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Abstract

Active inference is a method for state estimation and control actions that is based on the Free
Energy principle, which explains how biological agents infer the state of their environment and
act upon it by maintaining a model of that environment and evaluating predictions. This method
merges both action and sensory processing and is therefore a promising approach for robotic control.
In active inference, the internal representations (or states) in the agent can be described by applying
hierarchical dynamical models (HDMs). This offers a way to describe the dynamical development of
states, and to structure them hierarchically. Despite the possibilities of this hierarchical approach,
there are very few examples of hierarchical active inference being applied to robotics or control
problems. This thesis aims to make a step in exploring the possibilities of active inference under a
HDM. We describe the implementation of a control algorithm based on the hierarchical formulation
of active inference on several continuous control problems, most importantly a 2-D robot arm. The
algorithm is first demonstrated with a basic single level cart simulation, analysing the effect of the
various parameters and inclusion of higher dynamic orders on the stability. A following simulation
of multiple carts demonstrates a simple example of a hierarchical division of goals, and how high
level objectives are realized by reaching lower level goals. It also shows how insolvable prediction
errors at lower levels are propagated up the hierarchy. Finally, the simulation of a 2-D robot arm
shows how these hierarchies can introduce goal-directed behaviour in practical control problems.
We made several attempts to design a hierarchical generative model capable of realizing position-
reaching behaviour in the robot arm, dictating joint angles from desired positions, with varying
levels of success. Several pitfalls were encountered in choosing a suitable model for the control
task. Most importantly, it was found that the convergence was faulty when higher levels contained
more independent states. This emphasizes the information-reducing role of hierarchies. Lastly,
we demonstrate that the hierarchical generative model is capable of adding complexity to the
robots behaviour, by expanding the goal-reaching objective with a path-tracing task. In short,
hierarchical active inference can be applied effectively to the demonstrated goal-reaching control
problems, however this requires a careful consideration of the generative model for the task at hand.
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Chapter 1

Introduction

Robots are effectively deployed for many tasks. Their common merits are that they are precise,
strong and can do the same thing over and over again for a long time. This is useful because for
us humans, long repetitive work usually results in boredom and physical stress. At the same time,
the task-consistency of robots is a disadvantage. In many cases they are only effective when the
conditions of their task remain the same. The strength of natural organisms such as animals, and
in particular humans, is that they can quickly adapt to changing environments. Specifically, they
can gather information about the world around them and adapt their behaviour accordingly.

Science has made a lot of progress in bridging the gap between machine behaviour and natural
cognitive functions. Developments in the field of machine learning, neural networks and artificial
intelligence in general have shown the powerful abilities of machines to process information and
recognize patterns. However, they require very large amounts of information and are typically
restricted to a single task [7].

Robots today are still a long way away from being as physically and behaviourally adaptable as
humans. That is why one of the big challenges for the scientific community is to develop more adap-
tive behaviour in robotics to handle different situations based on gathered information. This will
enable robots to gain a more natural intelligence that will help them interact with a dynamic world.

Principles that explain intelligence and behaviour in natural organisms provide useful tools that help
to realize these same characteristics in machines. Active inference is one such concept. Proposed
by neuroscientist Karl Friston, active inference provides a theoretical basis for interactions between
natural beings and their environments. It describes how biological agents (humans, animals and
other organisms) keep an equilibrium with their environment by processing sensory information and
performing actions on the external world. In order to do this, agents maintain an internal model
of their environment by minimizing the so-called Free Energy, which is a measure of uncertainty
about external states. The actions that are performed based on this model helps the agent to gain
control over its situation. This is an interesting concept for robotics, as robots are also independent
agents that must interact with their surroundings, and must exert some form of control over their
environment.

One of the intriguing observations that have been made in literature on active inference is that the
models can have a hierarchical form. This is important because many patterns and phenomena in
nature can also be explained using hierarchy. Most recognisable objects and events are composed
of smaller elements. For example, a forest is a collection of trees, which consist of many branches
that in turn bear many leaves. This structure is also common in the temporal domain. In music
for example, long sequences of simple notes and sounds produce the experience of listening to a
song. In fact, sound itself is a complex series of acoustic vibrations that are perceived in terms of
pitch and timbre. As organisms, we do not store and consciously process all the information that
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is presented to us. Instead, we are able to summarize the essence of the vast volume of sensory
signals into manageable pieces.

Hierarchy is also a present in the actions we take. When communicating with others, we consciously
consider the ideas that we are trying to convey, however we are seldom aware of how we construct
sentences, much less the complex actions our vocal system must take to produce the actual sounds.
The key idea here is that cognitive function involves multiple levels of information processing that
become increasingly abstract. There is ample evidence that human and animal brains facilitate
this hierarchy for processing information [8] [19]. The fact that active inference also supports hi-
erarchical processing makes it an excellent candidate for developing efficient behaviour in robotics
and robot control.

Hierarchical dynamical models in conjunction with the free energy principle have been thoroughly
described in literature, most notably by Karl Friston [10] . Despite this, there seems to be little
evidence of hierarchical models in active inference being explored as a control method. There is
some work that demonstrates the merits of hierarchical models for perception only [17] [24], and
some applications in robotics that incorporate sensory integration using active inference [21]. Also,
hierarchy and active inference have been applied to some control cases in a machine learning con-
text [20]. However, a dedicated investigation of hierarchical models in active inference for simple,
continuous control applications seems to be missing, which is where this thesis contributes.

This report will be analysing the implementation of an active inference based control algorithm
using hierarchical models. The motivation for this investigation is exploring the possibilities of
this approach for robotics, therefore it is appropriate to have a test case that reflects a practical
robot control application. The subject of the control algorithm for this thesis is chosen to be a
two-dimensional robot arm. This is considered to be simple enough to demonstrate the basic func-
tionality of the algorithm but includes certain important characteristics such as non-linearity that
are relevant for real-world applications.

In brief, the goal of this thesis is to provide a hierarchical implementation of active
inference on a 2D robot arm. This goal will be achieved by tackling the following sub-goals:

1. Present a concise description of the theoretical background of active inference.

2. Provide an explanation of how a hierarchical model can function within active inference.

3. Put a hierarchical active-inference based control algorithm into executable code for simula-
tions, that can implement various internal and external models.

4. Demonstrate the algorithm for a single-level linear goal-reaching control problem.

5. Demonstrate the algorithm for a linear goal reaching control problem using a hierarchical
generative model.

6. Apply the algorithm to a 2-D robot arm with various hierarchical generative models to inves-
tigate the function of the hierarchical model for active inference in robot control.
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Chapter 2

Active inference & Hierarchy

Before we can tackle the concept of hierarchy in active inference, there must first be a basic
understanding of the foundations of active inference as a principle. First the general concept of
prediction error minimization as a derivation of the Free Energy principle will be handled, then
expanded to a hierarchical formulation in 2.3. How this leads to action and perception is explained
in section 2.4 thereby the first two of our goals are tackled:

Subgoal 1: Present a concise description of the theoretical background of active inference.

Subgoal 2: Provide an explanation of how a hierarchical model can function within active
inference.

The theoretical basis for active inference is the Free Energy Principle. This chapter will start with
an explanation of the Free energy principle, and how active inference emerges from this. The com-
plete theory and related topics are very extensive, but here a summary will be given of the most
important concepts for the purpose of our investigation.

The Free Energy Principle was proposed by Karl Friston to explain how natural organisms handle
the perception of the outside world and react to changes in their environment [12]. By minimizing
a measure called the Free Energy, they can be more certain about their situation and about their
survival. Importantly, the organism also has the possibility to adapt the outside world to reduce
this free energy, and this leads to the theory of Active Inference.

2.1 Free energy theory

2.1.1 How Organisms Minimize Entropy

The Free Energy principle starts with the idea that natural organisms need to occupy certain states
in the world, and not others, in order to survive. A humans core temperature needs to be between
36 ◦C and 37 ◦C, for example. And a fish needs to be in water to survive. All organisms need
nourishment, and need to place themselves in situations where they will obtain it. The probability
of being in certain states and not others can be measured in informational entropy. If the entropy
is low, there is a high probability of being in certain states. If the entropy is high, the probability
is more ”spread out” and we can not be so certain of the situation.

The differential entropy is a measure of the certainty of the states.

H = −
∫ ∞
0

p(x)ln(p(x)) dx (2.1)

The differential entropy is the expected value of the surprise −ln(p(x)). Under ergodic assumptions,
this is the same as the time-average of the surprise [14]. An ergodic stochastic process is one in
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which the probability distribution over time is the same as the probability distribution at any given
moment. This means that no choices are made that exclude certain states or change the probability
distribution permanently. This is quite a drastic assumption, and might exclude forms of decision
making that take the future into account.

I = −ln(p(x)) (2.2)

The idea is then to maximize the probability of being in a certain state p(x) at any given time and
thereby minimizing surprisal. The problem for most systems, however, is that the state x is not
readily available. Only certain sensory states s can be observed that are in some way related to
the real-world states x. Our system must now find the conditional density p(x|s). The probability
of a certain state xi existing when a certain sj is observed is then p(xi|sj) Bayes rule shows us how
that this can be rewritten.

p(xi|sj) =
p(sj |xi)p(xi)

p(sj)
=

p(sj |xi)p(xi)∫∞
i=0 p(sj |xi)p(xi) dx

(2.3)

This still poses a problem, as this requires calculating the probability of observing a certain sen-
sory state (p(sj)) for every instance of the real-world states x. This is the integral that can be
seen in the denominator in 2.3. This integral is most often intractable, meaning it would take too
much effort to compute because there are many states xi and exponentially many combinations of x.

Instead, we can use a method called variational Bayesian inference [4]. This method assumes
a set of candidate distributions q(x) can be used to approximate the exact conditional p(x|s).
These candidate distributions are usually of a simple form, and the issue is finding the candidate
distribution q(x) that best approximates the actual distribution p(x|s). The difference between
these two distributions can be gauged by a measure called the Kullbeck-Leibler divergence.

DKL(q(x)||p(x|s)) =

∫
q(x)ln(

q(x)

p(x|s)
dx (2.4)

The Kullbeck-Leibler divergence describes how (un)alike two distributions are. When the KL-
Divergence is zero, the two distributions are equivalent. The KL divergence can be split into
another form.

DKL(q(x)||p(x|s)) =

∫
q(x)ln

(
q(x)

p(x|s)

)
dx+ ln(p(s))

F =

∫
q(x)ln

(
q(x)

p(x, s)

)
dx

F = −ln(p(s)) +DKL(q(x)||p(x|s))

(2.5)

Notice that after this rearrangement, one of the terms is the surprise −ln(p(s)). This shows that
what we call the Free Energy F 1 is an upper bound on the surprise. The difference between
the surprise and the F is the Kullback-Leibler divergence of the approximate density and the real
density.

1In some literature the Free Energy is the negative of the expression given here and forms a lower bound on the
surprise. In those instances the objective is to maximize the free energy, whereas here we aim to minimize it.
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This effectively means that although we want to minimize the surprise −ln(p(s)) we cannot do so
directly because of a discrepancy between the real probability distribution of the states and the
one we are using to approximate it (DKL(q(x)||p(x|s))). But if we can minimize the Free Energy
F the surprise will always be smaller.

A concept that is often encountered in literature on the free energy principle is the mean-field
approximation. It is mentioned here for the interested reader but is not considered in this thesis.
The mean-field approximation is meant to finesse optimization and it assumes that the states x can
be subdivided into independent sets x = [u, θ, γ]. The states u change relatively quickly in time
and the parameters [θ, γ] describe more static properties of the distribution. The distribution q(x)
then becomes a product of the independent distributions p(x) = p(u)p(θ)p(γ). DEM,(Dynamic
Expectation Maximization) [9] is a very general form of Free Energy minimization which con-
siders these different sets an includes a process of learning on the parameters. Often, as in this
thesis, uncertainty about the parameters [θ, γ] is ignored and only inference on the dynamic states
is considered. Therefore we will only be considering a single set of states x for the distribution q(x).

The objective is to minimize the free energy F . To make this feasible, the Free Energy in 2.5 is
further simplified using the Laplace Approximation. The laplace approximation involves expressing
q(x) as a gaussian distribution, parametrized by the mean and the variance (µ, σ).

q(x) =
1√
2πσ

e−
(x−µ)2

2σ (2.6)

It is assumed that q(x) is sharply peaked at its mean µ and that that the function −ln(p(x, s))
is smooth. The integrals in F can then be simplified by using a Taylor expansion of −ln(p(x, s))
around the point x = µ. How the Laplace approximation is applied to the free energy and what the
consequences of this simplification is can be quite difficult to grasp. It is discussed in the context of
variational Free Energy in [13]. Perhaps a more extensive discussion of these mathematical methods
is given in [6]. By using the Laplace approximation, a simplified approximation for the Free Energy
is given that depends only on the means µ and the sensory signals s 2.7.

F ≈ −ln(p(s, µ)) (2.7)

2.2 Generative Model & Prediction Error

The density in used in the approximate Free Energy 2.7 can be split into parts:

F = −ln(p(s|µ)p(µ)) (2.8)

p(s|µ) describes the density of the sensory states based on some cause µ, and p(µ) describes the
belief of the agent about the states that cause these sensory observations. These two distributions
are assumed to be gaussian and their means and variance are described by the internal model of
the agent.

These probability distributions are based on an assumption made by the agent that the real-world
states develop based on a generative model. When considering continuous systems, the generative
model can be described as a state space system (2.9) with a differential equation and noise terms.
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ẋ = f(x) + ω

s = g(x) + z
(2.9)

Here, g(x) is a static mapping that produces the sensory observations s from the hidden states x.
The function f(x) describes the dynamical development of the states x by describing its derivative
in time ẋ. ω and z are noise terms, that describe random fluctuations on the states that add
disturbances to f and g respectively.

Formulations of active inference in continuous time employ a concept called generalized coordinates
[2]. This term should not be confused with generalized coordinates as used in analytical mechanics,
where it provides a unique description of the configuration of a system. In active inference, the
generalized coordinates of a certain state are all the time derivatives of that state (up to a certain
practical point). Here,˜denotes generalized coordinates. This means that x̃ is a vector containing x
and its derivatives, [x, ẋ, ẍ,

...
x ....] up to a certain “embedding order” meaning the highest practical

derivative that is considered.

˙̃x = f(x̃) + ω̃

s̃ = g(x̃) + z̃
(2.10)

Dx̃ = f(x̃) + ω̃

s̃ = g(x̃) + z̃
(2.11)

Equation 2.10 shows the state space model in generalized coordinates. Equation 2.11 describes the
same system but this time uses the derivative operator D. D is a matrix that shifts the elements
in x̃ in such a way that ˙̃x = Dx̃. Notice that here we also take the derivatives of the noise terms.
This means we assume that the noise is continuous and differentiable. Another way to describe
this is that noise is “smooth”.

It is assumed that the noise terms ω̃ and z̃ have a Gaussian distribution. When the noise terms are
Gaussian, a distribution of the generalized sensory signals and states p(s, x) can be determined.

p(s̃, x̃) = p(s̃|x̃)p(x̃)

p(s̃|x̃) = N (s̃ : g, Σ̃z)

p(s̃|x̃) = N (Dx̃ : f, Σ̃ω)

(2.12)

Equation 2.12 shows the normal (Gaussian) distribution obtained with a model using the functions
f and g. The covariances Σ̃z and Σ̃ω describe the influence of the signal noise z̃ and the dynamic
noise ω̃ respectively. The natural logarithm of this distribution then becomes [10]:

ln(p(s̃, x̃)) =
1

2
(s̃− g)TΠz(s̃− g) +

1

2
(Dx̃− f)TΠω(Dx̃− f)− 1

2
ln(ΠzΠω) (2.13)

The precisions Πz,Πω are the inverse of their respective covariance matrices (Π = Σ−1). The den-
sity ln(p(s̃, x̃)) is the same one seen in the expression of the Free Energy 2.5. Remember that after
having applied the Laplace Approximation, the Free energy is simplified to this density, where the
states x are quantified by their means µ. From 2.13, the approximated Free Energy becomes:
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F =
1

2
εTz Πzεz +

1

2
εTωΠωεω +

1

2
ln(|Πz| · |Πω|) (2.14)

εz = s̃− g(µ̃)

εω = Dµ̃− f(µ̃)
(2.15)

The Free energy now has the same form as 2.13 but the states are represented by their expected
means µ̃. These means represent the beliefs that the agent has about the states x. εz and εω are
the prediction errors on the sensory states s̃ and the beliefs µ̃ respectively. They quantify how well
the sensory states and the agents beliefs correspond to the predictions made by the model through
the functions f and g As we can see, the Free Energy has become the sum of the squared prediction
errors, weighted by the precisions Π.

2.3 Hierarchical World & Model

The previous section has discussed the Form of the Free Energy assuming a dynamic generative
model. An important concept in this thesis is that this dynamic model can be cast in a hierarchical
form, which allows the agent to structure it’s beliefs in a hierarchical manner.

˙̃x = f(x̃) + ω̃

s̃ = g(x̃) + z̃
(2.16)

˙̃xm = fm(x̃m, ṽm) + ω̃m

ṽm−1 = gm(x̃m, ṽm) + z̃m

...

˙̃x2 = f2(x̃2, ṽ2) + ω̃2

ṽ1 = g2(x̃2, ṽ2) + z̃2

˙̃x1 = f1(x̃1, ṽ1) + ω̃1

s̃ = g1(x̃1, ṽ1) + z̃1

(2.17)

2.16 shows the dynamic model that was considered in the previous section. This is expanded hi-
erarchically as in 2.17 by introducing the causal states ṽ. These causal states are used by the
functions f1 and g1, but they are produced by another function from a higher level g2. In turn, the
second hierarchical level includes causal states ṽ2 that are determined by a level above that. This
continues for however many levels m are present. This enables the separation of the model into
different hierarchical levels that affect the lower levels through the causal states ṽ.

