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Summary

Introduction

Composite materials are increasingly used as lightweight construction materials. They allow
the fabrication of much lighter constructions than with conventional materials (e.g. aluminum),
while matching their strength and stiffness. Moreover, composites show improved properties
such as low corrosion and low fatigue. This latter is especially important for the aircraft
industry because aluminum in aircraft degrades due to the strong load changes and temperature
changes during take-off and landing. Besides offering many attractive properties, composites
also introduce new problems. During fabrication or use, defects like cracks, inhomogeneities
and delaminations may occur and grow. Therefore, it is important to detect these defects in an
early stage, before they affect the performance of the structure.

Since the aircraft industry was one of the first to apply composites, it now faces the problem of
aging composite parts. Consequently, it needs to inspect its aircraft fleet frequently to operate it
safely. Key to a continuing and expanding use of composites in the (aerospace) industry is the
ability to detect surface and sub-surface defects in these structures. Because currently available
inspection methods are unsatisfactory. Therefore, there is a growing interest in finding new
methods that can reveal possible defects quickly and reliably in industrial environments.

This thesis

The real-time phase-stepped shearing interferometer described in this thesis can contribute to a
safe operation of the aircraft fleet. The development of this system was therefore directed
primarily towards the use in aircraft industry. The newly developed shearography system
allows fast, non-destructive inspection of aircraft structures. It is much less sensitive to external
disturbances than more conventional interferometers, making the system more suitable for in
situ measurements. The system has been successfully used for defect detection in a relatively
hostile environment and can therefore be used to supplement the existing non-destructive
testing (NDT) techniques.

The developed system measures the deformation of diffusely reflecting objects at video speed,
ie. 25 times per second. It uses two CCD cameras to record four interferograms
simultaneously. The four interferograms are generated in separate branches of the
interferometer by two specially designed Savart elements. In each of the two branches, two
interferograms are recorded side by side on a single camera. This way, a compact and rigid
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mechanical set-up could be realized. The Savart elements are simultaneously used as beam
splitters and analyzers. Moreover, they are used to align the interferograms on the CCD
cameras.

Defect detection is made possible by applying forces to the object under inspection (e.g. by
heating it), such that the defects show up in the form of a deformation irregularity at the object
surface. Because the optical set-up is connected to a real-time image processing system, phase
changes (representing surface deformations) of an object can be monitored in real time. The
resultant phase change pattern approximately describes the slope change of the surface in the
shear direction.

Thanks to the used shearing technique and the short recording time (40 ms) of a phase image,
the system is less sensitive for measurement errors that are introduced by time-dependent
perturbations (like air flow, temperature changes or vibrations) than temporal phase-stepped
shearing interferometers, which record the phase-stepped patterns successively in time.
Another advantage of shearing interferometry concerns the requirements on the laser’s
coherence length. As compared to a conventional two-beam interferometer, the demands on the
coherence length of the light source are relieved, thus enabling the use of semiconductor lasers.
The developed system employs such a semiconductor laser, which makes the system easy to
handle and to transport. The power of the used laser is limited to 1 W, which restricts the
inspection area to approximately 25x35 cm’. A 1 W laser should normally be sufficient to
inspect a 0.25 m’ area in a single recording, but due to aberrations, generated by imaging
through the Savart elements, the inspection area is decreased. Other error sources in the system
are decorrelation and incorrect positions or characteristics of the polarizing optical elements.
The total measurement accuracy is maximally A/22, which leads to a smallest measurable
deformation of 22 nm.

Delft, A.L. Weijers
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Chapter 1

Introduction

This chapter describes the background of this thesis. Section 1.2 gives a brief introduction
into the current methods of non-destructive testing and their characteristics. The new
interferometric system, that has been developed during the research described in this thesis,
can supplement the existing methods in the field of non-destructive testing. Next, in Section
1.3, the choice for developing a real-time phase-stepped shearing speckle interferometer is
motivated. Finally, the structure of this thesis will be outlined in Section 1.4.

1.1 Background

For many decades, aluminum has been one of the most popular material to build lightweight
constructions. Since the sixties, fiber reinforced plastics, such as polyester and carbon
composites, have obtained a position as construction materials. By applying fiber reinforced
plastics, constructions can be made much lighter than with conventional materials, matching its
strength and stiffness. Moreover, fiber reinforced plastics show improved properties (e.g. low
corrosion and less fatigue)'. This latter is especially important for the aircraft industry because
the aluminum in aircraft degrades (small cracks appear) due to the strong load changes and
temperature changes during take off and landing.

Composites are mostly used in the aeronautical and space industry, but nowadays they are also
being applied in sports articles (golf clubs, tennis rackets, bicycles, skis etc.), naval vessels,
tooling, cars, medical devices (prosthetic and orthopedic devices), LPG tanks and artwork™’.

Despite the many attractive properties of composites, their use also generates new problems.
During fabrication or use, defects like cracks, inhomogeneities and delaminations may occur
and grow. These defects can upset the mechanical balance of the composite structures.
Therefore, it is important to detect these defects in an early stage, before they affect the
performance of the structure.

Since the aircraft industry was one of the first to apply composites, it now faces the problem of
aging composite parts. Consequently, they need to inspect their aircraft fleets frequently to
operate it safely. The work presented in this thesis can contribute to such a safe operation and it
is therefore primarily directed towards its use in aircraft industry. However, the applicability of
real-time phase-stepped shearography is in no way limited to aerospace constructions or even
composites.
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Inspection programs are well established for aircraft fabricated from conventional materials.
The pertinent techniques are known as Non-Destructive Testing (NDT) techniques, also
indicated as Non-Destructive Inspection (NDI) or Non-Destructive Evaluation (NDE)
techniques. Inspecting a typical metal aircraft structure is essentially a matter of searching for
cracks or flaws, which, if left undetected or permitted to grow, could result in structural failure.
By way of contrast, inspection of composite structures is a much more complex process. The
major problem with the laminated composite construction materials is that some defects (e.g.
delaminations, see Fig. 1.1) can cause a strong reduction in stiffness and strength, but are often
invisible from the outside.

(@ ®
E = ; =
_ B _ V \ )
I —1 | — -

Fig. 1.1 Schematical representation of two types of delamination in a honeycomb
sandwich: (a) a delamination in the skin and (b) a delamination of honeycomb material.

Furthermore, laminated structures are more sensitive to impact damages (see Fig. 1.2) than
conventional materials. The impacts can damage the surface but the internal damage can be
even bigger since impacts generally induce delaminations. Moreover, initial delaminations tend
to grow. Delaminations can arise at different stages of the life of an airplane: during
manufacturing (incomplete bonds or inclusions), during assembling (a dropped tool) and
during servicing (caused by structural overload or impacts from objects like birds, (hail) stones
or lightning).
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Fig.1.2 Schematical representation of (a) an impact damage and (b) an impact damage
which induced delaminations.

Key to a continuing and expanding use of composites in the (aerospace) industry is the ability
to detect surface and sub-surface defects in the structures, both during manufacturing and in-
service inspection. Unfortunately, currently available inspection methods are unsatisfactory.
They can not detect sub-surface defects or are time-consuming and therefore expensive.
Consequently, there is a growing interest in finding new methods that can reveal possible
defects quickly and reliably.

In Section 1.2, a short overview of the most important NDT techniques*® is given, including
their advantages and disadvantages.
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1.2 Non-destructive testing techniques

The elementary method of NDT is visual inspection, with or without optical aids. Surface-
breaking defects can be detected by careful direct visual inspection. Only relatively inexpensive
equipment is required. Optical aids include magnifiers, microscopes, telescopes and
endoscopes. Visual inspection with cameras or photography is also being used. The success of
visual inspection strongly depends on the surface condition, the lighting arrangement and the
operator. Surface preparation, such as cleaning and etching, is often applied.

One step up from visual inspection is liquid penetrant testing. The principle of the method is
that the liquid penetrant is drawn into the surface-breaking defect by capillary action and
excess surface penetrant is then removed. Again, defects are detected by viewing. This method
solely works on flaws like cracks, laps and porosity, which must reach the surface to be
detected. Also, it can not be used on dirty or very rough surfaces and surface cleaning is a vital
part of the penetrant testing technique.

D-sight is another useful method for detecting surface defects. It uses the reflection of the
surface to find dents or bumps. With a camera and a lamp above or below it, the surface is
inspected under nearly grazing angles (typically 30 degrees). The light is reflected with a
retroreflective screen that is positioned symmetrically to the camera and the lamp. A schematic
drawing of a typical D-sight set-up is given in Fig. 1.3.

CCD camera .
retroreflective

screen

G

light source

Fig. 1.3 A typical D-sight set-up.

The light from the source is reflected by the object’s surface towards a screen, which is not
perferctly retroreflective. Each ray is broadened into a small cone of light. Upon reflection
from the surface for the second time, the light is recorded with the CCD camera. Dents or
bumps change the reflection direction, thus causing light and dark areas in the image. With this
technique, no image processing is required. However, the method is only suitable on shiny
surfaces (which is no problem for civil aircraft, but already more difficult with military
aircraft). If surfaces are not shiny, special treatment of the surface is necessary. The main
disadvantage, is the limited types of defects that can be detected with this method. It is only
suitable for surface defects, as is the case with visual inspection.
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Since detecting sub-surface damages is very important with the composite materials, the
inspection methods mentioned above are only partly appropriate for non-destructive testing of
composites.

Tap testing is performed by tapping on the structure with a blunt instrument, often a large
coin, and to listen. In current practice, tap testing is used to locate possible disbonds,
delaminations and water in honeycomb core cells, but tap testing has its disadvantages. It only
detects certain types of defects close to the surface. In addition, it is difficult to apply in noisy
environments and it requires careful surface preparation. Certain coatings, aluminum foils,
pressure sensitive tapes and similar films have to be removed from a surface before a tap test
can be performed. Finally, it is even more operator sensitive than visual inspection.

X-ray inspection can provide a high-resolution measurement of density variations within a
material. The technique is based upon showing changes in the material’s transmission
characteristics, which indicate possible anomalies in the internal configuration of the part. It
may not detect a delamination, crack or debond if no (or only a very small) gap is formed. In
addition, the sensitivity of the systems is influenced by the presence of other high-density
material in front or behind the region of interest. Moreover, the systems tend to be large,
cumbersome and have no real-time performance. The technique is not commonly used, mainly
because it is impractical and causes safety risks for the operators due to radiation hazard.

Eddy current techniques® fall in the category of electrical methods and is only suitable for
conducting materials. In eddy current testing, a coil carrying an AC current is placed close to
the specimen surface. The current in the coil generates circulating eddy currents in the
specimen close to the surface and these in turn affect the current in the detecting coil by mutual
magnetic induction. In many cases the same coil is used both to excite the eddy currents and to
detect the corresponding magnetic field.

Flaws and material variations in the specimen affect the strength of the eddy currents. The
presence of flaws, etc. is therefore measured by electrical signal changes (voltage or phase
changes) in the detecting coil. Since the eddy currents are concentrated at the outer surface of
the specimen, only surface or near-surface defects can be detected. Most eddy current
instruments require a calibration on a set of test specimens. The output signals are very
complicated. Equipment varies from simple portable meter-read-out instruments, to more
complex oscilloscope read-out instruments displaying both phase and voltage. Recently, the
outputs have been digitized to produce fully-automated computer programmed equipment. The
systems have a small inspection area (typically with a 20 mm diameter) and are mainly used to
inspect areas around rivets for cracks and corrosion in metals. Two-dimensional scanning is
required to inspect large areas, making this technique time-consuming.

Another traditional NDT technique is the ultrasonic measurement technique, which uses
ultrasonic waves, transmitted from a small probe and detected by the same or other probes (see
Fig. 1.4).
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Xy-scanner Xy-scanner

transmitter

receiver

test object
Fig. 1.4 An ultrasonic measurement set-up.

Usually, pulsed beams of ultrasound are used and in the simplest instruments a single, hand-
held probe is placed upon the specimen surface. An oscilloscope display (amplitude versus
time) shows the time that it takes for an ultrasonic pulse to travel to a reflector in terms of
distance across the oscilloscope screen - the so-called A-scan display. Many sequentially
recorded A-scans can be combined to make a so-called C-scan, using (automated) mechanical
scanners which plot the position of the probe and the ultrasonic information (e.g. time of flight
or ultrasonic attenuation, see Fig. 1.5).

(@) ®)
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T T
exitation  defect backwall
pulse indication echo

Fig. 1.5 Ultrasonic data representations (a) A-scan and (b) C-scan.

Transmission ultrasonic techniques require access from both sides of the part. The double
transmission technique, also called the reflector plate technique, and pulsed ulirasonic
inspection have the advantage of being single contact methods: they need access from one side
only. The technique requires experienced operators and a liquid couplant, such as glycerin or
water, between source and probe surface. Also the part must be clean and smooth. Rough
surfaces tend to interfere with the contact probes, degrading the signal transmission. A
common technique with ultrasonic measurements is to immerse the specimen in a large tank
and use a stand-off probe with a mechanized movement. This method requires dismantling of
the test part. New developments towards air-coupled ultrasonic measurements are being
developed. However, they remain time-consuming methods, since using a point detector and
two-dimensional scanning of the surface is required.
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Thermography is a technique of obtaining an image of the heat distribution over the surface of
an object. Usually, a special camera with an infrared sensitive detector and a lens which
transmits infrared radiation are used (see Fig. 1.6) to display temperature variations in the
object.

IR camera
thermal source 5\

r object

Fig. 1.6 Thermography set-up.

Defect detection relies on the differences between the thermal conductivity of defect free areas
and those with defects. Temperature variations as small as 0.2° C can be detected. The method
is e.g. used to examine Carbon Fiber Re-enforced Plastic (CFRP) laminates and honeycomb-
bonded panels. One limitation of thermography is that the infrared emission depends also on
the surface condition of the specimen (surface emissivity), e.g. paint influences the signal. New
techniques, like lock-in thermography, are being developed to reduce this problem. Lock-in
thermography can locate defects such as delaminations or inclusions up to several millimeters
below a sample surface. It uses a harmonically modulated infrared source. Defects generate
reflections that interfere with the incident radiation to produce a kind of standing wave pattern.
This technique can be used to inspect large surfaces at once, but it is a rather slow method.

Alternative techniques for performing the much needed defect detections that have major
advantages over the above listed more conventional approaches are interferometric
techniques. Interferometric techniques produce three-dimensional patterns of fringes, whose
density and form depend on the tested structure, the wavelength of the used light and the
geometry of the interferometer. Interferometric methods visualize or measure object
deformations in terms of changes in optical path lengths (or, equivalently, the phase) of the
interfering beams on its way from the light source via the object surface to an appropriate
detector. Detection of optical path lengths differences much smaller than the wavelength of the
light has become possible. The sensitivity gained by comparing the optical path length changes
with the wavelength of the laser light used makes interferometry an ideal measuring tool for a
manifold of physical quantities, such as strain, stress, deformations, refractive index variations
in solids, fluids gases, etc. Also, full-field, non-contact, non-destructive tests are possible. Both
surface and sub-surface defects can be detected. An important advantage, shared with many
other optical techniques, is that it allows large test arecas to be examined in a single
measurement using an imaging system and a powerful laser. There is no need for direct contact
between the object and the inspection instrument.
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Non-destructive inspection using interferometry is based upon the fact that, after loading,
components with faults show different deformations than unflawed parts. Thus, defects can be
identified by anomalies in the fringe pattern. Although the technique measures surface
deformation, internal damage can also be detected because defects, depending on their
proximity to the surface, can influence the surface deformation and hence can be detected. The
principle of defect detection is sketched in Fig. 1.7.

delamination after thermal loading

Fig. 1.7 Detection of a delamination between the first and second layer in a laminate
structure. The expansion of the material is exaggerated.

A fault specific deformation in the sub-micrometer range is sufficient to be detected by the
high accuracy of interferometric methods. The required amount of loading is small, e.g. with
thermal stressing typically a few degrees change in temperature of the surface of the inspected
sample is sufficient. The success of interferometry as a non-destructive inspection technique
depends on the effectiveness of the chosen loading technique. Usually one or more of the
following loading techniques are used in interferometric inspections:

e thermal loading

e pressure or vacuum loading

¢ mechanical loading

e vibrational loading
The type of loading to be employed is generally dictated by the geometry of the components
and the type of defect being examined. The most practiced methods for in-service testing are
thermal and vacuum loading. Vacuum loading usually incorporates small inspection areas
(typically in the range of 0.03 m’), where thermal loading is easily applied to larger areas
(typically up to 0.4 m?). In production testing of a single type of object, larger areas can be
covered with both loading techniques if dedicated systems are used.

The oldest technique in the interferometric category is holographic interferometry®®, based
upon holographic recording of interference patterns. Holography can provide a very high
resolution but its use is limited to laboratory environments. Thanks to the development of
electronic cameras, electronic speckle pattern interferometry”'' (ESPI) could be developed.
This technique has a lower spatial resolution than holographic methods, but ESPI made
inspections much easier and faster than the time-consuming process of developing and
positioning holographic plates. ESPI can be used for all kinds of samples with a rough surface.
If the surface is too shiny, applying a thin layer of removable diffusing powder on the surface
eliminates this problem. The speckle pattern resulting from the illumination of a rough surface
with laser light is the basis of this technique, that generates maps of deformations with
(sub)micrometer-scale amplitudes. Both holographic interferometry and ESPI can measure
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object deformations in real time in the form of fringe pattern deformations. For some time now,
both techniques have been used as non-destructive inspection techniques at many
manufacturing facilities. However, their full potential as control tools cannot be realized totally
because of their high sensitivities. Environmental disturbances degrade the quality of the
images. The entire system, including the test object, must be isolated from ambient
disturbances, such as vibrations and air flow. Such isolation is impractical in large scale testing.
Aircraft wings, for example, need to be tested at the aircraft or otherwise the major benefits of
this NDT technique are lost.

To overcome this problem another technique, called shearography, is explored.
Shearography®'>'* is less sensitive to external disturbances than ESPI, which makes it more
useful in a factory or airport environment. Instead of using a separate reference beam, it splits
the light beam and recombines the two parts such that they create overlapping and (laterally)
displaced images on a camera, thus recording the resulting interferogram. A typical shearing
interferometer is shown in Fig. 1.8.

laser

mirror

shearing
mirror

— lens

diaphragm

object detector

Fig. 1.8 A typical shearing speckle interferometer.

Shearography provides information about deformation gradients, whereas holographic
interferometry and ESPI measure deformation amplitudes. Yet, shearography also reveals
surface and sub-surface defects. In Fig. 1.9b, a typical shearographic resuit of an inclusion in
the laminate skin of a composite sandwich structure (Fig. 1.9a) is depicted.

(@ (%)

inclusion

Fig. 1.9 (a) A 15 mm inclusion in a sandwich structure and (b) the pertinent
shearographic result.
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The size of the damage can usually be estimated from the size of the anomalous shearographic
fringe pattern. Care must be taken to account for the effect that larger shears give a larger
apparent defect because the defects expand in the shearing direction as the shear is increased.
The minimal defective area discernible by this technique is typically in the order of a few
millimeters.

The first industrial applications of shearography show the need for a better quality of the test
results. For this reason, phase stepping techniques'” have been added, greatly increasing the
sensitivity of the system, and therefore increasing the detectability of defects. Phase stepping is
a powerful technique for accurate quantitative determination of surface deformations. Instead
of a single interference pattern, phase stepping interferometry uses at least three registrations of
these patterns. These patterns are usually recorded successively in time with a CCD camera and
between the recordings the phase difference between the object and reference beams is
changed. Unfortunately, the advantage of the improved quality of the test results is partly
canceled in industrial applications due to the loss of real-time operation. The presently used
phase stepping systems have a high sensitivity for environmental disturbances. Time-dependent
perturbations, e.g. air flow, temperature currents and vibrations, disturb the measurements since
subsequent recordings are affected differently. Besides this, the usual phase stepping
shearography systems are unsuitable to monitor time-dependent phenomena.

In order to fully utilize the benefits of phase stepping without introducing problems associated
with loss of real-time operation, we propose a real-time phase-stepped shearography system'®
based upon the simultaneous recording of the phase-stepped interference patterns. This system
has the potential to result in a fast, reliable and high-quality (sub)surface defect detection
system, capable of performing large area inspections in noisy industrial ambiances.

1.3 Purpose of the research

The purpose of the research described in this thesis was to develop a real-time phase-stepped
shearing speckle interferometer with reduced sensitivity for external disturbances and to realize
a mobile, robust system for use as an NDT tool in an industrial environment. The goal of the
project was to inspect an area of 0.25 m” in one view and to detect defects with a minimum size
of 490 mm?’ Preliminary investigations'® with a laboratory system demonstrated the
applicability of shearography combined with real-time phase stepping for defect detection.
Real-time phase stepping can be performed by changing the polarization properties of light and
recording several different interference patterns simultaneously by means of introducing
several branches in an interferometer. The preferred number of phase-stepped interferograms
depends on the desired accuracy. As a rule of thumb it can be stated that the larger the number
of interferograms, the more accurate the measurements will be. On the other hand, if more
interferograms are used, more branches and hence more cameras are required in the optical
setup and thus the optical alignment becomes more complicated.
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The initial goal of the research described here was to arrive at a four-camera phase-stepped
shearing interferometer'®. Only three cameras are needed to calculate the phase distributions,
but by using four cameras the system is less sensitive to source light fluctuations. During the
project, a two-camera system recording four phase-stepped images promised to be
advantageous, since the requirements on the mechanical built-up of the system could be
strongly reduced. Therefore, we focused our attention on developing such a system. Much
effort was put into designing and analyzing the functional component of the interferometer,
capable of generating two phase-stepped images side by side on a single CCD camera.

The accuracy of the interferometer is not only determined by the number of interferograms, but
also by the degree of correlation between the interferograms. Therefore, the alignment of the
images is extremely important. The development of alignment procedures for two
interferograms on a single CCD camera made up a considerable part of the work performed.
Furthermore, a mechanical system had to be designed and realized in order to obtain a robust
system for use in industrial environments. This system must also enable the alignment
procedures.

Besides the development of a compact and robust system, much attention was given to select a
small, powerful and portable laser. Other main tasks were the development of a real-time image
processing system to calculate and display deformations of objects with video speed and the
verification of the improved performance of the system under vibrational disturbances.

1.4 Outline of this thesis

This thesis is organized into seven chapters. The purpose of Chapter 2 is to provide the basic
theory of speckle interferometry, as it is needed in the context of this thesis. Some important
principles, methods and their (dis)advantages are described. Next, the optical system that has
been developed is described in Chapter 3. This system comprises specially designed elements
for generating two phase-stepped interference patterns side by side on a single CCD camera;
the design of these elements is discussed in detail. Chapter 4 gives a general description of the
image processing system, which includes the real-time image processing devices and some
additional hard- and software. Subsequently, the accuracy of the system is analyzed in Chapter
5. Chapter 6 is devoted to the application of the system in a laboratory environment as well as
in one with vibrational disturbances. Finally, Chapter 7 presents the conclusions and
suggestions for further research.
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Chapter 2

Theoretical aspects
of
speckle interferometry

This chapter discusses some theoretical aspects of interferometry, as well as some basic
principles regarding speckles (Section 2.2). Since there are excellent books on the principles
and methods in speckle interferometryl‘s, the theory is presented only as far as it concerns
the work described in this thesis. The emphasis in this chapter is on phase measurements.
Therefore, holographic interferometry (Section 2.3), electronic speckle pattern
interferometry (Section 2.4) and shearing interferometry (Section 2.5) are described
concisely. Section 2.6 discusses several techniques for quantitative phase measurements. The
advantages and limitations of the described methods are given. A summary of the most
important principles and methods closes this chapter.

2.1 Basic principles of interferometry

Interference occurs if two or more coherent light waves are superimposed. Consider two planar
waves, emitted by the same source, which differ in the directions &; and %, and the phases 4
and @ . Both waves, having the same frequency @ and amplitude 4, , are linearly polarized in
the x-direction. For the electric fields of these waves we can write

4
E,(r,0) :[ d‘]e'“‘r“wwﬂ, 2.1)

AN
E,(r,) =( 0 je“"r"“*m. (2.2)
Superposition of these fields gives

A vrir | sy ke
E (r.)+ Ey(r,1) = [ O*je'“‘ et t) (KT gk e )

AN :
— 2( Ox)er(k i +¢'") cos(k"-r+¢”), (23)
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in which &'"=(k,-k,)/2, K'=(k +k)/2, ¢"=(d—-¢)/2 and ¢'=(¢ +¢)/2. The
exponential factor in Eq. (2.3) describes a temporally varying phase, whereas the cosine term is
time independent. Thus, by taking the time average over an interval that is large as compared to
the period 2n/®, we arrive at the temporally constant intensity:

I(r) = ((E1 (r,0) + E,(r,0))E, (r,0) + E, (r,1)) *) =442 cos’(k"r+¢"), (2.4)

in which * denotes the complex conjugate. The resulting position-dependent pattern I(r)is
called the interference pattern and the lines of constant intensity (or phase) are called
interference fringes. From Eq. (2.4) it can be seen that the intensity is minimal where the cosine
factor equals zero. At these positions, the wavefronts are said to be in anti-phase and
destructive interference occurs, resulting in a dark fringe. The intensity is maximal where the
cosine factor equals unity. Here, the wavefronts are in phase and we have constructive
interference, resulting in a bright fringe.

Waves can only interfere if their polarizations are parallel. If the polarization directions of the
two waves are orthogonal, no interference occurs and their superposition only consist of an
addition of the intensities

(P =1 +1,(r). (2.5)

For other orientations of the polarization directions, the electric field vector of the second wave
has to be decomposed into two components: one parallel and one orthogonal to that of the first
wave. The result contains an interference part (from the parallel components) as well as an
addition of intensities (from the orthogonal components). Also if the light is only partially
coherent such a combination of interference and intensity addition occurs. As a result of these
intensity additions (and of other noise contributions) in interference patterns, the contrast in the
pattern, defined by the fringe visibility®

V — _max ~ Y min (26)

max min correspond to the maximum and adjacent minimum intensities
in the pattern. The visibility is maximal (V=1I) for two coherent, parallel polarized light waves
of equal intensity and minimal (¥=0) for incoherent light or orthogonally polarized light.

is reduced. Here, 7 . and [

2.2 Speckles

If a randomly scattering object like a diffusely reflecting surface is illuminated with coherent
light, all illuminated object points emit waves that can interfere. The resulting field in space is
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called a speckle field or speckle pattern. In Fig. 2.1, a speckle field recorded by a CCD camera
is depicted.

Fig. 2.1 A wypical speckle pattern.

The speckles form a random pattern in space which is stationary in time but fluctuating from
point to point. Their appearance depends strongly on the optical properties of the viewing
system. In many applications, speckles are a troublesome effect since they influence the
achievable resolution and accuracy of the measurement. On the other hand, a number of
methods, such as speckle photography and speckle interferometry™, employ the speckle effect
for solving measurement problems. Speckles are the fundamental carriers of wavefront phase
information and thus can be used in specific measurement techniques.

2.2.1 Speckle statistics

If a rough surface is illuminated with coherent light, a speckle pattern occurs in the observation

plane (see Fig 2.2).
(@) (b)
I~
rough observation| ough observation
object plane object plane

Fig. 2.2 Formation of speckles: (a) free space propagation and (b) imaging geometry.
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According to the Huygens principle, each point of the coherently illuminated rough surface, if
surrounded by an isotropic medium, emits a spherical secondary wavelet, described by the
electric field

A4
E,(r,) =~ (n=12..N), X))

f
in which the subscript » indicates the number of the wavelet and N is the total number of
different scattering regions of the surface. The time dependence is omitted in this equation,
since the mutual phases of the wavelets are temporally constant. The phases ¢, of the wavelets
vary strongly with the emission point. Thus, at an observation point (x,y) in space all the
individual field strengths sum up to-

Ex ) = S githnss)
(x,y)=), e : (2.8)

a=l 'n

where r, is the distance from the pertinent surface point to (x,y). The summation in Eq. (2.8) is
analogous to the random walk problem for two dimensions in probability theory. Each
spherical wave can be represented as a vector in the complex plane’, where the resulting field
strength is given by the complex vector sum. Since the elementary scattering areas of the
surface are unrelated and the strength of a given scattered contribution bears no relation to its
phase we can write for the magnitude’

E,r)= e (2.9)

1
—4
JNTT
Moreover, for such rough objects, the amplitude |4,/ N and the phase ¢, of each wavelet
are statistically independent from each other and from the amplitudes and phases of all other

wavelets and the phases ¢, are uniformly distributed’ in the interval <‘ 7,7}, This uniform
probability density distribution of the phase p, can be described as

1
Py (—ﬂ < ¢ < ﬂ.)v
2 ‘
Py(#) = (2.10)
0 (otherwise).

as is depicted in Fig. 2.3a). The intensity of a speckle pattern obeys a negative exponential
probability distribution (see Fig. 2.3b), described by

1

e (120),

202

pi()= .11
0 (otherwise),
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with o being the variance of the intensity.
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Fig. 2.3 Probability density function of (a) the phase of a speckle pattern and (b) the
intensity of a speckle pattern.

