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Simultaneous seismic interpolation and statics estimation of land data

Ali M. Alfaraj1, D. J. (Eric) Verschuur2, and Felix J. Herrmann3

ABSTRACT

Imaging and inversion of land seismic data affected by com-
plex weathering layers near the surface are challenging. When
the data are additionally subsampled for economical reasons
such as monitoring of sequestrated carbon dioxide and hydro-
gen, the problem is further exacerbated due to the combined
influence of subsampling and weathering layers. First, interpo-
lation performs poorly because the weathering layers reduce the
data’s coherency. Second, near-surface corrections require
knowledge of the subsurface model, separation between primar-
ies and multiples, as well as subsurface velocity estimation,
which are difficult to perform from subsampled data. To over-
come these hurdles, we combine seismic interpolation and

statics estimation into a joint single rank-reduction-based algo-
rithm. To our knowledge, this is the first time that this has been
done. Our method simultaneously accounts for the weathering
and subsampling effects, which both contribute to the low-rank
(LR) structure destruction typically associated with statics-free
densely sampled data, to provide accurate reconstruction. Be-
cause an LR approximation is used for statics estimation, we
also use it in rank-minimization interpolation as a cost-free ini-
tial solution to the optimization problem. As statics estimation
and interpolation operate in the midpoint-offset domain, we
avoid the cost of transformations back and forth from the
source-receiver to the midpoint-offset transform domain. Con-
sequently, our reconstruction, which indicates its potential on
synthetic and field data, also is computationally efficient.

INTRODUCTION

Due to their low velocity and rapidly varying nature, theweathering
layers near the surface dictate how land seismic data are acquired
(Keho and Kelamis, 2012). An additional layer of complexity arises
when collecting data in the presence of acquisition gaps, e.g., due to
acquisition limitations such as obstacles. Another scenario that can
result in acquisition gaps is the subsampling of sources and receivers
to reduce acquisition costs, which is in high demand for exploration,
engineering, and CO2 monitoring purposes. One approach to do that is
via compressive sensing (Donoho, 2006; Candès and Wakin, 2008),
which avoids the strict Nyquist sampling criterion with randomized
subsampling. In both cases, the data contain gaps that require inter-
polation to fill in the missing traces (Herrmann et al., 2012).
For interpolation, transform-domain-based methods are popular

as they are capable of distinguishing and using properties of dense
and subsampled data. Such domains include the Fourier (Zwartjes

and Sacchi, 2007), curvelet (Hennenfent and Herrmann, 2008;
Alfaraj et al., 2017), and Radon (Kabir and Verschuur, 1995;
Trad et al., 2002) basis functions. An alternative approach is to
use rank-based methods, which can process multidimensional
large-scale seismic data in a computationally efficient manner
(Trickett et al., 2010; Oropeza and Sacchi, 2011; Kreimer and
Sacchi, 2012; Aravkin et al., 2014). However, rank-based methods
that require repetitive computations of the singular values of large
matrices can be computationally demanding. This issue can be mi-
tigated with truncated singular value decomposition (SVD) or ma-
trix factorization techniques (Recht et al., 2010; Recht and Ré,
2013; Cheng and Sacchi, 2016). Another challenging issue is
rank-based interpolation of high frequencies due to their highly
varying nature, which Zhang et al. (2019) improve by using
common information among neighboring frequencies. Although
the aforementioned reconstruction methods demonstrate their suc-
cess with statics-free and therefore low-rank (LR) seismic data,
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reconstruction of data affected by weathering layers, which lead to
low data coherency, remains challenging.
Trad (2009) studies 5D sparse Fourier interpolation and finds

that interpolation becomes difficult when there are imperfections
in the applied statics before interpolation, which we also illustrate.
Stanton et al. (2013) use sparsity promotion in the Fourier domain
with projection onto convex sets to reconstruct subsampled data
contaminated with residual statics. Even though the method results
in improved reconstruction of data synthetically shifted by ±10 ms
of residual statics, it requires data windowing to ensure sparsity,
which is not a trivial task and may influence the results. When the
windowed data are merged back together, there is a potential of
introducing errors along the spatial and temporal dimensions as
each window may obtain assigned different statics. Gholami (2014)
applies phase retrieval using only the amplitude spectrum with spar-
sity-promoting regularization to interpolate data affected by residual
statics. Sparsity promotion in the Fourier and curvelet domains also
has been used for statics correction (Gholami, 2013), which also
require data windowing. Mosher et al. (2017) acquire and recon-
struct compressively sampled land data, where statics correction
due to ice lakes is one of the challenging issues that need to be
resolved. In complex near-surface (NS) regimes, where statics cor-
rection on its own is a major challenge, data reconstruction also is
expected to suffer.
The current approach to tackle the combined effects of weather-

ing and acquisition gaps is to first perform statics correction to make
the data more coherent, followed by data interpolation of normal-
moveout (NMO)-corrected data (Trad, 2009). However, interpola-
tion and statics estimation depend on the knowledge of the subsur-
face model such as NMO velocity and separation between primaries
and multiples (Taner et al., 1974; Wiggins et al., 1976; Cox, 1999).
Because the velocity model is usually influenced by the statics and
vice versa (Yilmaz, 2001), velocity estimation becomes more chal-
lenging when the data are additionally subsampled thus decreasing
the number of traces in each common midpoint (CMP). Despite the
extensive experience with NMO velocity estimation, the process
remains labor intensive and time consuming, and it is prone to errors
in the preceding situations or in the presence of multiples that can be
confused with primaries. To avoid dependency on the subsurface
model for statics estimation of periodically and densely sampled
data, Alfaraj et al. (2023) use a model-independent LR-based
approach. However, acquisition of such data is prohibitively expen-
sive. In contrast, reduction of the acquisition costs with randomized
subsampling influences the rank structure, which consequently
affects the LR-based statics estimation.
The paper is organized as follows. We first study the singular

values decay behavior in the combined presence of weathering
and subsampling effects. Next, we propose a joint rank-reduc-
tion-based interpolation and statics correction method. We provide

the details of the proposed algorithm and its components, which we
subsequently apply to synthetic and field data. We then discuss data
windowing, parameters selection, sensitivity to the rank selection,
computational efficiency, limitations, and extensions of the method.