As was discussed before in the previous section, the noise terms are assumed to behave according

to a Gaussian distribution. This means that this generative model can be used to describe the
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density p(s̃, x̃, ṽ) as a product of a set of Gaussian distribution. Similar to 2.12, we can write:

p(s̃, x̃, ṽ) = p(s̃|x̃1, ṽ1) · p(x̃1|ṽ1) · p(ṽ1|x̃2, ṽ2) · p(x̃2|ṽ2) · p(ṽ2|x̃3, ṽ3) . . . · p(ṽm)

p(x̃i|ṽi) = N (Dx̃i : f(x̃i, ṽi), Σ̃ω)

p(ṽi|x̃[i+1], ṽ[i+1]) = N (s : g(x̃[i+1], ṽ[i+1]), Σ̃z)

p(s̃|x̃1, ṽ1) = N (s : g(x̃1, ṽ1), Σ̃z)
(2.18)

This derivation can be found in [10]. It is apparent from 2.18 that the probability distribution of
the sensory observations s̃ is calculated by chaining together the probability distributions of the
states x̃ and the causal states ṽ. Again the derivative operator D shifts the vector of generalized
coordinates x̃ in such a way that the derivative ˙̃x is obtained. The resulting density consists of
different distributions defined in each hierarchical level i up to a certain level m, as seen in equations
2.18 and 2.19.

p(s̃, x̃, ṽ) = p(s̃|x̃1, ṽ1) ·
m∏
i=1

(p(x̃i|ṽi) · p(ṽi|x̃i+1, ṽi+1)) (2.19)

For the Free Energy this distribution is expressed in terms of the means [µ̃, ṽ] of the states [x̃, ṽ]2and
the natural logarithm is taken. As was previously seen for the single level dynamical case, the Free
Energy F becomes a sum of prediction errors (εω, εz). However, this time the free energy is based
on a hierarchical model. The dynamical prediction errors εω are the differences between the gener-
ative functions f and the corresponding beliefs about the dynamic states µ̃. The causal prediction
error are the differences between the functions g and the beliefs about the causal states ṽ.

The Free Energy can be expressed in matrix form as in equation 2.20. The matrix form consists
of the prediction errors in vector form and the precision matrices, which are the inverse covariance
matrices (Π = Σ−1).

F = −ln(p(s̃, µ̃, ṽ)) =
1

2
εTω · Πω · εω +

1

2
εTz · Πz · εz +

1

2
ln(|Πω · Πz|) (2.20)

The matrix form of the free energy can be further compacted by merging the precision matrices
together and stacking the prediction error vectors. This results in an equation consisting of just
one vector ε and one matrix Π. The content of these two components is shown in more detail in
2.22 and 2.23. Note that the elements of ε are themselves vectors of generalized coordinates con-
sisting of multiple dynamic orders3, as denoted by˜. Also note that the elements in the precision
matrix are themselves matrices which can have non-diagonal elements. This is because they encode

2It would be more correct to express the means of the dynamic and causal states x̃ and ṽ as µ̃x and µ̃v respectively.
This is most often seen in the literature. However, here the choice has been made to use µ̃ and ṽ instead, to make a
clearer distinction between the two types of states.
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the behaviour of (smooth) noise, which can include correlations between different dynamical orders.

F = −ln(p(s̃, µ̃, v)) =
1

2
εT · Π · ε+

1

2
ln(|Π|) (2.21)

ε =

[
εv
εµ̃

]
=



εz1
εz2
εz3
...
εzm
εω1

εω2

...
εωm


=



s̃
v1
v2
...

vm−1
Dµ̃1

Dµ̃2
...

Dµ̃m


−



g1(µ̃1, v1)
g2(µ̃2, v2)
g3(µ̃2, v2)

...
gm(µ̃m, vm)
f1(µ̃1, v1)
f2(µ̃2, v2)

...
fm(µ̃m, vm)


(2.22)

Π =

[
Πz

Πω

]
=



Πz1

Πz2

Πz3

. . .
Πzm

Πω1

Πω2

. . .
Πωm


(2.23)

2.4 Action & Perception

Now that an understandable expression for the approximation of the Free Energy has been obtained
we can now turn to the matter of minimizing this quantity. It will become apparent that there are
two ways in which the agent can minimize its Free Energy, namely by adapting its internal states
that predict the sensory information, or by adjusting the sensory information itself through actions.

2.4.1 Prediction Error Minimization

As we have seen in 2.14, after having made many assumptions, the Free Energy can be described

in terms of precision-mediated prediction errors. The goal of the agent is to minimize the Free

Energy. We then have an optimization problem, to obtain the right internal beliefs µ̃ and sensory

3Note that here we have let go of the generalized coordinates for the causal states v. Throughout this thesis we
have assumed that since the causal states are not described by a dynamic function, as the states x are, they do not
have to be described as multiple derivatives. However, this was an oversight. Since the states v are not static it is
still relevant to express them in generalized form. This is not of great significance for the simulations throughout this
thesis, as the generalized coordinates have a very small effect for the cases that are considered.
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states s̃ to minimize the free energy F :

(µ̃, s̃) = arg min
µ,s

F = arg min
µ,s

1

2
εTz Πzεz +

1

2
εTωΠωεω +

1

2
ln(|Πω · Πz|) (2.24)

εz = s̃− g(µ̃) (2.25)

εω = Dµ̃− f(µ̃) (2.26)

Πz =


σz[1,1] σz[1,2] . . .
σz[2,1] σz[2,2]

... σz[3,3]
. . .


−1

=


πz[1,1] πz[1,2] . . .
πz[2,1] πz[2,2]

... πz[3,3]
. . .

 (2.27)

Πω =


σω[1,1] σω[1,2] . . .
σω[1,2] σω[2,2]

... σω[3,3]
. . .


−1

=


πω[1,1] πω[1,2] . . .
πω[1,2] πω[2,2]

... πω[3,3]
. . .

 (2.28)

(2.29)

The agent can minimize the Free Energy by updating its internal belief µ̃. Another way it can
minimize the Free Energy is by performing an action on the world that will evoke different sensory
observations s̃. The agent can therefore adjust µ̃ and s̃. There are many ways that the agent can
try to find µ̃ and s̃ that minimize F . However, one of the simplest ways is to perform gradient
descent. Gradient descent methods calculate the gradient of a function to be minimized for certain
arguments. This gradient describes the way that the function changes locally with the arguments,
and so it dictates the direction the arguments should be changed in order to decrease the value of
the function. A general gradient descent algorithm looks like this:

ẋ = −κ∇f(x) (2.30)

κ is the learning rate, f(x) is the function to be minimized, ∇ is an operator that denotes the
Gradient of f(x) and x is the argument to be adjusted. We can apply the same gradient descent
scheme for the free energy. The appropriate update for the internal belief µ̃ is found by:

˙̃µ = Dµ̃− κµ · ∇µ̃F(µ̃, s̃) (2.31)

= Dµ̃− κµ ·
[
εzΠz

δεz
δµ̃

+ εωΠω
δεω
δµ̃

]
(2.32)

This update of internal beliefs is a form of inference. With the help of gradient descent, the agent
can find a local minimum of the free energy. The internal beliefs µ̃ that correspond with this
minimum are then the best guess that the agent can make of the causes of its sensory observations.
Important to note here is that these internal beliefs will approach the real-world states, but only
if the local minimum is also a global minimum, and if the internal model of the agent perfectly
represents the outside world. However, the internal model may differ from the way the outside
world is structured.
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Figure 2.1: The only information that the agent has about the external environment is obtained through
the sensory information s̃, and it can only influence the world through the actions a. The agent must assume
the world behaves according to a model that is described by the functions f and g. These functions generate
predictions about the dynamics of the world and the resulting observations based on a set of internal beliefs
µ̃. These beliefs are constantly updated based on the error of these predictions to better reflect the assumed
dynamics and the sensory observations.

2.4.2 Action

As was said before, the agent can also minimize the Free Energy by performing actions on the
world that result in sensory observations that are predicted by the internal model. This puts the
“Active” in active inference. By doing this, the agent minimizes the prediction error εz = s̃− g(µ̃).
The appropriate change in actions can also be found with the gradient descent scheme.

ȧ = −κa ·
δs

δa
∇sF(µ̃, s̃) (2.33)

= −κa ·
δs

δa

[
εTz Πz

δεz
δs

]
(2.34)

This requires a mapping δs
δa that relates the actions to the sensory states. This is essentially an

inverse model that determines the change that is needed in the actions a to achieve a change
in the sensory observations s̃. In this way, actions are generated from the prediction errors. It
provides a simple form of feedback control that is assumed to be effective when there are no
complicated dynamics. This mechanism is often compared to reflexes in biological and robot motor
systems [1], [11], [23]. Figure 2.1 illustrates how an agent uses these updates to adapt its internal
states and generate actions to minimize prediction errors.
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2.4.3 Hierarchical Message Passing

As has been discussed before, the agents internal states are updated based on the gradient of the
Free Energy with respect to those states. In the hierarchical case there are two sets of states to
update: the mean of the dynamic states µ̃ and the causal states v. The gradient of the Free Energy
describes how the Free Energy changes with (small) changes in the states, and therefore how the
states should be changed in order to minimize the Free Energy.

The gradient of the Free Energy can be expressed in matrix form, as was previously shown in 2.32.

Here the terms εω and εz are vectors that contain all the prediction errors for the functions f(µ̃, v)

and g(µ̃, v) respectively. This also means that the partial derivatives δε
δµ̃ and δε

δṽ are Jacobians.

εω = Dµ̃− f(µ̃, v) (2.35)

εz = v − g(µ̃, v) (2.36)

δF

δµ
=
δεω
δµ
· Πω · εω +

δεz
δµ
· Πz · εz (2.37)

δF

δv
=
δεω
δv
· Πω · εω +

δεz
δv
· Πz · εz (2.38)

It is clear that the gradient of the Free Energy with respect to a certain state only depends on the
prediction error that include that state. If we consider the prediction errors in a hierarchy 2.22, we
can see that given the states µ̃[m], v[m] in a specific hierarchical level m:

εω[m]
= Dµ̃[m] − f(µ̃[m], v[m])

εz[m]
= v[m−1] − g(µ̃[m], v[m])

(2.39)

δF

δµ̃[m]

=
δεω[m]

δµ̃[m]

· Πω[m] · εω[m]
+
δεz[m]

δµ̃[m]

· Πz[m]
· εz[m]

(2.40)

δF

δv[m]

=
δεω[m]

δv[m]

· Πω[m] · εω[m]
+
δεz[m]

δv[m]

· Πz[m]
· εz[m]

+
δεz[m+1]

δv[m]

· Πz[m+1]
· εz[m+1]

(2.41)

If we consider these gradients carefully, it becomes clear that the gradients with respect to the
dynamic states µ[m] depend on µ[m], v[m] and v[m−1]. The gradient with respect to the causal states
v[m] depend on µ[m] , v[m], v[m−1], µ[m+1] and v[m+1]. The gradients are used to update the states, so
these dependencies furnish signals that pass between the hierarchies. It is thought that the signals
in the biological brain can be described in a similar manner [10]. Figure 2.2 shows how these states
are represented and updated in the internal model of the agent.

As before in equations 2.34 and 2.32, the gradients are used to provide update rules for the internal
states and the actions :
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˙̃µ = Dµ̃− κµ ·
δF

δµ̃
(2.42)

v̇ = −κv ·
δF

δv
(2.43)

ȧ = −κa ·
δs

δa
· δF
δs

(2.44)

The state updates are weighted by the learning rates κµ, κv, κµ which determine the speed with
which the states are adjusted based on the prediction errors. Note that the dynamic states µ̃ are
updated based on the states of their derivatives as well as the prediction errors. This is because
they have a dynamic representation in the model 4. These update steps represent the core of the
algorithm that is used for the simulations in the next chapters.

4This is not done for the causal states v because we have disregarded the generalized coordinates for the causal
states in this thesis. Therefore Dv = 0.
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Figure 2.2: The agent still only interacts with the world through s̃ and a as in figure 2.1. In this case
the internal model of the agent has been cast in a hierarchical form. The agent now assumes that there are
causal states v that play a role in the dynamics producing the sensory observations s̃, and that these causal
states themselves are generated by other dynamics, which are expressed in a higher hierarchical level. The
states µ̃ and v are updated based on the errors of the models predictions, and this can be interpreted as
signals that move up and down the hierarchy.
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Chapter 3

Simulation

This chapter gives a description of how hierarchical active inference can be simulated computation-
ally. It explains how the concepts that have been explained in previous chapters are implemented
in programming. The program described here is the result of the following research goal:

Subgoal 3: Put a hierarchical active-inference based control algorithm into executable code
for simulations, that can implement various internal and external models.

The code that is presented here has been written in python. The program is made up of several
modules that each handle an aspect of the active inference algorithm. This information is meant
to clarify the operation of the code that has been used in this thesis. The program is capable
of handling various systems with functions for the physical dynamics and models for the beliefs
of the agent. The agents model can be divided into hierarchical levels, which is the focus of this
thesis. The code has been split into several sections, or modules that are explained in this chapter
one by one. Figure 3.1 illustrates how these modules interact to build the models and run the
simulation. Appendix A includes the code that was used to run the simulation for the hierarchical
cart group system in chapter 5. The code was largely the same for the different simulations that
are discussed in this thesis, and the main differences are present in the physics module A.2, in
the models module A.4.2, and in the graphics module. The graphics code is extensive and not
important for the purpose of explaining the simulations and so is not included in this report.
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Figure 3.1: Flowchart showing the different processes involved in running the simulation. The arrows show
the most important data that is passed between the modules

18



3.1 Variables and vectors

This table shows the notation that is used for all simulations throughout this thesis. Note that
variables written in bold represent vectors or matrices, instead of single values.

Variable

x, ẋ, ẍ real-world states and their derivatives
s sensory states
a actions
ω dynamic noise acting on the states x
z observation noise acting on sensory states s
µ agents internal beliefs
v causal beliefs
fp transitive function of the physical process
gp generative function of the physical process
f transitive function of the generative model
g generative function of the generative model

R Internal belief of action-senses relation, δs
δa

Πω Precisions on dynamic errors
Πz Precisions on sensory/causal state errors
kµ Internal belief update learning rate
kv Causal belief update learning rate
ka Action update learning rate
F Free Energy

3.2 Generative process & Generative model

In this thesis, the simulation of active inference processes are is done through the numerical inte-
gration of a set of states, x, y, µ, v and a. The dynamic states (x), the observable states y and
actions a belong to the simulated external world. They represent the physical development of the
agents environment. The internal beliefs µ and the causal states v belong to the simulated internal
system of the agent. They represent the ideas and motivations that the agent controls.

This distinction between external and internal is also made in the functions that describe their
change in time, the generative process and the generative model respectively.

ẋ = fp(x,a) + ω

y = gp(x) + z
(3.1)

µ̂′ = f(µ,v)

ŝ = g(µ,v)
(3.2)

While the generative process described by fp and gp directly describe the development of the ex-
ternal states, the generative model (f, g) does not directly describe the development of the internal
states, but rather predictions on the internal states. The actual change of the internal states in
time depends on the update rules that are defined through gradient descent on the free energy.
These update rules are defined by µ̇, v̇ and ȧ. These, and the time derivative of the real world
states ẋ are then numerically integrated using a Runge-Kutta 45 solving method.
The simulation process is written in python and makes heavy use of the sympy toolbox to declare
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symbolic variables. This allows the construction of expressions without assigning actual values to
the variables, and allows certain operations such as calculating the partial derivatives of those func-
tions. This is an important functionality when deriving the gradient descent on the Free-Energy
expression.

3.2.1 Physics

The generative process is defined in the physics module of the program (Appendix A.2). Here
the states x and the actions a are declared symbolically and the functions fp are defined. ω and
z are declared as vectors of symbols that represent the noise terms. For the sake of simplicity, the
states are assumed to be directly observable and so the sensory states s are simply the states x
plus observation noise z. Therefore, the functions gp are not defined.

For the robot arm, the differential equations are relatively complicated. The system is described
in rotational coordinates and includes things like coriolis and centrifugal forces, and must take into
account the force interaction between the two segments. In a separate module robotarmMg the
matrices for the differential equations are calculated using the TMT method [25] using the known
constraints and forces on the robot arm. This module is not included in the appendix.

3.2.2 Generative model

The generative model is defined in the generative_model module of the program (A.4). This
part declares the internal states µ and the causal states v in symbolic form. Expressions are given
for the generative and transitive functions f and g. The precision matrices Πω and Πz are also
specified. These elements are taken from the module models (A.4.2) where the hierarchical levels
are defined separately.

The generative model can consist of multiple hierarchical levels i, with a number of internal beliefs
n that can have representations of derivatives up to a dynamical order m. All these different states
are stacked together in a single vector in a particular order. First the different states, then the
derivatives of all those states, and subsequently the states and their derivatives of higher hierarchi-
cal levels.

An important element when dealing with generalized coordinates is the derivative operator D.
The derivative operator is a matrix that shifts the elements in µ in such a way that it yields the
derivative µ′. The D matrix causes the elements of the highest dynamical order m to be replaced
with zeroes, as there are no derivatives of those to select. 3.3 shows an example with the internal
beliefs of two states, xa and xb and their derivatives. In generative_model (A.4.1 line 26-30),
the appropriate D is constructed based on the number of states (excluding higher orders) that is

20



obtained from the models.

µx = D · µ µx′ =



µx′a
µx′′a
0

µx′′b
µx′b
0


=



0 1 0
0 0 1
0 0 0

0 1 0
0 0 1
0 0 0

 ·


µxa
µx′a
µx′′a
µxb
µx′b
µx′′b


(3.3)

µ =



µ1,1,1
µ1,1,2

...
µ1,1,n
µ1,2,1

...
µ1,m,n
µ2,1,1

...
µi,m,n



µ′ = D · µ =



µ1,2,1
µ1,2,2

...
µ1,2,n
µ1,3,1

...
0

µ2,2,1
...
0



(3.4)

3.2.3 Noise

Although the noises in this thesis are always set to 0, the program allows for the addition of dy-
namic noise ω and observation noise z, although this was not used in the simulations in this thesis.
These noise terms are generated in the module noise_generator. It facilitates the creation of
gaussian smooth noise by generating a random value for each time step according to a gaussian
distribution, and then performing a convolution over this sequence with a gaussian kernel, which
ensures a time-correlation between subsequent values. This noise sequence is then transformed
into an interpolation function. The reason for this is that the integration algorithm may need to
evaluate values of the noise that are not included in the (discrete) noise sequence. It should then
be able to interpolate between the noise values.

Although this functionality exists in the code, it is not used in this thesis. It is still unclear how
noise should exactly be implemented in this simulation. An unresolved issue is whether all the
derivatives of the noise should be modelled, or only a disturbance in the form of an applied force,
for example, which would be more accurate to real-world physics. For this reason, and because
handling of noise is not a priority in this thesis, the noise implementation is excluded from the
simulations and is left for future work. This means that for all simulations discussed in this report
both the noises ω and z are zero.

3.3 State Updates

The state_updates (A.5) part of the program is responsible for defining the update expressions
and executing the numerical integration. The update expressions µ̇, v̇ and ȧ are derived from the
previously defined elements and integrated numerically.
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3.3.1 Free energy

The function free_energy (A.5.2) derives an expression for the free energy F based on the given
f , g, µ, v, and s.

