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ABSTRACT

In this report research is presented regarding air-to-air missile guidance. The performance of
an air-to-air missile is largely determined by the guidance law employed, where the guidance
law determines the appropriate control action to take to successfully intercept a target. The
goal of the research is to develop a novel guidance law which approximates performance and
behaviour obtained using trajectory optimization and. Furthermore, contrary to trajectory op-
timization, it should be feasible as a real-time feedback guidance law. Performance is defined
primarily by the ability of the guidance law to hit a target over a large domain (e.g. maximum
ranges, hit probabilities). Secondarily it is defined in this research as the time of flight where a
faster intercept is beneficial.

Based on a literature study an approach based on Reinforcement Learning (RL) is cho-
sen. Specifically the deep deterministic policy gradient algorithm incorporating hindsight ex-
perience replay and learning from demonstrations. This method is based on an agent inter-
acting with an environment during a finite time episode and is rewarded at every discrete
timestep using a defined reward function. Based on this generated experience, the specified
RL algorithm attempts to improve its behaviour aiming to maximize cumulative reward over
an episode. In this research the training environment consists of a simulated air-to-air en-
gagement featuring a missile controlled by the agent and a stationary target, where a single
engagement is an episode. The agent learns to hit the stationary target optimizing for min-
imum time of flight. The resulting agent is implemented in a framework where a predicted
intercept point algorithm and a terminal guidance law is added. The resulting combination is
able to effectively engage stationary, moving and maneuvering targets. A traditional guidance
law is implemented and is used as a baseline for performance evaluation. This guidance law is
Proportional Navigation (PN) with lofting.

Comparing maximum range obtained whilst engaging a stationary target, it is found
that the RL agent based guidance law attains approximately 90% of performance obtained us-
ing optimal control at evaluated altitudes and off-boresight angles. When PN with lofting is
used only between 60% and 90% of this maximum range is obtained where especially at lower
altitudes performance suffers. The maximum range obtained using the RL agent based guid-
ance law does show outliers towards a lower range. This highlights a drawback of the method
where it can not guarantee an appropriate control solution for each possible state. When com-
paring time of flight when engaging a stationary target, PN with lofting is outperformed over
large parts of the evaluated domain by the RL agent based guidance law, whilst times obtained
through optimal control are approached (< 5% slower in majority of the domain).

Using a turn and run maneuver where the target initially flies directly at the missile,
turns 180 deg away from the missile, and flies away from the missile, the maximum ranges are
again found at several altitudes and off-boresight angles. In this scenario the RL agent based
guidance achieves between 75% and 90% of maximum range obtained using optimal control.
Whereas PN guidance with lofting achieves only between 25% and 75% of maximum range
obtained using optimal control.
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Finally a target performing random maneuvers is employed to determine hit probabil-
ities from varying ranges and initial target headings. It is established that the RL agent based
guidance law has a significantly larger envelope in which a 90% hit probability is achieved if
compared to PN guidance with lofting. The no escape zone attained using RL agent based
guidance is furthermore significantly larger than that of PN with lofting.

Itis concluded that the developed guidance law based on RL is viable as a missile guid-
ance law and shows great performance potential. It is able to effectively approximate perfor-
mance and behaviour obtained using optimal control over the majority of the evaluated do-
main whilst being implemented in a real-time feedback manner. Potential for improvement
is still present mainly in the training routine. The main recommendations made are to focus
on improving training, improving accuracy of physical modelling, and removing the need for
predicted intercept points and a terminal guidance law.
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INTRODUCTION

Most countries around the world employ an air force of some sort due to the recognized im-
portance of air superiority during a military campaign [1]. An important factor in achieving air
superiority is the Air-to-Air Missile (AAM). Since the introduction of aircraft on the battlefield,
weapons have trended from close range machine-guns to advanced beyond visual range AAM
[2]. This advancement in weapon technology is reflected in kill ratios achieved by the U.S. Air
Force during conflicts. During the Vietnam war the kill ratio was 2:1 where mainly guns and
1st generation AAMs where deployed. During the Desert Storm operation a kill ratio of 11:1
was achieved, where mainly modern AAMs were deployed. One of the enabling technological
developments has been in the guidance of such missiles.

1.1. PROBLEM FORMULATION

One of the most important performance characteristic of an AAM is the effective engagement
range. If this range is larger than the effective engagement range of an adversary, this adver-
sary can be engaged without the adversary being able to engage. This is illustrated in figure
1.1. Since the friendly aircraft (blue) has a larger detection and engagement range, the enemy
aircraft (red) can be engaged without being able to fire back. Logically this will result in an ad-
vantage in an air-to-air engagement. If then sufficient amount of such engagements are won,
air superiority can be achieved.

The effective engagement range is the range at which a missile will have a reasonable
probability of hitting the target. Furthermore, a so called no-escape zone exist in which its is
almost certain the target will be hit no matter what maneuvers the adversary performs. These
ranges are dependant on several factors which can be split into two main categories, namely
the physical design and capabilities of the missile and the guidance & control of the missile.
The research conducted in this thesis focuses on improving the performance of the missile
guidance.

The goal of a missile guidance algorithm is to close the distance to a target using in-
formation about the current states whilst taking into account changing target states due to its
maneuvers. As stated, the future states of the target are unknown thus the guidance algorithm
will have to make assumptions to account for this and correct during the evolution of the en-
gagement. Based on these assumptions and changing missile and target states, the algorithm



2 1. INTRODUCTION

Area in which all-aspect BVR missile | —V
engagement effective ' .
~100 nm for AIM-54 Phoentx  / -~

’ Adversary radar /
J detection limit g
/ ~50 nm ’

," Adversary missile -

I engagement limit —* : 5
r ol - AWG-9 radar
P - detection limit

~ o8 ) ,--[ ~115 nm

Area in which rear-aspect
IR missile engagement effective
~2 nm

Figure 1.1: Visualization of an engagement in which the advantage of a larger effective engagement range is shown
(2]

needs to steer the missile on an intercept course.

The performance of the missile guidance and thus the missile is greatly dependant
on the guidance law. Generally two major phases are identified in terms of missile guidance,
namely the midcourse guidance and terminal guidance. In the midcourse phase, which is the
phase between launch and the start of the terminal phase, emphasis lies on closing the majority
of the range to the target in an as optimal manner possible. Optimality might be defined as, for
example, the shortest time of flight or maximal terminal energy. The terminal phase consist
of the last fraction of the flight where target maneuvers have a relatively large impact on the
required missile acceleration. Thus it is beneficial if the missile has as much as possible energy
left after the midcourse phase.

The guidance problem can be solved using optimal control methods, also often re-
ferred to as trajectory optimization. Such methods can compute the trajectories which achieves
a defined goal whilst optimizing for a specified performance criterion. In this case this goal
could for example be to intercept the target whilst minimizing time of flight is the performance
criterion. The drawback of such methods is that they are computationally expensive to solve
and require information regarding future target states. Due to these requirements, it is not
feasible to implement optimal control as a real-time feedback algorithm. However, if optimal
trajectories are compared to traditional methods of missile guidance it is found that especially
the range performance of traditional missile guidance laws is inferior to the optimal perfor-
mance [3] [4] and thus potential performance improvements can be achieved using knowledge
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from optimal trajectories.

The goal of this study is to develop a missile guidance law for air-to-air missiles which
approaches the performance obtained using optimal trajectories whilst limiting computational

cost to enable real-time, feedback implementation.

1.2. PAST RESEARCH

A great amount of research has been performed in the field of missile guidance. At the dawn of
the AAM, simple missile guidance laws were employed. Examples of such traditional guidance
laws are Pure Pursuit (PP) and Proportional Navigation (PN). Currently many missile guidance

laws are still based on PN [5].

The PP guidance law commands an acceleration to direct the missile directly at the
target. By doing so, the guidance law steers for the current target position. The PN guidance
law commands an acceleration proportional to the Line-Of-Sight (LOS) rate, where the LOS
vector is the vector between the missile and target. Mathematically the guidance laws can be

(1.1)

given as:

ay = NVI-H

where a), is the demanded acceleration perpendicular to the LOS, N is the navigation
constant, V; is the relative velocity vector and 6 is the LOS rate vector of the target with respect

to the missile.
be made regarding an intercept point. This estimate is reflected in these guidance laws by N,

PP assumes the intercept point at the current target position and thus N = 1. PN assumes the
Predicted Intercept Point (PIP) to lie on the current heading of the target at some point in the
future meaning N > 1. The resulting trajectories for a simple engagement are visualized in
figure 1.2. It can be seen that these assumptions regarding future target positions and the PIP

Due to the lack of information regarding future target behaviour an estimate has to

influence the guidance greatly.

————— g

Ka=1
Figure 1.2: Planar engagement showing the working principle of PP and PN guidance where navigation constants

used are N =1 and N = 4 for the left and right scenario respectively [6]
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Most importantly, these missile guidance laws attempt to close the distance to the tar-
get only accounting for LOS rate. An example of a potential performance increase left unex-
ploited is the fact that the atmosphere is thinner at higher altitudes and thus less drag is experi-
enced at higher altitude. Thus if optimality is defined as reaching the target as fast as possible,
climbing to a higher altitude would be beneficial. Traditional guidance laws do no directly in-
corporate such behaviour.

A simple, partial solution employed is to loft the missile, meaning the missile gains
altitude due to conditions at the launch or alterations to the PN algorithm. Either a elevation
angle is given to the missile at launch or a bias is added to the LOS rate observation of the
target. An example of this is given in figure 1.3 where the missile is given an elevation angle to
artificially loft it.

Figure 1.3: Effect of lofting a missile whilst employing different navigations constants [6]

An optimal trajectory could be obtained using optimal control theory. Optimal control
theory aims to find a control function that changes the state of a system from an initial condi-
tion to a free or fixed final condition, whilst optimizing for a specified criterion, and is subject
to system dynamics, and any number of specified constraints such as boundary and path con-
straints. The obtained state history is the optimal trajectory [7]. However, the obtained control
function is an open loop solution and it requires information regarding future target states. An-
other drawback is the computational time associated with it preventing online updating of the
optimal trajectory dependant on the evolution of uncertainties such as target states.

Logically optimal trajectories outperform existing guidance laws if it is provided with
information regarding future target states which is shown in research [8]. However, it is also
stated that real time implementation is not yet a possibility. This gap in knowledge is the fo-
cal point of this dissertation. Several methods have been explored in literature which can be
divided into two main categories.

The first category attempts to simplify the physical problem using Singular Perturba-
tion (SP). In the case of missile guidance, the SP method is applied to the problem defined
using optimal control leading to an approximate solution of the optimal control problem [4]
[9]. These systems usually incorporate high-order dynamic equations where often small para-
sitic parameters are present increasing the order and stiffness of this system. Stiffness due to
the presence of slow and fast phenomena gives rise to time scales. By suppression of a small
parameter and thus reducing the order of the system, a singular perturbed system is obtained.
The SP approach provides a method to effectively analyze systems by separately solving for
each timescale. However the solution obtained using SP methods will be approximate due to
the neglecting of dynamics in several timescales. The method still requires discretization in
the time domain if the problem cannot be simplified enough. This in term leads to the same
issues encountered with the trajectory optimization (requirement of future target states, com-
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putational time).

The second category encompasses all methods using machine learning. Several stud-
ies have been performed where different machine learning methodologies have been employed.
Supervised learning using data generated using optimal control is described in [10] where part
of the guidance law is replaced by a neural network. A drawback of this method is the require-
ment of learning data which can be computationally expensive to generate. Another popular
method is the use of an adaptive critic methodology. The adaptive critic methodologies show
promise in optimality of results however are limited in the definition of cost function and re-
quire many separate neural networks to be trained [11] [12]. Similar research applied to dif-
ferent aerial vehicles show the application of deep Reinforcement Learning (RL) methodolo-
gies. These methodologies show promise due to them being independent from the model and
ability to learn behaviour optimizing cumulative rewards (e.g. time to complete a trajectory).
An example is the application of deep RL to autonomously landing UAVs [13]. Because of the
promise of being able to optimize cumulative rewards and its ability to theoretically learn the
optimal behaviour independent of the model, it is proposed to pursue a guidance law based on
RL.

1.3. RESEARCH QUESTIONS, AIMS, AND OBJECTIVES

Asis established, the main objective of this thesis is to develop a new guidance law using knowl-
edge from identified optimal trajectories to increase the guidance laws performance. This main
objective can be split into two sub problems, the first of which is the development of an envi-
ronment in which an air-to-air engagement can be simulated. Secondly, the implementation
and performance evaluation of existing guidance laws and a novel guidance concept. There-
fore, the following research question is proposed with several sub-questions:

1. What improvements to the performance of air-to-air missile guidance systems can be
made based on the identification of optimal trajectories?

1.1. What method can be used to quantify the performance of a guidance system in an
air-to-air engagement?

1.1.1. What methods can be used to simulate an air-to-air engagement?

1.1.2. What traditional performance characteristics can be used to describe the per-
formance of guidance laws?

1.1.3. How can optimal trajectories be used to describe the performance of guidance
laws?

1.2. What changes can be made to missile guidance laws using knowledge from optimal
trajectories to improve the performance of the air-to-air missile when compared to
existing guidance laws?

1.2.1. What are the performance characteristics of traditional air-to-air missile guid-
ance laws?

1.2.2. Which guidance law can be implemented for air-to-air missiles emulating be-
haviour observed in optimal trajectories?

1.2.3. How does the performance of this guidance laws compare to traditional air-to-
air missile guidance laws?



6 1. INTRODUCTION

As is set out in the previous section a methodology based on deep RL is selected. Ma-
chine learning has been previously applied to missile guidance however the application of
deep RL to missile guidance is not encountered in literature and therefore is a novel concept.
Furthermore, using optimal trajectories as a measure of guidance performance is a novel ap-
proach. By doing so, it can be estimated what gains can still be made in terms of missile guid-
ance laws by having a theoretical maximum limit on performance. Secondly, the improvement
of missile guidance offers a cost effective means of gaining missile performance which in turn
will lead to a more favorable air-to-air engagement.

1.4. REPORT STRUCTURE

This report reflects the process used to develop a guidance law which attempts to approach op-
timal performance. Already covered are the problem formulation, a summary of the literature
review previously performed [14], and the research goal and questions. Chapter 2 then aims to
establish context regarding AAM and describe the modeling methodology used. Chapter 3 in-
troduces the concept of optimal control and the implementation used in this study. Following
this, the methodology employed to develop the proposed guidance law is set out in chapter 4.
The resulting guidance law is then used in chapter 5 to evaluate and discuss its performance by
comparing it to traditional guidance laws and optimal control. Based on these results conclu-
sions are drawn and recommendations are made in chapter 6.