The average value of the intensity (/) of a speckle pattern is 2. Calculating the variance of
the intensity

o =(1*)- (1 ={1* , (2.12)

we arrive at the result that the standard deviation o of a speckle pattern equals the average
intensity. Thus, the probability density function for speckle intensity, given by (2.11), can be
rewritten as

1 I
N S 2.13
A <1>GXP[ <1>)' 13)

Some applications of speckle interferometry are concerned with rough metallic surfaces. When
illuminated by linearly polarized light such surfaces diffract a strongly linear polarized wave
and the intensity probability function satisfies Eq. (2.13). However, many surfaces show a
depolarizing effect. Moreover, to obtain a more luminous image it may sometimes be necessary
to deposit a strongly diffusing paint on the surface, which in general works depolarizing. The
speckle field so obtained is the sum of two orthogonally polarized and uncorrelated speckle
fields. The corresponding intensity distribution has the same statistical properties as the sum in
intensity of the two incoherent speckle patterns and, assuming equal intensities for the two
speckle fields, is given by’

oD =L - 21

2 (.14
5% I )
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in which 7 represents the intensity sum of the two speckle fields. In Fig. 2.4, the probability
density function of a single speckle pattern and that of two incoherent speckle patterns are
displayed.

1.00

0804+ \ @

0.60 * b

p(D

oan |
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0.00 t +- +——t
000 050 100 150 200 250

<>

Fig. 2.4 Probability density function of (a) a single speckle pattern and (b) incoherent
combination of two speckle fields.

This figure shows that the most probable brightness for a speckle in a speckle pattern is zero,
i.e. there are more dark speckles in the field than speckles of any other brightness. If two
independent speckle fields are superimposed, there is a vanishing probability for a dark
speckle.

2.2.2 Speckle size

As was indicated in Section 2.2.1, two types of speckle patterns can be distinguished: free
space speckle patterns and imaged speckle patterns. Depending on the geometry of the system,
the speckles show different characteristics. Since imaging lenses are commonly used in speckle
interferometry, only imaging geometry speckle patterns will be considered in this section. In
the case of imaging geometry speckle formation, the spatial distribution of the speckles is
determined by the scattering surface and the plane of observation, as well as by the diffraction
limit of the imaging system. The average speckle size can be derived from the autocorrelation
R, (x,,¥,:%,,y,) of the intensity in the observation plane. The autocorrelation is defined as

R, (% 33%, ) = {10, ) I(x5,3,)) s 2.15)

in which /(x,,y,) is a shifted copy of /(x,,¥,), the shift being (Ax,Ay) = (x, —x,¥, — ;) -
For an imaging geometry, assuming a uniformly illuminated and uniformly scattering object
area that is much larger than the spatial resolution of the used lens, the autocorrelation function
of the intensity in the image plane is found to be’
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, (2.16)

where D, is the diameter of the circular lens pupil, J, is the first order Bessel function, 4 is the
wavelength of the used light, z is the distance of the image plane from the lens pupil plane and
r = (Ax* + Ay*)"?. The average speckle size d_ is taken as the first minimum of J;. Since
J,(x) =0 at x =122n, we obtain

Az
d =122,
(=1 D, (2.17)

The speckle size in the image plane can be related to the numerical aperture N4, which is given
by

NA:sin(e,)ztan(ai)=f—;, (2.18)

where 6, indicates the angle of convergence in the image space and f'is the focal length of the
lens. Since z = f in the image plane, this results in

2
=061—.
d, =061 (2.19)

The size of the image plane speckles thus depends on the numerical aperture (NA) of the
imaging system. If the aperture of the viewing lens is decreased, the speckle size will increase
and vice versa. The maximum spatial frequency f,,,. in the speckle pattern is given by the size
of the lens aperture and the distance of the lens from the observation plane by

.
J(max

SIS

(2.20)

Similar to the average speckle diameter, the average speckle length /; can be found"’ from

N

=2

SV 221)

This shows that for a usual speckle interferometer, which has an N4 smaller than 0.1, the
speckle length is much larger than the speckle diameter.

]
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2.2.3 Optimal speckle size for speckle interferometry

In the framework of speckle interferometry, the average speckle size is very important. The
restriction on the speckle size originates from decorrelation of speckle patterns. The correlation
coefficient y(7,,1,)between two interferograms /, and I, can be determined using’

AR |
S TR R -

Decorrelation is one of the fundamental limits of electronic speckle pattern interferometry
Speckle pattern decorrelation will cause poor visibility of the fringes. Therefore, decorrelation
between the different interferograms is a major error contribution. Decorrelation can be caused
by the load applied on the object under inspection between two recordings (the so-called
object-induced speckle decorrelation). A second cause of speckle decorrelation effect is only
present in multichannel interferometers (see Section 2.6), where the detection planes in the
separate channels of the interferometer can be decorrelated due to misalignment.

11,12

Many workers'*"" in the field of speckle interferometry have emphasized the need to link the
average speckle size to the spatial resolution of the device recording the speckle pattern. The
basic idea behind this was that if speckles are too small to be resolved, the resulting pixel
signal will be the average of many independent interferograms. Thus, the total pixel intensity
modulation would be lower than the average speckle modulation. Therefore, some propose to
fulfill the Nyquist sampling criterion, which states that the average speckle size should be twice
the size of the picture elements in order to fully resolve the speckle pattern, whereas others
suggest the use of smaller speckles since smaller speckles reduce the speckle noise and
improve the fringe contrast. This is especially important in low light level applications, where
larger apertures generally produce higher modulation intensities, such that the modulation loss
associated with averaging speckles is more than compensated by several effects, like higher
average intensities. Moreover, undersampling of the speckle pattern is allowed since, in
principle, an accurate reproduction of the speckle pattern is not of interest; resolving the
speckle pattern completely is in general not necessary. The most important factors determining
the optimal speckle size in a speckle interferometer are object induced decorrelation and, in the
case of a multichannel interferometer, also by camera decorrelation. The influence of the
speckle size on these two decorrelation types are described in the remainder of this subsection.

Object decorrelation

The principle behind decorrelation of the speckle patterns between the exposures before and
after deformation is illustrated in Fig. 2.5, with object displacement and object tilt as examples
of deformation.
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Fig. 2.5 Speckie decorrelation (a) due to in-plane translation and (b) due to out-of-plane
rotation of the object.

In Fig. 2.5a, image plane decorrelation is depicted. Due to the image (or equivalently object)
plane translation, an object point is imaged onto another picture element. Thus, speckle
decorrelation deteriorates a recorded interferogram in two ways: firstly, by a variation of the
phase in the interference pattern across an individual speckle and secondly, by the displacement
of the speckles. Due to a small relative displacement between the object and image planes, the
picture elements record partly the same field as before decorrelation and partly a new
contribution. The fraction of the picture element area which is replaced gives the amount of
decorrelation for unresolved speckle patterns, which can be defined by

A
1—p=—", (2.23)

where 4 represents the amplitude correlation between the speckle fields recorded before and
after loading, Ap, is the area of the picture element that records a different part of the speckle
pattern and p, the total area of the picture element. Thus, in-plane decorrelation is reduced by
using larger picture elements, except for well-resolved speckles. The number of speckles per
picture element does not affect the decorrelation induced phase error distribution over the
whole image'”. The only important parameters determining the phase error induced by the in-
plane decorrelation are the amount of decorrelation and the picture element modulation.
Although for well-resolved speckle patterns the amount of decorrelation is related to the
displacement relative to the speckle size, even for this category it can be advantageous to use
large apertures. As Eq. (2.19) shows, increasing the aperture decreases the average speckle size.
At the same time, a large value for the numerical aperture gives a high intensity in the detection
plane. Therefore, using larger apertures can increase the modulation intensity of
interferograms, especially for interferometers using two speckle fields'®, since they usually
suffer from low intensities.

Due to the out-of-plane tilt of the object, as depicted in Fig. 2.5b, an object point is imaged
onto the same picture element as before the rotation, but a different part of the field is collected
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by the aperture. The amount of decorrelation is given by the fraction of the aperture surface that
changes its contribution as given by

A4

Ve (2.24)

1-pu=

in which A4 is the area of the aperture surface which receives a different part of the speckle
pattern, and 4 is the total area of the aperture. Because of the decorrelation, the picture
elements no longer collect a slightly shifted region of the same speckle field but the speckle
field amplitude itself slightly changes in each point. Both intensity and phase of the imaged
speckle will be different. This type of decorrelation is also called pupil plane decorrelation,
since the amount of decorrelation depends upon the fraction of the pupil collecting different
contributions. Increasing the aperture of the imaging system reduces pupil plane decorrelation.

Concludingly, since the decorrelation induced phase errors are minimized by maximizing the
modulation intensity of the interferograms and minimizing the amount of decorrelation by
choosing a large aperture (and large picture elements if possible), small speckles are generally
beneficial to use in electronic speckle pattern interferometry.

Camera decorrelation

If the cameras (or other recording devices) of a multichannel speckle interferometer are not
recording the same parts of the speckle pattern, decorrelation of the speckle patterns occurs.
The decorrelation in multichannel interferometers is predominantly caused by relative in-plane
translations or rotations between the cameras'®. The correlation between two corresponding
detection points on the cameras recording the interferograms which have a relative shift  can
be deduced from the crosscorrelation function R of two speckle patterns /; and I, , defined as

R (2, 33%5,3,) = (L, (v L (5, 0,)) (2.25)

and using Eq. (2.19). This result in an intensity correlation factor ‘ M, 1, )‘2 , described by

J, (1.221{LD
a, (2.26)

1) = 27—
1.227'5(?)

&

A displacement that is small as compared to the speckle size, changes the speckle pattern at a
given point in the image plane only by a small amount. Equation (2.26) also shows that the
speckle pattern at a point is totally decorrelated if the object is translated by an amount Ax or
Ay equal to the speckle size™'®. Thus, large speckles are advantageous in a multicamera speckle
interferometer. Also, using large picture elements reduces camera decorrelation for the same

reason as for -plane object translation.
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Combining the considerations from object induced decorrelation and camera decorrelation, it
can be concluded that there is an optimum speckle size, but its size depends on which type of
decorrelation is dominant, and this in turn is determined by the type of the speckle
interferometer and the measurement geometry. Large speckles reduce camera decorrelation.
However, decreasing the aperture also increases the object induced decorrelation. In general,
for multichannel interferometers it is advantageous to use large speckles while for other
systems small speckles are preferred.

2.3 Holographic interferometry

Holography is a method for recording and reconstructing optical waves. Holography is
essentially a clever combination of interference and diffraction, two phenomena based on the
wave nature of light. A pattern recorded in a holographic set-up is called a ‘hologram’®. As the
word hologram (the word originates from the Greek: “holos” meaning “whole” or “entire” and
“graphein” meaning “to write”) indicates, it deals with the amplitude as well as with the phase
of the light. All detectors or recording materials like photographic film only register intensities:
the phase is lost in the registration process. In holography the phase information is usually
coded by interference into a recordable intensity. Interferometry and holography can be
combined to obtain the method of holographic interferometry"*'. Holographically reconstructed
waves can be compared interferometrically, either with a wave scattered directly by the object
or with another holographically reconstructed wave.

Holographic interferometry is a useful tool in metrology which is capable of precise
measurement of surface shape or deformation. It can yield a high spatial resolution.
Unfortunately, due to some inherent application difficulties like photographic plate
development, kinematic relocation, complex analysis and sensitivity to external vibrations, this
technique's full potential cannot be realized in industrial applications.

2.4 Electronic speckle interferometry
Electronic speckle pattern interferometry”?, also called ESPI, was introduced to overcome the
time consuming and cumbersome recording and wet-chemical processing of holograms. ESPI
is characterized by electronic detection and processing of the speckle patterns. Integration of
computers into the measuring system facilitated computer aided evaluation. The disadvantages
associated with ESPI are the highly grainy fringes and strong decorrelation effects which limit
the range of applications. This results in noisy interference patterns, making a (quantitative)
evaluation of the interferograms more difficult.

We consider a speckle interferometer with the image plane (x,y) coinciding with the detection
plane. The speckled object wave E, (x,y) is described by
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Ax(xﬂy) ip (x V)
E"(x’y)‘( 0 )e ’ 227)

where A4, (x,y) is the random amplitude distribution and ¢,(x,y) =k, -r, + @, is the random
phase due to the surface roughness. Since we are only interested in the spatial distribution of
the field, the time dependent part, i.e. the factor e (see Section 2.1) which is known for each
frequency, is omitted from our expressions. This notation will be used throughout this thesis.

The reference wave may have an arbitrary form and is described by

Ax (x,y)] ef%(x.y) .

Er(x’y)z[ 0

(2.28)

Only intensities are recorded by the camera, resulting in the interference pattern that is
described by the intensity distribution

I,(x.y) = |E,(x.») + E.(x, )

= I,(x,y) + 6, ) + 2T, o) 1, (3, ) cos{ p(x, ), (2.29)

in which ¢@(x,y) equals @,(x,»)~@,(x,y). The sum of the first and second terms in Eq.
(2.29) describes the background intensity /,(x,y) and the factor before the cosine function is
the modulation intensity I, (x,y). This interference pattern is recorded, digitized and stored. A
deformation changes the phase of ¢, (x,y) at each point by Ag(x,y). The wave after
deformation is

E'(x,y)= [Ax ' E)x,y)) Anredotss) (2.30)

Superposition of this new object wave with the reference wave leads to

lz(x,y) = 1{,’(x,y) + Ir(x,y) + 21/10 '(x,y)],(x,y) cos(qZ)(x,y) + A(ﬂ(x,y)) . 2.31)

In a digital image processing system, this second pattern is subtracted pixel by pixel from the
stored [, (x,y) and, assuming that the deformation changes the phase but not the amplitude
(ie. 4,'(x,¥)=4,(x,y)), it results in'

L(x,») = 1,(x,y) =21,(x, y)1,(x,p) X
{cos(gp(x, y)) - cos(go(x, y)) cos(Ago(x, y)) + sin(w(x, y)) sin(A¢(x, y))}
otr)).

(2.32)

Ap(x, i
=4 I(,(x,y)I,(x,y)sin(q)(x,y)+ ¢>(2x y))sm( :
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The square root factor in Eq. (2.32) describes the modulation in the intensity pattern. The first
sine factor gives the stochastic speckle noise, which varies randomly from pixel to pixel. This
noise is modulated by the sine of half the phase difference induced by the deformation. This
low-frequency modulation of the high-frequency speckle noise is recognizable as the
interference pattern. The relation between the displacement vector d(x,y) of the object and the
phase difference Ag(x,y) is'

2 -
Ap(,y) = d(x,3)-[Bxy) ~8(x.3)] = d(x.p) e(x), (2.33)

in which § is the unit vector in the illumination direction, b is the unit vector in the
observation direction and e is the so-called sensitivity vector.

With this technique, as is also the case in holographic interferometry, the reference beam is
generated somewhere within the interferometer using a reference surface. Therefore, this
method is also extremely sensitive to external disturbances like air flow or vibrations.
Consequently, the generation of a fringe pattern requires many precautions concerning
vibration isolation and stability during the recording process.

2.5 Shearing interferometry

The requirement of vibration isolation can be dropped to a good extent when using shearing
interferometry. The reference wave used in shearography takes nearly the same optical path as
the object beam. In fact, it cannot be said which of both is the reference and which is the object
beam.

mirror
I
P1 shearing
p2 = mirror
< —> lens
— diaphragm

object

detector

Fig. 2.6 Schematic representation of a lateral shearing interferometer.

In Fig. 2.6 the basic principle of shearing interferometry, alternatively called shearography, is
depicted. Two laterally shified (sheared) images of the object are generated in the detector
plane by means of an optical device (e.g. as depicted in Fig. 2.6). In the overlapping regions of
the two images interference will occur. This way, the need for a separate reference beam is
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avoided. This technique has the properties of a self-reference technique and Since in this set-up
the object and reference beams travel along neighboring paths from the object to the
interferometer, object motions affect both beams in similar ways. Therefore, this method is
rather insensitive to rigid body motions of the object. Also the disturbing influence of air
turbulence, which changes the refractive index distribution of air and thus the optical path
lengths randomly, is reduced strongly.

In a lateral shearography setup, as is depicted in Fig. 2.6, the interfering waves are two
laterally, slightly shifted fields resulting from reflection at the rough object surface. In this
case, the lateral shift is performed by a Michelson interferometer-like arrangement with one
mirror slightly tilted. A shearing element can also be implemented in other ways, e.g. a wedge
in front of one half of the imaging lens, a biprism or two tilted glass plates. Besides this lateral
(or translational) shearing, also radial shearing, rotational shearing, inversion shearing or
reversal shearing can be performed™.

Let the two interfering waves be separated in the x-direction by the mutual shearing distance
Ax, then the two nearly collinear waves are described by

A (5
E,(x,y)=[ ”(; y)J e/, (2.34)

4,(x.) L., A (x+Ay))
Eo(xay) =( 0 )e%( i :( 0 ]e%(' & ")a (235)

in which the object beam is (arbitrarily) chosen as the shifted one. Their interference produces
a pattern described by

L(x,y) = |E,(x,y) + E,(x.y)

= 1,(x,2)+ 1,(5,3) + 241, (2, )1, (x,3) cos{(x, ) (2.36)
where the randomly distributed phase difference ¢(x,y) satisfies
P(x. 1) =9,(x,) - @, (x + Ax,y). (2.37)

Deformation of the object leads to a change in the waves, now indicated with primes, described
by

' AX (X,y) (o, (x,y)+Ap(x

Er (x,y) =( 0 Je (. (x.y)+Ap( ,y))’ 238)
A (x, )

E,u'(x’y) — ( x(o y)j e:((o,(x+Ax,y)+A(o(x+Ax,y)) , (239)

their superposition yields the intensity distribution
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L(x,y) =1,(x,y)+1(x,y) +
271, (x, )1, (x,p) cos(p(x,y) + Ap(x,y) — Ap(x + Ax, y)) . (2.40)

Both interference patterns /,(x,y) and /,(x,y) are digitally recorded and stored. Their
pixelwise subtraction gives

L(x.3) - 1,(x,)
=21, e 01, (%, 9) {cos(p(x, ) - cos(p(x, y) + Ap(x, ) — Ap(x + Ax, )}

=4 ]n (x,y)l, (X,y) Sil‘l(¢(x,y)+ A(D(X,y)— AZ(D(X-‘- M,y)j

§ sin( Ap(x,y) — Ap(x + Ax,y)) . (2.41)
2

The square root factor describes the modulation of the intensity pattern, the first sine factor is
the stochastic speckle noise, modulated by the second sine factor which stems entirely from the
deformation. The displacement vector field d(x,y) occurs in the argument of the second sine
via

Ago(x,y) - A(D(x + Axsy)
2

=%{d(xsy)[5(xa}’) —f(x,y)] —d(x+Ax,y) -[l;(x +Ax,y) - §(x + Ax,y}]}

< ZldGey) - G+ e p)]-[Bey) -8 p)]

L 2Axy) mhx _
~ o P [b(x,y) s(x,y)].

(2.42)

Here, the sensitivity and the illumination directions are assumed to be practically equal for two
sheared object points. From this expression we can see that the interference pattern is in a good
approximation directly related to the derivative of the displacement field in the shearing
direction, here the x-direction. For rigid body motions, d{x,y)=constant, implying
ad(x,y)/ox =0. The sensitivity of the method can be adjusted by controlling the shearing
distance.

2.6 Quantitative analysis of the interference phase distribution

Quantitative evaluation of ESPI interference patterns includes the pixelwise determination of
the numerical value of the physical quantity which caused the optical path length change at
each point (x,y) of the interferogram. This physical quantity is related to the phase distribution
o(x,y), whereas the intensity distribution is recorded in interferometry.

The basic information in an interferogram is its intensity distribution, described by
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I(x,y) = 1,(x,y) + 1, (x,y)cos(p(x,)), (2.43)

from which ¢@(x,y) is to be computed. When one tries to extract the interference phase
@(x,y) from the intensity distribution /(x, y), the problem arises that the cosine is an even and
periodic function. Moreover, interferograms suffer from noise (such as intensity noise,
electronic noise, changing surroundings, etc.), degrading the pattern. Especially since ESPI
uses speckle fields as information carriers, a high noise level is present, and fringe analysis is
quite a difficult problem. Therefore, the intensity in a real interferogram is much more
complicated than given in Eq. (2.43). Taking the noise contributions into account, an
interferogram can be described as

I(x,y) = a(x,y) + b(x, y) cos(@(x,y)) , (2.44)

in which the additive and multiplicative noise contributions are contained in the term a(x, y)
and b(x,y) respectively. In this section, several phase calculation methods will be presented.
In Fig. 2.7 an overview of these methods is shown. Some techniques can reconstruct the phase
using a single interference pattern, whereas others require several interference patterns. The
basic properties, advantages and limitations of each technique will be discussed.

‘ quantitative analysis of interferogramq

T

Btensity based methods I | phase sampling methods—|
time domain space domain
methods methods
spatial carrier phase stepped
methods methods
frequency domain time domain
processing processing

Fig. 2.7 Categories of quantitative interferogram analysis methods.

2.6.1 Intensity based analysis methods

Single interferograms can be analyzed using digital image processing techniques. The objective
of intensity based image processing methods is to estimate the interference phase distribution
o(x,y) from the more or less disturbed intensity distribution /(x,y). The methods are based
on the fact that constant values of ¢(x,y) define fringe positions on the object’s surface.
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Fringe extrema or other loci of equal phase values are determined, using e.g. spatial filtering,
fringe tracking, skeletonizing or Fourier technigues. Then the local phase distribution @(x,y)
between fringe extrema is approximated using interpolation techniques, or by fitting a
polynomial in x and y to the data.

Experimentally, intensity based fringe analysis methods are the most simple, not requiring a
complicated optical set-up. However, quantitative image analysis of a single interferogram
often produces a number of problems and ambiguities whose solutions require time-consuming
computations.” Due to the encryption of the phase distribution by a cosine function (see Eq.
(2.43)), the interference phase distribution determined from a single intensity distribution
remains undefined to an additive integer multiple of 27 and to the sign. Fringe localization
techniques are rather cumbersome and lack sufficient accuracy, due to the high noise levels
present in the interferograms. The phase is determined indirectly at points between fringe
extrema by interpolation techniques, reducing the spatial resolution. It also yields a low
resolution in phase because of the noise contributions. It needs expertise to process the images
and automated calculation of ¢(x,y) is difficult.

2.6.2 Phase sampling analysis methods

Introducing phase sampling techniques for the evaluation of speckle interference patterns is an
essential improvement. With these techniques, the phase distribution is calculated within a high
accuracy and without sign ambiguity. Under equal conditions, phase sampling interferometers
have a higher sensitivity than systems without phase sampling.

Phase sampling methods consist of recording multiple phase-stepped or phase shifted
interferograms. The technique is based upon the modulation of the relative phase shift between
the object and reference beams in the interferometer between the recordings. Two types of
phase sampling methods can be recognized: phase shifting and phase stepping techniques. In
phase shifting interferometry, the interference patterns are recorded while the phase is shifting
(see Fig. 2.8a), whereas phase stepping interferometry records the interferogram after the phase
has been shifted (see Fig. 2.8Db).

@ (b
) o)

At
Fig. 2.8 Diagrams describing (a) phase shifting and (b) phase stepping.
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For phase stepping interferometry, the intensity distributions I, (x,) are expressed by'
L(x,3) =a(x,y) +b(x,y)cos(p(x,) +6)  (=1,..N; N23), (2.45)

where 6, is the stepped reference phase belonging to the i" intensity distribution 1,(x,y). The
integer N indicates the number of interferogram recordings (the so-called ‘buckets’).

For phase shifting interferometry, assuming a linear phase shift &(¢r) with time, the
interferograms can be described as

L+AL2

Ly Th J'[a(x, »)+b(x, y)cos(p(x,) + 6,(1)) ot

=A1l2

=a(x,y) + smc( A2 jb(x y)cos(p(x,y) +86,) . (2.46)

The difference with phase stepping is that the contrast term 5(x, y) is modified by the constant
factor sinc(Af)/2, A@, denotes the phase shift during the time interval As. For phase
stepping, Af, vanishes and the sinc function equals unity. Phase stepping is superior to phase
shifting with respect to the achievable accuracy because of the reduction of the modulation
intensity by the sinc function in phase shifting interferometry.

In order to determine the phase ¢(x,y) from Eq. (2.45) for each point (x,y), a nonlinear
system of equations has to be solved. If the phase shift 6, is known, three unknowns remain in
Eq. (2.45), namely a(x,y), b(x,y) and the desired interference phase @(x,y). Hence, at least
three equations are necessary, meaning that at least three phase-stepped or shifted
interferograms have to be recorded. The interference phase is determined modulo 27 from™

ﬁ:] sin(8))
@(x, y) = arctan| —~—————|, (2.47)
Z . cos(8)

i=1
if . =i2z/N and N23.

Simple solutions of Eq. (2.47) have been published”™ for phase steps which are constant and
have special values like /6, n/4, n/3, /2 or 2n/3 rad. If the phase step is /2 rad, N=3 and the
start value 6,=0, the phase can be calculated using

I, (x,y)~ 21, (x, ) + 13(x,y)j
- (2.48)

(D(x,y) = arctan[ 11 (x,y) — 13(X,y)

In the case of N=4 and using the same phase step, the phase is calculated using
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o(x,y) = arctan[w] .

[,(x.3) = I(x:) 249
Using a 3-bucket method with a 27n/3 phase step and a starting value of =0, we obtain
I,(ey) = 1, (x,) )
,y) = arctan| /3 2 :
plxy) = e an(f 21,(5.9) - L (xoy) ~ L (5.) @50)

If the phase shift is unknown but constant, an additional unknown is introduced, then at least
four phase shifted or stepped interferograms are required.

The main advantage of phase sampling methods is that the phase is measured directly, so that
these methods have a high accuracy. The additive and multiplicative noise components are
automatically compensated for in the phase calculation process. The resolution and accuracy of
the determined interference phase using a phase sampling method™ can reach 27/100. Also, the
spatial resolution is higher than with an intensity based analysis since no interpolation between
skeleton lines is necessary. Furthermore, the sign ambiguity is resolved automatically. Finally,
the calculation of @(x,y) can be fully automated and masks can be used to exclude bad pixels
and pixels with low modulation from the evaluation process”. Some disadvantages associated
with phase sampling involve the additional technical effort required to perform the phase shifts
accurately and the need for additional computer storage capacity.

An alternative way of categorizing phase sampling methods is to divide the methods based
upon the way the phase steps are implemented. Two categories can be recognized: time domain
methods, taking the phase data sequentially and space domain methods, recording the phase
data simultaneously.

2.6.2.1 Time domain methods

Time domain methods are also known as temporal phase sampling methods. The optical path
length difference between the object and reference beams is made time-dependent. There are
many variations of the temporal phase measurement technique. A frequently used option is a
mirror, which reflects the reference wave, mounted on a piezo crystal that shifts the mirror over
fractions of the used wavelength®’'. Other methods® are based on moving a grating, tilting a
glass plate, rotating a half wave plate or analyzer, using an acousto-optic or electro-optic
modulator or using object-induced phase shifts®.

The major disadvantage of time domain methods is the lack of real-time performance. The
phase-stepped or shifted interferograms are generated and recorded sequentially. Therefore, it
requires absolute stability of the object during the generation and storage of the (at least) three
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images. This strongly reduces the applicability of these methods in hostile environments.
Vibrations, acoustic noise or air turbulence modify the interference phase distribution to be
measured. Moreover, investigations of dynamic processes, such as deformations caused by
creep, shrinkage, thermal loading, propagation of shock waves, or high-frequency vibrational
states, are nearly impossible.

2.6.2.2 Space domain methods

Space domain methods are also called spatial phase stepping methods. In the spatial methods,
the phase information is distributed in space (across the image plane) and is recorded in a
single frame time. The spatial techniques can be further subdivided into spatial carrier methods
and phase-stepped methods. The phase-stepped methods are based on the same principle as the
phase sampling methods described above. However, as the word ‘stepped’ implies, the phase
modulation is a single step process, as opposed to the multi-step process in phase sampling
methods, yielding the required interference patterns simultaneously. Therefore, these methods
are also often called real-time phase-stepped methods.

Spatial carrier phase measurement methods

Spatial carrier phase measurement methods are based upon a large tilt between the reference
and object wavefronts. A fringe pattern with a spatial carrier frequency f, in the x-direction is
given by

I(x,) = a(x, y) + b(x,y) cos2f, x + p(x.)), @.51)
where a(x,y) and b(x,y) are again the background and the contrast functions.

In order to calculate the phase distribution without ambiguity, the spatial frequency has to obey
several conditions®. Firstly, the largest gradient of the phase @(x,y) has to be less than the
spatial carrier phase 27 f, . Secondly, the background a(x,y) and the contrast function 5(x, y)
are slowly varying compared with the carrier frequency. Thirdly, the frequency f, has to be
less than half of the sampling frequency (Nyquist condition). There are two approaches to
calculate the phase distribution from the spatial carrier interferogram. One is the Fourier
transform method®, in which the processing is performed in the frequency domain. The input
fringe pattern is Fourier transformed with respect to x by an FFT algorithm. If the spatial
variations of a(x,y), b(x,y) and ¢(x,y) are slow as compared to the spatial frequency f,,
the Fourier spectrum will exhibit three distinct parts; one DC term and two AC terms, located
around the carrier frequency  f. One of these two spectra located around the carrier is
separated from the rest and translated by * £, along the frequency axis towards the origin. This
way, the unwanted background variation a(x,y) has been filtered out. Next, using the inverse
Fourier transform with respect to f., a complex function is obtained whose phase angle is the
interference phase function @(x,y) of the original interferogram. This phase can be calculated
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by taking the arctangent of the ratio of the imaginary and real parts of the complex function.
The phase obtained in this way is inconclusive to a factor of 2n and the profile can be
determined uniquely (without ambiguity about the sign of the phase).