εω = Dµ · µ− f

εz =

[
s
v

]
− g

ε =

[
εω
εz

]
Π =

[
Πω

Πz

] (3.5)

F =
1

2
· εT ·Π · ε (3.6)

3.3.2 Update Functions

The update_funcs (A.5.3) module contains the functions mu_update, v_update and a_update.
Each of these takes the jacobian (denoted by δF

δµ ) of the Free-Energy F with respect to the appro-
priate vector and uses it to determine how the respective states should change in the next update
step. The a_update function uses R which is the variable s_function in the code. This is a vector
that describes the elements of s as a function of a which is passed from the solver module.

mu_update

µ̇ = D · µ− κµ ·
(
δF

δµ

)
(3.7)

v_update

v̇ = −κv ·
(
δF

δv

)
(3.8)

a_update

ȧ = −κa ·
(
δF

δs
· δR
δa

)
(3.9)

Some of the update functions contain the sensory states s. These terms are replaced with the
real-world states plus the observation noise components (s = x+ z).

3.3.3 Integration

Once all the update steps are defined, they can be put into one large vector which is passed to
the solver. This happens in solve (A.5.1). solve_ivp from scipy.integrate is used, which is
an initial value problem solver that can integrate a set of differential equations given some initial
values. For the cases in this report, solve_ivp is set to a Runge-Kutta 45 solver, with a relative
tolerance of 10−4 and an absolute tolerance of 10−7.

initial values =


x0

µ0

v0
a0

 dstep =


ẋ(x, z)

µ̇(x,µ,v, z)
v̇(µ,v, z)
ȧ(x,µ, z)

 (3.10)
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We can see that the differential equations of the states are functions of the states themselves and of
the noise terms z. This noise is generated beforehand and passed to the solver as an interpolation
function interp_noise(t). This means that during the integration, the solver can determine the
appropriate noise terms at time t. The solver carries out the integration and returns the values for
all states at each time step.

solution = solve_ivp(dstep,initial_values,interp_noise)

3.4 Graphics

To be able to intuitively asses the behaviour of the results that the code produces, the time-series
solutions for the states are represented graphically. The solutions generated by solve_ivp are
passed to the graphics module. This module contains drawgraphs functions that produce line
graphs of the states, and animation functions that produce animations of the simulated system
using the matplotlib library. These are custom functions that have to be remade for different
generative processes and models, to make sense of the solutions. Due to the length and variety of
the models this code is not included in the appendix.

3.5 Chapter Summary

To summarize, this chapter has described the body of code that has been used in this thesis to
simulate the active-inference based control method. It provides the basis for all the simulations
that are presented in this report. Various physical systems can be simulated in the physics (A.2)
module, and the generative_model module allows for the implementation of arbitrary hierarchical
models. After the physical and generative models have been defined, the main parameters that
can be tweaked are the learning rates κ in the main file and the precision matrices Π which are
specified in the models (A.4.2) module in generative_model.

The fact that the code is model-independent makes it very versatile. However, implementing a
new physical and/or internal model requires adapting the physics and models part of the code.
Additionally, to obtain meaningful results such as graphs and animations from these simulations
means adapting the graph and animation generating functions in graphics.

23



Chapter 4

Single Cart

The previous chapter explained how the principles of active inference can be cast into an algorithm
that generates and evaluates predictions. The algorithm can be used as a control method, which is
how it is approached in this thesis. It may not be clear yet how this control is achieved in practice,
and this leads us to the next research goal:

Subgoal 4: Demonstrate the algorithm for a single-level linear goal-reaching control problem.

This thesis is focused specifically on applying this method in a hierarchical context, but first the
basic operation of this algorithm with a single-level model will be shown. By applying the method
to a very simple 1-dimensional control problem, some of the issues and complexities of this method
can be highlighted. Section 4.2 demonstrates the implementation of a first order simple cart model.
An analysis is provided of the stability of the controlled system, and how this is affected by the
many parameters in the generative model.

Additionally, the effect of generalized coordinates will be investigated. These representations of
multiple dynamical orders are an important part of the active inference theory, but it is unclear if
they contribute much to the performance of this simple noiseless system. Section 4.4 discusses the
same simulation but with the addition of second order beliefs, to observe the effect of embedding
order. The difference in results between the 1st and 2nd order implementation turn out to be
negligible. Therefore, for the scope of this thesis, internal states of a higher order than the sensory
states will be omitted.

This chapter considers the generative process and generative model for a single 1-D cart on a
horizontal plane. The cart is modelled by a point mass that can move in two directions (left and
right) and is influenced by a damping force b and a force a exerted by the agent. The generative
model, however, assumes that the cart is not affected by damping or other forces and simply
presumes that it moves towards a given goal with first-order dynamics. The action a then mitigates
this difference by moving the physical cart towards the goal. The difference between the generative
model and the physical system is the key that generates the control actions.
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4.1 Physical model

The first part of the simulation that is specified is the physical process, also called the generative
process or ”external world” in relation to the agent. For the single cart system it is described by
the differential equations 4.1 and 4.2. As this is a linear system, it can be cast into a state-space
representation.

ẋ = A · x+B · u (4.1)

s = C · x (4.2)

A =

[
0 1

0 − b
M

]
B =

[
0
1
M

]
C =

[
1 0
0 1

]
ẋ =

[
ẋ
ẍ

]
x =

[
x
ẋ

]
s =

[
s
ṡ

]
u =

[
a
]

x, ẋ, ẍ : Position, velocity and acceleration
b : Damping constant
M : Mass
s, ṡ : sensory observations1of position and velocity
a : action, in this case a force on the cart

Note that the sensory information here (4.2) is simply the position and acceleration, meaning the
states are directly observable. Usually a process would include noise terms ω and z for x and s
respectively, but these are not considered here for simplicity.

4.2 Single Cart Simulation

The internal states of the agent and their updates are also included in the simulations as a set of
differential equations. These updates are done based on the generative model. This is the model
that the agent employs to make its predictions. In this particular implementation, the generative
model describes the same point mass as the physical model but instead of modelling forces on it,
the cart is assumed to move towards a goal, with a velocity proportional to the distance from that
goal. This is similar to the approach in [22] where it is applied to a robot arm.

An important point that is demonstrated here is that the generative model does not necessarily
need reflect the conditions of the outside world. Rather, the agent (an organism or robot) can
possess a belief of desired states which it will try to achieve through action. Therefore the belief
of the agent eventually determines how the states in the real world will develop (if this within the
realm of possibility). In this single cart simulation the choice has been made to model goal-reaching
behaviour. This offers a clear criterion to evaluate the performance of the algorithm.

1In control theory, the conventional symbol for observations is y. Here, the symbol s is used to specify sensory
observations, maintaining the analogy of a biological agent.
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This behaviour is described in the simple differential equations shown below in section 4.2.1(4.3,4.4).
To run the simulation and obtain the results, the state updates rules are used as given in 2.44 in
chapter 2. These update rules are the differential equations that are integrated in the simulation,
together with the physical equations 4.1 and 4.2.

4.2.1 Generative Model

Below are the generative functions f and g for a first order model. This means only variables
and expressions up to the velocity µx′ are included. In addition, there is an expression R, which
describes the belief the agent has about how sensory information is produced by the actions a. In
this case the agent assumes that both the position and velocity signals from the cart are directly
proportional to the position and the velocity of the cart. This is not accurate of course, as the
action force actually affects the acceleration of the cart. However, the acceleration is not available
as a sensory signal. In practice, the assumed R allows the agent to exert a form of control based
on the sensory prediction error on position and velocity.

The precision matrices Π represents the accuracy with which the agent expects to be able to
determine the internal states and greatly affects how aggressively the states are updated. Generally,
the values for the precisions are related to the assumed variances of the noise terms. As noise is
disregarded in this thesis, there are no noise parameters to base the precisions on in this case. This
means that the values for Π are free to be chosen, and are available for tuning the system. An
additional assumption that is made is that the precision matrices Π only consist of diagonal terms,
indicating that the prediction errors on the dynamical orders of the same state are not correlated.
The converging parameter c determines the velocity at which the cart is assumed to move towards
the goal.

f =

[
ˆ̇µx
ˆ̇µx′

]
=

[
−c 0
0 −c

]
·
[
µx
µx′

]
+

[
c · ηg

0

]
(4.3)

g =

[
ŝ
ˆ̇s

]
=

[
1 0
0 1

]
·
[
µx
µx′

]
R =

[
ŝ
ˆ̇s

]
=

[
a
a

] (4.4)

Πω =

[
πω1 0
0 πω2

]
(4.5)

Πz =

[
πz1 0
0 πz2

]
(4.6)

c : Converging parameter
µx, µx′ : Belief of x position and the belief of the first derivative x′

ŝ, ˆ̇s : Estimated sensory observations
ηg : Goal position

Πω : Precision matrix on dynamics
Πz : Precision matrix on observations

Note that there are two expressions that represent predictions of the sensory signals (s, ṡ). g makes
predictions based on the internal states µx, µ

′
x, and R predicts how the action a affects the signals.
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Figure 4.1: This diagram provides an overview of the interaction between the external (physical) world
and the internal model maintained by the agent. The agents model has a belief of the position of the cart
µx, and uses this to make predictions about the sensory information s. The resulting prediction error is used
to update actions ȧ and internal beliefs µ̇x.

4.2.2 State updates

Shown below is the derivation of the updates for the internal beliefs µ for the 1st order model. These
update steps have been explained in 2.44. Combining this with the physical equations (4.1,4.2) pro-
duces the closed loop response 4.11. This can be used to determine the stability of the system.

δf

δµ
=

[
−c 0
0 −c

]
(4.7)

δg

δµ
=

[
1 0
0 1

]
(4.8)

δR

δa
=

[
1 0
0 1

]
D =

[
0 1
0 0

]

µ̇ = Dµ− κµ ·

[(
D − δf

δµ

)T
·Πω · (Dµ− f(µ))− δg(µ)

δµ
·Πz · (s− g(µ))

]

=

[
µx′

0

]
− κµ ·

[[
c 1
0 c

]T
·
[
πω1 0
0 πω2

]
·
[
µx′ − c(ηg − µx)

cµx′

]
−
[
1 0
0 1

]
·
[
πz1 0
0 πz2

]
·
[
s− µx
s′ − µx′

]]
(4.9)

ȧ = −κa ·
δF

δs
· δR
δa

= −κa ·
([

1 1
] [πz1 0

0 πz2

] [
s− µx
ṡ− µx′

])
·
([

1 0
0 1

])
(4.10)


ẋ
ẍ
µ̇x
µ̇x′

ȧ

 =


0 1 0 0 0

0 − b
M 0 0 1

M
κµ · πz1 0 −κµ · (c2 · πω1 + πz1) −c · κµ · πω1 + 1 0

0 κµ · πz2 −c · κµ · πω1 −κµ · (c2 · πω2 + πω1 + πz2) 0
−κa · πz1 −κa · πz2 κa · πz1 κa · πz2 0

 ·

x
ẋ
µx
µx′

a


+

κµ · (c2 ∗ ηgoal · πω1)
κµ · (c ∗ ηgoal · πω1)

0


(4.11)
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4.3 Stability

One issue that was encountered when attempting to run the active inference program on the 1-
dimensional cart control problem was the fact that in certain situations the solution was unstable
and the computational solver would produce very large values for the states. This instability could
be related to the fact that the generative model differs considerably from the real-world system.
There are assumptions about the dynamics that are not reflected in the real world which might lead
to mistakes in the updates of the actions and internal beliefs. An example of such an assumption
is the matrix R which assumes that the action a has a one-on-one effect on the position and the
velocity.

As this system is a set of linear differential equations, the stability can be analysed by observing
the eigenvalues of the closed-loop matrix that describes the differential equations. This matrix
(4.11) describes the development of the system as a whole, combining the generative process and
the internal model. Note that this does not include constant terms (such as the goal in this case)
or external factors(such as noise if it were included). The system is said to be stable if the real
parts of all the eigenvalues of that matrix are negative. See Grimbergen(2019) ( [15]) for a deeper
analysis of active inference in state space form and stability.

Below a plot is given (4.2) of the maximum real eigenvalues for the system plotted against different
values for various parameters as an example of the sensitivity of the system for changes in the
parameters. An important thing to remember is that the eigenvalues provide information about
the continuous system described by the differential equations. This means that any instabilities
due to numerical inaccuracies of the integration process are not considered in this analysis and may
still be an issue even if the real part of the eigenvalues are negative.

It should be noted that plots like figure 4.2 and 4.4 only provide information about stability for a
very specific set of variables. If any of the parameters are changed, the maximum eigenvalue plot
will change too. This method is an effective tool to determine parameters for a stable solution of
the simulation through trial and error, but does not provide much insight into how the parameters
influence the response of the system.

4.3.1 Results

Using the information provided by figure 4.2, parameters can be chosen for a stable convergence
of the single cart system. In this case only the value for πω2 was changed to 0.2 and all other
parameters were left at a value of 1. Figure4.2a shows that this corresponds with more negative
eigenvalues and this led to a reasonably quick and smooth convergence of the cart to the end goal
at ηgoal = 3. This demonstrates that the generative process can be effectively controlled towards an
end goal by describing the necessary dynamics in the generative model with appropriate parameters.
Now that this has been established, the next section will explore the effect of including higher order
dynamics in the generative model.
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(a) Maximum eigenvalues for πz1 , πω1 (b) Maximum eigenvalues for πz2 , πω2

(c) Maximum eigenvalues for Ka,Kµ (d) Maximum eigenvalues for c, b

Figure 4.2: The maximum of the real part of the eigenvalues of the differential equation matrix for the 1-D
1st order single cart system, plotted for different values for the various parameters. The system is stable
when the maximum real part of the eigenvalues is less than 0. Each figure shows two of the parameters
plotted against each other for values from 0 to 1 when all other parameters are 1. These plots illustrate that
the choice of parameters greatly affects stability.

Figure 4.3: The states of the cart and the corresponding beliefs in the 1st order internal model. The initial
position is at x0 = 0 and the goal is ηgoal = 3. Parameter values:(Πz1 = 1, Πω1 = 0.2, Πz2 = 1, Πω2 = 1,
κµ = 1, κa = 1, c = 1, b = 1)
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4.4 Including 2nd order states

The active inference based method involves generalized coordinates, and this means the generative
model can include any number of dynamical orders. Including higher orders simply means that
there are additional representations of higher derivatives and additional functions to predict them.
The highest order represented in the model is also called its embedding order. Here we consider
a model containing derivatives up to the 2nd order (position, velocity and acceleration). The
results are compared to the previously discussed first order implementation to see if there is any
difference in behaviour. Generalized coordinates in active inference are mainly a means to consider
the dynamics of differentiable (smooth) noise in systems. As noise is disregarded in this case, the
effect of including higher derivatives may be limited.

4.4.1 Generative model

This version of the generative model expands the state representation with one more derivative
compared to 4.3. This model includes an extra state µx′′ which develops according to the assumed
dynamics. Note that there are still only predictions for the sensory information of the position and
velocity of the cart (ŝ, ˆ̇s). This also means that there are only two corresponding precisions for the
sensory information (πz1 , πz2).

f =

 ˆ̇µx
ˆ̇µx′
ˆ̇µx′′

 =

−c 0 0
0 −c 0
0 0 −c

 ·
 µxµx′
µx′′

+

c · ηg0
0


(4.12)

g =

[
ŝ
ˆ̇s

]
=

[
1 0 0
0 1 0

]
·
[
µx
µx′

]
(4.13)

Πω =

πω1 0 0
0 πω2 0
0 0 πω3

 (4.14)

Πz =

[
πz1 0
0 πz2

]
(4.15)

4.4.2 State updates

Shown on the next page is the derivation of the update for the internal beliefs µ for the 2nd order
model. The update of the extra state µx′′ is influenced by the believed velocity µx′ , and vice versa,
but there is no corresponding sensory state s̈ for feedback. This suggests that µx′′ simply acts as a
stabilizing element to enforce the believed dynamics and that its relevance is limited in the absence
of process noise. The closed loop response is excluded here for brevity.
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δf

δµ
=

−c 0 0
0 −c 0
0 0 −c

 (4.16)

δg

δµ
=

[
1 0
0 1

]
(4.17)

δR

δs
=

[
1 0
0 1

]

D =

0 1 0
0 0 1
0 0 0


µ̇ =Dµ− κµ ·

[(
D − δf

δµ

)T
·Πω · (Dµ− f(µ))− δg(µ)

δµ
·Πz · (s− g(µ))

]

=

µx′µx′′

0

− κµ ·

c 1 0

0 c 1
0 0 c

T ·
πω1 0 0

0 πω2 0
0 0 πω3

 ·
µx′ + c · µx − c · ηg

µx′′ + cµx′

cµx′′




− κµ

−
1 0

0 1
0 0

 · [πz1 0
0 πz2

]
·
[
s− µx
s′ − µx′

]
(4.18)

ȧ = −κa ·
δF

δs
· δR
δa

= −κa ·
([

1 1
] [πz1 0

0 πz2

] [
s− µx
ṡ− µx′

])
·
([

1 0
0 1

])
(4.19)

4.4.3 Stability

Just as was done for the 1st order system, the stability of the system with the 2nd order model was
analysed. This was done by again calculating the maximum eigenvalues of the closed-loop matrix.
This matrix has not been included here for brevity but it is a similar construction to that of the 1st
order system (4.11). The eigenvalues were calculated for various values of the parameters and these
were plotted in figure 4.4. The eigenvalue plots strongly resemble those of the first order system 4.2,
especially 4.4a and 4.4b are almost identical. However, there are small differences when comparing
figure 4.4c and 4.2c, or 4.4d and 4.2d. Apparently there are values for the parameters for which
the 2nd order system is stable but the first order system is not. This means that including higher
orders in the system does have some effect on the dynamics.

4.4.4 Results

The resulting response for the 2nd order model (figure 4.5) was very similar to the results of the
1st order system. In fact, the difference between the two responses was negligible. The stability
plots in the previous section showed some differences in the dynamic properties for the 1st and 2nd
order, but these differences in dynamics have not become apparent in the results presented here,
because parameters were chosen for which both systems displayed similar (stable) behaviour.

Overall, the higher dynamical order seems to have little effect on the dynamics. This might be be
due to the fact that only the sensory information up to the 1st order was available to the agent.
It must be noted that the method of analysing eigenvalues does not consider robustness in the
presence of noise or disturbances. Higher dynamical orders could be more important if these are
included, however this is outside the scope of this thesis, which is focused more on the method itself
and hierarchical expansion of the models.
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(a) Maximum eigenvalues for πz1 , πω1 (b) Maximum eigenvalues for πz2 , πω2

(c) Maximum eigenvalues for Ka,Kµ (d) Maximum eigenvalues for c, b

Figure 4.4: The maximum of the real part of the eigenvalues of the differential equation matrix for the 1-D
2nd order single cart system, plotted for different values for the various parameters. The system is stable
for values lower than 0. These plots show some minor differnces with the stability plots for the 1st order
system.

Figure 4.5: The states of the cart and the corresponding beliefs in the 2nd order internal model. Parameter
values:(Πz1 = 1, Πω1 = 0.2, Πz2 = 1, Πω2 = 1, κµ = 1, κa = 1, c = 1, b = 1)
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4.5 Chapter Summary

This chapter has demonstrated the algorithm for a very simple linear control problem. This pro-
vides a clear example of a generative process and a generative model and the dynamics that are
simulated in this algorithm. These results demonstrate that the active inference based method that
is applied in this thesis is capable of imposing a form of control.