THE SINGULAR VALUES DECAY

Similar to other rank-reduction-based methods, our proposed
reconstruction exploits the redundant nature of seismic data, which
leads to an LR structure where the singular values decay rapidly.
When the data are acquired with randomized subsampling (Donoho,
2006; Candès and Wakin, 2008; Herrmann et al., 2012) or when
influenced by the weathering layers, where both processes render
coherent energy incoherent, the LR structure is destroyed, leading
to slowly decaying singular values (Kumar et al., 2015; Alfaraj et al.,
2023). To observe their combined influence, we analyze the singular
values decay behavior.
For this analysis, we simulate densely sampled data with 10 m

source and receiver intervals using the velocity model shown in
Figure 1 with finite-difference modeling (Thorbecke and Draganov,
2011). To exploit the redundant nature of the seismic data, we use
the midpoint-offset domain, where the midpoint m is defined as

m ¼ sþ r
2

(1a)

and the offset h as

h ¼ s − r; (1b)

where s and r are the source and receiver coordinates, respectively.
Because field data are not always on a desired grid, the computational
grid will be different from the acquisition grid. In this case, binning
becomes necessary. For field data example, we place the traces at
their nearest midpoint-offset grid. After processing the data, the traces
can be sorted back to the original domain.
Because the midpoint-offset transform rotates a matrix (complex-

valued frequency slice) in the source-receiver domain by 45°, the
matrix columns become more linearly dependent in the mid-
point-offset transform domain. This can be visually seen when com-
paring frequency slices in the source-receiver and midpoint-offset
domains (Alfaraj et al., 2023), where the columns in the latter
exhibit lower variability compared with the former. Consequently,
the singular values in the midpoint-offset domain decay rapidly
compared with those in the source-receiver domain. Alternatively,
when using windowed data, which we avoid in this work, as elab-
orated further in the “Discussion” section, Trickett (2003) shows
that a grid of traces made up of the sum of plane waves having
at most k dips results in matrices with the rank of at most k.
When the data become incoherent, the LR structure is destroyed

because linear dependency of the matrix columns becomes lower.
To replicate complex NS conditions, we shift the simulated data
with up to ±52 ms of statics composed of surface- and nonsur-
face-consistent elements. We then subsample the data by randomly
removing 75% of the shots to mimic a compressive sensing acquis-
ition design (Figure 2a and 2b). Removing 75% of the shots may
sound harsh, but that is analogous to an average of 40 m periodic
shot spacing, which is common for data acquisition in large areas.
Although it is optimal to collect densely sampled data, it also is
important to reduce acquisition costs. For example, affordable dataFigure 1. Velocity model used to simulate the synthetic data.
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are necessary for engineering purposes or subsurface monitoring of
CO2 and reservoirs. However, in complex NS regimes, the singular
values (Figure 2e and 2f) become slowly decaying due to the effects
of statics and subsampling compared with the statics-free densely
sampled data. Therefore, we can use rank-reduction methods to es-
timate the latter from subsampled data affected by the weathering
layers.
To overcome the challenging effects of subsampling and NS

weathering layers, we combine seismic data reconstruction and stat-
ics estimation into a single joint algorithm. To the best of our knowl-
edge, this is the first time that this has been done. With this
approach, NS correction improves interpolation and vice versa.
The proposed algorithm uses rank-reduction-based interpolation

and statics correction taken from Kumar et al. (2015) and Alfaraj
et al. (2023), respectively. The combined approach not only results
in improved reconstruction but also increases the computational ef-
ficiency compared with carrying out separate stepwise interpolation
and statics correction. Because we need to compute an LR approxi-
mation for NS correction, we use it as an accurate cost-free initial
solution for the interpolation rank-minimization optimization prob-
lem. We also lower the number of required transformations between
the acquisition and transform domain as interpolation and NS correc-
tion operate in the midpoint-offset domain. Moreover, the proposed
method requires less preprocessing as it is applied to data without
NMO correction. Avoiding NMO correction also preserves the shal-
low reflectors, which are otherwise destroyed to avoid NMO stretch.
To demonstrate its potential, we apply our method to synthetic

and field data affected by complex weathering layers and noise.
We show on both data sets that the proposed method can better han-
dle the reconstruction of randomly subsampled data affected by stat-
ics resulting in densely sampled data with high resolution.

METHODOLOGY

Promotion of the LR structure requires solving for the NS and
subsampling effects, which we do simultaneously without the need
of knowledge of the subsurface model resulting in improved
reconstruction and computational efficiency.