Using Fourier methods, some knowledge of the experiment is required”. Therefore, the
processing of arbitrary interference patterns can not be fully automated for arbitrary
interference patterns. It requires operating experience and information of additional
observations or & priori knowledge. Also, not all noise contributions can be filtered out, namely
those with variations which lie in the same frequency bands as the desired interference patterns.
Moreover, filtering is time-consuming. In a recent paper” it is expected that the phase could be
displayed within seconds after the recording of the interferogram (using a resident FFT
processor board). The phase distribution is not available in real time which classifies this
technique as outside the real-time ones.

The second method processes the interferogram in space domain®™. It involves introducing a
spatial frequency carrier f, to the fringe pattern such that neighboring pixels have
approximately 27n/3 or /2 rad phase difference. The interference pattern using a /2 phase shift
is described by

1. (x,y) = a(x,y) + b(x, ) cos{anﬂx + % + o(x, y)} (n=1..N). 2.52)

The phase in a pixel (x,y) can be calculated by use of N subsequent pixels, in the same
manner as a temporally phase shifted interferogram. After shifting one pixel to the right, the
phase calculation is repeated for the next set of N pixels. The resulting phase map contains the
desired phase plus a ramp with n/2 rad phase shift per pixel. This tilt is subtracted to produce
the raw phase map. Using this method, the phase can be determined in the range {(—m,m]
without sign ambiguity. The main disadvantage of space domain processing such spatial carrier
frequency fringe patterns is associated with the phase variations that are sought. This implies
frequency variations away from the spatial carrier frequency, and so the accuracy of the phase
measurement will be perturbed. The resulting phase interpretation errors will be functions of
both the spatial frequency and the phase of the actual fringes. Accurate alignment of the spatial
carrier frequency is crucial for accurate results in this technique.

The main advantage of the spatial carrier techniques (using Fourier processing or space domain
processing methods) is that phase distributions can be measured using a single image frame.
Unfortunately, there are some disadvantages associated with these methods. They require a
slowly varying background, modulation intensity and/or phase distribution, which is not
generally true for diffusely reflecting objects. Moreover, spatial carrier techniques belong to the
category of phase shifting techniques, where the phase measurement is less accurate because of
the encryption of the phase with the sinc function (see Eq. (2.46)). Furthermore, spatial carrier
techniques generally require much more sophisticated processing and more computing time to
retrieve the phase from a fringe pattern than the phase-stepped methods®.
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Phase-stepped methods

Some of the methods used in temporal phase stepping can be used for phase-stepped
interferometry. Optical methods to generate phase-stepped interference patterns simultaneously
are based on polarization optics' or diffraction gratings”. In a polarization type of
interferometer the interferometer branches are traversed by orthogonally polarized waves and
interference is obtained with the aid of wave retarders and a polarizer”. In many cases this
method is preferred since it offers the best signal to noise ratio and eliminates systematic
errors.* In contrast to temporal phase stepping techniques, the three or more phase-stepped
interferograms are generated and recorded simultaneously. Therefore, the interferometer has to
be adapted by introducing the phase shifts in parallel channels. Such an interferometer is called
a multichannel interferometer. The interfering object and reference beams are divided into
several sets of interfering beams, which are mutually phase-stepped, and the information is
recorded with several CCD cameras. At least three parallel channels have to be introduced,
which simultaneously produce and record separate interferograms with the required phase
shifts. From these phase-stepped patterns, the phase at each image point (x, y) is calculated.

Phase-stepped interferometry is a robust technique for phase measurement. No a priori
information of the interferograms is required and no requirements are imposed on the spatial
variations of the background, visibility or the phase distribution. Since it is a real-time
technique, it has a reduced sensitivity to external disturbances. Also, it is less sensitive to
temporal fluctuations of intensity and phase. However, in laboratory environments, the overall
accuracy in spatial phase-stepped techniques are usually lower than for the temporal methods.
The major disadvantage of multichannel interferometers is their complexity. Special care has to
be taken to avoid errors (e.g. detector non-linearity and non-homogeneity, pixel mismatch) and
to ensure the stability of the interferometer. Nevertheless, when these problems are mastered,
an accurate interferometer can be obtained, which has a highly stable phase step that can be
fixed during the assembling of the system. Such an interferometer is capable of measuring
almost arbitrary phase patterns in real time. Therefore, this phase stepping technique was
employed in the real-time phase-stepped shearing speckle interferometer, described in ihis
thesis.

Although the purpose of the research is the development of a system which can be used for
defect detection in industrial environments, real-time shearing interferometry can also be used
in various other disciplines of mechanical engineering for deformation measurement and
determination of material properties. The possibility to monitor time-dependent processes
allows dynamic testing of materials, monitoring transient events or vibration analysis (using
stroboscopic illumination to study dynamic behavior of harmonic oscillating objects, e.g. for
sound reduction studies).
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2.7 Summary

Holographic interferometry and (shearing) speckle interferometry have unique measurement
capabilities. Waves are compared interferometrically with sub-wavelength accuracy.
Holography can provide a very high resolution but is sensitive to external perturbations.
Electronic speckle interferometry has a lower resolution capability but is simpler to implement
and use. Shearography makes the interferometric system nearly insensitive to rigid body
motion of the object and strongly reduces other external disturbances since only the spatial
variations of the displacement in a predetermined direction are measured.

The basic images in speckle interferometry are intensity images, whereas the physical quantity
of interest is related to the phase of the interferogram. The phase can be calculated from an
interferogram using several techniques. Intensity based analysis methods require only a single
interferogram. More accurate results can be obtained using phase sampling techniques. The
phase distribution is calculated from at least three phase stepped interferograms. In temporal
phase stepping techniques, the phase stepped images are produced and recorded successively in
time. In general, this means that one detector will perform several subsequent recordings that
have to be stored in order to enable processing of the data. Therefore, it requires absolute
stability of the object during the generation and storage of the (at least) three images. In spatial
phase stepping methods, the different phase stepped images are generated at the same time.
Therefore, spatial techniques are best suited for measuring dynamic events and measurements
under hostile conditions. Multichannel interferometers, e.g. based upon polarization phase
stepped methods, combine the benefits of phase stepping interferometry with real time
operation.
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Chapter 3

Description of the system

This chapter presents details of the configuration of the real-time phase-stepped shearing
speckle interferometer. In Section 3.1, the two-camera system is described and functional
parts are defined. These are worked out in separate sections. The requirements and selection
criteria for the recording system and the illumination system are summarized in Section 3.2.
In Section 3.3 the shearing head is detailed and in Section 3.4 the imaging system is
described. The properties of the Savart elements will be considered in Section 3.5. Finally,
Section 3.6 describes the mechanical construction.

3.1 Description of the setup

The real-time phase-stepped shearing speckle interferometer described in this thesis is a four-
channel set-up. Four phase-stepped interference patterns are generated and recorded
simultaneously. Multi-channel interferometers are very sensitive to accurate positioning and
stability of the recording devices. Therefore, strong requirements are imposed on the
mechanical construction of such interferometers. To reduce these requirements, our
interferometer uses two cameras to record four phase-stepped interferograms. For this purpose,
two Savart elements are used as beam splitters. A Savart element splits an incoming beam with
random polarization into two mutually shifted beams with mutually orthogonal linear
polarization states. Applying retarder plates in front of these elements, the interferograms
impinging on the cameras can be given the required phase step. The two interferograms are
recorded side by side on the sensitive area of a single CCD camera. Thus, by means of two
such cameras a four bucket system is created. A schematical representation of the system is

presented in Fig. 3.1.
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Fig. 3.1 The real-time phase-stepped shearing speckle interferometer

Using two CCD cameras to record four interference patterns reduces the number of picture
elements available for each pattern with (at least) a factor two. This reduction of spatial
resolution of the interferograms is acceptable, since the goal of our project is to measure
defects with a minimum size of 490 mm? in an area of 0.25 m’. This goal can be met using half
the detection plane for a single interferogram.

System description using Jones matrices

Since our optical system is non-depolarizing, it can be described using the Jones calculus'**
and the complex wave representation®. By using Jones vectors, a plane parallel wave
approximation is introduced, leaving the lenses in our system out of consideration. This is
acceptable here, since in this section the polarization properties of the beams are of greater
interest than the imaging properties of the optical system and because the numerical aperture of
the system is small (usually below 0.06, see Section 3.4). The performance of the system will
be somewhat degraded by the converging beams in our interferometer. This is analyzed and
described in Chapter 5 of this thesis.

In this description of the system, a new coordinate system is introduced, the right-handed uvw-
coordinate system. Since the beams change directions several times with respect to the xyz-
coordinate system, it is more convenient to adopt a coordinate system that travels along with
the beams inside the interferometer. Therefore, the light traveling in the system will be
described by a two-dimensional vector, propagating in the w-direction and with its wavefront
in the wuv-plane. The uvw-system is coupled to the xyz-system by the u-direction, which is

parallel to the x-direction.
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The Jones matrix M, defined as

ME(’”' ’”] 3.1)

m, my

represents an optical element. The matrix M@ of a complete optical system, containing g
elements, can be found by multiplying the ¢ separate matrices describing the subsequent
elements

MY =MM, .. .M,. (3.2)

If the wave front of a monochromatic light beam lies in the »,v plane and is traveling in the
positive w-direction (i.e. the planar wave approximation), the electric field vector E(u,v) can
be expressed as a combination of the two basic components £, and E, into the Jones vector

s (7))o 6

where @ is the angular frequency, ¢ represents the time and £ is the wave number. If the wave

passes through an optical element represented by the matrix M, , then the relation between the

"incident and transmitted electric field vectors and E and E' of the wave becomes:

E=M,E. (3.4)

The coherent, diverging beam emitted by a semiconductor laser illuminates the object. This
light wave is monochromatic and linearly polarized. The object reflects the light diffusely and
part of this light is collected by the system and directed towards the CCD cameras, forming a
speckle pattern on the cameras. Since we use the planar wave approximation, all waves will
undergo the same transformations in the system and hence only a single wave will be
considered in this system description. Omitting the time dependency (see Section 2.4), this
wave can be described as

E(u,v) = (j‘)e"w("»“> . (3.5)

The diffusely reflected light is gathered by the entrance lens of the system. Next, this light
passes through a polarizing beam splitting cube (PBC), which splits the incoming light into two
parts with mutual orthogonal linear polarization directions. The component in the u-direction
(also called s-polarized light) is reflected and the one in the v-direction (p-polarized light) is
transmitted. For transmission, the transformation matrix M., of the PBC equals
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My, = (g (D (3.6)

and for reflection

1 0
My, = (0 0] . 3.7

Both the transmitted and reflected parts travel through quarter wave plates before impinging on
a mirror. These stationary quarter wave plates (QWP), both with their fast axis oriented at -n/4
rad with respect to the u-axis, transform the incoming beam according to

1(1 =i
MQ;W,-n/4:'J_§(_i lja (3.8)

yielding light that is right-handed circularly polarized for the reflected part and left-handed
polarized for the other. Both parts reflect at the mirrors. One of the mitrors can be rotated
around the - and the v-axes to vary the shear in direction and distance. The part of the beam
reflecting from this mirror surface is (arbitrarily) regarded as the object beam. The other part of
the beam, the reference beam, impinges on the mirror mounted on a piezoelectric element. This
mirror can be translated perpendicularly to the incoming beam by means of a piezoelectric
element (see Sections 3.3 and 4.1 for the function of this piezoelectric element). As a result of a
rotation of the mirror in the object beam path, its phase distribution ¢, (u,v) is shifted over
(Au, Av) with respect to that of the reference beam, as is described by

@, (u,v) =@, (u+Au,v + Av). (3.9)
The reflection of the beams on the mirrors changes the coordinate system u,v,w of the beams,
such that during the second pass of the beams through the quarter wave plates, the fast axes are

positioned under /4 rad with respect to the u-axis. The corresponding transformation matrix of
the mirror is

1 0
= 3.10
Mmrrmr (O 1] 2 ( )

and of the QWP at n/4 rad with respect to the u-axis

1 (1 i
Mgw.,ﬁﬁ:/—;[i J- (3.11)

At passing the quarter wave plates for the second time, both the circularly polarized beams are
transformed into linear ones, such that the previously reflected beam is now transmitted by the
PBC and vice versa. The reference beam now is described by
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AN
E (u,v)=—i 0 e/ (3.12)
after leaving the PBC. The object beam is described by

0) .
E, (u,v) = —i[A )e'%(”“”, (3.13)

u

Next, supposing that the intermediate lenses and mirror do not alter the polarization states, both
beams enter the second beam splitter, which is non-polarizing. This beam splitter generates the
fields in the two branches of the interferometer. The path towards CCD1 will be called Branch
1 and the path towards CCD2 is Branch 2. For a non-polarizing beam splitting cube (BSC) the
transmission matrix is:

c L
My, = [c' ] : (3.14)
n

in which ¢, and ¢, represent the amplitude transmission coefficients for - and v- components,
respectively. For reflection, the transformation matrix is:

cl’ll
My, = (c j 5 (3.15)

where ¢,, and c,, represent the amplitude reflection coefficients for u- and v- component,
respectively. If there is no absorption, |c,, +c,, | equals unity and the same will be valid for the
v-components. Behind the BSC, we have four beams, two in each branch. In Branch 1 we have
the contributions from the reference beam

c, AN .
E, (u,v) =—i[ ”‘0 '}e’“"("*"’ (3.16)

and from the object beam

0 .
E(,,.(u,v)=—i[c Ajew’”“'f“’. (3.17)

v u

In Branch 2 the contributions from the reference and object beams reflected by the BSC occur,
described by

C A . -
E,,(u,yv)= —i( 0 ‘]e’”’"”“), (3.18)
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. 0 g, (u,v)
E,,(u,v)=i o A e'P (3.19)

o

In Branchl, a quarter wave plate is oriented such that its fast axis makes an angle of n/4 rad
with both impinging polarization states. As a result it transforms the two linear states into two
circular states with opposite rotation directions. These beams pass through a Savart element.
Owing to its birefringent nature it simultaneously can be used to split an incoming beam into
two components (an ordinary and an extraordinary component) and to set the phase steps. The
Savart elements, as used in our set-up, consist of two segments of calcite; each segment is
29.76 mm long. The projection of the optical axes of the segments on the uv-plane are mutually
orthogonal, making an angle of n/4 and -n/4 rad with the u-axis (see Fig. 3.2). These angles are
determined by the requirements on the image displacement of the element (see Section 3.5).

optical axes

Fig. 3.2 Savart element.
A Savart element can be regarded as a linear polarizer with two transmission axes, one for the
ordinary beam and one for the extraordinary beam. These transmission axes are mutually

perpendicular and make angles of n/4 and -n/4 rad with the u-axis. For a linear polarizer with
its axis at /4 rad to the x-axis, the Jones matrix equals

1(1 1
MLP,,,/4=5[1 1), (3.20)

and for -n/4 radians:

1(1 -1
MU,!_MZE(_l 1]. (3.21)

Calculating the fields of those parts of the reference and object beams that arrive at the left-
hand side of the CCD camera (see Fig. 3.2), we arrive at:
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—i—-De, A (1) .
E" (u,) = (=i . )26,1, . [Je,q,,(u,v) (3.22)
and
—i-De 4 (1)
E (u,v) = Gi-De, 4, > )_26"' v [Je"""(""'). (3-23)

From these two equations it can be seen that, assuming ¢, ,c,, 4, and 4, to be real, the phase
step between the object beam and reference beam is zero. On the right-hand side of the CCD
camera the object and reference beams are described by

, -, 4, 1),

B () = O (— Jew"” , (.24
. —i -1,

Ethl (u,v) — (1 21)21*1414 ( : ]e’%('h“) s (325)

which show a 7 rad phase step between the object and reference beam.

In Branch 2, an additional half wave plate is inserted before the quarter wave plate and
analyzer. A half wave plate flips the polarization state around the fast axis of the retarder plate.
The transformation matrix for a half wave plate with its fast axis at an angle y with respect to
the u-axis is'

cos2y  sin2y J

= 3.26

M e l(sinZw —cos2y)’ (326

The half wave plate is such oriented that its fast axis makes an angle of 7/8 rad with the u-axis.

This gives the polarization direction an additional tilt of n/4 rad. Behind the HWP, the object
and reference beams are described by

—c 4, (1Y,
E,,(uv)= Cﬁ (_Je'“’""*"), (3.27)

A (-1) .
E,a(n) = 22 (e (328)

These beams pass through a quarter wave plate with its fast axis under n/4 with these
polarization directions, i.e. it is parallel to the u-axis. The Jones transformation matrix of this
element is:
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-1

(10
My, = e (0 ) . (3.29)

As a result, two circularly polarized beams enter the Savart element, which is identical to the
one in Branch 1 of the interferometer. The object and reference beams impinging on the left-
hand side of CCD?2 are described by

1 N
E (uy) = ———'"2 \} +D) e"’”( Jd%("*‘k (3.30)

1) .
EL% (uv) == 2"}’ )e'""‘[Je'ﬂ*""", (3.31)

and the beams at the right-hand side of CCD2 are

‘ -1 .
E[8" (u,v) =— 5 \/ﬁ ) ”’"‘( lJe""'("‘“) (332

and

right C A (l+1) m _1 i u,\v
£t - A .

The interference pattern recorded by the left- or right-hand side of the considered CCD camera
is calculated using

1(\1(:!;)’ (u’ V) (Eude + Eudt.) (Ewde + E\Idt) *

o of

_Ewdc Emlc *+Evdc Emlt. *+Eudc E\rde *+Ede Euu'L #* (121’2), (334)

0j o 0,

in which / indicates the camera number, the superscript side the side of the camera and * the
complex conjugates of the field vectors (of which the dependency on u,v is temporarily
omitted). For the left hand side of CCD1, equations (3.22), (3.23) and (3.34) result in

1 1
I (u,v) = S 2 A2 +2c,"A‘2 +¢,C A, A, cos(go(u,v)), (3.35)

in which @(w,v) equals
P, v) =@, (u,v) =@, (u,v). (3.36)

The first term in Eq. (3.35) is the object intensity /,, the second term the reference intensity 7,
and the third term is the interference term. As we can see, this interference pattern has a zero
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phase step between the object and reference beams. Equivalent to the calculation for the left-
hand side, the interference pattern for the right-hand side of CCD1 can be derived (using Eq.
(3.24) and (3.25)) as:

. 1 1
178 (u,v) = Ec,%, A2 + =2 A2 +c,e, A, 4, cos{p(u,v) + 7). (3.37)

2 ="y 1u

The phase difference between the two interferograms recorded by CCD?2 also have a phase
shift of m rad between the object and reference beams. As a result of the half wave plate, the
interferograms on CCD2 differ n/2 rad with the corresponding interferograms on CCDI,
leading to

o 1, .
Ig."nz (u> V) == Eczv Aj + Ecrzu A\: + Crucrv Au A\- COS[(P(H’ V) - —725‘) (338)
and
right 1 2 42 1 2 42 z
](.'gDZ (uﬂ V) == Ecrv Au + Ecrll A\f + CrucrvAuAr co q)(u’ V) + —2— . (339)

Thus, interpreting the intensities at the left- and right-hand sides of CCD1 as [ (u,v) and
I,(u,v), respectively, and those of CCD2 as /,(u,v) and /,(u,v), we obtain the correct phase
steps for a four bucket algorithm® (phase step values of 0, 7/2, © and 37/2) in which the phase
is calculated using

Li(uv) -1, @)
o(u,v) = arctan( 1 G )= 1, )J . (3.40)
The CCD cameras are connected to a pipeline image processing system (Datacube, MaxVideo
200) which calculates the phase at video speed (i.e. 25 times per second). This image
processing system will be described in Chapter 4. In the following sections of this chapter, the
optical set-up is characterized in more detail. For that purpose, the optical system is divided
into several functional components: the illumination system, the shearing head, the imaging
system, the phase stepping system and the recording system (see Fig. 3.3).
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Fig. 3.3 The functional components of the real-time phase-stepped shearing speckle
interferometer.

Section 3.2 treats the illumination and recording systems. The requirements for these systems
are strongly related. Therefore, these systems could not be designed sequentially but they had
to be considered together. The shearing device contains the polarizing beam splitting cube
(PBC), the two quarter wave plates (QWP) and the two mirrors. It facilitates the relative
displacement (shear) between the object and reference beams. The description of this shearing
head is given in Section 3.3. The object is imaged onto the detection plane of the cameras,
using the imaging system. It embodies an objective lens and a Kepler type telescope, consisting
of two identical lenses. As a result, every point in the image plane is directly related to a small
area on the object. In the common foci of the telescope lenses a diaphragm is positioned, which
can be used to adjust the speckle size in the detection planes of the cameras. Section 3.4 details
the properties of the imaging system. The phase stepping system consists of the two quarter
wave plates, the half wave plate (HWP) and the two Savart elements. Section 3.5 will describe
the Savart elements and the propagation of light through these birefringent elements.




The illumination and recording system 49

3.2 The illumination and recording systems

To make the set-up transportable, a small laser, such as an air cooled argon ion laser, frequency
doubled Nd-YAG laser or a semiconductor laser, should be applied. The use of a
semiconductor laser (diode laser) is most favorable, mainly because of its small size, rugged
construction, ease of use, low voltage and the absence of a forced cooling. Also, the possibility
to use diode lasers in either CW, pulsed or modulated mode make them more versatile than
other lasers.

CCD cameras (Charge Coupled Device) are used to record the interference patterns because of
their linear response and compatibility with computers. Especially for phase stepping systems,
a linear camera response is necessary. Usually, the linearity of the camera is specified by a
quantity (gamma) that is defined as the slope of the signal voltage as a function of exposure in
a double logarithmic plot. For linear response, gamma equals unity. However, for the best
visnal contrast on a monitor, a gamma of 0.45 is often applied for standard television cameras.
Typically, the output of a CCD camera deviates not more than 5% from the linear response
(until the saturation level is reached), if gamma is set to unity.

For optimal performance of the interferometer, the laser and CCD cameras have to be matched.
The minimum required laser power is directly related to the sensitivity of the CCD chips, the
wavelength of the light and the speckle size. Clearly, a high laser output power P, per object
area A, a high camera sensitivity (i.e. low minimum required illumination ') and a large
aperture in the interferometer increase the intensity of the light in the detection plane of the
interferometer. Since this intensity is quadratically dependent on the numerical aperture NA,
which in turn is proportional to A/d,, we introduce a factor R to indicate usable laser and
camera combinations, defined as

R= 5S, (ij 2 3.41
AS \d, )~ (3-41)

Here, P, represents the optical output power of the laser, A the wavelength of the laser, S is the
sensitivity (or minimum required illumination) of the CCD, d, denotes the average speckle
diameter, S, indicates the relative sensitivity (with respect to the maximal one) at the laser's
wavelength and 4 the inspection area. The objective of the system is to inspect an area of 0.25
m” in a single recording. The factor R can be used to discriminate between useful and useless
combinations of laser and camera.

Test measurements with a three camera shearing phase stepping speckle interferometer®
showed a minimally required value for R of 24. Using Eq. (3.41), a quantitative evaluation ofa
laser and camera combination can be made (based on specifications), separating the useful
combinations (R > 24) from the useless ones (R < 24). Since these specifications are not
always comparable, care has to be taken using this R -factor.
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3.2.1 Semiconductor laser

Despite its many attractive properties, a (diode) laser is not an ideal coherent light source.
Apart from technical imperfections, the coherence of such a laser is affected by its inherent
properties. The broadening of the emission linewidth is a fundamental effect present in any
laser. The smaller the laser cavity, the larger this effect. Typically, diode lasers have a cavity
length of several 100 micrometers. In lasers with a long cavity, the output beam is strongly
enhanced at the resonant wavelength of the cavity. Compared to e.g. gas lasers, which have
cavities in the range of tenth of centimeters to more than a meter, the coherence length of diode
lasers will be much shorter. Fortunately, requirements on the coherence length are relatively
weak for shearing interferometers. In a shearing interferometer, the electric fields originating
from two closely positioned object points are combined in the detection plane. To obtain an
interference pattern with an optimal modulation depth, the interfering fields must be spatially
and temporally coherent: it requires a constant phase relation over at least several centimeters
on the object’s surface and a sufficient coherence length. The coherence length L can be
defined as

L =cAt,=——=-"— (3.42)

in which ¢ denotes the speed of light, Av, and A/, represent the spectral bandwidth and the
linewidth of the laser and ¢, the coherence time. The laser’s coherence length should be much
larger than the difference in optical path length between the object beam and the reference
beam. In shearography, this is generally in the order of microns or millimeters. Diode lasers
with a single spectral mode will meet this criterion. The separation AL between adjacent
longitudinal modes is determined by the frequency spacing A v between the n™ and the (n+1)"
longitudinal mode in the laser cavity, as given by

2

M=-"=Av, (3.43)

in which the frequency spacing Av is the spectral distance between two maxima in a Fabry-
Perot interferometer with a length L, and cavity medium with a refractive index of »:

Av==—. (3.44)

Typically, the wavelength separation A4 is 0.3 nm for wavelengths around 800 nm. Using this
value, Eq. (3.42) shows that the coherence length L, is in the order of a mm even if two
longitudinal modes are present. Therefore, single longitudinal mode operation is required.

The spatial coherence of laser light is associated with the transverse mode structure in the
resonance cavity. For lasers resonating in the TEM,, mode, all points on the illuminated object
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have extremely good spatial coherence. If several transverse modes are present, a non-uniform
intensity pattern arises over the illuminated object, i.e. there are regions with low and high
intensities. Since the measurement accuracy is directly related to the intensity, the defect
detectability in the dark regions is strongly reduced. Therefore, it is benificial to use a laser that
emits the fundamental mode only.

At the time of this research, it was not possible to use a single mode diode laser emitting light
in the visible range, because of its limited output power. With single mode diode lasers
emitting longer wavelengths, higher optical powers can be obtained. Near-infrared diode lasers
(i.e. around 1000 nm) offer the highest output powers. We used a 1 Watt single mode diode
laser emitting in the near infrared at 984 nm™*.

3.2.2 CCD cameras

Because of the rather low emission power of diode lasers and the restricted transmittance of the
optical system (see Section 3.4), the sensitivity of the CCD cameras is of prime importance in
the camera selection’. Spectral response is another important camera characteristic. In the
optimal case, the laser wavelength coincides with the peak of the spectral response of the
photosensitive material of the CCD camera.

The basic building block of a CCD camera is a metal-oxide-semiconductor (MOS) capacitor
with silicon as the photosensitive material®. The responsitivity of silicon starts at about 300 nm,
has a maximum around 900 nm and tends to zero just below 1200 nm (see Fig. 3.4a). The
average absorption depth of light in silicon increases with the wavelength of the light. This
reduces the spatial resolution of the CCD camera slightly. To avoid this, the infrared response
of many cameras is reduced by placing an IR filter in front of the chip. Further, the CCD
cameras are often processed to change the spectral response to approximate the human eye (see
Fig. 3.4.b). The chip then has a maximum spectral response at around 550 nm and decays to
zero just below 1100 nm (see Fig. 3.4b). The red and infrared responses are strongly
suppressed, which make these cameras ineffective in combination with the above mentioned 1
Watt diode laser.

* Spectra Diode Labs, 5761-A6 MOPA laser, 1 Watt at 984 nm
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Fig. 3.4 Spectral response of (a) silicon, (b) a CCD camera matched to the human eye
and (c) of the Kappa CF7a CCD camera.

Kappa CF7a CCD cameras have been used in our system. This camera type has no infrared
reduction features (see Fig. 3.4c). The sensitivity S is 0.2 lux (i.e. 0.3 mW/m’) and it has a
maximal spectral response at 900 nm and about 90% at 984 nm. It accommodates 760 x 576
picture elements of 11 pum (H) x 11.3 pm (V) um in a 8.8 x 6.6 mm’ area. For a usual case in
which the speckle size equals the picture element size, the value for R equals 64, which exceeds
the critical value of 24, such that this is an usefull combination of camera and laser.

The Kappa CF7a camera is a 50 Hz frame transfer camera. The transfer type of a camera is an
important property, since it has a large influence on its performance. There are two types of
two-dimensional CCD sensors: interline transfer (IT) CCD’s and frame transfer (FT) CCD’s.
Figure 3.5 shows schematically the configurations of the two types of sensors.

(@) (b)

image
section

storage
section

shift register

shift register

Fig. 3.5 Architecture of (a) interline transfer and (b) frame transfer CCD cameras. The
shaded areas indicate optically shielded areas.