AIR-TO-AIR MISSILES

This chapter aims to provide context for the presented research and set out the experimental
environment used to simulate an air-to-air engagement. Specifically introducing the AAM, its
goals, and how missile guidance fits into the overall concept. First, the goal of the AAM is re-
iterated and further elaborated upon in section 2.1. Then in section 2.2 the subsystems of the
AAM are set out and the role which the guidance law fulfills within this is explained. Section 2.3
introduces a method of representing a missiles performance and the influence of target ma-
neuvers on this performance. Finally, the method used to transfer the real problem to a model
which can be used to simulate engagements is introduced in section 2.4.

2.1. GOALS

A general introduction to the problem has been provided in section 1.1. This section aims to
expand on this. In a military campaign, the battlefield might contain several friendlies and
hostiles, both in the air and on the ground. As is apparent from the name, an AAM is launched
from an airborne platform and aims to eliminate a hostile airborne platform. The AAM aims to
eliminate an adversary, or target, from the battlefield by impacting the target or detonating its
warhead close enough to the target to destroy it. Within this framework in which a target can
be detected and is targeted, the AAM aim to destroy the designated target.

The AAM of course has limitations in terms of its ability to hit a target. These limita-
tions stem from the design of the missile. Examples could include the ability of the missile to
detect the target, the missiles finite amount of energy limiting range, or the missiles limited lat-
eral acceleration leading to the target outmaneuvering it. Thus the goal of an AAM is to hit and
destroy a target and the design of the missile determines how effective it is at achieving this.

2.2. AAM DESIGN

An important aspect of missile performance is the airframe itself. Whilst not a deep dive into
missile design will be presented here, a theoretical basis is established and several develop-
ments and potential limitations present in current missile design are given. It is important to
consider these during the development of the novel guidance law.

7
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As with many aerospace vehicles, the missile can be divided into several subsystems.
Generally the following subsystems are described in missile design:

* Sensor & Datalink
 State Estimation

* Guidance System

e Control Systems

* Airframe & Propulsion
* Warhead & Fuze

* Missile Power Supply

Each of these subsystems has a function critical to achieve the missiles set out goal.
Each subsystem is shortly discussed, and considerations and limitations regarding the guid-
ance law are set out.

2.2.1. SENSORS & DATALINK

The sensors and datalink are discussed together since they have the same function however
they fulfill this function differently. They both aim to provide relevant information regarding
the current state. This information includes information regarding the missile itself and the
target.

Using sensors such as an inertial measurement unit and GPS information regarding
the position of the missile can be obtained. To obtain information regarding the position of
the target, either information is obtained through a datalink or through onboard sensors. The
datalink might be established with the aircraft which launches the missile or another friendly
entity. This entity can then relay information it has obtained which might not be available to
the missile due to differences in sensor suites.

AAM usually employ a infrared sensor system or radar sensor system to acquire infor-
mation regarding its target although other methods exist. Infrared systems have the advantage
of not alerting the target that its being fired upon since it is a passive system. Infrared sen-
sor can however be fooled by for example flares and are limited in effective range due to other
disturbances such as the sun or glare.

Radar systems can either be active or semi-active systems. In both cases the target is
illuminated however this is done respectively by the missile or the aircraft. When a radar sys-
tem is used, the target can be tracked at greater ranges and more information can be extracted
such as the range to the target. It does however alert the target that it is being locked by a radar.
As is stated in chapter 1.1 mainly increase in engagement range are pursuit in this study, there-
fore a missile incorporating a radar based seeker system is assumed and range information is
available.

2.2.2. STATE ESTIMATION

The state estimation subsystem aims to extract useful information from the raw sensor and
datalink data. Effectively translating raw data into states and variances associated with these
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states using for example Kalman filters. An effective state estimation subsystem provides state
information which enables the guidance and control subsystems to work effectively. However,
as stated, the state estimation will include variance and thus is not perfect in a practical sce-
nario.

2.2.3. GUIDANCE SYSTEM

Guidance aims to determine a control command which will lead to reaching a target. This is
done based on the observations it is provided of the current environment. Often the method of
determining this acceleration is referred to as a guidance law. As is established in section 1.2,
many guidance laws exist. An effective guidance law can increase the capabilities of a missile,
increasing for example engagement range or terminal energy.

2.2.4. CONTROL SYSTEM

The control systems aims to translate the required accelerations as determined by the guidance
law into control commands. Thus for example deflecting a control surface. An effective control
systems reproduces the required acceleration command as accurately as possible. In a realistic
scenario the actual acceleration will differ from the required acceleration due to physical effects
such as the inertia of the control surface, environmental disturbances, and inaccuracies of the
control system.

2.2.5. AIRFRAME & PROPULSION

The airframe and propulsion subsystems have several functions. First of all, the airframe houses
all the other subsystems and provides structure to the missile. Furthermore, the airframe de-
termines the aerodynamic characteristics of the missile. Due to the missile only having a finite
energy at its disposal, the aerodynamic efficiency greatly affects its performance.

Two main categories of airframes exist, namely the Skid-To-Turn (STT) and Bank-To-
Turn (BTT) missiles. As is suggested in the name, the STT missile induces an angle of attack in
the direction of turning without adjusting roll whilst the BTT missile would roll first and then
pitch itself. The BTT can achieve higher aerodynamic efficiency due to requiring high lifting
capability in only one direction. However a delay in maneuvering is introduced due to the
requirement of rolling. This distinction in maneuvering is however mostly a control issue and
will not significantly change guidance law design in the midcourse phase.

The propulsive system of the missile provides energy to the missile. Traditionally solid
rocket motors are used due to their simplicity however no throttle control is possible with these
systems. Therefore the velocity will increase until either the propellant runs out or the experi-
enced drag exceeds thrust.

Being able to control thrust can lead to a more efficient use of propellant leading to
increased range. A practical example of this is the Meteor missile currently in development
which uses a variable flow ramjet propulsion system and claims the largest No Escape Zone
(NEZ) of any currently existing AAM [15]. In figure 2.1 the velocity profiles of a conventional
AAM and the Meteor are quantitatively plotted. As can be seen, the Meteor is able to sustain a
higher velocity which subsequently translates to higher closing velocities and ranges.
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Figure 2.1: Comparison of velocity profiles obtained for medium range AAMs and throttle-able missile such as the
Meteor [16]

Throttle control would require the guidance law to determine a required longitudinal
acceleration or throttle setting. Furthermore, air-breathing engines could introduce constraint
such as angle-of-attack constraints or a maximum velocity.

2.3. AAM PERFORMANCE

The simplest indicator of AAM performance is the success or failure criteria, where the launch
is successful if the target is hit. A secondary performance measures is the time of flight. A lower
time of flight would mean the target has less time to take action which could mean engaging
a friendly or potentially outrunning the missile. These are however dependant on the initial
states of the system and the target maneuvers thus an infinite amount of scenarios exist. To
encapsulate many of these scenarios the Dynamic Launch Zones (DLZ) are defined.

2.3.1. DYNAMIC LAUNCH ZONES

The DLZ can be defined for a specific missile and shows the dependence of successful termina-
tion on the launch states of the missile, the initial states of the target and the targets maneuvers
[16]. A simplified scenario is presented in figure 2.2 where R4, or otherwise known as R, is
the maximum aerodynamic range of the missile, R;,4x,2 and Ry, 2 are the maximum an min-
imum range respectively at which theoretically no or little change of escape is possible for the
target, and R,;;, is the minimum range at which launch is possible. The maximum range stems
from the finite amount of energy available to the missile resulting in the missile not being able
to reach the target. Between R;;,4x,2 and R4 the missile has a reasonable chance of hitting the
target dependant on the targets actions and its effect on the energy expenditure of the missile.
The same holds for the zone between R,,;,» and R,,;, however here a hit is not guaranteed
due to the missile inability to effectively maneuver shortly after launch. Below R,;;, the missile
poses a threat to the shooter, which is why the missile will not be launched in this zone. The
NEZ is the zone in which the missile can effectively close the distance to the target and outma-
neuver the target in the terminal phase. In this zone, the missile has a near guaranteed chance
to hit.

As is stated, the DLZ depend on the initial states of both shooter and target, and the
trajectory of the target. For example, the altitude of the engagement has a large influence on
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Figure 2.2: Visualization of the DLZ [16]

the DLZ due to missile being able to travel more efficiently in a thinner atmosphere. The DLZ
are therefore dependant on a large amount of states and can only be effectively presented using
several assumptions and limited scenarios.

Regarding the trajectory of the target, it is logical that the targets direction of travel has
an influence on the DLZ. A common addition to the scenario presented in figure 2.2 is the R;,
which is the turn-and-run range. For this range it is assumed that the target initially travels in
the direction of the target and once the missile is launched it turns with a specific amount of g
depending on altitude. Once it is heading away from the missile, the target stops turning and
accelerates. Thus at a range lower than R;, the target cannot simply outrun the missile.

2.3.2. TARGET INFORMATION

The DLZ presented in the previous section attempt to generalize the performance of the mis-
sile. However, in a realistic scenario an adversary has an infinite amount of possible actions it
can take. As is stated, a large unknown is present in the target maneuvers and thus its future
states. Therefore the missile is operating based on assumption and is steering to a PIP. The
point to which is steered will vary when the targets state evolves and on the guidance method
employed.

As an example, assume a target which is flying towards the missile and a simple PIP
algorithm which uses the current closing velocity and range to extrapolate the targets position
linearly. The PIP will lie somewhere between the missile and the target at this point in time. The
target now performs a 180 deg turn in the horizontal plane and heads away from the missile.
The PIP will travel along a curve in the horizontal plane until it lies beyond the target. The
missile will therefore maneuver in the horizontal plane and spend energy on this maneuver.

This example emphasizes the importance of how this uncertainty is handled. If this is
done effectively it will contribute to enlarging the NEZ due to the missile wasting as little energy
as possible steering to an incorrect terminal state.
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2.4. MODELLING OF AN AIR-TO-AIR ENGAGEMENT

To develop and quantify performance of guidance laws, a simulation environment is required
since physical testing is logically not feasible for this research. Modelling of the physical be-
haviour of both missile and target is in this case the modelling of the state evaluation based
on the forces and moments acting on the vehicle. For this, equations of motion are used in
combination with a model providing aerodynamic, thrust, and gravitational forces acting on
the vehicle.

2.4.1. MODELLING ASSUMPTIONS

The physical problem is simplified in several ways. The subsystems of the missile are greatly
simplified since the focus lies on the guidance law. By doing so the performance of guidance
laws are compared and not its compatibility with specific implementations of other subsys-
tems.

The missile is modelled as a 3-Degrees of Freedom (DoF) point mass where the aero-
dynamic angles of attack are neglected. Due to neglecting angles of attack the states of the
missile are reduced leading to a more efficient implementation. The state vector of the missile
will then consist of three states defining position, three states defining velocity, and one state
defining mass or fuel mass left. Neglecting states does mean the model is less accurate, in [17]
an in depth comparison between 3-DoF and 6-DoF models is set out where it is concluded that
an significant difference in result is present between both. However, it is argued that guidance
laws are compared within the same simulation environment thus the absolute performance
might be inaccurate however a relative comparison between guidance laws should be valid.

The curvature and rotation of the Earth are neglected since its effect is limited and it
is common to exclude these effects in missile trajectory modelling [18] [19]. Since the range
is relatively small and the Coriolis acceleration being small compared to the aerodynamic and
propulsive forces, this is a valid assumption. Gravity will be assumed constant due to the rela-
tively low altitudes encountered in air-to-air combat leading to low variations in gravitational
acceleration.

To determine atmospheric conditions it is assumed that the International Standard
Atmosphere is valid and no wind field or disturbances are present. Since the performance will
be quantified by comparing guidance laws, random disturbances would introduce variance in
the results.

2.4.2. REFERENCE FRAMES

The origin of the absolute coordinate system used for modelling will lie at the surface of the
Earth. This coordinate system is defined as East North Up for the (x, y, z) directions. It should
be noted that the East and North directions are arbitrary since they have no practical effect on
the model and are just defined for completeness. The body reference frame is then defined as
(xp, ¥p, zp) Where the x;,-axis is along the missile velocity vector or body axis of the vehicle since
angles of attack are neglected, the y;-axis is pointing left of the vehicle, and the zj-axis then
completes the right handed system.
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2.4.3. EQUATIONS OF MOTION

The missile state can then be represented using the state vector x = (x, y,z, V,y, ¥, m) where
X, y, z are the Cartesian position coordinates of the missile, V,y, 3 are the magnitude and direc-
tion of the velocity respectively, and m is the mass of the missile. Using the assumptions given,
the state evolution of the missile can be described as

X =Vcosycosy

y=Vcosysiny

z=Vsiny
V=H—gasiny
m

L gcosy (2.1)
Y= mvT v

. C
v= mV cosy

_ Lo

- Tg

where x, y, z are Cartesian position coordinates, V is velocity, y is elevation angle with
respect to the horizon or x—y-plane, ¥ is the heading angle or the angle with respect to the x—z-
plane, T is thrust, D is drag, g, is the gravitational acceleration, m is mass of the missile, L and
C are the lift and side forces acting on the vehicle respectively, and follow from the commanded
lateral accelerations multiplied by the mass of the missile.

2.4.4. MODELLING OF FORCES

Three types of forces are acting on the missile and have to be modeled. These are the aerody-
namic, propulsive and gravitational forces. These models are purposefully kept simple yet in-
corporate major effects which are present in a real environment and dictate optimal behaviour.
An example of such an effect is the lessening of the atmospheric density with altitude.

As is stated before the gravity will be assumed constant and the calculation is incorpo-
rated in the equations of motion.

Secondly the aerodynamic forces have to modelled. To do so, first the ISA is used to
calculate the density of the atmosphere p at the altitude of the missile. Using the atmospheric
density and velocity of the missile the dynamic pressure g can be calculated as

1 2

=—pV 2.2
q > o 2.2)
The total lift coefficient is then determined as
VIZ+C?
Cp=—— (2.3)
6]8 ref

where S, ¢ is the reference area of the missile. L and C follow directly from the current
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mass of the missile multiplied by the commanded accelerations in the body frame-of-reference
z and y directions respectively. These control commands are constrained to combine for a
maximum of 40 g. The drag coefficient is then determined as

2

CL
Cp=Cpo+—= (2.4)
TAe

where Cp is the zero-lift drag coefficient, A is the aspect ratio of the missile, and e is
the Oswald factor. This drag coefficient can then subsequently be used to calculate the drag as

D=CpgS (2.5)

The thrust is assumed constant and will be either a positive number or zero if the fuel
mass is equal to zero. The missile is assumed to have a constant specific impulse and a specified
total impulse available. Using these assumptions, no further modelling is required. The thrust
is then found as

Isp
mg

T= (2.6)

Parameters used for the missile are as found in table 2.1. The parameters chosen are
arbitrary since they are the same for each guidance method and the methodology is model-
free meaning it can be employed on any model. They are however chosen to obtain range
performance approximately equal to that achieved by existing missiles.