It has also become clear that the active inference based algorithm is not necessarily stable, and
that there are many parameters that influence the response of the system. In the case where there
is no noise or noise parameters are not known, the precisions can be used as tuning parameters. If
the generative process and the generative model are both linear, stability of the continuous system
can be determined by analysing the eigenvalues of the system matrix. This allowed for an effective
selection of parameters. However, this does require some analysis and is not a viable option for
non-linear systems. Also, eigenvalue analysis does not provide any information about instabilities
that may arise from the integration steps in the simulation. The application of active inference
principles does not guarantee stability and parametrization is an important factor in establishing
effective generative models for control purposes. This is an important point to consider in future
implementations.

Another interesting observation that has been made in the implementation of this 1-dimensional cart
control problem is that the inclusion of higher orders leads to very little difference in the resulting
solution. At least in this linear process with 1st order sensor information and no noise, the observed
responses are almost identical. This is the case for the particular (stable) parameters chosen in
this system, but slight differences in the eigenvalue plots suggest that there are sets of parameters
in which the higher orders have a significant influence. The relevance of higher dynamical orders
may also change if noise is included in the generative process or if the physical system that is being
controlled includes higher dynamics. For the scope of this thesis, it will be assumed that this is
not the case and that states of higher derivatives than 1st order can be neglected. The focus of
this thesis is the implementation of a hierarchical generative model, which will be the subject of
the following chapters.
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Chapter 5

Cart Groups

The previous chapter demonstrated the application of the active inference based algorithm with a
single-level linear model. This provides a first glance at how this algorithm can be implemented in
practice, albeit for a very simplified system. However, the main aim of this thesis is to explore the
application and behaviour of hierarchical models within this method. What does the generative
model look like when the agent assumes a hierarchical structure of the world? And how can goal-
directed control behaviour be integrated into this approach? These questions will be answered with
the second part of the algorithm demonstration:

Subgoal 3: Demonstrate the algorithm for a linear goal reaching control problem using a
hierarchical generative model.

In this chapter a group of 8 carts are simulated on a 1-dimensional line. The individual carts are
influenced by the same dynamics as the cart in the previous chapter. They are affected by a damp-
ing force and an action force a exerted by the agent. The main difference in this implementation
is the model employed by the agent. This model consists of multiple levels that are organized
in a hierarchical fashion. Specifically, the agent models the 8 different carts and describes their
movement towards a goal in groups of two. This means there are 4 different goals, and these are
represented in a second level. These, in turn, move towards two goals represented in a third level,
which move towards a fixed ‘prior’ goal. This hierarchy is not present in the actual physical world,
but exists only in the agent’s model. The simulation will show that this hierarchical behaviour can
be realized in the physical system by the agent through the actions. In a more general sense, this
means that an agent is able to divide a large goal or task (move all carts towards a goal position)
into smaller sub-tasks (move two carts towards a goal-position).

As motivated in the previous chapter, noise and higher dynamical orders are omitted in these
simulations. Finding the parameters that result in stable and smooth convergence towards a goal
remains a process of trial and error. The parameters that have been used in this chapter differ
from those in the previous chapter as the hierarchical structure changes the dynamics of the system
slightly.
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5.1 Physical model

The simulations of the physical ‘real world’ carts is done in the same way as in the previous chapter
for the single cart simulation, with the same damping coefficient and action forces, only in this case
there are 8 carts instead of 1.

ẋ = A · x+B · u (5.1)

s = C · x (5.2)

A =



0 . . . 0 1 . . . 0
...

...
...

. . .
...

0 . . . 0 0 . . . 1

0 . . . 0 b
M1

. . . 0
...

...
...

. . .
...

0 . . . 0 0 . . . b
M8


B =



0
. . .

0
1
M

. . .
1
M


C =

1 . . .
. . .

1



ẋ =



ẋ1
...
ẋ8
ẍ1
...
ẍ8


x =



x1
...
x8
ẋ1
...
ẋ8


s =



s1
...
s8
ṡ1
...
ṡ8


u =



0
...
0
a1
...
a8


xn, ẋn, ẍn : Position, velocity and acceleration of each cart

b : Damping constant
M : Mass, equal for each cart

sn, ṡn : sensory observations of position and velocity for each cart
an : actions, forces on each cart
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5.2 Generative model

In this simulation the generative model is structured in a hierarchical way. There are different
ways to organize a model hierarchically. Hierarchy can become apparent in the relation between
cause and effect, part and whole or goals and sub-goals. One of the suggested functionalities of a
hierarchy is to represent goals that can be divided into different sub-goals or tasks. The hierarchical
model described here follows that idea in a simplified way.

f3 =


−c 0 0 0
0 −c 0 0
0 0 −c 0
0 0 0 −c

 ·

µ3e
µ3f
µ′3e
µ′3f

+


c · ηg
c · ηg

0
0

 g3 =

[
µ3e
µ3f

]
(5.3)

f2 =

−c . . . 0
...

. . .
...

0 . . . −c

 ·



µ2a
µ2b
µ2c
µ2d
µ′2a
µ′2b
µ′2c
µ′2d


+



v2e
v2e
v2f
v2f
0
0
0
0


g2 =

µx1...
µx8

 (5.4)

f1 =

−c . . . 0
...

. . .
...

0 . . . −c

 ·



µx1
µx2

...
µx7
µx8
µ′x1

...
µ′x8


+



v1a
v1a
...
v1d
v1d
0
...
0


g1 =

µx1...
µx8

 (5.5)

c = Convergence parameter
µxn , µ

′
xn = Belief of x position and the belief of the first derivative ẋ of the carts

µa...f , µ
′
a...f = Alphabetical letters denote the beliefs of position and velocity of the higher level

goals
va...f = The causal states of the goal positions

The generative model has a representation of 8 carts, represented as positions on a 1-dimensional
axis (µx). The model also defines ’goals’ which are enumerated alphabetically (µ2a, µ2b...). These
are positions that the carts move towards in groups of two. These goals themselves are attracted
to higher goals (µ3e, µ3f ) represented in a higher level. Those in turn move towards an end goal
position (ηg). These goals have no real-world counterparts, they merely represent an internal belief
of the agent about the behaviour of the carts. This internal belief of the agent will enforce the same
hierarchical dynamics on the ‘real’ carts. Each state in this model behaves according to the same
dynamics that assume they converge on a given goal (v). This means they have the same form of
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dynamic function f . The dynamic behaviour of the states in the first level are described by the
function f1, and the predicted sensory states in g1 5.5. Those of the second and third levels are
described in the same goal-oriented way (5.4, 5.3).

The hierarchical model described here assumes that the causal and sensory states are the same as
the dynamic states, with no additional mapping between them. Therefore the role of the generative
functions g is simply to select the appropriate states as the predictions for the causal states v of
the level below it. At the lowest level these are predictions for the sensory states s. This is similar
to the C matrix in the physical system (5.2), it simply means that the dynamic states at each level
are the predictions for the causal states. The dynamic states at the lowest level are the predictions
for the sensory states. This means the agent assumes the hidden states to be directly observable,
which they are.

Note that the dynamics described in the generative model do not represent a system that could be
commonly encountered in the real world. The equations for the accelerations describe a form of
damping, but this is complemented with equations for the velocity that determine the convergence
on the goal position.

Figure 5.1: External world consisting of 8 pushable carts, and the internal model of the agent with the
dynamic states µ and the causal states v. There are prediction errors for both the µ and the v, but only
those for v are shown here.
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ˆ̃µ
′
3 = f3(µ3, η)

v̂2 = g3(µ3)

ˆ̃µ
′
2 = f2(µ2,v2)

v̂1 = g2(µ2)

ˆ̃µ
′
x = f1(µx,v1)

ŝ = g1(µx)

(5.6)

ˆ̃s =

[
ŝ

ŝ′

]
µ̃1 =



µx1
...
µx8
µ′x1

...
µ′x8


µ̃2 =



µ2a
...
µ2d
µ′2a

...
µ′2d


µ̃3 =


µ3e
µ3f
µ′3e
µ′3f



v1 =

v1a...
v1d

 v2 =

[
v2e
v2f

]
a =

a1...
a8


(5.7)

5.2.1 State Updates

Now that the generative model is defined, the corresponding update rules can be applied using the
principle of gradient descent on the free energy (5.9). The Free Energy is expressed in terms of the
prediction error and then the partial derivatives with respect to the states µ, v and s are take to
determine the updates of the internal beliefs and the actions. This is done in the same way as is
described in chapter 2.

εω = (D · µ)− f

εz =

[
v
s

]
− g

F =
1

2
εTω ·Πω · εω +

1

2
εTz ·Πz · εz +

1

2
log(|Πω ·Πz|)

(5.8)

µ̇ = D · µ− κµ ·
δF

δµ

v̇ = −κv ·
δF

δv

ȧ = −κa ·
δs

δa
· δF
δs

(5.9)
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εω = (D · µ)− f =



µ′3e
µ′3f
0
0

µ′2a
...
µ′2d
0
...
0

µ′x1
...
µ′x8
0
...
0



−



−c · µ3e + c · ηg
−c · µ3f + c · ηg
−c · µ′3e
−c · µ′3f

−c · µ2a + c · v2e
...

−c · µ2d + c · v2f
−c · µ′2a

...
−c · µ′2d

−c · µx1 + c · v1a
...

−c · µx8 + c · v1d
−c · µ′x1

...
−c · µ′x8



εz =

[
v
s

]
− g =



v2e
v2f
v1a
...
v1d
sx1
...
sx8
s′x1
...
s′x8



−



µ3e
µ3f
µ2a

...
µ2d
µx1

...
µx8
µ′x1

...
µ′x8



(5.10)

The simulation is done without considering noise. This means that there is still no information
about the noise parameters which can be used to determine the values of the precision matrices.
The precision matrices are therefore taken to be diagonal, with parameters that can be chosen to
tune the system.

Πω =

πω1 0 . . .
0 πω2

...
. . .

Πz =

πz1 0 . . .
0 πz2
...

. . .

 (5.11)

As an example, the partial derivatives of the Free energy with respect to s1, µx1 and v1a are given
(5.12). This demonstrates what kind of expressions are used in updating the states of the agent’s
internal model.

δF

δµx1
=

1

2

[
πωx′1

(2 · −c(µ′x1 + c · µx1 − c · v1a))
]

+
1

2

[
πzs1 · 2 · −1(s1 − µx1)

]
δF

δv1a
=

1

2

[
πωx′1

· 2 · c(µ′x1 + c · µx1 − c · v1a))
]

+
1

2

[
πzv1a · 2 · 1(v1a − µ2a)

]
δF

δsx1
=

1

2

[
πzsx1 · 2 · 1(sx1 − µx1)

]
δF

δs′x1
=

1

2

[
πzs′x1

· 2 · 1(s′x1 − µ′x1)
]

(5.12)

Once all the partial derivatives are derived as in (5.12), they can be used to construct the update
rules as in (5.9). For this an expression for the relation between s and a is needed in the form of
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an R matrix, in order to obtain appropriate update formulas for the actions. In this case a simple
proportional relation is assumed between a and s, s′. this means an increase in the action a is
expected to result in an increase in both s and s′ by the same amount. This assumption results in
a diagonal matrix of the form:

R =
δs

δa
=



1 0
0 1

. . .

1 0
0 1

. . .


(5.13)

This mapping from actions to sensory states is one of the bold assumptions that is made in active
inference. The assumptions about the effect of the actions are inaccurate, but they result in control
actions on the sensory prediction errors. It is essentially the point where the internal dynamics
of the agent switches from a forward model generating predictions to an inverse model generating
actions from prediction errors. It has been proposed that this inverse mapping generating actions
is realized in biological systems using reflex arcs, and that this can be used in the same way in
robots ( [1], [23]). However, this is an issue that needs to be studied more thoroughly to determine
how this can be optimally put to use for robot control.

The update expressions are then derived using the gradient on the free energy. Filling in the state

update equations 5.9 yields the resulting update expressions. 5.14 shows updates for the variables

µx1 , v1a and a1 as an example. Note that the subscript a is used in v1a and µa as an alphabetical

designation, but in ȧ1 and κa it refers to the actions.

µ̇x1 = µ′x1 − κµ ·
[
πωx′1

(−c(µ′x1 + c · µx1 − c · v1a)) + πzs1 · (µx1 − s1)
]

v̇1a = −κv ·
[
πωx′1
· c(µ′x1 + c · µx1 − c · v1a)) + πzv1a · (v1a − µ2a)

]
ȧ1 = −κa ·

[
πzsx1 · (sx1 − µx1) + πzs′x1

· (s′x1 − µ′x1)
] (5.14)

Together with the equations of motion for x, these update expressions form the differential equa-
tions that describe the behaviour of the whole system, consisting of the real world, the internal
model of the agent and the actions that the agent exerts on the world.

5.3 Results

The generative model of the cart groups and the steps described above have been put into code and
the update expressions have been integrated with a differential equation solver using a Runge-Kutta
algorithm. The choice of the learning rates κµ, κv, κa and the precision terms in the matrices Πω,Πz

had a significant effect on how quickly and smoothly the states converged to a solution. Choosing
parameters that resulted in desirable behaviour once again required some trial and error. In the
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end the following parameter values were chosen for the learning rates: κµ = 1, κv = 1, κa = 10.
This means the actions were updated more aggressively than the causal states v and the dynamic
states µ. The dynamic precision elements πω in Πω were all set to 1. The causal precision elements
πz in Πz were all set to 10. This means that the prediction error on the causal states was weighed
more heavily in the state updates. In order to lower the time in which the all the carts could reach
the goal, the converging parameter c for all levels was set to 3 instead of 1. Nonetheless, the sys-
tem converged very slowly and effective tuning of the parameters remains an issue for investigation.

Figure 5.2 shows the response of the states in the simulation. The results (5.2a) and (5.2b) demon-
strate that the goal-seeking behaviour of the carts as dictated by the generative model works as
expected, and the carts converge in ever larger groups and eventually end up at the expected loca-
tion. This result is to be expected, and it is clear how higher level states can affect the behaviour
of low-level states and eventually the actual carts. What is less obvious is how the outside world
affects the internal model. Minimizing the free energy means adapting the internal model to the
outside world as well as conforming the outside world to the model. To highlight this mechanism,
the same simulation is run while the leftmost cart was disabled. The actions exerted by the agent
now no longer have an effect on that cart. The results for this are shown in figures (5.2c) and
(5.2d). The higher-level states are influenced both by the believed convergence towards the end
goal, and by the measured location of the carts. If the internal model is not reconcilable with the
actual behaviour of the world (one cart is stuck), the final value of the states will be a compromise
between the two. This means that the higher level beliefs that concern the impaired cart will end
up somewhere between the goal and the actual position of that cart.

As we can see, the cart x1 is disabled and stays still. The cart x2 is activated but does not converge
to the end goal location, because the sub-goal µa is also affected by the ‘stuck’ cart. A graphical
representation of the final position of the sub goals and the carts can be seen in figure 5.3b. The
effort that the agent exerts on the first cart a1 rises to a very large value. This is because the pre-
diction error on x1 persists, and therefore the action update ȧ stays the same. During integration
this produces very large values.

Figure 5.2d shows the effects that disabling one cart has at higher levels in the model. We observe
that the states that rely on or are related to the disabled x1, do not converge to the end goal value
of 5 as they did before. This is because they are finding a compromising solution between the
predicted goal and the actual values of the cart locations. This shows what kind of consequences
can emerge from a discrepancy between the model employed by the agent and the actual physical
system, and how this mismatch affects different layers of the model.
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Functional Hierarchical Cart System

(a) External states x and the dynamic and causal beliefs
µ,v at level H1 and the dynamic beliefs ,mu2, at level
H2.

(b) The internal beliefs at higher levels. µ2,v2,µ3.

Impaired Hierarchical Cart System

(c) External states and internal beliefs for an impaired
system.

(d) Beliefs at higher levels for an impaired system.

Figure 5.2: The external and internal states over time for a functional system and an impaired system.
Parameter values: κµ = 1, κv = 1, κa = 10, πω1...n

= 1 , πz1...n = 10, c = 3. For an intuitive representation
of the levels see the screenshot of the animation (5.3)
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(a)

(b)

Figure 5.3: Screen shots of the animation at time t = 0.4 and t = 9.5, produced by the simulation which
provide a graphical representation of the carts and the internal states. The blue squares represent the carts
x. The dots represent the causal states v, the red dots being v1, the yellow dots v2 and the green dot being
the prior η. The lighter squares and dots represent the dynamic states µx, µg1 and µg2
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5.4 Chapter Summary

In this chapter the active inference based algorithm has been implemented on a simple control
problem using a hierarchical model. The model incorporated some hierarchical behaviour that was
not present in the physical world, which in this case consisted of 8 pushable carts. The significance
of this hierarchical representation is that the agent is able to divide the action and perception capa-
bilities into different layers. This means that the agent can ‘summarize’ its sensory information at
higher levels and obtain representations that condense a larger volume of information into a single
value. Crucially, the agent can also set goals for this summarized representation and the lower
levels of the internal model will automatically react to achieve the desired goal. This demonstrates
how agents can ‘delegate’ sensory processing and action in processes at lower levels, resulting in
efficient handling of large volumes of information.

The example in this chapter shows a simple but practical realization of this behaviour. The higher
level end goal provided a ‘summarized’ task for the actions on the carts. This task was realized by
dividing it into smaller tasks that involved smaller groups of carts. The implementation given in
this chapter is purely for demonstration purposes. Clearly there are more optimal ways to direct 8
carts towards an end goal. The point of the cart groups model was to show how active inference
using hierarchical models might work in practice.

The results illustrate that the agent is able to realize the desired behaviour in the physical system
up to a point. The top-down signals in the internal model function to conform the lower level
states to higher level beliefs and goals, and eventually dictate actions on the world (the carts). The
bottom-up signals adapt the higher level states to the lower level states, dictated by evidence from
sensory signals. These two streams of signals, both produced by the prediction error, work together
to match the internal model to the physical system, and vice-versa. When there is an unavoidable
discrepancy between the two, a compromising solution is found that minimizes the prediction error
for the agent. This has been demonstrated by disabling one of the 8 carts and letting the simulation
converge.
The cart groups example offers an insight into the practical application of the method described
in previous chapters with a hierarchical model, and has shown some of the behaviour that can be
expected of such an algorithm. The effective use of such an algorithm may not yet be clear, but
now that the mechanism of the method has been demonstrated, it can be applied to more practical
applications.
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Chapter 6

Robot Arm

So far the active-inference based algorithm has been demonstrated on simple 1-dimensional control
problems with a single level generative model (chapter 4), and a hierarchical generative model
(chapter 5). Both of these cases implement a form of goal-reaching behaviour that is determined
by the dynamics expressed in the generative models. The hierarchical case implemented different
levels of goals, where the number of goals decreased in higher levels. The question remains how
this hierarchical description could be relevant in practical applications. Can a hierarchical model
be used in a practical scenario to enforce the proper reactions in a control problem? If so, what
role does the hierarchical aspect of the generative model fulfil and how is its function important
to the implementation of the algorithm? To investigate these points, the control algorithm will be
applied to a control problem that, albeit simple, is more representative of real-life robot control
problems. To this end, this chapter will consider a reaching task in which a 2-D robot arm with
two segments has to position its end effector. The goal of this chapter is:

Subgoal 3: Apply the algorithm to a 2-D robot arm with various hierarchical generative
models to investigate the function of the hierarchical model for active inference
in robot control.