The difference between the two types lies primary the in the way the picture elements are read.
With an interline transfer sensor, the photon-generated electrons are, after a certain integration
period, rapidly transferred from the photocells into the vertical shift registers. These shift
registers are optically shielded (indicated as shaded areas in Fig. 3.5). Horizontal rows of
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charge packets are then transported simultaneously and eventually end up in a horizontal shift
register, which transports the charge towards the sensor output line by line. The even and odd
rows of picture elements are read out alternately, each after an integration time of 40 ms (CCIR
standard). While the even lines are transported, the integration of the odd lines continues and
vice versa. This read-out technique is called ‘interlacing’. The two half images, also called TV
fields, are combined to form a full image, the so-called TV frame. This read out structure is
used to avoid flicker in the monitor image. A frame transfer sensor consists of an image section
and an optically shielded storage section. After an integration period of 20 ms (CCIR), all
charge packets are rapidly transferred line by line, over the image section to the storage section,
after which they are read out through a horizontal shift register. All charge packets are
transferred to the output register for each TV field. Therefore, the integration time is halved
with respect to the interline transfer CCD. Interlacing is achieved by alternatingly collecting
charge packets under different electrodes as depicted in Fig. 3.6.

even field odd field
Fig. 3.6 Picture elements of interlaced fields in a frame transfer CCD camera.

As a consequence of the difference in transfer techniques, the performance characteristics
differ. There is a remarkable difference in fill factor, defined as the fraction of light-sensitive
area per total area in a picture element, between interline and frame transfer type CCD cameras.
The interline transfer sensor has a fill factor of only 20 to 40%. In a frame transfer device,
nearly the whole surface area is photosensitive, resulting in a fill factor of almost 100%. Thus,
frame transfer CCD sensors usually provide a better sensitivity than interline transfer CCD
sensors when the same photosensitive material is applied. Moreover, thanks to the large
integration area per pixel, frame transfer CCD's usually offer a larger dynamic range than
interline transfer CCD's. The dynamic range is mainly determined by the maximum number of
electrons a picture element can hold, which is set by the volume of the depletion regions. The
main disadvantage of frame transfer cameras is associated with pulsed laser sources. To
analyze high speed transient phenomena, pulsed laser sources are needed. If a frame transfer
CCD camera is used together with a pulsed laser, an interferogram cannot be recorded in the
even and uneven lines simultaneously. Therefore, only half of the spatial resolution is obtained.
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Generally, the readout of a CCD sensor results in video jitter, i.e. pixels do not have the same
position in subsequent digitized frames. This can cause considerable errors. Besides this, it is
necessary to synchronize the exposure of the cameras. The Kappa CF7a camera can fulfill these
synchronization requirements demanded by the computational system (see also Chapter 4).
Besides the video signal it also exports the pixel clock signal. This enables pixel synchronous
digitization, thus avoiding video jitter. Moreover, both CCD cameras are locked on the same
synchronization signals.

The Kappa CF7a camera consists of three parts: a small head (containing only the sensitive
chip), mounted on a Printed Circuit Board (see Fig. 3.7), a small electronic unit (connected to
the remote head with a 30 cm flat cable), containing the electronics for processing the sensor
signals and a larger electronic unit containing the power supply for the two cameras. The latter
also generates the H- and V- synchronization signals and the pixel clock signal on which the
two cameras are locked and it facilitates the transfer of the video signal and the synchronization
signals to the pipeline image processing devices (see also Chapter 4).

Fig. 3.7 The CCD chip mounted on a printed circuit board in a translation stage.

The remote head version of the camera system is necessary in order to enable integration of the
cameras in a stable and compact mechanical construction. The small electronic units of both
cameras are positioned underneath the base plate of the interferometer. In order to keep the
electronic noise under acceptable values, the distance between the head and this electronic unit
could not exceed 30 cm. The power supply can be positioned away from the interferometer (in
our case at a distance of maximally 5 meter).
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Fig. 3.8 Schematical presentation of the recording system.

3.3 The shearing head

In shearing interferometry, the wave front under test interferes with a sheared version of itself.
There are several ways to introduce shear in an interferometer, namely by lateral, radial,
rotational shifting, by inversion or by folding®. In lateral shearing interferometers, the
interference pattern resulting from interference between two mutually displaced (or sheared)
identical wavefronts is recorded (see Section 2.5 for a mathematical description). Orienting the
shear such that it is in the same direction as the periodic structure of an object and adjusting the
shear distance such that it is equal to an integer multiple of the structure’s period, the object’s
structure becomes invisible in the measured deformation, which leads to an improved defect
detectability®. For this reason, we prefer lateral shearing in our defect detection system, which
is, among others, applied to (periodic) honeycomb structures.

Our shearing device has the configuration of a Michelson interferometer. The primary
advantage of this type of set-up is the capability to vary both the direction and the magnitude of
the shear (and hence the sensitivity of the system) over a continuous range. They can be varied
easily and independently from each other by rotating the shearing mirror around the x- and y-
axes. If a large shear is used, the measurement’s sensitivity is increased. But it also results in a
larger region in the image where no interference occurs. In Fig. 3.9, the lateral shearing device
as it is implemented in our system is depicted. It consists of a polarizing beam splitting cube
(PBC), two quarter wave plates (QWP) and two mirrors.
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Fig. 3.9 The shearing device.

Using this combination of quarter wave plates and a PBC enables the use of nearly 100% of the
light that passes the field stop that is positioned just in front of the shearing device. No light is
reflected in the direction of the object, as is the case in a usual Michelson interferometer. Thus,
except for the reflection losses and possible imperfect alignment or characteristics of the
quarter wave plates or PBC, no light is lost, which is an important feature in low light leve]
applications. At the same time, the polarization states of the two beams leaving this head are
determined in accordance with the requirements of the phase-stepped interferometer.

The PBC in the shearing device splits the light scattered by the object into two linear polarized
parts with mutually orthogonal polarization directions, as is described in Section 3.1. The beam
travelling to the adjustable mirror is arbitrarily called the object beam, the other is the reference
beam. The reference mirror is mounted on the piezoelectric element and positioned accurately
perpendicular to the incoming beam. This element is used for initialization and testing purposes
(see Section 4.2) and remains in a fixed position during measurements. By tilting the shearing
mirror, a shear is introduced. For a small shear angle, the phase pattern, measured by this
interferometer, approximately describes the ‘deformation gradient of the object in the shear
direction (see also Section 2.5). Using larger shear angles, the device gradually deviates from a
common-path mode of operation. This effect is a potential error contributor since it reduces the
tolerance to environmental disturbances,

We use a polarizing beam splitting cube, constructed from a pair of matched right angle prisms
cemented together, with a multilayer dielectric coating at the interface. This polarizer transmits
linearly polarized light with the plane of the electric field vector parallel to the plane of
incidence (p-polarized) and reflects the orthogonally polarized (s-polarized) light. Cube
polarizers are more rigid in construction than plate polarizers. In addition, the quarter wave
plates can easily be mounted onto the polarizing cube’s surfaces (see Fig. 3.10). This enables
the set-up to be compact and reduces its sensitivity to external variations, such as vibrations,
temperature changes etc.
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Fig. 3.10 The shearing device.

Since the PBC is used in a convergent beam, it will generate spherical aberration. As we are
using small numerical apertures and the aberration of the object beam is nearly the same as that
of the reference beam since they travel along comparable paths, this will only have a small
effect on the measurement accuracy. Apart from imaging aberration, also polarization
aberration® is present. There are two major contributions to polarization aberration. The first
contribution is due to the intrinsic geometry of the polarizing beam splitting cube and the non-
collimated beam. The s- and p-polarizations of a non-perpendicular incoming beam do not
coincide with the polarizing axes of the beam splitter. As a result, some p-polarization is
reflected and s-polarization is transmitted. This coupling of the s- and p- polarizations is
usually low in applications with small angular deviation from the optimal value. Also, nearly
100% of this unwanted light propagates in the direction of the object and not further into the
system, since at the second pass of the PBC, again only a small amount is reflected where it
should have been transmitted and vice versa. Since the coupling between s- and p-polarization
is stronger for angles in the vertical plane than in the horizontal plané’, this effect will be
reduced if we use a horizontal shear. The second contribution to the polarization aberration is
caused by the angular dependence of the beam-splitting coating, which can differ between
different coatings. How these two effects influence the accuracy of the system is discussed in
Section 5.1.

We implemented zero order (narrow bandwidth) retarding plates, consisting of oriented
polymers cemented between fused silica windows. The polymers used in these retarders have a
birefringence that is nearly constant with wavelength. It is much less dependent on wavelength
and temperature than multiple order retarders and the retardance is less dependent of tilt around
w its fast or slow axis’. It also has a higher tolerance on the deviation from perpendicular
| incidence of the incoming beam.

The mirrors are mounted about S mm behind the quarter wave plates. We have used ‘hot

mirrors’, i.e. mirrors reflecting only the near infrared and infrared light, and therefore prevent
the visible ambient light to enter the system, which otherwise might reach the sensitive area of

R
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the CCD cameras. The mirrors are glued upon strongly absorbing glass filters that will absorb
the light as far as it is transmitted by the mirrors.

3.4 The imaging system

The imaging system of our real-time phase-stepped shearing speckle interferometer comprises
an objective lens and a Kepler type telescope. The objective lens generates an intermediate
image of the object, which is duplicated by the telescope. The image plane of the objective lens
is approximately 10 mm behind its mounting, which is insufficient to place the required optical
elements for shearing and phase stepping. Therefore, a Kepler type telescope is used to shift the
image plane, thus providing the necessary space. The image plane of the objective lens
coincides with the object plane of the telescope. The object distance of the telescopic system
must be large enough to provide the necessary space for the shearing head, whereas the image
distance should be large enough to accommodate the phase stepping elements (see Fig. 3.11).

Kepler type telescope
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Fig. 3.11 The imaging system.

In each branch of the interferometer, two images have to be recorded, which are projected side
by side onto a single CCD surface. The sensitive area of the CCD chip is 6.6 x 8.8 mm?, which
results in an upper limit of the image size at the detection plane of 6.6 x 4.4 mm?®. Since the
system has to be able to inspect a 0.25 m? area in a single recording, the total magnification of
the objective lens in combination with the telescopic system has to satisfy

|6, M,,| =107 (3.45)

tel

Here, M, and M,, are the lateral magnifications of the objective lens and of the telescope,
respectively. The intermediate image, created by the objective lens, is inversely reproduced at
the photosensitive surfaces of the CCD cameras by the telescopic system. Since the

intermediate image itself is already a reversed reproduction of the object, produced by the
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objective lens, the orientation of the resulting image in the image plane is the same as the
object.

The astronomical or Kepler telescope'! is normally used to view at objects at infinity. The back
focal plane of the first lens f, coincides with the front focal plane of the second lens f,. If the
aperture stop, which is required to control the speckle size, is placed in the common focal
planes of the lenses f, and f£,, the exit and entrance pupils of the telescope are at infinity, i.e.
the telescope is telecentric. This is advantageous since this way the aperture of the system can
be altered without changing the field of view. There is no vignetting by the aperture stop.
Moreover, the principal rays in the image space are parallel to the z-axis, leading to an optimal
performance of the elements in the phase stepping system.

Using this imaging system with its intermediate image has another advantage. The objective
lens can be changed without affecting the imaging beyond the intermediate image plane.
Furthermore, to avoid overlap of the images on the CCD surfaces, a field stop is used. This
field stop must be sharply imaged on the CCD cameras and is therefore placed in the
intermediate image plane.

Since we expect a low light level in our system, a very important factor in the design of the
imaging system is its light gathering power. Moreover, to obtain a stable and rigid system, the
total system should be as small as possible. How this affects the design of the imaging system
is analyzed in the next subsections.

3.4.1 The objective lens

In Fig. 3.12 some parameters are depicted which will be used in the subsequent calculations.
€ and £2 indicate the solid angles subtended by the entrance pupil from the axial object point
and the exit pupil from the axial image point, whereas €, and  represent the convergence
angle in the object and image space respectively. ¢, and ¢ are the angles between z-axis and
the principal rays through the object point (x,,y,) and the image point (x,,y,) respectively.

(xo:¥0) ) | (1)
W e}
0 6
X .z

object entrance I_> exit image
plane pupit M pupil plane

Fig. 3.12 Parameters in the object and image spaces.
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We assume that the object with a surface S, is uniformly illuminated with a total energy flux
per unit time @ and is radiating according to the Lambert‘s law (i.e. its brightness B, is
independent of the propagation direction). Then, the radiant flux F at a point of the
intermediate image plane satisfies'*:

F, = B,wsin*(4 )cos* (4, ), (3:46)
where the brightness B, of the object is given by
D
By = %0—, (347)

if the object is radiating in all directions in an infinite half-space between the object and the
image. The interferometer is located relatively far away from the object, such that the angle g,
is small and the solid angle in the object space €3 can be approximated with

Q =zsin’(g), (3-48)
and in the image space (2, is approximately equal to

Q = zsin’ (0]) . (349
This changes Eq. (3.46) into

F =B,Q cos4(¢ﬂ). (3.50)
Combining (3.47) and (3.50) and using

Q=M,Q, (3.51)
the radiant flux F, at a point of the intermediate image plane satisfies

F = M. (3.52)

S, M2,
From this it is seen that a larger value of ¢, gives a lower radiant flux, which means that the
average intensity reduces towards the edges of the detection plane. Choosing an objective lens
with a long focal length reduces this problem since then ¢ will be small. However, a long
distance between object and measuring system is impractical and it reduces the light gathering
power of the imaging system since {2, decreases. As a trade-off, we have chosen to use a
compound objective lens with a (fixed) focal length of 10.5 mm for our system. Using the 10.5
mm objective lens, a surface of 0.25 m® can be imaged in the intermediate image plane at a
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distance of 1 m. The diameter of the lens is 10 mm, which is sufficiently large not to limit the
light gathering power of the complete optical system. This is namely determined by the
aperture stop in the telescope. To add flexibility to the system, a zoom lens would have been
preferred. Unfortunately, standard camera (zoom) objectives show a low transmittance for near
infrared light due to the anti-reflection coatings for visible light on the surfaces. As an example,
the transmission of a Fujinon C0305081 camera objective is 60% and for a Micro-Nikkor 55
mm camera objective the transmission is only 1% using 984 nm light.

3.4.2 The Kepler telescope

The Kepler type telescope is used to shift the intermediate image plane to the detection plane,
thus providing the necessary space for the interferometer’s optical elements. The object
distance of the telescopic system must be large enough to provide the necessary space for the
shearing head. The shearing head is composed of a polarizing beam splitting cube, with edges
of 25 mm, two quarter wave plates of 7 mm thickness, glued onto the sides of the beam
splitting cube, and two mirrors. These elements require a minimum object distance of 64 mm.
Some extra space is required in between the wave plates and the mirrors, since the shearing
mirror is rotatable and the other mirror is translatable. Actually, an object distance of 93 mm
was chosen. Since the optical path length of a ray in a medium of refractive index # is equal to
n times its geometrical path length, the minimum optical path length from the object plane to
the first lens of the telescope is 70 mm.

The image distance of the telescopic system must offer enough space for positioning the
elements of the phase stepping system. A non-polarizing beam splitting cube, sized 25.4 mm is
part of it. In Branch 2 of the interferometer (see Fig. 3.1), the quarter- and half-wave plates are
attached to this cube and in Branch 1 a quarter wave plate and a dummy plate are fixed. This
dummy plate is made from the same material (fused silica) as the windows of the wave plates
and is equal in thickness. It is implemented to avoid an optical path length difference in the two
branches. The wave plates and the dummy each have a thickness of 7 mm. Next, in both
branches the Savart elements of 59.5 mm are positioned. In total, the required minimum image
distance of the telescope is 100 mm. Including some extra space for mounting, the minimum
image distance is 143 mm. Again taking the refractive indices of the materials into account, the
resulting minimum optical path length from the second lens of the telescope to its image plane
becomes 110 mm.

With the industrial applications in mind, the portability of the interferometer head was a key
factor in its design. In order to be mounted on a small base plate and to obtain a compact
system, the path lengths in the imaging system should be minimized. The total length of the

telescope, d,,;, is equal to the sum of their focal lengths £, and f,, as is given by

fel?

dy=H+1s : (3.53)
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Using the Gaussian lens formula”, (i.e. a paraxial approximation for thin lenses), the following
relation can be deduced for a Kepler type refracting telescope with a magnification A,

2
M, (3.54)
{;] L1
'Mlel |Mlel

in which the lateral telescope magnification satisfies

fr=

= (3.55)

The distance between the first lens of the telescope and the object plane is represented by z,
and z; represents the distance between the second lens and the image plane. Thus, the total
length d,, of the telescope can be written as

%
ot
I tel

M,

fel

dlel = Zo

(3.56)

Fig. 3.13 displays a graphical representation of Eq. (3.56), using the minimum required values
of 70 mm for z, and 110 mm for z;.
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Fig. 3.13 Length of the telescope for different magnifications.

The telescope has a minimum length if
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which occurs in our case at |M,,|=1.25. If | M,,|=1 is chosen, the telescope length is nearly
minimal (d,,=180 mm instead of 175.5 mm, i.e. 2.6% larger) and has the advantage that the
focal distances of the lenses can have available values.

Focal length of the lenses

The focal lengths of the two lenses in the Kepler type telescope have to be equal since we have
chosen for minus unit magnification. The requirements for the minimum object distance and
image distance determine the required focal length of the lenses in the telescopic system.
Satisfying these requirements, the focal lengths of the telescope lenses should be at least 110
mm, if the object and image distances are to be equal. However, a more compact system can be
obtained using unequal object and image distances.
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Fig. 3.14 Definition of distances.

Choosing for minus unit magnification, we obtain from the Newtonian paraxial imaging
formula for thin lenses '

z,b, = 17, (3.58)

for the first telescope lens while for the second telescope lens we have

v,z, = f*, (3.59)

in which 4, indicates the image distance of the first lens with a focal length £, and v, the object
distance of the second lens, also having a focal length of £ It can easily be shown that

Az, =-Az,, (3.60)
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if the telescope is correctly aligned such that the back focal plane of the first lens coincides
with the front focal plane of the second lens. This relation shows that if the object distance is
reduced, the image distance is increased by the same amount. In our case, where the minimum
required image distance is considerably larger than the object distance, it is advantageous to
decrease the object distance. Telescope lenses with a much smaller focal length can be chosen
(90 mm instead of 110 mm), which decreases the total size of the optical system (i.e. the
distance between the intermediate image plane and the detection plane, see Fig. 3.11) by 80
mm.

Light gathering power

Using a telescope with minus unit magnification, the intermediate image is inversely
reproduced at the detection plane. For a lossless telescopic system, the brightnesses in the
intermediate image plane and the detection plane are equal. Due to the presence of a circular
aperture stop with diameter D in the focal plane between the two telescope lenses (see Fig.
3.15) the brightness of the images in the detection plane, represented by B,, is reduced by a
factor Q according to

B, = 0B,. (3.61)
1 | !
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Fig. 3.15 Additional parameters in the imaging system.

The reduction factor Q is determined by the ratio of the solid angle with and without the
aperture stop in the telescope

3

0= q’ (3.62)
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in which the €2 prime indicates the solid angle for the case that no aperture stop is present in
the system. The illumination F, in the detection plane follows from

5 _ 09005 (4)
27 MSOMZ M?

obj tel

(3.63)

Without the aperture stop, the relation between the solid angles 2 and £2 is determined by
the magnification of the telescope and objective lens. In this particular case, the solid angle at
the exit pupil of the telescope (2 satisfies

.0 2
QZ:M2=M2M 2 (3.64)

el rel obj

By placing the aperture stop in the common focal plane of the lenses of the telescope, the solid
angle at the exit pupil (3 is decreased to

Q = sin’(8) ~ wtan’(6,) = 7;(5?—} : (3.65)

Combining Eq. (3.62), (3.64) and (3.65) yiclds

D 2
v 2 2
. ﬁ(zfzj M, Molzi (3.66)

9

Using this relation, Equation (3.63) becomes

2 4
D cos (¢0)
E=\—| M,M,’ @, 3.67

2 (2f2 ] tel ohj S2 ( )

in which S, represents the size of the detection plane. From Eq. (3.67) it can be seen that
inspecting larger objects, i.e. if M, M,, decreases, the illumination in the detection plane
reduces. Moreover, since the relation between the telescope and objective lens magnifications
is fixed (see Eq. (3.45)), the light gathering power of the imaging system is determined by the
aperture’s diameter D. A telescope magnification of minus unity is preferred since this yields a

telescope length close to smallest value, while identical lenses can be used.

Lateral sizes of the lenses

The diameter of the lenses are determined by the required image size (i.e. 6.6 x 4.4 mm?), the
image distance and the maximal numerical aperture. Assuming a maximal numerical aperture
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NA,,.. in the telescope of 0.06 (see next section), the minimal lateral size D, of the lenses is 21
mm. We have chosen achromatic doublets, with a diameter of 25 mm.

3.4.3 The numerical apertures

The numerical aperture in the telescope N4, is determined by the diameter of the aperture stop
D and the focal distance of the second telescope lens f, (see also Eq. (3.65))

N4, =sin(6, )~ tan(6, ) = =—. (3.68)

As can be seen from Eq. (3.67), a large value for D/ f, gives a high intensity in the detection
plane. However, this value is restricted. The maximal numerical aperture is determined by the
minimum allowable speckle size, the size of the Savart elements and its performance for non-
perpendicular incoming rays.

The average speckle diameter d, at the detector plane and the numerical aperture N4, in the
image space of the telescope are related according to™

A
d, ~061 (3.69)

NA,

Thus, increasing the aperture, the average speckle size decreases. In Section 2.2, the influence
of the speckle size on the performance of a speckle interferometer is discussed. It showed that
the optimum speckle depends on the type of interferometer used and the geometry of the
measurement. Large speckles reduce camera decorrelation in a multichannel interferometer,
whereas small speckles decrease the object induced decorrelation. As a trade off, we have
chosen a maximum numerical aperture NA, of 0.06, such that the average speckle size can be
chosen equal to that of the picture elements.

The maximum numerical aperture is also affected by possible vignetting by optical elements.
The Savart elements are the most restrictive elements in this respect. The Savart elements are
positioned in the image space of the telescope. Converging beams travel through these
elements towards the detection plane. Therefore, the size of the entrance face of the Savart
elements limits the maximally allowable convergence of the beams. Due to the size of the
entrance face, i.e. with sides of 15.0 x 15.0 mm? (see also Section 3.5), 60 mrad is the largest
convergence angle before vignetting occurs, when purely the size of the Savart elements is
taken into account. This allows us to chose an average speckle size equal to a picture element
(11 um), without vignetting. If smaller speckles are used, some vignetting will occur.

An additional effect related to the Savart elements is present in our system, which influences
the optimum numerical aperture size. The Savart elements are designed for collimated beams
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under normal incidence. However, in our setup, the beams are converging inside the Savart
elements. In Fig. 3.18, the maximum convergence is indicated with the angle & . Moreover,
since the Savart element is used for image position manipulations by rotating the element
around the v-axis and w-axes (see also Section 5.2), non-perpendicular incidence occurs. The
maximum angle between the w-axis and the entrance plane of the Savart element is indicated
by yin Fig. 3.16.

Fig. 3.16 Maximum deviation from perpendicular incidence at the Savart element.

The non-perpendicular rays are refracted differently from the perpendicular ones. Therefore, a
reduced performance of the Savart elements can be expected, and this performance reduction is
related to the used aperture. In Section 5.4 a detailed analysis of the performance of the Savart
elements at larger apertures will be given. However, measurements have shown (see Section
5.4) that large apertures are benificial in our low light level applications, despite the
performance degradation of the Savart elements, since this degradation is more than
compensated for by the higher modulation intensities at the detection plane, resulting in higher
measurement accuracies.

In conclusion, we have chosen a maximum numerical aperture of the beams of 0.06, such that
speckles equally sized as the picture elements can be used. Some vignetting will occur due to
the finite dimension of the Savart elements when a larger aperture than 0.06 is chosen.

3.5 The Savart elements

The Savart elements in the system have three functions. First, they split the incoming set of an
object and a reference beam into two laterally shifted sets of combined contributions from the
object and reference beams. Secondly, they introduce a phase shift difference of n radians
between the combined beams of one set as compared to the other (see also Section 3.1).
Thirdly, the Savart elements are used in the process of aligning the interference patterns on the
CCD cameras. The latter function will be discussed in detail in Section 5.2. The present section
discusses the optical properties of the Savart elements and its constituent material as far as it is
relevant for our system.
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Fig. 3.17 Savart polariscope.
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In Fig. 3.17, a Savart element, or Savart polariscope', is depicted. It consists of two identical
segments of uniaxial birefringent material which are cemented together. The optical axes of the
segments make an angle of /4 rad to the entrance face normal and their projections on this
entrance face are mutually perpendicular. In Fig. 3.17, the optical axes are indicated by the
arrows and lie in the vertical and horizontal facets of the segments. The main property of a
Savart element is that it separates an incoming ray with arbitrary polarization into two separate
rays with orthogonal linear polarization states: the ordinary and the extraordinary ray. The
polarization direction of the ordinary ray in one segment is that of the extraordinary ray in the
other. This arrangement ensures that the phase difference vanishes for normal incidence,
assuming that the segments are perfectly aligned and have equal lengths. In Fig. 3.17 the
splitting of an incoming ray into an ordinary (indicated as o) and an extraordinary ray
(indicated as e) is depicted as well as their interchange at the interface between the two
segments of the Savart elements. The eo-ray is displaced vertically over a distance Au and the
oe-ray horizontally over Av.

Savart elements can be made from, e.g., quartz (Si0,), calcite (CaCO,) or sodium nitrate
(NaNO;). Our Savart elements have been made from calcite, which is a highly birefringent
material for visible wavelengths. Some other materials exhibit even larger birefringence (e.g.
sodium nitrate). However, calcite is preferred because of its relatively high optical quality,
availability in larger sizes and lack of problems'®", like being overly fragile, poisonous or
optically unprocessable. As an example, sodium nitrate shows a larger birefringence (45% at
589.2 nm) than calcite but is severely hygroscopic, which would make its application more
complicated. Optically pure calcite is found naturally and is mined from various locations
throughout the world. It is also grown artificially'®, but then the maximum dimensions are
limited to 3 to 4 mm.

The Sellmeyer dispersion formulas for the o- and the e-ray in calcite are as follows'
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These equations are valid from 200 to 2200 nm and the obtained refractive indices are accurate
within a few parts in the 5" decimal. In Fig. 3.18 the refractive indices as a function of the
wavelength are depicted as well as the birefringence An, defined as

An=n,-n,. (3.72)
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Fig. 3.18 Refractive indices as a function of the wavelength (at T = 18°C ).

For 984 nm, the values for the refractive indices are 1.6440 and 1.4803 respectively for the
ordinary and extraordinary components and the birefringence is -0.1637. Calcite is optically
transparent in a wide wavelength range, with an absorption coefficient for both the e-ray and
the o-rays of less than 0.1 m" from 260 to 1700 nm. The o-ray has a somewhat wider
transmission range (especially in the infrared).

3.5.1 Light propagation in calcite

CaCO, has three different crystal configurations: aragonite and vaterite, which are rhombic and
calcite, which has -a hexagonal crystal structure”?'. Crystals can be regarded as more or less
ordered, systematic arrangements of dipoles which conform to the requirements of internal
symmetry. In isotropic materials, the refractive index is the same for light traveling in all
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directions through the substance and for all polarization directions. However, calcite has a non-
cubic crystal structure and therefore it is optically anisotropic. Its cleavage form (the form in
which calcite tends to split along well defined smooth planes) is a thombohedron® with each
face a parallelogram (see Fig. 3.19). The optical axis is the axis of symmetry, passing through a
blunt comer of the cleavage form such that is makes equal angles with each face.

optical axis
1

Fig. 3.19 Crystal structure of calcite and the location of the optical axis.

The refractive indices of an anisofropic material are represented by the indicatrix or index
ellipsoid®®. It is a curved, three-dimensional body and its dimensions, form and orientation
relative to the crystal directions are the important properties. Calcite is uniaxial and has thus
two principal refractive indices: n, and n,. Since », is smaller than #n, in the ultraviolet,
visible and infrared regions, calcite is labeled as a negative uniaxial crystal. The short axis
defining the index ellipsoid is proportional to the refractive index of the extraordinary ray
propagating perpendicular to the optical axis and the long axis to that of the ordinary ray. A
plane, containing the optical axis and the propagation vector of a wave, is called the principal
plane. Randomly polarized light traveling in the principal plane is divided into two
contributions that are linearly polarized at right angles (see Fig. 3.20). One of these, the
ordinary ray, has its plane of polarization perpendicular to its principal plane. The second, the
extraordinary ray, has its plane of polarization parallel to its principal plane.

extraordinary
> ordinary

optical axis

Fig. 3.20 An incident plane wave is split in two orthogonal polarizations.
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The extraordinary ray is refracted, even for normal incidence. The refraction of the
extraordinary ray generally violates Snell’s law in its simple form. The only exception occurs if
the optical axis is parallel to the propagation direction of the extraordinary wave inside calcite.
The anomalous deflection of the e-ray is caused by the wavefont becoming ellipsoidal
(Huygens’ construction™), such that the direction of propagation of the light (indicated with the
solid arrowed line in Fig. 3.20) is not along the wave vector k (perpendicular to the gray lines
in Fig. 3.20). The wave vector IEL, (but not the propagation direction g ) of the e-ray obeys
Snell’s law, provided that the index of refraction n, of this wave is given by

1 sin? cos®
_ ¢ N 4

ﬂ2¢ nze

(3.73)

>

2
no

where ¢is the angle between the direction of the wave vector IEL, and the optical axis. Note that
for ¢ equals zero, n; =n, and that n, = n, when ¢ reaches n/2. In F ig. 3.21 the ordinary and
extraordinary rays and their field vectors for perpendicular incidence on the Savart elements are
depicted. D is the electric displacement vector, E is the electric field vector and the subscripts e
and o refer to the e-ray and o-ray respectively. For the ordinary ray, D and E are parallel, but
for the extraordinary one this is not the case.