Table 2.1: Missile model parameters

Parameter | Value | Unit
Sref 0.2 | m?
A 2 -

e 0.6 -
Cpo 0.05 -
Tonax 35 | kN

J 183 kN/s
Mempty 100 | kg
Mfyel 60 | kg

2.4.5. TARGET STATES

The target can be modelled using the same states as the missile only disregarding the mass
state. Thus the target state is represented by the vector Xigt = (Xtgt, Vigr: Ztgtr Vigt:YigtrWegt)-
Due to the target dynamics not being a main interest of this study, its modelling is simplified.
Its lateral acceleration is limited based on altitude where at sea-level it can sustain a 9 G ma-
neuver which is reduced linearly based on altitude to 2 G at 11 km altitude. The longitudinal
acceleration is limited to 5 m/s in both directions and is purely a control variable, the effect of
drag is not considered. Furthermore, gravity is neglected for the target. Thus the equations of
motion then become
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Xigr = Vigr COSYigr COSrg;
Vigt = Vigr COSY1gr singpygr
Zrgt = Vigesiny gy

Vigt = ax, gt @2.7)
. Az gt
Yigt = ——
Vigt
a
. y,tgt
Yigt =

Vigr COSYigt

where ay, i¢¢, Ay, 1g1 Az, 1gr are the accelerations in the targets body x, y, z-directions.
As can be seen these equations are simplified, however since the targets dynamics are not of
main interest a pragmatic and simplified model is chosen.

2.4.6. TARGET BEHAVIOUR

Three modes of target behaviour are used in this study, namely:

 Stationary Target: Target is stationary and thus velocity and accelerations are zero.

* Turn and Run: The target initially flies directly at the missile, at ¢ = 0 the target turns
180 deg and flies away from the missile.

° Random Maneuvers: The target performs a chain of randomly selected straights and
turns with randomly determined accelerations and durations.

The latter two methods are explained further below.

TURN AND RUN MANEUVER

The turn and run scenario is initialized with the target flying directly at the missiles initial po-
sition in the horizontal plane, thus the horizontal line-of-sight the target has with respect to
the missile is equal to zero. The target then performs a 180 deg turn and after accelerates up
to its maximum speed with a specified acceleration. The turn is performed with an accelera-
tion linearly dependant on altitude with a maximum of 9 G at sea-level down to 2 G at 11km
altitude. The maximum longitudinal acceleration is set to 5m/s and the velocity is limited to a
maximum of 250 m/s.

RANDOM MANEUVERS

The random behaviour is a chain of turn phases and longitudinal acceleration phases. Each
phase has a time duration associated with it determined by a truncated normal distribution
with mean 20 s, standard deviation 10 s, and upper and lower bounds [10,40] s. After this time,
the next phase is initialized. At the start of each phase, the type of maneuver is determined by
arandom 50/50 choice between longitudinal acceleration or turning.

If the maneuver is determined to be a turn, an acceleration and roll angle is ran-
domly determined. The acceleration is sampled from an uniform distribution with bounds
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[8max!4, &max] Where g1,4x is determined based on altitude in the same manner as is done for
the turn-and-run maneuver. The roll angle is sampled from a normal distribution with mean
90 deg and standard deviation 15 deg to mainly have horizontal maneuvers, where a random
50/50 choice determines the sign of the roll angle. Using the roll angle and the absolute accel-
eration both y ¢, and ¥/;¢; can be determined. The target velocity derivative V[gt is then set to
zero. Based on these numbers the target state evolution vector $;¢; can be determined for each
state during the turning phase.

If the maneuver is determined to be a straight, a longitudinal acceleration is sampled
from a uniform distribution with bounds [-5,5] m/s to determine Vtgt- Then y; = 1; = 0 and
the target state evolution vector §;¢; can be determined.

The target is limited in altitude and velocity to ensure the target maintains realistic
altitudes and velocities. Velocity is simply limited to be within [150,300] m/s by setting V[gt
to zero when the bound is violated. The altitude is constraint between [1,11] km and when
the target approaches these limits, $;4; is partly overwritten to steer the target away from these
bounds.

Using this process a chain of random target maneuvers is obtained. Resulting trajec-
tories from this process are visualized in figure 2.3.

—— Target Trajecteories
Initial Target Position
x  Final Target Positions

=
o

z-position [km]
O N B O @

Figure 2.3: Twenty resulting target trajectories using the implemented random maneuver algorithm

2.4.7. REFERENCE GUIDANCE LAW

Asis stated in [5] many current missile still employ a form of PN. Therefore the PN guidance law
is also implemented to be able to compare the newly developed guidance law to it. Anavigation
constant of 5 is used and a simple lofting algorithm is employed to enhance the performance of
the PN guidance. The lofting algorithm adds a bias to the acceleration in the vertical direction
if the time-to-go is larger than 10 seconds. This bias is for the first 5 seconds 10 g after which
the bias is 1 g to sustain the lofting. This bias is added until the time-to-go is smaller than 10
seconds after which pure PN is used.



OPTIMAL CONTROL

Optimal control aims to find a control function that changes the state of a system from an initial
condition to a free or fixed final condition, whilst optimizing for a specified criterion, subject to
system dynamics, and any number of specified boundary and path constraints. The obtained
state history is the optimal trajectory [7]. Using this methodology, the theoretical optimum
trajectory for a missile intercepting a target can be found, given that the trajectory of this target
is known.

Optimal control serves two purposes in this study. First of all it can be used to quan-
tify performance since it should theoretically provide the optimal solution. Secondly it is used
in the methodology as described in chapter 4 to generate demonstration trajectories. In this
chapter a theoretical background is provided regarding optimal control theory and the used
implementation is set out.

3.1. PROBLEM FORMULATION

A general problem formulation used in optimal control theory is known as the Bolza problem
[7]. It is formulated to minimize a cost functional J:

t
]:q)(x(to)ytmx(tf);tf)‘*'f fﬁf(x(t),ll(t),t)dt 3.1)
o

where £ is the Lagrange or running cost and @ is the Mayer or endpoint cost. Subject to the
systems dynamics, the boundary conditions, and the path constraints:

x = f(x(1), u(?), 1) (3.2)
B(x(tp), fo,X(£7), 1) =0 3.3)
Cx(n),u(r),n =<0 (3.4)

where f are the dynamic constraints, B are the boundary conditions, and C are the path con-
straints.

17
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By adjoining the constraints to the cost functional using Lagrange multipliers, the aug-
mented cost functional can be defined as given in equation 3.5

Ja= (1), to,x(tf), tf) —v Bx(to), to,X(tf), tf)

' oo r (3.5)
+f (L&(),u®),n-A" ()&-fx(0),u(®), ) —p’ (HCE(),u(t),n)dt

0

where v, A and p are Lagrange mutlipliers. By using the Pontryagin’s Minimum Prin-
ciple as given in equation 3.6 with % the set of permissible controls and . the Hamiltonian,
a set off first-order optimality conditions can be determined [20]. These conditions form the
Hamiltonian Boundary-Value Problem and are given in equations 3.7 - 3.14

u*(t) = arg{ min A x(1),u(r), 1)} (3.6)
u(Nex%
X = &_75 =fx(1),u(r), ) (3.7
- 5A - ’ ) .
— _&it’o (3.8)
o 6x ’
0% _y 3.9)
ou '
6D 6B
Teey— T
A% (L) = Bx(ty) +v x(t0) (3.10)
oD 6B
Tty = - r 11
MU= 5y T wxap G0
JC (1) = 5t v 5% (3.12)
= — v — 1
H(Lf) 5t v 51, (3.13)
B(x(%), to,x(tf), tf) =0 (3.14)

A solution satisfying the first order optimality conditions does not guarantee a local
minimum. To confirm the candidate solution is indeed a local minimum, the second-order
sufficiency conditions need to be satisfied.

3.2. IMPLEMENTATION

To obtain optimal control solutions for the model as described in section 2.4 the GPOPS soft-
ware is used [21]. GPOPS stands for Gauss Pseudospectral Optimization Software. It employs a
direct collocation method and as is apparent from the name the software uses a pseudospectral
method and LGR collocation points.
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Pseudospectral methods are employed in global collocation methods due to their abil-
ity to efficiently approximate integrals, differential equations and constraint which are all rel-
evant in optimal control [22]. Pseudospectral methods offer high accuracy with relatively little
discretisation points thus reducing computational cost. Methods vary in the trial functions
used, quadrature on which they are based and the collocation points at which the approximat-
ing function is fitted. For example, Legendre-Gauss (LG), Legendre-Gauss-Lobatto (LGL), or
Legendre-Gauss-Radau (LGR) methods can be employed [22]. All three are based on Legendre
polynomials as trial functions and collocation points based of a Gauss quadrature. They differ
in the collocation points used, LG does not include either boundary points, LGR includes only
one boundary point, and LGL includes both boundary points.

Furthermore, GPOPS is able to handle multiphase problems which is critical for the
problem at hand. This due to the discontinuity in thrust and thus state derivatives between
the phases of boosting and coasting, a discrete phase has to be defined. As this research is not
specifically focused on the trajectory optimization, only the implementation off the model as
described in 2.4 will be set out.

Two different cost functions are used throughout this study. The first and foremost
used is as follows:

J=ty (3.15)

where f¢ is the terminal time at which thus the boundary conditions are met for the
last phase. As can be seen, this is purely a Mayer cost functional. The second cost function used
in this report is defined to find the maximum range. This is done by defining the cost function
as:

J=xf (3.16)

where xy is the x-position of the missile which is part of the state vector.

As is stated, the problem consists of two phases. The first being the boost phase in
which fuel is used to produce thrust. The second is the coast phase in which no thrust is pro-
duced and the kinetic energy of the missile slowly diminishes. For both phases, the systems
dynamics x are described in sections 2.4.3 and 2.4.4. The phases are linked by linkage con-
straint defined as:

Lonin < LxP (15, 61, x P (10), £6") < Linax (3.17)

where p; and p, are the "left" and "right" phases to be linked. For the missile model
this is simply defined as follows:

0=xP (1) —x'P(£,) <0 (3.18)

thus ensuring that across the phase change all states are equal. It should be mentioned
that the optimizer aims to fulfill said constraint with a certain accuracy. Thus realistically zero
should be replaced by the set criteria for accuracy (e.g. £107°).
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Boundary conditions are enforced at both initial and final time. At f; the following
boundary conditions are enforced:

Xi <Xp =< X;

YisYo=VYi

Z2i <20 = Zj

VisWh=V;

YisYo=Yi

Vi=Wo=v;
Mempty SMf = Mgyl

(3.19)

where the subscript i stands for initial. In this manner the specified initial state is
enforced. As can be seen the initial mass is left free between fully fueled (m,;;) and empty
(Mempry). Due to the fact that the optimizer will always choose more fuel mass due to the
added energy, this choice is made to alleviate potential numerical difficulties. Then at tr the
following boundary conditions are enforced:

Xigt SXf < Xigy
Vgt SVf = Yegt
Zigt <2f < Zigt
Vinin SVf < Vimax
Ymin =Y f =Ymax
Ymin =Y f = Ymax
Mempty SMf = Mfyj|

(3.20)

where the subscripts min and max indicate the bounds of the problem, and the sub-
script ¢ indicates target states. These bounds are as given in table 3.1 and are enforced between
fo and t¢. As can be seen, most states are left free. The most relevant bounds are the bounds on
z, V, and m. The vertical coordinate z should be above sea-level, hence the lower bound. How-
ever the upper bound is set in place due to convergence issues which are encountered when
increased. This is potentially caused by the ISA being discontinuous leading to an ill posed
problem which the solver cannot overcome at these altitudes. For V the upper bound is ir-
relevant since the missile is not physically able to reach this speed, however the lower bound
is relevant. It is set to ensure a minimum velocity during flight which if violated in a realistic
scenario would lead to a very low change of intercept due to no or a negative closing velocity.

Table 3.1: Upper and lower bounds used for missile states

Parameter | Lower bound | Upper bound | Unit
x -1.0x 10° 1.0 x 10° m
y -1.0x 108 1.0 x 108 m
z 0 3.0x 10* m
|4 200 2000 m/s
Y -107 107 rad
v -10% 107 rad
m 100 160 kg
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Lastly a path constraint is added to enforce control limits. This path constraint is de-
fined as follows:

—40g, <\/aj, + a3, <40g, (3.21)

where ay, and a., are the acceleration commands in the missile body y and z direction
respectively.

Lastly, a maximum duration is set for the trajectory of 300 seconds. This is mainly to
scope the optimization and RL methodology, however a practical reason is also present due to
limited power supply time in missiles.

The optimization is then ran using 32 nodes in each phase, thus in total 64 nodes are
used. This number is based on the insignificant change in objective function when the number
is increased combined with the acceptable computational time at 32 nodes.

3.2.1. MOVING TARGET

A second implementation is derived from the presented implementation where a target moving
in a straight line with a constant velocity is incorporated. This is done using a so called event
constraint in which the following is enforced:

0 < xege(tp), Yege (£7), 2ege ()] — [x(£p), y(2), 2(2)] | < 10 (3.22)

where X;g¢, yig1) Ztg+ are a function of time extrapolating the initial position of the tar-
get using a specified velocity vector. This constraint enforces a final distance between missile
and target lower than 10 meters. The bounds at ¢ then become:

Xmin SXf = Xmax

Ymin =Yf = Ymax

Zmin S2f = Zmax

Vinin <V < Vinax (3.23)
Ymin =Y f = Ymax

Ymin =Y = Vmax

Mempty SMf = Mfyj)






GUIDANCE LAW USING REINFORCEMENT
LEARNING

As is set out in section 2.2.3 the guidance law provides a guidance command based on the
current observation of the environment to reach a specified target. This target may be moving
and maneuvering and thus the guidance law steers towards an unknown future target state. A
method has thus to be developed which determines a control command or action a based on
some observation or state s.

In this research it is explicitly chosen to split the determination of an PIP and the de-
termination of the guidance command to reach this PIP. Thus the guidance law is split into
two main parts, the determination of the point to which is steered and the determination of
the control command to reach this point. This is done for several reasons of which the fore-
most is the problem of modelling the targets behavior. If a certain behavior is implemented
for the target and this described split is not made, the method employed to determine a guid-
ance command would be near-optimal only for the implemented target behavior. A secondary
reasons is that this splits the problem into a deterministic problem and a stochastic problem,
respectively determining the optimal manner of reaching said PIP and determining this PIP.
This in term simplifies implementation and the quantification of performance due to being
able to develop and benchmark both implementations separately.

As is stated in section 1.2 a methodology based on deep RL is chosen. This method-
ology will be employed to determine the guidance command based on the PIP and current
state of the missile. The specific methodology chosen is based on the Deep Deterministic Pol-
icy Gradient (DDPG) framework. DDPG is chosen due to its compatibility with the specified
problem and relative simple implementation making it easy to implement, expand, and scale.
The problem at hand features continuous action and state spaces which not all RL methods
are compatible with. Furthermore, DDPG takes advantage of the fact that the problem is deter-
ministic leading to more efficient learning [23] [24].

