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Abstract

In this thesis we discuss several methods to price European options under the SABR model.
In general, methods given in literature are not free of arbitrage and/or inaccurate for long
maturities. This led to the development of a new pricing approach. We extend the BCOS
method from one dimension to two dimensions. This extension is necessary for application of
a simplification of the BCOS method, the DCOS method, to the SABR model. In this pricing
method we use the characteristic function of the discrete forward process and the Fourier-based
COS method. It is possible to price European options under the SABR model for multiple
strikes in one computation with the DCOS method. Besides valuing European options, we can
also price Bermudan and discretely monitored barrier options with this pricing approach.
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Chapter 1

Introduction

In this thesis, we will discuss different methods and in particular we propose a method for pricing
European options under the so-called SABR model. First of all, we will introduce some financial
terms.

In finance, a derivative is a contract with a value that is derived from the performance of an
underlying entity, e.g. an interest rate or an asset. In this thesis, we abbreviate the underlying
entity by the underlying. A European call option is a derivative which gives the owner (holder)
of the option the right, but not the obligation, to buy an underlying asset or instrument at a
certain expiration time T for a specified price K. This price K is called the strike of the option.
The holder of a European put option has the right to sell an underlying asset or instrument at
time T for strike K. The payoff of an option is its value at the time of maturity T , for example
the payoff of a European call option is the maximum of the value of the underlying at time T
minus the strike K and 0. The forward value of a derivative is the current agreed upon value
of the derivative on a specified date in the future. In finance, arbitrage is the practice of taking
advantage of incorrect pricing in the market, i.e. earn a higher return than the risk-free interest
rate without taking risk. In this thesis, the risk-free interest rate is assumed to be deterministic.
The risk-neutral measure Q, is a probability measure under which the value of a derivative is
equal to its expected discounted payoff.

In 2002, P.S. Hagan, D. Kumar, A.S. Lesniewski and D.E. Woodward introduced a new stochas-
tic model to price and hedge European options [14]. This model is called the SABR model. S
stands for “stochastic” and ABR represents the Greek characters α, β and ρ, which are para-
meters in the SABR model. In this thesis we will use σ instead of α, because σ is the general
character used in the literature to indicate the volatility. The SABR model is developed to
improve previous asset or interest rate models, e.g. the Black-Scholes model [6] and the local
volatility model of Dupire [8], with the purpose that it matches market behaviour better than
previous models.
In [14], a very convenient formula was given to calculate the so-called Black implied volatility of
the SABR model. This formula, also known as the Hagan formula, leads however to arbitrage
possibilities for low strikes, as one can show by examining the corresponding probability density
function (PDF) [22]. Following the pricing approach of Hagan, Kumar, Lesniewski and Wood-
ward, other methods have been developed for pricing European options under the SABR model.
We discussed the Hagan formula and the methods of Ob lój [19], Andreasen and Huge [1], and
Balland and Tran [5] in a previous internship report [16]. In this thesis, we discuss the Hagan
formula and two other methods to price options under the SABR model. The developers of

1



2 Chapter 1. Introduction

both pricing approaches [2, 15] claimed to reduce the arbitrage possibilities or even remove the
arbitrage entirely. Besides arbitrage, we also check the accuracy of each method by comparing
so-called volatility smiles obtained by the method to smiles obtained by a finite difference solver.
The latter is a partial differential equation (PDE) solver and is very accurate. Because of this
accuracy, this thesis uses the volatility smiles given by this finite difference reference solver as
the reference smiles.

Antonov, Konikov and Spector introduced a pricing method with a mimicking model [2]. In
their paper, they derived an exact formula to calculate the value of a European call option for
the case that in the SABR model the correlation ρ = 0. Then, the authors discussed how one can
map the SABR parameters for the general case where ρ 6= 0 to parameters of a mimicking model
where the correlation is zero. Hagan, Kumar, Lesniewski and Woodward gave a PDE approach
[15] to recover a PDE to determine the PDF. By numerical methods, one can approximate the
PDF and this approximation can be used to calculate the price of a European option.

In particular, we propose a new method in this thesis. When the characteristic function of
a model is known, we can use the (two-dimensional) COS method to price European options
[9, 23]. Unfortunately, no analytical expression for the bivariate characteristic function of the
SABR model is available. The BCOS method (Backward Stochastic Differential Equation COS
method) of M.J. Ruijter and C.W. Oosterlee [25, 24] uses the characteristic function of the
discrete forward process to price options. In this thesis, we expand the BCOS method from one
dimension to two dimensions. Then, we use a simplified version of the two-dimensional BCOS
method for pricing European options under the SABR model. The use of backward stochastic
differential equations (BSDEs) does not appear in this simplified method, that is why we call
it the DCOS method, where D stands for discrete. We discuss different methods to use the
DCOS method to price European options under the SABR model. There are three main diffi-
culties: how to choose the best discretization scheme, how to choose the number of time steps,
and should we use logarithmic transformation(s). To gain more insight into the choice for the
best discretization scheme we compare the characteristic function of the Heston model with the
characteristic function of its discrete forward process.

This thesis is organized as follows. In Chapter 2 we introduce the SABR model and three
methods for pricing European options under the SABR model; the Hagan formula, the option
pricing method of Antonov, Konikov and Spector, and the arbitrage-free pricing method of Ha-
gan, Kumar, Lesniewski and Woodward. Then, in Chapters 3 to 6, we describe the development
of the new pricing method. The BCOS method is explained in Chapter 3. In Chapter 4 we
expand the BCOS method from one dimension to two dimensions. We discuss different methods
for pricing European options under the SABR model with the two-dimensional DCOS method
in Chapters 5 and 6. A conclusion is given in Chapter 7.
In the appendices we provide additional information and derivations. In Appendices A and
B, we give the derivation of some formulas used in the option pricing methods we discuss in
Chapter 2. We give an introduction in Itô-Taylor expansion in Appendix C. In Appendix D we
determine the Euler, Milstein and 2.0-weak-Taylor schemes and in Appendix E we provide the
derivation of the characteristic function of the discrete forward process. Finally, in Appendix F
we provide the adjusted-Predictor-Corrector schemes for the Heston and the SABR model.



Chapter 2

SABR model and its pricing methods

In their model [14], Hagan, Kumar, Lesniewski and Woodward assumed that both the forward
F , e.g. the forward swap rate, and the volatility of the forward σ are stochastic over time. The
SABR model is given by the following forward stochastic differential equations (FSDEs):

dFt = σt (Ft)
β dW 1

t , F0 = f, (2.1)

dσt = νσt dW 2
t , σ0 = α, (2.2)

dW 1
t dW 2

t = ρdt,

where W 1 and W 2 are standard Brownian motions under the forward measure and the para-
meters β, ν and ρ are constants. The exponent 0 ≤ β ≤ 1, the vol-vol (volatility of the volatility)
ν > 0 and the correlation −1 ≤ ρ ≤ 1 are constraints for the SABR parameters.

This chapter is organized as follows. Hagan’s formula and its main advantages and disadvan-
tages are considered in Section 2.1. In Section 2.2, we explain the option pricing method of
Antonov, Konikov and Spector. Finally, the arbitrage-free pricing method of Hagan, Kumar,
Lesniewski and Woodward is given in Section 2.3.

2.1 The Hagan formula

From FSDEs (2.1) and (2.2), Hagan, Kumar, Lesniewski and Woodward derived a formula to
calculate the Black implied volatility. This so-called Hagan formula is given by [21]

σB(0, T,K, f, α) = A

(
z̃

y(z̃)

)
B, (2.3)

with

A =
α

(fK)
(1−β)

2

[
1 + (1−β)2

24 log(f/K)2 + (1−β)4

1920 log(f/K)4
] , (2.4a)

B = 1 +

(
(1− β)2

24

α2

(fK)1−β +
ρβνα

4(fK)
1−β

2

+
2− 3ρ2

24
ν2

)
T, (2.4b)

z̃ =
ν

α
(fK)

1−β
2 log(f/K), (2.4c)

3



4 Chapter 2. SABR model and its pricing methods

y(z̃) = log

(√
1− 2ρz̃ + z̃2 + z̃ − ρ

1− ρ

)
. (2.4d)

One can obtain

lim
z→0

(
z

y(z)

)
= 1. (2.5)

The values of European options1 with this pricing approach are given by the Black-Scholes
formulas [6]

V C
BS(t0 = 0, T,K, f, σB) = D(T ) [f ·N(d+)−K ·N(d−)] , (2.6)

V P
BS(t0 = 0, T,K, f, σB) = D(T ) [K ·N(−d−)− f ·N(−d+)] , (2.7)

with

d± =
log(f/K)± 1

2 (σB)2 T

σB
√
T

. (2.8)

Here N(·) denotes the standard normal cumulative distribution function, V C is the value of a
European call at time 0 and V P is the value of a European put at time 0. f is the value of the
forward at time 0. T is the exercise date and, because we set today’s time t0 at 0, T is also the
time to maturity. D(T ) is the discount factor, the value today of e1 delivered at date T , and
K is the strike.

The volatility σB that is used in these formulas, also called the Black implied volatility, is
calculated with the Hagan formula (2.3). A plot of the Black implied volatility σB against the
strike K is called a volatility smile. The implementation of the Hagan formula and the Black-
Scholes pricing formulas is relatively simple. This ease of implementation is a great advantage
for the Hagan formula to extract the Black implied volatility of options.

2.1.1 Arbitrage

A necessary condition for non-arbitrage is the put-call parity. If a model is not compatible with
the put-call parity,

V C(0, T,K, f, σB)− V P (0, T,K, f, σB) = D (T ) [f −K], (2.9)

then the model is not free of arbitrage. In [14], financial derivatives are priced with the Black-
Scholes pricing formulas. The Black-Scholes formulas are compatible with the put-call parity,
so the Hagan formula (2.3) is too.

It is well-known that the second partial derivative of the European call price with respect to the
strike is equal to the discounted conditional probability density function QFT (T, F |f, α) of the
forward FT = F at time of maturity T , given today’s value of the forward F0 = f and volatility
σ0 = α, [22]

D(T )QFT (T, F |f, α) =
∂2V C

∂K2

∣∣∣∣
K=F

. (2.10)

When we extract the Black implied volatility of an option using the Hagan formula, we may
obtain, depending on the specific parameters, negative probabilities for low strikes and occa-
sionally also for high strikes. By definition, a probability density can never be negative, so here

1We do not specify the underlying in our examples, e.g. the underlying F could be a forward swap rate, such
an option is then called a swaption.



2.1 The Hagan formula 5

we observe arbitrage. We give an example below.

Example 1 We take as parameters β = 0.7, α = 0.05735, ρ = −0.48 and ν = 0.47. Also, we
set T = 10, f = 0.05735 and the constant risk-free interest rate r = 0. Central differences are
used to approximate the second derivative in (2.10). The PDF corresponding to this example
is shown in Figure 2.1. For low strikes the PDF is negative and by (2.10) the corresponding
values of European call options are non-convex for those strikes. So, pricing options with the Ha-
gan formula (2.3) is not free of arbitrage in this example. We give an arbitrage possibility below.

Figure 2.1: The incorrect conditional PDF of FT given F0 = f .

Because of the concavity in the prices for European call options for low strikes we observe

V C(0, T, 0.0095, f, σB) + V C(0, T, 0.0105, f, σB) < 2V C(0, T, 0.01, f, σB)

We buy a European call option with strike value 0.0095, a European call option with strike value
0.0105, and we sell two European call options with strike value 0.01. All options have the same
underlying Ft and the same time of maturity T .
At time T , we observe the following cases:

• When FT ≤ 0.0095 or FT > 0.0105 our payoff P is given by P = 0.

• When 0.0095 < FT ≤ 0.01 our payoff P is given by P = FT − 0.0095 > 0.

• When 0.01 < FT ≤ 0.0105 our payoff P is given by P = 0.0105− FT ≥ 0.

So, the payoff is always non-negative, our initial earning is positive and we have risk-free interest
rate r = 0. We started at time 0 with no money and at time T we have with certainty a positive
amount of money:

V C(0, T, 0.0095, f, σB) + V C(0, T, 0.0105, f, σB)− 2V C(0, T, 0.01, f, σB) + P > 0,

which is an example of arbitrage.

2.1.2 Accuracy of the Hagan formula

Besides the presence of arbitrage, Hagans formula has another disadvantage. The authors in
[2, 14] observed that the Hagan formula is not accurate for long maturities T . For maturities
longer than 10 years the error in the Black implied volatility for (2.3) can be 100 basis points
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Figure 2.2: Volatility smiles calculated with the Hagan formula.

Figure 2.3: Volatility smiles calculated with the finite difference reference solver.

(BPS) or more [2], even for options for which the strike K is equal to the current value of the
forward f , also called at the money (ATM) options.

In Figures 2.2 and 2.3 we can observe that the volatility smile given by the Hagan formula (2.3)
can move in the wrong direction when the time to maturity T increases. For these figures, we
used the parameters α = 0.35, β = 0.8, ρ = 0, ν = 0.4, r = 0 and f = 1. The volatility smiles
for different times to maturity T are shown in these figures. In Figure 2.2 it is shown that, for
this example, the level of the volatility smile raises when T increases. The solution given by the
finite difference reference solver is shown in Figure 2.3. As explained in Section 1, in this thesis
we consider the volatility smiles given by this solver as the reference smiles. As we can see in
Figure 2.3 the curvature decreases and the level of the smile lowers when time to maturity T
increases. This incorrect behaviour of the Hagan smile in Figure 2.2 does not only happen for
this example, but it happens in many cases. This is an indication for the fact that the Hagan
formula (2.3) is only accurate for small time to maturity.

2.2 The method of Antonov, Konikov and Spector

In both [2] and [3], A. Antonov, M. Konikov and M. Spector introduced a method to price
European options with the SABR model. In this section, we describe this pricing approach
and some of its advantages and disadvantages. In Section 2.2.1 an analytical formula to price
European call options when ρ = 0 is given. We give a method to map the parameters of the



2.2 The method of Antonov, Konikov and Spector 7

correlated SABR model to parameters of an uncorrelated model in Section 2.2.2. In Section 2.2.3
we consider the (absence of) arbitrage in the method of Antonov, Konikov and Spector. Finally,
we describe some of the advantages and disadvantages of this pricing approach in Section 2.2.4.

2.2.1 Call price for the zero correlation SABR

Consider the FSDEs of the SABR model (2.1) and (2.2) with dW 1
t dW 2

t = 0 and β ∈ [0, 1). In
[2, 3] an analytical formula is given to calculate the forward value of a European call option in
this zero correlation case, which we denote by V C

ZC, is derived

V C
ZC(0, T,K, f, α, β, ν) = (f −K)+ +

2

π

√
Kf

[∫ s+

s−

sin(ηφ(s))

sinh(s)
G
(
Tν2, s

)
ds (2.11)

+ sin(ηπ)

∫ ∞
s+

e−ηψ(s)

sinh(s)
G
(
Tν2, s

)
ds

]
,

where

G(t, s) =
2e−

t
8

t
√
πt

∫ ∞
s

u e−
u2

2t

√
cosh(u)− cosh(s) du, (2.12a)

φ(s) = 2 arctan

(√
sinh2(s)− sinh2(s−)

sinh2(s+)− sinh2(s)

)
, (2.12b)

ψ(s) = 2 arctanh

(√
sinh2(s)− sinh2(s+)

sinh2(s)− sinh2(s−)

)
, (2.12c)

s± = arcsinh

(
ν|q ± q0|

α

)
, (2.12d)

q =
K1−β

1− β
, q0 =

f1−β

1− β
, η =

∣∣∣∣ 1

2(β − 1)

∣∣∣∣ . (2.12e)

As mentioned, the price of a European put can be calculated from the price of a European call
by the using put-call parity (2.9). The analytical formula (2.11) consists of two double integrals.
These integrals can be calculated numerically. This integration is slower but more accurate than
the easier to employ Hagan formula (2.3). This improvement in accuracy is especially visible for
long time to maturity and/or low strikes. To improve calculation speed the authors in [2] gave
an approximation for the function G(t, s).

G(t, s) ≈
√

sinh(s)

s
e−

s2

2t
− t

8 [R(t, s) + δR(t, s)] , (2.13)

where

R(t, s) = 1 +
3tg(s)

8s2
−

5t2
(
−8s2 + 3g2(s) + 24g(s)

)
128s4

, (2.14a)

+
35t3

(
−40s2 + 3g3(s) + 24g2(s) + 120g(s)

)
1024s6

,

δR(t, s) = e
t
8 − 3072 + 384t+ 24t2 + t3

3072
, (2.14b)

g(s) = s coth(s)− 1. (2.14c)

For completeness, we give the derivation of approximation (2.13) in Appendix A.



8 Chapter 2. SABR model and its pricing methods

Figure 2.4: Volatility smiles calculated with (2.11).

The authors in [2] provided an exact solution for the zero correlation SABR model. Comparing
Figures 2.3 and 2.4 confirms this claim for the example given in Section 2.1.2, as indeed the
volatility smile moves in the correct direction in Figure 2.4.

2.2.2 Mapping to zero correlation case

In practice, the correlation in the SABR model is of course nonzero, i.e. dW1 dW2 = ρdt.
Antonov, Konikov and Spector explained how they used mapping techniques to produce a
mimicking model. In this case, the general SABR-model is mimicked by a SABR model with
zero correlation. For this mimicking model one can calculate the option price with formula
(2.11) and this price can be used as an approximation of the option price under the original
SABR model with correlation ρ.

The FSDEs of the mimicking model read:

dF̃t = σ̃t

(
F̃t

)β̃
dW̃ 1

t , F̃0 = f, (2.15)

dσ̃t = ν̃σ̃t dW̃ 2
t , σ̃0 = α̃, (2.16)

dW̃ 1
t dW̃ 2

t = 0.

The authors in [2] fixed β̃ and ν̃ and they approximated α̃ from these two parameters as2

α̃ = α̃(0) + T α̃(1) +O
(
T 2
)
, (2.17)

where

α̃(0) =
2Φδq̃ν̃

Φ2 − 1
, Φ =

(
σmin + ρα+ νδq

(1 + ρ)α

) ν̃
ν

, δq̃ =
K1−β̃ − f1−β̃

1− β̃
, (2.18a)

α̃(1) = α̃(0)ν̃2


1
2(β − β̃) log(Kf) + 1

2 log(ασmin)− 1
2 log

(
α̃(0)

√
δq̃2ν̃2 +

(
α̃(0)

)2)− Bmin

Φ2−1
Φ2+1

log(Φ)

 ,
(2.18b)

σmin =
√
ν2δq2 + 2ρνδqα+ α2, δq =

K1−β − f1−β

1− β
, (2.18c)

2Note there is an error in the formula for α̃(1) given in [2], the correct formula is given in [3]
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Bmin = − βρ

2(1− β)
√

1− ρ2
(π − ϕ0 − arccos(ρ)− I) , ϕ0 = arccos

(
−δqν + αρ

σmin

)
, (2.18d)

I =


2√

1−L2

[
arctan

(
u0+L√
1−L2

)
− arctan

(
L√

1−L2

)]
, for L < 1,

1√
L2−1

log

(
u0(L+

√
L2−1)+1

u0(L−
√
L2−1)+1

)
, for L > 1,

(2.18e)

u0 =
δqνρ+ α− σmin

δqν
√

1− ρ2
, L =

σmin(1− β)

K1−βν
√

1− ρ2
. (2.18f)

In [2], Antonov, Konikov and Spector claimed that good choices for β̃ and ν̃ are given by

β̃ = β and ν̃2 = ν2 − 3

2

[
ν2ρ2 + ανρ(1− β)fβ−1

]
. (2.19)

They did not give a proof of the exactness of these choices and they mentioned that they based
their choices primarily on numerical experiments. In some cases, mapping the SABR model to
the mimicking model with this heuristic choices of β̃ and ν̃ is however impracticable, e.g. ν̃ is

not a real number if ρ ∈
(√

2/3, 1
]

or ρ ≈ −1.

We approximate the forward price of a European call option by using formula (2.11), i.e.

V C
ZCmap(0, T,K, f, α, β, ν, ρ) ≈ V C

ZC(0, T,K, f, α̃, β̃, ν̃), (2.20)

where we denote the forward value of a European call option calculated by the mapping proce-
dure of [2] by V C

ZCmap.

2.2.3 Arbitrage

The authors in [2, 3] claimed that their approach is nearly arbitrage-free. This section gives a
view on the (absence of) arbitrage in the zero correlation pricing method (Section 2.2.3) and
the mapping to the zero correlation approach (Section 2.2.3) of Antonov, Konikov and Spector.
From now on, we call this method Antonov’s method or Antonov’s pricing approach.

Arbitrage in zero correlation model

Theoretically, Antonov’s pricing approach for the zero correlation model is arbitrage-free, be-
cause its developers gave an analytical formula for pricing in the zero correlation model. This
analytical formula is the exact solution to the model and therefore it leads to arbitrage-free
option prices. Antonov’s method is also compatible with the put-call parity (2.9), because the
method uses the parity to calculate put prices from call prices. Practically, numerical errors in
approximating the double integrals in (2.11) can however introduce arbitrage.

In Section 2.1.1, we provide an example of arbitrage as a result of pricing with the Hagan formula
(2.3). The PDFs of both Hagan’s formula and Antonov’s pricing approach, where ρ = 0 and
where the other parameters are the same as in Section 2.1.1, are shown in Figure 2.5. This figure
shows that for this example Antonov’s method is, neglecting numerical errors, free of arbitrage,
because the PDF is non-negative and the integral over the entire space equals one.

Arbitrage in mapping to the zero correlation model

The analysis of arbitrage in the case of the mapping to the zero correlation model is more
involved. The mapping parameter α̃ is strike dependent, i.e. for every strike value K the pa-
rameter α̃ is different, while the mapping parameters β̃ and ν̃ do not depend on the strike K.
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Figure 2.5: The (incorrect) conditional PDF of FT given F0 = f .

For ρ ≈ 0 it holds that α̃(K) is approximately constant and for large values of |ρ| the function
α̃(K) behaves more like a higher degree polynomial. Figure 2.6 shows the function α̃(K) for
different values of ρ, while the other parameters are the same as in Section 2.2.3.

Figure 2.6: α̃ for different values of ρ.

The non-constant function α̃(K) can result in arbitrage possibilities. Function α̃(K) has speci-

fically influence on
∂2V CZC
∂K2 when both dα̃

dK and d2α̃
dK2 are large. As in (2.10) we have3

∂2V C
ZC

∂K2

∣∣∣∣
K=FT

= QFT (T, F |f, α). (2.21)

This implies that α̃(K) has influence on PDFQFT (T, F |f, α) when both
∣∣∣ dα̃

dK

∣∣∣ and
∣∣∣ d2α̃

dK2

∣∣∣ are large.

If α̃(K) is constant, Antonov’s pricing approach represents the arbitrage-free zero correlation
case (2.11). For small values of |ρ|, Antonov’s pricing approach remains in general arbitrage-

free, because for these values of ρ it follows that
∣∣∣ dα̃

dK

∣∣∣ and
∣∣∣ d2α̃

dK2

∣∣∣ are also small. On the other

hand, large values of |ρ| can lead to non-convex option prices (mostly for high strikes). This is

a consequence of the fact that
∣∣∣ dα̃

dK

∣∣∣ and
∣∣∣ d2α̃

dK2

∣∣∣ are often relatively large for large values of |ρ|
and therefore they have a significant influence on QFT (T, F |f, α).

These arbitrage possibilities are thus generally present for large |ρ|, small β and long time to

3Since formula (2.20) is for the forward option value we can omit the discount factor
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maturity T , as is shown in Figure 2.7. The result in this figure are based on the parameters
f = 0.05735, β = 0.1, α = 0.05735, ρ = −0.7, ν = 0.47 and T = 20.

Figure 2.7: Incorrect PDF determined with Antonov’s method.

2.2.4 Brief analysis

In this section we give a view on some properties of Antonov’s option pricing approach in relation
to the Hagan formula (2.3) for pricing European options under the SABR model.

• Antonov’s [2] pricing approach is near arbitrage-free, wheras option pricing with the Hagan
formula often implies arbitrage for low strikes as explained in Section 2.1.1.

• Antonov’s method gives an analytical formula for option pricing in the zero correlation case.
This analytical formula is an exact solution for the model and can be easily computed. On
the other hand, the Hagan formula is in most cases not accurate for long time to maturity.

• Pricing with Antonov’s method is slower than with the Hagan formula. Also, the mapping
parameter α̃ is strike-dependent when considering the mapping. This makes the pricing
procedure expensive when ρ 6= 0.

• The Hagan formula is applicable for every value of β, α, ρ and ν. Antonov’s method is
not applicable for several values of the parameters, e.g. mapping parameter ν̃ /∈ R for high
values of |ρ|.

• The mapping parameters given in Section 2.2.2 are based on heuristics and it is not proven
that these parameters are the optimal choices.

• The method of Antonov, Konikov and Spector is in general more accurate for longer time
to maturity than Hagan’s formula. A requirement for this is that the mapping parameters
exist. The derivation of parameter α̃ is accurate to O (T ), so this parameter is less accurate
for long maturities T . Still, Antonov’s method behaves better than Hagan’s formula for
long time to maturity, especially when the correlation parameter ρ is small.

2.3 Hagan’s arbitrage-free approach

Hagan, Kumar, Lesniewski and Woodward improved their formula (2.3) to an arbitrage-free
option pricing approach. In 2013 they introduced another pricing method for the SABR model
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[15]. In this thesis, we call this method Hagan’s arbitrage-free pricing approach. The authors in
[15] reduced the SABR model from two dimensions to one dimension and derived a PDE for the
conditional PDF QFT (T, F |f, α), which is exact up to O(T ). Hagan’s arbitrage-free method is a
small maturity method, just as the original Hagan formula. The PDE can be solved numerically
with a finite difference scheme, e.g. the Crank-Nicolson scheme. In Section 2.3.1, we give the
PDE and the finite difference scheme for this PDE is given in Section 2.3.2. Next, Section 2.3.3
shows under which conditions this pricing approach is free of arbitrage. We give the formulas to
price European options with this method in Section 2.3.4 and we discusses the accuracy of these
formulas in Section 2.3.5. Finally, some advantages and disadvantages of this pricing approach
are given in Section 2.3.6.

2.3.1 The PDE for the conditional probability density function

The idea of Hagan’s arbitrage-free method [15] is to derive a PDE for the conditional PDF
QFt(t, F |f, α) with singular perturbation methods. In this section, we abbreviate QFt(t, F |f, α)
by Q(t, F ). Like the Hagan formula, the computed Q(t, F ) is accurate for small time to maturity.
When Q(t, F ) is computed for some t ∈ [0, T ], one can determine the forward value of European
options with time to maturity t by using the following formulas

V C(0, t,K, f, α) =

∫ ∞
K

(F−K)Q(t, F ) dF, V P (0, t,K, f, α) =

∫ K

−∞
(K−F )Q(t, F ) dF. (2.22)

This pricing method is free of arbitrage when Q(t, F ) is a probability density function and when
the put-call parity (2.9) holds. Therefore, the requirements for this method to be arbitrage-free
are

• Q(t, F ) ≥ 0,

•
∫∞
−∞Q(t, F ) dF = 1,

• V C(0, t,K, f, α)− V P (0, t,K, f, α) = f −K. When
∫∞
−∞Q(t, F ) dF = 1,

V C(0, t,K, f, α)− V P (0, t,K, f, α) =

∫ ∞
K

(F −K)Q(t, F ) dF −
∫ K

−∞
(K − F )Q(t, F ) dF

=

∫ ∞
−∞

FQ(t, F ) dF −K,

which results in the last requirement
∫∞
−∞ FQ(t, F ) dF = f .