N

4:;2/' extraordinary

» ordinary

) ~N
optical axis ™.

Fig, 3.21 Field vectors of ordinary and extraordinary rays in calcite.

Thus, for the extraordinary wave, the direction of the energy flow (indicated by the unit vector
5, along the Poynting vector) is not the same as that of the wave vector £, .

3.5.2 Beam splitting by Savart elements

In Fig. 3.22 the Savart element, two of which are included in our system, is depicted. The
optical axes in the Savart elements are orientated so their projections on the uv-plane make an
angle of n/4 rad to the vertical axis. In that case the beams that are generated by the element,
are separated horizontally. This is the optimum orientation of the Savart element, because this
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way the camera’s detection plane, which is rectangularly shaped with its long side in the
horizontal direction, is used as efficiently as possible. Since we used commercially available
calcite blocks with the optical axis parallel to one of its sides, the Savart element is rotated such
that the projection of the optical axes on the uv-plane are positioned under an angle of n/4 rad

with the u-axis.

detection plane

optical axes

Fig. 3.22 The Savart elerhent.

In Fig. 3.23 the position of the images in the detection plane of the camera is indicated. It
shows that the images are shifted both horizontally and vertically. The input image at the
entrance plane of the Savart element is depicted as an unhatched box.

CCD detection plane

P; d1 Py

Input image

Fig. 3.23 The orientation of the images in the detection plane.

From Fig. 3.23 it is seen that the size of the detection plane determines the dimensions of the
images and therefore the dimensions of the Savart element. The horizontal distance d between
two corresponding points of the images is defined by the following relationship®
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/—z—n“—zi—z—t, (3.74)
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in which 2r is the total length of the Savart element. From Eq. (3.74) it is clear that it is
advantageous to employ a birefringent material which exhibit a strong birefringence.

Using calcite for the Savart elements, the required length of the elements can be calculated
using Eq. (3.74), using the refractive indices at a wavelength of 984 nm and given the size of
the detection plane of our CCD cameras. The latter is 8.8 x 6.6 mm?, which leads to a required
d of 44 mm and the required length of one calcite element of the Savart element becomes
29.76 mm. The dimensions of the entrance face of the Savart element are 15 x 15 mm, as is
required by the size of the beams at the entrance plane of the Savart elements.

As can be seen from Eq. (3.74), the image displacement depends linearly on the lengths of the
two segments constituting each Savart element. Therefore, the two elements have to be exactly
equal. To prepare two identical Savart elements with identical segments, four pieces of calcite
have been processed simultaneously.

In conclusion, the Savart elements achieve a splitting of an incoming set of an object and a
reference beam into two laterally shifted sets of combined contributions of object and reference
beams. The phase difference between the object and reference beams in one set differs by =
radians from that of the set in the other branch, as was shown in Section 3.1

3.6 Mechanical design criteria of the prototype

The real-time phase-stepped shearing speckle interferometer has to operate in an industrial
environment. Therefore, special care has to be taken with regard to the stability of the system.
Since it is a multichannel system, the mechanical stability of the Savart elements and the CCD
cameras is most important. From a design viewpoint it would be preferable to fix as many
degrees of freedom of the optical elements as possible. However, rotations of the Savart
elements and translations of the CCD cameras are needed in the alignment procedure (see
Section 5.3). Therefore, the Savart elements are mounted in specially designed housings, which
facilitate the rotations of the elements (two rotations for each Savart element). The CCD chip
has been removed from its original camera housing. Thereupon, these chips have been mounted
on specially designed translation stages and the housing containing the electronics of the
camera have been positioned directly under the base plate of the interferometer. After aligning
the setup, the rotational settings of the Savart elements and the translational settings of the
CCD chips have been fixed and the adjustment screws taken off, to improve the compactness
of the system.
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Fig. 3.24 Birds-eye view from the set-up.

Besides mechanical disturbances, also thermal changes can deteriorate the performance of the
system, because temperature changes will alter the dimensions of components used in the set-
up. In optical set-ups, aluminum is the most commonly used construction materlal As
compared to steel, it has a relatively high coefficient of thermal linear expansion (24x10 °C )
but this is compensated by a low relative distortion figure of the set-up. As a consequence, the
deformation due to temperature changes is smaller for aluminum than for steel. A material with
a particularly low thermal expansion figure is Invar, but it has other less desirable properties,
such as machinability and cost. In the mechanical design of the two-camera system aluminum
has been chosen.

With industrial applications of the interferometer in mind, the portability of the interferometer
head was a key factor in the design of the system. The inspection head (consisting of the
interferometer and its laser) should be compact and should be easy to position in front of the
inspection area. Therefore, the interferometer was mounted on a base plate. The laser and the
interferometer have been attached to a common base plate; the interferometer is covered by a
metal box, the size of which is 38x24x25cm’ (Ixwxh). The weight of the optical head is ca. 10
kg. The entire system has been fastened to a mobile tripod, which is adjustable in height and
can be tilted in multiple directions. The final result is an easy to position, rigid, compact and
relatively portable shearographic instrument. Fig. 3.24 shows the real-time system and its diode
laser mounted on the tripod.
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Fig. 3.24 The mounting of the real time system and diode laser.
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Chapter 4

Image processing

This chapter presents the image processing system, as it Is used in our configuration. First,
some consequences of using CCD cameras for recording the interferograms are discussed
(Section 4.1). Secondly, the separate steps of the phase calculation scheme are described
(Section 4.2) afier which (in Section 4.3) some important properties of image post
processing, such as phase unwrapping, are briefly mentioned.

4.1 Introduction

The optical system simultaneously generates four phase-stepped interference patterns. These
patterns are recorded on two CCD cameras; two (side by side) on each camera. It is the primary
task of the image processing system to calculate the phase distribution from these recorded
interferograms.

To enable computer processing of the recorded images, they are digitized into an array of
numbers. First, the picture elements of the CCD cameras sample the incident intensity pattern
on an mxn rectangular grid (see Fig. 4.1), leading to a finite number of sample points.
Secondly, each camera is connected to its individual analog to digital converter (ADC), which
digitizes the output of the CCD cameras, leading to a finite number (usually 256) of gray
values. The result is a 8 bit stream that represents the intensity at the pertinent picture element.
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Fig. 4.1 CCD sensor geometry: The picture elements with sizes axb are spaced over
x,, ¥, in the horizontal and vertical direction, respectively.
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Using CCD cameras and ADC’s involves an integration of the intensity pattern in space and
time: it is integrated over the picture element and during the recording time of the CCD
camera. Thus, the recorded and digitized intensity / is a discrete representation of the
interference pattern I(x,y,#) and can be written as

I(m,n)=CR‘D’+IT‘]‘]-I(x y,t)rect( i y by

! —o0—o

)dxd dt 4.1

in which Cj , is a constant factor depending on the camera and ADC characteristics, 7' is the
recording time of the camera and the rect function limits the integration over the rectangular
picture elements.

The electronic equipment (see Fig. 4.2) comprises a pipeline image processing system
(Datacube, MaxVideo200, indicated as MV200) and a workstation (Sun, Sparc Classic). The
pipeline system is applied for digitizing the recorded images and calculating the phase from
them at video speed (i.e. 25 times per second). The video signals from the two CCD cameras
are digitized with two separate A/D converters, the so-called Analog Scanners (AS), provided
by two MaxVideo200 modules. The phase (difference) calculation is performed using the
Arithmetic Units (AU) and the Advanced Pipeline Processor (AP). The resulting phase or
phase difference pattern is displayed on an RGB video monitor using the Analog Generator
(AG). The workstation is employed to create and control the data paths of the pipeline system
and to fine-tune the responses of the CCD cameras and their pertinent frame grabbers. It can
also be used for post processing of the phase change images (using Scil-Image). The pipeline
image processing devices, internally connected by a Maxbus (40MHz), are based on a VME-
bus and are coupled to the workstation via a VME-bus to S-bus coupler.

computer
monitor

RGB monitor

Scil-lmage
pipeline program || Workstation

= VME-Sbus
coupler

optical system

VME-rack

Fig. 4.2 The image processing configuration.
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4.2 Real-time image processing

The entrance data of the real-time image processing system consist of the video signal of the
two CCD cameras together with the synchronization signals and the pixel clock signal. The
pixel clock signal is required for pixel-synchronous read out of the cameras. Further, the
common electronic unit of the two cameras (see Fig. 3.8) acts as a ‘master’ that generates the
synchronization signals upon which the CCD cameras, the ‘slaves’, are locked. This way, the
noise due to video jitter is strongly reduced.

After the images are grabbed from the two CCD cameras, the phase distribution is calculated
using

1,(m,n)—I,(m,n)
o(m,n) = arctan( Lo —1, (m,n)] . 42)
This equation is valid under the assumption of equal modulation intensities and background
intensities of the four recorded and digitized interferograms (see also Section 2.6). The
modulation and background intensities of the i” interferogram (i=1..4) are indicated with 7,
and I, respectively. Since in general the characteristics of the cameras and frame grabbers are
different, they have to be matched to minimize the errors introduced by such differences. The
gains of the cameras can be adjusted manually. These are set to their maximum values to
increase the signal level. The fine tuning of the gain is performed in software, where the gain of
the A/D converter can be changed until

=(1,.,(mm) ={L,40mm) 4.3)

mn

(La(mm) =(I,,(m.n))

mn mn

is reached. In Eq. (4.3), the angled bracket indicates the average over all pixels m,n in the
interferogram. In the remainder of this thesis, these subscripts will be omitted. The modulation
intensity of each interferogram can be measured by recording four phase-stepped images at the
pertinent detector areas. Phase stepping is performed by computer controlled (via the D/A
converter DAC in Fig. 4.2) M/8 displacement of the mirror mounted on the piezo element in the
shearing head. The average modulation intensity of each interferogram can be calculated using

(£, 0mm) = %<\/(1,.° (mm) =17 (mm) +(17 ) = 172 ). (4.4)

In Eq. (4.4), the superscripts at the recorded intensities represent the phase step. In our image
processing system it is impossible to adjust the gains separately of the interference patterns
(half frames) recorded by the same CCD camera. Therefore, the gain is adjusted such that

(1, (mm) + <I,,,,3(m,n)> =(1,,0m,m)+(1,,,(m,m)). 4.5)
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The background intensities of the cameras can be adequately matched using the offset
adjustments of the image processing software such that '

<1h,l (m, n)> + <1b,3 (m, n)> = <Ib,2 (m,n)> + <Ib,4 (m’n)> . (4.6)

The average background intensity of each interferogram 7, ,(m,n) can be measured using
1
(1,,(m, n)) = X<]"0 (m,n) + I7 (m,n) + I (m,n) + 1" (m, 1)) . @.7)

As a result, we correct for the major differences in camera and frame grabber response as well
as for the imperfect characteristics of the non-polarizing beam splitter. However, spatially
inhomogeneous characteristics of the optical elements or of the camera response as well as
imperfect characteristics of the Savart elements are not corrected.

After the correct gains and offsets are fixed, the phase distribution can be calculated using Eq.
(4.2). The separate steps in the calculation scheme are schematically depicted in Fig. 4.3 and
subsequently described in the following subsections.

recording image 3 image phase . spatial Ir;ggte
interferogram splitting reversal calculation filtering processing

Fig. 4.3 Steps in the phase calculation scheme.

4.2.1 Image splitting

In each CCD detection plane, two phase-stepped interference patterns are recorded side by side,
as is indicated in Fig. 4.4. Since the used CCD cameras are frame transfer cameras, the lower
half of the CCD chip is masked and functions as image storage area (see also Section 3.2).The
two interferograms recorded on the same CCD camera have to be separated, in order to be able
to treat them as separate interferograms in the phase calculation process.

.
\,,

storage area

OO0 namnmn
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Fig. 4.4 The location of the interferograms in the detection plane of CCD?2.
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To separate the interferograms, the data stream of each CCD camera is duplicated to two
memory modules (the so-called Virtual Surface Memory Modules or VSIMMs). Then the left-
or right-hand parts of the images are selected as Region Of Interest (ROI) and only these parts
of the images are exported. These four parts, two from each CCD camera, are treated as
separate data streams in the remainder of the image processing system. These operations are
depicted in Fig. 4.5.

CCD1 CCD2
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ADC ADC

ROI ROI
VSIMM VSIMM

Fig. 4.5 Image splitting.

4.2.2 Tmage reversal

The interferograms recorded with CCD2 are mirrored with respect to the ones recorded with
CCD1, since the number of reflections in the optical set-up is even for CCD2 and odd for
CCD1. For proper processing of the images, the two interferograms recorded by one of the
cameras should undergo an additional mirroring process. This could be achieved optically by
an additional mirror in Branch 2 of the interferometer (see Fig. 3.1). However, the alignment of
such a mirror is complicated and, by introducing another optical element, the size and
complexity of the set-up are increased. Another possibility is an electronic reversal of one of
the images. The advantage of this method is that no additional optical elements are required to
reverse the images, but at the cost of more complicated hard- and software. Using the reversed
read-out option of the VSIMMs, the reversal process can be performed at the full 40 MHz pipe
rate, thus enabling real-time image reversal. Fig. 4.6 shows the reversed read out of the two
memory modules associated with CCD2.
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Fig. 4.6 Reversed read-out of CCD2

4.2.3 Phase computation

The phase pattern is calculated using Eq. (4.2). The relevant parts of the images are exported to
two separate Arithmetic Units (AU). With the aid of these devices, the numerator and
denominator of the phase equation are computed. The calculated values are the input of a look
up table (LUT) on a MaxVideo200 module which outputs the phase ¢(x,y) modulo 27 with 8
bits accuracy. In Fig. 4.7 the arctangent LUT is displayed.

(') 1(m,n)-I,(m,n)

1,(m,n)-I,(m,n)

Fig. 4.7 Arctangent Look Up Table.

This 256x256 table (LUT1), that renders the phase value modulo 2, is used instead of a actual
arctangent computation, to speed up the calculation. Since the numerator and denominator can
have values between [-255, 255], they are divided by two before entering the 256x256 LUT.
Fig. 4.8 shows the image processing flow chart.
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Fig. 4.8 Real-time phase calculation.

Performing a measurement, first the phase calculated for an unloaded object is stored in a
VSIMM, residing on the MV-200 board. Then, all consecutive phase images are subtracted
from the stored reference image by a third Arithmetic Unit, also residing on this MaxVideo200
module. The resulting image represents the phase change caused by loading and is converted to
an analog video signal by an Analog Generator (AG). This signal is displayed on an RGB
monitor.

4.2.4 Spatial filtering

Even though the speckle pattern is the information carrier, in the phase (difference) pattern the
speckles introduce noise. This is most noted in regions where the calculated phase is around -n
or 7 rad, where already small noise contributions can cause the phase to jump from -7 to 7 rad
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and vice versa. The noise can be caused by saturated picture elements, picture elements with
low modulation intensities and can also originate from decorrelation of the interferograms
before and after loading the object. To reduce the noise, a special filtering technique is applied.
The sine and cosine of the phase distribution is filtered instead of the phase itself. If the phase
varies continuously across the detection plane, the sine and cosine of the phase are continuous,
too. In this case, the noise in the sine and cosine patterns can be reduced by filtering with a
moving mask operation'. The central pixel value is replaced by a value calculated from the
(weighted) average of the surrounding pixels in the filter mask. Low resolution features are
unaffected by the filtering process, but higher resolution features (such as speckle noise) are
removed or reduced. Thus, uniform filtering results in low pass filtering the image. Usually, the
filter mask is rectangular and it can have any size s,xs,, although the size is usually an odd
number of pixels, such that the central pixel is unambiguously determined. In general, the
larger the filter dimensions, the smoother the result. For example, uniform filtering reduces the
noise proportionally to the square root of the number of pixels within the filter mask’.
Directional filtering is being performed when s, # s,. This can be advantageous when straight
fringes are present. In our applications, this is generally not the case and therefore we use
square filter masks.

The sine/cosine filter is implemented in the real-time pipeline image processing system, which
facilitates an 8x8 filter mask as a maximum, but odd filter sizes (e.g. 7x7) are usually chosen.
First, the sine and cosine of the measured phase (or phase difference) are determined using a
second look-up table (LUT2). Secondly, the sine and cosine are filtered. Thirdly, the phase
pattern is reconstructed using the filtered sine and cosine values as inputs for the arctangent
look-up table (LUT1). A schedule of this filtering technique is depicted in Fig. 4.9.

phase difference
l ' LUT2 J

cosine sine
filtered filtered
cosine sine

| LUT1 |

filtered phase difference

Fig. 4.9 Real-time noise reduction filtering process.
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The ratio of filter size to speckle size and spatial period of the fringe pattern influences the
resulting improvement. When the speckles are small as compared to the filter size, the noise in
the phase pattern Wwill be strongly reduced. Also, the smallest spatial period of the fringes must
be larger than the filter size in order not to be filtered out.

Since this filtering technique reduces the spatial resolution of the images, a compromise has to
be found between filter size and the required accuracy of the phase calculation for each
measurement. Therefore, the type and the size of the filter can be altered in our system.
Uniform and gaussian filtering in a 3x3, 5x5 or 7x7 filter mask has been implemented. In
uniform filtering, all neighboring pixels are equally important in calculating the central pixel
value, i.e. they have the same filter weight. However, using a gaussian filtering technique, the
picture elements closest to the central one have the largest influence on the filtered value. The
weight function W(Am, An) of the gaussian filtering for a picture element at a distance (Am, An)
of the central pixel in the square filter mask is given by

1 2
——{CsV An? 4 a0
W(Am,An)=C,e (6] , (4.8)

in which C, is the normalization constant and C;a constant determining the decay speed of the
gaussian function. The latter sets the gaussian coefficient W(Am, An) equal to JC, at picture
elements with coordinates (-%(s-1),0), (%(s-1),0), (0,-%(s-1)) and (0, %(s-1)) in a sxs filter
mask. Thus, using this filter, Csis given by

J=21In(5) 49)

= 5<1).
> (s-1)/2 (o<
Combining Eq. (4.8) and (4.9), the gaussian coefficient can be written as
W(Am, An) = Cneztln(()‘)(Amz+Anz)/(S—l)z . (4.10)

As an example, the 7x7 gaussian coefficients (with §=0.1) are given in Table 4.1.

Table 4.1 Gaussian coefficients in a 7x7 neighborhood.

c,/100 | cnr1s | ¢ /29 | co | ¢n29 | C218 | C,/100

cn18 | ¢/174 | ¢35 | €278 | €359 | C/174 | C,27.8

/129 | ¢359 | /.67 | €129 | C .67 | C/359 | €129

c/0 | ¢rs | ¢n29 C /129 | ¢ 18 | /10

H

c/mo | ¢n5 | ¢ner | ¢n29 | cN67 | CR359 | C/129

cn18 | c/7a | €59 | 278 | €359 | ¢/174 | C278

c/nn00 | ¢nr1s | cme | cno | ¢n2e | ¢ 18 | c 00

To avoid a gain factor when applying the filter that would increase all intensities, the central
pixel values are normalized using C,. The value for C, can be found using
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v=1 -1
= _\n=~’—

> Y w(amAn=1. (4.11)
v=1 s=1
dzmm e =
In the example mentioned above, where a 7x7 gaussian filter is used while #=0.1, the value for
C,is 1/12.03. We have implemented this Gaussian filter and the uniform filter. During
measurements the filter type or filter size can be altered instantly. In Fig. 4.10 an overview of
the complete real-time pipeline image processing scheme is depicted.
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Fig. 4.10 Data pipes in the pipeline image processing system.
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4.3 Image post processing

The final image displayed on the video monitor represents the phase change between the
moment that the reference phase distribution was stored and the actual phase distribution.
Because the phase is determined modulo 27, artificial 2 phase steps may occur in the phase
change image. The removal of these steps, called phase unwrapping’, is necessary to make the
phase data continuous. Also, the noise in the unwrapped image can be further reduced using
filtering techniques (e.g. uniform, median or percentile filtering). There are many filtering
algorithms available. It depends on the measured phase difference which filter routine or filter
size performs best. In general, good results can be obtained using a sine/cosine filtering before
unwrapping, after which other filtering routines, background subtraction, thresholding, contrast
stretching, etc. are performed. In our system, this image post processing is performed off-line
on the workstation that is coupled to the real-time image processing system. For this purpose,
we use a commercial image processing package (Scil-Image) together with in-house written
software in C.

In our system, the two-dimensional phase pattern is presented as gray value (or false color)
images. The scaling factor between the gray values and the actual data is defined such that the
total gray value range of 8§ bits (256 values) represents the total range of 2x phase difference.
Using post processing, the scaling factor can be changed to improve the visibility of the
defects, but then care should be taken when interpreting the gray value images quantitatively.

4.3.1 Phase unwrapping

The simplest phase unwrapping method consists of checking the difference between the
wrapped phase values at adjacent pixels of the discrete lattice. If the absolute value of this
difference exceeds =, an integer multiple of 27 is added or subtracted to make it less than m.
This process is carried out for each row and for each column of the phase map @(mn,n) to yield
the unwrapped phase map @, (m,n)

@, (mn) = @(m,n) +27g(mn), (4.12)
in which g(m,n) is an integer valued field.

Thus, for the reliable removal of discontinuities, the phase must not change by more than =
between adjacent pixels. Moreover, phase unwrapping algorithms based on a 2-D spatial
comparison of phase values at neighboring pixels can not be used when the phase is not
continuous, e.g. with an impact damage which breaks the surface of the object. A novel
algorithm has been proposed in literature® to perform unwrapping along the time axis instead
of in space coordinates. The main advantage of this temporal phase unwrapping technique is
the possibility to unwrap phase maps from objects with physical discontinuities. This technique
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can be used for applications where phase changes are of interest, rather than absolute phase
values.
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Chapter 5

Accuracy analysis

This chapter considers the accuracy of the system as well as its error sources. First, a
classification of errors is made (Section 5.1) and the major error contributions are analyzed.
Speckle decorrelation is one source of those major inaccuracies and, therefore, accurate
alignment procedures are required. In Section 5.2 a polarization ray tracing algorithm is
developed, which is used to design such an alignment procedure that is subsequently
described in Section 3.3. The calculation scheme for ray propagation through caicite from
Section 5.2 is also used for calculating the effects of image formation through Savart
elements. Section 5.4 describes the performance deterioration caused by aberrations in the
multichannel interferometer. Finally, in Section 5.5, measurements of the resulting accuracy
of the system are presented.

5.1 Error classification and analysis

Interferograms usually suffer from a number of distortions degrading the interference pattern.
In general, practical factors restrict the accuracy of the interferometer instead of fundamental
limits'. Error sources can be related to the optical system (e.g. phase step errors, speckle noise,
decorrelation, aberrations in the optics of the interferometer), or to the recording and
computational system (digitization and quantization, integrated speckle patterns, electronic
noise, detector nonlinearities). Environmental disturbances also degrade the performance of the
system (e.g. mechanical vibrations, temperature changes, air flow). These errors are extensively
described in literature®**. Therefore only an overview of the dominant errors, limiting the
accuracy of the interferometric measurement, is given in this section.

As presented in Section 2.6, the noise contributions to an interferogram can be divided into two
categories: additive noise contributions, collected in a(x,y) and a multiplicative noise
contribution described by b(x,y), resulting in an interferogram described by

I(x,y) = a(x,y) +b(x,y) cos|p(x, 1)) , (.1)

where a(x,y) and b&(x,y) are the perturbed background and modulation intensities,
respectively and ¢(x,y) is the phase distribution. Some errors (the errors that are equal for
each phase stepped interferogram and for each picture element of the camera recording the
interferogram) can be eliminated by the phase calculation scheme, especially with
simultaneously phase stepped systems, such as our multichannel interferometer. Moreover, in a
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multichannel interferometer several errors are avoided® (e.g. the phase step error caused by
nonlinearities of the phase shifter (with PZT driven mirrors) and mechanical or thermal drift or
vibrations). Most important, it has a reduced sensitivity to fluctuations of environmental
parameters, which often limit phase stepped interferometers with sequential acquisition of the
interferograms. However, some additional error sources appear in a multichannel
interferometer. They are mainly due to the fact that the data are recorded by different cameras.
Therefore, the overall accuracy of simultaneously phase stepped interferometers is in general
not better than that of a sequential phase stepped system under laboratory environments.
Possible additional errors are

¢ pixel mismatch,

¢ aberration of the imaging optics,

different average intensity of an interferogram,

o different sensitivity of the relevant pixels.

The most prominent errors in our setup will be discussed in detail in the following subsections.

5.1.1 Errors caused by optical elements

INlumination optics

The object is illuminated by an expanded laser beam. For this reason the background intensity
of the pattern varies according to the beam profile, in a good approximation a 2-dimensional
Gaussian curve. Moreover, the scattered intensity distribution may vary considerably over the
object surface due to, e.g., difference in diffuse scattering properties of different surface
finishes. This spatial variation in intensity scattered from the object influences the intensity in
the detection plane and therefore the dynamic range of the interferogram. This may reduce the
accuracy of the phase calculation at points where the intensity is too low (low modulation
depth) or too high (saturation). This error can locally be a problem, although it can easily be
reduced using surface preparations (spraying diffusely reflecting powder on the surface) or
decreasing the field of view.

Imaging optics

In interferometers, the requirements on the imaging elements are not very strict, unless
extremely accurate results are needed. In general it is sufficient when the imaging elements do
not smear out or distort the fringe pattern beyond the camera resolution. Besides, the imaging
system influences the speckle decorrelation®. Telecentric and afocal imaging systems appear to
have a smaller decorrelation effect than a single lens. In many interferometers, converging or
diverging beams exist in the interferometer. In speckle interferometry, the numerical aperture
of the imaging system is usually small and the induced aberrations can be ignored. However, in
polarizing interferometers, such as our system, nonaxial beams pose a problem, since the
performance of the polarizing optics generally depends on the angle of incidence. Moreover, in
our system converging beams occur within thick pieces of birefringent material. The errors
associated with converging beams inside birefringent material will be described in detail in
Section 5.4.
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Polarization optics

In polarization interferometry, the main potential error sources are imperfections in the
polarization elements and their positions. Imperfections of the quarter wave plates and lack of a
perfect extinction ratio in the polarizing beam splitter”® produces optical cross talk and causes
errors in the phase measurement’. An incorrect azimuth angle of the quarter wave plates
introduces further phase errors. The analyzer in a system determines the phase step between
object and reference beams. Incorrect angular position of its transmission axis causes a phase
step error. A phase step error is a systematic error and is one of the most serious limitations'® of
phase stepping systems. Errors due to phase step inaccuracies can usually be eliminated by
careful calibration of the system and choice of the phase calculation algorithm''"", Generally,
the choice of the algorithms can reduce one error, often increasing the effects of others'.

An extensive description on imperfect properties or incorrect positioning of quarter wave
plates, analyzers and beam combiners can be found in literature'. Here, we will describe the
errors associated with incorrect positioning or non-ideal characteristics of the polarizing
elements in our system, i.e. retardation plates, polarizing beam splitter and analyzer, which lead
to errors in the calculation of the phase distribution. The goal of this analysis is to determine
which element or setting is most limiting for the accuracy of the interferometer. Therefore, the
influence of one inaccuracy on the effect of another, being of second order, are omitted here.
We will treat the errors associated with the polarizing elements separately.

Polarizing beam splitting cube
The polarizing beam splitting cube (Technical Optics, P1153-000-000) is included in the
shearing device of our system (see Fig. 5.1).

PBC
N> M
W mirror .
I S = shearing system
——@ piezo M= imaging system

I P = phase stepping system

stop”] '& : P R = recording system
: [—
shearing QWP
mirror S R

Fig. 5.1 Position of shearing device in the interferometer.

It transmits linearly polarized light with its electric field vector parallel to the plane of
incidence (p-polarized light, with only the electric field component E,) and reflects
orthogonally polarized light (s-polarized light, with £_). A perfect PBC would transmit 100%
of the p-polarized light and reflect all the s-polarized light. However, due to the angular
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dependence of the PBC, some p-polarized light is reflected and some s-polarized light is
transmitted. Schematically, it can be depicted as in Fig. 5.2.

(@) b
dielectric
coating
PBC PBC
s+p s+p
» > > —» oS
14
s
+
v v I'AS rpp

Fig. 5.2 Splitting of polarization in (a) an ideal PBC and (b) imperfect PBC.