In this chapter the reinforcement learning methods employed to develop an agent
which acts as part of the guidance law are set out. First, in section 4.1 the definition of arti-
ficial intelligence and machine learning is set out and how RL is a part of this. After this, in
section 4.2, the general problem definition associated with RL and several important concepts
regarding this report are set out. In section 4.3 the theory behind the used implementation is
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Figure 4.1: Visualization of relevant disciplines encapsulated by artificial intelligence [26]

set out. Finally, section 4.5 covers the actual implementation of the framework combined with
the methods of determining the PIP.

4.1. ARTIFICIAL INTELLIGENCE & MACHINE LEARNING

Artificial Intelligence (AI) can be defined in many ways. To provide a short introduction, four
definitions as given in [25] are given:

1. Definition 1, "acting humanly": creating machines which perform tasks which require
intelligence when performed by humans.

2. Definition 2, "thinking humanly": creating machines which can think, learn, and solve
problems and thus are intelligent themselves.

3. Definition 3, "thinking rationally": creating machines which can perceive, reason and act

4. Definition 4, "acting rationally": creating machines which act rationally

The last definition, acting rationally, is currently the predominant approach. Machines
which show rational behaviour, however do not reason to arrive at this behaviour. Machine
Learning (ML) is one of the fields encompassed by Al and can be classified under this definition.
An overview of the field of ML is given in figure 4.1

Machine learning is the field of study which attempts to find good predictors based
on previous experiences [27]. ML is usually divided into supervised, unsupervised, and re-
inforcement learning. Supervised and unsupervised learning attempt to extract information
from data, where in supervised learning the data is labeled whilst in unsupervised learning
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the data is not labeled. Examples of the latter are clustering and density estimations. Rein-
forcement Learning (RL) is usually concerned with sequential decision making and long-term
accumulative rewards [26].

4.2, REINFORCEMENT LEARNING

As previously stated, reinforcement learning concerns itself with developing agents which max-
imize the cumulative reward obtained by taking actions in an environment. This environment
is usually a Markov Decision Process (MDP) and can be either a real physical environment
or a simulated environment. Behaviour is thus established by rewarding good behaviour and
hence reinforcing this behaviour. Several concepts are introduced below which are important
throughout this report.

4.2.1. PROBLEM DEFINITION

A standard RL problem consists of an agent interacting with an environment over time. At each
time step ¢ the agent determines an action a, from the action space A based on the observation
or state s; from the state space S. Based on this, the agent receives a scalar reward r; based on
the reward function r (s, a;) and transitions to the next state s, according to the state transi-
tion probability P(ss+118:, a;) (thus assuming a stochastic environment). The agent’s behavior
is determined by the policy 7 (a;|s;) which is a mapping from state s; to action a;. The problem
might be episodic meaning the process continues until the agent reaches a terminal state. The
return is defined as

T
Re=Y y§ "rsiap 4.1)
i=t

where v, € (0, 1] is the discount factor. The discount factor determines if the emphasis
lies on short term rewards or long term rewards. The agent aims to maximize this return by
choosing the actions to take. Usually RL problems are MDP where the future depends only on
the current state and action, specifically not on previous states. Applying a policy to an MDP
process defines a Markov chain. The superscript of r is introduced denoting the usage of the
policy 7 over the Markov chain.

Several important concepts are established here, namely the agent, rewards, policies
and the MDP. The process described above is visualized in figure 4.2.

Agent Il

state reward action
S, R, A,

_ R, r
_S,., | Environment |<—

Figure 4.2: Diagram visualizing agent-environment interaction [28]

y Y




26 4. GUIDANCE LAW USING REINFORCEMENT LEARNING

4.2.2. VALUE FUNCTION

The value function predicts the expected, cumulative, discounted, future reward based on the
state or state-action pair. Abstractly it estimates how good the state or state-action pair is. For
the latter case, this value function is defined as

Q" () =E[R¢lss, ar] 4.2)

for the expected return for action a, and state s; after which the policy = is followed. This
equation can be decomposed into the Bellman equation, equation 4.2 then becomes

Q" (st,ar) =B, 5, ~E|T (51, a0) + YEq,, ~n [ Q" (St41, at+1)]] (4.3)

where the environment, E, may also be stochastic. Many RL approaches make use of this rela-
tionship [29].

4.2.3. EXPLORATION AND EXPLOITATION

To learn, a RL algorithm needs to generate (new) experiences. Exploiting the existing policy
7 which might not be optimal and exploring uncertain policies is a dilemma in RL. If no "off-
policy" experience is generated, the agent has no method of learning since it is not known
what rewards are obtained outside the policies nominal Markov chains. An example of an ex-
ploration method is e-greedy where the action determined by the policy is followed with prob-
ability 1—¢, else arandom action is chosen within the action space A. This will thus lead to new
experience with which the policy might be adapted.

4.2.4. TEMPORAL DIFFERENCE LEARNING

Temporal difference (TD) learning is a reinforcement learning method which learns through
bootstrapping. Bootstrapping uses estimates to update a value rather than the exact value.
To give an example based on one-step returns, the TD update rules as used in the Q-learning
method is given as

Q(s,a) — Q(s,a) + a[r +y maxy Q(si+1,ar+1) — Qs ay)] (4.4)

where Q is some function estimator used to estimate the value function, « is the learning rate,
and r +y maxy Q(Ss+1, ar+1) — Q(ss, ay) is called the TD error. As can be seen, the function
estimator is updated using the estimated return from the next time step Q(ss+1, a@r+1) and not
an exact value obtained at the end of an episode. Bootstrapping values are common in RL
and have benefit such as faster learning, and enabling online and continues learning [26]. It
however is not a true gradient decent due to the target depending on an estimate.

4.2.5. POLICY GRADIENT

Policy gradient methods update the policies parameters using the gradient of the expected re-
ward with respect to the policy parameters [28] [30] rather than learning the value function
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and using it to select the best possible action. Selecting actions is then based on the policy di-
rectly without using the value function. This means that the actor is not dependant on a value
function to select an action, however the value function is still used to train the policy.

Policy gradient methods are often more stable during training, are more effective in
high dimensional action spaces, can handle continuous domains, and the policies may be
stochastic or deterministic. A disadvantage is that the learned policy may not the global op-
timum due to it being a gradient based method. The major benefit being its ability to handle
continuous domains.

4.2.6. ACTOR-CRITIC ARCHITECTURE

Actor-critic algorithms consist of two estimators, one of which learns a policy 7 and the other
learns the state-value function Q”. The state-value estimator or critic is updated using for ex-
ample bootstrapping and the critic is then used to update the parameters of the actor’s policy
parameters. This architecture accelerates learning and reduces variance [31] [32]. The actor-
critic architecture is visualized in figure 4.3. An major advantage of the actor-critic algorithm is
that the critic’s gradient can be used to train the actor as discussed in section 4.2.5.
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Figure 4.3: Diagram visualizing actor-critic-environment interaction [28]

4.2.7. DEEP REINFORCEMENT LEARNING

Deep learning is the opposite of "shallow" learning and encompasses methods which incorpo-
rate one or more hidden layers between the input and output layer. Many deep learning ar-
chitectures exist however the most well known are based on the Neural Network (NN). A deep
neural network maps inputs to outputs using several simple mathematical functions composed
in a network structure. In this network so called neurons embody these functions. Each neu-
ron in a layer following the input layer receives a input composed of a weighted sum from the
outputs of the previous layer. A mathematical transformation is applied over the neuron such
as logistic, tanh, or the rectified linear unit [26].

The structure of the NN allows to compute the error derivatives with respect to the
weights connecting the layers. This is called backpropagation and can be used to update the



28 4. GUIDANCE LAW USING REINFORCEMENT LEARNING

weights of the NN in a very effective manner.

The methods previously discussed rely on function approximators. When a deep NN
is used in a RL methodology as a function approximator for any component (for example the
policy or value function), it is called a deep RL method.

Due to the NN being a combination of simple mathematical transformations, the amount
of operations used when evaluating a NN is small. This is especially relevant in this case since
itis to be employed in a feedback manner at a high frequency. A neural network using 3 layers
and 512 neurons per layer requires in the order of 1 x 105 FLOPs per evaluation. To put this in a
frame of reference, a readily available small computer such as the Raspberry Pi 3 B+ achieves in
the order of 1 x 108 FLOPs per second [33] and could theoretically evaluate the mentioned NN
at1x 10% Hz.

4.3. DEEP DETERMINISTIC POLICY GRADIENT

Deep Deterministic Policy Gradient is a framework implementing several previously introduced
concepts. It is a policy gradient method implementing the actor-critic architecture. The actor
and critic are represented by NNs and thus backpropagation can be used to determine the er-
ror derivatives with respect to the weights. The critic network is updated through gradients
obtained from TD error signals by minimizing the loss given as

2
LO9 = By | (Qsty a0 109 = (r(se, a0 +Y Qe lsi) 109)) ] @.5)

where 69 represents the parameterisation of Q and y is used to denote the determin-
istic policy. To update the actor, first equation 4.3 is rewritten to

Q' (st,a) =y, 5~ [T (St an) + YQH (sS4, p(s141)) ] (4.6)

avoiding the inner expectation due to using the deterministic policy u : S — A. Due to this the
expectation only depends on the environment. It is now possible to learn Q" off-policy using a
exploratory policy ¢’ due to the expectation not explicitly being dependant on the policy [29].

By applying the chain rule to equation 4.6 with respect to the actor parameters 6, the
policy gradient is obtained as given in equation 4.7.

Vo= Ey |VaQ(s, a | 09s=s,, a=u(s) Vorp(s | 0%)s=s, 4.7)

Thus the critic is updated using TD learning and the critic is then used using to update
the actor. These updates are performed with an optimizer where in RL the Adam optimizer
is popular [34]. However simply implementing this would not result in a stable, converging
method where several issues persist. One of them is that the transitions used are generated in
a sequential manner due to the episodic nature of the environment. Thus the transitions are
not independent and not well distributed. To overcome this a replay buffer is introduced where
transitions are stored generated from the environment. Once full, old transitions are discarded
and new experience is added. Due to DDPG being an off-policy algorithm, a large replay buffer
can be used and a set of uncorrelated transitions can be sampled from it.
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Another issue is the instability due to the critic being updated using bootstrapping
making it prone to diverge. The concept of target networks is introduced for both the actor
and critic network. By having target networks and having the parameterization of both actor
and critic "tracking" them rather than directly updating the parameters, the learning can be
stabilized. A drawback of this is that learning is slowed down. Mathematically this can be
expressed as

0 —10+(1-1)0" with T« 1 (4.8)

where 7 is called the polyak averaging coefficient.

The third issue encountered is the potentially different scale of states provided to the
algorithm. Vastly different scales can hamper learning and could comprise the algorithms abil-
ity to be generalized across many environments. To counteract this batch normalization is used
which normalizes each dimension to have unit mean and variance [35].

Lastly, an exploration policy is required to generate new experience. Due to the DDPG
algorithm learning off-policy, this is quite simple and can be achieved by adding noise to the
actor policy

Wso) =p(s 100)+N (4.9)

where N is some form of noise. For physical processes with inertia often an Ornstein-
Uhlenbeck process is used due to it generating temporally correlated noise.

The algorithm is then presented below in figure 1 where the full process of generating
experience and updating networks is given. Note that batch normalization is not explicitly
included here.

4.3.1. HINDSIGHT EXPERIENCE REPLAY

DDPG is, as said, relatively simple in its implementation and thus easily expanded upon. Fur-
thermore, the presented DDPG algorithm will not be able to effectively develop beneficial be-
haviour in an environment with sparse rewards. This due to the fact that the initial policy will
have a very low or zero success rate leading to it experiencing no change in rewards and thus
no gradient in the critic network. An example of such an environment is an environment where
the goal is to minimize the time to reach a target, a reward of —1 would be given every timestep
until the target is reached. Only when success is achieved relatively consistently, more benefi-
cial behaviour can be learned.

To alleviate this problem, Hindsight Experience Replay (HER) is introduced. The core
concept behind HER is to reuse generated episodes or trajectories where a different goal is used
in the replay [36]. Thus a generated trajectory in an environment featuring sparse rewards can
be described by a state sequence s, ..., sT and a goal g # sy, ..., s which thus does not contribute
to learning to reach goal g. However, by reusing this state sequence and replacing g by g’ = st
and recomputing rewards for each transition, valuable learning experience is gained which is
added to the replay buffer. Thus an initial policy which does not successfully achieves its goal
can still learn beneficial behaviour from these episodes by changing the goal. The full algorithm
is given in figure 2. It has to be noted that the algorithm can be applied to any off-policy RL
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Algorithm 1 DDPG algorithm [29]

Randomly initialize critic network (s, a|#%) and actor u(s|#*) with weights % and #*.
Initialize target network @' and p' with weights 62" « 69, # « g~
Initialize replay butfer
for episode = 1, M do
Initialize a random process A for action exploration
Receive initial observation state s,
fort=1,Tdo
Select action as = p(s¢|6") + N according to the current policy and exploration noise
Execute action a,; and observe reward r; and observe new state s;
Store transition (s, ag, e, $¢41) in B
Sample a random minibatch of N transitions (.t;,-. (i, Ti, 841 ) from R
Sety; = v; + Q" (8,01, 1" (554 1|9“‘)|€{3’}
Update critic by minimizing the loss: L = + 3 (1 — Q(s4, ai|89)?)
Update the actor policy using the sampled gradient:

1
v(?-" ﬂls, == _, Z an[H- a‘||9Q)|s=s. .u:pl,'.t;‘ ]v(?-“ fj,[islf;"“j =y

Update the target networks: _ _
09 709 + (1 - 7)6°
0" — 0" 4 (1 — 7)o"

end for
end for

algorithm therefore the algorithm is more generalized and slightly different nomenclature is
used. Research has shown that HER improves learning performance in both environments
featuring shaped or sparse rewards [36].

4.3.2. OVERCOMING EXPLORATION WITH DEMONSTRATION

Under the same premise as HER, learning from demonstration is introduced. Like HER, DDPG
from Demonstration (DDPGfD) overcomes the problem of exploration in an environment with
sparse rewards. Learning from demonstrations does imply that demonstrations are available
and in this case optimal trajectories can be generated as demonstrations by using optimal con-
trol as introduced in chapter 3.