The authors in [15] derived a PDE for Q(t, F ) and they wanted to solve this PDE on a finite
domain [Fmin, Fmax] where 0 ≤ Fmin < f < Fmax. Fmin = 0 is often a good choice. Hagan,
Kumar, Lesniewski and Woodward used a finite difference method to solve the PDE on a two-
dimensional grid. They defined

Q(t, F ) =


0, for F < Fmin,
QL(t)δ (F − Fmin) , at F = Fmin,
Qc(t, F ), for Fmin < F < Fmax,
QR(t), δ (F − Fmax) at F = Fmax,
0, for F > Fmax.

(2.23)

Substitution of (2.23) in the three requirements above results in the following no-arbitrage
requirements:

QL(t), Qc(t, F ), QR(t) ≥ 0, (2.24)
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QL(t) +

∫ Fmax

Fmin

Qc(t, F ) dF +QR(t) = 1, (2.25)

FminQ
L(t) +

∫ Fmax

Fmin

FQc(t, F ) dF + FmaxQ
R(t) = f. (2.26)

Just as in their original pricing method (2.3), the authors in [15] used singular perturbation
techniques to determine the following PDE

∂Qc(t, F )

∂t
=

∂2

∂F 2
(M(t, F )Qc(t, F )) , (2.27)

where

M(t, F ) =
1

2
α2
(
1 + 2ρνz(F ) + ν2z2(F )

)
exp (ρναΓ(F )t)F 2β, (2.28)

z(F ) =

{
F 1−β−f1−β

α(1−β) , for 0 ≤ β < 1,
1
α(log(F )− log(f)), for β = 1,

(2.29)

Γ(F ) =

{
Fβ−fβ
F−f , for F 6= f,

βF β−1, for F = f.
(2.30)

These equations come with the boundary conditions,

lim
F↓Fmin

M(t, F )Qc(t, F ) = 0, lim
F↑Fmax

M(t, F )Qc(t, F ) = 0, (2.31)

and for 0 < t < T , we find

dQL(t)

dt
= lim

F↓Fmin

∂

∂F
(M(t, F )Qc(t, F )) ,

dQR(t)

dt
= lim

F↑Fmax

∂

∂F
(M(t, F )Qc(t, F )) . (2.32)

The initial conditions are

QL(0) = 0, QR(0) = 0, at F = Fmax, (2.33)

lim
t↓0

Qc(t, F ) = δ(F − f), for Fmin < F < Fmax. (2.34)

The derivation of (2.27) is given in Appendix B.

2.3.2 Finite difference scheme

The authors in [15] employed the Crank-Nicolson scheme to solve (2.27). In [11], Le Floc’h and
Kennedy used alternative schemes for solving this PDE. Le Floc’h and Kennedy also compared
the results and properties of these different schemes. We will now follow [15].

Define a two-dimensional grid, where N and J are the number of time steps and the number of
steps in the forward F , respectively. Let ∆t = T/N define the size of a time step and make sure
that J is chosen such that Fmax = Fmin+Jh and f = Fmin+(j0−1/2)h for some j0 ∈ {1, 2, . . . J}.
Define Fj = Fmin + (j − 1/2)h for j = 1, . . . J and let cell j be defined by [Fj − h/2, Fj + h/2].

Let Qnj = Qc(n∆t, Fj) be the PDF of F = Fj at time n∆t, where n = 0, 1, . . . , N . Assume that

the probability hQnj is spread uniformly in each cell j and let Mn
j = M(n∆t, Fj), Q

n
L = QL(n∆t),

and QnR = QR(n∆t). Using the Crank-Nicolson scheme we obtain the following discretization of
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(2.27):

For j = 2, . . . , J − 1,

Qn+1
j = Qnj +

∆t

2h2

{
Mn+1
j+1 Q

n+1
j+1 − 2Mn+1

j Qn+1
j +Mn+1

j−1 Q
n+1
j−1

}
+

∆t

2h2

{
Mn
j+1Q

n
j+1 − 2Mn

j Q
n
j +Mn

j−1Q
n
j−1

}
, (2.35)

and for the boundaries

Qn+1
1 = Qn1 +

∆t

2h2

{
Mn+1

2 Qn+1
2 − 3Mn+1

1 Qn+1
1 +Mn

2 Q
n
2 − 3Mn

1 Q
n
1

}
, (2.36)

Qn+1
J = QnJ +

∆t

2h2

{
Mn+1
J−1Q

n+1
J−1 − 3Mn+1

J Qn+1
J +Mn

J−1Q
n
J−1 − 3Mn

JQ
n
J

}
, (2.37)

and

Qn+1
L = QnL +

∆t

h

{
Mn+1

1 Qn+1
1 +Mn

1 Q
n
1

}
, (2.38)

Qn+1
R = QnR +

∆t

h

{
Mn+1
J Qn+1

J +Mn
JQ

n
J

}
, (2.39)

where the initial conditions are given by

Q0
L = 0, Q0

j =

{
0, for j 6= j0,
1/h, for j = j0,

Q0
R = 0. (2.40)

To advance from time n∆t to time (n+1)∆t one can solve the system (B.36) with the tridiagonal
matrix algorithm, also known as the Thomas algorithm.

2.3.3 Arbitrage

As explained in Section 2.3.1, there are three requirements necessary for the discretization to be
free of arbitrage (2.24), (2.25) and (2.26). Requirements (2.25) and (2.26) hold for the Crank-
Nicolson scheme, which can easily be shown by induction. Requirement (2.24) only holds for
specific choices of J and N . Here, we give an analysis for the system (B.36) and derive an
intuitive bound4 for N compared to J by means of induction. This analysis uses the claim that
M(F, t) ≥ 0 for all F ≥ 0 and t ≥ 0. In Appendix B we give a proof of this claim.

The derivation of this intuitive bound is also based on induction.
One can easily observe that for n = 0 it holds that

QnL, Q
n
j , Q

n
R ≥ 0, for all j ∈ {1, 2, . . . , J}. (2.41)

Let us assume, for some n ∈ {1, 2, . . . N − 1},

QnL, Q
n
j , Q

n
R ≥ 0, for all j ∈ {1, 2, . . . , J}, (2.42)

then Qn+1
j can be found by solving system (B.36). Let (2.43) be the abbreviation of (B.36),

where A is the concerning J × J matrix and Q̃n is as defined in Appendix B.

A ·Qn+1 = Q̃n (2.43)

4The exact bound depends on α, β, ν, ρ, f and T .
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One can observe that Aii > 0 and Aij ≤ 0 for all i, j ∈ {1, . . . , J}, where j 6= i, because M(t, F )
is a non-negative function. Also, when ∆t

h2 is small enough, then not only is A irreducibly

diagonal dominant, but also holds Q̃n ≥ 0 there. A is an M-matrix [27, Theorem 2.10] and
therefore A−1 ≥ 0. It holds that Qn+1 ≥ 0 when both Q̃n ≥ 0 and A−1 ≥ 0. Now, we can
observe that Qn+1

L ≥ 0 and Qn+1
R ≥ 0. By induction requirement (2.24) always holds when ∆t

h2

is chosen small enough.

Figure 2.8: The (incorrect) conditional PDF of FT given F0 = f for different N .

Requirement (2.24) does not hold when ∆t
h2 is too large, as shown in Figure 2.8. For the results

in this figure we set the parameters T = 0.5, f = 0.05, β = 0.5, α = 0.03, ρ = −0.25, ν = 0.6,
Fmin = 0, j0 = 100 and J = 500. For small N there are oscillations in the PDF. For N = 5
these oscillations lead to negative densities and therefore to arbitrage. For N = 10 there are
also oscillations, but no negative densities. In this case there is no arbitrage, but the PDF is
not a smooth function like for N = 50.

2.3.4 Pricing formulas

One can price European options by substituting the approximations for Qc(T, F ), QL(T ) and
QR(T ) in formula (2.22), which gives for Fmin < K < Fmax:

V C
H (0, T,K, f, α) = (Fmax −K)QNR +

J∑
j=jk+1

h(Fj −K)QNj +
1

2
QNjk(Fmin + jkh−K)2, (2.44)

V P
H (0, T,K, f, α) = (K − Fmin)QNL +

jk−1∑
j=1

h(K − Fj)QNj +
1

2
QNjk(K − Fmin − jkh+ h)2, (2.45)

where jk ∈ {1, . . . , J} such that Fmin + (jk − 1)h < K ≤ Fmin + jkh and

V C
H (0, T,K, f, α) = 0, V P

H (0, T,K, f, α) = K − f, when K > Fmax,
V C
H (0, T,K, f, α) = f −K, V P

H (0, T,K, f, α) = 0, when K < Fmin,
(2.46)

where we denote the forward values of a European call option and a European put option
calculated with Hagan’s arbitrage-free pricing approach [15] by V C

H and V P
H , respectively.
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2.3.5 Accuracy of Hagan’s arbitrage-free method

The PDE (2.27) for the conditional PDF Q(T, F ) is exact up to O(T ) [15]. Hagan’s arbitrage-
free pricing approach is thus only accurate for small maturities, as is it shown in Figure 2.9.
The results in this figure are based on the parameters from Section 2.1.2 and comparison of this
figure with Figure 2.3 shows that the smile for T = 1 is accurate. However when T increases,
the smile given by Hagan’s arbitrage-free method moves in the wrong direction. The Hagan
formula exhibits this same behaviour.

Figure 2.9: Volatility smiles calculated with Hagan’s arbitrage-free pricing approach.

2.3.6 Brief analysis

In this section we summarize some properties of the arbitrage-free option pricing method by
Hagan, Kumar, Lesniewski and Woodward. We compare it with their original method described
in Section 2.1.

• Both methods are small maturity methods, which means that the methods are not accurate
for long time to maturity.

• Hagan’s arbitrage-free method is arbitrage-free when ∆t
h2 is small enough. So, it is possible

to obtain arbitrage-free prices by decreasing the size of a time step ∆t or increasing dis-
cretization step h. The Hagan formula (2.3) is not always free of arbitrage as it is shown
in Section 2.1.1.

• Pricing with the Hagan arbitrage-free method is slower than with the Hagan formula.

• For Hagan’s arbitrage-free pricing approach one has to solve a linear system on a grid
for every time step. For increased accuracy the size of the grid should increase. As a
consequence also the number of time steps has to be increased to ensure arbitrage-free
prices. As a result, both the required computer memory and the CPU time will increase.

We wish to provide an arbitrage-free method to price European options under the SABR model
that is accurate. Since the pricing methods discussed in this chapter are or not arbitrage-free,
or not accurate for long time to maturity, or both, we develop a new pricing method in Chapters
4-6.



Chapter 3

The BCOS method

M.J. Ruijter and C.W. Oosterlee developed a Fourier method [25] to solve backward stochastic
differential equations (BSDEs) using the characteristic function of the underlying process. This
method is called the one-dimensional BCOS method (Backward Stochastic Differential Equation
COS method). When the underlying forward stochastic differential equation (FSDE) can be
written as

dXt = µ(Xt) dt+ σ(Xt) dWt, X0 = x, t ≥ 0, (3.1)

and the corresponding characteristic function cannot easily be derived, we can use the charac-
teristic function of a discrete forward process to approximate the solution [24]. The underlying
FSDE (3.1) is approximated by different Taylor schemes, such as the Euler, Milstein and Order
2.0 weak Taylor schemes.

In this section we explain the BCOS method where the characteristic function is approximated
by the characteristic function of the discrete forward process and the contents of this chapter
is quite similar to the method in [24]. In Section 3.1 we describe the discretization of the for-
ward process Xt by different Taylor schemes and give the corresponding characteristic functions.
We give an introduction of the COS method in Section 3.2. In Section 3.3 we give the BCOS
method to price financial derivatives for which the underlying is of the form (3.1). Formulas to
approximate some conditional expectations are given in Section 3.4. In Section 3.5 we present
briefly how to apply the BCOS method for a European option (without early-exercise dates).
In this section we also explain how to proceed if there are early-exercise dates in the option
contract. In Section 3.6 an error analysis is given. Finally, we give two examples of pricing with
the BCOS method in Section 3.7. We will employ the one-dimensional BCOS method to price
options under the SABR model in Chapter 4.

3.1 The discrete forward process and its characteristic function

Just like Ruijter and Oosterlee [24], we define1 a time-grid tj = j∆t for j = 0, 1, . . . ,M , with
fixed time steps ∆t = T

M . We write Xm = Xtm , Wm = Wtm and ∆Wm+1 = Wm+1 −Wm. The
discrete forward process is denoted by X∆

m = X∆
tm , where X∆

0 = X0. To determine the values
X∆
m+1, for m = 0, . . . ,M − 1, we use one of the following Taylor schemes: Euler, Milstein, or 2.0

weak Taylor.

1From now on we redefine some symbols, e.g. M , N and z which are defined differently in Chapter 2.

17
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According to Kloeden and Platen [18] the definitions of the order of strong convergence and the
order of weak convergence are:

Definition 3.1. The approximating process X∆ converges in the strong sense with order γ1 ∈
(0,∞] if there exists a finite constant C and a positive constant δ such that

E
[∣∣XM −X∆

M

∣∣] ≤ C(∆t)γ1 , (3.2)

for any time discretization with maximum step size ∆t ∈ (0, δ).

Definition 3.2. The approximating process X∆ converges in the weak sense with order γ2 ∈
(0,∞] if for any polynomial g there exists a finite constant C and a positive constant δ such that∣∣E [g (XM )]− E

[
g
(
X∆
M

)]∣∣ ≤ C(∆t)γ2 , (3.3)

for any time discretization with maximum step size ∆t ∈ (0, δ).

The Euler scheme
The Euler approximation for FSDE (3.1) has the form

X∆
m+1 = X∆

m + µ(X∆
m)∆t+ σ(X∆

m)∆Wm+1, (3.4)

for m = 0, . . . ,M − 1. The order of strong convergence is γ1 = 0.5 and the order of weak
convergence is γ2 = 1.

The Milstein scheme
The Milstein approximation for FSDE (3.1) has the form

X∆
m+1 = X∆

m + µ(X∆
m)∆t+ σ(X∆

m)∆Wm+1 +
1

2
σ(X∆

m)
dσ(X∆

m)

dX∆
m

(
(∆Wm+1)2 −∆t

)
, (3.5)

for m = 0, . . . ,M − 1 and where γ1 = 1 and γ2 = 1.

The weak Taylor scheme of order 2.0
The weak Taylor scheme of order 2.0 for FSDE (3.1), given X∆

m = x, has the form [18]

X∆
m+1 = x+ µ(x)∆t+ σ(x)∆Wm+1 +

1

2
σ(x)

dσ(x)

dx

(
(∆Wm+1)2 −∆t

)
+

dµ(x)

dx
σ(x)∆Zm+1 +

1

2

(
µ(x)

dµ(x)

dx
+

1

2

d2µ(x)

dx2
σ2(x)

)
(∆t)2 (3.6)

+

(
µ(x)

dσ(x)

dx
+

1

2
σ2(x)

d2σ(x)

dx2

)
(∆Wm+1∆t−∆Zm+1) ,

where ∆Zm+1 = 1
2

(
∆Wm+1∆t+ ζm+1(∆t)3/2

)
, ζm+1 ∼ N (0, 1/3) and m = 0, . . . ,M − 1. For

the weak Taylor of order 2.0 scheme it holds that γ1 = 1 and γ2 = 2.

We observe that

E[∆Zm+1] = 0, Var (∆Zm+1) =
1

3
(∆t)3 and Cov (∆Wm+1,∆Zm+1) =

1

2
(∆t)2 . (3.7)

If we replace ∆Zm+1 by ∆Zm+1 = 1
2∆Wm+1∆t as the authors in [24] suggested, then

E[∆Zm+1] = 0, Var (∆Zm+1) =
1

4
(∆t)3 and Cov (∆Wm+1,∆Zm+1) =

1

2
(∆t)2 . (3.8)
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This replacement has the same moments in first order and simplifies the scheme. Ruijter and
Oosterlee called this new scheme 2.0-weak-Taylor and they observe that γ1 = 1 and γ2 = 2 for
the 2.0-weak-Taylor scheme.

Similarly as in [24], we can write the discretization schemes in general form, as follows:

X∆
m+1 = x+m(x)∆t+ s(x)∆Wm+1 + κ(x)(∆Wm+1)2, X∆

m = x. (3.9)

For the Euler scheme, we find

m(x) = µ(x), s(x) = σ(x), κ(x) = 0, (3.10)

for the Milstein scheme, we have

m(x) = µ(x)− 1

2
σ(x)

dσ(x)

dx
, s(x) = σ(x), κ(x) =

1

2
σ(x)

dσ(x)

dx
, (3.11)

and for the 2.0-weak-Taylor scheme, we see that

m(x) = µ(x)− 1

2
σ(x)

dσ(x)

dx
+

1

2

(
µ(x)

dµ(x)

dx
+

1

2

d2µ(x)

dx2
σ2(x)

)
∆t, (3.12a)

s(x) = σ(x) +
1

2

(
dµ(x)

dx
σ(x) + µ(x)

dσ(x)

dx
+

1

2
σ2(x)

d2σ(x)

dx2

)
∆t, (3.12b)

κ(x) =
1

2
σ(x)

dσ(x)

dx
. (3.12c)

For the discretization schemes above we can determine a characteristic function, which is given
in the lemma below.

Lemma 3.1. The characteristic function of X∆
m+1, given X∆

m = x, is given by

φX∆
m+1

(
u
∣∣X∆

m = x
)

= E
[
exp

(
iuX∆

m+1

) ∣∣X∆
m = x

]
= exp

(
iux+ ium(x)∆t−

1
2u

2s2(x)∆t

1− 2iuκ(x)∆t

)
(1− 2iuκ(x)∆t)−

1
2 . (3.13)

Proof. For κ(x) = 0,

φX∆
m+1

(
u
∣∣X∆

m = x
)

= E
[
exp

(
iuX∆

m+1

) ∣∣X∆
m = x

]
= E

[
exp (iux+ ium(x)∆t+ ius(x)∆Wm+1)

∣∣X∆
m = x

]
= exp(iux+ ium(x)∆t)E [exp (ius(x)∆Wm+1)] , (3.14)

where ∆Wm+1 ∼ N (0,∆t). This implies

φX∆
m+1

(
u
∣∣X∆

m = x
)

= exp(iux+ ium(x)∆t)φN (0,∆t)(us(x))

= exp

(
iux+ ium(x)∆t− 1

2
u2s2(x)∆t

)
. (3.15)

For κ(x) 6= 0, we find

φX∆
m+1

(
u
∣∣X∆

m = x
)

= E
[
exp

(
iuX∆

m+1

) ∣∣X∆
m = x

]
= E

[
exp

(
iux+ ium(x)∆t+ ius(x)∆Wm+1 + iuκ(x)(∆Wm+1)2

)]
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= E

[
exp

(
iux+ ium(x)∆t+ iuκ(x)

(
∆Wm+1 +

1

2

s(x)

κ(x)

)2

− iu1

4

s2(x)

κ(x)

)]

= exp

(
iux+ ium(x)∆t− iu1

4

s2(x)

κ(x)

)
E

[
exp

(
κ(x)iu

(
∆Wm+1 +

1

2

s(x)

κ(x)

)2
)]

, (3.16)

where ∆Wm+1+1
2
s(x)
κ(x) ∼ N

(
1
2
s(x)
κ(x) ,∆t

)
or equivalent by 1

∆t

(
∆Wm+1 + 1

2
s(x)
κ(x)

)2
∼ χ′21

(
1
4

s2(x)
κ2(x)∆t

)
which denotes the noncentral chi-sqaured distribution with one degree of freedom and noncen-

trality parameter 1
4

s2(x)
κ2(x)∆t

. Hence,

φX∆
m+1

(
u
∣∣X∆

m = x
)

= exp

(
iux+ ium(x)∆t− iu1

4

s2(x)

κ(x)

)
φ
χ
′2
1

(
1
4

s2(x)

κ2(x)∆t

) (uκ(x)∆t)

= exp

(
iux+ ium(x)∆t− iu1

4

s2(x)

κ(x)

)
exp

(
1

4

s2(x)

κ(x)

iu

1− 2iuκ(x)∆t

)
(1− 2iuκ(x)∆t)−

1
2

= exp

(
iux+ ium(x)∆t−

1
2u

2s2(x)∆t

1− 2iuκ(x)∆t

)
(1− 2iuκ(x)∆t)−

1
2 . (3.17)

3.2 COS method

We wish to derive the value V (0, T,X0) of an option at time 0 with as underlying Xt and
expiration date T . The payoff of the option at time T is given by V (T, T,XT ) = g(XT ) for
some function g, and we assume that there are no early-exercise dates. The value of the option
V (0, T,X0) is given by the risk-neutral valuation formula:

V (0, T,X0) = e−rTE [g(XT )|X0] = e−rT
∫
R
g(X)QXT (T,X|X0) dX, (3.18)

where r is the risk-free interest rate and QXT (T,X|X0) is the probability density of XT = X
given X0.

The value of the option V (0, T,X0) can be obtained by the COS method of F. Fang and C.W.
Oosterlee [9]. As they explained, the density QXT (T,X|X0) decays to zero as X → ±∞.
Therefore, we can integrate over a finite interval [a, b] ⊆ R instead of integrating over the entire
space, to approximate the option value

V (0, T,X0) ≈ e−rT
∫ b

a
g(X)QXT (T,X|X0) dX. (3.19)

Suppose this choice of [a, b] is not only chosen such that the option value is approximated well,
but is also chosen such that the characteristic function of f can be approximated by integrating
over [a, b] instead of integrating over the entire space,

φXT (w|X0) =

∫
R
eiwXQXT (T,X|X0) dX ≈

∫ b

a
eiwXQXT (T,X|X0) dX. (3.20)

Using the Fourier-cosine expansion of the density results in

QXT (T,X|X0) =

∞∑′

k=0

Ak cos

(
kπ
X − a
b− a

)
, (3.21)
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where
∑′ indicates that the first term in the series summation is weighted by one-half and

Ak =
2

b− a

∫ b

a
QXT (T,X|X0) cos

(
kπ
X − a
b− a

)
dX. (3.22)

Rewriting Ak and substitution of the approximation of formula (3.20) leads to

Ak =
2

b− a

∫ b

a
QXT (T,X|X0) cos

(
kπ
X − a
b− a

)
dX

=
2

b− a

∫ b

a
QXT (T,X|X0)<

[
exp

(
ikπ

X − a
b− a

)]
dX

=
2

b− a
<
[
exp

(
−ikπ a

b− a

)∫ b

a
QXT (T,X|X0) exp

(
ikπ

X

b− a

)
dX

]
≈ 2

b− a
<
[
exp

(
−ikπ a

b− a

)
φXT

(
kπ

b− a

∣∣∣∣X0

)]
. (3.23)

Now, we truncate the series summation by setting N as the number of Fourier coefficients
employed, which leads to

QXT (T,X|X0) ≈
N−1∑′

k=0

Ãk cos

(
kπ
X − a
b− a

)
, (3.24)

where

Ãk =
2

b− a
<
[
exp

(
−ikπ a

b− a

)
φXT

(
kπ

b− a

∣∣∣∣X0

)]
. (3.25)

Finally, we can derive the option pricing formula of the COS method by using Fubini’s theorem

V (0, T,X0) ≈ e−rT
∫ b

a
g(X)QXT (T,X|X0) dX

≈ e−rT
∫ b

a
g(X)

N−1∑′

k=0

Ak cos

(
kπ
X − a
b− a

)
dX

= e−rT
N−1∑′

k=0

Ak

∫ b

a
g(X) cos

(
kπ
X − a
b− a

)
dX

≈ e−rT
N−1∑′

k=0

Vk<
[
φXT

(
kπ

b− a

∣∣∣∣X0

)
exp

(
−ikπ a

b− a

)]
, (3.26)

where

Vk =
2

b− a

∫ b

a
g(X) cos

(
kπ
X − a
b− a

)
dX. (3.27)

Often Yk in (3.27) is governed by an analytical expression.

3.3 BCOS method

Just as in the previous section, we wish to derive the value V (0, T,X0) of a derivative at time
0 with as underlying Xt and time to maturity T , where the FSDE of Xt is given by (3.1).
The payoff of the option at time T is given by V (T, T,XT ) = g(XT ) for some function g. We
assume that we work in a complete market and therefore we can make a self-financing portfolio
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Yt consisting of at assets and bonds with risk-free return rate r, such that YT = g(XT ). For
0 ≤ t ≤ T , we have

dYt = r(Yt − atXt) dt+ at dXt = (rYt + (µ(Xt)− rXt) at) dt+ σ(Xt)at dWt. (3.28)

If we set Zt = σ(Xt)at, then (Yt, Zt) solves the BSDE

dYt = −f(t,Xt, Yt, Zt) dt+ Zt dWt, YT = g(XT ), (3.29)

f(t, x, y, z) = −ry − µ(x)− rx
σ(x)

z. (3.30)

The functions σ : R → R and µ : R → R in FSDE (3.1) are assumed to be twice differentiable
with respect to x, satisfy a Lipschitz condition in x and satisfy a linear growth condition in x.
The function f : [0, T ] × R × R × R → R is assumed to be uniformly continuous with respect
to x and satisfies a Lipschitz condition in (y, z), with Lipschitz constant Lf and the function
g : R→ R is assumed to be uniformly continuous with respect to x. Also, there exists a constant
C such that |f(t, x, y, z)| + |g(x)| ≤ C(1 + |x|p + |y| + |z|), p ≥ 1

2 holds 2. Yt is a self-financing
portfolio, and therefore the option value is given by V (0, T,X0) = Y0.

