feature importance (Filho, 2023). The higher the
absolute coefficient, the more important the feature is. For
neural networks there is no such property, so a different met-
ric is needed: permutation importance (Fisher et al., 2018).
Permutation importance calculates importance of a feature by
shuffling the values of a feature 100 times, each time calcu-
lating the accuracy of the model. The absolute difference be-
tween the average accuracy of the 100 permutations and the
original accuracy with all unchanged features is the impor-
tance of the feature. The bigger the difference between the
average permutation accuracy and the original accuracy, the
more important the feature is. The importance of the features
is determined by running the aforementioned 5 fold stratified
cross validation and averaging the importance.

2.8 Metrics
Confusion matrix, accuracy, precision, recall and F1 score
metrics are calculated for both baseline and the neural net-
work based on unseen test data. These metrics are based
on True Positives (TP), True Negatives (TN), False Positives
(FP) and False Negatives (FN). Confusion matrices show
from left top to the right bottom the TP, FN, FP and TN.

• Accuracy:
TP + TN

TP + TN + FP + FP

• Precision:
TP

TP + FP

• Recall:
TP

TP + FN

• F1 score:
2 ∗ Recall ∗ Precision

Recall + Precision

3 Results and Discussion
3.1 Case and control data points show a lot of

overlap
The plot of the first 2 principal components can be seen
in Figure 3a. The first principal component accounts for
32.54% of the variance, while the second principal compo-
nent explains 17.99% of the variance. Around the center of
the plot the data points show overlap, which indicates simi-
larity in their characteristics. When moving away from the
middle of the plot, the data is more spread out, suggesting
more variability in the features. No clear clustering of case
or control data points is visible, which means training linear
machine learning models can be challenging. The silhouette
score is 0.0016, which is relatively low and indicates the clus-
tering quality is low.

The t-SNE plot can be seen in Figure 3b. Like in the PCA
plot, no clustering is visible and the data is not easily separa-
ble non linearly either. The silhouette score of this dimension

Table 3: Cross validation and testing performance of different fea-
ture selection methods for logistic regression.

Table 4: Cross validation and testing performance of different fea-
ture selection methods for the neural network.

reduction is 0.0013, which also indicates a low level of clus-
tering quality.

The presence of overlap between case and control data
points in both the PCA and t-SNE plots suggests that there
is a lack of clear separation between the two groups based
on the pathway abundances. This implies that pathway abun-
dances used for analysis may not be strongly indicative of the
disease status or that there are other confounding factors in-
fluencing the data. A confounding factor can be for example
biological variability: individual genetic differences or varia-
tions in disease progression can lead to overlapping pathway
abundances in case and control groups.

3.2 Logistic regression and neural network score
similarly low on accuracy with and without
feature selection

In Table 3 the performance of the different feature selection
techniques is visible. The columns stand for the methods used
for feature selection, described in 2.3. The upper two rows
show the stratified cross validation accuracy mean scores for
5 runs and their standard deviation. The 4 lowest rows are
scores of the performance of the logistic regression model on
the separate test data partition. The performance of the neural
network model is visible in Table 4.

The confusion matrices resulting from runs of the logistic
regression model with different feature selection techniques
on test data are also visible in Figure 4. In Figure 5 the matri-
ces for the neural network are visible. The matrices show the
predictions are not completely random: the number of cor-
rectly predicted case and control samples on the are mostly
higher than the false positives and negatives, as can be seen
from the darker blue colored diagonals.

The cross validation scores are compared for no feature se-
lection against all applied feature selection techniques. This
is done for both the logistic regression model, in Figure 5 and
the neural network model in Figure 6. All p values lie above
0.0083, so no feature selection technique is significantly bet-
ter than applying no feature selection at all. 0.0083 is 0.05
divided by 6, the amount of comparisons, for the sake of the
Bonferroni correction.

The neural network has been compared to the logistic re-
gression model as well using t-tests. The variance filtering



(a) The pathway abundance data visualized according to the
first two principal components, in total explaining 50.53% of
the variance. Yellow datapoints represent control samples and
blue datapoints represent case samples.

(b) The pathway abundance data visualized using t-SNE. Yel-
low datapoints represent control samples and blue datapoints
represent case samples.

Figure 3: The data visualised with PCA and t-SNE.

Table 5: Logistic regression cross validation scores of no feature se-
lection compared to other feature selection techniques using t-tests.

Table 6: Neural network cross validation scores of no feature selec-
tion compared to other feature selection techniques using t-tests.

results got a t-statistic of 0.78 and a p-value of 0.48, and RFE
got a t-statistic of -0.54 and a p-value of 0.62. Both p-values
lie above 0.025, so no model is significantly performing bet-
ter than the other. 0.025 is 0.05 divided by 2, the amount of
comparisons, for the sake of the Bonferroni correction. If the
experiment would be done more often with bootstrapping, the
standard deviations might be lower and this results could be
significantly different. This is not done, because of the long
training times of the neural network.

With scores just above 0.5, the models do not perform
much better than random. This could be due to multiple rea-
sons. First of all the chosen models might not be ideal for
this classification problem. The data might not be separable
linearly, which makes it impossible for the logistic regression
model to correctly classify the data. For a neural network
enough training data is needed to train on in order to perform
well. Besides this CRC is a complex disease (Fearon and
Vogelstein, 1990), and the relation between the features and
target variable could be complicated, which makes it hard for
simple models to make accurate predictions. Finally by merg-
ing the features like described in Section 2.2, it is possible the
complex relation between features and target variable is over-
simplified. By merging the features, important information
could have been lost and have made it harder to capture sub-
tle differences between CRC and control samples.