To enable learning from demonstration a second replay buffer Rp is introduced where
the transitions obtained from demonstration are stored. During training an extra set of samples
is drawn from this replay buffer and added to each minibatch in both the actor and critic up-
dates. Behavior cloning loss is introduced where the policies action is compared to the demon-
strated action in a specific state. It is defined as [37]

Np
Lpc = Z Il peCsi | GH) —4ai “2 ﬂQ(Si;ai)>Q(sirﬂ(si)) (4.10)
i=1

where a so called Q-filter is added determining if the demonstrated action is better
than the action determined by the policy. If not, the demonstration is not used. The gradient
used to update actor is then [37]
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Algorithm 2 Algorithm for off-policy RL methods incorporating HER [36]

Given:
s an off-policy RL algorithm A, = e.g. DQN, DDPG, NAF, SDON
e astrategy 5 for sampling goals for replay, >e.g S(so,...,s7) = m(s7)
e areward functionr : & x A x G — R, peg r(s,a,g) = —[f,(s) =0]
Initialize A > e.g. initialize neural networks

Initialize replay buffer &
for episode=1, M do
Sample a goal g and an initial state s.
fori = 0.7 —1do
Sample an action a, using the behavioral policy from A:
at +— To(se||g) & || denotes concatenation
Execute the action a; and observe a new state s;
end for
fort = 0,7 —1do
re o= (s, ai, g)
Store the transition (s¢||g. as, r¢, se41llg) in B t- standard experience replay
Sample a set of additional goals for replay ¢ := S(current episode)
for y' € G do
= (s, ai.g')
Store the transition (s¢||g’, a¢, ', six1llg’) in R > HER
end for
end for
fort = 1, N do
Sample a minibatch 5 from the replay buffer K
Perform one step of optimization using A and minibatch B
end for
end for

M Ve, k—12Ve,Lpc (4.11)

which is a weighted combination of the regular policy gradient as given in equation
4.7 and the gradient of the policy with respect to the behavior cloning loss. Due to the behavior
cloning loss being a loss, one wants to minimize this where one wants maximize the rewards
obtained from the policy which explains the subtraction of the gradient of the loss. In [37] no
further elaboration on the choice of the weights 177 and 7, is given thus the standard values
provided will be used. Practically the weighting represents which loss is prioritized where a
higher weight represents a higher priority.

4.3.3. EXPLORATION

To generate new experience often noise is added to the policy. As this is a problem with mass
inertia, random Gaussian noise would not have a great effect on the resulting trajectory. There-
fore Ornstein-Uhlenbeck noise is used which is temporarily correlated [38]. This is achieved
by the state of the noise process being correlated to the noise at the previous state of the pro-
cess. Furthermore it has the mean reverting property meaning that it drifts back to the mean
overtime. Mathematically it is expressed as

dx;=a(f—x)dt+odW; (4.12)
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where a > 0, B, and o > 0 are parameters and W; is a Brownian motion process. In lit-
erature a and f are usually denoted using different symbols however these have been changed
to not conflict with other symbols used in this report. a, 8, and o can be described as the
tendency to revert to the mean, the mean, and the volatility respectively.

4.4, TRAINING OF AGENT

Thus the training algorithm has been established, however this training algorithm needs to in-
teract with an environment to perform training and simulation. It should be noted that up to
this point no specific environment has been considered whilst setting out the training method-
ology and thus the methodology is not constraint to the described environment and can be
applied to many problems with a similar problem definition.

4.4.1. ENVIRONMENT

Asis depicted in figure 4.2 the environment takes an action at every timestep and transitions to
anew state and is rewarded with some scalar reward. However, first the environment is reset to
obtain an initial state. A random initial state for the missile is used for this initial point which is
uniformly distributed over the domain. In this case, the initial state is constraint using a maxi-
mum range of 300 km in the horizontal plane, whilst the altitude is constrained between 2 and
11 km. Furthermore the missile is always initialized using a full fuel load. Initial velocities can
range from 250 to 500 m/s as would be the case when launched from a fighter. Furthermore,
initial off boresight angles are limited to be between +45 degrees in elevation, whilst the hori-
zontal off boresight angle is left free between +180 degrees. During training only a stationary
target is considered as stated before. For training, this target is always initialized at x,y = 0
whilst the altitude of the target can vary between 2 km and 11 km.

Starting from the initial state, the environment integrates over time with a timestep
of 0.01 seconds whilst an action is selected every 50 timesteps or 0.50 seconds when far from
the target and an action every 5 timesteps or 0.05 seconds when closer than 1 km to the target.
This is done to limit computational time of episodes which speeds up training significantly.
Furthermore, an episode is limited to either 650 timesteps or 300 seconds depending on which
is reached earlier. The agent is provided a different vector as an observation than the states as
used in the equations of motion. This is done to facilitate easier learning due to the provided
observations being more intuitive (e.g. range to target is more directly correlated to a guidance
command than six position coordinates). The provided observation vector is defined as s =
(Bel,Bazi,éel,éazi,R, z, V,v,w,m). Where 8,; and 0,,; are the vertical and horizontal lines of
sights with respect to the missiles body reference frame and 0,; and 0,,; are their respective
derivatives. Furthermore R is the range to target.

The agent achieves success when coming within 10 m of the target. However, it is
found that the agent fails to achieve sufficient accuracy in the terminal stage due to the rel-
atively large domain (volume in the order of 10 x 10'* m3) with respect to the goal (volume in
the order of 10 x 103 m3®) combined with the limited estimation power of the neural network.
The solution to this problem will be elaborated on further in section 4.5. However to alleviate
this problem in training, the success criteria in training is changed where the agent achieved
success when coming within 2.5 km of the target. A reward for a low LOS angle as then ensures
the agent learns to point itself directly at the target at this boundary. This reward is equal to
1x104 multiplied by the final LOS angles, thus cos(8,;) and cos(0,;;).



4.4. TRAINING OF AGENT 33

Each timestep the agent receives a penalty of [-1] thus the goal of the agent is to reach
the target in the minimal time possible. This objective is chosen for several reasons. First of all
as is established, a shorter time of flight has several advantages. The main reasons being less
time for the target to take evasive action and it incentivises a high terminal velocity and thus
energy. Adding to this, the agent will always strive to reach the target and thus at maximum
range it will choose the only solution also being the minimum time solution.

Lastly, constraints are enforced by penalizing the agent if a constraint is violated. For
each constraint violated, 1 x 103 is added to the reward. An example of a constraint employed
is the minimum altitude of 0 m. The reason why the episode is not simply terminated once a
constraint is violated is that it will be seen as beneficial behaviour due to the agent not receiving
more penalties.

4.4.2. TRAINING SETUP

The full implementation uses DDPGfD combined with HER. Furthermore Ornstein-Uhlenbeck
noise is used to explore and generate new experience. The training process then consists of a
specified number of epochs. At the end of each epoch the obtained policy is tested and can be
stored. During each epoch a specified number of cycles are performed. Each cycle consists of
a number of episodes being generated and stored in the replay buffer. After this the networks
are trained using batches of data sampled from the replay buffers. These batches of transitions
consist of regular experience, HER transitions, and demonstration transitions. The demonstra-
tions are generated using optimal control as presented in chapter 3. Due to the fact that these
demonstrations are assumed to be optimal, the Q-filter is not used on demonstration transi-
tions.

In table 4.1 the training parameters used are set out. It should be noted that the train-
ing process is fully parallelized, therefore some of the parameters are expressed as per thread.

4.4.3. CONVERGENCE

Using the setup provided above, the training can be monitored using results from test episodes
which are ran every epoch. In figures 4.4 and 4.5 the median success rate and mean Q-value
obtained for each epoch using the described algorithm on the 2-DoF and 3-DoF environment
are visualized. In both environments the agent achieves a high success rate early due to the
provided demonstrations. With subsequent epochs, behaviour generally improves indicated
by the increasing success rate and mean Q-value. Furthermore, learning is relatively stable.
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Table 4.1: Parameters used for DDPGID + HER training process

Description Value | Comment

Neural Networks

Hidden layers 3

Neurons per layer 512

Optimizer Adam | Deep learning optimizer for network weights
Qir 1E-3 | Learning rate of critic

Wiy 1E-4 | Learning rate of actor

DDPG{D and HER

Buffer size 1E6 | -

Polyak coefficient 0.8 | -

Y 1-1/T | Discount factor with T = 600 (max. timesteps)
Minibatch size 1024 | Transitions per thread

HER ratio 4/1 | Ratio of HER transitions to regular transition
Demo batch size 256 | Demonstration transitions per thread

1 0.001 | Behaviour cloning loss weighting

12 0.0078 | Behaviour cloning loss weighting

Demo episodes 800 | Episodes entered in the demonstration buffer
Training

Threads 128 | Parallel processes used for training

Epochs 50 | -

Cycles 50 | Per epoch

Minibatches 16 | Per cycle

Exploration -

a 0.1 | Mean reverting property of Ornstein-Uhlenbeck process
B 0 | Mean of Ornstein-Uhlenbeck process

o 0.01 | Volatility of Ornstein-Uhlenbeck process
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Figure 4.4: Convergence of median success rate and mean Q-value for training of 2-DoF guidance agent
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Figure 4.5: Convergence of median success rate and mean Q-value for training of 3-DoF guidance agent
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4.5. IMPLEMENTATION OF GUIDANCE LAW

The established agent through previously explained methods is only part of a guidance law. As
is stated before, an algorithm is still required to obtain an PIP. Furthermore, in the previous
section the problem is raised that the agent does not perform well enough in minimizing miss
distance in the terminal stage. To overcome these problems a PIP algorithm is presented below
and in the terminal guidance phase PN is applied in favour of the RL agent. The guidance law

is presented schematically in figure 4.6.

Observation of PIP Acceleration Command

Missile and Target States

N .
P»< Terminal?
Acceleration Command

Proportional
Navigation

>

Figure 4.6: Schematic of RL agent based guidance law

The framework presented provides a lot of options due to the possibility of using dif-
ferent PIP algorithms, RL agents, switching criteria, and terminal guidance law in combination
with each other.

4.5.1. RL AGENT

The RL agent used in the guidance algorithm is obtained through methods explained in sec-
tions 4.3 and 4.4. The policy generated through training with the highest median success rate
is used as the RL agent in the guidance algorithm.

4.5.2. TERMINAL GUIDANCE

The decision to switch over to terminal guidance has to be made based on the states or obser-
vations of the system. In this case the choice is made to switch over the horizontal and vertical
guidance individually. This is done to increase robustness of the guidance law whilst still ben-
efiting from the increased performance obtained from the RL agent in early and midcourse
stages of the trajectory.

The guidance in the horizontal plane is switched from the RL agent to PN guidance
after the horizontal off boresight angle 6,; is lower than a specified number (in this case 5 deg).
This is a practical choice due to the RL agent providing better performance in high off boresight
angles however once aligned with the target no major benefit is provided by the RL agent whilst
unpredictable behaviour might be shown by it.

The guidance in the vertical plane is switched over to PN at a specified range (in this
case 10 km). The navigation constant then used for PN is equal to 5. This point is usually after
the horizontal guidance switch-over and thus after this point the missile is fully guided using
PN.

Furthermore, a "sanity" check is introduced to the guidance scheme where the com-
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mand provided by the RL agent is compared with the PN guidance command for the specific
state of the system. This check is only performed after the initial 10 seconds of flight due to
large differences in commands between the two guidance schemes present during this initial
phase. If the difference is larger than 20% of the maximum acceleration between 10 and 20
seconds, or larger then 10% of the maximum acceleration after 20 seconds the switch to PN
guidance is made. By doing so the handover to terminal guidance is relatively smooth mini-
mizing energy losses due to a sudden large acceleration. Furthermore it cannot be guaranteed
that the RL agent has a correct solution for every state of the system. By adding this sanity check
the guidance scheme should be more robust.

4.5.3. PIP ALGORITHM

Two PIP algorithms are used in this study to provide an observation to the RL agent. The PIP
algorithm predicts the position at which the missile will reach the target and derives a virtual
observation of the target at this position. Thus the RL agent observes the target to be station-
ary at the PIP. The two PIP algorithms both assume the velocity of the target to be constant
where the difference between both lies in the assumed direction of this velocity. The first mode
assumes the velocity to remain in the direction it is at the current timestep whilst the second
mode assumes the target to fly away from the missile thus assuming a worst case scenario.

For both PIP algorithms first the time-to-go g, is estimated. This is done using the
relative velocity V; and the range to target R where the time-to-go is found using

R
tgo= 7 (4.13)

r

Based on the fg, the position of the target can be extrapolated. For the first PIP-mode,
which will be referred to as PIP-mode 1, the actual velocity vector of the target is used to deter-
mine the PIP. Whilst for the second PIP-mode, PIP-mode 2, a virtual velocity vector is used to
calculate the PIP. This virtual velocity vector assumes v/, as if the target is flying directly away
from the missile in the horizontal plane. In this manner the worst case is assumed where the
target flies away from the missile. PIP-mode 1 and PIP-mode 2 are visualized in figures 4.7 and
4.8 respectively.

_10_

y-position [km]

_20 ) T T T T T
-100 -80 -60 -40 -20 0
x-position [km]

—— Missile Trajectory
—— Target Trajectory
+ Predicted Intercept Point

Figure 4.7: Visualization of PIP-mode 1 in the x-y plane
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RESULTS

The methodology and experimental environment as described in chapter 4 will be used in this
chapter to analyze the performance of the resulting guidance law. First the algorithm is applied
to a simplified environment to proof the concept and establish an initial performance quantifi-
cation. After this, the simplifications of the environment are removed and the performance of
the establish guidance law is evaluated through individual cases and the performance is gen-
eralized using results from a multitude of engagements. To isolate the performance of the RL
agent and the PIP algorithm, first an analysis is performed with stationary targets after which
target maneuvers are introduced to study the full guidance law using a realistic environment.

5.1. TWO-DEGREES OF FREEDOM

As is stated first a proof of concept is established using a simplified environment. The engage-
ment is constrained to a planar engagement by setting y = y = 0 and ¢ = 14 = 0. This leaves 5
states and thus x = (x, z, V,y, m). Furthermore, the concept which has to be proven is the RL
agent thus no moving target will be considered and subsequently no PIP algorithm is required.
An agent is trained for this environment using the methodology as described in sections 4.3 -
4.4.

5.1.1. CASE STUDY

Using the simplified environment a case study is performed. The case study is initialized using
the states and target states as given in tables 5.1 and 5.2.

The resulting trajectory is then given in figure 5.1. It can be seen that the RL agent
based guidance outperforms PN navigation guidance by a significant margin in terms of time
of flight. Furthermore, the RL agent based guidance approximates performance obtained using
optimal control in terms of time of flight. This is a promising results since the specific case
simulated here is most likely not encountered in training, which insinuates that the RL agent is
able to generalize behaviour and approximate performance obtained from optimal control.