The polarizing beam splitting cube (PBC) in our system shows only a small dependence on the
angle of incidence for the s-polarized light. The unwanted power transmission coefficient for
the s-polarized components, T, which is related to the amplitude transmission coefficient #, by
T, =1t *, (5.2)
where ¢ * is the complex conjugate of f,, remains smaller than 0.2% for the pertinent
convergence of the beams in our system. The dependence of the PBC on the angle of incidence
for p-polarized light is much larger and shows asymmetry. For rays incident on the dielectric
coating (see Fig. 5.1) under an angle of 0.75 rad (which would occur at a NA of 0.06), about
75% of the intensity is transmitted instead of the required value of 100%. For angles of
incidence of 0.83 rad, the influence is much smaller: 98% of the intensity is transmitted.
Assuming the amplitude transmission and reflection coefficients to be real, the amplitude
transmission coefficients of the PBC for two relevant angles of incidence with respect to the
entrance face of the PBC (indicated in the subscript) are

looss =099, 1,075 =087, 1,53 =1,4;5 = 0.045. (3
The power reflection coefficient can be calculated using R=1-T. After passing the quarter wave
plates in the shearing head, reflecting from the mirror and passing the quarter wave plates a

second time, again coupling of p- and s-polarization occurs, as is indicated in Fig. 5.3.

tprspﬂsrys'; Pt Strip

— 1stEp
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rptr,s

Fig. 5.3 Coupling of polarization in an imperfect PBC.
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The PBC is designed such that the beam leaving the PBC has equal components of s- and p-
polarization. The case is slightly different when shearing is taken into account. In this case the
object beam is tilted, such that the angle of incidence on the PBC changes and the » and ¢ are
changed at the second passing through the PBC. The changed reflection and transmission
coefficients associated with the tilted object beam are indicated with a prime in the superscript.
The beam leaving the PBC can then be described by

* * - * * 5.4
t,¥rp+i, rps+rl‘,tps+rpl".p—p(tp ;1‘,+rpt.‘_)+s(l“\, rp+r3tp) (54

For relevant shear angles (i.e. maximally 20 mrad, but generally around 5 to 10 mrad) only the
tp and rp change notably (estimated Ar, =f,—¢,%*=0.02). Worst case, this results in a
transmitted beam with different ratio of p- and s-contributions, given by

(1, *r,+r,1,)
P_2r = p e 408 (5.5)
st +rt))

ratio =
Thus, the ray with the worst performance in the shearing head shows a 2% coupling of s- and
p-polarization. The average over all rays will show much less coupling. The coupling between
s and p polarization also means a coupling between the object and reference beams. The object
beam can be described by

A 1
E,(x,y)=t,*rp+i *r,s=1,%* iﬁ‘,[lje"”"(’”” +1, (0](2’“‘(”’” (5.6)

and the reference beam as
1 9, (x,y) 0 ip,(x.y)
Er(xiy) =ry tps+rpt.vp=r.\' tp 0 e +rpt.“ 1 e (5'7)

Due to this coupling, the modulation in the interferogram is decreased and the phase
measurement is corrupted. Besides imperfect characteristics, also an incorrect positioning of
the element must be taken into account. The PBC was positicned within an accuracy of 1mrad,
which leads to an negligible additional error, since the angular inaccuracy is much smaller than
the shear angle and angle of convergence. We assume a 2% coupling of s- and p-polarization as
the upper case. Using this value, the average phase error over the detection plane can be
calculated. Since the system is used for phase change measurement, the constant phase error
will be neglected. Using the results from literature", it is calculated that a 2% coupling result in
an average phase error over the detection plane of approximately 15 mrad, which is the largest
error due to the shearing head. The other error sources in the shearing device are due to
imperfect characteristics and angular mispositioning of the quarter wave plates. These are
described in the following subsection.




94 Accuracy analysis

Quarter wave plate in shearing device

If the angle between the fast axis of the QWP and the x-axis deviates from the required value of
7/4, the beams leaving the QWP’s will not be circularly polarized. They can be described by
using the transformation matrix of a QWP with a deviation from the n/4 position denoted by &

(5.8)

1 1+isin(2¢) —icos(2¢)
MQWP,.s = [ >

2 —icos(2e) 1-isin(2¢)

The deviation angle ¢ is estimated from the alignment procedure to be within 0.02 radians.
Assuming the incident object and reference beams to be linearly polarized, the incorrect
position of the QWP leads to a reference wave, after passing this QWP twice, described by

—icos(2g)| |—09992i
E =[ isin(2é) }[ 0.04i ] ¢

and the object beam is given by

isin(2¢) 0.04i
B Lcos(ze)}[o.%%i} (5.10)

Thus, both beams E, and E, are rotated over roughly 0.04 rad. This changes the transmission
efficiency of the PBC (assumed perfect), since the efficiency depends on the projection of the
polarization directions onto the polarization axes of the PBC. After passing the PBC, a
negligible amplitude loss is noticed. If one of the QWP’s is assumed to be perfect and perfectly
aligned, a small decrease (<0.1%) of the modulation depth of the interferograms will occur.
Since this will be the same for all four interferograms, the phase calculation will hardly be
affected by this error.

The error associated with imperfect characteristics of the QWP is more important. At a
wavelength of 984 nm the two QWP's in our shearing head have a 0.2491 and 0.2515 wave
retardance for perpendicular incidence. The converging beams in the shearing head cause the
retardation to deviate from this value. The acceptance angle of the quarter wave plates are
+0.17 rad (retardance error will be within 0.02 rad). As a worst case, combining the effect of
the beam convergence with the imperfect properties of the QWP and the maximum shearing
angle, the retardances can have values of 0.2461 and 0.2545, respectively. These values change
the transformation matrix of a QWP which, under n/4 rad with the incident polarization
directions, is given by

1 ’cos(g) —isin(g) (5.11)

M - —
™2 —isin(-g) cos(g)

where S is the retardance. For the worst case values of the retardance, the transformation
matrix becomes
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” ( 0697 uo.717z‘j (5.12
Qweo2s4s ~{ _ 717 0.697 o
and
0.709  —0.705i
M gy o201 = —0.705i 0709 /° o

The beams in the shearing head pass through the quarter wave plates twice, and as a result of
the deviation from ideal retardance values, the polarizations of the beams are not linear, but
elliptical. As a consequence, the object and reference beams are not linearly polarized anymore,
which results in an object beam entering the PBC for the second time given by the Jones vector

g | 000565 .14
°~| - 099998 |’

while the reference beam is given by

"1 00287 |

This shows that the object beam is slightly right-handed elliptically polarized and the reference
beam is left-handed elliptically polarized. The polarizing beam splitter, which now is assumed
to have perfect properties, will only transmit the p-component of the object beam and reflect
the s-components of the reference beam. After passing the PBC, this only results in a loss of
amplitude of the ray in the reference beam at the largest angle of incidence of almost 2%, the
loss is negligible (<0.2%) for the object beam.

Quarter wave plate in interference section
In the interference section (alternatively called phase stepping system) of the set-up, two other
QWP's are positioned, as indicated in Fig. 5.4.
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Fig. 5.4 The interference section of the interferometer.

The properties of our QWP's are slightly better in the interference section than in the shearing
section, having a retardance of 0.2505 in Branch 1 and 0.2502 in Branch 2. As a result of the
incorrect retardance value slightly elliptical light is produced instead of, ideally, circularly. As
a result, after passing a perfect HWP and analyzer with an azimuth angle of n/4, the object and
reference beams will have a very small intensities and phase difference deviations (several %)
at the detection plane of the interferometer. The associated error in the phase measurement
(<107 rad) is much smaller than the error resulting from the possible incorrect azimuth angle of
the QWP's. This latter error has been calculated, assuming again a possible inaccuracy of the
azimuth angle of 0.02 rad. Using Eq.(5.8), the object beam becomes

E ={1+0.04z} (5.16)
* | -09992i

and the reference beam
—-0.9992;
E’_[I—O.Mi} (5.17)

Assuming a perfect analyzer under the correct angle with the x-axis, the average phase error in
the detection plane due to this quarter wave plate misorientation is calculated to be nearly 0.07
rad”.

Half wave plate in inferference section

For the half wave plate in the system, the same effects are present as are for the QWP’s in the
interference section. Again, the misorientation of the HWP is dominant over the incorrect
retardance value (i.e. 0.5021). As a result of the incorrect retardance value, both waves become
slightly elliptical. This ellipticity leads to a phase error smaller than 10 mrad. The second error
source associated with the HWP is the error introduced by its incorrect angular position. A half
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wave plate flips the polarization state around the fast axis of the wave plate. The transformation
matrix for a half wave plate with its fast axis at an angle  to the x-axis equals'®
I ‘(005(21//) sin(2y) ]
mwp = 7 sin(y) —cos(2w)) (5.18)
A possible misorientation of & (in our case 0.02 rad) from the required value for  of n/8 rad
leads to an object beam

0.678

En=—z(_ o.735j , (5.19)

and a reference beam

E - _(— 0.735) _
P T 0678) (-20)

Hence, both beams are rotated by an amount of 2y and thus the error in the alignment of the
HWP is doubled in the error in the rotation of the object and reference beams. Consequently,
the phase step between interferograms in Branch 1 and the corresponding interferograms in
Branch 2 deviates from the desired value of 7/2 rad, being (n/2+0.04) rad. Since the correct
position of the quarter wave plate is determined after the orientation of the HWP is fixed, the
HWP's angular misorientation does not lead to an incorrect angular position of the quarter
wave plate. However, the orientation of the Savart element with respect to the incoming
polarization direction can have an additional 0.04 rad angular error. This error will be treated in
the next paragraph.

Analyzer

The analyzers in our system are the Savart elements. The maximum mismatch of the angle
between the optical axes and the sides of the calcite segments is specified by the manufacturer™
as +15 arc minutes (i.e. 4.4 mrad). Since rotations of the Savart elements are used in the
alignment procedure (see Section 5.2), the production inaccuracy can be compensated. If the
Savart element is made from identical calcite segments (equal optical properties and equal
length), and assuming a perfectly horizontally aligned CCD camera (picture element lines
coincide with the v-axis and columns with the u-axis), the angular mismatch of the Savart
elements vanishes. However, due to a possible slight mismatch between the calcite segments
and a possible angular misorientation of the CCD cameras, an angular mismatch (with respect
to the required value of y =n/4) of less than 2.5 mrad (following from the Savart elements
production process and the alignment procedure) has to be assumed. Combining this value with
the additional 0.04 rad angular mismatch of the HWP in Branch 2 and using the transformation

*
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matrix M,, for a linear polarizer which transmission axis makes an angle of  rad with the x-
axis,

_( cos’ (y) sin(w)cos(w)j (5.21)
P sin(p)cos(y)  sin’(y) )’

it can be shown that the phase step in the recorded interferograms is slightly deteriorated. The
interferogram recorded at the left-hand side of CCD?2 is changed into

I )= Iwv)+1,(uv)+ 1, (4,) cos(w(u,v) - g—) +1,(u,v) (5.22)
and likewise, the interferogram recorded on the right-hand side of CCD2 can be written as
1780 (u,v) = L(u,v) + L(u,v)+ I',, (u,v) cos(go(u,v) + -g) +1,(uv). (5.23)

In Eq. (5.22) and Eq. (5.23), the modulation intensity I', (#,v) is now described with

L' wv)=c,,c,, 4,4, sin(2y), (5:24)
in which ¢,, and ¢, are amplitude reflection coefficients of the BSC and 4, and 4, are the
electric field amplitudes in the u and v direction, respectively (see Section 3.1). The factor
sin(2y) in Eq. (5.24) disappears in an undisturbed interferogram, since then w=z/4 and the
sine equals unity. Now, however, also an additional term in the interferograms occurs,
indicated with 7,(x,v) and described by:

I,(u,v)=c,,,, 4,4,(- cos( 2!//)) cos(@(u,v)) . (5.25)

The value 7,(u,v) is added to the background intensity I,(u,v)+ 1, (u,v). In the worst case,
assuming i to deviate from the required value n/4 by 0.0425 rad (as described in the beginning
of this subsection), this result in a 0.4% lower modulation intensity and in an additional noise
contribution with an amplitude factor of 0.085 ¢, c,,4,4,. As a consequence, the measured
phase distribution is corrupted. The error in the phase calculation algorithm can directly be
found by collecting the errors in the interferogram into the phase term as an additional term 2y,

writing

1, vy = I,uv)+ 1, (uv)+1, (1) cos((o(u, v) - 21,#) (5.26)

and

I vy =1, (u,v) + I, (u,v) + I, (u,v) cos| p(u,v) + 2p) . (5.27)
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and using the series expansion of the cosine. This results in a measured phase difference
distribution ¢'(x, y) given by

P'(xy)= arctan(tan(co(x,y)) - %tan(w(x,y))j . (5.28)

in which & represents the angular mismatch (i.e. maximally 0.0425 rad). In this analysis, the
interferograms recorded by CCD1 are assumed to have the proper phase steps. As a result, a
coherent sinusoidal phase error is introduced, as is depicted in Fig. 5.5.
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Fig. 5.5 Calculated phase error for incorrect analyzer and HWP position.

The larger the value for & the more the form of this error deviates from a sinusoidal form
towards a sawtooth-form. The actual phase difference @(x,v) determines the value of the error.
The peak-to-valley phase error for |4 <0.045 is just below 1 mrad.

In conclusion, it can be stated that the incorrect azimuth angle of the QWP's in the interference
section is the most dominant error source of the errors treated in this section, leading to a 70
mrad phase error. The phase error associated with the HWP and the analyzers remains smaller
than 1 mrad. The performance deterioration in the shearing head is the second largest error
source and is mainly due to the converging beams in the polarizing beam splitting cube PBC,
leading to a 15 mrad phase error. The PBC tends to reduce the transmission of object waves
more than that of the reference waves, whereas the quarter wave plates tend to reduce the
reference wave transmission efficiency, nearly compensating the object wave reduction by the
PBC.

One important error source associated with polarizing optical elements is not treated in this
section. This error source was also mentioned in the description of errors associated with the
imaging optics, since it is related to imaging through thick pieces of calcite. In calcite, the
refractive index depends on the propagation direction of the light. Due to the converging beams
inside the calcite elements, this variation in refractive index can deteriorate the interferogram.
For the analysis of his error source we need the polarization ray tracing algorithm, as will be
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developed in Section 5.2, while the influence of this error on the phase measurement will be
described in Section 5.4. '

5.1.2 Errors caused by decorrelation

Decorrelation between the various interferograms is one of the fundamental limits of ESPI',
In Section 2.2.3, it is discussed how the phase measurement is affected by speckle
decorrelation. It was shown that two types of speckle decorrelation are present in our
interferometer. One is caused by a displacement of the object due to the loading and the other
occurs because of misalignment of the CCD cameras (pixel mismatch). Which type of
decorrelation is dominant is determined by the actual alignment accuracy of the interferometer
and the actual object displacement. The object decorrelation is reduced using a large aperture of
the system, whereas the camera decorrelation reduces with smaller apertures. Depending on the
application, the aperture of the multicamera system can be adjusted to obtain the optimal value.
Object induced decorrelation can only be influenced by choosing the loading method but can
not be avoided. The misalignment induced decorrelation can be minimized by optimizing the
alignment of the system. How this is performed in our system will be described in Section 5.3.
The alignment procedure is designed to facilitate an alignment accuracy of one tenth of a
picture element. This way, a large aperture can be used, which increases the light gathering
power of the system.

5.1.3 Errors caused by recording and computation system

Two types of errors can be ascribed to the optoelectronics, electronics and computational part
of our system. The first one is caused by the recording device and its amplifiers: electronic
noise and nonlinear response. The second type results from digitization and quantization of
signals by the recording device and the finite accuracy of the phase calculation algorithm.

Electronic noise in the sensor causes a random fluctuation of the measured voltage or current.
Thermal noise, shot noise, dark current noise, read-out noise and 1/f noise are contributions
that occur even if no light impinges on the sensors. Additional noise is generated when photons
are incident on the detector, mainly photon noise (shot noise as a result of the photon’s
statistical behavior). In applications of speckle interferometry, electronic noise plays a minor
role as compared to the speckle noise.

For an accurate quantitative evaluation of results, a linear camera response is necessary. Non-
linearity will cause phase errors. For commercial CCD cameras, the output deviates typically
not more than 5% from the linear response. Depending on the used phase calculation algorithm,
this leads to small phase errors, usually below 0.03 rad". Some picture elements may show a
deviation from a linear dependence larger than 5% due to fabrication errors. The corresponding
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pixels are known as blemished pixels. Some camera manufacturers supply blemish
compensation: the location of a bad pixel is stored in an extra chip (ROM) and its readout is
replaced by the value of the previous pixel.

The phase calculation algorithms have a reducing effect on nonlinear camera response, with
different efficiency for different algorithms. In general, the higher the number of buckets, the
higher the efficiency will be. For a four bucket algorithm a 5% nonlinearity leads to phase
errors in the order of 1 mrad. In multichannel interferometry the phase calculation is also
corrupted by inhomogeneous camera responses or by inequality of the CCD cameras (i.e. the
gain or the noise is different for the different cameras or picture elements). Adjusting the gain
and bias of the cameras can compensate for inequalities between cameras but not between
individual picture elements.

Digitization and quantization noise occur in interferometers using digital computer memory for
storage and processing. The recorded intensity is digitized into an array of mxn picture
elements and quantized into discrete gray values. Nowadays, most commercial cameras require
a quantization into 8 bits, corresponding to 256 gray levels. Quantization noise is caused by
this analog-to-digital conversion and is affected by the intensity of the signal®. The intensity of
an interferogram should cover as much of the detector's dynamic range as possible. For an 8-bit
(or more) digitization, the phase error caused by quantization is usually negligible®'. Using a
video amplifier can be of use when the quantization noise is larger than other noise sources,
e.g. when there is very little light and the signal level has to be raised well above the
quantization steps such that the signal can be represented with enough gray values. if the
quantization noise is in the same range as other noise sources, further amplification of the
signal is useless.

The effects of sampling the interferogram with a rectangular grid, has been described in Section
4.1.

5.1.4 Ambient disturbances

Ambient distortions may cause degradation of the interferograms. Vibration and air flow cause
the most problematic errors” which reduce both the system measurement sensitivity and
accuracy. Usual precautions are placing the interferometer on a vibration-isolated table,
shielding the interferometers beam paths from air flow, and recording the interferograms in a
short time. In our interferometer, however, the requirements of shielding are relieved to a great
extend, since it is a real time shearing interferometer. For this system, the mechanical stability
of the set-up itself is crucial, since the interfering beams do not coincide within the
interferometer. This is successfully accomplished in our system, by using the mechanical set-
up as is described in Section 3.6. Measurements with the system in industrial environments
have shown that the real time shearing system is not limited by ambient disturbances other than
vibration, since this induces object decorrelation.
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5.2 Polarization ray tracing

In this section a method for polarization ray tracing, based upon the phase matching condition,
will be presented. The algorithms derived in this section are restricted to uniaxial and linear
anisotropic materials. The description of the performance of the Savart elements given in
Section 3.5 is a simplified case, being restricted to a propagation direction of the incident light
along the surface normal of the crystal. Here, the more general case of arbitrary incident beams
will be treated. The derived polarization ray tracing equations enable the calculation of the
effects for non-perpendicular incident beams. This is used for analyzing the interferogram
displacements on the CCD cameras caused by rotations of the Savart elements, as it is used in
the alignment procedure. Moreover, these polarization ray tracing equations are used for
analyzing the aberrations induced by imaging through calcite, as will be described in Section
54.

Maxwell’s equations govern the propagation of light through matter, but under the
approximation that the wavelength is small, geometrical optics suffices to describe the
propagating planar wave solutions to Maxwell’s equations®. In geometrical optics, the wave
front is considered to be locally planar. Speckled beams can be regarded as composed of a large
collection of spherical wavelets, originating from the object under inspection, which is usually
at a long distance from the interferometer. In the interferometer, only a small portion of each
wavelet is present and in approximation it can be regarded as a planar wave. Therefore,
geometrical optics will be used for ray tracing of speckled beams.

The direction of the energy flow of the local planar wave is indicated by the unit vector p,
called the ray direction, which is parallel to the Poynting vector. Generally, a ray changes its
direction when it encounters an interface. Conventional geometric ray tracing calculates this
change of direction as well as the optical path length. Polarization ray tracing supplements
geometric ray tracing, taking the vectorial nature of the fields into account to provide the ray
direction p, the polarization direction of E, and the optical path length OPL of rays as they
propagate through an optical system that incorporates birefringent optical elements. It also
provides information about the amplitudes of the refracted and reflected rays, using the Fresnel
transmission and reflection equations. Since we are only interested in the directions of the
ordinary and extraordinary beams as functions of the angle of incidence, unit vectors will be
used (indicated by circumflexes).

For uniaxial crystals, like calcite, the response of the medium to an electromagnetic wave
depends on the polarization state of the wave. The refractive index is a function of the wave
direction and polarization state of the light*. The refractive index is not an input parameter to
the optical system but has to be calculated for each ray. For each propagation direction, there
are two refractive indices, associated with two orthogonal linear polarization states: the
ordinary and the extraordinary beam. The ordinary rays behave as if the medium were isotropic
and therefore they obey Snell’s law of refraction in its simple form. In the case of extraordinary
rays in a uniaxial refracting medium, Snell’s law is not as easily applied because the refractive
index of the medium depends on the direction of the refracted wave vector &, of the
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extraordinary beam with respect to the optical axis ¢. Thus, the refracted wave direction and
the refractive index of the uniaxial medium are mutually dependent. This makes ray tracing
more complicated than in isotropic media, in which the refractive index is a constant for all
rays of a given wavelength, regardless of the propagation direction or polarization state.

5.2.1 Refractive index

Both wave vectors k, and k, obey Snell’s law. For the o-wave this means:

n sin(@,-) =n, sin(9,,) (5.29)

and for the e-wave
n; sin(6,) = n, sin(6,) , (5.30)

in which »; is the refractive index of the isotropic incident medium, n, is a constant, whereas
the refractive index », is variable and depends on the direction of the refracted wave vector £,.
It can be calculated from™

in’ (4, (4.
17:sm(2 )‘*_cos(2 )’ (5:31)

ny n n,

e

where ¢, is the angle between the direction of k, and the optical axis. Note that if ¢, equals
zero, n, =n, and that n, =n, if ¢, equals n/2, as can also be seen from Fig.5.6.

optical axis

Fig. 5.6 Indicatrix showing the dependency of the refractive index to the wave vector.
The angle 4, between the wave vector k, and the optical axis ¢, can be obtained from

cos(d,) =k, €. (5.32)




104 Accuracy analysis

In the special case where the wave vectors and the optical axis are in the plane of incidence,
(see Fig. 5.7) Snell’s law for the extraordinary wave becomes

n.n, sin(g, - f)

n, sing, = = > )
a2 2
\/na sin” ¢, +n,” cos” ¢,

(5.33)

where ¢, is the angle of incidence of light in the isotropic entrance medium with refractive
index #,;, and S is the angle the normal 7 of the surface makes with the optical axis.

isotropic medium uniaxial medium
Pe k
%ke
i/
g 4 "o,
b
ki c

Fig. 5.7 Ray doubling of a refracted wave at a birefringent interface.

Since all other quantities in this equation are known, ¢, is uniquely determined but often must
be solved for by iteration®. Such an iterative procedure, but then for the general case, for
calculating ¢, and n, will be described in Subsection 5.2.2.

5.2.2 Maxwell theory applied to uniaxial media

The propagation of rays through a birefringent medium follows from the relation between the
electric field vector E, the electric displacement D and magnetic field H. The Maxwell
equations for planar monocromatic waves satisfying harmonic time dependence in a lossless,
linear medium yield”

kxH=—aD, (5.34)
kxE=py0H , (5.35)
k-D=0, (5.36)
k-H=0. (5.37)

Consider a planar wave incident on an uniaxial birefringent crystal. The refracted wave is in
general split into two parts (ordinary and extraordinary). However, when the incident light
propagation direction is along the surface normal, no change of direction will take place for the
extraordinary ray if the optical axis is parallel or perpendicular to the refracting surface. In all
other cases, the refracted wave is split into two parts, with wave vectors &, and k,(see also
Fig. 5.7). Uniaxial birefringent material, such as calcite, is characterized by a wavelength
dependent tensor, the electric permittivity tensor €, relating D to E via
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D=¢E. (5.38)

Generally, D is not parallel to E (for the extraordinary rays) as a result of the fact that £is an
arbitrary tensor. In a uniaxial material, the relation between D and E is invariant with respect to
the rotation around the symmetry axis of the crystal, i.e. the optical axis é. In an isotropic
medium, according to the Maxwell equations, both D and E are perpendicular to H, as well as
the wave vector & and the ray vector p for a planar wave in an anisotropic medium.
Consequently, the vectors D, E, k and p are coplanar. Furthermore, since p is perpendicular
to E and k to D, the vectors E and D form the same angle with p and k. This means that for
each ray, the k, p and é always ly in the same plane?’.

5.2.3 Algorithms

The first part of the calculation procedure determines the transmitted wave vector directions k,

and k,, and refractive indices », and n, for the ordinary and extraordinary rays, respectlvely
The ray directions p, are used in transferring the rays to the next surface. However, k,, k,, n,
and n, are needed as an intermediate step in the determination of p, and the OPL. For the
calculation scheme two properties of refraction, as follow from the Maxwell equations, have
been taken into account. First, the refracted wave-vector, &, lies in the plane defined by the
incoming wave-vector &, and the surface normal 7 of the interface, and second, the ray vector
2. lies in the plane defined by the wave-vector l@v and the optical axis é.

Phase matching at the boundary between the birefringent medium and the surrounding medium
leads to Snell’s law, which determines the new wave direction. In vector form it states that®®

ﬁx(n,.lgi)=f7x(n¢lze>. (5.39)
Since l@e is coplanar with l@, and 7, Snell’s law may be written in another form™
n ke, =nk, +I7, (5.40)

where I'is called the astigmatic constant, which is determined by solving the quadratic
equation that results from k, -I?a =1:

reondy i ik 4) (). (5:41)

The positive sign applies for refraction, whereas the negative sign is for reflection, which will
be disregarded since we are not interested in reflected waves. If the transmitting medium is
isotropic, then n, is a known quantity. In general, one needs an additional relation to find 7,
for both modes. Equation (5.31) relates the refractive index to the wave direction.
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As pointed out previously, the wave direction l;e and the ray direction ',13e generally do not
coincide in anisotropic media. By definition, the direction in which a ray travels is the direction
of its energy flow, which coincides with the direction of the Poynting vector. Consequently, the
ray direction p, can be determined using

e ‘ (5.42)

To determine this, E and H have to be calculated. An alternative (and, in our case, simpler)
way to calculate p, is based upon using the relation between ¢ and ¢,

2

tan(a) = " tan(g, ). (5.43)

7

The difference between the angles ¢ and g, is called the dispersion angle.

The algorithm given below calculates the refractive index 7, the wave vector direction & and
ray direction p for each of the rays leaving the interface. The wave vector and refractive index
for each exiting e-ray are determined through an iterative procedure. The steps for calculating
& and # for each refracted and reflected ray are listed below. The subscript i refers to the
incident ray, 7 is the surface normal at the intersection of the incident ray and the interface.

1. Start with an initial value for n, (e.g. n,).

2. Calculate 7"from I"=-nk, -7+ \/n,.z(lzi : 7])2 +(n¢2 —n,z) )

3. Calculate £, from l@e =M
!ni K + rn(
4. Calculate ¢, from 4, =arccos(l§e -é).

n,n

0'te

J sin2(¢e)+ n,’ cosz(qzﬂc) .

6. Repeat steps 2-5 until the value of », converges.

5. Calculate a new value for n, using n, =
n

The final value of &, from Step 3 and the final value of n, from Step 5 are the wave vector
and the refractive index, respectively, for the refracted wave.

In practice, convergence of the algorithm is very rapid, taking no more than two or three
iterations for n, to stabilize within 10™. Once the wave vector k, and the refractive index n,
are established, the ray direction can be calculated. Since the ray direction is within the plane
defined by the optical axis and the wave vector, it can in general be written as
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~ k,+AC

P =7~ >
v Ad (5.44)

where the constant A has to be chosen such that the angle o between the ray direction and the
optical axis satisfies Eq. (5.43). From this requirement it follows that A has to be equal to

n

o

e (nez - 1) cos(4,), (5.45)

which gives the normalization factor for the ray direction via

~ na4 sin| ¢,_,
i, + Ac, =1+ A4 +2Acos(4,) = \/1 + [n04 - 1) cos’(¢,) = Sin((a)) . (5.46)
Therefore Eq.(5.44) results in
. X k, + (n”; - lj cos(¢e)é
e k,+Ac _ n, . (5.47)

£, + A@I sin(¢e) /sin (a)

The optical path length between the entrance and exit surfaces is computed with the ray
direction, the wave direction and the refractive index from

OPL=nlk-p, (5.48)

in which / is the geometrical length of the ray path.

5.3 The camera alignment procedure

In a multichannel interferometer, such as our real time phase stepped shearing set-up, speckle
decorrelation between the four simultaneously recorded interferograms can occur due to
misaligned cameras. Instead of using four separate CCD cameras we have chosen to use two
CCD cameras to record the four interferograms. The use of calcite analyzers in the polarization
phase stepping system to determine the phase step led to the idea to use a Savart element as an
analyzer which, owing to its birefringent nature, can simultaneously be used as beam splitter.
The basic idea behind this choice is a reduced sensitivity to environmental variations and a
more compact system since less cameras are needed. As we saw in Chapter 1, only three
interferograms are needed to obtain the phase distribution of an interferogram. In principle,
more buckets yield more accurate phase patterns, less a-priori knowledge of the measurement
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(e.g. phase step) is necessary and more error sources can be eliminated. By recording two
interferograms on a single camera, the system design can be more compact and more
interferograms are available for calculating the phase distribution, making the phase calculation
algorithm more robust. Moreover, the alignment of two interferograms on a single camera is
expected to be mechanically more stable than if they were recorded on separate cameras. An
obvious disadvantage is the reduction of the number of picture elements per interferogram. The
interferograms on a single camera are used in calculating the denominator of the argument of
the arctangent function used in calculating the phase distribution, and the two on the other
camera for its numerator (See Section 3.1). Thus, even if there is a relative displacement
between the two CCD cameras (e.g. due to vibrations), the calculation of the numerator and
denominator of the arctangent function will be correct. This reduces the error in the phase
calculation algorithm. However, the measuring accuracy of the interferometer not only depends
on the number of interferograms. For accurate measurements, the interference patterns on the
CCD cameras have to be mutually related. This requires a precise mutual alignment of the
images on the cameras, which forms a complicated task. The alignment of separate CCD
cameras is already intensely investigated and reported”. To achieve an accurate alignment of
the two images on a single camera, rotations of the Savart elements can be used. The better the
alignment, the smaller the speckle size (and thus the larger the aperture) can be. Larger
apertures reduce the errors caused by object decorrelation. However, an excessively small
speckle size puts stronger requirements on the rigidity of the mechanical construction in order
to avoid an increase of the system’s sensitivity for camera decorrelation. As a trade off, the
goal of the alignment procedure is to obtain an alignment accuracy of one tenth of a picture
element, with the picture element size being 11 pm.