We make a time grid of M + 1 time points, where tj = j∆t and ∆t = T
M . Integrating gives

Y0 = g(XT ) +

∫ T

0
f(t,Xt, Yt, Zt) dt−

∫ T

0
Zt dWt. (3.31)

At time tm we observe that

Ym = Ym+1 +

∫ tm+1

tm

f(t,Xt, Yt, Zt) dt−
∫ tm+1

tm

Zt dWt. (3.32)

We take conditional expectations at both sides of the equation and apply the θ-method, for
some θ ∈ [0, 1] (θ = 1/2 corresponds to the Trapezium Rule)

Ym = Em[Ym+1] +

∫ tm+1

tm

Em[f(t,Xt, Yt, Zt)] dt (3.33)

≈ Em[Ym+1] + ∆tθf(tm, Xm, Ym, Zm) + ∆t(1− θ)Em[f(tm+1, Xm+1, Ym+1, Zm+1)]. (3.34)

Analogously, we find by multiplication with ∆Wm+1 and taking the conditional expectation:

0 = Em[Ym+1∆Wm+1] +

∫ tm+1

tm

Em[f(t,Xt, Yt, Zt)(Wt −Wtm)] dt

−
∫ tm+1

tm

Em[Zt] dt (3.35)

≈ Em[Ym+1∆Wm+1] + ∆t(1− θ)Em[f(tm+1, Xm+1, Ym+1, Zm+1)∆Wm+1]−∆tθZm

− ∆t(1− θ)Em[Zm+1]. (3.36)

Using one of the approximation schemes of Section 3.1, and formulas (3.34) and (3.36) gives, for
m = M − 1, . . . , 0,

Y ∆
m = Em[Y ∆

m+1] + ∆tθf
(
tm, X

∆
m , Y

∆
m , Z

∆
m

)
+ ∆t(1− θ)Em

[
f
(
tm+1, X

∆
m+1, Y

∆
m+1, Z

∆
m+1

)]
,

2The conditions on the functions f and g guarantee the existence of a unique solution (Y,Z) to BSDE (3.29)
[24]
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(3.37)

Z∆
m =

1

∆tθ
Em
[
Y ∆
m+1∆Wm+1

]
+

1− θ
θ

Em
[
f
(
tm+1, X

∆
m+1, Y

∆
m+1, Z

∆
m+1

)
∆Wm+1

]
− 1− θ

θ
Em
[
Z∆
m+1

]
, (3.38)

Y ∆
M = g

(
X∆
M

)
, and Z∆

M = σ(x)
dg(x)

dx

∣∣∣∣
x=X∆

M

. (3.39)

We observe that Y ∆
m and Z∆

m depend on the value X∆
m , so when X∆

m = x, then for m =
M − 1, . . . , 0

Y ∆
m (x) = Em

[
Y ∆
m+1

(
X∆,m,x
m+1

)]
+ ∆tθf

(
tm, x, Y

∆
m (x), Z∆

m(x)
)

+ ∆t(1− θ)Em
[
f
(
tm+1, X

∆,m,x
m+1 , Y ∆

m+1

(
X∆,m,x
m+1

)
, Z∆

m+1

(
X∆,m,x
m+1

))]
, (3.40)

Z∆
m(x) =

1

∆tθ
Em
[
Y ∆
m+1

(
X∆,m,x
m+1

)
∆Wm+1

]
− 1− θ

θ
Em
[
Z∆
m+1

(
X∆,m,x
m+1

)]
+

1− θ
θ

Em
[
f
(
tm+1, X

∆,m,x
m+1 , Y ∆

m+1

(
X∆,m,x
m+1

)
, Z∆

m+1

(
X∆,m,x
m+1

))
∆Wm+1

]
,(3.41)

where X∆,m,x
m+1 denotes the value of X∆

m+1 given X∆
m = x. Y ∆

m (x) is implicit for θ > 0 and can be

determined by performing P Picard iterations [25], starting with initial guess E
[
Y ∆
m+1

(
X∆,m,x
m+1

)]
.

The next section explains how we can approximate the conditional expectations in formulas
(3.40) and (3.41). The value of the option is approximated by V (0, T,X0) = Y ∆

0 (X0).

3.4 Approximation of the conditional expectations

For each m ∈ {M − 1, . . . , 0}, we wish to approximate the following conditional expectations:

Em
[
Y ∆
m+1

(
X∆,m,x
m+1

)]
, Em

[
Z∆
m+1

(
X∆,m,x
m+1

)]
, Em

[
Y ∆
m+1

(
X∆,m,x
m+1

)
∆Wm+1

]
,

Em
[
f
(
tm+1, X

∆,m,x
m+1 , Y ∆

m+1

(
X∆,m,x
m+1

)
, Z∆

m+1

(
X∆,m,x
m+1

))]
and

Em
[
f
(
tm+1, X

∆,m,x
m+1 , Y ∆

m+1

(
X∆,m,x
m+1

)
, Z∆

m+1

(
X∆,m,x
m+1

))
∆Wm+1

]
.

We generalize this by deriving an equation for the conditional expectations E
[
h
(
tm+1, X

∆,m,x
m+1

)]
and E

[
h
(
tm+1, X

∆,m,x
m+1

)
∆Wm+1

]
for a general function h(t, x).

Using the COS approximation with the characteristic function of the discrete scheme (3.9) we
find

E
[
h
(
tm+1, X

∆,m,x
m+1

)]
≈

N−1∑′

k=1

Hk(tm+1)<
{
φX∆

m+1

(
kπ

b− a

∣∣∣∣X∆
m = x

)
exp

(
−ikπ a

b− a

)}
,(3.42)

and

E
[
h
(
tm+1, X

∆,m,x
m+1

)
∆Wm+1

]
≈

N−1∑′

k=1

Hk(tm+1)<

{
E

[
exp

(
ikπ

X∆,m,x
m+1

b− a

)
∆Wm+1

]
exp

(
−ikπ a

b− a

)}
. (3.43)

Using the fact that ∆Wm+1 ∼ N (0,∆t) and integration by parts gives

E
[
exp

(
iuX∆,m,x

m+1

)
∆Wm+1

]
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= E
[
exp

(
iux+ ium(x)∆t+ ius(x)∆Wm+1 + iuκ(x) (∆Wm+1)2

)
∆Wm+1

]
=

1√
2π∆t

∫ ∞
−∞

exp
(
iux+ ium(x)∆t+ ius(x)y + iuκ(x)y2

)
d

(
−∆te−

y2

2∆t

)
= −

√
∆t

2π
lim
R→∞

[
exp

(
iux+ ium(x)∆t+ ius(x)y + iuκ(x)y2 − y2

2∆t

)]R
−R

+
1√

2π∆t

∫ ∞
−∞

∆te−
y2

2∆t d
(
exp

(
iux+ ium(x)∆t+ ius(x)y + iuκ(x)y2

))
= 0 +

√
∆t

2π

∫ ∞
−∞

(ius(x) + 2iuκ(x)y) exp
(
iux+ ium(x)∆t+ ius(x)y + iuκ(x)y2

)
e−

y2

2∆t dy

= ius(x)∆tE
[
exp

(
iuX∆,m,x

m+1

)]
+ 2iuκ(x)∆tE

[
exp

(
iuX∆,m,x

m+1

)
∆Wm+1

]
. (3.44)

The last term can be evaluated in an analogously way, and so on, which results in

E
[
exp

(
iuX∆,m,x

m+1

)
∆Wm+1

]
= ius(x)∆t

∞∑
n=0

(2κ(x)∆t)n (iu)n E
[
exp

(
iuX∆,m,x

m+1

)]
= ius(x)∆t

∞∑
n=0

(2κ(x)∆t)n (iu)n φX∆
m+1

(
u
∣∣X∆

m = x
)
. (3.45)

We take the first two terms and leave only an O
(

(∆t)3
)

error, which gives

E
[
h
(
tm+1, X

∆,m,x
m+1

)
∆Wm+1

]
≈

N−1∑′

k=1

Hk(tm+1)<
{[
i
kπ

b− a
s(x)∆tφX∆

m+1

(
kπ

b− a

∣∣∣∣X∆
m = x

)

− 2s(x)κ(x) (∆t)2

(
kπ

b− a

)2

φX∆
m+1

(
kπ

b− a

∣∣∣∣X∆
m = x

)]
exp

(
−ikπ a

b− a

)}
, (3.46)

where

Hk(tm+1) =
2

b− a

∫ b

a
h(tm+1, x) cos

(
kπ
x− a
b− a

)
dx. (3.47)

Let Y∆
k (tm), Z∆

k (tm) and F∆
k (tm) denote the Fourier-cosine coefficients of, respectively, Y ∆

m (x),
Z∆
m(x) and f

(
tm, x, Y

∆
m (x), Z∆

m(x)
)
, i.e.

Y∆
k (tm) =

2

b− a

∫ b

a
Y ∆
m (x) cos

(
kπ
x− a
b− a

)
dx, (3.48)

Z∆
k (tm) =

2

b− a

∫ b

a
Z∆
m(x) cos

(
kπ
x− a
b− a

)
dx, (3.49)

F∆
k (tm) =

2

b− a

∫ b

a
f
(
tm, x, Y

∆
m (x), Z∆

m(x)
)

cos

(
kπ
x− a
b− a

)
dx, (3.50)

and at time of maturity T

Y∆
k (tM ) =

2

b− a

∫ b

a
g(x) cos

(
kπ
x− a
b− a

)
dx, (3.51)

Z∆
k (tM ) =

2

b− a

∫ b

a
σ(x)

dg(x)

dx
cos

(
kπ
x− a
b− a

)
dx, (3.52)
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F∆
k (tM ) =

2

b− a

∫ b

a
f

(
tm, x, g(x), σ(x)

dg(x)

dx

)
cos

(
kπ
x− a
b− a

)
dx. (3.53)

If the above integrals cannot be computed analytically, we can approximate them by computing
the function on an x-grid and using the discrete Fourier-cosine transform or another numerical
integration method.

3.5 BCOS method summarized

We define a time-grid tj = j∆t for j = 0, 1, . . .M , with fixed time steps ∆t = T
M . The algorithm

reads:

Initial step: Compute the terminal coefficients Y∆
k (tM ), Z∆

k (tM ) and F∆
k (tM ) with formulas

(3.51), (3.52) and (3.53).

Loop: For m = M − 1 to m = 1
approximate the necessary conditional expectations with Section 3.4 and compute functions
Y ∆
m (x), Z∆

m(x) and f
(
tm, x, Y

∆
m (x), Z∆

m(x)
)

for x ∈ [a, b] with formulas (3.40) and (3.41).
Thereafter, compute/approximate the corresponding Fourier-cosine coeffcients
Y∆
k (tm), Z∆

k (tm) and F∆
k (tm) with formulas (3.48), (3.49) and (3.50). Those inte-

grals can be approximated by computing the function on an x-grid and using the discrete
Fourier-cosine transform or another numerical integration method.

Terminal step: Compute Y ∆
0 (X0) and Z∆

0 (X0).

We approximate the value V (0, T,X0) of the option by V (0, T,X0) = Y ∆
0 (X0) and the corre-

sponding Delta by

∆0 =
∂V (0, T, x)

∂x

∣∣∣∣
x=X0

=
Z∆

0 (X0)

σ(X0)
, (3.54)

which corresponds to the amount of assets in the self-financing portfolio Yt at time t = 0.

Remark 3.1. If an option is governed by early-exercise dates τj for j = 1, 2, . . . , n, then we
choose ∆t such that each of the early-exercise dates corresponds to a point in our time-grid. We
replace formula (3.40) by

Y ∆
m (x) =



max
{
g(x),Em

[
Y ∆
m+1

(
X∆,m,x
m+1

)]
+ ∆tθf

(
tm, x, Y

∆
m (x), Z∆

m(x)
)

+ ∆t(1− θ)Em
[
f
(
tm+1, X

∆,m,x
m+1 , Y ∆

m+1

(
X∆,m,x
m+1

)
, Z∆

m+1

(
X∆,m,x
m+1

))]}
, for tm = τj ,

Em
[
Y ∆
m+1

(
X∆,m,x
m+1

)]
+ ∆tθf

(
tm, x, Y

∆
m (x), Z∆

m(x)
)

+∆t(1− θ)Em
[
f
(
tm+1, X

∆,m,x
m+1 , Y ∆

m+1

(
X∆,m,x
m+1

)
, Z∆

m+1

(
X∆,m,x
m+1

))]
, for tm 6= τj ,

and formula (3.41) by

Z∆
m(x) =


σ(x)dg(x)

dx , for tm = τj , Y
∆
m (x) = g(x),

1
∆tθEm

[
Y ∆
m+1

(
X∆,m,x
m+1

)
∆Wm+1

]
− 1−θ

θ Em
[
Z∆
m+1

(
X∆,m,x
m+1

)]
+1−θ

θ Em
[
f
(
tm+1, X

∆,m,x
m+1 , Y ∆

m+1

(
X∆,m,x
m+1

)
, Z∆

m+1

(
X∆,m,x
m+1

))
∆Wm+1

]
, otherwise,
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for m = M − 1, ..., 0. In Section 3.7 we give an example of approximating the value of a
Bermudan option by using the BCOS method and in Section 4.8 we explain more about path-
dependent options, such as Bermudan options.

3.6 Error analysis

In this section we perform an error analysis for the BCOS method under the risk-neutral Q-
measure, because we will not use the physical P-measure in the development of the method
to price European options under the SABR model in Chapters 4-6. This means basically that
we only analyze the error in the option price Ym and not the error in the Delta Zm. There-
fore, we abbreviate f(t, x, y, z) to f(t, x, y). Nevertheless, we give the formulas for pricing under
the P-measure in this chapter and in Chapter 4, to make these formulas available for general use3.

The error in option value Ym consists of four different components, namely the error as a result
of the ∆-time-discretization, the θ-method-discretization, the COS method, and the Picard
iterations. Just like Ruijter and Oosterlee [24], we perform the error analysis for the 2.0-weak-
Taylor scheme and parameter θ = 1

2 . In Sections 3.6.1 and 3.6.2, we discuss the local errors as
a result of the ∆-time-discretization and the θ-method-discretization, respectively. In Section
3.6.3 we give a short overview of other errors related to the BCOS method. Finally, we consider
the global error in Section 3.6.4. For the error analysis we use the notation and results of
Appendix C.

3.6.1 Local error ∆-time-discretization

Let Xm,x
m+1 and X∆,m,x

m+1 denote, respectively, the values of Xm+1 and X∆
m+1 given Xm = x, where

X∆,m,x
m+1 is derived by the 2.0-weak-Taylor scheme.

Lemma 3.2. For a sufficiently smooth function h(t, x) we have the following local weak error

E
[
h
(
tm+1, X

m,x
m+1

)
− h

(
tm+1, X

∆,m,x
m+1

)]
= O

(
(∆t)3

)
. (3.55)

Proof. The 2.0-weak-Taylor scheme corresponds to

X∆,m,x
m+1 =

∑
α̂∈A

cα̂(x)Iα̂,tm,tm+1
+ c(0,1)(x)

(
1

2
∆Wm+1∆t− I(0,1),tm,tm+1

)
+ c(1,0)(x)

(
1

2
∆Wm+1∆t− I(1,0),tm,tm+1

)
, (3.56)

where c(x) = x and A = {v, (0), (1), (0, 0), (0, 1), (1, 0), (1, 1)}. By Lemma C.2, we have for all
l ∈ N

E
[(
Xm,x
m+1 −X

∆,m,x
m+1

)l]
= O

(
(∆t)3

)
. (3.57)

A Taylor series expansion of function h around X∆,m,x
m+1 = Xm,x

m+1 gives

h
(
tm+1, X

∆,m,x
m+1

)
=
∞∑
l=0

(−1)l

l!

(
Xm,x
m+1 −X

∆,m,x
m+1

)l ∂l(
∂Xm,x

m+1

)lh (tm+1, X
m,x
m+1

)
. (3.58)

3In risk management the possibility of valuing under the P-measure is important, e.g. for value at risk (VaR)
and for credit valuation adjustment (CVA).
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Combining formulas (3.57) and (3.58) implies

E
[
h
(
tm+1, X

m,x
m+1

)
− h

(
tm+1, X

∆,m,x
m+1

)]
= O

(
(∆t)3

)
. (3.59)

3.6.2 Local error θ-method-discretization

We observe from formula (3.33) that given Xm = x,

Ym(x) = Em[Ym+1(Xm+1)] +

∫ tm+1

tm

Em[f(t,Xt, Yt(Xt))] dt

= Em[Ym+1(Xm+1)] +
1

2
∆t (f(tm, x, Ym(x)) + Em[f(tm+1, Xm+1, Ym+1(Xm+1))])

+ Rym(x), (3.60)

which gives for the θ-method-discretization error

Rym(x) =

∫ tm+1

tm

Em[f(t,Xt, Yt(Xt))] dt

− 1

2
∆t (f(tm, x, Ym(x)) + Em[f(tm+1, Xm+1, Ym+1(Xm+1))]) . (3.61)

Lemma 3.3. For a sufficiently smooth function f(t, x, y) and payoff function g(x) we have the
following θ-method-discretization error

Rym(x) = O
(

(∆t)3
)
. (3.62)

Proof. For a generally smooth function h(t, x), we find with Theorem C.1, A = {v, (0), (1)} and
A = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)}∫ tm+1

tm

h (t,Xm,x
t ) dt =

∫ tm+1

tm

h(tm, x) + h(0)(tm, x)I(0),tm,t + h(1)(tm, x)I(1),tm,t

+
∑

α̂∈B(A)

Iα̂ [hα̂ (., Xm,x
. )]tm,t dt

= h(tm, x)I(0),tm,tm+1
+ h(0)(tm, x)I(0,0),tm,tm+1

+ h(1)(tm, x)I(1,0),tm,tm+1

+
∑
α̂∈A

Iα̂ [hα̂− (., Xm,x
. )]tm,tm+1

, (3.63)

which implies

E
[∫ tm+1

tm

h (t,Xm,x
t ) dt− 1

2
∆t
(
h(tm, x) + h

(
tm+1, X

m,x
m+1

))]
= h(tm, x)∆t+

1

2
h(0)(tm, x) (∆t)2 +O

(
(∆t)3

)
−1

2
∆t

(
h(tm, x) + h(tm, x) + h(0)(tm, x)∆t+

1

2
h(0,0)(tm, x) (∆t)2 +O

(
(∆t)3

))
= O

(
(∆t)3

)
. (3.64)
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3.6.3 Fourier errors

The COS method introduces an error which consists of four parts

• The integration range truncation error ε1, introduced in formula (3.19)

ε1 = e−rT
∫
R\[a,b]

g(X)QXT (T,X|X0) dX. (3.65)

• The series truncation error ε2 introduced in formula (3.24), i.e.

ε2 = e−rT
∞∑
k=N

Ak

∫ b

a
g(X) cos

(
kπ
X − a
b− a

)
dX. (3.66)

• The error ε3 related to the approximation of Ak in formula (3.23):

ε3 = e−rT
N−1∑′

k=0

∫
R\[a,b]

QXT (T,X|X0) cos

(
kπ
X − a
b− a

)
dX Vk. (3.67)

• The error ε4 related to the use of discrete cosine transform for formulas (3.48) and (3.50),
when those integrals cannot be computed analytically:

ε4 = e−rT
N−1∑′

k=0

<
[
φXT

(
kπ

b− a

∣∣∣∣X0

)
exp

(
−ikπ a

b− a

)][
Vk −

2

N1

N1−1∑
n=0

g(x̃n) cos

(
kπ

N1
(n+ 1/2)

)]
,

(3.68)
where x̃n = a + (n + 1/2) b−aN1

. In this paper we choose to set N1 equal to the number of
Fourier cosine coefficients N .

Fang and Oosterlee discussed the errors ε1, ε2 and ε3 in Section 4 of their paper [9] and Atkinson
discussed the error ε4 in Chapter 5 of his book [4].

Also the Picard iterations introduce an error. The authors in [25] briefly discussed this error in
Section 4.5 of their paper and they obtained that the iterations converge when ∆t is small.

3.6.4 Global error

In this section we give the global error of the BCOS method, where we omit the errors intro-
duced by the COS method and by the Picard iterations, as they can be made arbitrarily small
depending on parameters. Just as the authors in [24], we define

eym
(
Xm, X

∆
m

)
:= Ym(Xm)− Y ∆

m

(
X∆
m

)
, (3.69)

efm
(
Xm, X

∆
m

)
:= f(tm, Xm, Ym(Xm))− f

(
tm, X

∆
m , Y

∆
m

(
X∆
m

))
, (3.70)

and

eym (x) := Ym(x)− Y ∆
m (x), (3.71)

efm (x) := f(tm, x, Ym(x))− f
(
tm, x, Y

∆
m (x)

)
. (3.72)

We can rewrite the error eym
(
Xm, X

∆
m

)
to

eym
(
Xm, X

∆
m

)
= Ym(Xm)− Y ∆

m (Xm) + Y ∆
m (Xm)− Y ∆

m

(
X∆
m

)
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= eym(Xm) + Y ∆
m (Xm)− Y ∆

m

(
X∆
m

)
. (3.73)

The triangle inequality implies∣∣E0

[
eym
(
Xm, X

∆
m

)]∣∣ ≤ |E0 [eym(Xm)]|+
∣∣E0

[
Y ∆
m (Xm)− Y ∆

m

(
X∆
m

)]∣∣
≤ E0 [|eym(Xm)|] +

∣∣E0

[
Y ∆
m (Xm)− Y ∆

m

(
X∆
m

)]∣∣ . (3.74)

If Ym(x) is a sufficiently smooth function, we find with Lemma 3.2 that∣∣E0

[
eym
(
Xm, X

∆
m

)]∣∣ ≤ E0 [|eym(Xm)|] +O
(

(∆t)3
)
. (3.75)

The following lemma gives a bound on the error eym(Xm),

Lemma 3.4.
E0 [|eym(Xm)|] = O

(
(∆t)2

)
. (3.76)

Proof. Formulas (3.40) and (3.60) give

eym(x) = Ym(x)− Y ∆
m (x)

= E
[
Ym
(
Xm,x
m+1

)]
+

1

2
∆t
(
f(tm, x, Ym(x)) + E

[
f
(
tm+1, X

m,x
m+1, Ym+1

(
Xm,x
m+1

))])
+Rym(x)

− E
[
Y ∆
m

(
X∆,m,x
m+1

)]
− 1

2
∆t
(
f(tm, x, Y

∆
m (x)) + E

[
f
(
tm+1, X

∆,m,x
m+1 , Y ∆

m+1

(
X∆,m,x
m+1

))])
= E

[
eym+1

(
Xm,x
m+1, X

∆,m,x
m+1

)]
+

1

2
∆t
(
efm(x) + E

[
efm+1

(
Xm,x
m+1, X

∆,m,x
m+1

)])
+Rym(x).

(3.77)

With Lemma 3.2, we find

E
[
eym+1

(
Xm,x
m+1, X

∆,m,x
m+1

)]
= E

[
Ym+1

(
Xm,x
m+1

)
− Y ∆

m+1

(
Xm,x
m+1

)]
+ E

[
Y ∆
m+1

(
Xm,x
m+1

)
− Y ∆

m+1

(
X∆,m,x
m+1

)]
= E

[
eym+1

(
Xm,x
m+1

)]
+O

(
(∆t)3

)
(3.78)

and, analogously,

E
[
efm+1

(
Xm,x
m+1, X

∆,m,x
m+1

)]
= E

[
efm+1

(
Xm,x
m+1

)]
+O

(
(∆t)3

)
. (3.79)

The function f(t, x, y) is Lipschitz in y with Lipschitz constant Lf , so∣∣∣efm(x)
∣∣∣ =

∣∣f(tm, x, Ym(x))− f
(
tm, x, Y

∆
m (x)

)∣∣ ≤ Lf ∣∣Ym (x)− Y ∆
m (x)

∣∣ = Lf |eym(x)| , (3.80)

and
E
[∣∣∣efm+1

(
Xm,x
m+1

)∣∣∣] ≤ LfE [∣∣eym+1

(
Xm,x
m+1

)∣∣] . (3.81)

Then combining all the results and Lemma 3.3 gives us the following result:

|eym(x)| ≤ E
[∣∣∣eym+1

(
Xm,x
m+1, X

∆,m,x
m+1

)∣∣∣]+
1

2
∆t
(∣∣∣efm(x)

∣∣∣+ E
[∣∣∣efm+1

(
Xm,x
m+1, X

∆,m,x
m+1

)∣∣∣])
+ |Rym(x)|

≤ E
[∣∣eym+1

(
Xm,x
m+1

)∣∣]+
1

2
∆t
(∣∣∣efm(x)

∣∣∣+ E
[∣∣∣efm+1

(
Xm,x
m+1

)∣∣∣])+O
(

(∆t)3
)
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≤ E
[∣∣eym+1

(
Xm,x
m+1

)∣∣]+
1

2
∆tLf

(
|eym(x)|+ E

[∣∣eym+1

(
Xm,x
m+1

)∣∣])+O
(

(∆t)3
)
, (3.82)

which implies, for ∆t ≤ 2/Lf ,

|eym(x)| ≤
1 + 1

2∆tLf

1− 1
2∆tLf

E
[∣∣eym+1

(
Xm,x
m+1

)∣∣]+O
(

(∆t)2
)
. (3.83)

Since
1+ 1

2
∆tLf

1− 1
2

∆tLf
= 1 + O (∆t) and E

[∣∣eyM (Xm,x
M

)∣∣] = 0, we can observe, by iterating formula

(3.83), that

|eym(x)| = O
(

(∆t)2
)
. (3.84)

Substitution of Lemma 3.4 into formula (3.75) gives us∣∣E0

[
eym
(
Xm, X

∆
m

)]∣∣ = O
(

(∆t)2
)
. (3.85)

3.7 Examples

In this section we give two examples, one in which the value of a European call option under
the CEV model is derived and one where the value of a Bermudan put option under the Black-
Scholes model is computed. In both examples we price under the Q-measure, which makes the
BCOS method easier, because then µ(Xt) = rXt, where r is the risk-free interest rate. Like
Ruijter and Oosterlee [24], we set N = 29 and the domain [a, b] is determined as

[a, b] = [X0 + c1 − L
√
c2, X0 + c1 + L

√
c2] , (3.86)

where c1 = µ (X0)T , c2 = σ2 (X0)T and L = 10.

Remark 3.2. If XT is constrained, then one can adjust the interval [a, b] to these constraints,
i.e. if XT ≥ 0 then boundary a can be set equal to max{0, X0 + c1 − L

√
c2}. Because of an

absorption condition, we have to add an atom at 0 on the conditional probability density of
XT given X0. In this thesis, we choose to omit constraints that depend on the underlying. In
the current market some underlyings, i.e. interest rates, can even become negative, while some
underlyings, i.e. stock prices, can not be negative.

Example 1 We derive the value of a European call option, where the underlying under the
risk-neutral Q-measure follows a CEV process, i.e.

dXt = rXt dt+ σ (Xt)
γ dWt, X0 = x, t ≥ 0, (3.87)

where the risk-free interest rate r and the volatility σ ≥ 0 are constants. The Euler approxima-
tion for FSDE (3.87) gives

X∆
m+1 = X∆

m + rX∆
m∆t+ σ

(
X∆
m

)γ
∆Wm+1, X∆

0 = x, (3.88)

and Lemma 3.1 states that the characteristic function of X∆
m+1, given X∆

m = xm, is given by

φX∆
m+1

(
u
∣∣X∆

m = xm
)

= exp

(
iuxm + iurxm∆t− 1

2
u2σ2 (xm)2γ ∆t

)
. (3.89)
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Here, we choose the following parameter values: x = 100, K = 100, T = 1, σ = 0.2, r =
0.1 and γ = 0.5.
We obtain

dYt = −rYt dt+ Zt dWt, YT = max(K −XT ). (3.90)

Notice that f(t, x, y, z) = −ry, is independent of z, and as a result we do not have to calculate
the functions Z∆

m(x) and therefore we are allowed to use θ = 0.

We use θ = 0, N = 29 and [a, b] = [90, 130]. Also, we approximate each Fourier-cosine coefficient
by the discrete Fourier-cosine transform. V (0, T, x) = 9.5162582 is the reference value of the
call option from [17]. Table 3.1 shows the results of the BCOS method and we observe linear
convergence. We can see that with 100 time steps the absolute error is less than one basis point.

Time steps M 1 10 100 1000 10.000 100.000

abs error 0.4679 4.9657e-02 4.9964e-03 4.9986e-04 4.9894e-05 4.8942e-06

Table 3.1: BCOS method where the FSDE is discretized with the Euler scheme.