During the initial 10 seconds of flight the optimal trajectory and the trajectory ob-
tained using RL agent based guidance closely match as can be seen from figure 5.2. Both choose

39
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Table 5.1: Initial missile states Table 5.2: Initial target states
State | Value | Unit State | Value | Unit
X -50 km Xigt 0 km
y N/A | km Vigt N/A | km
z 5 km Zrgt 5 km
\%4 300 m/s Vigt 0 m/s
Y 0 deg Yigt 0 deg
Y N/A | deg Vigt N/A | deg
m 160 | kg
14 1
12 1
— 10 1
S
=
§ 8]
=
S 61
N
4 4
2 B
0 : : : : : :
-50 -40 -30 -20 -10 0
X-position [km]
* |nitial Position —— Optimal Trajectory: 56.33 s
—— RL Agent Trajectory: 56.4 s —— PN Trajectory: 62.25 s

Figure 5.1: Resulting trajectories plotted for missile intercepting stationary target using PN guidance with lofting,
RL agent based guidance, and the optimal trajectory in a 2-DoF environment

choose a significantly higher trajectory then PN with lofting. This higher trajectory is achieved
by sustaining a higher elevation angle longer as can be seen in figure 5.3 resulting in a higher
sustained velocity. This in term leads to a shorter time of flight even though both RL agent
based guidance and optimal control travel a longer distance due to the higher trajectory.

Looking at figure 5.4 it can be seen that the control commands commanded by the RL
agent closely match the control commands obtained using optimal control. The main differ-
ence being that the RL agent provides slightly more erratic commands. It can also be seen that
the lofting algorithm seems effective at first however is quickly overridden by the LOS-rate gen-
erated by the lofting leading to a nose down command. This in term prevents the missile using
PN to loft as effectively as the RL agent based guidance and optimal trajectory.
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Figure 5.2: x and z-position plotted versus time for missile trajectories obtained using PN guidance with lofting, RL
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Figure 5.4: Commanded control plotted versus time using PN guidance with lofting, RL agent based guidance, and
optimal control

5.1.2. RANGE ENVELOPE

A single case does not yet prove that the method outperforms PN guidance or approximates
optimal performance. Therefore, to establish a measure of performance, the maximum range
is iteratively found for PN with lofting and the RL agent based guidance law. The theoretical
maximum range is then found using optimal control. Plotting the results gives figure 5.5 where
in figure 5.6 the same result is presented however this time normalized using the theoretical
maximum range.

As can be seen, the RL agent based guidance achieves between approximately 60%
and 90% of theoretical optimal range performance whereas the PN guidance law with lofting
achieves between approximately 45% and 60% of this. The lofting does improve performance
of the PN guidance law significantly as without lofting only between 20% and 30% of theoret-
ical optimal performance is obtained. The optimal range is still significantly larger than the
achieved using the RL agent based guidance, however a significant performance increase is
achieved with respect to the PN guidance. An interesting observation is the increase of perfor-
mance with altitude for the RL agent, at lower altitudes the normalized range is significantly
lower. This is reasoned to be caused by the thicker atmosphere punishing non-optimal solu-
tions more harshly. Thus a difference in behaviour with respect to optimal control will lead to
a larger difference in performance at lower altitude.

Combined with the case study showing performance approximating performance ob-
tained using trajectory optimization, it is established that the methodology is feasible, can in-
crease performance over traditional guidance laws, and approximate performance obtained
using trajectory optimization.
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Figure 5.5: Maximum range achieved using PN guid- Figure 5.6: Normalized maximum range achieved using
ance, PN guidance with lofting, RL agent based guid- PN guidance, PN guidance with lofting and RL agent
ance and trajectory optimization at altitudes between 1 based guidance at altitudes between 1 and 11 km

and 11km

5.2. THREE-DEGREES OF FREEDOM - NON MOVING TARGET

Using the 2-DoF environment it is shown that the method is feasible and able to improve on PN
guidance. Removing the simplification of restricting the engagement to the vertical plane, a 3-
DoF scenario is obtained. Again, an RL agent is trained for this environment and implemented
in the framework as described in section 4.5. The target is set to have zero velocity and is thus
stationary. By doing so the performance of the RL agent alone, thus without the extra com-
plexity added by the PIP-algorithm, can be evaluated and compared to optimal control. The
trajectory obtained using PN with lofting is also plotted to compare the developed RL based
guidance law to a traditional guidance law.

5.2.1. CASE STUDY

An engagement is initialized where the initial states of the missile and target can be found in
tables 5.3 and 5.4. Trajectories are generated using the RL agent based guidance algorithm,
PN guidance with lofting, and the optimal trajectory as obtained from trajectory optimization.
These trajectories are presented in figure 5.7.

As can be seen the optimal trajectory and the trajectory generated using the RL guid-
ance match closely and both reach the target in a very similar time. The RL agent is outper-
formed by optimal control and reaches the target 0.9% slower than the time obtained from
optimal control. Differences in behaviour are observed mainly in the vertical plane. Figure 5.8
shows the RL agent choosing a higher trajectory leading to a slightly higher sustained velocity
in the final stage of the trajectory as displayed in figure 5.9. This however does not lead to a
shorter time of flight.
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Table 5.3: Initial missile states Table 5.4: Initial target states
State | Value | Unit State | Value | Unit
X -95 km Xigt 0 km
y -50 | km Vigt 0 km
z 5 km Zrgt 5 km
\%4 300 m/s Vigt 0 m/s
Y 0 | deg Yigt 0 | deg
Y 90 deg Vigt 0 deg
m 160 | kg

z-position [km]
=
(8]

-40

YVpoe:
,Ooslt,bn—[%g7 ; _20 +°
20 0
—— RL Agent Trajectory: 129.88 s —-— PN Groundtrack
—-— RL Agent Groundtrack e Initial Position
—— Optimal Trajectory: 128.66 s x  Intercept by RL Agent
—-— Optimal Trajectory Groundtrack x  Intercept by PN
—— PN: 166.5s

Figure 5.7: Resulting trajectories plotted for missile intercepting stationary target using PN guidance with lofting
and RL agent based guidance

A clear disadvantage of the switching between guidance schemes can also be found
in figure 5.9 and 5.10. Due to the change in guidance scheme a relatively large acceleration
command is given between ¢ = 105 and ¢ = 110 seconds. At this point the velocity of the RL
agent trajectory decreases significantly when compared to the optimal trajectory. Thus finding
away to improve or all together avoid this switching point would benefit the guidance scheme.
The control commands provided by the RL agent show close correlation with the optimal con-
trol solution as seen in figure 5.10, the main differences being that the RL agent commands are
more erratic and the switch to terminal guidance used for the RL agent based guidance law.

The trajectory generated using PN with lofting hits the target however achieves a time
which is 29% slower than the time achieved by optimal control. Differences in behaviour can
be found in both the horizontal and vertical plane. In the horizontal plane both the optimal
and RL agent choose a more aggressive turn whilst the PN guidance performs a long and wide
turn, this is clearly seen in figure 5.9. Due to this, the missile travels a longer distance instead of
taking a direct approach to the target. The lofting algorithm elevates the missile to a compara-
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Figure 5.8: Range and z-position plotted versus time for missile trajectories obtained using PN and RL agent based
guidance

ble elevation angle as obtained through optimal control however the PN guidance law quickly
reduces this angle after initial lofting. Because of this it reaches a lower maximum altitude as
and then chooses a more direct approach to the target. This leads to a lower velocities in the
second half of the trajectory and a longer time of flight.

As is stated, this is a single case. The main conclusion which can be drawn from this
case is that the methodology is feasible for a 3-DoF case and a stationary target. Furthermore,
the methodology seems to approximate optimal control. An important note to make here is
that the RL agent successfully generalizes learned behaviour since this exact case is unlikely to
be encountered during training.
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5.2.2. RANGE ENVELOPE

To generalize performance the maximum range is found using several different guidance al-
gorithms. This maximum range can be interpreted as R4y as defined in section 2.3.1. The
guidance algorithms compared are PN, PN with lofting, the RL agent based guidance law and
optimal control. For optimal control the objective function is redefined to optimize for max-
imum range whilst for the others the maximum range is found in an iterative manner. The
maximum ranges are obtained for three different initial altitudes used for both missile and
target, where both missile and target are initialized at the same altitude. The initial missile off-
boresight angle is varied between [-90,90] degrees with a step of 15degrees. The remaining
initial states are defined in tables 5.5 and 5.6.

Table 5.5: Initial missile states Table 5.6: Initial target states
State | Value | Unit State | Value | Unit
X Variable | km Xigt 0 km
y Variable | km Vigt 0 km
z [3,6,9] | km Ztgt (3,6,9] | km
1% 300 m/s Vigt 0 m/s
Y 0 deg Yigt 0 deg
W Variable | deg Wigt 0 deg
m 160 kg

The results are then normalized using the maximum ranges obtained using optimal
control and visualized in figures 5.11 - 5.13 where the missiles initial position is at the origin
pointed in the 0 degrees direction. The non-normalized range results can be found in appendix
A.l.

90° & 1 90°
0.102030405060.708091011
Normalized max. range [-]

—— RL Agent Guidance —+— PN Guidance
-+ RL Agent Guidance - Mirrored —— PN Guidance - No Lofting

Figure 5.11: Maximum ranges plotted versus varying initial off-boresight angles at an altitude of 3 km for different
guidance methods

It can be observed in figures 5.11 - 5.13 that the RL agent based guidance achieves
approximately between 90% and 95% of the range obtained using optimal control excluding
an outlier. PN without any lofting only attains between 20% and 30% of the range attained



48 5. RESULTS

90° A -90°
0.10.2030405060.708091011
Normalized max. range [-]

—— RL Agent Guidance —+— PN Guidance
--+-  RL Agent Guidance - Mirrored —— PN Guidance - No Lofting

Figure 5.12: Maximum ranges plotted versus varying initial off-boresight angles at an altitude of 6 km for different
guidance methods

using optimal control. Adding lofting greatly improves performance of PN especially at higher
altitudes. At 9km altitude the PN guidance with lofting approaches the performance of the RL
agent based guidance law. It can however be concluded that the RL agent based guidance law
achieves better range performance, especially at lower altitudes against stationary targets. This
showcases the ability of the RL agent to optimize behaviour for every possible state whereas
the lofting algorithm only works well in certain cases.

Two interesting observations are made in figure 5.11 at an off-boresight angle of —90 degrees
and in figure 5.13 at an off-boresight angle of 90 degrees. In both cases the RL agent based
guidance significantly under performs if compared to the other datapoints. Due to the method
being based on RL it is possible that the agent does not have an appropriate solution for a state
encountered during simulation. This would be due to insufficient learning coverage in the
specific state region. This highlights a major disadvantage of the employed method, it cannot
guarantee an optimal or even a suitable solution for every state both due to it being based on
experience and the black box nature of the algorithm. The method does technically have a so-
lution for these outliers due to the problem being symmetrical. Therefore, the outliers are not a
limitation of the methodology itself but a result of the imperfect quality of training. To highlight
the performance potential of the methodology, a line is added to figures 5.11 - 5.13 showing the
range obtained when mirroring the left and right half of the results among the zero degrees axis
and using the maximum from each resulting data series.
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Figure 5.13: Maximum ranges plotted versus varying initial off-boresight angles at an altitude of 9 km for different
guidance methods

5.2.3. TIME OF FLIGHT

It is established that the RL agent based guidance law increases maximum range over PN, es-
pecially at lower altitudes. Furthermore, the maximum range achieves approximately 90% to
95% of the maximum range obtained from optimal control. However there are also many sce-
narios at lower ranges. Therefore the time of flight to a stationary target at varying ranges and
off-boresight angles is evaluated as a secondary performance indicator. The same initial con-
ditions are used as for the maximum range evaluation, however in this case the range is not
iteratively varied but set at specified values. The results of comparing the RL agent to PN with
lofting and optimal control at 6 km altitude can be found in figures 5.14 and 5.15 respectively. In
appendix A.2 the figures showing absolute times can be found as well the same relative results
at 3 and 9 km altitude.

As can be seen from figure 5.14, PN with lofting is outperformed significantly over
the domain excluding two datapoints (at off-boresight angle of 30 degrees and ranges 60 and
70km). The performance increase using the RL agent based guidance law in terms of time of
flight is in excess of 15% over large parts of the domain. In the scenario in which the described
outliers are obtained, the target is hit however the time in which this is done is slower than
that obtained using PN with lofting. This region of sub-optimal performance by the RL agent
is more pronounced at an altitude of 3km. These results both highlights the performance of
the RL methodology and also a major disadvantage. The major disadvantage being that an ap-
propriate solution is not guaranteed. Similar as in section 5.2.2, the symmetry of the domain
proves that this is not a limitation of the methodology but a result of the quality of training
where there is still potential for improvement.

When comparing the results obtained to optimal control solutions, figure 5.15 is ob-
tained. As can be seen, the RL agent performs very similarly to optimal control again excluding
the two mentioned datapoints. The time of flight lies within 5% of the time of flight achieved
using optimal control over large regions of the domain. Again, the symmetry of the domain
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Figure 5.14: Time of flight achieved using RL agent compared to PN guidance with lofting solutions at 6 km altitude

could be exploited to improve these results where it can be seen that performance at negative
off-boresight angles is superior to that at positive off-boresight angles. However these outliers
do highlight the drawback of the solution and are therefore deemed relevant to the report.
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Figure 5.15: Time of flight achieved using RL agent compared to optimal control solutions at 6 km altitude

5.3. THREE-DEGREES OF FREEDOM - TURN AND RUN MANEUVER

Again a simplification is removed and the target is now non-stationary and performs a scripted
maneuver. This scripted maneuver is the so called turn and run maneuver as described in
section 2.4.6. A case study is presented after which the maximum range is found for varying
scenarios.

5.3.1. CASE STUDY

Two cases are presented using the same initial conditions using only a different PIP-mode. In
both cases the solutions obtained using optimal control and PN guidance with lofting are also
visualized. The initial states are presented in tables 5.7 and 5.8. A note which should be made
here is that the target starts at its maximum velocity and thus does not accelerate after turning.

In figures 5.16 and 5.17 the trajectories generated by the RL agent based guidance are
visualized using PIP-mode 1 and PIP-mode 2 respectively. The associated PN with lofting and
optimal control trajectories are also plotted. It should be noted here that PN guidance with
lofting does not intercept the target which is not directly visible from the plots.
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Table 5.7: Initial missile states Table 5.8: Initial target states

State | Value | Unit State | Value | Unit

X -100 | km Xigt 0 km

y 0 km Vigt 0 km

z 5 km Zrgt 5 km

\%4 300 m/s Vigt 250 m/s

Y 0 | deg Yigt 0 | deg

Y 60 deg Vigt 180 | deg

m 160 | kg

z-position [km]

—— RL Agent Trajectory: 167.06 s
—-— RL Agent Groundtrack

—— Optimal Trajectory: 165.47 s
—-— Optimal Trajectory Groundtrack
—— PN:282.0s
—-— PN Groundtrack

—— Target Trajectory

—-— Target Groundtrack
+ Predicted Intercept Points

e Initial Position

x  Intercept by RL Agent

Figure 5.16: Resulting trajectories plotted for missile intercepting target performing turn and run maneuver using
PN guidance with lofting and RL agent based guidance using PIP-mode 1
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Figure 5.17: Resulting trajectories plotted for missile intercepting target performing turn and run maneuver using
PN guidance with lofting and RL agent based guidance using PIP-mode 2

Comparing RL agent based guidance to optimal control, the first observation which
can be made is that both the RL agent with PIP-mode 1 and with PIP-mode 2 perform very
similarly to the optimal control solution. Furthermore the trajectories generated using each
PIP-modes are very similar. The time of flight is within 1% of the optimal solution for both sce-
narios where the RL agent combined with PIP-mode 2 performs slightly better. This is however
to be expected since the targets behaviour almost directly correlates with the assumption made
for target behaviour in PIP-mode 2. Both PIP-modes combined with the RL agent approximate
optimal performance in a scenario with a maneuvering target and thus uncertain future target
states, showcasing the potential of the methodology. It should be noted that after the initial
turn the target acts very predictable by performing no more maneuvers, thus both PIP-modes
predict its future states relatively accurately.