There are two reasons the robot arm was chosen to test the algorithm. The first is that a (robot) arm
has been used before in literature as an example for motor control using active inference [22], [14].
These papers did not focus on hierarchy in the models, and so they provide suitable references for
the implementations of hierarchical models that is done here.

The second reason for simulating a 2-D robot arm is that it resembles problems that can be en-
countered in real-world robotics. It is a non-linear dynamic system where the effects of actions can
be quite complex. There is a clear goal for which there are multiple valid configurations and there
is a non-linear relation between this goal (position) and the observations and actuation (angles).
These are all characteristics that are relevant for real-world robot control systems.

6.1 Chapter Overview

This chapter considers a 2-D robot arm as an example of a practical robotic application, and a hi-
erarchy is defined that includes high-level representations that can be deduced from sensory states.
An exploratory investigation is carried out to find a suitable hierarchical model that enables the
active inference algorithm to impose the desired behaviour on the robot arm. The robot arm con-
sists of two segments with actuated joints. The sensory information that is available to the agent
are the joint angles and angular velocities. The agent can exert actions (torques) on the joints.
The goal of the agent is to get the end effector (the end point of the second segment of the arm)
to a specific goal location [xg, yg].
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The goal of this simulation is not to demonstrate a more effective control algorithm for robotic
arms, high-performance control solutions already exist for this kind of problem. Rather, the aim of
this chapter is to analyse the performance of this method and to show that active inference using
a hierarchical model can be implemented on an arbitrary but relevant robotic mechanism.

For the simulations of the robot arm in this chapter, the hierarchical distinction is made between
the sensory information of the joint angles φ and the second-level representations of the positions
of the elbow joint and end effector in x, y coordinates.

The goal-reaching behaviour of the robot arm is determined by the internal model. In this study,
we have analysed five ways to construct this model, see figure 6.1. The first three examples include
representations for joint and end effector coordinates at the second level (µxa , µya , µxb , µyb), and
the joint angles at the first level (φ1, φ2). This means that there are more variables in the second
level (4 variables) than in the first (2). This seems opposed to the purpose of hierarchy as has
been implemented in the group cart example in the previous chapter, where the hierarchy serves
to condense information in higher levels. Indeed, as we will discuss in section 6.6, this increase of
variables at higher levels can cause some issues.

Although counter-intuitive, this approach has been pursued to explore ways that hierarchy might
be used to process sensory information and implement control. Given only the joint angles, it seems
logical that the end positions of the links could be valuable information to an agent. Therefore it
is worth exploring how these might be inferred from lower level representations in a hierarchical
model. The first three examples in this chapter explore if and how such an approach can be effective
and we discusses the issues that emerge from the simulations.

The images in figure 6.1 show the different hierarchical models that have been investigated. The
first two cases consider a hierarchy in which the second hierarchical level, which is referred to as
H2, contains representations of the positions of the arm and the goal-directed dynamics. The
aforementioned issues that these two experiments raise are addressed in the next two cases, which
take into consideration the degrees of freedom and necessary constraints in the second hierarchical
level. Finally, after examining the relevance of the hierarchical model for this particular control
problem, a different approach is taken in which the hierarchy is used to add an extra layer of
complexity to the task of the robot. Readers interested in a successful hierarchical implementation
with added complexity in the robot arm are urged skip to section 6.5. Those interested in the
likely obstacles in similar implementations are advised to read the full account of the exploratory
attempts in section 6.3 and 6.4
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Introducing Hierarchy

1. Virtual Angular Velocity 2. Arctan

Considering Constraints

3. Constrained Positions 4. Polar Coordinates

Hierarchical Task Expansion

5. Vector Field Path

Figure 6.1: The five hierarchical models that are discussed in each section in this chapter.
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6.2 Physical model

The physical model (generative process) of the robot arm is described by a set of non-linear differen-
tial equations, that are significantly more complicated than the 1-dimensional linear cart equations.
As was mentioned in section 3.2.1, these equations are determined in a separate piece of code that
implements the TMT method ( [25]). This method involves a transformation to independent coor-
dinates (φ1, φ2) to calculate an efficient expression for the angular accelerations. This determines
the expressions for M and G in the general differential equation M φ̈ = G that describes most phys-
ical systems. M is a reduced mass matrix and G is a reduced force vector. With these matrices
the differential equation could be solved for φ̈. The equations were found to be correct by checking
if the simulation developed as a double pendulum for some simple situations.

ẋ =


φ̇1
φ̇2
φ̈1
φ̈2

 =


φ̇1
φ̇2

ddx1(φ1, φ2, φ̇1, φ̇2, a1, a2)

ddx2(φ1, φ2, φ̇1, φ̇2, a1, a2)

 (6.1) s =


s1
s2
ṡ1
ṡ2

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ·

φ1
φ2
φ̇1
φ̇2

 (6.2)

φ1, φ2, φ̇1, φ̇2, φ̈1, φ̈2 : Angular position, velocity and acceleration
ddx1, ddx2 : Functions describing the angular acceleration of the joints.
s1, s2, ṡ1, ṡ2 : sensory observations of angular position and velocity

a1, a2 : action, in this case joint torque

Figure 6.2: The simulated robot arm system. The joint angles φ1 and φ2 (and their velocities) are available
to the agent as sensory states. The two joints are actuated by action torques a1 and a2 provided by the
agent.

Note that for most investigations into active inference state noise terms are included in equation
6.1 and sensory noise terms for equation 6.2. Here these noise terms are excluded for clarity as this
thesis focuses on the investigation into hierarchical implementation. Gravity forces were omitted,
but a damping torque on the joints was included. This made it easier to analyse the behaviour
of the robot arm. The full expressions for the angular accelerations in these equations are quite
extensive and have not been written out explicitly. Each of the arms had a length of L = 1(m), a
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mass of M = 1(kg), and a moment of inertia of I = 0.2(kg ·m2). The joints experienced a damping
coefficient of c = 1(N ·m·srad ).

6.3 Introducing Hierarchy

The first option that is explored is to include representations of the cartesian coordinates of the
elbow joint and the end effector in the second level (H2). These two positions are the most obvi-
ous deductions that can be made from the sensory information of the angles, so it makes sense to
represent these ’abstractions’ in a second hierarchical level. ’Abstract’ representations here are any
representations that do not directly reflect the sensory information but have to be deduced from
it. Having representations for these positions would be useful to a robot arm, as it is needed for
goal reaching and obstacle avoiding behaviour.

6.3.1 Virtual Angular Velocity

In this first implementation, the second hierarchical level H2 contains beliefs about the x and y
positions of the elbow and end effector positions of the robot arm. The dynamics described in the
second level assume that the velocities of these points are proportional to the distance between the
end effector and a predefined goal. This reflects the assumption that any movement made by the
elbow joint will also move the end effector. These dynamics are of course not accurate to the real
world dynamics, but this approach relies on the prediction error with the first level representations
to provide accurate feedback. In turn, the first level relies on feedback from the sensory information
coming from the joint angles.

As illustrated in figure 6.3 the first hierarchical level H1 relates the second level positions to the
joint angles. H1 contains variables that represent the agents internal belief of the joint angles, µφ1
and µφ2 . The elbow and end effector positions are determined in H2 enter H1 as causal states
v. The dynamics described in H1 move the angles µ so that these positions are realized. This
is done by calculating the joint positions based on the current angles, taking the difference be-
tween this and the causal positions v, and using this to determine appropriate angular velocities.
Specifically, the difference in x position is multiplied by the y position and the difference in y
position is multiplied by the x position, ensuring that the angular velocity will always minimize
the difference in position. This behaviour is dictated by the dynamic formula in the first level (6.4).

As in the single cart and multiple cart implementations in previous chapters, the models described
in this chapter include the zero and first order states. This allows a proper comparison with the
incoming first-order sensory observations ṡ1 and ṡ2 received by the robot arm simulation. The
second order dynamic functions f ′ that predict the derivatives of the first-order variables are also
included in the models, but these are excluded here for brevity. As in the single cart and multiple
cart systems of the previous chapters, we were free to choose the values of the precision matrices
and the learning rates, which was done by trial and error 1.
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6.3.2 Virtual Angular Velocity Results

The simulation was conducted for two different goal positions, [x = −2, y = 0] and [x = 1, y = 1].
The algorithm was run long enough for the system to converge to a solution, meaning that the
arm assumed a static end position. The end positions can be seen in figures 6.5 and 6.8. These
figures show that in both cases the algorithm has been unable to position the end effector at the
desired location. The belief about the end effector position (µxb , µyb) in H2 of the internal model
reaches the goal location, and the corresponding causal beliefs vxa , vxb also converge to this point.
However, these values are not consistent with the beliefs for the joint angles µφ1 , µφ2 . Apparently
the state updates cannot rectify this discrepancy between the beliefs of the joint angles and the
beliefs of the joint locations. It becomes clear why this is when we notice that the joint angles
are such that the robot arm segments are in line with the believed joint positions. Evidently this
version of the generative model results in state updates that disregard the length of the segments,
and only require the positions to be consistent with the direction of the segments.

The exact mechanism that leads to this stalling becomes clearer when we take a look at the update
steps for the causal states v as was described in 2.41 in chapter 2. In this case, the causal states v
describe the positions of the elbow joint and the end effector. v̇ is calculated from the prediction
errors. It is clear that the v terms only appear in f1 (6.4) and g2 (6.7), and so only the prediction
errors εω1 and εz2. Updating the v terms to minimize these prediction errors made by these functions
means that the causal states will be updated to correspond with the second level positions and the
first level angles. The issue here is that the prediction error εω1 (6.9) may become zero when the
causal beliefs v line up with the beliefs about the angles µφ but are not necessarily at the right
distance to correspond with the real world elbow and end effector positions.

v̇ = −κv ·
[
δεω
δv
·Πω · εω +

δεz
δv
·Πz · εz

]
(6.8)

εω1 =

[
µφ′1
µφ′2

]
−
[

(vxa − xa) · ya − (vya − ya) · xa
(vxb − xb) · (yb − ya)− (vyb − yb) · (xb − xa)

]
(6.9)

This result illustrates that the feedback through prediction errors is not always effective and that
a proper solution depends heavily on the type of dynamics that are included in the internal model
of the agent. In this case the dynamic function in H1 was set up in such a way that the prediction
error did not take into account the lengths of the robot arm segments.

1A note to those interested in the tuning of the parameters. For both the levels H1 and H2, the elements of the
dynamic precision matrix Πω all had a value of 1 and the elements of the sensory precision matrix Πz all had a value
of 5. For these values the robot arm was found to converge relatively smoothly. The values of the learning rates κµ,
κv and κa were set at 1, 1 and 10 respectively. The values for κa was higher than the other learning rates to ensure
that the agent would quickly react to the prediction error from the sensory states. The dynamic precisions πω were
lower than the sensory precisions because it was found that the robot arm would become unstable otherwise. This
presumably has to do with the fact that the internal model assumes (first order) dynamics that are different from
the real robot arm dynamics (second order) and do not take into account inertia and forces for example. If the agent
is too confident in the internal dynamics this can cause the robot arm to lag behind the internal beliefs and may
cause an unstable feedback loop. It is difficult to say if this is the real reason for the unstable behaviour, but it might
explain the need for relatively high sensory precisions to keep the internal beliefs true to the real world states.
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Figure 6.3: The robot arm and the internal model of the agent expressing the joint velocities [φ̇1, φ̇1] at
H1 based on the causal states vx,y determined at H2.

H1

xa = sin(µφ1) · L1

ya = cos(µφ1) · L1

xb = sin(µφ1) · L1 + sin(µφ1 + µφ2) · L2

yb = cos(µφ1) · L1 + cos(µφ1 + µφ2) · L2

(6.3)

f1 =

[
µ̂φ′1
µ̂φ′2

]
=

[
(vxa − xa) · ya − (vya − ya) · xa
(vxb − xb) · (yb − ya)− (vyb − yb) · (xb − xa)

]
(6.4)

g1 =


ŝ1
ŝ2
ŝ′1
ŝ′2

 =


µφ1
µφ2
µφ′1
µφ′2

 (6.5)

H2

f2 =


µ̂x′a
µ̂y′a
µ̂x′b
µ̂y′b

 =


ηx − µxb
ηy − µyb
ηx − µxb
ηy − µyb


(6.6)

g2 =


v̂xa
v̂ya
v̂xb
v̂yb

 =


µxa
µya
µxb
µyb

 (6.7)

Figure 6.4: The equations producing the predictions by the agent with model 1, based on angular velocities.
The functions f produce predictions for the dynamic states µ̂. At level H1, function g1 produces predictions
for the sensory states ŝ. At level H2, function g2 produces predictions for the causal states v̂.
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Figure 6.5: The robot arm using the virtual angular velocity
model has failed to reach the goal at [x = −2, y = 0].

Figure 6.6: The real-world states [φ, φ̇] and the correspond-
ing beliefs [µφ, µφ′ ] at H1 for goal [x] = −2, y = 0]. [a1, a2]
are the action torques. The beliefs for the angles [µφ1

, µφ2
]

(green and red lines in the top graph) do not converge to the
values [−π, 0] that would reach the goal, so model 1 is not a
successful hierarchical set-up.

Figure 6.7: The causal states vx,y in H1 and the beliefs of
the positions µ(x,y), µ(x′,y′) in H2. The beliefs [µx2 , µy2)] do
converge to the goal, but this is not translated properly to
angles at level H1.

Figure 6.8: The robot arm using the virtual angular velocity
model is close, but has failed to completely converge to the
goal at [x = 1, y = 1].

Figure 6.9: The real-world states [φ, φ̇] and the correspond-
ing beliefs [µφ, µφ′ ] at H1 for goal [x = 1, y = 1]. [a1, a2]
are the action torques. The beliefs for the angles [µφ1

, µφ2
]

(green and red lines in the top graph) do not converge to the
values [−π, 0] that would reach the goal, so model 1 is not a
successful hierarchical set-up.

Figure 6.10: The causal states vx,y in H1 and the beliefs of
the positions µ(x,y), µ(x′,y′) in H2. The beliefs [µx2

, µy2)] do
converge to the goal, but this is not translated properly to
angles at level H1.
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6.3.3 Angles by inverse tangent

An alternative model for the agents internal model was explored, in which the causal states v rep-
resent angles and not positions. The dynamics of the positions are implemented in the second level
(H2) in the same way as in section 6.3.1, moving towards a previously defined goal. However, the
angles are are not derived in H1 but in H2 (6.13) by taking the inverse tangents (tan−1) of the
positions of joint positions (µx, µy). These causal angles vφ are used in the first level H1 as goals for
the internal beliefs of the angles µφ, which in turn predict the angles given by the sensory signals.
This model is depicted in Figure 6.11. It would also be possible to implement this type of model in
a single level. After all, the angles given by g2 could be used to directly predict the sensory signals.
The objective of this chapter however, is to observe how a hierarchical model could be used to exert
control on the robot arm and to investigate the behaviour that arises in this implementation. For
this reason the model is implemented in two levels.
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Figure 6.11: The robot arm system with the inverse tangent model. The causal states vφ are predicted in
the second level based on µ(x,y) and represent goals for the angles.

H1

f1 =


µ̂φ′1
µ̂φ2′

−µφ′′1
−µφ′′2

 =


(vφ1 − µφ1)
(vφ2 − vφ1)− µφ2)
−µφ′1
−µφ′2


(6.10)

g1 =


ŝ1
ŝ2
ŝ′1
ŝ′2

 =


µφ1
µφ2
µφ′1
µφ′2

 (6.11)

H2

f2 =


µ̂x′a
µ̂y′a
µ̂x′b
µ̂y′b

 =


ηx − µxb
ηy − µyb
ηx − µxb
ηy − µyb

 (6.12)

g2 =

[
v̂φ1
v̂φ2

]
=

[
tan−1(µxaµya

)

tan−1(
µxb−µxa
µyb−µya

)

]
(6.13)

Figure 6.12: The equations producing the predictions by the agent with model 2, based on the inverse
tangent. The functions f produce predictions for the dynamic states µ̂. At level H1, function g1 produces
predictions for the sensory states ŝ. At level H2, function g2 produces predictions for the causal states v̂.
The part of the function f2 that produces estimates of the second derivatives of µ has been excluded here
for brevity.
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6.3.4 Inverse Tangent Results

As before, the simulation is run for the goal positions [x = −2, y = 0] and [x = 1, y = 1], and
some tuning was done through trial and error 2. It quickly became apparent that this approach
would only be feasible for positive x values for the beliefs of the positions. This is because the
tan−1 function is only capable of producing values between −1

2π and 1
2π. Therefore, as soon as

µya or (µyb − µya) become negative, the corresponding predictions for the angles vφ1 and vφ2 flip
by 1

2π. This can be seen in figure 6.15 where vφ1 and µy1 suddenly change direction. Figure 6.13
shows that this steers the robot arm away from the goal. This problem does not occur when the
goal is placed at [1, 1]. However, the same issue that prevented the robot arm from reaching the
goal in section 6.3.1 persists in this implementation. Again the arm segments are aligned with the
corresponding goals, but do not take the segment lengths in to account. Similarly, this is because
the prediction error on the angles becomes zero for when they align with the position beliefs in H2.

From the results in model 1, 2 and some additional unreported trials, it has become clear that it is
hard, if not impossible, to implement an effective goal-reaching algorithm for the robot arm with 4
independent variables in the second level. There does not seem to be a way to represent 4 variables
for joint positions in H2 and to match 2 variables for joint angles in H1. The reason it is so hard
to define functions that describe the dynamic relationships between the two levels is that we are
introducing extra degrees of freedom in the second level. There are multiple configurations for the
joint positions µxa , µya , µxb and µyb (4 degrees of freedom) that would satisfy the joint angles µφ1
and µφ2 (2 degrees of freedom) if the proper constraints are not present. The constraints in this case
are the lengths of the robot arm segments that dictate the possible configurations of µxa , µya , µxb
and µyb . Explicitly including these constraints might therefore provide a suitable solution.