Example 2 We derive the value of a Bermudan put option, where the underlying under the
risk-neutral Q-measure follows the Black-Scholes process

dXt = rXt dt+ σXt dWt, X0 = x, t ≥ 0, (3.91)

where the risk-free interest rate r and the volatility σ ≥ 0 are constants. The Euler approxima-
tion for FSDE (3.91) gives us:

X∆
m+1 = X∆

m + rX∆
m∆t+ σX∆

m∆Wm+1, X∆
0 = x, (3.92)

and Lemma 3.1 gives the characteristic function of X∆
m+1, given X∆

m = xm, is

φX∆
m+1

(
u
∣∣X∆

m = xm
)

= exp

(
iuxm + iurxm∆t− 1

2
u2σ2 (xm)2 ∆t

)
. (3.93)

We use the following parameter values: x = 100, K = 110, T = 1, σ = 0.2 and r = 0.1.
The holder of a Bermudan option has the right to exercise the option at a set of predetermined
dates. We assume that the option has 10 exercise dates, tj = j

10 for j = 1, . . . , 10. The number
of time steps M should be equal to a multiple of the number of exercise dates, so that each
exercise date corresponds to a point in our time grid. We reproduced this example from Section
4.1 in [10]. The authors in [10] gave as reference value V (0, T, x) = 10.479520123. Table 3.2
shows the results of the BCOS method, where we approximate each Fourier-cosine coefficient
and we use θ = 0, N = 29, and [a, b] = [−90, 310]. We observe that the absolute error goes to
zero for M → ∞. Just as in the previous example, the BCOS method with the Euler scheme
gives highly satisfactory results for M = 100. The 2.0-weak-Taylor scheme can also be used and
fewer time steps are then necessary to reach the same accuracy.

Number of time steps M 10 50 100 500 1000

abs error 1.5558e-02 2.3886-03 1.0696e-03 6.5052 e-05 5.7383e-05

Table 3.2: BCOS method where the FSDE is discretized with the Euler scheme.



Chapter 4

Extension of the BCOS method to two
dimensions

In this chapter, we expand the BCOS method of Ruijter and Oosterlee [24] from one dimension
to two dimensions. This is necessary for application of the BCOS method to the SABR model.
We assume that the underlying system of FSDEs, for t ≥ 0, can be written as

dX1
t = µ1(Xt) dt+ σ1(Xt) dW 1

t , X1
0 = x1, (4.1)

dX2
t = µ2(Xt) dt+ ρσ2(Xt) dW 1

t +
√

1− ρ2σ2(Xt) dW 2
t , X2

0 = x2, (4.2)

where W 1 and W 2 are uncorrelated standard Brownian motions and Xt =
(
X1
t , X

2
t

)
.

In this chapter we explain the two-dimensional BCOS method where the bivariate characteristic
function is approximated by the bivariate characteristic function of the discrete forward process.
In Section 4.1, the discretization of the forward process Xt by different Taylor schemes and
the corresponding bivariate characteristic function is given. We propose an adjusted-Predictor-
Corrector scheme in Section 4.2. In Section 4.3 we determine the accuracy of the bivariate
characteristic function of the discretized Heston model. This is helpful for understanding the
errors made with the two-dimensional BCOS method. In Section 4.4, an introduction in the two-
dimensional COS method is given. In Section 4.5 we give the two-dimensional BCOS method
to price derivatives for which the underlying follows FSDEs (4.1) and (4.2). We derive formulas
to approximate some conditional expectations in Section 4.6. In Section 4.7 we describe how to
apply the BCOS method for an option without path-dependency. In Section 4.8 we discuss the
change in procedure of the BCOS method for some path-dependent options. An error analysis
is given in Section 4.9. Finally, we give examples of pricing with the two-dimensional BCOS
method in Section 4.10.

4.1 The discrete forward process and its characteristic function

We again define a time-grid tj = ∆t for j = 0, 1, . . . ,M , with fixed time steps ∆t = T
M . For

j = 1, 2, we write Xm = Xtm , Xj
m = Xj

tm , W j
m = W j

tm and ∆W j
m+1 = W j

m+1−W
j
m. The discrete

forward process is denoted by X∆
m = X∆

tm , Xj,∆
m = Xj,∆

tm , where X∆
0 =

(
X1,∆

0 , X2,∆
0

)
=
(
X1

0 , X
2
0

)
.

To determine the values of Xj,∆
m+1, for m = 0, . . . ,M − 1, we use one of the following Taylor

schemes: the Euler, Milstein, or 2.0 weak Taylor schemes.

32
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As in the one-dimensional case, we can write the discretization schemes in general form, as
follows

X1,∆
m+1 = x1 +m1 (x) ∆t+ sW

1

1 (x)∆W 1
m+1 + sW

2

1 (x)∆W 2
m+1 + κW

1,W 2

1 (x)∆W 1
m+1∆W 2

m+1

+ κW
1

1 (x)
(
∆W 1

m+1

)2
+ κW

2

1 (x)
(
∆W 2

m+1

)2
+ v1(x)V 1,2

m+1, (4.3)

X2,∆
m+1 = x2 +m2 (x) ∆t+ sW

1

2 (x)∆W 1
m+1 + sW

2

2 (x)∆W 2
m+1 + κW

1,W 2

2 (x)∆W 1
m+1∆W 2

m+1

+ κW
1

2 (x)
(
∆W 1

m+1

)2
+ κW

2

2 (x)
(
∆W 2

m+1

)2
+ v2(x)V 1,2

m+1, (4.4)

where X∆
m = x = (x1, x2), ∆W 1

m+1 and ∆W 2
m+1 are uncorrelated and both normally distributed

with mean zero and variance ∆t, and V 1,2
m+1 is an independent random variable with probability

P
(
V 1,2
m+1 = ±∆t

)
= 1

2 .

For the Euler scheme, we have

m1 (x) = µ1 (x) , sW
1

1 (x) = σ1 (x) , sW
2

1 (x) = 0, κW
1,W 2

1 (x) = 0,

κW
1

1 (x) = 0, κW
2

1 (x) = 0, v1(x) = 0,

m2 (x) = µ2 (x) , sW
1

2 (x) = ρσ2 (x) , sW
2

2 (x) =
√

1− ρ2σ2 (x) , κW
1,W 2

2 (x) = 0,

κW
1

2 (x) = 0, κW
2

2 (x) = 0, v2(x) = 0.

(4.5)

The order of strong convergence is γ1 = 0.5 and the order of weak convergence is γ2 = 1.

For the Milstein scheme, we find,

m1 (x) = µ1 (x)− 1
2

(
σ1 (x) ∂σ1(x)

∂x1
+ ρσ2 (x) ∂σ1(x)

∂x2

)
, sW

1

1 (x) = σ1 (x) ,

κW
1,W 2

1 (x) =

√
1−ρ2

2 σ2 (x) ∂σ1(x)
∂x2

, sW
2

1 (x) = 0,

κW
1

1 (x) = 1
2

(
σ1 (x) ∂σ1(x)

∂x1
+ ρσ2 (x) ∂σ1(x)

∂x2

)
, κW

2

1 (x) = 0,

v1(x) = −
√

1−ρ2

2 σ2 (x) ∂σ1(x)
∂x2

,

m2 (x) = µ2 (x)− 1
2

(
ρσ1 (x) ∂σ2(x)

∂x1
+ σ2 (x) ∂σ2(x)

∂x2

)
, sW

1

2 (x) = ρσ2 (x) ,

κW
1,W 2

2 (x) =

√
1−ρ2

2

(
σ1 (x) ∂σ2(x)

∂x1
+ 2ρσ2 (x) ∂σ2(x)

∂x2

)
, sW

2

2 (x) =
√

1− ρ2σ2 (x) ,

κW
1

2 (x) = ρ
2

(
σ1 (x) ∂σ2(x)

∂x1
+ ρσ2 (x) ∂σ2(x)

∂x2

)
, κW

2

2 (x) = 1−ρ2

2 σ2 (x) ∂σ2(x)
∂x2

,

v2(x) =

√
1−ρ2

2 σ1 (x) ∂σ2(x)
∂x1

.

(4.6)

The order of weak convergence is γ2 = 1. The order of strong convergence is γ1 = 1 when FSDEs
(4.1)-(4.2) satisfy the following commutativity condition [18, Chapter 10 (3.13)]:√

1− ρ2σ2 (x1, x2)
∂σ1 (x1, x2)

∂x2
= 0 and

√
1− ρ2σ1 (x1, x2)

∂σ2 (x1, x2)

∂x1
= 0 ∀x1, x2 ∈ R2.

(4.7)
For the 2.0-weak-Taylor scheme, it follows that

m1 (x) = µ1 (x)− 1

2

(
σ1 (x)

∂σ1 (x)

∂x1
+ ρσ2 (x)

∂σ1 (x)

∂x2

)
+

1

2

(
µ1 (x)

∂µ1 (x)

∂x1
+ µ2 (x)

∂µ1 (x)

∂x2
+

1

2
σ2

1 (x)
∂2µ1 (x)

(∂x1)2
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+ ρσ1 (x)σ2 (x)
∂2µ1 (x)

∂x1∂x2
+

1

2
σ2

2 (x)
∂2µ1 (x)

(∂x2)2

)
∆t, (4.8a)

sW
1

1 (x) = σ1 (x) +
1

2

(
σ1 (x)

∂µ1 (x)

∂x1
+ ρσ2 (x)

∂µ1 (x)

∂x2
+ µ1 (x)

∂σ1 (x)

∂x1
+ µ2 (x)

∂σ1 (x)

∂x2

+
1

2
σ2

1 (x)
∂2σ1 (x)

(∂x1)2 + ρσ1 (x)σ2 (x)
∂2σ1 (x)

∂x1∂x2
+

1

2
σ2

2 (x)
∂2σ1 (x)

(∂x2)2

)
∆t, (4.8b)

sW
2

1 (x) =

√
1− ρ2

2
σ2 (x)

∂µ1 (x)

∂x2
∆t, κW

1,W 2

1 (x) =

√
1− ρ2

2
σ2 (x)

∂σ1 (x)

∂x2
, (4.8c)

κW
1

1 (x) =
1

2

(
σ1 (x)

∂σ1 (x)

∂x1
+ ρσ2 (x)

∂σ1 (x)

∂x2

)
, κW

2

1 (x) = 0, (4.8d)

v1(x) = −
√

1− ρ2

2
σ2 (x)

∂σ1 (x)

∂x2
, (4.8e)

m2 (x) = µ2 (x)− 1

2

(
ρσ1 (x)

∂σ2 (x)

∂x1
+ σ2 (x)

∂σ2 (x)

∂x2

)
+

1

2

(
µ1 (x)

∂µ2 (x)

∂x1
+ µ2 (x)

∂µ2 (x)

∂x2
+

1

2
σ2

1 (x)
∂2µ2 (x)

(∂x1)2

+ ρσ1 (x)σ2 (x)
∂2µ2 (x)

∂x1∂x2
+

1

2
σ2

2 (x)
∂2µ2 (x)

(∂x2)2

)
∆t, (4.8f)

sW
1

2 (x) = ρσ2 (x) +
1

2
σ1 (x)

∂µ2 (x)

∂x1
∆t

+
ρ

2

(
σ2 (x)

∂µ2 (x)

∂x2
+ µ1 (x)

∂σ2 (x)

∂x1
+ µ2 (x)

∂σ2 (x)

∂x2
+

1

2
σ2

1 (x)
∂2σ2 (x)

(∂x1)2

+ ρσ1 (x)σ2 (x)
∂2σ2 (x)

∂x1∂x2
+

1

2
σ2

2 (x)
∂2σ2 (x)

(∂x2)2

)
∆t, (4.8g)

sW
2

2 (x) =
√

1− ρ2σ2 (x) +

√
1− ρ2

2

(
σ2 (x)

∂µ2 (x)

∂x2
+ µ1 (x)

∂σ2 (x)

∂x1
+ µ2 (x)

∂σ2 (x)

∂x2

+
1

2
σ2

1 (x)
∂2σ2 (x)

(∂x1)2 + ρσ1 (x)σ2 (x)
∂2σ2 (x)

∂x1∂x2
+

1

2
σ2

2 (x)
∂2σ2 (x)

(∂x2)2

)
∆t, (4.8h)

κW
1,W 2

2 (x) =

√
1− ρ2

2

(
σ1 (x)

∂σ2 (x)

∂x1
+ 2ρσ2 (x)

∂σ2 (x)

∂x2

)
, (4.8i)

κW
1

2 (x) =
ρ

2

(
σ1 (x)

∂σ2 (x)

∂x1
+ ρσ2 (x)

∂σ2 (x)

∂x2

)
, (4.8j)

κW
2

2 (x) =
1− ρ2

2
σ2 (x)

∂σ2 (x)

∂x2
, v2(x) =

√
1− ρ2

2
σ1 (x)

∂σ2 (x)

∂x1
. (4.8k)

The order of strong convergence is γ1 = 1 when the FSDEs (4.1)-(4.2) satisfy the commutativity
condition (4.7). The order of weak convergence is γ2 = 2 [18].
The derivation of these Taylor schemes is given in Appendix D.

Remark 4.1. For the strong convergence γ1 = 1, the Milstein scheme and the 2.0-weak-Taylor
scheme the FSDEs (4.1)-(4.2) have to satisfy the commutativity condition (4.7). We will observe
in section 4.9 that the convergence of the BCOS method depends only on the order of weak
convergence and not on the order of strong convergence, which implies that for application of
the BCOS method it does not matter whether the FSDEs (4.1)-(4.2) satisfy the commutativity
condition.
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Lemma 4.1. The bivariate characteristic function of X∆
m+1, given X∆

m = x = (x1, x2), is given
by

φX∆
m+1

(u1, u2|x) =
cosh (ic6∆t) exp (iu1 [x1 +m1 (x) ∆t] + iu2 [x2 +m2 (x) ∆t])√

(1− 2ic4∆t)(1− 2ic5∆t) + c2
3 (∆t)2

(4.9)

· exp

(
−∆t

2

c2
1 + c2

2 +
[
4(c2

2c
2
4 + c2

1c
2
5)− 4c1c2c3(c4 + c5) + (c2

1 + c2
2)c2

3

]
(∆t)2

1 +
(
2c2

3 + 4c2
4 + 4c2

5

)
(∆t)2 +

(
c2

3 − 4c4c5

)2
(∆t)4

)

· exp

(
i (∆t)2

(
−c2

1c4 − c2
2c5 − c1c2c3 + (c2

3 − 4c4c5)(c2
1c5 − c1c2c3 + c2

2c4) (∆t)2

1 +
(
2c2

3 + 4c2
4 + 4c2

5

)
(∆t)2 +

(
c2

3 − 4c4c5

)2
(∆t)4

))
,

where
c1 = u1s

W 1

1 (x) + u2s
W 1

2 (x), c4 = u1κ
W 1

1 (x) + u2κ
W 1

2 (x),

c2 = u1s
W 2

1 (x) + u2s
W 2

2 (x), c5 = u1κ
W 2

1 (x) + u2κ
W 2

2 (x),

c3 = u1κ
W 1,W 2

1 (x) + u2κ
W 1,W 2

2 (x), c6 = u1v1(x) + u2v2(x).

(4.10)

For the Euler scheme it follows that

φX∆
m+1

(u1, u2|x) = exp

(
iu1x1 + iu2x2 + iu1µ1(x)∆t+ iu2µ2(x)∆t− 1

2
u2

1σ
2
1(x)∆t

− 1

2
u2

2σ
2
2(x)∆t− u1u2ρσ1(x)σ2(x)∆t

)
. (4.11)

The proof of Lemma 4.1 is given in Appendix E.

4.2 An adjusted-Predictor-Corrector scheme

Besides the discretization schemes given in Section 4.1, we also consider whether we can use a
predictor-corrector method. Following Kloeden and Platen [18], the family of predictor-corrector
Euler schemes with γ1 = 0.5 as the order of strong convergence [7] and γ2 = 1 as the order of
weak convergence [18] is given by

X1,∆
m+1 = x1 +

[
θ1µ̄1

(
X̄1,∆
m+1, X̄

2,∆
m+1

)
+ (1− θ1)µ̄1(x1, x2)

]
∆t

+
[
η1σ1

(
X̄1,∆
m+1, X̄

2,∆
m+1

)
+ (1− η1)σ1 (x1, x2)

]
∆W 1

m+1, (4.12)

X2,∆
m+1 = x2 +

[
θ2µ̄2

(
X̄1,∆
m+1, X̄

2,∆
m+1

)
+ (1− θ2)µ̄2(x1, x2)

]
∆t (4.13)

+
[
η2σ2

(
X̄1,∆
m+1, X̄

2,∆
m+1

)
+ (1− η2)σ2 (x1, x2)

] (
ρ∆W 1

m+1 +
√

1− ρ2∆W 2
m+1

)
,

where θ1, θ2, η1, η2 ∈ [0, 1] and

X̄1,∆
m+1 = x1 + µ1(x1, x2)∆t+ σ1(x1, x2)∆W 1

m+1, (4.14)

X̄2,∆
m+1 = x2 + µ2(x1, x2)∆t+ σ2(x1, x2)

(
ρ∆W 1

m+1 +
√

1− ρ2∆W 2
m+1

)
, (4.15)

µ̄1(x, y) = µ1(x, y)− η1

(
σ1(x, y)

∂σ1(x, y)

∂x
+ ρσ2(x, y)

∂σ1(x, y)

∂y

)
, (4.16)

µ̄2(x, y) = µ2(x, y)− η2

(
ρσ1(x, y)

∂σ2(x, y)

∂x
+ σ2(x, y)

∂σ2(x, y)

∂y

)
. (4.17)

Often, the discretized FSDEs X1,∆
m+1 and X2,∆

m+1 are not in the general form (4.3)-(4.4). We use a
Taylor series expansion to obtain discretized FSDEs in this form. We call the resulting scheme
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the adjusted-Predictor-Corrector scheme. An example is given below.

Example 1 For the SABR model with FSDEs,

dFt = σt (Ft)
β dW 1

t , (4.18)

dσt = ρνσt dW 1
t +

√
1− ρ2νσt dW 2

t , (4.19)

and
(
F∆
m , σ

∆
m

)
= (f, α). We find

F∆
m+1 = f +

[
η1ᾱf̄

β + (1− η1)αfβ
]

∆W 1
m+1

− η1

[
θ1

(
βᾱ2f̄2β−1 + ρνᾱf̄β

)
+ (1− θ1)

(
βα2f2β−1 + ρναfβ

)]
∆t, (4.20)

σ∆
m+1 = α− η2ν

2 [θ2ᾱ+ (1− θ2)α] ∆t+ ν [η2ᾱ+ (1− η2)α]
(
ρ∆W 1

m+1 +
√

1− ρ2∆W 2
m+1

)
= α− η2ν

2α∆t+
(
να− θ2η2ν

3α∆t
) (
ρ∆W 1

m+1 +
√

1− ρ2∆W 2
m+1

)
+ η2ν

2α
[
ρ2
(
∆W 1

m+1

)2
+ 2ρ

√
1− ρ2∆W 1

m+1∆W 2
m+1 +

(
1− ρ2

) (
∆W 2

m+1

)2]
, (4.21)

where the predictors f̄ and ᾱ are given by

f̄ = f + αfβ∆W 1
m+1 and ᾱ = α+ να

[
ρ∆W 1

m+1 +
√

1− ρ2∆W 2
m+1

]
. (4.22)

Because of the complexity of F∆
m+1, it would be complicated, if not impossible, to find an ana-

lytical expression for the bivariate characteristic function of the discrete processes:
φ(F∆

m+1,σ
∆
m+1)

(u1, u2|f, α). Our idea is to use a Taylor series expansion around
(
∆W 1

m+1,∆W
2
m+1

)
=

(0, 0), which gives

F∆
m+1 = f + αfβ∆W 1

m+1 + η1

[
βα2f2β−1 + ρναfβ

] (
∆W 1

m+1

)2
+ η1

√
1− ρ2ναfβ∆W 1

m+1∆W 2
m+1

− η1

[
βα2f2β−1 + ρναfβ

]
∆t− η1θ1

√
1− ρ2

[
2βνα2f2β−1 + ρν2αfβ

]
∆t∆W 2

m+1

− η1θ1

[
3ρβνα2f2β−1 + β(2β − 1)α3f3β−2 + ρ2ν2αfβ

]
∆t∆W 1

m+1

− η1θ1

[
2ρ2βν2α2f2β−1 +

(
2β3 − 3β2 + β

)
α4f4β−3 +

1

2
ρβ(9β − 5)να3f3β−2

]
∆t
(
∆W 1

m+1

)2
− η1θ1

√
1− ρ2β

[
3ρν2α2f2β−1 + 2(2β − 1)να3f3β−2

]
∆t∆W 1

m+1∆W 2
m+1

− η1θ1

(
1− ρ2

)
βν2α2f2β−1∆t

(
∆W 2

m+1

)2
+O

((
∆W 1

m+1 + ∆W 2
m+1

)3)
.(4.23)

Now, we can determine the corresponding bivariate characteristic function by using Lemma 4.1,
where

m1 (f, α) = −η1

[
βα2f2β−1 + ρναfβ

]
, (4.24a)

sW
1

1 (f, α) = αfβ − η1θ1

[
3ρβνα2f2β−1 + β(2β − 1)α3f3β−2 + ρ2ν2αfβ

]
∆t, (4.24b)

sW
2

1 (f, α) = −η1θ1

√
1− ρ2

[
2βνα2f2β−1 + ρν2αfβ

]
∆t, (4.24c)

κW
1,W 2

1 (f, α) = η1

√
1− ρ2

[
ναfβ − θ1β

{
3ρν2α2f2β−1 + 2(2β − 1)να3f3β−2

}
∆t
]
, (4.24d)
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κW
1

1 (f, α) = η1

[
βα2f2β−1 + ρναfβ − θ1

{
2ρ2βν2α2f2β−1 +

(
2β3 − 3β2 + β

)
α4f4β−3

+
1

2
ρβ(9β − 5)να3f3β−2

}
∆t

]
, (4.24e)

κW
2

1 (f, α) = −η1θ1

(
1− ρ2

)
βν2α2f2β−1∆t, v1(f, α) = 0, (4.24f)

m2 (f, α) = −η2ν
2α, sW

1

2 (f, α) = ρνα− θ2η2ρν
3α∆t,

sW
2

2 (f, α) =
√

1− ρ2να− θ2η2

√
1− ρ2ν3α∆t, κW

1,W 2

2 (f, α) = 2η2ρ
√

1− ρ2ν2α,

κW
1

2 (f, α) = η2ρ
2ν2α, κW

2

2 (f, α) = η2(1− ρ2)ν2α,
v2(f, α) = 0.

(4.24g)

In Appendix F, we give the adjusted-Predictor-Corrector schemes for the Heston and the SABR
model.

4.3 The characteristic function of the Heston model

Whereas we cannot easily analyze errors made with the discrete characteristic function for the
SABR model, but we can analyze these errors for the Heston model. We therefore compare the
bivariate characteristic function of the Heston model with the bivariate characteristic function
of its discretization in this section. The FSDEs of the Heston model, where X1

t and X2
t denote

the log forward process and the volatility process, respectively, are given by

dX1
t = −1

2
X2
t dt+

√
X2
t dW 1

t , (4.25)

dX2
t = ργ

√
X2
t dW 1

t +
√

1− ρ2γ
√
X2
t dW 2

t . (4.26)

This is an affine model, and therefore we can derive an analytical formula for its bivariate
characteristic function [12]. The characteristic function of X∆

m+1, given X∆
m = x = (x1, x2), is

then given by

φXm+1 (u1, u2|x) = exp

(
iu1x1 +

1

γ2

[
ζ tan

(
arctan

[
iu2γ

2 + iu1ργ

ζ

]
+

∆t

2
ζ

)
− iu1ργ

]
x2

)
,

(4.27)
where

ζ =
√
−iu1γ2 + u2

1(ρ2 − 1)γ2. (4.28)

A Taylor series expansion around
√

∆t = 0 gives

φXm+1 (u1, u2|x) = exp

(
iu1x1 + iu2x2 −

iu1 + u2
1 + u2

2γ
2 + 2u1u2ργ

2
x2∆t

)
· exp

(
− i

4

[
u3

1ργ + u2
1u2(2ρ2 + 1)γ2 + 3u1u

2
2ργ

3 + u3
2γ

4
]
x2 (∆t)2

)
· exp

(
1

4

[
u2

1ργ + u1u2γ
2
]
x2 (∆t)2 +O

(
(∆t)3

))
. (4.29)

For each scheme (Euler, Milstein, 2.0-weak-Taylor, and adjusted-Predictor-Corrector) we will
use Lemma 4.1 to determine the characteristic function of the discretized forward process. The
Taylor series expansion of the characteristic function of X∆

m+1, given X∆
m = x = (x1, x2), around√

∆t = 0 is given by

φX∆
m+1

(u1, u2|x) = exp

(
iu1x1 + iu2x2 +

2i [u1m1 (x) + u2m2 (x) + c4 + c5]− c2
1 − c2

2

2
∆t

)
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· exp

(
−
c2

3 + 2c2
4 + 2c2

5 + c2
6 + 2i

[
c2

1c4 + c2
2c5 + c1c2c3

]
2

(∆t)2 +O
(

(∆t)3
))

.

(4.30)

For the Euler scheme, we find

φX∆
m+1

(u1, u2|x) = exp

(
iu1x1 + iu2x2 −

iu1 + u2
1 + u2

2γ
2 + 2u1u2ργ

2
x2∆t

)
. (4.31)

For the Milstein scheme, we have

φX∆
m+1

(u1, u2|x) = exp

(
iu1x1 + iu2x2 −

iu1 + u2
1 + u2

2γ
2 + 2u1u2ργ

2
x2∆t

)
· exp

(
− i

4

[
u3

1ργ + u2
1u2(1 + 2ρ2)γ2 + 3u1u

2
2ργ

3 + u3
2γ

4
]
x2 (∆t)2

)
· exp

(
− 1

16

[
u2

1(1 + ρ2)γ2 + 2u1u2ργ
3 + u2

2γ
4
]

(∆t)2 +O
(

(∆t)3
))

.(4.32)

For the 2.0-weak-Taylor scheme, it follows that

φX∆
m+1

(u1, u2|x) = exp

(
iu1x1 + iu2x2 −

iu1 + u2
1 + u2

2γ
2 + 2u1u2ργ

2
x2∆t

)
· exp

(
− i

4

[
u3

1ργ + u2
1u2(1 + 2ρ2)γ2 + 3u1u

2
2ργ

3 + u3
2γ

4
]
x2 (∆t)2

)
· exp

(
1

4

[
u2

1ργ + u1u2γ
2
]
x2 (∆t)2 +O

(
(∆t)3

))
. (4.33)

For the adjusted-Predictor-Corrector scheme, see Section 4.2 and Appendix F, we finally find

φX∆
m+1

(u1, u2|x) = exp

(
iu1x1 + iu2x2 −

iu1 + u2
1 + u2

2γ
2 + 2u1u2ργ

2
x2∆t

)
· exp

(
− i

2

[
u3

1η1ργ + u2
1u2(η2ρ

2 + η1(1 + ρ2))γ2 + u1u
2
2(η1ρ+ 2η2ρ)γ3

+ u3
2η2γ

4
]
x2 (∆t)2 +

1

2

[
u2

1θ1ργ + u1u2θ1γ
2
]
x2 (∆t)2

)
(4.34)

· exp

(
−1

8

[
u2

1η
2
1(1 + ρ2)γ2 + 4u1u2η1η2ργ

3 + 2u2
2η

2
2γ

4
]

(∆t)2 +O
(

(∆t)3
))

,

where θ1, η1, η2 ∈ [0, 1].

So, the bivariate characteristic function of the Heston model discretized with the Euler, Milstein
or adjusted-Predictor-Corrector scheme, independent of the choices for θ1, η1 and η2, is exact
up to O (∆t), i.e.