When comparing the RL agent based guidance using either PIP-mode to PN guidance
itis clear that the RL agent performs better due to it successfully hitting the target whereas PN
guidance does not. The PN guidance ends up in a tail chase where it loses velocity in thick
atmosphere leading to its PIP lying further in the future. The missile will then have a longer
time-to-go which in term leads to lower velocities. This is obviously a vicious circle leading to
a miss.

Due to the small difference in behaviour between the two scenarios, only relevant
states resulting from using PIP-mode 2 are set out. The remaining figures for the scenario using
PIP-mode 1 can be found in appendix A.3. Figure 5.18 plots the range to target and z-position
of the missile versus time. What can be observed is that the solutions obtained using optimal
control and the RL agent based guidance have a more negative range rate compared to PN guid-
ance. This can be attributed to the energy initially used to reach a higher altitude after which
the beneficial conditions (thinner atmosphere) translate into a higher sustained velocity which
is visualized in figure 5.19. Furthermore, the RL agent based guidance again chooses to turn
more aggressively in the horizontal plane as displayed in figure 5.19 where the azimuth angle
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drops significantly faster. This in term leads to a more direct approach to the target.

The RL agent based guidance and optimal control solution effectively chooses to use
more energy before the maximum speed is reached to transfer the missile to a more beneficial
state. Using energy before the maximum speed is reached is more effective than after. This
because a higher kinetic energy level is associated with more drag whilst a higher potential en-
ergy level (in this case altitude) is associated with less drag (thinner atmosphere). Thus, energy
which would be expended faster due to a higher peak velocity, is now used more effectively to
reach a higher altitude. The lofting algorithm implemented for PN guidance attempts the same
however is not as effective at it.
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Figure 5.18: Range and z-position plotted versus time for missile trajectories obtained using PN and RL agent based
guidance
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Figure 5.19: Velocity, elevation angle and azimuth angle plotted versus time for missile trajectories obtained using
PN and RL agent based guidance
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Figure 5.20: Control commands in missile body z and y directions plotted versus time for missile trajectories ob-
tained using PN and RL agent based guidance
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5.3.2. RANGE ENVELOPE

Using the same methodology as described in section 5.2.2, only this time using a target per-
forming the turn and run maneuver, figures 5.21 - 5.23 are obtained. The results are again
normalized using optimal control. The non-normalized results can be found in appendix A.4.
Both PIP-modes are again employed and compared.

15° -15°

90° it A Y 90°
010203040506070809101.1
Normalized max. range [-]

—+— RL Agent Guidance - PIP-mode 1 —+— PN Guidance
--+-  RL Agent Guidance - PIP-mode 2 —+— PN Guidance - No Lofting

Figure 5.21: Normalized maximum launch ranges plotted versus varying initial off-boresight angles at an altitude of
3 km for different guidance methods versus a target performing a turn and run maneuver

Several observations can be made. First of all, when compared to the maximum range
obtained using optimal control, PIP-mode 2 achieves between approximately 75% and 90%
of maximum range depending on altitude barring several outliers. For PIP-mode 1 very simi-
lar results are obtained, only at 3 km altitude a significant difference is observed between off-
boresight angles between 30 deg and —45deg. Since the same RL agent is used, this is most
likely due to the interaction between the PIP algorithm and RL agent leading to undesirable
behaviour. PIP-mode 1 accounts for lateral movement of the target which is present in these
scenarios whereas PIP-mode 2 does not. At low initial off-boresight angles this difference is
especially prevalent since in those cases horizontal maneuvers are redundant whereas at high
off-boresight angles the missile should be turning towards the target regardless of its maneu-
vers.

The aforementioned negative outliers will not be discussed since they are deemed to
be caused by the same reasons as set out in section 5.2.2. One positive outlier however is high-
lighted which can be found at an altitude of 6km and an off-boresight angle of 90 deg. PIP
mode 1 significantly outperforms PIP-mode 2 and achieves approximately 90% of range ob-
tained using optimal control. The combination of PIP-mode and RL agent performs very well
in this specific instance, raising the question if more performance can be attained when the
PIP algorithm is further developed. However, it might also be a very favourable combination of
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Figure 5.22: Normalized maximum launch ranges plotted versus varying initial off-boresight angles at an altitude of
6 km for different guidance methods versus a target performing a turn and run maneuver

specific circumstances which cannot effectively be generalized. This is not further expanded
on in this research but is a potential point of future development.

Comparing RL agent based guidance to PN guidance it is clear that PN guidance is out-
performed significantly, this is especially true at lower altitudes. PN guidance achieves between
approximately 25% and 75% of the maximum range obtained using optimal control dependant
on altitude. The RL agent based guidance outperforms PN over the entire tested domain.

If compared to the stationary target envelopes, the relative difference between PN and
RL based agent guidance is larger in the turn and run scenario. This is reasoned to have two
reasons, namely the higher maintained velocity of the RL agent based guidance and the fact
that the PN guidance enters in a tail chase. Logically the higher maintained speed will lead to a
higher closing velocity and a earlier intercept due to which the target travels less from its initial
position. Secondly, the PN guidance levels of in a tail chase behind the target due to the target
flying away from the missile. The RL agent steering for a PIP will lead to a more direct trajec-
tory and vertical approach to the target. Due to a relatively high velocity with respect to the
target in the terminal phase, the terminal guidance law does not have to correct as much and
does not enter in a tail chase. This effect is visualized in figure 5.18 where range to target and
altitude profiles are given. As can be seen the PN guidance algorithm flies through the denser
atmosphere at a lower altitude for longer. This explains the large difference in performance of
the PN guidance law when compared to the case where a stationary target is intercepted.

Secondly it can be seen that the results, especially the PN envelope, is quite asymmetri-
cal. This is the result of the direction of the targets turn where it always performs a right handed
turn. For the PN guidance this results in a more aggressive turn at positive off-boresight angles
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Figure 5.23: Normalized maximum launch ranges plotted versus varying initial off-boresight angles at an altitude of
9 km for different guidance methods versus a target performing a turn and run maneuver

due to the LOS-rate increasing. This in term leads to the missile more directly approaching the
target. Furthermore, the maximum range is lower for targets at low off-boresight angles. This
is attributed to the added lofting bias being overruled by the PN guidance earlier. Due to the
missile flying more directly at the target a higher vertical LOS-rate is achieved leading to a more
negative PN guidance command in the missile body z-direction. This in term, combined with
the relatively poor performance of PN with lofting at low altitudes, leads to the conclusion that
the PN guidance could still be improved. However it is also argued that this is not the goal of
this research and the current implementation gives a reasonable baseline.

5.4. THREE-DEGREES OF FREEDOM - MANEUVERING TARGET

To ensure the algorithm is robust and can handle unpredictable target behaviour, random tar-
get behaviour as described in section 2.4.6. First a case study is presented using this target
behaviour, after which hit probabilities are found for different initial conditions.

5.4.1. CASE STUDIES

Again two scenarios are presented using PIP-mode 1 and PIP-mode 2 respectively. The initial
states and target states are presented in tables 5.9 and 5.10 and the target behaviour is deter-
mined randomly using the process as described in section 2.4.6.

When comparing the RL agent based guidance combined with PIP-mode 1 to PN guid-
ance it is found that, in this specific scenario, both methods achieve success in hitting the tar-
get. However the RL agent based guidance outperforms PN significantly if looking at time of
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Table 5.9: Initial missile states Table 5.10: Initial target states
State | Value | Unit State | Value | Unit
X -50 km Xigt 0 km
y -50 | km Vigt 0 km
z 5 km Zrgt 8 km
\%4 300 m/s Vigt 250 m/s
Y 0 | deg Yigt 0 | deg
Y 60 deg Vigt 180 | deg
m 160 | kg

flight as can be seen in figure 5.24. The RL agent reaches the target 17.5 % faster. Furthermore,
the RL agent based guidance also has a higher terminal velocity as can be seen in figure 5.27.
Looking at figure 5.28, the varying PIP due to target maneuvers does not seem to cause any
issues with regards to the guidance command determined by the RL agent.
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—— PN:109.0 s e Initial Position
—-— PN Groundtrack x  Intercept by RL Agent
—— Target Trajectory x  Intercept by PN

Figure 5.24: Resulting trajectories plotted for missile intercepting random maneuvering target using PN guidance
with lofting and RL agent based guidance combined with PIP-mode 1

In figure 5.25 a close-up of the terminal stage is provided where it is clear that the RL
agent based guidance intercepts the target significantly earlier. As is stated before, this faster
intercept effectively means the target has less time to fly away from the missile, effectively in-
creasing its range. The higher terminal energy is favourable for its hit probability being able to
use this additional energy to correct for target maneuvers.
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Figure 5.25: Resulting terminal phase trajectories plotted for missile intercepting random maneuvering target using
PN guidance with lofting and RL agent based guidance combined with PIP-mode 1
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Figure 5.26: Range and z-position plotted versus time for missile trajectories obtained using PN guidance with
lofting and RL agent based guidance combined with PIP-mode 1

It can be concluded that the same beneficial behaviour is observed as observed when
the target is stationary. The added variation in observation due to target behaviour is handled
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Figure 5.27: Velocity, elevation and azimuth angles plotted versus time for missile trajectories obtained using PN
guidance with lofting and RL agent based guidance combined with PIP-mode 1

adequately by the RL agent. Furthermore, the hand over to PN guidance does not significantly
hamper the performance of the guidance scheme due to it being switched over before the PN
commanded acceleration becomes high. By switching before an extreme command is required
by the terminal guidance, velocity or kinetic energy losses are minimized at this handover. If
this handover would happen later, the benefits of the guidance scheme could be diminished by
the handover.

When using PIP-mode 2 in the same scenario the trajectory as seen in figure 5.29 is
obtained where it can be seen that the time of flight is slightly higher. The main difference
observed between the two PIP-modes is that using PIP-mode 2 a higher maximum altitude is
reached. The higher altitude is a result of the PIP lying further away from the missile using
PIP-mode 2 leading the RL agent to steer higher to account for this.
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Figure 5.28: Control commands in missile body z and y directions plotted versus time for missile trajectories ob-
tained using PN guidance with lofting and RL agent based guidance combined with PIP-mode 1
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Figure 5.29: Resulting trajectories plotted for missile intercepting random maneuvering target using PN guidance
with lofting and RL agent based guidance combined with PIP-mode 2
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5.4.2. LAUNCH ENVELOPES

Using the random target maneuver algorithm, a parameter sweep is performed varying several
parameters. The missile is initialized to fly directly at the target, thus the off-boresight angle
is zero. Both missile and target are started at the same altitude, which is either 3, 6, or 9km.
The targets initial azimuth angle is varied from 0 to —180 degrees in steps of 20 degrees and the
range is varied between 100 and 200 km in steps of 10km. The remaining states are given in
tables 5.11 and 5.12. Each resulting set of initial states is initialized 50 times for each guidance
method. By seeding the target maneuvers it is guaranteed that the same target maneuvers are
used for each guidance method. This results in a unique set of 50 different target trajectories
for each set of initial states used for each guidance method. The guidance methods used are
PN with lofting, and RL agent based guidance using PIP-mode 1 and PIP-mode 2. The resulting
hit probabilities at an altitude of 6 km are then shown in figures 5.30, 5.31, and 5.32 for each
guidance method respectively. Two contours are including outlining zones with over 90% hit
probability and over 50% hit probability.

Table 5.11: Initial missile states Table 5.12: Initial target states
State | Value Unit State | Value | Unit
X Variable | km Xigt 0 km
y Variable | km Vigt 0 km
z [3,6,9] | km Ztgt [3,6,9] | km
1% 300 m/s Vigt 250 m/s
Y 0 deg Yigt 0 deg
W Variable | deg Vigt 0 deg
m 160 kg

o) 0°

EEl |nitial Target Direction
Missile Launch Position

Ml |nitial Target Direction
Missile Launch Position

100 100
5 gt g
vy v
o £ o £
e o

s z 5 g
o 5] < o
= =~ = =
g = g <
T 50 TR =

75

100 pman N\

125

150

175 175

200 165° 200 165°

-180° -180°

Figure 5.30: Hit probability envelopes for PN guidance Figure 5.31: Hit probability envelopes for RL agent based
with lofting at an altitude of 6 km guidance using PIP-mode 1 at an altitude of 6 km

Comparing figure 5.30 to figures 5.31 and 5.32 it is quite clear that the RL agent based
guidance using either PIP-mode 1 or PIP-mode 2 outperforms PN guidance with lofting for the
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guidance using PIP-mode 2 at an altitude of 6 km tween RL agent based guidance using PIP-mode 1 and
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specified envelope. Whilst the RL agent based guidance using either PIP-mode has a significant
envelope in which a 90% hit probability is found, the PN guidance using lofting barely achieves
50% at a range of 100 km. Looking at the results for each guidance method at altitudes of 3 km,
6 km and 9 km in figures A.27 - A.35 it is found that PN with lofting is significantly outperformed
at all three altitudes by RL agent based guidance using either PIP-mode.

Apart from outperforming PN with lofting, the presented results show robustness of
the developed guidance law. The RL agent based guidance law is tested in 4.5 x 10% unique en-
gagements each consisting of in the order of 1 x 10? transitions. Consistent and comparatively
high performance is shown using either PIP-mode. The high level of success achieved using
either PIP-mode should speak in favour of the robustness of the developed guidance method.

To compare the PIP-modes, figure 5.33 is given. It shows the absolute difference be-
tween the hit probabilities at 6 km altitude when using PIP-mode 1 or PIP-mode 2 where blue is
in favour of PIP-mode 2. It is clear that PIP-mode 2 outperforms PIP-mode 1 significantly. This
is also holds at altitudes of 3 km and 9km as can be seen in figures A.36 and A.38.
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Figure 5.34: Hit probability envelopes for RL agent based Figure 5.35: Hit probability envelopes for RL agent based
guidance using PIP-mode 2 at an altitude of 3 km guidance using PIP-mode 2 at an altitude of 9 km

5.5. DYNAMIC LAUNCH ZONES

In sections 5.2.2, 5.3.2, and 5.4.2 range results are presented for different scenarios. In this
section these results are combined to represent a DLZ as defined in section 2.3.1. Three of these
presented ranges can be found using the obtained results, these are the maximum aerodynamic
range Rgero, the maximum turn and run range R;,, and the maximum no escape range R 4x,2-
For this specific representation they are found at an initial off-boresight angle of zero degrees.