3.3 Top 10 most important features from both
models selected by variance filtering overlap
with 4 pathway abundances from literature

The 10 most important selected features using variance fil-
tering are compared to literature, and 4 pathways appear to
overlap with literature. For this comparison variance filter-
ing is used as this gave the biggest overlap with literature.
In Figure 6 the most important pathway abundances are vis-
ible. 4 of them overlap with literature, firstly (i) the Su-



perpathway of histidine, purine and pyrimidine biosynthesis
(Ugbogu et al., 2022), next to that (ii) the Superpathway of
purine nucleotide salvage (Eroglu et al., 2000), thirdly (iii)
the Superpathway of UDP-N-acetylglucosamine-derived O-
antigen building blocks biosynthesis (Naka et al., 2020) and
finally (iv) the superpathway of L-tryptophan biosynthesis
(Gonzalez-Mercado et al., 2021). In the venn diagram can
be seen 3 other pathways are related to other diseases: dia-
betes (Chang et al., 2015), prostate cancer (Kim et al., 2019)
and gastric cancer (Nie et al., 2021).

3 other pathways are in the top 10 most important features
for both models: firstly (i) the superpathway of pyridoxal 5’-
phosphate biosynthesis and salvage, secondly (ii) the super-
pathway of mycolate biosynthesis and finally (iii) peptidobly-
can biosynthesis V. Because the models have captured rele-
vant pathways which are known biomarkers for CRC, these
three pathways might be relevant for investigation as well.
However, with accuracy scores not much above 0.5, the mod-
els do not show a lot of predictive power. Therefore, further
investigation and validation are necessary to confirm the men-
tioned pathways are indeed connected to CRC.

3.4 Responsible Research
In order to conduct responsible research, the data used in this
study has been sourced from CuratedMetagenomicData (Pa-
solli et al., 2017), a reputable and publicly accessible dataset.
The dataset can be downloaded from the repository and the
same preprocessing steps as described in section 2 can be ap-
plied to obtain the processed dataset used in this research.
This availability and transparency contribute to the repro-
ducibility and verifiability of the research findings.

Furthermore, model training and evaluation have been con-
ducted using widely accepted best practices. Multiple models
and feature selection algorithms have been tested and com-
pared to identify the most accurate approach. Stratified cross-
validation has been used to assess model performance consis-
tently and have a balanced representation of the classes. Also,
the data was split into a separate train and test partition, to
ensure the performance could be measured and evaluated on
unseen data. The used random states have been reported as
well, in order to make the results reproducible. These mea-
sures help to ensure the reliability and generalizability of the
model’s performance.

In order to make this research as transparent and repro-
ducible as possible, the code for implementing the machine
learning models has been made publicly available on GitLab
(Sloof, 2023). Detailed documentation of the steps involved
in getting the data and training the models have been pro-
vided, allowing other researchers to replicate the experiments
and verify the findings.

4 Conclusions and Future Work
In this paper, we conducted research on a metagenomic
dataset in order to find biomarkers for the disease Colorec-
tal Cancer (CRC). Two machine learning models, logistic re-
gression and a multi layer perceptron were trained on relative
pathway abundance data. The models did not perform too
well classification wise, with 58% accuracy for the logistic

regression model and 57% accuracy for the neural network,
which is not significantly different to each other. Using fea-
ture importance, the top 10 selected features of both models
were compared to literature, showing an overlap of 4 path-
ways. The models overlapped with each other as well, indi-
cating 3 pathways might have a connection to CRC: firstly (i)
the superpathway of pyridoxal 5’-phosphate biosynthesis and
salvage, secondly (ii) the superpathway of mycolate biosyn-
thesis and finally (iii) peptidoblycan biosynthesis V. Whether
these pathways are connected to CRC should be investigated
further, because the predictive power of the models is rela-
tively low and this is only a first indication for being con-
nected to the disease. Further investigation can for example
be done on different data sets, to see if the found pathways are
more or less dominant for CRC patients compared to control
patients.
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(a) All features (b) Variance filtering

(c) RFE (d) RFE step 100

(e) FFS (f) mRMR

(g) PCA

Figure 4: The test confusion matrices of logistic regression com-
bined with different feature selection techniques: no feature selec-
tion, variance filtering, Recursive Feature Elimination (RFE), RFE
with steps of 100, Forward Feature Selection (FFS), minimum Re-
dundancy Maximum Relevance (mRMR) and Principal Component
Analysis (PCA).

(a) All features (b) Variance filtering

(c) RFE (d) RFE step 100

(e) FFS (f) mRMR

(g) PCA

Figure 5: The test confusion matrices of the neural network com-
bined with different feature selection techniques: no feature selec-
tion, variance filtering, Recursive Feature Elimination (RFE), RFE
with steps of 100, Forward Feature Selection (FFS), minimum Re-
dundancy Maximum Relevance (mRMR) and Principal Component
Analysis (PCA).



Figure 6: Venn Diagram of most important features selected by variance filtering. The importance is determined by neural network permuta-
tion importance.
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