LR-based NS correction

The LR-based statics estimation and correction iteratively esti-
mates multiscale short-wavelength statics in the midpoint-offset do-
main (Alfaraj et al., 2023). Using a multiscale approach enables
estimation of the statics from multiple frequency bands and ranks
without knowledge of the subsurface model (Alfaraj et al., 2021).
The method promotes an LR structure, which corresponds tomatrices
that can be approximated by an LRmatrix in the appropriate domain.
It is based on the SVD (Golub and Reinsch, 1971):

X ¼ USVH; (2)

whereX ∈ Cnm×nh is a midpoint-offset frequency slice of dimensions
nm (number of midpoints) by nh (number of offsets). In equation 2,
S ∈ Rk×k is the block diagonal matrix containing the nonnegative
real-valued singular values S ¼ diagðσ1; σ2; σ3; : : : ; σkÞ, where σ1 ≥
σ2 ≥ σ3 ≥ · · ·≥ σk ≥ 0 and k ¼ minfnm; nhg, and U ∈ Cnm×k and
V ∈ Cnh×k are the orthogonal matrices that hold the left u and right
v singular vectors, respectively, whereas H denotes the Hermitian
(conjugate transpose). An LR approximation of X can be obtained

by selecting a few singular vectors that correspond to the few largest
singular values. The statics can be estimated by calculating the lag of
the maximum crosscorrelation between subsampled data with statics
and LR approximated data. The process is performed on band-pass-
filtered data in the time domain after multiscale LR approximation of
frequency slices. This enables exploiting the relationship among
multiple frequency bands and avoiding spurious statics from cor-
rupted frequencies. The method starts with low frequencies for statics
estimation as they are less influenced by short-wavelength statics.
Then, it applies these statics to the full-band data. As a result, the
coherency of the high frequencies is improved, which allows for up-
dating the statics when including them in the next iteration.
The method shows its potential for statics estimation and correction

of periodically and densely sampled data (Alfaraj et al., 2023).
Figure 3 shows the results after three multiscale iterations when also
including randomized subsampling. The data in the time domain be-
come more coherent (Figure 3b and 3e) compared with the incoherent
data when we began (Figure 3a and 3d). However, there are imper-
fections in the estimated statics, which are noticeablewhen comparing
the statics-corrected data (Figure 3b and 3e) with the statics-free data
(Figure 3c and 3f). These imperfections are more obvious from the
statics error, as shown in Figure 3g and 3h. Next, we investigate
whether this error influences data interpolation or not.

Rank-minimization-based interpolation

To interpolate the data, we use rank-minimization-based interpo-
lation with matrix factorization due its computational efficiency
(Recht et al., 2010; Kumar et al., 2015). For each midpoint-offset
frequency slice X ∈ Cnm×nh , we solve the following basis pursuit
denoising problem:

minimize
X

kXk� subject to kAðXÞ − bk2 ≤ ϵ; (3)

where b ∈ Cnp is the observed frequency slice on the subsampled
source-receiver grid ns̄ × nr̄ organized as a vector with dimension

Figure 2. Frequency slices (real part) in the midpoint-offset domain
after 75% randomized subsampling of shots (a and b) affected by
±52 ms of nonsurface-consistent statics and (c and d) statics-free
data along with (e and f) their singular values decay at (a, c, and e)
18 and (b, d, and f) 49 Hz. Dotted curves correspond to (a and b),
dashed curves correspond to (c and d), and solid curves correspond
to statics-free frequency slices, as shown in Alfaraj et al. (2023).

Reduced-rank reconstruction of land data V45
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np ¼ ns̄ × nr̄ < ns × nr, ϵ is the noise level, and kXk� ¼
P

k
i¼1 σi is

the nuclear norm of X, with σi containing the singular values
defined in equation 2. The A is the sampling-transform operator
composed of a midpoint-offset transform-domain operator S and
a measurement operator M:

A ¼ MS⊤; (4)

where S⊤ (equation 1) transforms the data from the midpoint-off-
set domain to the source-receiver domain. Therefore, A maps the
data from Cnm×nh → Cnp , where np ≪ nm × nh. The transform-do-
main operator rotates the matrix in the source-receiver domain by
45°, which makes its columns close to linearly dependent and
therefore of LR nature. The measurement operator is composed
of ones and zeros, which correspond to the measured and unmeas-
ured samples, respectively. For a compressive sensing scenario,
the sensing matrix M aims to destroy the coherency of the data,
e.g., with uniform randomized sampling, which results in slowly
decaying singular values, as shown in Figure 2e and 2f. To solve
equation 3, we use an extension of the spectral-projected gradient
l1 solver (Berg and Friedlander, 2008) that solves a sequence of
least absolute shrinkage and selection operator subproblems
(Aravkin et al., 2013):

minimize
X

kAðXÞ − bk2 subject to kXk� ≤ δ; (5)

where kXk� ≤ δ is the projection on the nuclear norm ball. It re-
quires computation of the singular values with SVD (equation 2)
followed by thresholding. Calculation of the singular values at
each iteration per frequency slice is computationally demanding
for large-scale matrices, which can be avoided by using a more
efficient matrix factorization technique (Kumar et al., 2015).