The maximum aerodynamic range is then used as found in section 5.2.2 for each alti-
tude and employed guidance law. Since no PIP-mode is required for these results, Rqr, for the
RL agent based guidance law is equal for each PIP-mode. The maximum turn and run range is
similarly found only from 5.3.2 however R, does vary between PIP-modes.

The maximum no-escape range is found from section 5.4.2 where two definitions are
now used for R;,4x,2. These are the ranges at which 75% and 90% hit probability are achieved
and are denoted here as Ry,4x,75% and Rpax00% respectively. They are found by finding the
mean range of the contour outlining each zone respectively. The NEZ zone is then defined as
the zone between R;;;,,2, which is assumed to be 10 km, and the minimum of Ry, and R4x,90%-
For optimal control, it is assumed that R;, is limiting the NEZ and not R);;4x,90%. This is true due
to the optimal control having access to all future target states in this analysis enabling it to hit
any target within Ry, .

These results are then presented in figures 5.36 - 5.41 where both the absolute results
are given for altitudes of [3,6,9] km and the matching results normalized using R, obtained
using optimal control. To be consistent in the color scheme used throughout this report whilst
representing both PIP-modes in a single figure, the left side of the cone is used for PIP-mode 1
whilst the right is used for PIP-mode 2. Furthermore, the NEZs are represented by the shaded
areas. The presented figures effectively summarize a large part of the results obtained in previ-
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based guidance using PIP-mode 1 (left) and 2 (right), and range for PN guidance with lofting, RL agent based guid-

optimal control at an altitude of 3km ance using PIP-mode 1 (left) and 2 (right), and optimal
control at an altitude of 3 km

ous sections and present the performance obtained using the implemented methodology com-
pared to traditional and optimal solutions.

As can be seen from the absolute results, ranges generally increase with altitude for
each defined methodology. An interesting observation can be made where the NEZ is relatively
small for both PN and RL agent based guidance at 3km altitude when compared to optimal
control. This is deemed to be an effect of the missile maneuvering due to target maneuvers and
maneuvers being more costly due to higher atmospheric densities at lower altitudes. Optimal
control does not deal with this uncertainty and does therefore not suffer from this.

When comparing PIP-modes used for RL agent based guidance to each other, it is con-
sistently found that PIP-mode 2 outperforms PIP-mode 1. Comparing the RL agent based guid-
ance using PIP-mode 2 to PN with lofting it is clear that RL agent based guidance is superior.
Where PN guidance with lofting has a NEZ covering 15% at 3 km altitude to 35% at 9 km altitude
of the theoretical maximum range. The RL agent based guidance with PIP-mode 2 achieves a
NEZ between 25% at 3 km altitude to 55% at 9 km altitude of this maximum range. Comparing
RL agent based guidance to optimal control it is outperformed, however part of the difference
in performance with respect to optimal control lies in the fact that optimal control faces no
uncertainty regarding future target states.
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CONCLUSION & RECOMMENDATIONS

The main research question has been formulated as:

What improvements to the performance of air-to-air missile guidance systems can be
made based on the identification of optimal trajectories?

To answer this question, first past research is set out focusing on methods of missile
guidance and optimal control. An experimental environment has been developed in which
traditional guidance, optimal control and a novel guidance law is implemented. This novel
guidance law is developed with the main research question in mind where it aims to emulate
behaviour observed and approximate the performance obtained throught optimal control.

6.1. CONCLUSIONS

A methodology based on RL is employed to develop a novel guidance law and is proven to
be a viable concept. The RL methodology is based on the DDPG algorithm and extended using
learning from demonstrations and HER. The RL training methodology results in an agent which
determines a control command based on only the current states of the system and is based on
a NN architecture. Due to these reasons the guidance law can be implemented in a real-time
feedback manner whereas optimal control cannot due to it requiring future target states and
relatively large computational times. The developed experimental environment in which an
engagement can be simulated featuring a missile and a target is used to both train the RL agent
and simulate engagements using several guidance methods. Trajectory optimization is used to
both provide demonstrations to the RL training algorithm and establish the theoretical optimal
performance achievable.

The RL agent is able to close the distance to a target by itself however it is not able to
sufficiently minimize the miss distance. The RL agent is therefore combined with a terminal
guidance law namely PN. Furthermore, the RL agent is trained using stationary targets and
when used against moving target it is combined with a PIP algorithm. The combination of the
RL agent and PIP algorithm efficiently closing the majority off the distance to the target and
then switching to the terminal guidance law providing in close guidance leads to an effective
guidance law.
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The resulting RL agent based guidance law is compared to trajectories obtained using
optimal control engaging a stationary target and a target performing a turn and run maneuver.
It is concluded that the RL based guidance law achieves approximately 90% of performance
obtained from optimal control in terms of maximum range when engaging a stationary target.
In terms of time of flight against a stationary target in the majority of the evaluated domain the
RL agent based guidance law achieves a time of flight within 5% of that obtained using optimal
control. In limited parts of the evaluated domain the RL agent based guidance law did not hit
or had a significantly longer time of flight then the optimal control solution. When engaging a
target performing a turn and run maneuver, the maximum range achieved is between 75% and
90% of that obtained using optimal control.

Comparing the RL based guidance law to a traditional guidance law, in this case PN
with lofting, it is concluded that the developed RL agent based guidance law outperforms it.
This in terms of both range and time of flight against a stationary target over the majority of
the evaluated domain. The RL agent furthermore greatly outperforms the PN guidance law in
terms of range when engaging a target performing a turn and run maneuver. This is especially
true at lower altitudes. When engaging a random maneuvering target it is concluded that the
RL agent based guidance law outperforms the traditional guidance law significantly and in-
creases effective engagement range significantly. Two PIP modes are furthermore compared
and it is concluded that the mode assuming the target is flying directly away from the missile
outperforms the mode assuming its actual flight direction.

A noted disadvantage of the presented methodology is the uncertainty of an appropri-
ate control solution for an encountered state due to potential lack of training coverage. Such
states or rather domains of states are also encountered during evaluation of the methodology.
In such domains the RL agent provides a non-logical control command leading to lower per-
formance when compared to PN with lofting. A fail safe can and is implemented to limit the
effect of such events, however such inappropriate control solutions provided by the RL agent
still lead to diminished performance in these domains when compared to PN with lofting. Such
domains with insufficient training coverage could be minimized by further developing and ex-
tending the training procedure.

The RL methodology is shown to be feasible in two different environments incorpo-
rating different levels of complexity. This shows a major advantage of the used RL methodol-
ogy, it is independent on the environment in which it is used. The experimental environment
in which the results are in this case established dictate the specific performance increase ob-
served. The method is however independent of the model and therefore should still be able to
approximate optimal performance if transferred to a different experimental environment.

Thus coupling this back to the main research question, it can be concluded that the
developed novel guidance law based on identified optimal trajectories is able to improve per-
formance over the implemented PN guidance law with lofting over the majority of the evalu-
ated domain. Specifically in terms of maximum range, time of flight, and effective engagement
range. When compared to optimal control, between 75% and 90% of its range performance
is obtained using the RL agent based guidance depending on the scenario where the optimal
control methodology is provided the full target trajectory giving it a distinct advantage.
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6.2. RECOMMENDATIONS

Based on the work presented several recommendations can be made. First of all, the results
show lack of training coverage leading to inappropriate control commands by the RL agent
in such domains. Further increasing quality of training and developing a method to evaluate
training quality would be logical next steps for the presented methodology.

Furthermore, a distinct choice is made in training the RL agent using stationary tar-
gets. The guidance law then uses a PIP algorithm to use the RL agent against moving targets.
Incorporating moving targets in the training routine could potentially improve performance.
By doing so the PIP algorithm would be integrated in the agent. Another option would be to
not integrate it in training but to improve the PIP algorithm itself. The currently used PIP meth-
ods perform well but a simple example of an improvement would be to incorporate the missiles
velocity profile to more accurately approximate the PIP.

Another compromise had to be made by incorporating a terminal guidance law. The
terminal guidance law performs well however it would be beneficial to avoid transitioning to a
different guidance scheme due to the sudden and often relatively high control command after
switching leading to unnecessary kinetic energy loss. A proposed method would be to include
additional observations which scale with range to target enabling the neural network to attain
higher accuracy in different phases (e.g. 1/R where R is range to target).

Regarding the results, it is shown that for many cases the RL agent based guidance law
outperforms PN with lofting. However no statistical basis was tied to this. It seems evident
that the developed guidance law outperforms the traditional guidance law however this con-
clusion could be reinforced using a statistical analysis. A second note on this would be that the
PN guidance law incorporating lofting could be improved since the employed gain and lofting
scheme show decent performance but are not optimized.

Lastly, the presented methodology is at this point only a proof of concept and works
in a simplified experimental environment. In a realistic scenario factors such as limited infor-
mation, disturbances, and interactions with other missile subsystems would test robustness of
the guidance law. Furthermore, the physical modelling of the missile is kept simple on pur-
pose for this research, however to further prove the feasibility of the methodology, it should be
improved.
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ADDITIONAL FIGURES

A.1. 3-DOF - RANGE ENVELOPE WITH STATIONARY TARGET
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Figure A.1: Maximum ranges plotted versus varying initial off-boresight angles at an altitude of 3 km for different
guidance methods
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Figure A.2: Maximum ranges plotted versus varying initial off-boresight angles at an altitude of 6 km for different
guidance methods
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Figure A.3: Maximum ranges plotted versus varying initial off-boresight angles at an altitude of 9 km for different
guidance methods
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A.2.3-DOF - TIME OF FLIGHT WITH STATIONARY TARGET

A.2.1. ABSOLUTE TIME OF FLIGHT - PROPORTIONAL NAVIGATION
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Figure A.4: Time of flight achieved using PN guidance with lofting at 3 km altitude
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Figure A.5: Time of flight achieved using PN guidance with lofting at 6 km altitude
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Figure A.6: Time of flight achieved using PN guidance with lofting at 9 km altitude

A.2.2. ABSOLUTE TIME OF FLIGHT - RL AGENT
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Figure A.7: Time of flight achieved using RL agent based guidance at 3 km altitude
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Figure A.8: Time of flight achieved using RL agent based guidance at 6 km altitude
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Figure A.9: Time of flight achieved using RL agent based guidance at 9 km altitude
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A.2.3. ABSOLUTE TIME OF FLIGHT - OPTIMAL CONTROL
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Figure A.10: Time of flight achieved using optimal control at 3 km altitude
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Figure A.11: Time of flight achieved using optimal control at 6 km altitude
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Figure A.12: Time of flight achieved using optimal control at 9 km altitude

A.2.4. TIME OF FLIGHT RELATIVE TO PROPORTIONAL NAVIGATION
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Figure A.13: Time of flight achieved using RL agent compared to PN guidance with lofting solutions at 3 km altitude
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Figure A.14: Time of flight achieved using RL agent compared to PN guidance with lofting solutions at 9 km altitude

A.2.5. TIME OF FLIGHT RELATIVE TO OPTIMAL CONTROL
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Figure A.15: Time of flight achieved using RL agent compared to optimal control solutions at 6 km altitude
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Figure A.16: Time of flight achieved using RL agent compared to optimal control solutions at 6 km altitude

A.3.3-DOF - CASE STUDY WITH TURN AND RUN TARGET
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Figure A.17: Range and z-position plotted versus time for missile trajectories obtained using optimal control, PN
with lofting and RL agent based guidance combined with PIP-mode 1
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Figure A.18: Velocity, elevation angle and azimuth angle plotted versus time for missile trajectories obtained using
optimal control, PN with lofting and RL agent based guidance combined with PIP-mode 1
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Figure A.19: Control commands in missile body z and y directions plotted versus time for missile trajectories ob-
tained using optimal control, PN with lofting and RL agent based guidance combined with PIP-mode 1
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A.4.3-DOF - RANGE ENVELOPE WITH TURN AND RUN TARGET
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Figure A.20: Maximum launch ranges plotted versus varying initial off-boresight angles at an altitude of 3 km for
different guidance methods versus a target performing a turn and run maneuver
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Figure A.21: Maximum launch ranges plotted versus varying initial off-boresight angles at an altitude of 6 km for
different guidance methods versus a target performing a turn and run maneuver
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Figure A.22: Maximum launch ranges plotted versus varying initial off-boresight angles at an altitude of 9 km for
different guidance methods versus a target performing a turn and run maneuver

A.5.3-DOF - CASE STUDY WITH RANDOM MANEUVERING TARGET
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Figure A.23: Resulting terminal phase trajectories plotted for missile intercepting random maneuvering target using
PN and RL agent based guidance with PIP-mode 2
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Figure A.24: Range and z-position plotted versus time for missile trajectories obtained using PN and RL agent based
guidance with PIP-mode 2
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Figure A.25: Velocity, elevation and azimuth angles plotted versus time for missile trajectories obtained using PN
and RL agent based guidance with PIP-mode 2
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Figure A.26: Control commands in missile body z and y directions plotted versus time for missile trajectories ob-
tained using PN with lofting and RL agent based guidance with PIP-mode 2

A.6. 3-DOF - HIT PROBABILITY ENVELOPES
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Figure A.27: Hit probability envelopes for PN guidance Figure A.28: Hit probability envelopes for PN guidance
with lofting at an altitude of 3 km with lofting at an altitude of 6 km
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Figure A.29: Hit probability envelopes for PN guidance
with lofting at an altitude of 9 km

A.6.2. RL AGENT BASED - PIP-MODE 1
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Figure A.30: Hit probability envelope for RL agent based Figure A.31: Hit probability envelope for RL agent based

guidance using PIP-mode 1 an altitude of 3 km

guidance using PIP-mode 1 an altitude of 6 km
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Figure A.32: Hit probability envelopes for RL agent based

guidance using PIP-mode 1 an altitude of 9 km

A.6.3. RL AGENT BASED - PIP-MODE 2
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Figure A.33: Hit probability envelope for RL agent based Figure A.34: Hit probability envelope for RL agent based

guidance using PIP-mode 2 an altitude of 3 km

guidance using PIP-mode 2 an altitude of 6 km
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A.6.4. RL AGENT BASED - COMPARING PIP-MODE 1 AND 2
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Figure A.36: Hit probability envelope for RL agent based Figure A.37: Hit probability envelope for RL agent based

guidance using PIP-mode 2 an altitude of 3 km

guidance using PIP-mode 2 an altitude of 6 km
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