Two types of alignment errors are possible, those that result in a relative displacement between
the interferograms in the detection plane (in-plane misalignment) and the ones that result in an
out-of-plane displacement (out-of-plane misalignment). The average length of speckles is much
larger than their average diameter (see Section 2.2). These long speckles have a long
correlation length with the corresponding speckles in other images. In-plane decorrelation is
thus more critical and is reduced by using small apertures. The cameras have six degrees of
freedom: 3 rotations and 3 translations. Since the in-plane decorrelation is much more critical
than the out-of-plane decorrelation, our mounting of the CCD cameras is chosen such that it
allows accurate adjustment of the two in-plane translations and of one in-plane rotation. Since
only the relative positions of the cameras are of influence, the CCD camera in Branch 1
(CCD1) has only a horizontal adjustment possibility, whereas CCD2 can only be adjusted
vertically. The coarse alignment of the in-plane rotation is performed using an alignment
microscope, whereas the coarse out-of-plane alignment is accomplished using the accurately
positioned fixation points on the base plate of the interferometer.
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Fig. 5.8 Top view of the set-up. The CCD camera mounts can be seen at the right-hand
side (CCD1) and at the bottom (CCD2) of the image.

5.3.1 Using Savart elements for alignment

An analysis was performed to study the operation of Savart elements. Special attention was
paid to determine which rotations can be used to align the images with sub-pixel accuracy.
Three rotation axes have been analyzed, the u-, v- and w-axis. In Fig. 5.9 the axes with respect
to the Savart element are indicated.

u
v ﬁg
Fig. 5.9 Orientation of the u,v,w-coordinate system.

In this section the results of the analysis are described. We used polarization ray tracing to
calculate the optical paths of the interferograms towards the detection plane. The optical paths
of the beams in the Savart elements are described by the unit vector p parallel to the Poynting
vectors in the Savart elements. The ray tracing algorithms have been described in Section 5.2.
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From the computed orientations of the vectors g, and the g, for the ordinary and extraordinary
waves, respectively, the positions of the images can be calculated. The position of the images is
calculated in the detection plane, located 5 mm behind the back face of the Savart elements.
Since we are working with slowly converging beams, the displacement of an image will be
calculated using the chief ray. The influence of the convergence of the beams is further
discussed in Section 5.4.

Owing to the birefringent nature of calcite, rotating a Savart element around the u- or v-axis
does not only result in a plane-parallel plate shift of the interferograms on the cameras, but also
to a relative shift in the vertical and horizontal directions, respectively. In Fig. 5.10, the image
positions as a function of the rotation around the u-axis are depicted.
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Fig. 5.10 Horizontal (H) en vertical (V) relative displacement of the images
for rotations around the u-axis.

From Fig. 5.10 it is clear that if the Savart element is rotated around the wu-axis, relative
horizontal and vertical displacements between the two images occur. Beside these relative
displacements, also a large horizontal displacement of both images is present. This is nearly
equal for both images and is the parallel-plate shift. For a rotation of 5 mrad, this shift has been
calculated to be almost 107 pm for both images. The small difference in this horizontal shift
between the left-hand and the right-hand image is 0.055 pm, which is small as compared to the
more interesting shift in this case: the relative vertical displacement of the images which
amounts to 11 um for 5 mrad rotation. As a result, the rotation around the u-axis can be used
effectively to correct for vertical alignment errors.
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In the same way the shifts of the images have been analyzed for rotations of the Savart
elements around the v-axis. In Fig. 5.11, the relative image positions as a function of the
rotation around the v-axis is given.
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Fig. 5.11 Horizontal (H) en vertical (V) relative displacement of the images for rotations
around the v-axis.

The analysis showed a 107 pm absolute shift of the images in the vertical direction for a
rotation of 5 mrad. For both images this displacement proved to be equal (the relative vertical
displacement was vanishing within the accuracy of the computer program). It appeared that a 5
mrad rotation gives a useful relative displacement in horizontal direction of 11 pm. Therefore,
this rotation is suitable for correcting horizontal alignment errors.

The analysis of the image positions as a function of a rotation around the w-axis does not
require complicated polarization ray tracing computations. The relative orientations of the
principal planes in the element are not changed by w-axis rotations, as the orientation of the
incident light wave remains perpendicular to the input face of the Savart element. Simple
geometrical calculations show a relative vertical displacement of the images, as well as a small
relative horizontal displacement. In Fig. 5.12, the calculated values of the displacements are
given as a function of a rotation around the w-axis.
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Fig. 5.12 Horizontal (H) en vertical (V) relative displacement of the images versus
rotation around the w-axis.

Fig. 5.12 shows that a rotation of 2.5 mrad around the w-axis results in a relative vertical
displacement of the images of 11 um. The relative horizontal displacement for this rotation is
only 0.011 pm.

For the alignment of the images, only two rotations are needed: one for the vertical alignment
and one for the horizontal alignment. For horizontal alignment, only a rotation around the v-
axis can be used. For the vertical alignment, a choice has to be made between a rotation around
the u-axis and one around the w-axis. The main advantage of the rotation around the w-axis is
that there is no absolute displacement (‘parallel-plate shift') of both images. A disadvantage of
this w-rotation is that it influences the correct phase step value. However, for a rotation of 2.5
mrad the effect on the phase step is small (see Section 5.1). Both the w- and u-axis rotation
show a coupling of relative vertical and horizontal displacement, but for both rotations this
coupling is extremely small (0.5% and 0.6% respectively) and can thus be ignored. A rotation
around the u-axis has two additional minor disadvantages: a polarization interchange error of
0.01% and a small optical path length difference. Since the rotation around the w-axis does not
have these disadvantages, and thanks to the absence of the parallel-plate shift, this rotation is
preferred for use in the alignment procedure.
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Fig. 5.13 Special Savart element rotation stage. The Savart element is the tilted crystal
in the center of the mount.

5.3.2 Alignment procedure

For sub-pixel alignment of the two CCD cameras, the procedure has been described
previously®. Using the rotations of the Savart elements around the v- and w-axis, the sub-pixel
alignment of the two images on one CCD camera can be performed. Then, the alignment
procedure is as follows:

Orientation of cameras around their u,v,w-axes using a moiré technique.

Orientation of the Savart elements around their w-axis using a cross-hair and gratings.
Relative positioning of the two cameras using a moiré technique.

Sub-pixel alignment of the images on CCD1 using correlation optimization.
Sub-pixel alignment of the images on CCD2 using correlation optimization.
Sub-pixel alignment of CCD1 and CCD?2 using correlation optimization.

AN N bW

Steps 1 to 3 are coarse alignment steps, which are refined by Steps 4 to 6. The procedure starts
by aligning the cameras when the Savart elements are not yet inserted. This way, the whole
detection area of the cameras can be used in the first step of the alignment process, which
maximizes its accuracy. In this first step, the angular orientation of the cameras can be aligned
using a grating with vertical (V-grating) or horizontal (H-grating) lines (10 or 20 lines per mm),
positioned near the intermediate image plane of the interferometer, such that the grating is
sharply imaged on the detection planes of the cameras. The grating is used to correct for out-of-
plane rotation differences between the two cameras by subtracting the images of the two
cameras and displaying the resulting moiré pattern. The V-grating is used to correct the u-
rotation and the H-grating to verify the v-rotation. Next, the in-plane orientation of the cameras
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can be aligned by imaging a H or v grating by displaying the resulting moir¢ pattern and
correcting for the low frequency lines perpendicular to the grating lines, as is depicted in Fig.
5.14.
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Fig. 5.14 In-plane angular alignment of the cameras. Schematic representation of (a)
vertical lines recorded by CCDI, (b) those on CCD2 and (c) the resulting moiré pattern.

An additional method for coarse alignment of the cameras was found during the alignment
process. The picture element grid of a camera appears to be working as a two-dimensional
grating. The back reflection pattern of an incident collimated laser beam can be used for
aligning the picture element lines in the horizontal direction and the columns in the vertical
direction as well as minimizing the out-of-plane rotation of a camera.

After the angular alignment of the cameras, the Savart elements are inserted in the system. A
cross-hair at the intermediate image plane is imaged as sharp as possible onto the cameras, by
translating the cameras. For this, the aperture of the system is as large as possible, creating the
smallest focal depth. Again the grating is used to check if an out-of-plane rotation of the
cameras has occurred and if it is necessary to realign the cameras. To align the Savart element
around the w-axis, first the cross-hair is used. If the Savart elements are not positioned with
their optical axes making an angle of /4 rad with the u-axis, the displacement of the two
interferograms is not the same (see Fig. 5.12). As a result, the horizontal lines of the two cross
hair images is mutually shifted, as is depicted in Fig. 5.15.
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Fig. 5.15 Positions of the cross-hairs in the detection plane (a) for incorrect angular
position of the Savart element around the w-axis and (b) for a correct orientation.

After correcting the orientation of the Savart elements, this alignment step is repeated but the
cross-hair being replaced with a horizontal grating. This enables a further accuracy increase of
the angular position, since the visibility of the grating is better than that of a cross hair.
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The cameras are correctly oriented thanks to the alignment of Step 1, but there may be a
relative horizontal or vertical shift of the cameras present. A shift equal to an integer multiple
of the picture element size can be corrected in the software routines, but since it is a waste of
picture elements, it is preferred to record corresponding parts of the interferograms by
corresponding picture elements. This can be performed coarsely by overlapping the cross hair
projections, recorded by the two cameras and refining this process with overlapping the
horizontal and vertical grating lines. If the images of the two cameras are subtracted and the
relative shift is zero, the resulting image should display an equal gray value for each picture
element. An incorrect alignment will result in a display of the cross-hair or the grating
structure. Using this method of translating the cameras until the resulting difference image is
homogeneous, the cameras are aligned on the picture element level.

Steps 4 to 6 are used to refine the adjustments made in Steps 1 to 3. A speckle pattern is
generated close to the first lens of the system. No illuminated object is imaged, since then the
average intensity in the detection plane is near to the sensitivity threshold of the cameras for
small apertures. Small apertures are preferred since this generates large speckles, making the
alignment process easier since less noise is present in the calculated correlation. For the same
reason, the shear mirror is covered, such that only contributions from the reference mirror
proceed further into the system. The correlation is optimized by measuring the correlation
coefficient, defined by

|uh, 1, = T , (5.49)

between two interferograms /; and J, and rotating the Savart elements first around the w-axis
and thereupon around the v-axis.

The last step is to optimize the alignment between the two cameras. For this purpose, one of the
interferograms on CCD1 is taken as a reference and the correlation of this interferogram with
one of the interferograms on CCD2 is optimized by using horizontal translations of CCD1 and
vertical translations of CCD2.

At the end of the alignment procedure, a correlation of 0.91 has been obtained at an aperture of
2 mm. Furthermore it is noted that the alignment accuracy of interferograms recorded on the
left-hand parts of the CCD is higher than the alignment accuracy of an interferogram recorded
on the left-hand side and the other on the right-hand side, the difference being dependent on the
used aperture (for an aperture of 2 mm: approximately 5%). This may be due to converging
beams inside the calcite elements, as will be described in Section 5.4.
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5.4 Image formation through Savart elements

As pointed out in Section 5.1, imaging through thick pieces of birefringent material generates
errors, since the performance of Savart elements depends on the propagation direction inside
the elements. Three effects occur by imaging through calcite, two of which are also present in
ordinary plane parallel plates, made from isotropic material. The first effect is displacement of
the focal plane. Secondly, Seidel aberrations (mainly spherical aberration for small angles of
incidence) are introduced. These effects are relatively unimportant, since the focal plane shift
can be compensated for (by shifting the detection planes accordingly) and the Seidel
aberrations are relatively small due to the small aperture in the system and because they are
equal for all four cameras. The third effect is the most important one, since it has a
considerable influence on the performance of the system. It is generated by the birefringent
character of the material and causes a decrease of the modulation intensity in the recorded
interference patterns (see Fig. 5.16). The average modulation intensity of a measured phase
distribution in our interferometer is calculated from the four interferograms using (see Section
4.2)

\

(1,(x.7)) = <%\K11 @)= 1) ) - L) ). (5.50)

In ideal situations, the average modulation intensity increases linearly with increasing average
intensity on the detection plane. Since the average intensity of the light at the detection plane
increases quadratically with increasing aperture, an ideal modulation intensity also shows this
quadratic behavior. The measured and expected modulation intensities, both as functions of the
diaphragm diameter in our system, are depicted in Fig. 5.16.
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Fig. 5.16 Modulation depth versus the aperture size.

The modulation intensity shows a (nearly) linear increase with increasing aperture, instead of
the expected quadratic behavior. This linear behavior can be understood from image formation
analysis through calcite. In the following subsection, the effects of imaging through calcite will
be analyzed by using the polarization ray tracing algorithm developed in Section 5.2.
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5.4.1 Polarization ray tracing for imaging analysis

In this section beam propagation through the Savart elements will be analyzed. Our main
interest is to determine the effect of the convergence of the beams on the image quality, since
the Savart elements are designed for collimated beams. With the theory presented in Section
5.2, a computer program is developed, which traces rays through calcite elements, taking the
polarization directions into account. The incident beam is split into two parts. One part travels
as an ordinary beam in the first segment of the Savart elements and as an extraordinary one in
the second segment. This beam will further be indicated as the oe beam. The second part starts
as an extraordinary beam in the first segment and becomes ordinary in the second segment of
the Savart element, this one will be indicated with eo. These beams will be recorded on
different parts of the CCD camera.

Using the computer program, the deformation of a converging beam, with a circular cross-
section at the entrance face of the calcite elements, is calculated. Polarization ray tracing is
applied on rays at the outer boundary of a (virtual) circular aperture positioned just in front of
the entrance face of the Savart elements. The radius of this aperture is called the semi-aperture
SA. In Fig. 5.17 the endpoints of the marginal rays, coming from a two mm radius SA4, after
traveling through one of the Savart elements are displayed. The points in the center of the
ellipses are the crossings of the chief ray.
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Fig. 5.17 Deformation of a converging circular beam by imaging through calcite for (a)
oe beam and (b) eo beam.

The circular beams at the entrance face of the Savart elements are deformed into elliptical
beams at the exit face of the elements. The long axes (indicated by a in Fig. 5.17) of the
ellipses make an angle of + 7/4 rad with the u-axis and the short axes (indicated with ») are
perpendicular to this direction, namely being under an angle of + 3n/4 rad with the w-axis. This
will lead to two foci, as is shown in Fig. 5.18.
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Fig. 5.18 Astigmatism in calcite.

The deformation of a circular beam into an elliptical one is due to astigmatism. The difference
in length between the long axis a and short axis b of the ellipse at the exit face of the Savart
element equals the length of the astigmatic lines. Calculation of the astigmatism due to imaging
through Savart shows that the larger the S4 (or equivalently the N4, since they are related due
to the geometry of the interferometer by SA=NA*43mm), the more the astigmatism. Fig. 5.19
shows this linear relation between a-b and the N4 for values of N4 up to 0.12.
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Fig. 5.19 Astigmatic line length (a-b) as function of the numerical aperture.

This relation between the lengths of the astigmatic lines and the aperture applies for both the oe
and the eo beams. The distance between the astigmatic lines is determined by the angle of
propagation in calcite, in our case nearly 6 degrees, and equals 2.2 mm. The diameter of the
circle of least confusion is half the length of the astigmatic lines, i.e. (a-b)/2. The aberration
increases linearly with the plate thickness 7.

The presence of astigmatism is confirmed by experiments. A circular spot is projected on a
planar diffusely reflecting object, which is in turn imaged on the detection plane. If the
detection planes of the interferometer coincide with the circle of least confusion, the spot is
circular. However, if the focusing is changed by displacing the objective lens of the
interferometer, the circular spots change into lines. In Fig. 5.20, such a defocused image,
recorded by CCDI, is depicted. Two sets of two lines are recorded: one set at the left-hand side
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of the camera and the other at the right-hand side. The two lines in each set correspond to the
object beam (upper one) and the reference beam (lower one), where the displacement is caused
by tilting the mirror in the shearing head.

Fig. 5.20 Deformation of a defocused circular spot (gray values of image are inverted).

As a consequence of astigmatism, the speckles will spread over a larger part of the detection
plane than they would do without astigmatism. This has been experimentally verified by
measurement of the correlation between the speckle patterns recorded on either side of a CCD
camera. [t shows an increased correlation with increasing aperture, whereas in normal cases, a
decrease is expected (see Fig. 5.21).
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Fig. 5.21 Correlation for (a) normal speckle field and (b) two astigmatic speckle fields.

5.4.2 Unresolved speckle patterns

The effect of astigmatism on the performance of the interferometer can be understood using the
theory of unresolved speckle patterns. In this theory, the speckle fields are assumed to be fully
developed and linearly polarized, which means that the field intensity obeys negative
exponential statistics and that their phase is uniformly distributed (see Section 2.2). If X
speckles are recorded on a picture element, the total measured intensity / is given by

I= "115,(2]:(1”* +1,, cos(p, +6)), (5.51)
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where the index £ refers to the & speckle. The intensity 7, which represents the incoherent sum
of n independent interferograms, can again be written as

I=1,+1I,cos(p+6), (5.52)
and ¢, satisfying

but with new values of /, and I,

n

1 K
I = EZ(IM) (5.53)
k=1
and
K
e = lz(lmke"w ). (5.54)
K="

Equation (5.53) shows that the resulting background intensity corresponds to the average of the
various background intensities. Equation (5.54) shows that a uniform djstribution of the phases
@, leads to a decrease of the resulting modulation. The average value (/,,) of the modulation
intensity, which is the value of interest in our case, satisfies®

__@ry

where <I> is the average intensity of each speckle field. For large values of K, This equation
can be approximated by

(1,)= \F%U), (5.56)

which is accurate within 1% for K equal to 15. The modulation depth of an interferogram,
defined as {7, )/ (I}, as a function of the number of speckles per pixel is depicted in Fig. 5.22.
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Fig. 5.22 Reduction of the modulation intensity due to unresolved speckles. The number
n indicates the number of speckles per picture element.
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For normal speckle patterns, the speckle diameter is determined by the aperture of the beams,
according to

A
d, :0.61m. (5.57)

Thus, increasing the NA by a factor of K, the speckle diameter is decreased with the same factor
K. As a result, the number of speckles per picture element increases by X*. Thus

Koc/NA . (5.58)

This leads to a lower modulation depth {/,,)/{I) of an interferogram, which is approximately
described by

(1,) = ﬁ@. (5.59)

For astigmatic speckle fields, the aperture has a larger influence on the modulation depth than
for normal speckle fields. In our case, the imaging through calcite results in a spreading of the
speckles. As an example, a numerical aperture of 0.06 would normally result in an average
speckle size equal to the picture element’s size, but now results in a much larger speckle, given
by the diameter of the circle of least confusion, i.e. 63.8 um. This means that a single speckle is
smeared out over approximately 25 picture elements. It also means that each picture elements
receives contributions of 25 speckles. This results in a lowering of the modulation depth with a
factor

(2K)!
(2KK!)2 > (5.60)

which equals 0.35 for K=25.

The polarization ray tracing analysis has shown a linear relation (see Fig. 5.16) between
diameter of circle of least confusion D, and the numerical aperture N4 of the beams inside
calcite:

D, < NA. (5.61)

The number of speckles integrated on a single picture element depends quadratically on the
diameter of the circle of least confusion:

K<D,>. (5.62)
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Thus, the number of overlapping speckles per picture element is proportional to the square of
the numerical aperture as is described by

K=NA>. (5.63)

Combining this with Eq. (5.56), the modulation depth is influenced by the numerical aperture
as

(1) \)ip(l) = 7\,1:4;\/;0). (5.64)

This equation shows that the modulation intensity of a astigmatic speckle field increases
linearly with the aperture, since (I) increases quadratically with the aperture. This is in perfect
agreement with our measurement (see Fig. 5.16).

Conclusion

Imaging through the Savart elements leads to astigmatism. This in turn leads to a lower
modulation depth of the resulting interference patterns. This effect can be described by
expanding the theory of unresolved speckle patterns to speckle patterns, in which several
speckles overlap on a single picture element.

The modulation depth of aberration free speckle patterns is decreased for larger apertures due
to the averaging of multiple speckles by a single picture element and it is inversely proportional
to 4/NA . Due to the imaging through the Savart elements, the modulation intensity decreases
much faster and is inversely proportional to the aperture. This is summarized in Fig. 5.23.
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Fig. 5.23 Reduction of the modulation depth due to (a) unresolved speckles
and (b) astigmatic speckles.
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For optimal modulation depth, astigmatism should be avoided. Fig. 5.19 shows that
astigmatism reduces to zero for a collimated incident beam (vanishing NA). Therefore, the
Savart elements should preferably be positioned in a collimated beam.

Note

The quadratic dependence of the modulation intensity is only valid for resolved speckle
patterns. For unresolved speckle patterns, the modulation intensity reduces slightly as a
consequence of averaging multiple speckles in a single picture element (see also the discussion
in Section 2.2). This effect is not taken into account in the ‘ideal’ curve in Fig. 5.10. If it would
have been, the modulation intensity would show a somewhat slower increase than the indicated
quadratic one, starting from values of the aperture of approximately Smm and as a result the
expected value at 20 mm would have been roughly 25% lower than the presented one.

5.5 Measured accuracy

From the analysis presented in the previous sections of this chapter, it is deducted that many
noise sources reduce the accuracy of the system. Some errors vary with the actual application
(e.g. object decorrelation) and some depend merely on the optical system (imperfect alignment
or performance of optical elements). From the analysis it becomes clear which are the most
important noise sources, but it is quite complicated to obtain a value for the overall accuracy of
the system. It would be advantageous to use a single parameter to indicate the accuracy of the
system. This can e.g. be done by measuring the smallest deformation of an object surface
(expressed in parts of the wavelength of the used light) that exceeds the noise sufficiently to be
measured. Using this definition, a measure of the system’s accuracy can be given.

We determined the phase change of a diffusely reflecting object, which is composed of two
parts, as depicted in Fig. 5.24. Using this test object, the result is independent of the shearing
distance, which normally determines the measurement sensitivity of the shearing
interferometer, since the deformation is sharply localized.

™ moving|part

fixed part

Fig. 5.24 Test object.
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The moving part is mounted on a piezoelectric transducer, coupled to the DA-converter of a
computer to control the out-of-plane displacement. Measurements show that a 22 nm (i.e. \/44)
displacement of the moving part can be measured. At this value for the displacement, the signal
to noise ratio just exceeds the value of 1. Since we measure in reflection, the phase change
associated with this translation is 2n/22 = (.28 rad. This value is considered as the measured
phase error. The phase error depends on the modulation intensity of the interferograms, which
ca be altered by adjusting the aperture of the interferometer.
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Fig. 5.25 Measured phase error versus aperture size.

This measurement shows an increase of the phase error for larger apertures, as could be
expected since for larger apertures the convergence of the beams in the polarizing optical
elements is larger, leading to larger phase errors. For smaller apertures, the intensity at the
detection planes becomes lower but only for apertures below 1 mm it becomes such low that
electronic noise and quantization noise become dominant. However, in normal applications, the
phase error would increase at larger values of the aperture than the 1 mm measured here, since
object decorrelation takes an important role. Only for this special test object, the measurement
is not affected by object decotrelation, since the fixed part of the object is not affected by the
displacement of the moving part. Therefore, this measurement yields the accuracy of the
interferometer itself.

In conclusion, there is an optimal aperture of the interferometer, leading to a measured phase
error of 0.28 rad, which corresponds to a A/22 accuracy. Larger apertures lead to larger errors
since the misalignment of the optical elements and the cameras and the latter’s imperfections
become dominant. Choosing smaller apertures than the optimal one, the accuracy is not
influenced until the intensity at the detection plane becomes too low and electronic and
quantization noise become dominant. In general, testing a sample containing a subsurface
defect, object decorrelation will reduce the accuracy of the measurement at smaller apertures
and the accuracy of the measurement will be lower than the one depicted in Fig. 5.25.
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Chapter 6

Application of the system
for defect detection

Many measurements have been performed during this investigation. They can be divided into
two categories, the first group aiming at testing and optimizing the performance of the
system and the second one consisting of actual measurements to demonstrate the capabilities
of the system. This chapter will present a selection from the latter category. The two-camera
system is used for contactless inspection of a composite sandwich panel of a helicopter. The
measurement procedure used for defect detection is elucidated in Section 6.1. The inspection
is performed in a laboratory environment (Section 6.2) as well as under more severe
circumstances, namely with a vibrating object (Section 6.3), simulating an industrial
environment.

6.1 Shearographic detection of defects

Shearography reveals defects by measuring defect-induced out-of plane deformation anomalies
(see also Section 1.2). It measures the deformation of the test object under different loads. Such
a load can be induced by changing the air pressure around the object (pressure or vacuum
loading), by heating or cooling it (thermal loading) or by applying mechanical vibration
(mechanical or vibrational loading). Loading will cause a deviating displacement of surface
points in an area with flaws, as compared to a flawless area. In our measurements we used
thermal loading. Usually, the front side of the sample was heated using a heat gun for one or
two seconds, increasing the surface temperature by a few degrees. Most defects were revealed
during the subsequent cooling process instead of during heating. The former is a much slower
process (duration in the order of minutes instead of one or two seconds), which makes the
identification of defects in the shearography images easier.

The application of a white reflective powder on the surface of the inspected area can improve
the scattering characteristics of the surface without generating considerable artifacts in the
deformation measurement’, e.g., by spraying a white powder upon the surface. This powder
does not noticeably change the elastic properties of the surface. Applying the powder, the
diffuse reflectivity of objects can in general be increased, especially of objects with a low
reflectivity at the used wavelength. Moreover, it can overcome local saturation of the system
due to possible specular reflections. For the measurements described in this chapter, the
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object’s surface was treated with such a white diffusely reflecting powder, namely Dubl-Chek
developer D-100. '

Using the developed interferometer for non-destructive inspection of materials, the following

steps have been executed:

1. Record a reference phase distribution before loading the object.

2. Apply the loading technique.

3. Monitor the live phase difference image, representing the surface shape difference (i.e.
deformation) between the moments the reference and actual images were recorded, on the
video screen.

4. If the loading causes decorrelation or a (too) high fringe density, take a new reference phase
distribution.

5. Adjust the filtering algorithm during the measurement if necessary to improve the
distinctness of the defects.

6. Store the image when a defect is clearly visible.

Under laboratory conditions, the real time system is not expected to perform much different
from sequential (also called temporal) phase-stepped systems. However, if the environmental
conditions are hostile (e.g. vibrations, air current), our system will still be able to perform the
phase measurement correctly, whereas the measurements with the temporal phase-stepped
systems will be deteriorated by (irregular) changes of the phase between successive recordings
due to environmental disturbances.

In this chapter, the measurements performed with the real-time system are described and results
are discussed. First, measurements under laboratory conditions are described and results
obtained with our system will be presented. Next, the application of the real-time shearing
interferometer in more hostile environments will be compared with that of a conventional
shearing interferometer.

6.2 Defect detection under laboratory conditions

In the framework of one of the projects* of the European Union, in which this research was
performed, several specially prepared samples have been tested. Some of them are realistic
aircraft structures (e.g. part of a helicopter fuselage and an engine tunnel sample) whereas
others were manufactured as test specimen (e.g. a J-spar of a wing and a step wedge). In order
to evaluate the performance of our real-time system under laboratory conditions, the results
were compared with those from a more conventional temporal phase-stepped shearography
system. This system used an Argon ion laser and the measurement set-up was positioned on an
optical table. Our system is mounted on a tripod (see Section 3.6) and the sample is fixed in
front of it on a normal table. In Fig. 6.1 a schematic drawing of a temporal phase-stepped
system is given.

* Brite Euram Project Number BE.5879
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Fig. 6.1 Temporal phase-stepped shearing speckle interferometer.