2The same values for the precision matrices as in section 6.3.1 were tried, namely 1 for the dynamic precisions
Πω and 5 for the sensory (and causal) precisions Πz. This worked when the goal position was [1, 1], but for a goal
at [−2, 0] the simulation became very slow and got stuck during integration. Through trial and error it was found
that decreasing the values of the causal precision matrix Πz2 to 0.5 made the simulation workable again. It is unclear
what causes this difficulty in calculating the solution, but for certain situations the simulation employs debilitatingly
small time steps. Adjusting the precisions did not seem to have a significant effect on the behaviour of the system in
this case except for slowing down the convergence of the causal angles vφ to the second level beliefs.
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Figure 6.13: The robot arm using the inverse tangent model
has failed to reach the goal at [x = −2, y = 0]. µya has gone
below zero, and the model’s tan−1 expression predicts the
wrong angles. The purple dots represent second level beliefs
about joint positions, the pink bars are the first level beliefs
about the angles.

Figure 6.14: The real-world states [φ, φ̇] and the correspond-
ing beliefs [µφ, µφ′ ] at H1. [a1, a2] are the action torques. Ini-
tially φ1 moves towards the appropriate angle for the goal,
but around t = 2.2 moves away again.

Figure 6.15: The causal states vx,y in H1 and the beliefs of
the positions µ(x,y), µ(x′,y′) in H2. Around t = 2.2, µya (red
line) becomes negative and results in incorrect prediction of
vφ1 .

Figure 6.16: Here there is no issue with the tan−1 expres-
sions but the simulation has still failed to converge to the goal
at [x = 1, y = 1].

Figure 6.17: The real-world states [φ, φ̇] and the correspond-
ing beliefs [µφ, µφ′ ] at H1, these do not converge to the appro-
priate angels to rach the goal. [a1, a2] are the action torques.

Figure 6.18: The causal states vx,y in H1 and the beliefs
of the positions µ(x,y), µ(x′,y′) in H2. The end effector be-
lief [µxb

, µyb ] (brown and purple line) reach the goal, but the
elbow joint belief [µxa

, µya ] (green and red line) assumes a
configuration which is not possible in the real robot arm.
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6.4 Considering Constraints

The previous implementations in section 6.3 determined that higher degrees of freedom in the
variables of higher levels can cause problems in predicting the corresponding lower level states
and can result in the robot arm converging to an undesirable solution. A proposed solution is to
introduce the necessary constraints in the model dynamics to confine the states to the appropriate
configurations. In the case of the robot arm that means taking the lengths of the segments into
consideration. This section explores two implementations that handle this issue differently. The
first solution determines the segment angles based on only one desired position, and the second
approach introduces the constraints as attracting points to the model dynamics.

6.4.1 Polar Coordinates

One way to limit the degrees of freedom in H2 is to simply to include less variables, by disregard-
ing the position of the elbow joint and only representing the position of the end effector in polar
coordinates in an angle µθ and a distance from the origin µr. As there are only two segments, and
their length is known, the corresponding angles of the robot arm can be calculated by the so-called
‘law of cosines’, which states that the sides of a triangle a, b, c and an inside angle γ, are defined
by the following relationship: c =

√
a2 + b2 − 2ab cos(γ) where γ is the angle opposite the side c.

This formula can be inverted to produce expressions for the two segment angels as in g2 (6.17).
As in the previous implementation using the inverse tangent in section 6.3.3, the causal states vφ
represent attraction points for the beliefs of the angles µφ at H1 to move towards. Note that for
most positions of the end effector, there are two configurations of the arm segments which can be
employed to achieve it. One of the solutions will be with the arm ’bent’ towards the left and the
other with the arm ’bent’ towards the right. For the internal model as it is implemented here, the
robot arm will always be moving towards the ‘right bending’ configuration, because of assumptions
that are made in using the law of cosines.
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6.4.2 Polar Coordinates Results

After tuning 3and running some trials of the simulation, the results showed that this version of the
internal model was able to derive the appropriate angles to achieve the desired goal positions, as
in the cases shown in figures 6.21 and 6.24. However, there were some algebraical issues with the
simulation and not all situations could be evaluated by the algorithm. The simulation raised errors
when the second level belief of the end effectors distance from the origin became equal or larger
than the sum of the segment lengths. It is clear that the robot arm is only able to reach positions
as far as when the arm is fully outstretched. This is reflected in the causal predictions g2 (6.17).
The expression cos−1(x) produces no valid results for x > 1, which occurs when µr ≥ L1 + L2.
Because of this the initial value of µr could not be set at 2, and was instead set at 1.8. In certain
situations the µr would become greater than the critical value during the integration process and
the algorithm would raise errors when trying to evaluate the cos−1() expression. When the goal
was set at [x = 0, y = −2] (or [θ = −1

2π, r = 2] in polar coordinates) this error occurred, for
example. Interestingly, when this goal was switched to the right side ([x = 0, y = 2]) as is shown
in figure 6.21, the error did not occur. Some small difference in the dynamics of the model caused
the value of µr to remain below the critical value for the goal on the right side but not on the left side.

The implementation using polar coordinates and the law of cosines demonstrates that when the
degrees of freedom are considered in the model, it is possible to split the representations of the end
effector positions and the joint angles of a robot arm hierarchically, and to let these representations
converge to correspond to a predefined goal introduced at the top level. It has also become clear
from this section and the simulation in section 6.3.3 that some functions (in this case inverse
trigonometric functions) can cause problems if they are not well-defined for all input values, and
can prevent the simulation from converging on the desired solution. Another disadvantage of polar-
coordinate model is that the second level H2 only contains variable representing the position of the
end effector. It is therefore not possible to model desired behaviour based on the position of the
elbow joint, for example if one were to try and avoid an obstacle.

3The simulation for the polar coordinate implementation was run with the same values for the precision matrices
as in the previous simulations, with the learning rates being κµ = 1, κv = 1, κa = 10, the values of the dynamic
precisions Πω set at 1 and the sensory and causal precisions Πz set at 5.
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Figure 6.19: The robot arm and the internal model of the agent the causal states vφ are predicted in H2
based on the law of cosines.

H1

f1 =


µ̂φ′1
µ̂φ2′

µ̂φ1′′

µ̂φ2′′

 =


(vφ1 − µφ1)
(vφ2 − µφ2)
−µφ′1
−µφ′2

 (6.14)

g1 =


ŝφ1
ŝφ2
ŝ′φ1
ŝ′φ2

 =


µφ1
µφ2
µφ′1
µφ′2

 (6.15)

H2

f2 =


µ̂θ′

µ̂r′

µ̂θ′′

µ̂r′′

 =


θgoal − µθ
rgoal − µr
−µθ′
−µr′

 (6.16)

g2 =

[
vφ1
vφ2

]
=

[
µθ − cos−1(

L2
2−L2

1−µ2r
2·L1·µr )

π − cos−1(µ
2
r−L2

1−L2
2

(2·L1·L2)

]
(6.17)

Figure 6.20: The equations producing the predictions by the agent with model 3, based on polar coordi-
nates. The functions f produce predictions for the dynamic states µ̂. At level H1, function g1 produces
predictions for the sensory states ŝ. At level H2, function g2 produces predictions for the causal states v̂.
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Figure 6.21: The robot arm using the polar coordinate
model reaches the goal at [x = 2, y = 0]. Implementations
with the goal at [x = −2, y = 0] as in previous examples
resulted in simulation errors.

Figure 6.22: The real-world states [φ, φ̇] and the correspond-
ing beliefs [µφ, µφ′ ] at H1. [a1, a2] are the action torques. The
convergence of the angels becomes very slow as they get closer
to the goal.

Figure 6.23: The causal states vφ1 , vφ2 in H1 and the beliefs
of the position of the end effector in polar coordinates µθ, µr
in H2.

Figure 6.24: The robot arm using the polar coordinate
model reaches the goal at [x = 1, y = 1].

Figure 6.25: The real-world states [φ, φ̇] and the correspond-
ing beliefs [µφ, µφ′ ] at H1. [a1, a2] are the action torques. The
convergence of the angels becomes very slow as they get closer
to the goal.

Figure 6.26: The causal states vφ1
, vφ2

in H1 and the beliefs
of the position of the end effector in polar coordinates µθ, µr
in H2.
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6.4.3 Constrained attracting joint positions

A different, more direct way to make sure there are a lower number of degrees of freedom and
to constrain the second level states to the appropriate configurations is to explicitly implement
these constraints. The simulations in section 6.3 failed to reach the desired location because the
dynamics in the internal model did not include information about the lengths of the robot arm
segments, and therefore there were multiple joint positions that were valid for a given set of angles.
The model discussed here considers these constraints by changing the dynamics of the beliefs about
the elbow position µxa , µya . Instead of assuming that the elbow joint has the same velocity as the
end effector (as is done in section 6.3.1, the elbow joint is assumed to be attracted to the origin
and the end effector, to within a certain distance. This is done by introducing sign terms. For
example, the sign0 term (6.21) ensures the states representing the elbow joint (µxa , µya) reflect
the proper distance from the origin, by returning a positive value if the distance is larger, and a
negative value if the distance is smaller. This value is used in the dynamic equations 6.22 so that
the states (µxa , µya) converge to a certain distance around the origin. An equilibrium is reached
at a circle of radius L1 around the origin. A similar behaviour is implemented for maintaining the
distance L2 with the end effector using the term sign1. This attracting behaviour will maintain
the proper constraints on the robot arm positions.
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Figure 6.27: The robot arm and the internal model of the agent. the beliefs about joint positions µ(x,y) in
H2 are subject to constraints described as attracting velocities.

H1

x1 = sin(µθ1) · L1

y1 = cos(µθ1) · L1

x2 = sin(µφ1) · L1 + sin(µφ1 + µφ2) · L2

y2 = cos(µφ1) · L1 + cos(µφ1 + µφ2) · L2

(6.18)

f1 =

[
µ̂φ′1
µ̂φ′2

]
=

[
(vxa − xa) · y1 − (vya − y1) · x1

(vxb − xb) · (y2 − y1)− (vyb − y2) · (x2 − x1)

]
(6.19)

g1 =


ŝ1
ŝ2
ŝ′1
ŝ′2

 =


µφ1
µφ2
µφ′1
µφ′2

 (6.20)

H2

sign0 =
√
µ2xa + µ2ya − L1

sign1 =
√

(µxb − µxa)2 + (µyb − µya)2 − L2

(6.21)

f2 =


µ̂x′a
µ̂y′a
µ̂x′b
µ̂y′b

 =


µxa · sign0 + (µxb − µxa) · sign1
µya · sign0 + (µyb − µya) · sign1
ηx − µxb
ηy − µyb


(6.22)

g2 =


v̂xa
v̂ya
v̂xb
v̂yb

 =


µxa
µya
µxb
µyb

 (6.23)

Figure 6.28: The equations producing the predictions by the agent with model 4, implementing constraints
at H2. The functions f produce predictions for the dynamic states µ̂. At level H1, function g1 produces
predictions for the sensory states ŝ. At level H2, function g2 produces predictions for the causal states v̂.
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6.4.4 Constrained Joints Results

Once more, the simulation is run for two situations: one with the end goal set at [x = −2, y = 0]
and one with the end goal set at [x = 1, y = 1]. Figure 6.29 and 6.32 show the configurations that
the simulation converges to for those goals. The simulation for the [x = −2, y = 0] goal was run
for 20 seconds instead of ten as the robot arm converged to the goal very slowly. Even after almost
20 seconds the robot arm has not completely reached the outstretched position. This is probably
because the rate at which the second level beliefs move towards their respective goals decreases
linearly with the distance to those goals. As the goals are approached the attraction towards the
goals diminish which cause the last part of the convergence to be very slow.

Despite the slow convergence, the algorithm is able to converge towards all the goals. This im-
proves upon the implementation in section 6.4.1 by not having any functions that are not defined
for certain inputs. This means that the simulation will not run into expressions that are invalid.
Also, the second level now contains the positions for both the end effector and the elbow joint.
This additional information could be used for obstacle avoidance, for example.

Although this method accomplishes the desired goal-reaching behaviour, this functionality could
also be implemented relatively simply in a single level, as will be demonstrated in 6.5.1. A close
look at H1 and H2 reveals that the information about the arm segment lengths L1, L2 is already
included, in H1, so why should these constraints be implemented a second time in H2? This raises
the question what the hierarchical representation of the agents model effectively achieves. It has
become clear that it is possible to achieve goal-reaching behaviour with hierarchical differentiation
between x, y coordinates and the joint angles φ, but this split does not seem to be necessary or
even practical. If the goal reaching behaviour can be achieved with a single level, what effective
dynamics might be described in a second level? The next section will discuss another, perhaps
more practical functionality that could be assigned to the hierarchical model.
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Figure 6.29: The robot arm using the constrained model
reaches the goal at [x = −2, y = 0], but converges more slowly
as it nears the goal. Model 4 does not raise the computational
errors that model 3 did.

Figure 6.30: The real-world states [φ, φ̇] and the correspond-
ing beliefs [µφ, µφ′ ] at H1. [a1, a2] are the action torques. The
angles move towards the appropriate positions to reach the
goal, albeit slowly.

Figure 6.31: The causal states vx,y in H1 and the beliefs of
the positions µ(x,y), µ(x′,y′) in H2.

Figure 6.32: The robot arm using the constrained model
reaches the goal at [x = 1, y = 1], but converges more slowly
as it nears the goal.

Figure 6.33: The real-world states [φ, φ̇] and the correspond-
ing beliefs [µφ, µφ′ ] at H1. [a1, a2] are the action torques. The
angles move towards the appropriate positions to reach the
goal, albeit slowly.

Figure 6.34: The causal states vx,y in H1 and the beliefs of
the positions µ(x,y), µ(x′,y′) in H2.
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6.5 Hierarchical Task Expansion

The previous sections have explored the separation of angular coordinates and x, y coordinates
between two levels, H1 and H2. The reasoning behind this structure was that the positions of the
elbow joint and end effector are a logical abstraction of the sensory states φ1 and φ2. The positions
are not directly observable but can be deduced from the available sensory information. However, it
became clear that constraints have to be considered when the second level involves more variables
than the first level.

The task of the aforementioned algorithms can be condensed to a single level by simply adjusting the
angles directly to a goal position, as implemented in equation 6.25. The function ofH1 then becomes
finding joint angles that match the given goal position, and the problem concerning constraints is
handled in this level. A second level need then only provide a desired end effector position, without
having to involve these constraints. The function of H2 could then be to dictate a path for the end
effector. This approach effectively expands the complexity of the robot’s task, and is explored in
the following section.

6.5.1 Circle Path

The new functional structure for the hierarchical generative model is investigated by specifying a
path for the end effector in the second level H2. The dynamics in H1 are described in such a way
that the joint angles converge to a configuration that achieves a desired position for the end effector.
In this example we are still considering 2 robot arm segments (L1 and L2), but in principle this
approach could also work with a robot arm consisting of more segments. This is more consistent
with the idea of hierarchy as it was approached in chapter 5, where lower levels contained more
variables and more information.

H2 now specifies a path of the end effector. It no longer involves the position of the elbow joint
or any other considerations, and the details of achieving that position through the appropriate
joint angles is left as a task for H1. H2 describes a point following a circular path that is in x, y
coordinate space. A circular path was chosen because it is a repetitive behaviour that can be easily
inspected. This path is also reasonably simple to implement by a vector field describing a limit
cycle. This vector field simply assigns a velocity to every point in x, y space, such that a particle
moving with these velocities will end up in a clockwise motion around a certain location.
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Figure 6.35: A different approach to organizing internal representations in a hierarchy. H2 describes a path for
the end effector µ(x,y), H1 must produce the appropriate joint angles µφ.

H1

x1 = sin(µφ1) · L1

y1 = cos(µφ1) · L1

x2 = sin(µφ1) · L1 + sin(µφ1 + µφ2) · L2

y2 = cos(µφ1) · L1 + cos(µφ1 + µφ2) · L2

(6.24)

f1 =

[
µ̂φ′1
µ̂φ′2

]
=

[
(vx1 − x1) · y1 − (vy1 − y1) · x1
(vx2 − x2) · (y2 − y1)− (vy2 − y2) · (x2 − x1)

]
(6.25)

g1 =


ŝ1
ŝ2
ŝ′1
ŝ′2

 =


µφ1
µφ2
µφ′1
µφ′2

 (6.26)

H2

x = µx − ox
y = µy − oy

(6.27)

f2 =

[
µ̂φ′1
µ̂φ′2

]
=

[
c · y + x · (r2 − x2 − y2)
−c · x+ y · (r2 − x2 − y2)

]
(6.28)

g2 =

[
µx
µy

]
(6.29)

Figure 6.36: The equations producing the predictions by the agent with model 5, describing a circular motion in
H2. The functions f produce predictions for the dynamic states µ̂. At level H1, function g1 produces predictions
for the sensory states ŝ. At level H2, function g2 produces predictions for the causal states v̂.
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6.5.2 Circle Path Results

The simulation was run with the new generative model, implementing a more complex task in the
hierarchical levels. After some tuning 4, the robot arm was able to perform a circular motion with
the end effector. This motion is described in H2 (6.36) by several parameters. [ox, oy] specify the lo-
cation of the center of the circle, r is the radius and c determines the speed at which the circular mo-
tion is executed. These parameters were set at the following values: [ox = 1, oy = 1, r = 0.7, c = 2].
The beliefs about the angles µφ at H1 are adjusted to the beliefs about the end effector position
µx,y at H2 through the prediction error of the causal states vx,y.

The prediction error feedback is not instantaneous and therefore the actual end effector will lag
behind the believed end effector position. This lag means the robot arm traces a smaller circle than
is dictated by the dynamics of the internal model. The feedback given by prediction errors cause
the internal beliefs to be somewhat adjusted to this lag. This is why the dynamic states µx and
µy also follow a slightly smaller circle than is dictated by the internal dynamics. Figure 6.39 shows
those states following a path with roughly a radius of 0.5 around the point [x = 1, y = 1], although
the modelled dynamics describe a radius of r = 0.7. When the believed end effector position was
closer to the origin as depicted in figure 6.37, the robot arm had more trouble following it and the
lag was greater. This was probably because a faster adjustment of the joint angles was required in
this configuration.

This simulated example shows an effective use of the hierarchical generative model for achieving
desired behaviour in a robot arm. This example was different than previous implementations in
that it used the second hierarchical level to describe the path of the end effector, rather than a
static goal. This illustrates how hierarchical levels could be stacked to describe increasingly complex
behaviour.