Rank-minimization interpolation demonstrates its capability in the
reconstruction of marine data, which is usually not influenced by
weathering layers. Therefore, they exhibit higher coherency com-
pared with land data. This is shown in Figure 2, in which the LR
structure destruction is low for the statics-free subsampled data com-
pared with that influenced by statics. Consequently, interpolation of
the incoherent randomly subsampled data with statics leads to a noisy
reconstruction (Figure 4a and 4b) because the destruction of the LR
structure due to the weathering layers is not considered. In this case,
statics correction after interpolation will still be noisy. Interpolation
after improving the coherency with the LR-based statics correction
provides a better reconstruction (Figure 4c and 4d). However, the
reconstruction is erroneous and contains noise as can be seen from
the frequency slices and the time-domain gathers (Figures 4c, 4d, 5a,
and 5c). Consequently, the reconstruction error is large (Figure 5e
and 5g). That is a result of the imperfections in the estimated statics
(Figure 3), which are due to the mixed effects of weathering and sub-
sampling on the rank structure. Therefore, without fully accounting
for the weathering layers, interpolation becomes challenging, as also
indicated by Trad (2009) and Mosher et al. (2017).

Joint interpolation and statics estimation

To reconstruct sparsely acquired data in complex NS regimes, we
propose to simultaneously correct for the weathering layers and in-
terpolate the data. For interpolation with equation 3, b refers to the
observed subsampled frequency slice arranged as a vector. Because
the LR-based statics estimation and correction operate on matrices in
the midpoint-offset domain on the desired grid of densely sampled
data, we modify equation 3 to

minimize
X

kXk� subject to kMmhðXÞ − b̂mhk2 ≤ ϵ; (6)

where

bmh ¼ MmhSðM⊤bÞ (7)

is the subsampled frequency slice on the desired midpoint-offset grid,
b̂mh is the same slice but after NS estimation and correction, and
Mmh ¼ S°M is the measurement operator in the midpoint-offset do-
main. Compared with equation 3, equation 6 removes the need to ap-
ply the adjoint of the transform domain operator S⊤ at each iteration.
Therefore, because the subsampled measured data after statics correc-
tion b̂mh are already in the midpoint-offset domain and the optimiza-
tion problem is solved over many iterations per frequency slice in the
same domain, we reduce the computational costs of going back and
forth to the transform domain while solving the optimization problem.
The initial solution X0 in equation 6 is crucial as it determines the

number of required iterations. By using LR approximated data as
the initial solution,

X0 ¼
Xk
j¼1

sðjÞuðjÞvðjÞH; (8)

where k ≪ minfnm; nhg and s, u, and v are the singular values and
left, and right singular vectors, respectively, we become closer to the
desired solution. This approach decreases the number of iterations
compared with starting with an empty or random matrix, as the LR
approximation is an interpolator (see Figure 6), but an inaccurate

Figure 3. (a–c) Common-receiver gather (CRG) and (d–f) common-
offset gather (COG) of (a and d) 75% randomly subsampled data with
statics after (b and e) NS correction at the third iteration and (c and
f) statics-free data. (g and h) The estimated total statics of the dis-
played (g) CRG and (h) COG plotted in solid lines with circle mark-
ers and their error plotted with asterisks.
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one when the neglected singular vectors below the selected singular
value are of importance. Because LR approximation is already com-
puted for statics estimation, it provides a cost-free initial solution for
interpolation. Therefore, the joint approach detailed in Algorithm 1
increases the computational efficiency.
Throughout the algorithm, (−), (b), and (e) indicate the subsampled

data, estimated data, and data in the frequency domain, respectively.
The subscripts mh and sr represent the data in the midpoint-offset and
source-receiver domains, respectively, whereas mh,i and sr,i represent
the interpolated data. The inputs to the algorithm are subsampled data
in the source-receiver domain D̄sr and the edges of the frequency bands
fb at which we estimate the statics starting from low frequency and
increasing the frequency bandwidth as iterations progress. Interpola-
tion and statics estimation require the ranks of all the frequencies as
inputs, which we indicate by k and K, respectively. We will elaborate
on their selection in the “Rank selection” subsection of the “Discus-
sion” section. We define nfb and nf as the number of frequency bands
and number of frequencies, respectively. The outputs of the algorithm
are the interpolated and statics-corrected data in the source-receiver
D̂sr;i and midpoint-offset D̂mh;i domains.
In the first step of the algorithm, we apply the transpose of

the sampling matrix M⊤, which inserts empty rows or columns to
the acquired data that will be filled by interpolation. Therefore,

the subsampled source-receiver grid nr̄ × ns̄ becomes the desired grid
of densely sampled data nr × ns. Because rank selection is more dif-
ficult for data in the time domain, which contains more variability as
it encompasses all frequencies, we carry out the LR approximation
required for statics correction as well as interpolation in the frequency
domain as indicated by the second step. The LR-based statics
estimation exploits the relationships among multiple frequency
bands. By applying the estimated statics at low frequencies to the
full-band data, the coherency of the higher frequencies improves be-
cause neighboring frequency bands share common statics. Conse-
quently, the accuracy of their LR approximation increases. After
partial statics correction, which renders incoherent energy coherent,
the singular values decay increases. This allows for using a smaller
rank for more accurate LR approximation to estimate a signal with
less statics influence. To do so, the algorithm contains loops over the
number of frequency bands nfb (step 4) and rank scales nl (step 5).
For each frequency slice in a certain frequency band (step 6), we
calculate the singular values (step 7), followed by LR approximation
to obtain LR approximated data ~Dlr (step 8). After LR approximation
of all the frequency slices in the current frequency band (step 9), we
inverse Fourier transform (iFFT) the LR approximated data matrix
Dlr and data with statics Dmh to the time domain (step 10), where
we estimate the statics matrix Tmh (step 11) by calculating the lag
that corresponds to the maximum crosscorrelation coefficient with

tmh ¼ argmax
t

ðdmhðtÞ⋆dlrðtÞÞ; (9)

where ⋆ indicates crosscorrelation, the notation ðtÞ is used to show
time dependence, and tmh is the time shift of one trace estimated from
data with statics dmh and LR approximated data dlr. After estimating
Tmh from all tracesDmh andDlr, they are used for statics correction of
the full-band data (step 12) to estimate the statics-corrected data
matrix D̂mh, which for one trace is estimated as follows:

d̂mh ¼ dmhðtþ tmhÞ: (10)