φXm+1 (u1, u2|x) = φX∆
m+1

(u1, u2|x) +O
(

(∆t)2
)

(4.35)

and for the Heston model discretized with the weak-2.0-Taylor scheme it is even exact up to

O
(

(∆t)2
)

:

φXm+1 (u1, u2|x) = φX∆
m+1

(u1, u2|x) +O
(

(∆t)3
)
. (4.36)

For the Heston model, the discretization with the weak-2.0-Taylor scheme gives the best ap-
proximation for the characteristic function. We expect similar results for the SABR model.
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4.4 Two-dimensional COS method

We derive the value V (0, T,X0) of an option at time 0 with as underlying Xt and exercise date
T . The payoff of the option at time T is given by V (T, T,XT ) = g (XT ) for some function g
and we assume that there are no early-exercise dates. The value of the option V (0, T,X0) is
then given by the risk-neutral valuation formula,

V (0, T,X0) = e−rT
∫ ∫

R2

g(X1, X2)QXT
(T,X1, X2|X0) dX1 dX2, (4.37)

where r is the risk-free interest rate and QXT
(T,X1, X2|X0) is the conditional density function

of X1
T = X1 and X2

T = X2 given X0. We abbreviate (X1, X2) by X.

The value of the option V (0, T,X0) can be derived by using the two-dimensional COS method
of M.J. Ruijter and C.W. Oosterlee [23]. As in Section 3.2, we truncate the integration domain
from R2 to some finite domain [a1, b1]× [a2, b2] ⊆ R2, which leads to

V (0, T,X0) ≈ e−rT
∫ b2

a2

∫ b1

a1

g(X)QXT
(T,X|X0) dX1 dX2. (4.38)

The two-dimensional Fourier-cosine expansion of the density results in

QXT
(T,X|X0) =

∞∑′

k1=0

∞∑′

k2=0

Ak1,k2 cos

(
k1π

X1 − a1

b1 − a1

)
cos

(
k2π

X2 − a2

b2 − a2

)
, (4.39)

where

Ak1,k2 =
2

b1 − a1

2

b2 − a2

∫ b2

a2

∫ b1

a1

QXT
(T,X|X0) cos

(
k1π

X1 − a1

b1 − a1

)
cos

(
k2π

X2 − a2

b2 − a2

)
dX1 dX2.

(4.40)
Rewriting Ak1,k2 gives 2Ak1,k2 = A+

k1,k2
+A−k1,k2

, where

A±k1,k2
=

2

b1 − a1

2

b2 − a2

∫ b2

a2

∫ b1

a1

QXT
(T,X|X0) cos

(
k1π

X1 − a1

b1 − a1
± k2π

X2 − a2

b2 − a2

)
dX1 dX2.

(4.41)
We truncate the series summations by setting N1 and N2 as the numbers of Fourier coefficients,
which leads to

QXT
(T,X|X0) ≈

N1−1∑′

k1=0

N2−1∑′

k2=0

Ak1,k2 cos

(
k1π

X1 − a1

b1 − a1

)
cos

(
k2π

X2 − a2

b2 − a2

)
. (4.42)

Finally, we approximate A±k1,k2
by

A±k1,k2
≈ 2

b1 − a1

2

b2 − a2

∫ ∫
R2

QXT
(T,X|X0) cos

(
k1π

X1 − a1

b1 − a1
± k2π

X2 − a2

b2 − a2

)
dX1 dX2

=
2

b1 − a1

2

b2 − a2
<
{

exp

(
−ik1π

a1

b1 − a1
∓ ik2π

a2

b2 − a2

)
∫ ∫

R2

QXT
(T,X|X0) exp

(
ik1π

X1

b1 − a1
± ik2π

X2

b2 − a2

)
dX1 dX2

}
=

2

b1 − a1

2

b2 − a2
<
{
φXT

(
k1π

b1 − a1
,± k2π

b2 − a2

∣∣∣∣X0

)
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exp

(
−ik1π

a1

b1 − a1
∓ ik2π

a2

b2 − a2

)}
. (4.43)

This results in the following option pricing formula of the two-dimensional COS method:

V (0, T,X0)

≈ e−rT
∫ b2

a2

∫ b1

a1

g(X)QXT
(T,X|X0) dX1 dX2

= e−rT
∫ b2

a2

∫ b1

a1

g(X)

N1−1∑′

k1=0

N2−1∑′

k2=0

Ak1,k2 cos

(
k1π

X1 − a1

b1 − a1

)
cos

(
k2π

X2 − a2

b2 − a2

)
dX1 dX2

= e−rT
b1 − a1

2

b2 − a2

2

N1−1∑′

k1=0

N2−1∑′

k2=0

Ak1,k2Vk1,k2

= e−rT
b1 − a1

2

b2 − a2

2

N1−1∑′

k1=0

N2−1∑′

k2=0

1

2

(
A+
k1,k2

+A−k1,k2

)
Vk1,k2

≈ e−rT
N1−1∑′

k1=0

N2−1∑′

k2=0

1

2
<
{
φXT

(
k1π

b1 − a1
,
k2π

b2 − a2

∣∣∣∣X0

)
exp

(
−ik1π

a1

b1 − a1
− ik2π

a2

b2 − a2

)
+ φXT

(
k1π

b1 − a1
,− k2π

b2 − a2

∣∣∣∣X0

)
exp

(
−ik1π

a1

b1 − a1
+ ik2π

a2

b2 − a2

)}
Vk1,k2 , (4.44)

where

Vk1,k2 =
2

b1 − a1

2

b2 − a2

∫ b2

a2

∫ b1

a1

g(X) cos

(
k1π

X1 − a1

b1 − a1

)
cos

(
k2π

X2 − a2

b2 − a2

)
dX1 dX2. (4.45)

4.5 Two-dimensional BCOS method

Just as in Section 4.4, we derive the value V (0, T,X0) of a derivative at time 0 with as underlying
Xt and exercise date T , where the FSDEs of Xt =

(
X1
t , X

2
t

)
are given by (4.1) and (4.2). The

payoff of the option at time T is given by V (T, T,XT ) = g (XT ) for some function g and we
assume that there are no early-exercise dates. We also assume that we are working in a complete
market and therefore we can make a self-financing portfolio Yt consisting of a1

t assets of X1
t , a2

t

assets of X2
t and bonds with risk-free return rate r, such that YT = g (XT ), and:

dYt = r
(
Yt − a1

tX
1
t − a2

tX
2
t

)
dt+ a1

t dX1
t + a2

t dX2
t

=
[
rYt +

(
µ1 (Xt)− rX1

t

)
a1
t +

(
µ2 (Xt)− rX2

t

)
a2
t

]
dt

+
[
σ1 (Xt) a

1
t + ρσ2 (Xt) a

2
t

]
dW 1

t +
√

1− ρ2σ2 (Xt) a
2
t dW 2

t , (4.46)

for 0 ≤ t ≤ T . If we set Z1
t = σ1 (Xt) a

1
t and Z2

t = σ2 (Xt) a
2
t , then (Y,Z1, Z2) solves the BSDE

dYt = −f
(
t,X1

t , X
2
t , Yt, Z

1
t , Z

2
t

)
dt+

(
Z1
t + ρZ2

t

)
dW 1

t +
√

1− ρ2Z2
t dW 2

t , (4.47)

f(t, x1, x2, y, z1, z2) = −ry − µ1(x1, x2)− rx1

σ1(x1, x2)
z1 −

µ2(x1, x2)− rx2

σ2(x1, x2)
z2, (4.48)

where YT = g(XT ). The functions σ1, σ2, µ1, µ2 : R2 → R in FSDEs (4.1) and (4.2) are
assumed to be twice differentiable with respect to x1 and x2, Lipschitz in x1 and x2 and
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satisfy a linear growth condition in x1 and x2. The function f : [0, T ] × R5 → R is as-
sumed to be uniformly continuous with respect to x1 and x2 and satisfies a Lipschitz condi-
tion in (y, z1, z2), with Lipschitz constant Lf and the function g : R2 → R is assumed to be
uniformly continuous with respect to x1 and x2. Also, there exists a constant C such that
|f(t,x, y, z)| + |g(x)| ≤ C(1 + ‖x‖p + |y| + ‖z‖), p ≥ 1

2
1. Yt is a self-financing portfolio, and

therefore the option value is given by V (0, T,X0) = Y0.

We define again a time grid of M + 1 time points, where tj = j∆t and ∆t = T
M . We define

Λt :=
(
X1
t , X

2
t , Yt, Z

1
t , Z

2
t

)
, Λm = Λtm and Λ∆

m =
(
X1,∆
m , X2,∆

m , Ym∆, Z1,∆
m , Z2,∆

m

)
. Integrating

(4.48) gives us:

Y0 = g(XT ) +

∫ T

0
f (t,Λt) dt−

∫ T

0

(
Z1
t + ρZ2

t

)
dW 1

t −
√

1− ρ2

∫ T

0
Z2
t dW 2

t . (4.49)

At time tm this gives the recursion:

Ym = Ym+1 +

∫ tm+1

tm

f (t,Λt) dt−
∫ tm+1

tm

(
Z1
t + ρZ2

t

)
dW 1

t −
√

1− ρ2

∫ tm+1

tm

Z2
t dW 2

t . (4.50)

We take conditional expectations at both sides of the equation and use numerical integration to
approximate the integral, for some θ ∈ [0, 1]

Ym = Em [Ym+1] + Em
[∫ tm+1

tm

f (t,Λt) dt

]
(4.51)

≈ Em [Ym+1] + Em [∆tθf (tm,Λm) + ∆t(1− θ)f (tm+1,Λm+1)]

= Em [Ym+1] + ∆tθf (tm,Λm) + ∆t(1− θ)Em [f (tm+1,Λm+1)] . (4.52)

Multiplying equation (4.50) with ∆W 1
m+1 gives

Ym∆W 1
m+1 = Ym+1∆W 1

m+1 +

∫ tm+1

tm

f (t,Λt) dt∆W 1
m+1 −

∫ tm+1

tm

(
Z1
t + ρZ2

t

)
dW 1

t ∆W 1
m+1

−
√

1− ρ2

∫ tm+1

tm

Z2
t dW 2

t ∆W 1
m+1. (4.53)

Again, we take conditional expectations at both sides of the equation and use numerical inte-
gration. This gives

0 ≈ Em
[
Ym+1∆W 1

m+1

]
+ Em

[
(∆tθf (tm,Λm) + ∆t(1− θ)f (tm+1,Λm+1)) ∆W 1

m+1

]
− Em

[(
θ∆W 1

m+1

(
Z1
m + ρZ2

m

)
+ (1− θ)∆W 1

m+1

(
Z1
m+1 + ρZ2

m+1

))
∆W 1

m+1

]
−

√
1− ρ2Em

[
θ∆W 2

m+1

(
Z2
m + Z2

m+1

)
∆W 1

m+1

]
= Em

[
Ym+1∆W 1

m+1

]
+ ∆t(1− θ)Em

[
f (tm+1,Λm+1) ∆W 1

m+1

]
− ∆tθ

(
Z1
m + ρZ2

m

)
−∆t(1− θ)Em

[
Z1
m+1 + ρZ2

m+1

]
. (4.54)

Analogously, we can find

0 ≈ Em
[
Ym+1∆W 2

m+1

]
+ ∆t(1− θ)Em

[
f (tm+1,Λm+1) ∆W 2

m+1

]
− ∆tθ

√
1− ρ2Z2

m −∆t(1− θ)
√

1− ρ2Em
[
Z2
m+1

]
. (4.55)

1The conditions on the functions f and g guarantee the existence of a unique solution (Y,Z1, Z2) to BSDE
(4.47), [24]
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Using one of the approximation schemes of Section 4.1, and formulas (4.54) and (4.55) gives, for
m = M − 1, ..., 0,

Y ∆
m = Em

[
Y ∆
m+1

]
+ ∆tθf

(
tm,Λ

∆
m

)
+ ∆t(1− θ)Em

[
f
(
tm+1,Λ

∆
m+1

)]
, (4.56)

Z1,∆
m =

1

∆tθ
Em
[
Y ∆
m+1∆W 1

m+1

]
− 1− θ

θ
Em
[
Z1,∆
m+1 + ρZ2,∆

m+1

]
+

1− θ
θ

Em
[
f
(
tm+1,Λ

∆
m+1

)
∆W 1

m+1

]
− ρZ2,∆

m , (4.57)

Z2,∆
m =

1

∆tθ
√

1− ρ2
Em
[
Y ∆
m+1∆W 2

m+1

]
− 1− θ

θ
Em
[
Z2,∆
m+1

]
+

1− θ
θ
√

1− ρ2
Em
[
f
(
tm+1,Λ

∆
m+1

)
∆W 2

m+1

]
, (4.58)

Y ∆
M = g

(
X∆
M

)
, Z1,∆

M = σ1(x)
dg(x)

dx1

∣∣∣∣
x=X∆

M

and Z2,∆
M = σ2(x)

dg(x)

dx2

∣∣∣∣
x=X∆

M

. (4.59)

We observe that Y ∆
m , Z1,∆

m and Z2,∆
m depend on the value X∆

m, so when X∆
m = x, for m =

M − 1, . . . , 0, we have

Y ∆
m (x) = Em

[
Y ∆
m+1

(
X∆,m,x
m+1

)]
+ ∆tθf

(
tm,Λ

∆
m(x)

)
+ ∆t(1− θ)Em

[
f
(
tm+1,Λ

∆
m+1

(
X∆,m,x
m+1

))]
, (4.60)

Z1,∆
m (x) =

1

∆tθ
Em
[
Y ∆
m+1

(
X∆,m,x
m+1

)
∆W 1

m+1

]
− 1− θ

θ
Em
[
Z1,∆
m+1

(
X∆,m,x
m+1

)
+ ρZ2,∆

m+1

(
X∆,m,x
m+1

)]
+

1− θ
θ

Em
[
f
(
tm+1,Λ

∆
m+1

(
X∆,m,x
m+1

))
∆W 1

m+1

]
− ρZ2,∆

m (x), (4.61)

Z2,∆
m (x) =

1

∆tθ
√

1− ρ2
Em
[
Y ∆
m+1

(
X∆,m,x
m+1

)
∆W 2

m+1

]
− 1− θ

θ
Em
[
Z2,∆
m+1

(
X∆,m,x
m+1

)]
+

1− θ
θ
√

1− ρ2
Em
[
f
(
tm+1,Λ

∆
m+1

(
X∆,m,x
m+1

))
∆W 2

m+1

]
, (4.62)

where X∆,m,x
m+1 denotes the value of X∆

m+1 given X∆
m = x. Y ∆

m (x) is implicit for θ > 0 and can be

determined by performing P Picard iterations, starting with initial guess E
[
Y ∆
m+1

(
X∆,m,x
m+1

)]
.

The value of the option can be approximated by V (0, T,X0) = Y ∆
0 (X0).

4.6 Approximation of the conditional expectations

For each m ∈ {M − 1, . . . , 0}, we wish to approximate the conditional expectations that appear
in formulas (4.60), (4.61) and (4.62):

Em
[
Y ∆
m+1

(
X∆,m,x
m+1

)]
, Em

[
Z1,∆
m+1

(
X∆,m,x
m+1

)]
, Em

[
Z2,∆
m+1

(
X∆,m,x
m+1

)]
,

Em
[
f
(
tm+1,Λ

∆
m+1

(
X∆,m,x
m+1

))]
, Em

[
Y ∆
m+1

(
X∆,m,x
m+1

)
∆W 1

m+1

]
, Em

[
Y ∆
m+1

(
X∆,m,x
m+1

)
∆W 2

m+1

]
,

Em
[
f
(
tm+1,Λ

∆
m+1

(
X∆,m,x
m+1

))
∆W 1

m+1

]
and Em

[
f
(
tm+1,Λ

∆
m+1

(
X∆,m,x
m+1

))
∆W 2

m+1

]
.

As in the 1D case, we generalize this by deriving an equation for the conditional expectations

E
[
h
(
tm+1,X

∆,m,x
m+1

)]
and E

[
h
(
tm+1,X

∆,m,x
m+1

)
∆W j

m+1

]
for a general function h(t,x) and where

j ∈ {1, 2}.
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Let

Hk1,k2(tm+1) =
2

b1 − a1

2

b2 − a2

∫ b2

a2

∫ b1

a1

h(tm+1, x1, x2) cos

(
k1π

x1 − a1

b1 − a1

)
cos

(
k2π

x2 − a2

b2 − a2

)
dx1 dx2.

(4.63)
Using the two-dimensional COS method, we find

E
[
h
(
tm+1,X

∆,m,x
m+1

)]
≈

N1−1∑′

k1=0

N2−1∑′

k2=0

1

2
<
{
φX∆

m+1

(
k1π

b1 − a1
,
k2π

b2 − a2

∣∣∣∣X∆
m = x

)
exp

(
−ik1π

a1

b1 − a1
− ik2π

a2

b2 − a2

)
+ φX∆

m+1

(
k1π

b1 − a1
,− k2π

b2 − a2

∣∣∣∣X∆
m = x

)
exp

(
−ik1π

a1

b1 − a1
+ ik2π

a2

b2 − a2

)}
Hk1,k2 (tm+1)

(4.64)

and

E
[
h
(
tm+1,X

∆,m,x
m+1

)
∆W 1

m+1

]
=

N1−1∑′

k1=0

N2−1∑′

k2=0

1

2
<

{
E

[
exp

(
ik1π

X1,∆,m,x
m+1

b1 − a1
+ ik2π

X2,∆,m,x
m+1

b2 − a2

)
∆W 1

m+1

]

· exp

(
−ik1π

a1

b1 − a1
− ik2π

a2

b2 − a2

)
+ E

[
exp

(
ik1π

X1,∆,m,x
m+1

b1 − a1
− ik2π

X2,∆,m,x
m+1

b2 − a2

)
∆W 1

m+1

]

· exp

(
−ik1π

a1

b1 − a1
+ ik2π

a2

b2 − a2

)}
Hk1,k2 (tm+1) . (4.65)

For convenience, we abbreviate the following expression

E

[
exp

(
ik1π

X1,∆,m,x
m+1

b1 − a1
+ ik2π

X2,∆,m,x
m+1

b2 − a2

)
∆W 1

m+1

]
= E

[
exp

(
i
(
d1 + d2v + d3w + d4vw + d5v

2 + d6w
2
))
v
]
, (4.66)

where

d1 = k1π
b1−a1

(x1 +m1(x)∆t) + k2π
b2−a2

(x2 +m2(x)∆t) , d4 = k1π
b1−a1

κW
1,W 2

1 (x) + k2π
b2−a2

κW
1,W 2

2 (x),

d2 = k1π
b1−a1

sW
1

1 (x) + k2π
b2−a2

sW
1

2 (x), d5 = k1π
b1−a1

κW
1

1 (x) + k2π
b2−a2

κW
1

2 (x),

d3 = k1π
b1−a1

sW
2

1 (x) + k2π
b2−a2

sW
2

2 (x), d6 = k2π
b2−a2

κW
2

2 (x),

v = ∆W 1
m+1, w = ∆W 2

m+1,
(4.67)

where v and w are uncorrelated and both are normally distributed with mean zero and variance
∆t. Using integration by parts gives us

E
[
exp

(
i
(
d1 + d2v + d3w + d4vw + d5v

2 + d6w
2
))
v
]

=
exp(id1)

2π∆t

∫ ∞
−∞

exp(i(d3w + d6w
2)) exp

(
− w2

2∆t

)∫ ∞
−∞

exp
(
i
(
(d2 + d4w)v + d5v

2
))

d

(
−∆t exp

(
− v2

2∆t

))
dw

=
exp(id1)

2π∆t

∫ ∞
−∞

exp(i(d3w + d6w
2)) exp

(
− w2

2∆t

)
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·
{
−∆t lim

R→∞

[
exp

(
i
(
(d2 + d4w)v + d5v

2
))

exp

(
− v2

2∆

)]
+ i∆t

∫ ∞
−∞

(d2 + d4w + 2d5v) exp
(
i
(
(d2 + d4w)v + d5v

2
))

exp

(
− v2

2∆t

)
dv

}
dw

=
exp(id1)

2π∆t

∫ ∞
−∞

exp(i(d3w + d6w
2)) exp

(
− w2

2∆t

)
· i∆t

∫ ∞
−∞

(d2 + d4w + 2d5v) exp
(
i
(
(d2 + d4w)v + d5v

2
))

exp

(
− v2

2∆t

)
dv dw

= i∆tE
[
exp

(
i
(
d1 + d2v + d3w + d4vw + d5v

2 + d6w
2
))

(d2 + d4w + 2d5v)
]
. (4.68)

Analogously, we find

E
[
exp

(
i
(
d1 + d2v + d3w + d4vw + d5v

2 + d6w
2
))
w
]

= i∆tE
[
exp

(
i
(
d1 + d2v + d3w + d4vw + d5v

2 + d6w
2
))

(d3 + d4v + 2d6w)
]
. (4.69)

This implies

E
[
exp

(
i
(
d1 + d2v + d3w + d4vw + d5v

2 + d6w
2
))
v
]

=
(
id2∆t− d3d4 (∆t)2 − 2d2d5 (∆t)2

)
E
[
exp

(
i
(
d1 + d2v + d3w + d4vw + d5v

2 + d6w
2
))]

+O
(

(∆t)3
)

=
(
id2∆t− d3d4 (∆t)2 − 2d2d5 (∆t)2

)
E

[
exp

(
ik1π

X1,∆,m,x
m+1

b1 − a1
+ ik2π

X2,∆,m,x
m+1

b2 − a2

)]
+O

(
(∆t)3

)
. (4.70)

Repeating this analysis for E
[
exp

(
ik1π

X1,∆,m,x
m+1

b1−a1
− ik2π

X2,∆,m,x
m+1

b2−a2

)
W 1
m+1

]
results in

E
[
h
(
tm+1,X

∆,m,x
m+1

)
∆W 1

m+1

]
=

N1−1∑′

k1=0

N2−1∑′

k2=0

1

2
<
{(

id+
2 ∆t− d+

3 d
+
4 (∆t)2 − 2d+

2 d
+
5 (∆t)2

)
φX∆

m+1

(
k1π

b1 − a1
,
k2π

b2 − a2

∣∣∣∣X∆
m = x

)
· exp

(
−ik1π

a1

b1 − a1
− ik2π

a2

b2 − a2

)
+
(
id−2 ∆t− d−3 d

−
4 (∆t)2 − 2d−2 d

−
5 (∆t)2

)
(4.71)

· φX∆
m+1

(
k1π

b1 − a1
,− k2π

b2 − a2

∣∣∣∣X∆
m = x

)
exp

(
−ik1π

a1

b1 − a1
+ ik2π

a2

b2 − d2

)}
Hk1,k2 (tm+1) ,

where

d±1 = k1π
b1−a1

(x1 +m1(x)∆t)± k2π
b2−a2

(x2 +m2(x)∆t) , d±4 = k1π
b1−a1

κW
1,W 2

1 (x)± k2π
b2−a2

κW
1,W 2

2 (x),

d±2 = k1π
b1−a1

sW
1

1 (x)± k2π
b2−a2

sW
1

2 (x), d±5 = k1π
b1−a1

κW
1

1 (x)± k2π
b2−a2

κW
1

2 (x),

d±3 = k1π
b1−a1

sW
2

1 (x)± k2π
b2−a2

sW
2

2 (x), d±6 = ± k2π
b2−a2

κW
2

2 (x).

(4.72)

Analogously, we find

E
[
h
(
tm+1,X

∆,m,x
m+1

)
∆W 2

m+1

]
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=

N1−1∑′

k1=0

N2−1∑′

k2=0

1

2
<
{(

id+
3 ∆t− d+

2 d
+
4 (∆t)2 − 2d+

3 d
+
6 (∆t)2

)
φX∆

m+1

(
k1π

b1 − a1
,
k2π

b2 − a2

∣∣∣∣X∆
m = x

)
· exp

(
−ik1π

a1

b1 − a1
− ik2π

a2

b2 − a2

)
+
(
id−3 ∆t− d−2 d

−
4 (∆t)2 − 2d−3 d

−
6 (∆t)2

)
(4.73)

· φX∆
m+1

(
k1π

b1 − a1
,− k2π

b2 − a2

∣∣∣∣X∆
m = x

)
exp

(
−ik1π

a1

b1 − a1
+ ik2π

a2

b2 − a2

)}
Hk1,k2 (tm+1) .

Let Y∆
k1,k2

(tm), Z1,∆
k1,k2

(tm), Z2,∆
k1,k2

(tm) and F∆
k1,k2

(tm) denote the Fourier-cosine coefficients of

respectively Y ∆
m (x), Z1,∆

m (x), Z2,∆
m (x) and f

(
tm,Λ

∆
m(x)

)
, i.e.

Y∆
k1,k2

(tm) =
2

b1 − a1

2

b2 − a2

∫ b2

a2

∫ b1

a1

Y ∆
m (x1, x2) cos

(
k1π

x1 − a1

b1 − a1

)
cos

(
k2π

x2 − a2

b2 − a2

)
dx1 dx2,

(4.74)

Z1,∆
k1,k2

(tm) =
2

b1 − a1

2

b2 − a2

∫ b2

a2

∫ b1

a1

Z1,∆
m (x1, x2) cos

(
k1π

x1 − a1

b1 − a1

)
cos

(
k2π

x2 − a2

b2 − a2

)
dx1 dx2,

(4.75)

Z2,∆
k1,k2

(tm) =
2

b1 − a1

2

b2 − a2

∫ b2

a2

∫ b1

a1

Z2,∆
m (x1, x2) cos

(
k1π

x1 − a1

b1 − a1

)
cos

(
k2π

x2 − a2

b2 − a2

)
dx1 dx2,

(4.76)

F∆
k1,k2

(tm) =
2

b1 − a1

2

b2 − a2

∫ b2

a2

∫ b1

a1

f
(
tm,Λ

∆
m(x1, x2)

)
cos

(
k1π

x1 − a1

b1 − a1

)
cos

(
k2π

x2 − a2

b2 − a2

)
dx1 dx2, (4.77)

and at time of maturity T , we have
Y ∆
M (x1, x2) = g(x1, x2), Z1,∆

M (x1, x2) = σ1(x1, x2)dg(x1,x2)
dx1

, Z2,∆
M (x1, x2) = σ2(x1, x2)dg(x1,x2)

dx2
,

and f
(
tM ,Λ

∆
M (x1, x2)

)
= f

(
tM , x1, x2, g(x1, x2), σ1

dg(x1,x2)
dx1

, σ2
dg(x1,x2)

dx2

)
. When the above in-

tegrals cannot be computed analytically, we can approximate them by computing the function on
an x-grid and using the two-dimensional discrete Fourier-cosine transform or another numerical
integration method.

4.7 Two-dimensional BCOS method summarized

We define a time-grid tj = j∆t for j = 0, 1, . . .M , with fixed time steps ∆t = T
M . Also, we

define function f by formula (4.48).

Initial step: Compute the terminal coefficients Y∆
k1,k2

(tM ), Z1,∆
k1,k2

(tM ), Z2,∆
k1,k2

(tM ) and

F∆
k1,k2

(tM ) with formulas (4.74), (4.75), (4.76) and (4.77).