4The simulation of the circle path model was first run with the same parameter values as the previous simulations,
[κµ = 1, κv = 1, κa = 10], 1 for the values of Πω and 5 for the values of Πz. However, it became clear that the robot
arm was lightly unstable for these values and would start to oscillate. Increasing the values of Πz to 10 to make
the agent adhere more to sensory feedback increased the stability. The reason for this is probably that the modelled
dynamics at the first level have changed. The formula f1 (6.25) no longer formulates angular velocities based on two
expected joint positions, but rather depend only on the end effector position. Apparently modelling the dynamics
in this way decreases the stability of the control feedback. This instability is probably a result of the fact that the
modelled dynamics f1 do not take into account factors like inertia or the forces in the joint. These dynamics are quite
complicated and are not included in the expressions. As in the previous examples, f1 only produces expectations on
the angular velocities and leaves any inaccuracies in the prediction to be compensated by the action feedback that
arises from the prediction error. It has become clear in this simulation and during the simulation of previous cases
that this feedback loop is not necessarily stable.
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Figure 6.37: This image shows the robot arm following a goal position (µx, µy) represented by the pink dot. The
goal position itself follows a circular path which is determined by the vector field described by the blue lines. This
causes the robot arm to ’draw circles’ around the yellow dot. The robot arm angles are modelled in the first level
and the goal position and its dynamics in the second level.

Figure 6.38: The robot arm angles and the derivatives
and the corresponding beliefs of the agent at the first hier-
archical level. The bottom graph shows the joint torques
enacted by the agent.

Figure 6.39: The second-level beliefs of the correspond-
ing to the x and y location of the end effector. The end
effector assumes a circular path around a specified point.
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6.6 Chapter Summary

This chapter has examined several different versions of a hierarchical generative model to evoke
specific behaviour in a 2-D robot arm with 2 segments. The first approach was to make a hierarchi-
cal distinction between joint positions and the joint angles, which could be compared directly with
the sensory information. The joint positions are a logical abstraction or derivations from the joint
angles. Desired dynamics of the joint positions, namely convergence towards a specific goal, were
described in the second hierarchical level H2 and the dynamics that would produce the appropriate
joint angles were included in the first hierarchical level H1. The predictions made by the internal
model would enforce the desired behaviour in the (simulated) robot arm.

This approach raised a number of key issues in the application of hierarchical models for control
purposes. One of the issues was the use of functions that are undefined or ill-defined for certain
input values. Several trigonometric expressions used to describe geometric relationships in the
agents model had this problem and prevented the simulation from running effectively.

The most important lesson was the fact that higher hierarchical levels could not contain more
degrees of freedom than lower hierarchical levels. This is a logical consequence of the fact that it
is impossible to extract more information about the outside world than is provided by the sensory
signals, without some prior information or constraints predefined in the agent’s model. It is possible
to implement these constraints in the model, but a careful consideration of the degrees of freedom
in the model is needed. This is an important concept to remember when constructing generative
models for control or perception purposes with hierarchical active inference.

This insight lead to a reconsideration of the functional mechanisms of the hierarchical levels. It
has been posited before (chapter 5) that an effective use of hierarchical models is to summarize
or abstract information in higher levels. The term abstraction is sometimes used to describe the
process of representing only essential information and leaving out unnecessary details, and this
description is also appropriate for hierarchical models. A new example that better reflected this
idea was explored in the last section (6.5.1). In this example, the details of the robot arm (the joint
angles) were restricted to the first level and the second level dealt with the essential information
extracted form these angles (end effector position) and describing its desired behaviour. This
approach worked as expected and demonstrated a practical implementation of hierarchy in the
internal model of an active inference agent. The results showed that the behaviour described
by the agent’s model and the performance of the robot arm still differed somewhat, and that
unmodelled dynamics and delay in prediction error feedback are factors that should be considered
for an effective hierarchical control model. The insights provided by these simulations provide a
basis for more extensive studies into hierarchical active inference for robot control. The analysed
cases highlight some important factors to consider in constructing hierarchical generative models
for robotic agents and can be a useful reference for future work.
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Chapter 7

Conclusion

This thesis has discussed and demonstrated a robot control algorithm based on hierarchical active
inference. A series of simulations have shown that effective robot control is possible with this
method and some of the potential pitfalls have been uncovered. These insights have been gained
by pursuing the following research goals:

1. Present a concise description of the theoretical background of active inference.

2. Provide an explanation of how a hierarchical model can function within active inference.

3. Put a hierarchical active-inference based control algorithm into executable code for simula-
tions, that can implement various internal and external models.

4. Demonstrate the algorithm for a single-level linear goal-reaching control problem.

5. Demonstrate the algorithm for a linear goal reaching control problem using a hierarchical
generative model.

6. Apply the algorithm to a 2-D robot arm with various hierarchical generative models to inves-
tigate the function of the hierarchical model for active inference in robot control.

The main finding of this thesis is that hierarchical models can be applied to represent and achieve
high-level goals for an active inference agent. These high-level goals generate additional complexity
in the behaviour of the system. The success of this approach depends on the generative model that
is constructed, and can be tuned through the precision parameters. For these goal reaching cases
to achieve the desired solution it is crucial that that sensory information is summarized in higher
hierarchical levels.

Active inference describes an inherent action-feedback system for biological or artificial agents. The
hierarchical formulation of this theory inspires a hierarchical control method that could potentially
facilitate complex behaviour. Chapter 2 explains that this theory is based on the minimization of a
quantity called the free energy. Various assumptions such as the Laplace Approximation are needed
for the agent to be able to evaluate the Free Energy quickly and simply. Taking into account these
assumptions, the Free Energy is equivalent to the weighted squared prediction error of a model
employed by the agent. This model can be divided into multiple hierarchical levels, in which each
level generates predictions for causal states of the level below it. The prediction errors on these
causal states invoke upward and downward signals between hierarchical levels.

The mechanism of the hierarchical active inference based algorithm has been demonstrated in var-
ious simulations, first for a single level and later with hierarchical examples. A position-reaching
problem on a single cart has reiterated an approach introduced in earlier work [22] that establishes
active inference as a method for robot control. By analysing the eigenvalues of the closed-loop
system, the precisions Π and the learning rates κ could be adjusted to obtain a stable solution.
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Generalized coordinates that introduce higher order states in the generative model were considered
for this implementation. The evaluation of the eigenvalues suggested that the inclusion of these
generalized coordinates had some effect on the stability, but the difference was negligible. There-
fore, generalized coordinates do not seem to be relevant for simple and noiseless systems such as
the single cart implementation.

A similar case with more carts and a hierarchical generative model was implemented in a second
simulation. The algorithm proved to be effective in reaching high level goals that require the execu-
tion of lower level goals. In this process, higher levels summarize the sensory information provided
to the agent in bottom-up signals, and actions to enforce higher level goals are activated by top-
down signals. An additional simulation with a disabled cart has tested a situation in which the
agent’s belief is unreachable in the physical system. The results of this impaired system showed
that the prediction error caused by discrepancy propagates up the hierarchical levels. At each level
compromise is established between the agent’s beliefs and the available information from lower
levels.

Finally, these principles have been demonstrated in a practical robot-arm example. Through an
exploratory investigation it has been determined that the hierarchical active inference process can
be used to implement a goal-reaching task in a simulated robot arm. However, this requires a
careful consideration of the generative model that is employed by the agent. For example, several
failed attempts showed that expressions in the model must be well-defined for all reachable states.
In many cases computational singularities were encountered that caused the simulation to stop or
reach an incorrect solution.

One of the most important outcomes that the different robot arm cases demonstrated was that
higher hierarchical levels cannot contain more independent states than the lower levels. In the
cases discussed in this report this meant that two sets of x, y coordinates could not be accurately
derived from two joint angles φ unless they were made dependant (by implementing constraints).
This is an important consideration for hierarchical models and reflects the fact that the agents
model cannot contain more information than is available through the sensory states.

Deriving positions from joint angles turned out not to be a suitable task to apply to a hierar-
chical model because of the issue discussed above. Hierarchical divisions make most sense when
redundancies can be omitted and information can be summarized in higher level representations.
Therefore, a more sensible approach was to only model the behaviour of the end effector in the
higher level. The new implementation of the hierarchical model succeeded in making the robot arm
follow a circular path, instead of simply reaching a goal. This final example demonstrated the fact
that hierarchical levels can be used to add complexity to a robot’s task.

In conclusion, this thesis has presented a versatile method for robot control that incorporates the
concept of hierarchical active inference. It has been demonstrated in multiple examples and used
to achieve controlled behaviour in a simplified robot arm that utilizes the hierarchical structure
effectively. The investigation has touched on many subjects that call for further research, but the
hierarchical implementation of active inference is introduced as a promising approach to achieving
complex tasks in robotic systems.
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Chapter 8

Discussion

This thesis has presented and demonstrated a control method for continuous systems based on
active inference and the underlying Free Energy Principle. The Free Energy Principle itself is a
very broad theoretical framework that encompasses many different types of inference and control
methods. The control method in this work represents a very specific interpretation of this theory,
and includes many assumptions and aspects that can be expanded or improved upon.

8.1 Assumptions

One of the most important restrictions that have been adopted is that the state updates have been
limited to dynamic states. Other elements such as the model parameters or the Precisions Π were
fixed. In much of the work by Karl Friston on the Free Energy principle a distinction is made
between states or parameters that change relatively rapidly and those that change more slowly or
remain static. The DEM (dynamic expectation maximization) process that he describes includes
updating all of these parameters. [9]

The work presented here has focused on dynamic, continuous systems, relying on a state space
representation of the world. An important and interesting aspect of active inference for continuous
systems is the use of generalized coordinates. However, this aspect of active inference has not
enjoyed the focus of this thesis. A short analysis of the implementation of higher orders in the
single cart example in chapter 4 showed that the inclusion of higher orders some effect, but it was
negligible. Generalized coordinates are most relevant in filtering and state estimation problems
where the random fluctuations have a certain smoothness [9], [10]. It has been suggested that these
higher order representations provide an advantage in state estimation by modelling the temporal
correlation in the noise. However, noise has been omitted in the simulations that are discussed in
this report, and the generalized coordinates are therefore less relevant.

Noise terms were omitted to enable a clearer analysis of the properties of the control method.
Inclusion of noise would have made it more difficult to demonstrate the mechanism of the active
inference approach to control. It was also unclear how dynamic noise should be included in the
system. First of all, there is the issue of how to generate a random but temporally correlated
disturbance. One possibility is to execute a Gaussian convolution of white noise, which produces
a smooth but random signal. This possibility was partially explored and even included in the
code. A second ambiguous issue is the introduction of the disturbances to the system and the
representation in the generative model. A logical approach would be to include the disturbances
as forces or torques in the simulation of the physical system, affecting only the accelerations (2nd
dynamical order). However, the notion of generalized coordinates dictates that these disturbances
are represented across all the dynamical orders. It it is still unclear how the derivatives of these
disturbances should be derived to accurately represent smooth noise in a physical system, and due
to time constraints this implementation was left out of this investigation. This means that no form
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of noise was implemented in the simulations and so we are unable to evaluate the robustness of the
control methods under disturbances.

Another interesting point of discussion regarding noise is that the precisions Π are related to the
assumed presence of noise in the system. The precision parameters quantify the uncertainty that
the agent has about the states due to the disturbances. However, during this investigation we have
mostly discussed models that include states that are not present in the physical system, for example
the goals in higher hierarchical levels. The precisions related to these states therefore could not be
related to a physical disturbance in the real world. Rather, they represent the uncertainty that the
agent has about the accuracy of these states in predicting the development of the physical system.

The simulations show that the internal states of the agent are not adapted instantly to the available
sensory information. The path following behaviour of the last simulation illustrated this as the end
effector trailed behind the expected position. The informational delay between levels suggests that
control actions that require rapid feedback (for example to ensure stability) should be implemented
in lower hierarchical levels, and dynamics that span longer periods of time can be implemented
in higher levels. This is illustrated clearly in the circle-tracing robot arm, as the more general
behaviour of a circular motion by the end effector expressed in the second level H2 is only accurate
if the dynamics of the first level H1 are sufficiently fast.

The informational delay could also be related to the fact that in this thesis the higher order
representations of the causal states was disregarded 2.21. It was assumed that the causal states
were relatively static and that therefore the representation of higher orders was not necessary.
However, in a hierarchical context with moving goal positions as in 6, the derivatives could provide
useful information about the path of the causal states to lower levels. Perhaps the observed lag of
the end effector of the robot arm would have been reduced had these derivatives been included.
An important issue from a control perspective is the generation of the actions. The actions are
applied based on the prediction error between the predicted and the observed states. The action
updates rely on the assumption that these actions have a straightforward and linear relation to the
sensory observations, through the matrix R. However, this is obviously not always the case. In the
robot arm for example, the elbow joint torque is assumed to affect the elbow joint angle and the
angular velocity directly and proportionally. In reality however, the effect is on the joint’s angular
acceleration, and also heavily dependant on the arm configuration. The generated actions therefore
cannot optimally reduce the sensory prediction error. The matrix R can be adjusted to improve
the response but in general the generated actions will provide sub-optimal control [3].

The results presented in chapter 6 indicate that a hierarchical organization of a predictive model is
only effective when higher levels contain less independent states than lower levels. This is a logical
consequence of the fact that more information can not be produced from limited sensory input.
However, this is only true for any particular instance in time. It should be possible for an agent to
deduce complicated properties of the external world through limited sensory signals given enough
time. This is evident to us as human beings as we have an extensive understanding of a rich and
varied world, but only only have limited sensory experiences at any given time. This does require
a form of memory which is not present in the system as described in this thesis.
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8.2 Future Work

It has been mentioned before that the free energy theory encompasses a wide range of inference
and control methods. Considering the assumptions that have been made to arrive at the control
algorithm in this thesis, it is possible that this approach is very similar or even equivalent to other,
more conventional control methods. There are certainly other model based prediction processes
that are used for state estimation and control. However, it is still unclear how these relate to
the active-inference based control method, especially in a hierarchical context. It is also possible
that the similarity to other control methods depends on the form of the generative model that is
employed by the agent. Further work comparing the active inference approach to well-established
control techniques could provide useful insights into issues such as stability and tuning, which have
been more extensively researched in those domains.

The focus of this thesis was on the hierarchical implementation of the predictive model employed
by the agent. Now that the mechanism of this hierarchical approach for robotic control has been
demonstrated, the hierarchical models can be explored further. Hierarchy offers many different pos-
sibilities for predictive models. In this investigation the hierarchical structure has primarily been
used to furnish objectives for the robotic agents. This was a convenient way of describing simple
tasks to be accomplished. However, the hierarchical structure could also be used to represent the
causes of complex sensory observations, or abstract concepts that summarize developments in the
external environment of the agent.

To simplify this investigation into alternative functions for the hierarchical structure, it would
initially be convenient to omit the action generation part of the process. Actions that minimize
prediction error are an essential concept in active inference, however it would probably be useful to
first analyse more complex hierarchical models as an inference mechanism before adding elements
of action inputs to the system. One of the possibilities that can be explored is combining sensory
information from different sources hierarchically to create a more accurate representation of the
environment. Some work on combining sensory information using predictive coding has been done
in [18], and [17] discusses inference using hierarchical dynamical models.

An interesting topic that is related to the idea of hierarchical inference is misinterpretation of pre-
sented sensory data, in other words illusions [5], [16]. If there are multiple causes that could result
in a certain set of sensory information, an inference agent may arrive at the wrong conclusion. A
simple example that could be used as a preliminary investigation is the silhouette of a rotating
object. Without any depth cues, the 2-D projection of a rotating object offers no definitive infor-
mation to determine which way the object is rotating. It would be interesting to investigate how
an (active) inference agent handles ambiguous sensory signals.

In short, this thesis has produced many questions about active inference as a method for control,
the assumptions that are made to implement the underlying Free Energy principle and the role of
predictive models and hierarchy in robotics. Some insight has been gained in the vast possibilities of
hierarchical active inference, but much more research on different aspects of the topic is warranted
to produce effective motion control and learning strategies for robotics.
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Appendix A

Code

A.1 Main File

1 import numpy as np

2 import sympy as sym

3 from numpy import r_

4 from scipy.integrate import solve_ivp

5 from sympy import Matrix

6 from os import path

7

8 from physics import physics_cartgroups

9 from noise import noise_generator

10 from state_updates import solve_states

11 from generative_model import genmod_cartgroups

12

13 from graphics.graphics_cartgroups import drawgraphs_cartgroups_HAI

14 from graphics.graphics_cartgroups import animate_cartgroups

15

16 # Cart control with active inference

17 # Author: Victor van Vucht

18 # Date: 10 December 2020

19

20 # This script implements Hierarchical AI by combining linear generative models for several levels.