The subsampled data with statics are then updated to be the statics-
corrected data (step 13). After partial statics correction, the
subsampled data are ready for interpolation as they exhibit higher
coherency. After the multirank-scale iterations (step 14), we solve
equation 6 to interpolate the statics-corrected frequency slices that
belong to the current frequency band, as indicated in steps 15 and
16, where k is the rank used for interpolation.
Because the LR structure destruction is not only a result of the

statics but also of subsampling (Figure 2), LR approximation of
subsampled data cannot preserve data without the influence of
statics. We need more accurate LR approximation that can preserve
the statics-free data, which requires data with higher coherency.
Because randomized subsampling decreases coherency, we use the
interpolated frequencies, which now exhibit faster singular values
decay, to allow for more accurate LR approximation. We repeat the
statics estimation and correction, but using the interpolated data ma-
trices (steps 17–20). The estimated statics Tmh;i are then used for
statics correction of the interpolated and subsampled (to be used
for statics estimation at the next iteration and to be interpolated)
data D̂mh;i and Dmh, respectively. Therefore, statics correction im-
proves interpolation and vice versa. Consequently, reconstruction
with the proposed joint scheme provides better results with less
noise compared with the stepwise one (Figure 4). Finally, the data
can be transformed to the source-receiver and time domains

Algorithm 1. Joint rank-reduction-based interpolation and
statics estimation.

Input: D̄sr ∈ Rnt×nr̄×ns̄ , k ∈ Nnf , K ∈ Nnf×nl , fb ∈ Nnfb−1

Output: D̂mh;i ∈ Rnt×nh×nm , D̂sr;i ∈ Rnt×nr×ns

1 Apply M⊤ to each time slice of D̄sr to obtain Dsr ∈ Rnt×nr×ns

2 Transform Dsr to Dmh ∈ Rnt×nh×nm with equation 1

3 Fast Fourier transform (FFT) Dmh to ~Dmh ∈ Cnm×nh×nf

4 for i←1 to nfb − 1 do

5 forl←1 to nl do

6 for f←fðiÞb þ 1 to fðiþ1Þ
b do

7 Calculate SVD for ~DðfÞ
mh with equation 2

8 ~DðfÞ
lr ←

P
Kðf;lÞ
j¼1 sðjÞuðjÞvðjÞH

9 if f ¼ fðiþ1Þ
b then

10 iFFT ~Dlr to Dlr, iFFT ~Dmh to Dmh

11 Tmh←CðDmh;DlrÞ using equation 9

12 D̂mh←τðDmh;TmhÞ using equation 10

13 Dmh←D̂mh, FFT Dmh to ~Dmh

14 if l ¼ nl then

15 for f←fðiÞb þ 1 to fðiþ1Þ
b do

16 ~̂D
ðfÞ
mh;i← solution of equation 6: b̂mh←Mmhð ~DðfÞ

mhÞ,
X0← ~DðfÞ

lr , k←kðfÞ

17 Repeat steps 7 and 8 with ~̂Dmh;i instead of ~Dmh to
obtain ~Dlr;i

18 Repeat steps 10 and 11 with ~Dlr;i and ~̂Dmh;i instead
of ~Dlr and ~Dmh, respectively, to estimate Tmh;i

19 Apply Tmh;i to D̂mh;i and Dmh

20 Repeat step 13

21 Transform D̂mh;i from the midpoint-offset domain to D̂sr;i the
source-receiver domain
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(steps 21 and 22). The output data are a collection of all the proc-
essed frequency bands. The time shifts, which are frequency-band
and rank-scale dependent, also can be saved for analysis. We further
analyze the results in the next section.

RESULTS

Using synthetic and field data, we further demonstrate the poten-
tial of our proposed reconstruction method.

Synthetic data

As shown in Figure 5a and 5c, imperfect statics correction results
in poor reconstruction and large error (Figure 5e and 5g). In con-
trast, the proposed reconstruction, which simultaneously corrects
for the NS effects and interpolates the data (Algorithm 1), provides
improved results with less noise and higher accuracy, as shown in
Figure 5b and 5d. Therefore, by using the interpolated frequencies,
we can improve the estimated statics as iterations progress. This can
be observed from the error of the estimated statics, which is minimal
for the proposed reconstruction method (Figure 5i and 5j) compared
with the stepwise one (Figure 3g and 3h). Consequently, the
reconstruction amplitude error is lower for the former compared
with the latter (see Figure 5g and 5h). The reconstruction error of
each frequency slice relative to the statics-free densely sampled one
shown in Figure 7 also confirms that the joint approach improves
the reconstruction as its error is lower compared with the stepwise
one. The same figure also shows that interpolation without statics
correction leads to a large error, which makes statics estimation and
correction after interpolation challenging.