The system depicted in Fig. 6.1 is a Michelson-type shearing interferometer. Phase stepping is
introduced by computer controlled translation of the mirror mounted on a piezoelectric element
(PZT). The same phase calculation algorithm is used for both the real-time and the
conventional system, i.c. a four bucket method. From the comparison of the results it was
concluded that the sensitivity of the real-time system under laboratory conditions is similar to
that of the conventional system although the measurements with the real-time system have a
considerably smaller field of view at the same laser power. Both systems detect the same type
and size of the defects. The loading method appeared to be very important. Using thermal
loading with a halogen lamp or heat gun usually resulted in the detection of a defect, although
the sensitivity for defects, located deep within the material and in thick and solid samples, is
lower and a stronger or longer load is needed. The dynamic character of the real-time system
proved to be very valuable, especially with samples containing (for shearography) difficult
defects (c.g. small defects, defects deep below the surface, etc.). Defects are more easily
recognized since temporal changes of the signature of defects can be observed. Furthermore,
the ability to observe object deformations in real time allows the operator to verify the correct
loading duration and strength.

To illustrate the performance of the system, the results of an inspection of a part of the fuselage
of a helicopter are given. It is a sandwich structure consisting of a honeycomb core and thin
skin plates, as is depicted in Fig. 6.2. The skin thickness is 0.8 mm and the honeycomb core
height is approximately 12.6 mm. The honeycomb core is tapered at the edges.

Lt

N
n honeycomb core

Fig. 6.2 Sandwich construction with a honeycomb core between two composite skin
parts.
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This sample contained 12 defects of two types. Eight impact damages and four artificial inserts
between the honeycomb and the skin material were present (the artificial inserts simulating
delaminations). In the area we considered here, two defects were present: a circular PTFE
insert (with a 40 mm diameter) between the skin material and the core and a 20x20 mm’ impact
damage. The impact crushed the surface material of the sample locally and was classified as a
Clearly Visible Impact Damage. The insert could not be seen by the eye. Fig. 6.3 schematically
depicts the defects present in the inspected area.

delamination

"4 impact damage

¥

field of view

Fig. 6.3 Defects in the inspected area.
The settings used in the experiment are listed in Table 6.1.

Table 6.1 Experimental parameters

Distance between the measuring system and the object | 0.4 m

Field of view 10x15 cm?
Shearing distance and direction 15 mm horizontal
/# (aperture size) 22 (4mm)
Output power of the laser 0.9 Watt
Real-time Filter 7x7 uniform

The impact damage is a surface defect, which shows up very easily using thermal loading with
a heat gun for less than a tenth of a second. The other defect, the insert, is a sub-surface defect
and it also shows up very easily, but with a somewhat longer loading duration (approximately 1
s). In order to measure both defects simultaneously and to enable the storage of the resulting
phase image, we used thermal loading with the heat gun during a period of 10 seconds. This
way, the heat is built up in the inspection area and it diffused further into the sample. In
general, using this loading cycle, the defects could still be measured after several minutes. In
the measurement, the result of which is displayed in Fig. 6.4, the reference image was taken
several minutes after loading, when most of the heat was already diffused into the material.
Roughly 30 seconds after recording the reference phase, the ‘live’ phase difference image was
grabbed and stored onto the hard disk of the workstation. In Fig. 6.4 a gray scale representation
of the measured phase difference image is displayed. The perception of the defects is easier
when a color representation of the phase difference is used. Therefore, we use a false color
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Look Up Table for displaying the phase measurement on a monitor in our system instead of a
gray value representation.

Fig.6.4 The measured phase difference image, with real-time 7x7 filtering,
no postprocessing.

In the image, two defects can be identified clearly: the one at the right-hand side is the impact
damage and the defect at the left of it the 40 mm insert. The form of the insert can be
recognized in the measured phase difference. The area affected by the defect-induced
deformation has a more or less circular shape, as could be expected from a circular defect.
From Fig. 6.4 it can also be seen that approximately the gradient of the surface deformation is
measured. The phase image shows a rising flank in the left-hand part of the insert (indicated
with a higher average gray value than the background value) and a descending flank (indicated
with a lower average gray value than in the background). The sharp transitions from white to
black and vice versa of neighboring picture elements is an artefact of the phase calculation
algorithm and is not related to sharply localized deformation changes. It is caused by phase
wrapping in the (- 7,7} interval by the arctangent function.

The second defect, the impact damage, generates a more chaotic phase change pattern than the
insert and the (more or less square) shape of the defect is less striking. The surface of the object
is broken locally and the phase change can be discontinuous from one picture element to
another. As a result, the phase discontinuities can either be actual surface discontinuities or
phase wrapping discontinuities.

Using image post processing, the visibility of the defects can be further improved. Since the
impact damage leads to real discontinuities in the phase change measurement, only the part of
the phase change image containing information on the insert is processed. In Fig. 6.5a, the
induced delamination is made more apparent by performing a sine-cosine filtering in a 31x31
neighborhood and stretching the contrast of the image to its full range [0-255].
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()

Fig. 6.5 Results of image post processing: (a) after filtering and contrast stretching and
(b) the pertinent surface plot.

Fig. 6.5b shows a height profile of the processed image. This picture illustrates the fact that
shearography approximately measures the deformation gradient.

6.3 Application of shearography in hostile environments

The goal of these experiments was to determine the applicability of the real-time phase-stepped
shearography set-up under industrial environments. For this purpose, the experiments were
focused on a comparison of the real-time phase-stepped shearography system with a more
conventional temporal phase-stepped shearography system under industrial conditions.
Therefore, these two systems were used under (one of) the most common disturbances for
shearography, i.e. mechanical vibrations. The temporal phase-stepped system used in this
measurement was similar to the one used in Section 6.2 (see Fig. 6.1) but now it used the same

laser (SDL-5762-A6) as the real-time system.

\

|

\

\

To simulate vibrational disturbances, a shaker was used to vibrate the sample under inspection.
The amplitude and the frequency of the vibration were varied during the measurements. The
amplitude of the object vibration was measured at the rear side of the inspected area using a
triangulation set-up. The experiments were conducted using the same test sample as in Section
6.2. The shaker was attached to the rear side of the inspected area containing the defects. As
indicated in Fig. 6.6, the position of the sample was fixed to the shaker and two supports where
used to suppress in-plane displacements of the sample when vibrating, since out-of-plane
displacement was expected to be the dominant displacement in industrial environments.
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Fig.6.6 Front view of the inspected sample.

A schematical drawing of the measurement geometry is given in Fig. 6.7.

test sample

temporal phase-stepped
shearing system real-time phase-stepped

shearing system

diode laser

Fig. 6.7 Top view of the experiment.

In this set-up, both systems were used to inspect the same part of the object. The inspected part
is the same part of the sample as discussed in Section 6.2. The shearing distance was chosen
equal for both systems in order to have the same sensitivity. Also, the field of view was
approximately equal. The settings of both systems are given in Table 6.2.

Table 6.2 Experimental parameters of the real-time and the conventional system.

Experimental parameter real-time system conventional system
Distance between the measuring | 40 cm 80 cm

system and the object

Field of view 10 x 15 em® 11 % 11 em?
Shearing distance 6 mm 6 mm

Shearing direction 71/6 rad off horizontal | /6 rad off horjzontal
f/# (aperture size) 11 (=8 mm aperture) |11

Output power of the laser 0.9 Watt 0.9 Watt

Real-time filter 5 x 5 or 7 x 7 uniform | none
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The measurement procedure for the temporal phase-stepped system is a little different from the
one for the real-time system. This is caused by the fact that no direct feedback can be applied
on the load. A usual procedure for NDT using the conventional system is the following:

1. Apply the loading technique.

2. Record four phase-stepped images and compute a reference phase distribution.

3. Keep one of the phase-stepped interference patterns in the working memory of the
computer.

4. Again record four phase-stepped images.

Subtract one of the interferograms of Step 4 from the corresponding one in Step 3.

6. Check if the loading was within the required limits using the intensity difference pattern
resulting from Step 5. If not, repeat Step 4 to 6.

7. Compute a phase distribution using the interferograms recorded in Step 4 and calculate the
phase difference distribution.

8. Perform image post processing (e.g. filtering and unwrapping) if a defect is visible or
suspected.

9. Store the image if a defect is visible

w

In practice, it turned out to be quite difficult to tell from the intensity difference between two
interferograms, recorded at different times, if the applied load was sufficient. Therefore, we
used the real-time system to monitor the amount of load. Thanks to the dynamic character of
the real-time system the correct stimulation duration could be verified and Steps 3 to 6 could be
omitted.

With the conventional system the defects are best revealed during the relatively slow cooling
down process instead of during the heating up phase since this system needs several seconds to
record four phase-stepped images.

Using the real-time system, defects showed up various times just by changing the vibration
frequency of the test sample. This can be understood from a different vibration behavior of a
defected area than a defect free area and shows the applicability of vibrational loading for
defect detection. However, the defects were much easier detected by thermal loading.

The measurements have been performed such that for each vibration frequency (steps of 1 Hz
for the real-time system and steps of 0.1 Hz for the conventional system) the amplitude of
vibration was varied in order to determine to what extend defect detection appeared possible. In
interpreting the measurements, we assume that, if for some amplitude detection is possible, this
also can be performed for lower amplitudes. Likewise, if for a certain frequency and amplitude
no defects are detected, it will be assumed that larger amplitudes of vibration also don’t reveal
the defects. The measurement results can then be expressed in the form of a displacement
versus frequency graph in which bands indicate if in a certain frequency-amplitude range,
defect detection is possible. This way, the detection limits of both systems are obtained for this
specific situation, giving a good indication of the allowed range of frequencies and amplitudes
for both systems. Fig. 6.8 shows the results of measurement with the real-time system and
those of the conventional system.
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Fig. 6.8 Defect detection on a vibrating sample with a real-time and a conventional
System.

Comparing the results of both systems, it is clear that the real-time system can perform defect
detection for vibrations with higher amplitudes and higher frequencies than the conventional
system. As an example, for object displacements of 0.1 mm, the real-time system is able to
detect defects in the vibrating object up to ca. 25 Hz, whereas the conventional system is
suitable for defect detection up to ca. 3 Hz. Even during vibrations with amplitudes which
cause speckle decorrelation (e.g. at the turning points of the vibration) defects are still visible
for some time during the period of the vibration.

From Fig. 6.8 a general tendency is observed which indicates that the higher the frequency of
the vibration, the lower the allowed amplitude must be to detect the defects with the real-time
system. However, from the measurements it is not easy to obtain a direct relation between the
amplitude and the frequency of the vibration and the defect detection capabilities of the real-
time system. The measurements show that some frequencies of vibrations are worse for the
image quality than others, although they have the same amplitude. As an example, an object
vibration of about 13 Hz with an amplitude of ca. 0.2 mm obscures the visibility of the defects
completely, whereas at a 0.4 mm, 25 Hz vibration, both defects could still be detected.
Observation showed that around 13 Hz the sample showed a complicated behavior, which
appears to be caused by a resonance of the sample-shaker combination. This resulted in a
combined in-plane and out-of-plane movement of the sample, leading to decorrelation between
phase patterns recorded before and after loading. This is confirmed by measurement of the in-
plane velocity, measured on the tripod on which the shaker is mounted (see Fig. 6.9).
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Fig. 6.9 In-plane velocity of the sample.

This measurements shows a strong increase of the in-plane velocity around 13 Hz.

The measurement was repeated for the real-time system using a twice as small aperture (4
mm), leading to lower modulation intensity of the interferograms but also to lower phase errors
(see Section 5.5).
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Fig. 6.10 Defect detection on a vibrating sample with the real-time system,
using a 4 mm aperture.

This measurement does not show much difference with the one presented in Fig. 6.8, although
around 13 Hz, it shows that defect detection is only possible at smaller vibrational amplitudes
than when using a larger aperture (see Figs. 6.8 and 6.10). This, too, confirms the assumption
that object decorrelation reduces the detectability of the defects around 13 Hz (and also around
26 Hz), since smaller apertures increase the sensitivity for object decorrelation (see Section

2.2).

The measurements with the real-time system were performed during renovation activities in the
building, which introduced vibrations on top of those induced by the shaker. Therefore, the
experimental conditions of the measurements with the real-time system where more severe than
at the time the measurements with the conventional systems were performed. Another
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measurement was performed in which both systems were used simultaneously and in absence
of the vibrations induced by the reconstruction activities. Moreover, the camera of the
conventional system was replaced by a Kappa CF7 camera, i.e. the same camera type as is
present in the real-time system. Also, a stronger lens was used in the conventional system (see
Fig. 6.1), such that it could be placed at similar distance from the object as the real-time
system. This way, the environmental conditions were equal for both systems and the
experimental parameters were similar (except for the used phase stepping technique) making
the comparison more objective. The experimental parameters of the experiment are listed in
Table 6.3.

Table 6.3 Experimental parameters of the real-time system and the conventional system

Experimental parameter real-time system conventional system
Distance between the measuring | 40 cm 50 cm

system and the object

Field of view 10 x 15 cm® 10 x 10 cm®
Shearing distance 10 mm 10 mm

Shearing direction horizontal horizontal

fr# 22 (=4 mm aperture) | 16

Output power of the laser 0.9 Watt 0.9 Watt

Real-time Filter size SxSor7x7 none

This measurement showed a similar result as the one presented in Fig. 3.8 and Fig. 3.10,
although the local minimum around 13 Hz appeared to be shifted to ca. 14 Hz. It was also
observed that at higher frequencies and/or amplitudes, the impact damage was easier to detect
than the artificial delamination. For very small amplitudes (<10 pm) neither of the systems are
influenced by the vibration, regardless of the frequency (measured up to 200 Hz).

Summarizing the results, which show that the real-time system could detect defects in a
composite panel, vibrating at higher frequencies and with larger amplitudes, we can conclude
that the sensitivity of the real-time phase-stepped shearography system to object vibrations is
significantly lower than that of the conventional phase-stepped shearography system.

6.4 References

1. 1.J.J. Dirckx, W.F. Decraemer, “Coating techniques in optical interferometric metrology”
Applied Optics 36, pp. 2776-2782 (1997).






Chapter 7

Conclusions and suggestions

7.1 Conclusions

A system has been developed that measures the deformation of diffusely reflecting object
surfaces with video speed, i.e. 25 times per second. It uses two CCD cameras to record four
phase-stepped interferograms simultaneously. Phase stepping is performed using the
polarization properties of light. The system has a higher measurement sensitivity than real-time
speckle shearing interferometry without phase stepping. Thanks to the used shearing technique
and the short recording time (40 ms) of a phase image, the system is less sensitive for
measurement errors that are introduced by time-dependent perturbations, like air flow,
temperature changes or slow vibrations, than sequentially phase-stepped shearing
interferometers. The system is successfully used for defect detection in a relative hostile
environment and can therefore be used as a supplement to existing non-destructive testing
(NDT) techniques.

Savart elements have been used to generate two interferograms on each camera, which have a n
radians phase step difference. This way, a compact and rigid mechanical set-up could be
realized. The Savart elements are also used in the sub-pixel alignment routines, which are
developed to align the interferograms on the pertinent CCD cameras. The stability of the
system has proven to be sufficient for application in industrial environments. No adjustment to
the system is required during measurements or after transportation.

From the four interferograms, two on each of the two cameras, the object deformation is
calculated and displayed on a video monitor using a pipeline image processing system. This is
a real-time technique, meaning that the processing speed of the system is high enough to
instantly calculate the phase maps. As a result of this ability to observe changes in real time,
defects are more easily recognized since temporal changes, carrying the signature of defects,
can be observed. Furthermore, an operator can verify the correct stimulation duration and
strength while performing the inspection.

In the pipeline image processing system a real-time filtering process was implemented, which
simplifies and speeds up the process of finding defects because no (or less) post processing of
the images is required to reduce the noise.
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The real-time phase-stepped shearing interferometer employs a semiconductor laser as light
source and is mounted on a tripod, which makes the system easy to handle. The dimensions
and weight of the selected laser (SDL, type 5762-A) are much smaller than that of the formerly
used Argon ion lasers. The diode laser can be operated from a standard 220V/50Hz power
supply and does not need external cooling. A disadvantage is the limited power of the laser (i.e.
1 W), which restricts the inspection area to approximately 25x35 cm®. A 1 W laser should
normally be sufficient to inspect a 0.25 m® area in a single recording, but the modulation
intensity in the interference patterns that our system records is rather low due to astigmatism,
generated by imaging through the Savart elements. This invokes a ‘smearing’ of the speckle
patterns, thus reducing the modulation depth. As a result, more laser power is needed to inspect
a certain object area. The effect of aberrations can be reduced by limiting the aperture of the
system, which leads to a lower intensity in the detection plane of the interferometer and thus
yields a limited inspection area. Other main error sources in the system are incorrect positions
or characteristics of the polarizing optical elements, mainly the quarter wave plates in the
interference section, and incorrect camera position. As a result of these errors, a total
measurement accuracy of 0.28 rad (=A/22) can be obtained, if only the phase errors in the
optical system are regarded. Since deformations are measured in reflection, a 22 nm
deformation of an object can be measured. For usual defect detection applications, also object
decorrelation has to be taken into account, reducing the resulting accuracy of the measurement.

7.2 Suggestions

The shearing interferometer, developed during this thesis, is designed for use in an industrial
environment. The interferometer’s sensitivity for external disturbances is already strongly
reduced as compared to more conventional systems. It also enables the monitoring of the
dynamic behavior of objects and transient phenomena. However, an even stronger reduction of
the sensitivity for external disturbances can be obtained by using a pulsed laser source.
Likewise, to analyze high speed events (e.g. in vibration analysis), pulsed (or modulated) laser
sources are required. Thus, the application of a pulsed laser can extend the scope of application
of shearography further, e.g. into the field of modal analysis for the study of dynamic behavior
of structures, or for sound reduction studies. Certain risks must be assessed, mainly those
related to the safety of the laser. Additionally, the type of CCD camera becomes critical. If a
frame transfer CCD camera is used together with a pulsed laser, an interferogram cannot be
recorded in the even and uneven lines simultaneously. Therefore, only one of the two TV fields
contains information. This leads to a reduction of the vertical resolution for a frame transfer
camera by a factor of two. Since an interline transfer camera fills a full TV frame in a single
short exposure, this type of camera is preferable if used in combination with pulsed laser
sources.

The performance of the developed interferometer on Jarge inspection areas can be increased by
decreasing or, even better, avoiding the astigmatism generated in the Savart elements by
converging beams. This astigmatism vanishes for collimated beams. Therefore, the Savart
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elements should preferably be positioned in a beam where it is collimated. This can be
performed by modifying the imaging system, e.g. by removing the second lens of the telescopic
system and placing several lenses behind the Savart elements, one for each interferogram.
Strong position requirements will be imposed on these lenses. These lenses could also be used
for aligning the interferograms on the CCD cameras, which would replace the present
alignment procedure which uses rotations of the Savart elements. The maximum numerical
aperture is then determined by the actual camera alignment accuracy and the performance of
the polarizing elements for converging beams. Also, using a stronger laser (or cameras with
higher sensitivities) would enable the use of small apertures in the system, which in turn
decreases the errors associated with astigmatism. However, this is less preferable because a
small aperture increases object decorrelation, which is a major error contribution in speckle
interferometers.

The present system uses a near-infrared diode laser (984 nm). For safety reasons in industrial
environments, the application of a laser with a visible wavelength is suggested. An additional
advantage of a shorter wavelength is the improved spatial resolution of usual CCD cameras.

To obtain a transportable set-up, the optical elements have been fixed to a base plate. Because
of the total weight (ca. 10 kg) and dimensions (38x24x25cm’) of the optical head of the system
and the semiconductor laser, a heavy duty rigid tripod is required to position the instrument in
front of a test structure. The weight and dimensions are primarily determined by the required
rigid mechanical construction. A system with a reduced weight and smaller dimensions is
desirable. New concepts have been generated to achieve this. By reducing the number of
cameras to a single one, recording two phase stepped interferograms simultaneously and
adopting temporal phase unwrapping, a more compact and portable system should be feasible.
Together with reducing the optical head of the system, reducing the size and costs of the image
processing system would improve the acceptance of this new technique into the field of non-
destructive testing. Using a PC for real-time image processing is within reach.

Also improved image processing or automated diagnosis would increase the acceptance of
shearography as an NDT tool. The presently used procedure to detect defects relies on the
interpretation of the images by the operator. Optimal performance is expected when automatic
defect detection would be implemented.

Finally, improvement and standardization of the loading methods (e.g. thermal, vibrational or
vacuum loading) and systems is required for full acceptance of shearing interferometry as an
NDT technique. In order to increase reproducibility, computer controlled stimulation duration
and strength is suggested. A loading system should permit extensive adjustments, such that the
use of shearography is not restricted by the design of the loading system. The loading system
should be easy to handle and is preferably integrated with the system on the tripod. In the
presented research, thermal stimulation using a halogen lamp or a heat gun has been used,
which are simple to use. But as different structure types and their typical flaws make it
necessary to use different loading techniques, intensities or areas, it is necessary to investigate
the field of applications and loading methods to find the most promising method and the
necessary equipment for a given object.
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Symbol list

Description

electric field amplitude vector of wavelet
at a distance of 1 m of its origin
amplitude of electric field

aperture area

area of the aperture surface which receives
a different part of the speckle pattern,
brightness

normalization constant of filter routine

constant factor characterizing camera and AD converter

decay speed constant

electric displacement

diameter of lens pupil

electric field vector

radiant flux

magnetic field

intensity

background intensity

intensity noise term
modulation intensity

changed modulation intensity
first order Bessel function
cavity length

coherence length

Jones matrix

magnification of objective lens
magnification of telescopic system
number (usually large)
numerical aperture

ptical laser output power
brightness reduction factor
discrimination factor for laser/camera combination
autocorrelation function
crosscorrelation function
intensity reflection coefficient
relative sénsitivity

sensitivity of CCD

Unit
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Ap,

intensity transmission coefficient
recording time of camera
visibility

weight function of filter routine

background intensity containing additive noise
unit vector indicating observation direction
modulation intensity containing multiplicative noise
image distance of first telescope lens

speed of light

amplitude reflection coefficient of beam splitting cube
amplitude transmission coefficient of beam splitting cube
beam displacement by Savart elements
displacement vector

length of the telescope

height of picture element

width of picture element

average speckle diameter

sensitivity vector

spatial carrier frequency

focal length of the lens

integer valued field used for unwrapping

wave vector

scaled wave vector sum

scaled wave vector difference

average speckle length

geometric path length of a ray

refractive index in incident medium

refractive index

refractive index of extraordinary beam
refractive index of ordinary beam

refractive index of extraordinary beam travelling
under angle ¢ with z-axis

birefringence

the area of the picture element

area of picture element that records

a different part of the speckle pattern

probability density of phase

probability density of intensity

position vector

relative displacement between cameras

unit vector indicating illumination direction
amplitude transmission coefficient

amplitude reflection coefficient
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t, coherence time ]
t time s
v, object distance of second telescope lens m
X, horizontal spacing of picture elements m
¥, vertical spacing of picture elements m
Ax,Ay  shearing distance m
z distance m
z, object distance m
z; image distance m
mn picure element coordinate system
u,v,w  uvw-coordinate system
x,y,Z  xyz-coordinate system
@ energy impinging on the object W
r astigmatic constant -
A constant -
o solid angle in object space st
0 solid angle in image space St
a angle between optical axis and ray direction rad
4 retardance of retardance plate rad
) decay variable of filter routine -
£ electric permittivity tensor Fm
£ angle of deviation of fast axis from optimal position rad
¢ phase rad
¢ scaled phase sum rad
¢ scaled phase difference rad
4. angle between k and ¢ rad
P angle between z-axis and the principal rays

through an object point rad
& angle between z-axis and the principal rays

through an image point rad
@, phase of object beam rad
o, phase of reference beam rad
@ phase difference between object and reference beam rad
o, unwrapped phase difference rad
Ag phase difference caused by object deformation rad
1% angle between Savart entrance face and w-axis rad

surface normal -

m

7
A wavelength
Y7 amplitude correlation factor
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qQ ™

[N]

| v §

L2 > >
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bandwidth

frequency spacing

phase step

angle of incidence

convergence angle in the object space
convergence angle in the intermediate image space
convergence angle in image space
normalized wave direction

variance

angular frequency

angular mismatch of analyzer

angle between optical axis and u-axis

rad s
rad
rad
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Samenvatting

Shearing spikkelinterferometer met twee camera’s
voor vervormingsmetingen met videosnelheid

Introductie

Composietmaterialen ~worden in toenemende mate gebruikt als  lichtgewicht
constructiemateriaal. Ze maken de fabricage van veel lichtere constructies mogelijk dan met
conventionele materialen (bijvoorbeeld aluminium) mogelijk zou zijn, terwijl sterkte en
stijfheid van de constructie gelijk blijven. Daarnaast hebben composieten betere
eigenschappen, waaronder een betere corrosiebestendigheid en verminderde vermoeiing. Dit
laatste is vooral van belang voor de vliegtuigindustrie, omdat het aluminium van vliegtuigen
degradeert ten gevolge van de grote belastingvariaties en temperatuurschommelingen tijdens
het opstijgen en landen. Ondanks de aantrekkelijke eigenschappen van composicten, ontstaan
er ook nieuwe problemen bij het toepassen ervan. Tijdens productie of gebruik van deze
materialen kunnen defecten, zoals scheuren, inhomogeniteiten of laagloslatingen ontstaan en
groeien. Het is belangrijk dat deze defecten in een vroeg stadium gedetecteerd worden, nog
voordat ze van invloed worden op de prestatie van de structuur.

Aangezien de luchtvaartindustie als één van de eersten composieten toepaste, heeft ze nu te
maken met het probleem van verouderde composietdelen. Hierdoor moet de luchtvloot om
veiligheidsredenen regelmatig geinspecteerd worden. De sleutel tot een aanhoudend en
groeiend gebruik van composieten in de (vliegtuig)industrie is het vermogen om
oppervlaktedefecten en inwendige defecten in constructies te detecteren. Hiervoor zijn de op dit
moment beschikbare inspectiemethoden helaas niet toereikend. Derhalve is er een groeiende
interesse voor nieuwe methoden die onder industriéle omstandigheden mogelijke defecten snel
en betrouwbaar kunnen detecteren.

Dit proefschrift

De 25 Hz fasegestapte shearing interferometer die in dit proefschrift wordt beschreven, kan
bijdragen tot een veilig gebruik van de luchtvloot. Daarom is de ontwikkeling van dit systeem
primair gericht op gebruik in de vliegtuigindustrie. Het nieuwe shearografiesysteem is geschikt
voor non-destructicve inspecties van vliegtuigstructuren. Het is veel minder gevoelig voor
externe verstoringen dan meer conventionele interferometers, waardoor het geschikter is voor
gebruik in een hangar. Het systeem is reeds succesvol toegepast voor defectdetectie in een
relatief vijandige omgeving en kan dus gebruikt worden als aanvulling op de bestaande non-
destructieve testmethoden (NDT).
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Het ontwikkelde systeem meet de vervorming van diffuus reflecterende voorwerpen met
videosnelheid, oftewel 25 keer per seconde. Het gebruikt twee CCD camera’s om vier
interferogrammen gelijktijdig op te nemen. De vier interferogrammen worden gegenereerd in
afzondelijke takken van de interferometer met behulp van speciaal hiervoor ontworpen Savart
elementen. In elk van de takken worden twee interferogrammen naast elkaar opgenomen door
één camera. Op deze wijze is een compacte en stijve mechanische opbouw gerealiseerd. De
Savart elementen worden simultaan gebruikt als bundelsplitsers en als analisator. Daarnaast
worden ze ook gebruikt bij de uitlijning van de interferogrammen op de CCD camera’s.

Defecten kunnen gedetecteerd worden door krachten op het te inspecteren voorwerp uit te
oefenen (bijvoorbeeld door verwarming ervan), zodanig dat defecten te zien zijn in de vorm
van een vervormingsafwijking van het oppervlak. Omdat het optische systeem verbonden is
met een snel beeldbewerkingssysteem, kunnen faseveranderingen van een voorwerp (die
oppervlaktevervormingen representeren) bekeken worden met videosnelheid. Het resulterende
faseverschilpatroon beschrijft bij benadering de afgeleide van de veranderingshoek in de
richting van de shear, hetgeen overeenkomt met de vervorming. '

Dankzij de gebruikte shearing techniek en de korte opnametijd (40 ms) van de vier
interferogrammen, waaruit het fasepatroon wordt berekend, is het systeem minder gevoelig
voor tijdsafhankelijke verstoringen (zoals luchtstromingen, temperatuurvariaties of trillingen)
dan fasegestapte interferometers die gebaseerd zijn op het achtereenvolgens opnemen van de
fasegestapte interferogrammen. Een ander voordeel van de shearing techniek betreft de eisen
aan de coherentielengte van de laser. In vergelijking met conventionele interferometers, zijn de
eisen aan de coherenticlengte van de lichtbron minder hoog, waardoor halfgeleider lasers
gebruikt kunnen worden. Het ontwikkelde systeem gebruikt zo’n halfgeleider laser, zodat het
systeem makkelijker te hanteren en te vervoeren is. Het vermogen van de gebruikte laser is
beperkt tot 1 Watt, waardoor het inspectiegebied beperkt is tot ongeveer 25x35 cm’. Een 1
Watt laser zou normaal gesproken een gebied van 0.25 m’ in één keer moeten kunnen
inspecteren, maar door aberraties, ontstaan door het afbeelden door de Savart elementen, wordt
het inspectiegebied verkleind. Andere foutbijdragen in het systeem zijn decorrelatie en fouten
in de positionering van de polariserende optische elementen en fouten in de eigenschappen
ervan. Deze fouten resulteren in een totale meetnauwkeurigheid van maximaal A/22, wat leidt
tot een kleinst meetbare vervorming van 22 nm.
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