21

22 filename = ’Cart_Group_3levels_1st_order ’ #Filename for saving mp4 and solution data

23

24 # Time parameters

25 t_end = 20

26 dt = 0.01

27 time_span = np.r_[0: t_end:dt]

28 symbolic = False # allows the calculation of the update steps in symbolic variables

29 order = ’first’ # options: ’first ’, ’second ’, ’third’

30 eigenvalues = False

31

32 if symbolic == False:

33 kmu = 2

34 kv = 10

35 ka = 10

36 else:

37 kmu = sym.symbols(’kmu’)

38 kv = sym.symbols(’kv’)

39 ka = sym.symbols(’ka’)
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40

41 learning_rates = [kmu , kv, ka]

42

43 print(’Generative Process ’)

44 # Generative process Parameters & Variables

45 params , dx , ext_states , ext_states_init , noise_vars , dyn_order_process = physics_cartgroups.

cart_groups(symbolic)

46

47 # Construct Noise

48 print(’generate smooth noise’)

49 noise = noise_generator.generate_noise(ext_states , dyn_order_process , t_end , dt) # Noise

interpolation function , and arrays of the noises

50

51 #Construct generative model

52 print(’Generative model’)

53

54 gen_mod , int_states , int_states_init , prior = genmod_cartgroups.makemodel(params , ext_states ,

symbolic , order , eigenvalues)

55 # Belief of the effect of actions on the sensory input

56

57 states = ext_states + int_states

58 states_init = ext_states_init + int_states_init

59

60 solution = solve_states.solve(t_end , dt, dx, params , gen_mod , states , states_init , learning_rates ,

noise_vars , noise , symbolic , filename)

61

62 print(’Animate ’)

63

64 drawgraphs_cartgroups_HAI(solution , dt, noise , states , FileName=filename , savegraph=True)

65 animate_cartgroups(solution , dt , params , prior , gen_mod , ghost=True , FileName=filename , savemovie=

True)
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A.2 Physics Module

1 import numpy as np

2 from numpy import diag

3 from numpy import array

4 from numpy import pi

5 from sympy import Matrix

6 from sympy import symbols

7

8 def cart_groups(symbolic):

9 M1 = 1 #Kg , Mass of the first arm segment

10 M2 = 1

11 M3 = 1

12 M4 = 1

13 M5 = 1

14 M6 = 1

15 M7 = 1

16 M8 = 1

17 M = [M1, M2, M3 , M4 , M5 , M6 , M7 , M8]

18 R = 1 #Friction

19

20 dyn_order_process = 2

21

22 params = [M, R]

23 x = Matrix(symbols(’x1 x2 x3 x4 x5 x6 x7 x8’))

24 dx = Matrix(symbols(’dx1 dx2 dx3 dx4 dx5 dx6 dx7 dx8’))

25 states = Matrix ([x, dx])

26

27 s1, s2, s3, s4, s5 , s6 , s7 , s8 , s9 , s10 , s11 , s12 , s13 , s14 , s15 , s16 = symbols(’s1 s2 s3 s4

s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16’)

28 s = Matrix ([s1, s2 , s3 , s4 , s5 , s6 , s7 , s8 , s9 , s10 , s11 , s12 , s13 , s14 , s15 , s16])

29

30 actions = Matrix(symbols(’a1 a2 a3 a4 a5 a6 a7 a8’))

31

32 M = Matrix(diag(M))

33 G = -R*M*dx # Friction forces

34 ddx = M.LUsolve(G) # can be used for linearization for the generative model

35

36 dynamic_noise_forces = Matrix(symbols(’T1_noise T2_noise T3_noise T4_noise T5_noise T6_noise

T7_noise T8_noise ’)) # external forces are a result of noise

37 observation_noise = Matrix(symbols(’s1_noise s2_noise s3_noise s4_noise s5_noise s6_noise

s7_noise s8_noise s9_noise s10_noise s11_noise s12_noise s13_noise s14_noise s15_noise

s16_noise ’))

38

39 active_ddx = M.LUsolve(

40 G + dynamic_noise_forces + np.diag(array ([0,1,1,1,1,1,1,1])) @ actions) # M/(G+a)

Calculate response of an actuated system (actual case)

41

42 dstates = Matrix ([dx , active_ddx ])
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43

44 noises = [dynamic_noise_forces , observation_noise]

45

46 ext_states = [states , s, actions]

47

48 # Initial conditions

49 x0 = array([-20, -17, -10, -3, 2, 4, 18, 20, 0., 0., 0., 0., 0., 0., 0., 0.]) # Initial

states

50 s0 = array([-20, -17, -10, -3, 2, 4, 18, 20, 0., 0., 0., 0., 0., 0., 0., 0.]) # Initial

observations

51 a0 = array([0, 0, 0, 0, 0, 0, 0, 0]) # Initial actions

52

53 ext_states_init = [x0, s0, a0]

54

55 return params , dstates , ext_states , ext_states_init , noises , dyn_order_process

A.3 Noise

1 import numpy as np

2 from numpy import r_

3 import matplotlib.pyplot as plt

4 from scipy.ndimage import gaussian_filter1d

5 from scipy.interpolate import interp1d

6

7 def generate_noise(ext_states , dyn_order_process , t_end , dt):

8 [x,s] = ext_states [:2]

9 num_x = len(x) // dyn_order_process # Number of zero -order states

10 num_s = len(s) # Number of sensory observations

11

12 mean_w = np.zeros(num_x)

13 mean_z = np.zeros(num_s)

14 covariance_w = np.diag(np.ones(num_x)) * 0 # covariance matrix of the dynamic noise

15 covariance_z = np.diag(np.ones(num_s)) * 0 # covariance matrix of the observation noise

16 smoothness_w = np.ones(num_x) * 3 # variance of the autocorrelation functions

17 smoothness_z = np.ones(num_s) * 3

18 noise_w = smoothnoise(mean_w , covariance_w , t_end , dt , smoothness_w , ’Dynamic Noise ’,

plot_noise=False)[0]

19 noise_z = smoothnoise(mean_z , covariance_z , t_end , dt , smoothness_z , ’Observation Noise ’,

plot_noise=False)[0]

20 noise_wz = r_[noise_w , noise_z]

21 time_span_noise = np.r_[0: noise_w.shape [1] * dt:dt]

22 interp_noise = interp1d(time_span_noise , noise_wz)

23 noise = [interp_noise , noise_w , noise_z]

24

25 return noise

26

27

28 def smoothnoise(mean , covariance , t_end , dt , smoothness , title , plot_noise=False):

29 #Function taking arguments for the scale , end time and smoothness of the noise
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30 # and the embedding order of the generalized states on which the noise is applied

31

32 time_span = np.r_[0: t_end +1:dt] # The ODE solver will access values larger than t_end

, so add 1

33

34 #Convolution Kernel

35

36 stand_dev_kernel = np.sqrt(smoothness)

37 kernel_range = 4 * max(stand_dev_kernel) # Take the range as the 4 time the largest

standard deviation of any of the kernels

38 domain = np.r_[-kernel_range:kernel_range:dt]

39 kernels = np.zeros((len(smoothness), len(domain)))

40

41 for i in range(len(stand_dev_kernel)):

42 z = -0.5 * (domain / stand_dev_kernel[i] - mean[i]) ** 2 #exponential of the

Kernel function

43 c = (1 / (stand_dev_kernel[i] * np.sqrt(2 * np.pi))) #constant of the Kernel function

44 kernels[i, :] = np.sqrt(dt)*c*np.exp(z) #dt is to compensate for the

scaling with increased number of time steps

45

46 #White gaussian noise

47 trim = int(max(stand_dev_kernel) * 4 / dt)

48 gauss_noise = np.random.multivariate_normal(mean , cov=covariance , size=[ time_span.shape [0]+2*(

trim)]).T

49

50

51 #Smooth noise by gaussian filtering

52 smooth_noise = np.zeros(gauss_noise.shape)

53

54 for i in range(len(gauss_noise)):

55 smooth_noise[i, :] = gaussian_filter1d(gauss_noise[i], stand_dev_kernel[i], mode=’constant

’, cval =0.0)

56

57

58 #Trim the original noise

59

60 gauss_noise = gauss_noise [:, trim:-trim]

61 smooth_noise = smooth_noise [:, trim:-trim]

62

63

64 if plot_noise:

65 plotnoise(smooth_noise , gauss_noise , kernels , time_span , title)

66

67 return smooth_noise , gauss_noise , kernels

68

69

70 def plotnoise(smooth_noises , gauss_noises , kernels , time_span , title):

71 smooth_noises = smooth_noises.T

72 gauss_noises = gauss_noises.T

73 kernels = kernels.T
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74 time_span = np.resize(time_span , gauss_noises.shape)

75 fig_noise , ax = plt.subplots(2, 2, sharey=True , num =2)

76 fig_noise.suptitle(title , fontsize =12)

77 ax[0, 0]. plot(time_span , smooth_noises)

78 ax[0, 0]. set_title(’Smoothed Noises ’)

79 ax[0, 1]. plot(kernels)

80 ax[0, 1]. set_title(’Kernel ’)

81 ax[1, 0]. plot(time_span , gauss_noises , linewidth =0.1)

82 ax[1, 0]. set_title(’Original Rough noises ’)

83 plt.draw()

A.4 Generative Model

A.4.1 Construct Model

1 import numpy as np

2 from numpy import pi, r_, array

3 from scipy.linalg import block_diag

4 from sympy import Matrix , symbols

5

6 from . import models as mods

7

8 def makemodel(params , states , symbolic , order , eigenvalues):

9 print(’Construct generative model’)

10

11 H1 = mods.cart_groups_H1(params , symbolic)

12 H2 = mods.cart_groups_H2(params , symbolic)

13 H3 = mods.cart_groups_H3(params , symbolic)

14 [f1, g1, mu1 , v1, mu1_init , v1_init , precision_w1 , precision_z1 , num_states_1] = H1

15 [f2, g2, mu2 , v2, mu2_init , v2_init , precision_w2 , precision_z2 , num_states_2] = H2

16 [f3, g3, mu3 , v3, mu3_init , v3_init , precision_w3 , precision_z3 , num_states_3 , prior] = H3

17

18 f = Matrix ([f1, f2 , f3])

19 g = Matrix ([g1, g2 , g3])

20 mu = Matrix ([mu1 , mu2 , mu3])

21 v = Matrix ([v1, v2 , v3])

22

23 mu_init = r_[mu1_init , mu2_init , mu3_init]

24 v_init = r_[v1_init , v2_init , v3_init]

25

26 D1 = np.diag(np.ones(len(mu1) - num_states_1), num_states_1) # Construct the "derivative

operator" D matrix

27 D2 = np.diag(np.ones(len(mu2) - num_states_2), num_states_2)

28 D3 = np.diag(np.ones(len(mu3) - num_states_3), num_states_3)

29 D_mu = block_diag(D1[0: len(f1) ,:], D2[0: len(f2) ,:], D3[0: len(f3) ,:])

30 D = block_diag(D1 , D2 , D3)

31

32 precision_w = np.diag(r_[precision_w1 , precision_w2 , precision_w3 ])

33 precision_z = np.diag(r_[precision_z1 , precision_z2 , precision_z3 ])
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34

35 x, a = states [0], states [2]

36 s_function = mods.sfunction_cartgroups(a,x)

37

38 gen_mod = [f, g, precision_w , precision_z , D_mu , D, s_function]

39 int_states = [mu , v]

40 int_states_init = [mu_init , v_init]

41

42 return gen_mod , int_states , int_states_init , prior

A.4.2 Models

1 import numpy as np

2 import sympy as sym

3 from numpy import pi

4 from numpy import array

5 from sympy import Matrix

6 from sympy import symbols

7

8 def cart_groups_H1(params , symbolic):

9 num_states = 8 # The number of states (excluding higher orders) in this level

10 mu_x = Matrix(symbols(’mu_x1 , mu_x2 , mu_x3 , mu_x4 , mu_x5 , mu_x6 , mu_x7 , mu_x8 ’)) # Zero order

states

11 mu_dx = Matrix(symbols(’mu_dx1 , mu_dx2 , mu_dx3 , mu_dx4 , mu_dx5 , mu_dx6 , mu_dx7 , mu_dx8 ’)) #

First order states

12

13

14 mu = Matrix ([mu_x ,mu_dx ])

15

16 mu_init = array([-20, -17, -10, -3, 2, 4, 18, 20, 0., 0., 0., 0., 0., 0., 0., 0.]) # Initial

values

17

18 c = 2 #symbols(’c’) # convergence constant

19 v = Matrix(symbols(’v_xg1 , v_xg2 , v_xg3 , v_xg4’))

20 v_init = array ([-15,-7,2,10])

21 goal = Matrix ([v[0], v[0], v[1], v[1], v[2], v[2], v[3], v[3], 0, 0, 0, 0, 0, 0, 0, 0])

22

23 C = np.diag([-c]*len(mu_x))

24 Z = np.diag ([0]* len(mu_x))

25

26 K = np.block ([[C,Z],

27 [Z,C,]])

28

29 f = c*goal + Matrix(K @ mu[0:16 ,:])

30 g = mu[0:16 ,:]

31 precision_w = array ([1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1])

32 precision_z = array ([10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10])

33 return f, g, mu, v, mu_init , v_init , precision_w , precision_z , num_states

34

35 def cart_groups_H2(params , symbolic):

84



36 num_states = 4 # The number of states (excluding higher orders) in this level

37 mu_g = Matrix(symbols(’mu_xg1 , mu_xg2 , mu_xg3 , mu_xg4 ’))

38 mu_dg = Matrix(symbols(’mu_dxg1 , mu_dxg2 , mu_dxg3 , mu_dxg4 ’))

39

40 mu = Matrix ([mu_g ,mu_dg ])

41 mu_init = array ([-15,-7,2,10,0,0,0,0]) # np.array Initial values

42

43 v = Matrix(symbols(’v2_g1 , v2_g2’))

44 v_init = array ([ -17 ,17])

45 goal = Matrix ([v[0], v[0], v[1], v[1], 0, 0, 0, 0])

46

47 c = 2 #symbols(’c’) #convergence constant

48

49 C = np.diag([-c]*len(mu_g))

50 Z = np.diag ([0]* len(mu_g))

51

52 K = np.block ([[C,Z],

53 [Z,C,]])

54

55 f = c*goal + Matrix(K @ mu[0:8 ,:]) #Careful not to apply double negatives , the sign is already

in K

56 g = mu[0:4 ,:]

57 precision_w = array ([1,1,1,1,1,1,1,1])

58 precision_z = array ([10 ,10 ,10 ,10])

59

60 return f, g, mu, v, mu_init , v_init , precision_w , precision_z , num_states

61

62 def cart_groups_H3(params , symbolic):

63 num_states = 2 # The number of states (excluding higher orders) in this level

64 mu_g = Matrix(symbols(’mu2_xg1 , mu2_xg2 ’))

65 mu_dg = Matrix(symbols(’mu2_dxg1 , mu2_dxg2 ’))

66

67

68 mu = Matrix ([mu_g ,mu_dg ])

69 mu_init = array ([-17,17,0,0]) # np.array Initial values

70

71 v = Matrix ([])

72 v_init = array ([])

73

74 prior = 5

75 goal = Matrix ([prior ,prior ,0 ,0])

76

77 c = 2 #symbols(’c’) # convergence constant

78

79 C = np.diag([-c]*len(mu_g))

80 Z = np.diag ([0]* len(mu_g))

81

82 K = np.block ([[C,Z],

83 [Z,C,]])

84
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85 f = c*goal + Matrix(K @ mu[0:4 ,:])

86 g = mu[0:2 ,:]

87 precision_w = array ([1,1,1,1])

88 precision_z = array ([10 ,10])

89 return f, g, mu, v, mu_init , v_init , precision_w , precision_z , num_states , prior

90

91

92 def sfunction_cartgroups(actions ,x):

93 Rx = np.diag ([1]* int(len(x)/2))

94 Rdx = np.diag ([1]* int(len(x)/2))

95

96 R_action = np.block ([[Rx],

97 [Rdx]])

98 s_function_Robot_Arm = R_action @ actions # Assume the actions have a proportional effect on

the observations

99 return s_function_Robot_Arm

A.5 State Updates

A.5.1 Solver

1 import numpy as np

2 import sympy as sym

3 from numpy import r_

4 from scipy.integrate import solve_ivp

5 from sympy import Matrix

6 from os.path import dirname as up

7 from os import path

8

9 from .update_funcs import mu_update , v_update , a_update

10 from .free_energy import free_energy

11 from .diff_equations import cartgroups_AI_dstep

12

13 def solve(t_end , dt , dx , params , gen_mod , states , states_init , learning_rates , noise_vars , noise ,

symbolic , filename):

14 # unpack

15 [x, s, a, mu, v] = states

16 [x0, s0, a_0 , mu_0 , v_0] = states_init

17 [kmu , kv, ka] = learning_rates

18 [interp_noise , noise_w , noise_z] = noise

19 [D, s_function] = gen_mod [-2:]

20

21 observation_noise = noise_vars [1]

22 noise_vars = Matrix(noise_vars)

23

24 print(’calculate free energy expression ’)

25 F = free_energy(gen_mod , mu , v, s)

26

27 print(’Belief and action update expressions ’)
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28 dmu = mu_update(F, mu , kmu , D)

29 dv = v_update(F, v, kv)

30 da = a_update(F, s, s_function , a, ka)

31

32 print(’Create dstep function ’)

33 s_noisy_dict = list(zip(s, x + observation_noise)) # List of pairs of sensory observations

adding noise

34 dmu = dmu.subs(s_noisy_dict)

35 dv = dv.subs(s_noisy_dict)

36 da = da.subs(s_noisy_dict)

37

38 s0 = s0 + interp_noise (0) [0: len(s)] #initial value of the sensory

information

39

40 initial_values = r_[x0, mu_0 , v_0 , a_0]

41 solver_states = Matrix ([x, mu , v, a])

42 dstep = sym.lambdify (( solver_states , noise_vars), Matrix ([dx , dmu , dv , da]))

43

44 #Determinant calculation

45 if symbolic == True:

46 step = Matrix ([dx, dmu , dv, da])

47 M = step.jacobian(solver_states)

48 print(M)

49

50 print(’Solve differential equations ’)

51

52 time_span = np.r_[0: t_end:dt]

53

54 solver_emergency_stop_xc.terminal = True

55 solver_emergency_stop_dtheta.terminal = True

56 sol = solve_ivp(cartgroups_AI_dstep , [0, t_end], initial_values , method=’RK45’, t_eval=

time_span , vectorized=True ,

57 rtol=1e-4, atol=1e-7, args=(dstep , interp_noise))

58 sol_t = sol.t

59

60 x_index = len(x)

61 mu_index = x_index + len(mu)

62 v_index = mu_index + len(v)

63 a_index = v_index + len(a)

64 sol_x = sol.y[0: x_index]

65 sol_mu = sol.y[x_index:mu_index]

66 sol_v = sol.y[mu_index:v_index]

67 sol_a = sol.y[v_index:a_index]

68 sol_save = (params , dt, sol_t , sol_x , sol_mu , sol_v , sol_a , noise_w , noise_z)

69 print(’done’)

70

71 data_folder = up(up(__file__)) #The current directory , used to specify the absolute path to

save animations

72 data_filename = filename + ’.npy’

73 sol_file = open(data_filename , ’w+’)
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74 data_filepath = path.join(data_folder , ’data’, data_filename)

75 np.save(data_filepath , sol_save)

76 sol_file.close ()

77

78 solution = [sol_t , sol_x , sol_mu , sol_v , sol_a]

79 return solution

A.5.2 Free Energy

1 import numpy as np

2 from sympy import flatten

3 from sympy import Matrix

4 from numpy.linalg import det

5 from scipy.linalg import block_diag

6

7 # The approximated Free Energy

8

9 def free_energy(gen_mod , mu , v, s):

10 [f, g, precision_w , precision_z , D_mu] = gen_mod [0:5]

11

12 s_v = Matrix ([s, v])

13 e_mu = D_mu @ mu - f

14 e_y = s_v - g

15

16 e = Matrix ([e_mu , e_y])

17 precision = block_diag(precision_w , precision_z)

18

19 f_e = 0.5 * e.T @ precision @ e #- Matrix ([np.log(det(precision))])

20 return f_e

A.5.3 Update Functions

1 import numpy as np

2 from sympy import Matrix

3

4 def mu_update(f_e , mu , kmu , D):

5 dmu = D @ mu - kmu * (f_e.jacobian(mu).T)

6 return dmu

7

8

9 def v_update(f_e , v, kv):

10 if len(v) == 0:

11 dv = Matrix ([])

12 else:

13 dv = -kv * (f_e.jacobian(v).T)

14 return dv

15

16

17 def a_update(f_e , s, s_function , a, ka):

18 # s are the observed states , which depend on the actions (enacted forces) a.
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19 dfdy = f_e.jacobian(s)

20 da = -ka * (s_function.jacobian(a).T @ dfdy.T)

21 return da

A.5.4 Differential Equation for the solver

1 from numpy import absolute

2

3 def cartgroups_AI_dstep(t, states , ddx_AI_function , interp_noise):

4

5 states = states.flatten ()

6 ddx = ddx_AI_function(states , interp_noise(t))

7

8 return ddx
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