Field data

To further examine the potential of the proposed joint
reconstruction, we test its performance on field data. The field data
set is affected by complex weathering layers, which include loose
sand, fast carbonates, karsts, and gravel with surface elevation changes
of approximately 100 m across the line (Al-Ali and Verschuur, 2006).
The data also contain random noise and residual ground roll with dif-
ferent characteristics due to the different NS conditions. In this case,
the NS on its own is challenging to data processing as can be seen
from the gathers and stack, which contain poorly continuous reflectors
affected by statics (Figures 8a, 9a, and 10a). Here, NMO correction
is only used for display but not during the reconstruction process. In

addition, the data set is acquired with 30 m source
and receiver intervals on a crooked line, which we
further decimate by removing 50% of the sources
with uniform randomized subsampling (Fig-
ures 8b, 9b, and 10b). Such subsampling equates
to 60 m periodic shot spacing on average, which is
a frugal acquisition design. The minimum and
maximum source-receiver offsets are 15 and
3585 m, respectively. Using few upholes, which
are inadequate to compensate for the NS varia-
tions, we apply elevation statics correction and
bring the sources and receivers to a flat datum.
From the stack of the subsampled data (Fig-
ure 10a), it is obvious that interpretation is chal-
lenging, which calls for data reconstruction.
To reconstruct the data, we apply rank-minimi-

zation-based interpolation without prior statics
correction, which results in the data and stacks
shown in Figures 8c, 9c, and 10c. Interpolation
in this situation provides an improvement com-
pared with the subsampled data (Figures 8b, 9b,
and 10b). However, by not accounting for rapid
variations in the weathering layers, the interpo-
lated data exhibit more noise compared with
the original data (Figures 8a, 9a, and 10a). In
addition, the events between 19 and 24 km and

Figure 4. Midpoint-offset frequency slices after (a and b) interpola-
tion without statics correction, (c and d) stepwise reconstruction,
and (e and f) proposed reconstruction at (a, c, and e) 18 and (b, d,
and f) 49 Hz.

Figure 5. (a, b, e, and f) The CRG and (c, d, g, and h) COG after the (a and c) stepwise
and (b and d) proposed reconstruction of 75% randomly subsampled data with statics
along with (e and g) and (f and h) their corresponding residual amplitudes, respectively.
(i and j) For the CRG displayed in (b) and the COG displayed in (d), respectively, the
estimated statics with the proposed reconstruction plotted in solid lines with circle mark-
ers and their error plotted with asterisks, respectively.
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0.4 and 0.6 s are distorted. To improve the results, we use the pro-
posed reconstruction (Algorithm 1). The estimated statics for the dis-
played gathers are shown in Figure 8e, whereas the estimated statics
for the whole data are shown in Figure 10e. The latter shows that
larger statics are estimated from data between 19 and 24 km, which
contain more complexity in the weathering layers compared with the
data between 15 and 18 km (see Figure 10a). Reconstruction with our
proposed method (Figures 8d, 9d, and 10d) reduces the noise com-
pared with interpolation without statics correction. Moreover, it leads
to higher power and more continuity of the events compared with
the original data, as demonstrated by the stack section in Figure 10d.
The improvement noticed on the stack between 19 and 24 km also
coincides with the observation that most of the estimated statics
(Figure 10e) belong to the same section.

DISCUSSION

In this section, we discuss the use of data windowing, rank se-
lection with sensitivity analysis, computational efficiency, limita-
tions, and extensions.

Data windowing

It is common for rank-based reconstruction techniques to rely on
data windowing to ensure that the data have sufficient LR structure.
Moreover, the number of different dips in each window can be used
as a guide for rank selection (see Oropeza and Sacchi, 2011). How-
ever, selection of the windowing parameters is not trivial. In the pres-
ence of weathering layers, merging windows after statics correction
can be a challenge as the separate windows may get assigned differ-
ent statics that may result in mis-ties along the horizontal and vertical
directions. This could be the case if windowing is used to reconstruct
the field data example, where the section between 15 and 18 km ex-
hibits low influence of the weathering layers compared with the one
between 19 and 24 km (Figure 10). To avoid the nontrivial task of
data windowing for statics correction and interpolation, we use the
midpoint-offset-frequency domain, where the data can be well ap-
proximated by LR matrices. Therefore, we can successfully apply
the proposed reconstruction techniques to thewhole linewithout win-
dowing, which is demonstrated by the synthetic and field data exam-
ples. Not using windows can result in large matrices. If that leads into
computational limitations, which we do not suffer from for the shown
examples, data windowing can become necessary.

Rank selection

The main parameters that need to be selected for Algorithm 1 are
the ranks used for interpolation k of all the frequencies and those used
for multiscale LR approximation K. After partial statics correction,
the singular values decay faster because the data exhibit higher co-
herency. Because we do not account for all the statics at the first iter-
ation, there will remain incoherent energy, which is represented by
the smaller singular values. Therefore, we can neglect singular values
in the tail of the decay curve to capture the coherent energy, which we
use for statics estimation and correction. The further the iterations
progress, the faster the singular values will decay. Accordingly,
we begin the iterations with a high-rank approximation and further
decrease the rank as iterations progress. For interpolation, we need to
preserve as much as possible of the signal, whereas for statics esti-
mation, we only need a signal with less statics imprint that we use for

Table 1. Sensitivity of the proposed method to rank selection
of the field data.