Loop: For m = M − 1 to m = 1
approximate the necessary conditional expectations with Section 4.6 and compute functions
Y ∆
m (x), Z1,∆

m (x), Z2,∆
m (x) and f

(
tm, tm,Λ

∆
m(x)

)
for x ∈ [a1, b1] × [a2, b2] with formulas

(4.60), (4.61) and (4.62).
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Thereafter, compute/approximate the corresponding Fourier-cosine coefficients Y∆
k1,k2

(tm),

Z1,∆
k1,k2

(tm), Z2,∆
k1,k2

(tm) and F∆
k1,k2

(tm) with formulas (4.74), (4.75), (4.76) and (4.77). Those
integrals can be approximated by computing the function on an x-grid and using the
two-dimensional discrete Fourier-cosine transform or another numerical integration method.

Terminal step: Compute Y ∆
0 (X0), Z1,∆

0 (X0) and Z2,∆
0 (X0).

We approximate the value V (0, T,X0) of the option by V (0, T,X0) = Y ∆
0 (X0) and the corre-

sponding Deltas by

∆1
0 =

∂V (0, T,x)

∂x1

∣∣∣∣
x=X0

=
Z1,∆

0 (X0)

σ1(X0)
and ∆2

0 =
∂V (0, T,x)

∂x2

∣∣∣∣
x=X0

=
Z2,∆

0 (X0)

σ2(X0)
,(4.78)

which corresponds to the amount of assets in the self-financing portfolio Yt at time t = 0.

4.8 Path-dependent options

In this section we describe the change in procedure of the BCOS method for pricing some path-
dependent options. Section 4.8.1 describes the procedure for a Bermudan option and Section
4.8.2 gives the procedure for a discretely monitored barrier option.

4.8.1 Bermudan option

In section 3.5, we described the change in the procedure for pricing a Bermudan option with
the one-dimensional BCOS method. These changes are similar for the two-dimensional BCOS
method. As mentioned, a Bermudan option can be exercised at predetermined dates. Let n be
the number of early-exercise dates and let τj denotes the early-exercise dates for j = 1, 2, ..., n,
where 0 ≤ τ1 < τ2 < ... < τn = T . We choose ∆t such that each of the early-exercise dates
corresponds to a point in our time-grid2. We replace formulas (4.60), (4.61) and (4.62) by,
respectively,

Y ∆
m (x) =

{
max

{
g(x), Ỹ ∆

m (x)
}
, for tm = τj ,

Ỹ ∆
m (x), for tm 6= τj ,

(4.79)

Z1,∆
m (x) =

{
σ1(x)∂g(x)

∂x1
, for tm = τj , Y

∆
m (x) = g(x),

Z̃1,∆
m (x), otherwise,

(4.80)

Z2,∆
m (x) =

{
σ2(x)∂g(x)

∂x2
, for tm = τj , Y

∆
m (x) = g(x),

Z̃2,∆
m (x), otherwise,

(4.81)

where

Ỹ ∆
m (x) = Em

[
Y ∆
m+1

(
X∆,m,x
m+1

)]
+ ∆tθf

(
tm,Λ

∆
m(x)

)
+ ∆t(1− θ)Em

[
f
(
tm+1,Λ

∆
m+1

(
X∆,m,x
m+1

))]
, (4.82)

Z̃1,∆
m (x) =

1

∆tθ
Em
[
Y ∆
m+1

(
X∆,m,x
m+1

)
∆W 1

m+1

]
− 1− θ

θ
Em
[
Z1,∆
m+1

(
X∆,m,x
m+1

)
+ ρZ2,∆

m+1

(
X∆,m,x
m+1

)]
2If desired, it is possible to choose ∆t non-constant
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+
1− θ
θ

Em
[
f
(
tm+1,Λ

∆
m+1

(
X∆,m,x
m+1

))
∆W 1

m+1

]
− ρZ2,∆

m (x), (4.83)

Z̃2,∆
m (x) =

1

∆tθ
√

1− ρ2
Em
[
Y ∆
m+1

(
X∆,m,x
m+1

)
∆W 2

m+1

]
− 1− θ

θ
Em
[
Z2,∆
m+1

(
X∆,m,x
m+1

)]
+

1− θ
θ
√

1− ρ2
Em
[
f
(
tm+1,Λ

∆
m+1

(
X∆,m,x
m+1

))
∆W 2

m+1

]
. (4.84)

4.8.2 Discretely monitored barrier options

The value of a barrier option depends on the value of the underlying at the observation dates.
Whether, or not the value of the underlying hits the predetermined barrier at one of the obser-
vation dates determines the value of the barrier option. A knock-in barrier option has no value
before the underlying hits the barrier, while a knock-out barrier option has no value after the
underlying hits the barrier. In this section we consider barrier options of European and Bermu-
dan style. The early-exercise dates of the Bermudan option can be different from the observation
dates. Without loss of generality, we consider that the barrier B is for the underlying X1

t . Let n1

be the number of observation dates and let τj denotes the observation dates for j = 1, 2, ..., n1,
where 0 ≤ τ1 < τ2 < ... < τn1 ≤ T . Let n2 denote the number of early-exercise dates and let ζi
denote the early-exercise dates for i = 1, ..., n2, where 0 ≤ ζ1 < ζ2 < ... < ζn2 = T . We choose
∆t such that each of the observation dates and each of the early-exercise dates corresponds to
a point in our time-grid.

For the original European or Bermudan option we obtain Ŷ ∆
m (x), Ẑ1,∆

m (x) and Ẑ2,∆
m (x) with the

formulas (4.60), (4.61) and (4.62) if the option is European style, or with formulas (4.79), (4.80)
and (4.81) if the option is Bermudan style. Also, define Ỹ ∆

m (x), Z̃1,∆
m (x) and Z̃2,∆

m (x) the same
as in section 4.8.1.

Knock-out barrier option
For an up-and-out option we define the event Et =

{
X1
t ≥ B

}
and for an down-and-out option we

define the event Et =
{
X1
t ≤ B

}
. We replace formulas (4.60), (4.61) and (4.62) by, respectively,

Y ∆
m (x) =


0, for tm = τj , Etm ,

max
{
g(x), Ỹ ∆

m (x)
}
, for tm = ζi,¬ (tm = τj , Etm) ,

Ỹ ∆
m (x), otherwise,

(4.85)

Z1,∆
m (x) =


0, for tm = τj , Etm ,

σ1(x)∂g(x)
∂x1

, for tm = ζi, Y
∆
m (x) = g(x),

Z̃1,∆
m (x), otherwise,

(4.86)

Z2,∆
m (x) =


0, for tm = τj , Etm ,

σ2(x)∂g(x)
∂x2

, for tm = ζi, Y
∆
m (x) = g(x),

Z̃2,∆
m (x), otherwise.

(4.87)

So, at each observation date we observe if the underlying hits the barrier or not.
Knock-in barrier option
For an up-and-in option we define the event Et =

{
X1
t ≥ B

}
and for an down-and-in option we

define the event Et =
{
X1
t ≤ B

}
. We replace formulas (4.60), (4.61) and (4.62) by, respectively,

Y ∆
m (x) =

{
Ŷ ∆
m (x), for tm = τj , Etm ,

Ỹ ∆
m (x), otherwise,

(4.88)
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Z1,∆
m (x) =

{
Ẑ1,∆
m (x), for tm = τj , Etm ,

Z̃1,∆
m (x), otherwise,

(4.89)

Z2,∆
m (x) =

{
Ẑ2,∆
m (x), for tm = τj , Etm ,

Z̃2,∆
m (x), otherwise,

(4.90)

where Y ∆
M (X∆

M ) = Z1,∆
M (X∆

M ) = Z2,∆
M (X∆

M ) = 0 if τn1 < T .

So we have two BSDEs, one for the value of the original European or Bermudan option, and one
represents the value of the barrier option. At each observation date we observe if the underlying
hits the barrier or not. The value of the barrier option equals the value of the original option
at an observation date, when the underlying hits the barrier.

4.9 Error analysis

Analogously to the analysis in Section 3.6, we perform an error analysis for the two-dimensional
BCOS method under the risk-neutral Q-measure. Again, we only analyze the error in the option
price Ym and not the error in the Deltas Z1

m and Z2
m. Therefore, we abbreviate f(t, x1, x2, y, z1, z2)

by f(t, x1, x2, y). The error analysis for the two-dimensional BCOS-method is not significantly
more challenging then the analysis for the one-dimensional method.

The error in option value Ym consists of four different components, namely the error as a
result of: the ∆-time-discretization, the θ-method-discretization, the COS method, and the
Picard iterations. Like in Section 3.6, we perform the error analysis for the 2.0-weak-Taylor
scheme scheme and parameter θ = 1

2 . The analysis of the Fourier errors introduced by the two-
dimensional COS method [23] and the Picard iterations [4, 25] is analogously to Section 3.6.3. In
Sections 4.9.1 and 4.9.2, we discuss the local errors as a result of the ∆-time-discretization and
the θ-method-discretization respectively. Finally, we look at the global error in Section 4.9.3.
For the error analysis we use the notation and results of Appendix C.

4.9.1 Local error ∆-time-discretization

Let Xm,x
m+1 and X∆,m,x

m+1 denote respectively the values of Xm+1 and X∆
m+1 given Xm = x =

(x1, x2) and where X∆,m,x
m+1 is derived with the 2.0-weak-Taylor scheme.

Lemma 4.2. For a sufficiently smooth function h(t,x) we have the following local weak error

E
[
h
(
tm+1,X

m,x
m+1

)
− h

(
tm+1,X

∆,m,x
m+1

)]
= O

(
(∆t)3

)
. (4.91)

Proof. For j = 1, 2, the 2.0-weak-Taylor scheme corresponds to

Xj,∆,m,x
m+1 =

∑
α̂∈A

cα̂(xj)Iα̂,tm,tm+1
+ c(0,1)(xj)

(
1

2
∆W 1

m+1∆t− I(0,1),tm,tm+1

)
+ c(1,0)(xj)

(
1

2
∆W 1

m+1∆t− I(1,0),tm,tm+1

)
+ c(0,2)(xj)

(
1

2
∆W 2

m+1∆t− I(0,2),tm,tm+1

)
+ c(2,0)(xj)

(
1

2
∆W 2

m+1∆t− I(2,0),tm,tm+1

)
+ c(1,2)(xj)

(
1

2
∆W 1

m+1∆W 2
m+1 + V 1,2

m+1 − I(1,2),tm,tm+1

)
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+ c(2,1)(xj)

(
1

2
∆W 1

m+1∆W 2
m+1 − V

1,2
m+1 − I(2,1),tm,tm+1

)
, (4.92)

where c(xj) = xj and A = {α̂ ∈M : l(α̂) ≤ 2}. Now, Lemma C.4 gives for all l1, l2 ∈ Z≥0

E
[(
X1,m,x
m+1 −X

1,∆,m,x
m+1

)l1 (
X2,m,x
m+1 −X

2,∆,m,x
m+1

)l2]
= O

(
(∆t)3

)
. (4.93)

The Taylor series expansion of function h around X∆,m,x
m+1 = Xm,x

m+1 gives

h
(
tm+1,X

∆,m,x
m+1

)
=

∞∑
l1=0

∞∑
l2=0

{
(−1)(l1+l2)

l1!l2!

(
X1,m,x
m+1 −X

1,∆,m,x
m+1

)l1 (
X2,m,x
m+1 −X

2,∆,m,x
m+1

)l2

· ∂l1+l2(
∂X1,m,x

m+1

)l1 (
∂X2,m,x

m+1

)l2 h (tm+1,X
m,x
m+1

) . (4.94)

Combining formulas (4.94) and (4.93) implies

E
[
h
(
tm+1,X

m,x
m+1

)
− h

(
tm+1,X

∆,m,x
m+1

)]
= O

(
(∆t)3

)
. (4.95)

4.9.2 Local error θ-method-discretization

We observe from formula (4.51) that, given Xm = x = (x1, x2),

Ym(x) = Em [Ym+1 (Xm+1)] +

∫ tm+1

tm

Em
[
f
(
t,X1

t , X
2
t , Yt (Xt)

)]
dt

= Em [Ym+1 (Xm+1)] +
1

2
∆tf (tm, x1, x2, Ym(x))

+
1

2
∆tEm

[
f
(
tm+1, X

1
m+1, X

2
m+1, Ym+1 (Xm+1)

)]
+Rm(x). (4.96)

So, the θ-method-discretization error is given by

Rym(x) =

∫ tm+1

tm

Em
[
f
(
t,X1

t , X
2
t , Yt (Xt)

)]
dt

− 1

2
∆t
(
f(tm, x, Ym(x)) + Em

[
f
(
tm+1, X

1
m+1, X

2
m+1, Ym+1 (Xm+1)

)])
. (4.97)

Lemma 4.3. For a sufficiently smooth function f(t, x1, x2, y) and payoff function g(x) we have
the following θ-method-discretization error

Rym(x) = O
(

(∆t)3
)
. (4.98)

Proof. For a generally smooth function h(t,x), we find with Theorem C.1, A = {v, (0), (1), (2)}
and A = {(0, 0, 0), (0, 1, 0), (0, 2, 0), (1, 0, 0), (2, 0, 0), (1, 2, 0), (2, 1, 0)}∫ tm+1

tm

h
(
t,Xm,x

t

)
dt =

∫ tm+1

tm

h(tm,x) + h(0)(tm,x)I(0),tm,t + h(1)(tm,x)I(1),tm,t

+ h(2)(tm,x)I(2),tm,t +
∑

α̂∈B(A)

Iα̂ [hα̂ (.,Xm,x
. )]tm,t dt
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= h(tm,x)I(0),tm,tm+1
+ h(0)(tm,x)I(0,0),tm,tm+1

+ h(1)(tm,x)I(1,0),tm,tm+1

+ h(2)(tm,x)I(2,0),tm,tm+1
+
∑
α̂∈A

Iα̂ [hα̂− (.,Xm,x
. )]tm,tm+1

. (4.99)

This implies

E
[∫ tm+1

tm

h
(
t,Xm,x

t

)
dt− 1

2
∆t
(
h(tm,x) + h

(
tm+1,X

m,x
m+1

))]
= h(tm,x)∆t+

1

2
h(0)(tm,x) (∆t)2 +O

(
(∆t)3

)
− 1

2
∆t
(
h(tm,x) + h(tm,x) + h(0)(tm,x)∆t+O

(
(∆t)2

))
= O

(
(∆t)3

)
. (4.100)

4.9.3 Global error

In this section we detail the global error of the two-dimensional BCOS method, where we omit
the errors introduced by the 2D COS method and by the Picard iterations. We define

eym
(
Xm,X

∆
m

)
= Ym(Xm)− Y ∆

m

(
X∆
m

)
, (4.101)

efm
(
Xm,X

∆
m

)
= f(tm, X

1
m, X

2
m, Ym(Xm))− f

(
tm, X

1,∆
m , X2,∆

m , Y ∆
m

(
X∆
m

))
, (4.102)

and

eym (x) = Ym(x)− Y ∆
m (x), (4.103)

efm (x) = f(tm, x1, x2, Ym(x))− f
(
tm, x1, x2, Y

∆
m (x)

)
. (4.104)

We rewrite the error eym
(
Xm,X

∆
m

)
to

eym
(
Xm,X

∆
m

)
= Ym(Xm)− Y ∆

m (Xm) + Y ∆
m (Xm)− Y ∆

m

(
X∆
m

)
= eym(Xm) + Y ∆

m (Xm)− Y ∆
m

(
X∆
m

)
. (4.105)

The triangle inequality implies∣∣E0

[
eym
(
Xm,X

∆
m

)]∣∣ ≤ E0 [|eym(Xm)|] +
∣∣E0

[
Y ∆
m (Xm)− Y ∆

m

(
X∆
m

)]∣∣ . (4.106)

If Ym(x) is a sufficiently smooth function, we find with Lemma 4.2,∣∣E0

[
eym
(
Xm,X

∆
m

)]∣∣ ≤ E0 [|eym(Xm)|] +O
(

(∆t)3
)
. (4.107)

The following Lemma gives a bound on the error eym(Xm).

Lemma 4.4.
E0 [|eym(Xm)|] = O

(
(∆t)2

)
. (4.108)

Proof. Formulas (4.60) and (4.96) give us

eym(x) = Ym(x)− Y ∆
m (x)

= E
[
eym+1

(
Xm,x
m+1,X

∆,m,x
m+1

)]
+

1

2
∆t
(
efm(x) + E

[
efm+1

(
Xm,x
m+1,X

∆,m,x
m+1

)])
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+ Rym(x). (4.109)

With Lemma 4.2, we find

E
[
eym+1

(
Xm,x
m+1,X

∆,m,x
m+1

)]
= E

[
Ym+1

(
Xm,x
m+1

)
− Y ∆

m+1

(
Xm,x
m+1

)]
+ E

[
Y ∆
m+1

(
Xm,x
m+1

)
− Y ∆

m+1

(
X∆,m,x
m+1

)]
= E

[
eym+1

(
Xm,x
m+1

)]
+O

(
(∆t)3

)
(4.110)

and analogously

E
[
efm+1

(
Xm,x
m+1,X

∆,m,x
m+1

)]
= E

[
efm+1

(
Xm,x
m+1

)]
+O

(
(∆t)3

)
. (4.111)

The function f(t, x1, x2, y) is Lipschitz in y with Lipschitz constant Lf , which gives∣∣∣efm(x)
∣∣∣ ≤ Lf |eym(x)| , (4.112)

E
[∣∣∣efm+1

(
Xm,x
m+1

)∣∣∣] ≤ LfE
[∣∣eym+1

(
Xm,x
m+1

)∣∣] . (4.113)

Then, combining all results and Lemma 4.3 gives us:

|eym(x)| ≤ E
[∣∣∣eym+1

(
Xm,x
m+1,X

∆,m,x
m+1

)∣∣∣]+
1

2
∆t
(∣∣∣efm(x)

∣∣∣+ E
[∣∣∣efm+1

(
Xm,x
m+1,X

∆,m,x
m+1

)∣∣∣])
+ |Rym(x)|

≤ E
[∣∣eym+1

(
Xm,x
m+1

)∣∣]+
1

2
∆tLf

(
|eym(x)|+ E

[∣∣eym+1

(
Xm,x
m+1

)∣∣])+O
(

(∆t)3
)
.(4.114)

This implies for, ∆t ≤ 2/Lf ,

|eym(x)| ≤
1 + 1

2∆tLf

1− 1
2∆tLf

E
[∣∣eym+1

(
Xm,x
m+1

)∣∣]+O
(

(∆t)2
)
. (4.115)

Since
1+ 1

2
∆tLf

1− 1
2

∆tLf
= 1 + O (∆t) and E

[∣∣eyM (Xm,x
M

)∣∣] = 0, we can observe by iterating formula

(4.115) that

|eym(x)| = O
(

(∆t)2
)
. (4.116)

Substitution of Lemma 4.4 into formula (4.107) gives

∣∣E0

[
eym
(
Xm,X

∆
m

)]∣∣ = O
(

(∆t)2
)
. (4.117)

Remark 4.2. We find first order convergence by performing a similar error analysis for the
Euler, Milstein and adjusted-Predictor-Corrector schemes for θ = 1

2 .
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4.10 Example

In this section we give an example in which we determine the value of a European call option
under the SABR model. In the example we price under the Q-measure, which simplifies the
two-dimensional BCOS method. We set N1 = N2 = N and we also choose N as the size of
the x-grid in both dimensions. Independent of the choice of the Taylor scheme, we define the
domain [a1, b1]× [a2, b2] by

[a1, b1]×[a2, b2] =

[
c1

1 − L
√
c1

2 +
√
c1

4, c
1
1 + L

√
c1

2 +
√
c1

4

]
×

[
c2

1 − L
√
c2

2 +
√
c2

4, c
2
1 + L

√
c2

2 +
√
c2

4

]
,

(4.118)
where L = 10 and cjn is the n-th cumulant of Xj,∆

T with only one Euler step [9, 24]. There holds
c1

1 = X1
0 + µ1 (X0)T , c1

2 = σ2
1 (X0)T , c1

4 = 0, c2
1 = X2

0 + µ2 (X0)T , c2
2 = σ2

2 (X0)T and c2
4 = 0.

Example 2 We use the two-dimensional BCOS method to detemine the value of a European
call option under the SABR model. Remember from formulas (2.1) and (2.2) that

dFt = σt (Ft)
β dW 1

t , F0 = f0,

dσt = ρνσt dW 1
t +

√
1− ρ2νσt dW 2

t , σ0 = α,

where W 1 and W 2 are uncorrelated Brownian motions. This system of FSDEs corresponds to
formulas (4.47) and (4.48), so we can use the two-dimensional BCOS method to derive the value
of the option. The payoff function of this option is given by

g(XT ) = max(XT −K, 0). (4.119)

We work under the risk-neutral measure, so f(t, x1, x2, y, z1, z2) = −ry is independent of z1 and
z2. Therefore, we do not have to calculate the functions Z1,∆

m (x) and Z2,∆
m (x) and we are allowed

to use θ = 0.

We have the following parameter values:

f0 = 2, K = 1.9, T = 0.5, α = 0.2, β = 0.5, ρ = 0, ν = 0.3, r = 0, N = 27.

We use [a1, b1] × [a2, b2] ≈ [0, 4] × [−0.2243, 0.6243] and we approximate each Fourier-cosine
coefficient by the two-dimensional discrete Fourier-cosine transform. For the adjusted-Predictor-
Corrector scheme we take η1 = θ1 = η2 = θ2 = 1

2 . Using Antonov’s method, we find the value
of the call option V (0, T, f0, α) = 0.13903754, which is our reference value. The results of the
2D BCOS method are shown in Table 4.1.

Number of time steps M 1 5 10 50 100

Absolute error 5.2178e-04 1.5384e-04 7.9643e-05 1.5932e-05 7.7008e-06

Table 4.1: Absolute error using 2D BCOS method where the FSDEs are discretized with the
Euler scheme.

When we consider different values for β and different discretization schemes, we find the results
in Table 4.2. We observe that the 2.0-weak-Taylor scheme performs the best for this example.
Even for only one time step, the results for all schemes are satisfactory.
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Euler Milstein
M 1 5 10 1 5 10
β = 0.1 2.0739e-04 1.8461e-05 5.2542e-06 6.8269e-05 9.3294e-06 6.8178e-06
β = 0.3 1.0261e-04 5.6768e-05 3.4169e-05 1.1306e-04 1.6551e-05 1.1381e-05
β = 0.5 5.2178e-04 1.5384e-04 7.9643e-05 1.6382e-04 1.4253e-05 5.5868e-06
β = 0.7 1.0979e-03 3.1321e-04 1.6478e-04 2.6224e-04 2.6913e-05 1.4108e-05
β = 0.9 1.8368e-03 5.4024e-04 2.8307e-04 4.1953e-04 3.0748e-05 1.3998e-05

2.0-weak-Taylor adjusted-Predictor-Corrector
M 1 5 10 1 5 10
β = 0.1 6.2035e-05 7.9196e-06 6.1018e-06 2.0874e-04 4.6906e-05 2.1370e-05
β = 0.3 8.9721e-05 1.1381e-05 8.7613e-06 2.3975e-04 5.3688e-05 2.3745e-05
β = 0.5 1.1978e-04 4.6900e-06 7.5319e-07 3.0434e-04 7.8035e-05 4.0513e-05
β = 0.7 2.0416e-04 1.4538e-05 7.8685e-06 4.0929e-04 1.0576e-04 5.2183e-05
β = 0.9 3.8073e-04 2.2627e-05 9.9133e-06 6.4697e-04 1.8260e-04 9.2731e-05

Table 4.2: Absolute error using 2D BCOS method where the FSDEs are discretized with different
schemes.



Chapter 5

One time step DCOS method

We wish to propose a method for calculating the forward value of European options under the
SABR model under the risk neutral measure, which simplifies the 2D BCOS method significantly
as we observed in example 2 of Chapter 4. The use of BSDEs, which is mainly the basis of the
BCOS method, does not appear in this simplified method. Therefore we call it the DCOS
method, where D stands for discrete. In Table 4.2, we observed promising results for the DCOS
method with only one time step, which is why we propose to price European options under the
SABR model with the one time step DCOS method. In this chapter, we discuss this method
and its advantages and disadvantages. Section 5.1 gives the pricing formulas of this method
and Section 5.2 discusses the (dis)advantages. In Section 5.3, we use the logarithmic transform
of the forward before we apply the DCOS method and in Section 5.4 we discuss the accuracy.
Finally, in Section 5.5 we summarize our results.

5.1 The method

The underlying system of FSDEs is given by formulas (2.1) and (2.2)

dFt = σt (Ft)
β dW 1

t , F0 = f,

dσt = ρνσt dW 1
t +

√
1− ρ2νσt dW 2

t , σ0 = α,

where W 1 and W 2 are uncorrelated standard Brownian motions.

We work in one instead of two dimensions, when we apply the DCOS method with only one
time step to calculate the call price of a European option under the SABR model. This is,
because our payoff function only depends on the forward value at time of maturity (FT ) and
not on the volatility value at time of maturity (σT ). By the same reasoning, we observe that
pricing European options under the SABR model with the one time step DCOS method and the
Euler scheme is independent of the correlation parameter ρ. Since we wish to propose a pricing
method which depends on parameter ρ, we exclude the Euler scheme. Applying the theory of
Chapters 3 and 4, we find the following formula to calculate the forward value of a European
call option

V C
dcos 1(0, T,K, f, α) =

N−1∑′

k=0

<
{
φF∆

T

(
kπ

b− a

∣∣∣∣ f, α) exp

(
−ikπ a

b− a

)}
Vk(T ), (5.1)

where

[a, b] =
[
f − 10αfβ

√
T , f + 10αfβ

√
T
]
, (5.2)
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Vk(T ) =
2

b− a

∫ b

a
(F −K)+ cos

(
kπ
F − a
b− a

)
dF,

=

{
2
b−a

(
1
2K

2 + 1
2b

2 −Kb
)
, if k = 0 and a ≤ K ≤ b,

2(b−a)
k2π2

(
(−1)k − cos

(
kπK−ab−a

))
, if k 6= 0 and a ≤ K ≤ b. (5.3)

Also, we find with Lemma 4.1:

φF∆
T

(u| f, α) =
cosh (iv∆t)√

1− 2ic4∆t+ c2
3 (∆t)2

exp (iu [f +m1 (f, α) ∆t])

· exp

(
−∆t

2

c2
1 + c2

2 +
[
4c2

2c
2
4 − 4c1c2c3c4 + (c2

1 + c2
2)c2

3

]
(∆t)2

1 +
(
2c2

3 + 4c2
4

)
(∆t)2 + c4

3 (∆t)4

)

· exp

(
i (∆t)2

(
−c2

1c4 − c1c2c3 + (c2
2c4 − c1c2c3)c2

3 (∆t)2

1 +
(
2c2

3 + 4c2
4

)
(∆t)2 + c4

3 (∆t)4

))
, (5.4)

where

c1 = usW
1

1 (f, α) , c2 = usW
2

1 (f, α) , c3 = uκW
1,W 2

1 (f, α) ,

c4 = uκW
1

1 (f, α) , v = uv1(f, α).
(5.5)

For the Milstein scheme, we observe

m1 (f, α) = −β
2α

2f2β−1 − ρ
2ναf

β, sW
1

1 (f, α) = αfβ,

sW
2

1 (f, α) = 0, κW
1,W 2

1 (f, α) =

√
1−ρ2

2 ναfβ,

κW
1

1 (f, α) = β
2α

2f2β−1 + ρ
2ναf

β, v1(f, α) = −
√

1−ρ2

2 ναfβ.