Case
scenario

Change in
interpolation
ranks (%)

Change in statics
estimation ranks (%)

Stack
power (%)

1a +25 0 +9

1b 0 +25 +17

1c +25 +25 +9

2a −25 0 +22

2b 0 −25 +21

2c −25 −25 +19

The change in the interpolation and statics correction rank values is with respect to
the chosen values stated in the “Rank selection” subsection of the “Discussion” section.
The stack power column indicates the power of the estimated stack relative to the stack
of densely sampled data.

Figure 6. Interpolation with LR approximation: LR approximation
after partial statics correction of Figure 2a and 2b, which we use as a
starting solutionX0 of equation 6 for interpolation. Frequency slices
(real part) at (a) 18 and (b) 49 Hz.

Figure 7. Error of reconstruction of the 75% randomly subsampled
data with statics per frequency slice using interpolation (dotted curve),
stepwise reconstruction (dashed curve), and proposed reconstruction
(solid curve).
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crosscorrelation. The latter tends to be captured by the few largest
singular values. Because amplitude preservation is essential after
interpolation, the ranks used for interpolation are higher than those
needed for statics estimation. Because the high frequencies contain
more variability compared with the low ones, they usually require
higher ranks. Therefore, we suggest to start with LR for low frequen-

cies and linearly increase it with increasing frequency content for in-
terpolation (Kumar et al., 2015) and statics estimation (Alfaraj et al.,
2023). User analysis is necessary for the determination of the optimal
ranks because complexity of the frequency slices also play a role.
We choose the lowest and highest ranks that correspond to the low-

est and highest frequencies of the synthetic data according to the pre-
ceding strategy. The rank values that we use for
interpolation and LR approximation at the first,
second, and third iterations are (15–75), (15–30),
(5–15), and (3–5), respectively. We determine the
rank values for the in-between frequencies by lin-
early increasing the rank between the lowest and
highest ranks in each iteration. To quantify the in-
fluence of the rank selection, we use the stack
power as a measure. The stack power increases
by 202% and decreases by 13% compared with
the densely sampled data with statics and stat-
ics-free data, respectively. Increasing the rank val-
ues by 50% leads to almost the same results
(±0.5%), while decreasing the rank values by
50% results in 210% and −10% change in the
stack power compared with the stacks of densely
sampled data with statics and statics-free data,
respectively. Therefore, the sensitivity of the
joint reconstruction to the rank selection of this
synthetic data is low.
For the field data, we follow the same strategy

to select the rank values. The lowest and highest
rank values that we use for interpolation and
statics correction at the first, second, and third
iterations are ð30 − 90Þ; ð5 − 15Þ; ð3 − 15Þ, and
ð3 − 5Þ, respectively. These values lead to 19%
increase in the stack power after applying our pro-
posed joint reconstruction compared with the
densely sampled data (compare Figure 10a and
10d). To examine the method’s sensitivity for
the rank selection, we test several scenarios out-
lined in Table 1. We notice that varying the rank
values used for interpolation has higher impact on
the stack power, surpassing the impact of altering
the ranks used for static estimation. This conclu-
sion is expected as the rank values used for inter-
polation explicitly estimate new data (phase and
amplitude). In contrast, the LR-based statics esti-
mation uses the rank values to estimate the time
shifts that increase the coherency of the data.
Moreover, the multiscale approach implemented
for statics estimation alleviates the need of using
accurate rank values. Despite the sensitivity of the
method to the interpolation ranks, it remains low
as increasing and decreasing the rank values by
25% (case scenarios 1a and 2a) leads to only
10% decrease and 3% increase in the stack power
compared with the originally selected ranks.

Computational efficiency

Other than obtaining improved reconstruction,
the proposed method provides better efficiency
compared with stepwise reconstruction. The

Figure 10. Field data stacks of the (a) original data and after (b) 50% randomized sub-
sampling, (c) interpolation without statics correction, and (d) our proposed reconstruction
along with (e) the estimated statics clipped to ±12 ms.

Figure 8. Three selected CMP gathers from the field data: (a) originally acquired data
and data after (b) 50% randomized shots subsampling, (c) interpolation without statics
correction, and (d) proposed reconstruction along with (e) the estimated statics of the
displayed gathers.

Figure 9. Three selected CMP gathers from the field data after NMO correction:
(a) originally acquired data and data after (b) 50% randomized shots subsampling,
(c) rank-minimization interpolation, and (d) our proposed reconstruction.
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computational efficiency of the proposed reconstruction is related to
the computational efficiency of the separate processes themselves.
For LR-based statics estimation and correction, it is determined by
the numbers of LR approximations Oðminfn2m × nh; nm × n2hgÞ and
crosscorrelations Oðnt × ngÞ, where ng is the number of crosscor-
relation lags, which turned out to be more efficient compared with
residual statics estimation by stack power maximization (Ronen and
Claerbout, 1985). Truncated SVD, where only a subset of the larg-
est singular vectors and singular values are calculated, can speed up
the LR approximation, which can be necessary for 3D large-scale
seismic data. The efficiency of rank-minimization-based interpola-
tion, which operates on the whole line, can be better than those that
operate on separate gathers. To further enhance the computational
efficiency, LR approximation and interpolation of frequency slices
as well as the crosscorrelation of traces can be performed in parallel
over multiple cores.
The joint reconstruction approach further improves the computa-

tional efficiency. As shown in Figure 6, LR approximation can inter-
polate the randomly subsampled data displayed in Figure 2a and 2b.
However, this interpolation is poor as the approximation neglects data
of importance. Nonetheless, it provides a good initial solution that we
can use to reduce the number of required iterations to solve equa-
tion 3. Because LR approximation is a byproduct of LR-based statics
estimation and correction, we obtain the initial guess cost-free with
our proposed joint reconstruction. Moreover, because statics estima-
tion and correction is performed in the midpoint-offset domain, we
also modify the interpolation such that the input measured data is
used in the same domain (equation 6). Therefore, we reduce the re-
quirement to go back and forth between the acquisition and midpoint-
offset domains. In addition, our model-independent approach re-
quires less manual interaction compared with existing techniques,
which usually need multiple iterations of velocity and statics estima-
tion as they influence each other, followed by data interpolation of
NMO-corrected data (Trad, 2009).

Limitations and extensions

Different NS conditions lead to different effects. Even for the field
data example, the data between 15 and 18 km are less influenced by
the NS weathering layers compared with the data between 18 and
24 km (Figure 10a). Therefore, interpolation of the former section
can be achieved without the need of any statics correction (Fig-
ure 10c), which is not the case for the latter one that becomes im-
proved with our proposed method (Figure 10d). Even though the
data contain noise that we do not remove as part of the precondition-
ing, the proposed reconstruction does not suffer. Further improve-
ment could be obtained with prior noise attenuation or by adding
a noise reduction step as part of the joint reconstruction scheme be-
cause noise can influence the coherency of the data. In the used field
data example, ground roll is aliased due to the coarse 30 m source and
receiver intervals. Therefore, because it is challenging to interpolate,
we remove it prior to data decimation with a simple frequency-wave-
number filter.
In terms of sampling schemes, we only consider randomized

sampling. There are multiple ways to optimize the locations of
sources and receivers, e.g., see Hennenfent and Herrmann (2008)
and recent studies by Guo and Sacchi (2020) and Zhang et al.
(2022). However, there are other limiting factors for land data ac-
quisition design such as the NS properties, which needs to be con-
sidered. When the data are periodically subsampled, the proposed

method can be modified by replacing the LR-based interpolator in
the midpoint-offset domain with another one that is more suitable
for interpolation of periodically subsampled data. Similarly, other
interpolation methods for randomly subsampled data, e.g., curve-
let-, Fourier-, or Radon-based methods, can replace the used
rank-minimization interpolation, if desired.
Interpolation and statics correction can be performed on separate

gathers, e.g., by applying sparsity promotion on receiver gathers in
the frequency-wavenumber domain because statics and randomized
subsampling decrease the sparsity (Figure 11b) that densely
sampled statics-free data exhibit (Figure 11a). As noticed, the
low frequencies are less influenced by the subsampling and NS ef-
fects compared with the higher frequencies (Figure 11b). Therefore,
a similar scheme to Algorithm 1 can be implemented, where the
statics estimated from subsampled and interpolated low frequencies
and applied to the full-band data allow for statics estimation and
reconstruction of the higher frequencies as they improve their co-
herency. However, operating on the full line in the midpoint-offset
domain allows us to exploit structural relationships between the dif-
ferent CMPs, which cannot be achieved using separate gathers. In-
terpolation of separate CMP gathers still allows us to exploit
structural relationships up to a certain extent compared with sepa-
rate shot or receiver gathers. However, the separate CMP gathers are
not linked in this case. Therefore, there might be variability across
the line, which is minimized with our proposed approach.
To extend the proposed reconstruction method to 3D data,

Algorithm 1 can be modified by incorporating a suitable trans-
form-revealing domain. Luckily, there are different options that
can be investigated to map the 3D data into 2D matrices, which
include the midpoint-offset domain along the x- and y-directions
and the source and receiver coordinates along the x- and y-direc-
tions or the x- and y-coordinates of the sources and receivers. It is
essential that the chosen domain reveals the necessary properties
that allow for LR approximation and rank-minimization-based
interpolation.

CONCLUSION

Complex NS conditions with rapid variations in properties of the
weathering layers degrade the quality of subsurface models of inter-
est. The addition of acquisition gaps, e.g., to reduce the acquisition
costs, exacerbates this effect. Interpolation without accounting for the
NS effects fails to provide satisfactory results. The conventional
reconstruction approach with surface-consistent short-wavelength
statics correction followed by interpolation requires distinction be-
tween primaries and multiples and NMO velocity estimation, which
are challenging to perform with subsampled data influenced by the

Figure 11. Frequency-wavenumber amplitude spectrum of a se-
lected CRG from the synthetic data: (a) statics-free and (b) after
adding statics and removing 50% of the shots at random.
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weathering layers. Stepwise reconstruction with model-independent
LR-based statics correction followed by rank-minimization interpo-
lation improves the reconstruction. However, it results in noisy and
erroneous reconstruction due to imperfections in the estimated statics.
These imperfections are due to the combined influence of weathering
and subsampling, which reduce the coherency and destroy the LR
structure. To overcome that, we propose to reconstruct the data with
simultaneous rank-reduction-based statics correction and interpola-
tion. With this approach, statics correction and interpolation improve
each other’s performance, as data with improved coherency from one
are fed into the other. In addition, we increase the computational ef-
ficiency by avoiding repetitive transformations between the source-
receiver and midpoint-offset domains and by using LR approximated
data (cost-free product from the LR-based statics estimation) as initial
solution to the rank-minimization optimization problem. The appli-
cation of our proposed method to randomly subsampled synthetic
data and a challenging field data set affected by complex weathering
layers demonstrates its potential.

DATA AND MATERIALS AVAILABILITY
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