(5.6)

For the 2.0-weak-Taylor scheme, we have

m1 (f, α) = −β
2α

2f2β−1 − ρ
2ναf

β, sW
1

1 (f, α) = αfβ + 1
4β(β − 1)α2f3β−2T + ρ

2βα
2νf2β−1T,

sW
2

1 (f, α) = 0, κW
1,W 2

1 (f, α) =

√
1−ρ2

2 ναfβ,

κW
1

1 (f, α) = β
2α

2f2β−1 + ρ
2ναf

β, v1(f, α) = −
√

1−ρ2

2 ναfβ.
(5.7)

For the adjusted Predictor-Corrector scheme, we choose to ignore the O (T ) terms in κW
1

1 , κW
2

1

and κW
1,W 2

1 , because these terms introduce a significant error for large time to maturity T . For
this scheme it follows

m1 (f, α) = −η1

[
βα2f2β−1 + ρναfβ

]
, (5.8a)

sW
1

1 (f, α) = αfβ − η1θ1

[
3ρβνα2f2β−1 + β(2β − 1)α3f3β−2 + ρ2ν2αfβ

]
T, (5.8b)

sW
2

1 (f, α) = −η1θ1

√
1− ρ2

[
2βνα2f2β−1 + ρν2αfβ

]
T, (5.8c)

κW
1,W 2

1 (f, α) = η1

√
1− ρ2ναfβ, (5.8d)

κW
1

1 (f, α) = η1

[
βα2f2β−1 + ρναfβ

]
, (5.8e)

v1(f, α) = 0. (5.8f)
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5.2 Advantages and disadvantages

Pricing European options by this method has some advantages. It is a fast method and, in con-
trast to pricing with Hagan’s formula, we do not obtain negative densities. These non-negative
densities are the result of the mapping of the SABR model to its corresponding discretization
model. The characteristic function of this discretized model is known, which ensures that there
are no negative densities and the integral over the entire space equals 1 when N , a and b are
chosen carefully.

Unfortunately, our new method has disadvantages too. The results in Figures 5.1 and 5.2 are
based on the parameters from Section 2.1.2 and N = 211. When we compare these figures to
Figure 2.3, we observe that the smiles are inaccurate. For T = 1 the volatility smile is inaccurate
for out of the money options and when T increases the smile moves in the wrong direction. We
can improve the accuracy by increasing the number of time steps, as we will show in Chapter 6.

Figure 5.1: Volatility smiles calculated with the one time step DCOS method and the Milstein
scheme. The smiles for the 2.0-weak-Taylor scheme look similar.

Figure 5.2: Volatility smiles calculated with the one time step DCOS method and the adjusted
Predictor-Corrector scheme, where θ1 = 0.5 and η1 = 0.5.
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Figure 5.3 shows the conditional probability density functions, QFT (T, F |F0 = f, σ0 = α),
corresponding to the volatility smiles of Figure 5.1. The conditional PDFs for the 2.0-weak-
Taylor scheme, look quite similar. We can observe the following properties

• As we mentioned before, we have no negative densities.

• P (FT < 0|f, α) > 0, especially when the time to maturity is large, which implies underpri-
cing European call options for especially small strikes. This is a result of the discretization.
In Section 5.3 we suggest a solution to prevent this.

• The PDF is peaked for larger time to maturity. Such peaks should be avoided, because
the PDF has to be a differentiable function when T > 0. Andreasen and Huge [1] noticed
similar behaviour when they were developing their pricing method. The reason for the
peak occurring is the same as for the peaks we observe: it is the result of performing one
time step instead of multiple. The authors in [1] tried to remove the peak by an adjustment
to the method, but this adjustment is not beneficial for the accuracy. For their method
we observed in [16] that it is better, with respect to the accuracy, to use more time steps
than using the adjustment.

Remark 5.1. P (FT < 0|f, α) > 0 is not always a disadvantage, for example in the case that
the model is applied to interest rates where the rates may become negative [13]. On the other
hand, since we are price under the SABR model, we prefer absorption at zero as [2, 5, 15].

Figure 5.3: PDFs calculated with the one time step DCOS method and the Milstein scheme.

Figure 5.4 shows the conditional probability density functions, Q(FT |F0 = f, σ0 = α), corre-
sponding to the volatility smiles of Figure 5.2. We observe that, for this example, the adjusted-
Predictor-Corrector scheme does not suffer from peaked densities. Unfortunately, this scheme
does not exhibit this behaviour in general. For example, we also observe peaked densities, when
we change the exponent parameter to β = 0.1 or when we do not ignore the O (T ) terms in κW

1

1 ,

κW
2

1 and κW
1,W 2

1 .
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Figure 5.4: PDFs calculated with the one time step DCOS method and the adjusted Predictor-
Corrector scheme.

5.3 Using the log transform for the forward variable

To avoid the positive probability of a negative FT , we apply the DCOS method with one time step
to the SABR model under the logarithmic transform for the forward1. We define X1

t = log(Ft)
and using Itô’s Lemma [26, Formula (4.4.23)], we find

dX1
t = − 1

2F 2
t

σ2
tF

2β
t dt+

1

Ft
σtF

β
t dW 1

t

= −1

2
σ2
t exp(2(β − 1)X1

t ) dt+ σt exp((β − 1)X1
t ) dW 1

t , (5.9)

dσt = ρνσt dW 1
t +

√
1− ρ2νσt dW 2

t , (5.10)

where X1
0 = x1 = log(f) and σ0 = α.

This results in the following pricing formula

V C
dcos 2(0, T,K, x1, α) =

N−1∑′

k=0

<
{
φ
X1,∆
T

(
kπ

b− a

∣∣∣∣x1, α

)
exp

(
−ikπ a

b− a

)}
Vk(T ), (5.11)

where

x = log(f), (5.12)

[a, b] =

[
x1 −

1

2
α2f2β−2T − 10αfβ−1

√
T , x1 −

1

2
α2f2β−2T + 10αfβ−1

√
T

]
, (5.13)

Vk(T ) =
2

b− a

∫ b

a
(exp(X)−K)+ cos

(
kπ
X − a
b− a

)
dX,

=


2
b−a (exp(b)−K −Kb+K log(K)) , if k = 0 and a ≤ log(K) ≤ b,

2(b−a)
k2π2+(b−a)2

(
(−1)k exp(b)−K cos

(
kπ log(K)−a

b−a

))
+ 2K(b−a)2

k3π3+kπ(b−a)2 sin
(
kπ log(K)−a

b−a

)
, if k 6= 0 and a ≤ log(K) ≤ b.

(5.14)

Also, we find

φ
X1,∆
T

(u|x1, α) =
cosh (iv∆t)√

1− 2ic4∆t+ c2
3 (∆t)2

exp (iu [x1 +m1 (x1, α) ∆t])

1We can also use the log transform for the volatility. This transformation only affects the pricing formula of
the adjusted-Predictor-Corrector method, but the results regarding to the accuracy are not significantly different.
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· exp

(
−∆t

2

c2
1 + c2

2 +
[
4c2

2c
2
4 − 4c1c2c3c4 + (c2

1 + c2
2)c2

3

]
(∆t)2

1 +
(
2c2

3 + 4c2
4

)
(∆t)2 + c4

3 (∆t)4

)

· exp

(
i (∆t)2

(
−c2

1c4 − c1c2c3 + (c2
2c4 − c1c2c3)c2

3 (∆t)2

1 +
(
2c2

3 + 4c2
4

)
(∆t)2 + c4

3 (∆t)4

))
, (5.15)

where
c1 = usW

1

1 (x1, α) , c2 = usW
2

1 (x1, α) , c3 = uκW
1,W 2

1 (x1, α) ,

c4 = uκW
1

1 (x1, α) , v = uv1(x1, α).

We have for the Milstein scheme

m1 (x1, α) = −β
2
α2 exp(2(β − 1)x1)− ρν

2
α exp((β − 1)x1), (5.16a)

sW
1

1 (x1, α) = α exp((β − 1)x1), (5.16b)

sW
2

1 (x1, α) = 0, (5.16c)

κW
1,W 2

1 (x1, α) =

√
1− ρ2

2
να exp((β − 1)x1), (5.16d)

κW
1

1 (x1, α) =
1

2

(
α2(β − 1) exp(2(β − 1)x1) + ρνα exp((β − 1)x1)

)
, (5.16e)

v1(x1, α) = −
√

1− ρ2

2
να exp ((β − 1)x1) . (5.16f)

For the 2.0-weak-Taylor scheme, we have

m1 (x1, α) = −β
2
α2 exp(2(β − 1)x1)− ρν

2
α exp((β − 1)x1)− 3− 5β + 2β2

4
α4 exp(4(β − 1)x1)T

− ν2

4
α2 exp(2(β − 1)x1)T − ρνα3(β − 1) exp(3(β − 1)x1)T, (5.17a)

sW
1

1 (x1, α) = α exp((β − 1)x1) +
(β − 1)(β − 4)

4
α3 exp(3(β − 1)x1)T

+
β − 2

2
ρα2ν exp(2(β − 1)x1)T, (5.17b)

sW
2

1 (x1, α) = −
√

1− ρ2

2
να2 exp(2(β − 1)x1)T, (5.17c)

κW
1,W 2

1 (x, α) =

√
1− ρ2

2
να exp((β − 1)x1), (5.17d)

κW
1

1 (x, α) =
1

2

(
α2(β − 1) exp(2(β − 1)x1) + ρνα exp((β − 1)x1)

)
, (5.17e)

v1(x1, α) = −
√

1− ρ2

2
να exp ((β − 1)x1) . (5.17f)

For the adjusted-Predictor-Corrector scheme, where we choose again to ignore the O (T ) terms

in κW
1

1 , κW
2

1 and κW
1,W 2

1 , it follows that

m1(x1, α) = −θ1

[(
1

2
+ η1(β − 1)

)
α2A2(x1) + η1ρναA(x1)

]
(5.18a)

− (1− θ1)

[(
1

2
+ η1(β − 1)

)
α2 exp (2(β − 1)x1) + η1ρνα exp((β − 1)x1)

]
,

sW
1

1 (x1, α) = η1αA(x1) + (1− η1)α exp((β − 1)x1)



60 Chapter 5. One time step DCOS method

− θ1

[
(1 + 2η1(β − 1))

[
(β − 1)α3 exp((β − 1)x1) + ρνα2

]
A2(x1)

+ η1ρν
[
(β − 1)α2 exp((β − 1)x) + ρνα

]
A(x1)

]
T, (5.18b)

sW
2

1 (x1, α) = −θ1

√
1− ρ2

[
(1 + 2η1(β − 1)) να2A2(x1) + η1ρν

2αA(x1)
]
T, (5.18c)

κW
1,W 2

1 (x1, α) = η1

√
1− ρ2να exp ((β − 1)x1) , (5.18d)

κW
1

1 (x1, α) = η1

[
(β − 1)α2 exp ((β − 1)x1) + ρνα

]
exp ((β − 1)x1) , (5.18e)

v1(x1, α) = 0, (5.18f)

where

A(x1) = exp

(
(β − 1)x1 −

1

2
(β − 1) exp (2(β − 1)x1)T

)
. (5.19)

5.4 Accuracy

We proposed to use the log transform to ensure that there is zero probability of a negative forward
value FT at time of maturity. Figure 5.5 shows that indeed P (FT < 0|f, α) = 0. Unfortunately,
we observe now overpricing instead of underpricing for small strikes. The 2.0-weak-Taylor scheme
behaves similarly and the adjusted-Predictor-Corrector scheme behaves even worse.

Figure 5.5: PDFs calculated with the one time step DCOS method and the Milstein scheme.

Like in Section 5.1, the probability density function is non-negative and peaked for larger time
to maturity T . Also, we find that pricing with formula (5.11) leads to lower accuracy and for
the 2.0-weak-Taylor scheme even to unrealistic volatility smiles, as we can see in Figures 5.6, 5.7
and 5.8.
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Figure 5.6: Volatility smiles calculated with the one time step DCOS method and the Milstein
scheme.

Figure 5.7: Volatility smiles calculated with the one time step DCOS method and the 2.0-weak-
Taylor scheme.

Figure 5.8: Volatility smiles calculated with the one time step DCOS method and the adjusted-
Predictor-Corrector scheme, where θ1 = 0.5 and η1 = 0.5.
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5.5 Brief analysis

In this section we look at some properties of option pricing with the formulas (5.1) or (5.11)
compared with the Hagan formula (2.3) as described in Section 2.

• Neglecting numerical errors introduced by the COS method, formulas (5.1) and (5.11) are
free of arbitrage, because we are pricing European options where the underlying follows
the discretized FSDE and the characteristic function is known for the discretized FSDE.

• None of the methods is accurate, especially for larger time to maturity.

• Pricing with formula (5.1) or (5.11) ensures non-negative probabilities in contrast to pricing
with the Hagan formula (2.3), as is shown in Section 2.1.1.

• Pricing with the Hagan formula gives continuous densities in contrast to pricing with
formula (5.1) or (5.11), because those formulas generate peaked densities for larger time
to maturity.

• Pricing with formula (5.1) or (5.11) is fast, e.g. pricing a European call option with
N = 211, the Euler scheme and formula (5.1) takes less than 0.005 seconds.

• For small strikes, formula (5.1) generates too small values and formula (5.11) generates
too high prices for European call options.

As we mentioned in Chapter 2, we wish to provide an arbitrage-free method to price European
options under the SABR model that is accurate. Since the pricing formulas (5.1) and (5.11)
are not accurate for small strikes, we propose in Chapter 6 to apply the DCOS method with
multiple time steps to price European options under the SABR model.



Chapter 6

The DCOS method applied to the SABR
model

As we observed in Chapter 5, taking only one time step is not sufficient for pricing European
options under the SABR model with the two-dimensional DCOS method. In this chapter we
apply the DCOS method to the SABR model with multiple time steps1. Under the SABR
model, the volatility σt is independent of the forward value Ft, which simplifies formulas (4.3)
and (4.4) for the Euler, Milstein, 2.0-weak-Taylor and adjusted-Predictor-Corrector schemes. In
Section 6.1 we give three pricing formulas for this method and in Section 6.2 we discuss the
results. In Section 6.3 we explain a transformation to price European options under the SABR
model for multiple strikes in one computation. In Section 6.4, we discuss the advantages and
disadvantages of the best performing pricing formula and schemes. Finally, we compare our
proposed method with the Hagan formula in Section 6.5.

6.1 The method

We derive the forward value V C(0, T,K) of a European call option under the SABR model, with
exercise date T and strike value K. We consider the following three cases:

Case 1 Ft denotes the forward process and σt denotes the volatility process. Following (2.1)
and (2.2), the underlying system of FSDEs is given by

dFt = σt (Ft)
β dW 1

t , F0 = f, (6.1)

dσt = ρνσt dW 1
t +

√
1− ρ2νσt dW 2

t , σ0 = α, (6.2)

where W 1 and W 2 are uncorrelated standard Brownian motions.

Case 2 Defining the log forward process by X1
t = log(Ft) and σt denotes the volatility process.

Following (5.9) and (5.10), results in the following underlying system of FSDEs

dX1
t = −1

2
σ2
t exp

(
2(β − 1)X1

t

)
dt+ σt exp

(
(β − 1)X1

t

)
dW 1

t , X1
0 = x1, (6.3)

1The SABR model does not satisfy the commutativity condition (4.7), so we do not have the certainty that
the Milstein scheme or the 2.0-weak-Taylor scheme have strong order of convergence γ1 = 1. Importantly, as we
mentioned in Remark 4.1, the order of convergence of the DCOS method depends on the order of weak convergence
γ2 and not on the order of strong convergence γ1.
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dσt = ρνσt dW 1
t +

√
1− ρ2νσt dW 2

t , σ0 = α, (6.4)

where x1 = log(f) and where W 1 and W 2 are uncorrelated standard Brownian motions.

Case 3 We use the logarithmic transformation for both the forward and the volatility. We
define X1

t = log(Ft) and X2
t = log(σt), the underlying system of FSDEs is given by

dX1
t = −1

2
exp

(
2X2

t + 2(β − 1)X1
t

)
dt+ exp

(
X2
t + (β − 1)X1

t

)
dW 1

t , X1
0 = x1, (6.5)

dX2
t = −1

2
ν2 dtρν dW 1

t +
√

1− ρ2ν dW 2
t , X2

0 = x2,(6.6)

where (x1, x2) = (log(f), log(α)) and where W 1 and W 2 are uncorrelated standard Brownian
motions.

Just as in Chapter 4, we define the time-grid tj = ∆t for j = 0, 1, . . . ,M , with fixed time steps

∆t = T
M . For j = 1, 2, we again write Fm = Ftm , σm = σtm , X1

m = X1
tm , X2

m = X2
tm , W j

m = W j
tm

and ∆W j
m+1 = W j

m+1 − W j
m. We denote the discrete processes by

(
F∆
m , σ

∆
m

)
=
(
F∆
tm , σ

∆
tm

)
,(

X1,∆
m , σ∆

m

)
=
(
X1,∆
tm , σ∆

tm

)
and

(
X1,∆
m , X2,∆

m

)
=
(
X1,∆
tm , X∆

2,tm

)
, for case 1, case 2 and case

3, respectively. The initial values of the discrete processes are given by
(
F∆

0 , σ
∆
0

)
= (f, α),(

X1,∆
0 , σ∆

0

)
= (x1, α) and

(
X1,∆

0 , X2,∆
0

)
= (x1, x2). To advance from time m to time m+ 1, for

m = 0, . . . ,M − 1, we use one of the following schemes: the Euler, Milstein, 2.0-weak-Taylor, or
adjusted-Predictor-Corrector scheme.

The forward value of a European call option at time 0 with underlying Ft, strike value K and
expiration date T is given by:
For Case 1:

V C
DCOS 1(0, T,K, f, α) = V ∆

0 (f, α), (6.7)

where the functions V ∆
m (Fm, σm) can be recovered recursively backwards in time for all (Fm, σm) ∈

[a1, b1] × [a2, b2] =
[
f − 10αfβ

√
T , f + 10αfβ

√
T
]
×
[
α− 10να

√
T , α+ 10να

√
T
]

and m =

M − 2, . . . , 0,

V ∆
m (Fm, σm) = Em

[
V ∆
m+1(Fm+1, σm+1)

∣∣Fm, σm]
=

N1−1∑′

k1=0

N2−1∑′

k2=0

1

2
<
{
φ(F∆

m+1,σ
∆
m+1)

(
k1π

b1 − a1
,
k2π

b2 − a2

∣∣∣∣Fm, σm)
· exp

(
−ik1π

a1

b1 − a1
− ik2π

a2

b2 − a2

)
+ φ(F∆

m+1,σ
∆
m+1)

(
k1π

b1 − a1
,− k2π

b2 − a2

∣∣∣∣Fm, σm)
· exp

(
−ik1π

a1

b1 − a1
+ ik2π

a2

b2 − a2

)}
Vk1,k2(tm+1).

(6.8)

The characteristic function φ(F∆
m+1,σ

∆
m+1)

(u1, u2|Fm, σm) is determined with Lemma 4.1 for any

of the discussed discretization schemes and we have

Vk1,k2(tm+1) =
2

b1 − a1

2

b2 − a2

∫ b2

a2

∫ b1

a1

V ∆
m+1(F, σ) cos

(
k1π

F − a1

b1 − a1

)
cos

(
k2π

σ − a2

b2 − a2

)
dF dσ.

(6.9)
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We approximate the above double integrals by computing the function V ∆
m+1(Fm+1, σm+1) on a

two-dimensional grid and using the (2D) discrete Fourier-cosine transform. As a special case,
for m = M − 1, we find with formulas (5.1) and (5.3):

V ∆
M−1(FM−1, σM−1) =

N1−1∑′

k=0

<
{
φ(F∆

M ,σ
∆
M)

(
kπ

b1 − a1
, 0

∣∣∣∣FM−1, σM−1

)
exp

(
−ikπ a1

b1 − a1

)}
Vk(tM ),

(6.10)
where

Vk(tM ) =
4

b1 − a1

∫ b1

a1

(F −K)+ cos

(
kπ

F − a1

b1 − a1

)
dF

=

{
2

b1−a1

(
1
2K

2 + 1
2b

2
1 −Kb1

)
, if k = 0 and a1 ≤ K ≤ b1,

2(b1−a1)
k2π2

(
(−1)k − cos

(
kπK−a1

b1−a1

))
, if k 6= 0 and a1 ≤ K ≤ b1.

(6.11)

Analogously, we have for Case 2,

V C
DCOS 2(0, T,K, x1, α) = V ∆

0 (x1, α), (6.12)

and for Case 3,

V C
DCOS 3(0, T,K, x1, x2) = V ∆

0 (x1, x2), (6.13)

where the functions V ∆
m (·, ·) can be recovered recursively, backwards in time, for all m = M −

2, . . . , 0. The integration domains are given by

[a1, b1]× [a2, b2] =
[
x1 − α2 exp(2(β − 1)x1)T − 10α exp((β − 1)x1)

√
T ,

x1 + α2 exp(2(β − 1)x1)T + 10α exp((β − 1)x1)
√
T
]
×
[
α− 10να

√
T , α+ 10να

√
T
]
,

[a1, b1]× [a2, b2] =
[
x1 − exp(2x2 + 2(β − 1)x1)T − 10 exp(x2 + (β − 1)x1)

√
T ,

x1 + exp(2x2 + 2(β − 1)x1)T + 10 exp(x2 + (β − 1)x1)
√
T
]

×
[
x2 − ν2T/2− 10ν

√
T , α− ν2T/2 + 10ν

√
T
]
,

for Case 2 and Case 3, respectively. For both cases, formula (5.14) leads to the following formula
for Vk(tm+1), for the special case m = M − 1,

Vk(tM ) =
2

b1 − a1

∫ b1

a1

(exp(X)−K)+ cos

(
kπ
X − a1

b1 − a1

)
dX,

=


2

b1−a1
(exp(b1)−K −Kb1 +K log(K)) , if k = 0 and a1 ≤ log(K) ≤ b1,

2(b1−a1)
k2π2+(b1−a1)2

(
(−1)k exp(b1)−K cos

(
kπ log(K)−a1

b1−a1

))
+ 2K(b1−a1)2

k3π3+kπ(b1−a1)2 sin
(
kπ log(K)−a1

b1−a1

)
, if k 6= 0 and a ≤ log(K) ≤ b1.

(6.14)

6.2 Results

In this section we present some results for the pricing formulas (6.7), (6.12) and (6.13) of Cases
1,2 and 3, respectively, by means of an example. We use the parameters of the example of
Section 2.1.2, i.e. α = 0.35, β = 0.8, ρ = 0, ν = 0.4, also we take f = 2, T = 1, N = 27
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and strikes K = 1.8, 1.95, . . . 3, 3.15. As explained in Section 4.10 that N denotes the number
of Fourier-cosine coefficients and the size of the grid in both dimensions. In this example, we
determine the Black implied volatility smiles by the 2D DCOS for Case 1 with the Euler scheme
and number of time steps M = 20, 50, 100. These volatility smiles and the mean of the absolute
errors in basis points are given in Figure 6.1. When M increases, the volatility smile determined
with formula (6.7) converges to the reference smile, which is determined by Antonov’s pricing
approach (2.11).

Figure 6.1: The volatility smiles and the absolute error in Black implied volatility in basis points.

Besides formula (6.7) for the Euler scheme, we also determine the Black implied volatilities
with the formulas (6.12) and (6.13), for the other schemes: the Milstein, 2.0-weak-Taylor and
adjusted-Predictor-Corrector schemes. Figure 6.2 shows the mean of the absolute errors in basis
points for this example. Where Cases 1, 2 and 3 refer to the pricing formulas (6.7), (6.12) and
(6.13), respectively. Formula (6.13) gives the best results for the Euler, Milstein and 2.0-weak-
Taylor schemes, while formula (6.12) shows the fastest convergence for the adjusted-Predictor-
Corrector scheme. In Section 4.9, we performed an error analysis for the 2.0-weak-Taylor scheme.
In our analysis we observed second-order weak convergence for the option value, and analogously
we obtained at least first-order weak convergence for the other schemes. In Figure 6.2 we ob-
serve the fastest convergence for the 2.0-weak-Taylor and the slowest convergence for the Euler
scheme. This example indicates that 2.0-weak-Taylor performs best with respect to convergence.

We find it remarkable that formula (6.13) performs best for the Euler, Milstein and 2.0-weak-
Taylor scheme and worst for the adjusted-Predictor-Corrector scheme. We believe this is a
consequence of the errors introduced by the truncation of the Taylor series expansions. In
formula (4.23) the truncation for the adjusted-Predictor-Corrector scheme in Case 1 is given.
We observe convergence of order 1.75 for the 2.0-weak-Taylor scheme, while we expected second
order convergence. We also notice that the error introduced by the choice of the number of
grid-points N is visible for the Milstein and the 2.0-weak-Taylor schemes when the absolute
error is less than one basis point in Case 1 and less than 0.3 basis points in Cases 2 and 3. We
believe that we do not observe the second order convergence for the 2.0-weak-Taylor scheme due
to this same error. Because of the results in Figure 6.2, we advise to use pricing formula (6.13)
with the Euler or the 2.0-weak-Taylor scheme. We will discuss this choice further in Section 6.4.
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Figure 6.2: Mean of the absolute error in Black implied volatility with respectively the Euler,
Milstein, 2.0-weak-Taylor and adjusted-Predictor-Corrector schemes, and formulas (6.7), (6.12)
and (6.13).

6.3 Multiple strikes

It is possible to price European options under the SABR model for multiple strikes at once, by
using the scaling symmetry of H. Park [20]. The forward value of a European call option under
the SABR model with strike value K > 0 and time to maturity T is given by

V C(0, T,K, f, α) = E
[
(FT −K)+

∣∣ f, α] , (6.15)

where the underlying system of FSDEs is given by (6.1) and (6.2). We use the following scaling
transformations

F̂t =
K0

K
Ft and σ̂t =

(
K0

K

)1−β
σt, (6.16)

and we observe that, for any K0 ∈ R>0, it holds that

V C(0, T,K, f, α) = E
[
(FT −K)+

∣∣ f, α]
= E

[(
K

K0
F̂T −K

)+
∣∣∣∣∣ f, α

]

=
K

K0
E
[(
F̂T −K0

)+
∣∣∣∣ f, α] . (6.17)
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By Itô’s Lemma it follows that

dF̂t =
K0

K
σt (Ft)

β dW 1
t

=
K0

K

(
K0

K

)β−1

σ̂t

(
K

K0
F̂t

)β
dW 1

t

= σ̂t

(
F̂t

)β
dW 1

t , (6.18)

dσ̂t = ρ

(
K0

K

)1−β
νσt dW 1

t +
√

1− ρ2

(
K0

K

)1−β
νσt dW 2

t

= ρνσ̂t dW 1
t +

√
1− ρ2νσ̂t dW 2

t . (6.19)

F̂t and σ̂t follow a SABR process, with the same parameters β, ν and ρ as Ft and σt. Combining
this observation and result (6.17) implies

V C(T,K, f, α) =
K

K0
V C

(
T,K0,

K0

K
f,

(
K0

K

)1−β
α

)
. (6.20)

This results in the following relations for the pricing formulas (6.7), (6.12) and (6.13):

V C
DCOS 1(0, T,K, f, α) ≈ K

K0
V C

DCOS 1

(
0, T,K0,

K0

K
f,

(
K0

K

)1−β
α

)
, (6.21)

V C
DCOS 2(0, T,K, x1, α) ≈ K

K0
V C

DCOS 2

(
0, T,K0, log

(
K0

K

)
+ x1,

(
K0

K

)1−β
α

)
, (6.22)

V C
DCOS 3(0, T,K, x1, x2) ≈ K

K0
V C

DCOS 3

(
0, T,K0, log

(
K0

K

)
+ x1, (1− β) log

(
K0

K

)
+ x2

)
.

(6.23)

We use those approximations to price European options with multiple strikes in one computation,
by pricing the corresponding European option for one general strike K0 for different initial values.
Such a strike K0 can be for example the ATM strike value or the mean of the minimal and the
maximal strike value. We advise to use this scaling symmetry for strike values that are close to
each other, because the multiple initial conditions increase the size of the domain [a1, b1]×[a2, b2].
If the size of the domain is increased significantly, we also have to increase the number of Fourier
coefficients and the number of grid-points to obtain the same accuracy.

6.4 Advantages and disadvantages

In Section 6.2 we advised to use pricing formula (6.13), i.e. Case 3, with the Euler or the 2.0-
weak-Taylor schemes. We explain this choice and give some advantages and disadvantages for
both pricing methods in this section.

• Formula (6.13) is more accurate than pricing formula (6.7) for the Euler, Milstein and
2.0-weak-Taylor schemes. An example is shown in Figure 6.2.

• In formula (6.13) we use the logarithmic transformation of the volatility. In Chapter 5 we
observed that such a transformation avoids a positive conditional probability of a negative
volatility at expiration time, i.e. the transformation ensures P (σT < 0|F0 = f, σ0 = α) =
0, while for formulas (6.7) and (6.12) this probability may be positive.
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• The 2.0-weak-Taylor scheme exhibits the fastest convergence. As we can see in Figure 6.2,
the error for the 2.0-weak-Taylor scheme with only five time steps is less than one basis
point, while we need 28 time steps for the Euler scheme to obtain this accuracy.

• The discretized SABR model has a significantly easier characteristic function for the Euler
scheme compared to the other schemes, which ensures that the CPU time per time step
is the lowest for the Euler scheme. As a consequence, the Euler scheme often uses less
CPU time than the 2.0-weak-Taylor scheme to gain the same accuracy. The characteristic
functions for the Milstein, 2.0-weak-Taylor and adjusted-Predictor-Corrector schemes have
the same order of size. In Table 6.1 we give an overview of the number of time steps and
the CPU time we need for the Euler and 2.0-weak-Taylor schemes to obtain a certain
accuracy for the example given in Section 6.2, where we use formula (6.23).

M CPU Absolute error in BPS

Euler 28 65.41s < 1
2.0-weak-Taylor 5 140.86s < 1

Euler 56 134.82s < 0.5
2.0-weak-Taylor 8 412.51s < 0.5

Table 6.1: Number of time steps and CPU time needed to obtain an absolute error of 1 or 0.5
basis points in Black implied volatility for the Euler and 2.0-weak-Taylor schemes.

• We observe from Table 6.1 that the CPU time we need to obtain an accuracy of 1 basis
point is 65.41 seconds for the Euler scheme and 140.86 seconds for the 2.0-weak-Taylor
scheme (in Matlab on an i5-4670 CPU @ 3.40GHz, 4 Cores). Those high computation
times are a disadvantage of the 2D DCOS method. We however expect that we can reduce
those computation times significantly by using the GPU, because for every time step we
do a large number of parallel computations. This is left for future research.

• When we neglect errors introduced by the COS method, i.e. by the choice of N and the
domain [a1, b1]× [a2, b2], our pricing method is free of arbitrage, because as a result of the
chosen discretization scheme variable FT , given F0 = f and σ0 = α, is a random variable
with a certain distribution, e.g. FT is normally distributed with mean f and variance
αfβ∆t for formula (6.7), the Euler scheme and one time step. For multiple time steps the
distribution of variable FT is more involved and we apply the DCOS method to determine
the distribution, this ensures non-negative conditional probabilities and its integration over
the entire space equals one. Also, this ensures compatibility with the put-call parity (2.9).
The COS method may introduce errors which lead to arbitrage possibilities. When the
domain [a1, b1]× [a2, b2] is chosen incorrectly, the integration of the conditional PDF over
the entire space is significantly less than one. When the number of grid-points in both
dimensions and the number of Fourier-cosine coefficientsN is chosen too small, it is possible
to obtain oscillations in the conditional PDF and/or its integral over the entire space is
unequal to one. So, we recommend to choose the domain [a1, b1]× [a2, b2] and the number
N carefully.
To prevent arbitrage-possibilities for the DCOS method due to an incorrect choice for
[a1, b1]× [a2, b2] and N , we advise to calculate the price of a European put from the price
of a European call by using the put-call parity (2.9).



70 Chapter 6. The DCOS method applied to the SABR model

6.5 Brief analysis

We proposed to use pricing formula (6.13) with the Euler or the 2.0-weak-Taylor scheme. In
this section we summarize some properties of those two pricing methods and we compare them
with the Hagan formula. (2.3).

• The Hagan formula is not accurate for long time to maturity, while pricing European
options with pricing formula (6.13) for the Euler or the 2.0-weak-Taylor scheme can be as
accurate as desired by choosing N , M and the domain [a1, b1]× [a2, b2] carefully.

• The Hagan formula often implies arbitrage for low strikes, whereas option pricing with the
DCOS method is free of arbitrage when domain [a1, b1] × [a2, b2] and the number N are
chosen carefully.

• Pricing with the DCOS method is significantly slower than pricing with the Hagan formula.
We are sure to reduce the computation times in the future by using GPU programming.
Still, we think it is not feasible to have an accurate pricing method that is as fast as the
almost instantaneous Hagan formula, but we believe it is possible to have an accurate
pricing method that is as fast as Hagan’s arbitrage-free pricing approach.



Chapter 7

Conclusion

In this chapter we present a conclusion of the thesis in section 7.1 and we give recommendations
for further research in section 7.2.

7.1 Conclusion

In 2002, P.S. Hagan, D. Kumar, A.S. Lesniewski and D.E. Woodward introduced the SABR
model and gave a formula to calculate the Black implied volatility of the SABR model [14].
This formula, also known as the Hagan formula, leads however to arbitrage possibilities for low
strikes. Besides the presence of arbitrage, the Hagan formula has another disadvantage. The
formula is not accurate for long maturities. Following the pricing approach of Hagan, Kumar,
Lesniewski and Woodward, other methods have been developed for pricing European options
under the SABR model. We discussed Antonov’s method [2, 3] and Hagan’s arbitrage free
pricing approach [15]. Unfortunately, Antonov’s method is not free of arbitrage, while Hagan’s
arbitrage free pricing approach is not accurate for long maturities. This led to the development
of a new method.

M.J. Ruijter and C.W. Oosterlee developed a Fourier method [25, 24] to solve BSDEs using
the characteristic function of the one-dimensional underlying process. This method is called
the one-dimensional BCOS method. When the characteristic function of the underlying process
cannot easily be derived, we can use the characteristic function of a discrete forward process
to approximate the solution, where we approximate the underlying FSDE by the Euler scheme,
the Milstein scheme or the 2.0-weak-Taylor scheme.

We extended the BCOS method from one dimension to two dimensions to solve BSDEs with
a two-dimensional underlying process. This extension is necessary for application of a simpli-
fication of the BCOS method, the DCOS method, to the SABR model. Since no analytical
expression for the bivariate characteristic function of the SABR model is available, we use the
bivariate characteristic function of the discretized SABR model, where the underlying FSDEs are
approximated by one of the following Taylor schemes: the Euler, Milstein, adjusted-Predictor-
Corrector or 2.0-weak-Taylor scheme. Besides European options, some path-dependent options
can be priced with the DCOS method. The change in procedure for the DCOS method is small
for pricing Bermudan or discretely monitored barrier options.
Because of the the scaling symmetry of H. Park [20], it is possible to price European options
under the SABR model for multiple strikes in one computation. We advise to use this scaling
symmetry for strike values that are close to each other to retain the same accuracy.
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We recommend to use the Euler scheme or the 2.0-weak-Tayor scheme for pricing European op-
tions under the SABR model with the DCOS method. The 2.0-weak-Tayor scheme has second
order convergence, while for the other schemes only first order convergence can be achieved. As
a consequence, for the 2.0-weak-Taylor scheme we need the smallest number of time steps to
gain a certain accuracy. Unfortunately, the DCOS method is not fast yet. The characteristic
function of the SABR model, discretized with the Euler scheme, is significantly simpler than the
one determined with one of the other schemes, which ensures that the Euler scheme uses the
least amount of CPU time per time step.
Also, we suggest to use the logarithmic transformations for both the forward and the volatility
processes before applying the DCOS method. This ensures not only faster convergence for Eu-
ropean option prices under the SABR model, but it also prevents the occurrence of a positive
probability for a negative volatility.

7.2 Outlook

In this section we present three suggestions for future research.

Firstly, we would like to speed up the DCOS method. We are sure that we can reduce the
required computation time significantly by using GPU programming in C or C++, because the
DCOS method uses a large number of parallel computations.

When the DCOS method is fast, we can extent the DCOS method to a method that valuates
options for which the underlying process has time-dependent parameters. Because of this time-
dependency, we expect that more time steps are needed to gain a certain accuracy than without
the time-dependency. The DCOS method is feasible for time-dependent parameters when it is
fast.

In this thesis, we discussed the DCOS method for European, Bermudan and discretely monitored
barrier options. As a final suggestion, we recommend to investigate other path-dependent options
under the SABR model, e.g. Asian and American options.
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Appendix A

Derivation of the approximation for
G(t, s)

The authors in [2] gave the following formula

G(t, s) ≈
√

sinh(s)

s
e−

s2

2t
− t

8 [R(t, s) + δR(t, s)] , (A.1)

where

R(t, s) = 1 +
3tg(s)

8s2
−

5t2
(
−8s2 + 3g2(s) + 24g(s)

)
128s4

+
35t3

(
−40s2 + 3g3(s) + 24g2(s) + 120g(s)

)
1024s6

, (A.2a)

δR(t, s) = e
t
8 − 3072 + 384t+ 24t2 + t3

3072
, (A.2b)

g(s) = s coth(s)− 1, (A.2c)

as an approximation for

G(t, s) =
2e−

t
8

t
√
πt

∫ ∞
s

u e−
u2

2t

√
cosh(u)− cosh(s) du. (A.3)

The derivation of the leading term in the approximation is given in [3], where R(t, s) = 1. In
this appendix, we give the derivation of (A.1). This derivation uses integration by the following
substitution:

u =
√
s2 + w2 and du =

w√
s2 + w2

dw. (A.4)

A Taylor series expansion around w = 0 gives

u =
√
s2 + w2 = s+

w2

2s
− w4

8s3
+

w6

16s5
− 5w8

128s7
+O

(
s−9
)
, (A.5)

and

cosh(u) = cosh
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We substitute this result in
√

cosh(u)− cosh(s) and remove all terms wn under the square root
sign, where n > 8. Thereafter, a Taylor series expansion around 1

s = 0 gives
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Using the moments of a normal distribution with mean 0 and variance t, one can obtain∫ ∞
0

e−
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2t wn dw = n!!
√
π/2 t

n+1
2 , for n = even, (A.10)

where n!! denotes the double factorial, for even n it holds that n!! =
∏n/2
i=1(2i− 1).

Now, the approximation (A.1) for (A.3) can be found
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6 +O
(
s−4
))

dw

= e−
s2

2t
− t

8

√
sinh(s)

s

[
1 + 3tA1 + 15t2A2 + 105t3A3 +O

(
s−4
)]

=

√
sinh(s)

s
e−

s2

2t
− t

8
[
R(t, s) +O

(
s−4
)]
. (A.11)

Here, R(t, s) is as in formula (A.1). The authors in [2, 3] added δR(t, s) as a correction to ensure
G(t, 0) = 1.



Appendix B

Hagan’s arbitrage-free method

In this appendix we give the derivation of PDE (2.27), the proof of M(t, F ) ≥ 0 (2.28), and the
Crank-Nicolson scheme to solve (2.27) in matrix form.

Derivation of Hagan PDE (2.27)
Using perturbation techniques the authors in [15] derived PDE (2.27). The start of this deriva-
tion is analogously to the start of the derivation of the Hagan formula which is given in [16].
Assume that both the volatility σ and the vol-vol ν are small and write Ft → F̂t, σt → εσ̂t and
ν → εν, where ε > 0 is small. The system of FSDEs (2.1)-(2.2) becomes

dF̂t = εσ̂t

(
F̂t

)β
dW 1

t , (B.1)

dσ̂t = ενσ̂t dW 2
t , (B.2)

dW 1
t dW 2

t = ρdt.

Define the probability density function p (t, f, α; s, F, σ) by1

p (t, f, α; s, F, σ) dF dσ = prob
{
F < F̂s < F + dF, σ < σ̂s < σ + dσ

∣∣∣ F̂t = f, σ̂t = α
}
, (B.3)

where p (t, f, σ; t, F, σ) = δ (F − f) δ (σ − α).

As given in [16], p satisfies the Fokker-Planck equation which leads to the PDE{
∂p
∂s = 1

2ε
2σ2 ∂2

∂F 2

[
F 2βp

]
+ 1

2ε
2ν2 ∂2

∂σ2

[
σ2p
]

+ ε2νρ ∂2

∂F∂σ

[
σ2F βp

]
, for s > t,

p = δ (F − f) δ (σ − α) , at s = t.
(B.4)

Define for k = 0, 1, 2, . . .

Q(k) = Q(k) (t, f, α; s, F ) =

∫ ∞
−∞

σkp (t, f, α; s, F, σ) dσ. (B.5)

We showed in [16, Appendix D] that Q(2) satisfies the Kolmogorov backward equation. With
a similar proof, one can show that Q(k) satisfies the Kolmogorov backward equation for all
k ∈ N ∪ {0}, which leads to the PDE{

∂Q(k)

∂t = −1
2ε

2α2f2β ∂2Q(k)

∂f2 − 1
2ε

2ν2α2 ∂2Q(k)

∂α2 − ε2νρα2fβ ∂
2Q(k)

∂f∂α , for t < s,

Q(k) = αkδ (F − f) , at t = s.
(B.6)

1In Chapter 4 we denoted this probability density function by QFs,σs (s− t, F, σ|f, α). In this appendix we
choose to use another notation to avoid confusion.
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Using the PDE for p, interchanging integration and differentiation and [16, Formula (D.5)] gives
the following relation between Q(0) and Q(2), for s > t,

∂p

∂s
=

1

2
ε2σ2 ∂2

∂F 2

[
F 2βp

]
+

1

2
ε2ν2 ∂

2

∂σ2

[
σ2p
]

+ ε2νρ
∂2

∂F∂σ

[
σ2F βp

]
⇒∫ ∞

−∞

∂p

∂s
dσ =

1

2
ε2
∫ ∞
−∞

σ2 ∂2

∂F 2

[
F 2βp

]
dσ+

1

2
ε2ν2

∫ ∞
−∞

∂2

∂σ2

[
σ2p
]

dσ+ε2νρ

∫ ∞
−∞

∂2

∂F∂σ

[
σ2F βp

]
dσ

⇒
∂

∂s

(∫ ∞
−∞

p dσ

)
=

1

2
ε2

∂2

∂F 2

(∫ ∞
−∞

σ2F 2βp dσ

)
+ 0 + 0

⇒
∂Q(0)

∂s
=

1

2
ε2

∂2

∂F 2

[
F 2βQ(2)

]
. (B.7)

The goal of the authors in [15] was to write Q(2) in terms of Q(0). For this analysis we write
τ = s− t and τex = T − t, and we take

z =
1

εα

∫ F

f

1

f
β

df, (B.8)

and define
B(εαz) = fβ. (B.9)

One can notice that B(0) = F β.

For the partial derivatives it holds that

∂

∂f
→ ∂

∂z

∂z

∂f
=

−1

εαB(εαz)

∂

∂z
,

∂2

∂f2
→

(
−1

εαB(εαz)

∂

∂z

)2

=
1

ε2α2B(εαz)2

∂2

∂z2
− B′(εαz)

εαB(εαz)3

∂

∂z
,

∂

∂α
→ ∂

∂α
+

∂

∂z

∂z

∂α
=

∂

∂α
− z

α

∂

∂z
,

∂2

∂α2
→

(
∂

∂α
− z

α

∂

∂z

)2

=
∂2

∂α2
+

2z

α2

∂

∂z
− 2z

α

∂2

∂z∂α
+
z2

α2

∂2

∂z2
,

∂2

∂f∂α
→ −1

εαB(εαz)

∂

∂z

(
∂

∂α
− z

α

∂

∂z

)
=

1

εαB(εαz)

(
− ∂2

∂z∂α
+

1

α

∂

∂z
+
z

α

∂2

∂z2

)
,

which leads to the PDE
∂Q(k)

∂τ =
[

1
2 + zερν + 1

2ε
2ν2z2

] ∂2Q(k)

∂z2 +
[
− εαB′(εαz)

2B(εαz) + ε2ν2z + ενρ
]
∂Q(k)

∂z

−
[
ενρα+ zε2ν2α

] ∂2Q(k)

∂z∂α + 1
2ε

2ν2α2 ∂2Q(k)

∂α2 , for τ > 0,

Q(k) = αk−1

εFβ
δ (z) , at τ = 0.

(B.10)

We define Q̂(k)(τ, z, α) = εFβ

αk−1Q
(k)(τ, z, α), then

∂Q(k)

∂τ = αk−1

εFβ
∂Q̂(k)

∂τ ,
∂2Q(k)

∂z∂α = (k−1)αk−2

εFβ
∂Q̂(k)

∂z + αk−1

εFβ
∂2Q̂(k)

∂z∂α ,
∂2Q(k)

∂α2 = (k−2)(k−1)αk−3

εFβ
Q̂(k) + 2(k−1)αk−2

εFβ
∂Q̂(k)

∂α + αk−1

εFβ
∂2Q̂(k)

∂α2 .

(B.11)
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Q̂(k)(τ, z, α) is the solution of the PDE

∂Q̂(k)

∂τ =
[

1
2 + zερν + 1

2ε
2ν2z2

] ∂2Q̂(k)

∂z2 −
[
εαB′(εαz)
2B(εαz) +

(
ε2ν2z + ενρ

)
(k − 2)

]
∂Q̂(k)

∂z

−
[
ενρα+ zε2ν2α

] ∂2Q̂(k)

∂z∂α + 1
2ε

2ν2
[
α2 ∂2Q(k)

∂α2 + (k − 2)(k − 1)Q̂(k)

+ 2(k − 1)α∂Q̂
(k)

∂α

]
, for τ > 0,

Q̂(k) = δ (z) , at τ = 0.
(B.12)

As the authors in [15] noticed, α does not enter the PDE for Q̂(k) until O(ε) approximation, so
∂Q̂(k)

∂α , ∂2Q̂(k)

∂zα and ∂2Q̂(k)

∂α2 are all O (ε). The PDE can be reduced to
∂Q̂(k)

∂τ =
[

1
2 + zερν + 1

2ε
2ν2z2

] ∂2Q̂(k)

∂z2 −
[
εαB′(εαz)
2B(εαz) +

(
ε2ν2z + ενρ

)
(k − 2)

]
∂Q̂(k)

∂z

−ενρα∂
2Q̂(k)

∂z∂α + 1
2ε

2ν2(k − 2)(k − 1)Q̂(k) +O
(
ε3
)
, for τ > 0,

Q̂(k) = δ (z) , at τ = 0.

The aim of this analysis is to write Q(2) in terms of Q(0), and one can observe that when τ > 0
and when k = 0 or k = 2 it holds that

∂Q̂(0)

∂τ
=

[
1

2
+ zερν +

1

2
ε2ν2z2

]
∂2Q̂(0)

∂z2
+

[
−εαB

′(εαz)

2B(εαz)
+ 2

(
ε2ν2z + ενρ

)] ∂Q̂(0)

∂z

− ενρα
∂2Q̂(0)

∂z∂α
+ ε2ν2Q̂(0) +O

(
ε3
)

(B.13)

=
∂2

∂z2

[(
1

2
+ zερν +

1

2
ε2ν2z2

)
Q̂(0)

]
− εαB′(εαz)

2B(εαz)

∂Q̂(0)

∂z
− ενρα∂

2Q̂(0)

∂z∂α
+O

(
ε3
)
,

∂Q̂(2)

∂τ
=

[
1

2
+ zερν +

1

2
ε2ν2z2

]
∂2Q̂(2)

∂z2
− εαB′(εαz)

2B(εαz)

∂Q̂(2)

∂z
− ενρα∂

2Q̂(2)

∂z∂α
+O

(
ε3
)
, (B.14)

with initial conditions

Q̂(0)(τ, z, α) = δ(z) and Q̂(2)(τ, z, α) = δ(z), at τ = 0. (B.15)

The PDEs for Q̂(0) and Q̂(2) are very similar and both functions have the same initial condi-
tion. The next step is to transform Q̂(0) in a few steps such that this final transformed quantity
satisfies the PDE of Q̂(2) in O

(
ε2
)

accuracy, because then this transformed quantity equals Q̂(2)

up to O
(
ε2
)
.

For the first transformation, we define

Û(τ, z, α) =
(
1 + 2zερν + ε2ν2z2

)
Q̂(0)(τ, z, α). (B.16)

For the partial derivatives it holds that

(
1 + 2zερν + ε2ν2z2

) ∂Q̂(0)

∂τ = ∂Û
∂τ ,(

1 + 2zερν + ε2ν2z2
) ∂Q̂(0)

∂z = ∂Û
∂z −

2ερν+2ε2ν2z
1+2zερν+ε2ν2z2 Û ,(

1 + 2zερν + ε2ν2z2
) ∂2Q̂(0)

∂z∂α = ∂2Û
∂z∂α −

2ερν+2ε2ν2z
1+2zερν+ε2ν2z2

∂Û
∂α ,

∂2(1+2zερν+ε2ν2z2)Q̂(0)

∂z2 = ∂2Û
∂z2 .

(B.17)

We obtain with the geometric series, i.e.

1

1 + 2zερν + ε2ν2z2
= 1− 2zερν +O

(
ε2
)
. (B.18)



Appendix B. Hagan’s arbitrage-free method 81

The PDE of Û is now given by

∂Û

∂τ
=

1

2

(
1 + 2zερν + ε2ν2z2

) ∂2Û

∂z2
− εαB′(εαz)

2B(εαz)

∂Û

∂z
+

εαB′(εαz)(2ερν + 2ε2ν2z)

2B(εαz) (1 + 2zερν + ε2ν2z2)
Û

− ερνα
∂2Û

∂z∂α
+
ερνα(2ερν + 2ε2ν2z)

(1 + 2zερν + ε2ν2z2)

∂Û

∂α
+O

(
ε3
)

=
1

2

(
1 + 2zερν + ε2ν2z2

) ∂2Û

∂z2
− εαB′(εαz)

2B(εαz)

∂Û

∂z
+
ε2αB′(εαz)ρν

B(εαz)
Û

− ερνα
∂2Û

∂z∂α
+ 2ε2ρ2ν2α

∂Û

∂α
+O

(
ε3
)
. (B.19)

We observe that α does not enter the PDE for Û up to O(ε), so ∂Û
∂α is O (ε) accurate. The PDE

can be reduced to
∂Û
∂τ = 1

2

(
1 + 2zερν + ε2ν2z2

)
∂2Û
∂z2 − εαB′(εαz)

2B(εαz)
∂Û
∂z + ε2αB′(εαz)ρν

B(εαz) Û

−ερνα ∂2Û
∂z∂α +O

(
ε3
)
, for τ > 0,

Û = δ (z) , at τ = 0.

(B.20)

For the second transformation we define

Γ = −B
′(εαz)

B(εαz)
, (B.21)

U(τ, z, α) = eε
2ρναΓτ Û(τ, z, α). (B.22)

One can notice that
∂Γ
∂z = O (ε) , ∂2Γ

∂z2 = O
(
ε2
)
,

∂Γ
∂α = O (ε) , ∂2Γ

∂z∂α = O
(
ε2
)
.

(B.23)

For the partial derivatives it holds that
eε

2ρναΓτ ∂Û
∂τ = ∂U

∂τ − ε
2ρναΓU,

eε
2ρναΓτ ∂Û

∂z = ∂U
∂z +O

(
ε3
)
,

eε
2ρναΓτ ∂2Û

∂z2 = ∂2U
∂z2 +O

(
ε3
)
,

eε
2ρναΓτ ∂2Û

∂z∂α = ∂2U
∂z∂α +O

(
ε3
)
.

(B.24)

This leads to the PDE{
∂U
∂τ = 1

2

(
1 + 2zερν + ε2ν2z2

)
∂2U
∂z2 − εαB′(εαz)

2B(εαz)
∂U
∂z − ερνα

∂2U
∂z∂α +O

(
ε3
)
, for τ > 0,

U = δ (z) , at τ = 0.

(B.25)
This PDE equals (B.14) through O

(
ε2
)
. From this, one can conclude that

Q̂(2)(τ, z, α) = U(τ, z, α) +O
(
ε3
)

= Q̂(0)(τ, z, α)eε
2ρναΓτ

(
1 + 2zερν + ε2ν2z2 +O

(
ε3
))
. (B.26)

Using

Q̂(0) = εF βαQ(0) and Q̂(2) =
εF β

α
Q(2), (B.27)

one can obtain

Q(2)(t, f, α; s, F ) = α2Q(0)(t, f, α; s, F )eε
2ρναΓ(s−t) (1 + 2zερν + ε2ν2z2 +O

(
ε3
))
. (B.28)
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From the geometric series, [16, Formula (D.14)] and forward differences, one can obtain that

Γ = −B
′(εαz)

B(εαz)
= −B(εαz)−B(0)

εαz B(εαz)
+O (ε)

= − fβ − F β(∫ F
f

1

f
β df

)
fβ

+O (ε) = − fβ − F β(
F−f
fβ

+O(ε)
)
fβ

+O (ε)

=
F β − fβ

F − f
+O (ε) . (B.29)

Substitution of (B.28) in (B.7) leads to the following PDE

∂Q(0)

∂s
=

1

2
ε2α2 ∂2

∂F 2

[
F 2βQ(0)eε

2ρναΓ(s−t) (1 + 2zερν + ε2ν2z2
)]
, for s > t, (B.30)

which is accurate up to O
(
ε2
)

and where

z =
1

εα

∫ F

f

1

f
β

df =
F 1−β − fβ

εα(1− β)
, (B.31)

Γ =
F β − fβ

F − f
. (B.32)

Rewriting εα→ α and εν → ν gives (2.27).

Proof of M(t, F ) ≥ 0
Let t ≥ 0 fixed. We observe that M(t, F ) is continuous in F and for the initial forward value f
it holds that M(t, f) > 0.

When F = 0 or when 1 + 2ρνz(F ) + ν2z2(F ) = 0 it holds that M(t, F ) = 0. With the quadratic
formula

1 + 2ρνz(F ) + ν2z2(F ) = 0 when z(F ) =
−2ρν ± 2ν

√
ρ2 − 1

2ν2
, (B.33)

there is only a real solution when |ρ| = 1, then z(F ) = − ρ
ν .

For the case −1 < ρ < 1 it holds that M(t, F ) > 0 for all F > 0, because M(t, F ) is continuous,
M(t, f) > 0 and M(t, F ) 6= 0 for all F > 0.

When ρ = 1, one can obtain that M(t, F ) is a product of non-negative functions,

M(t, F ) =
1

2
α2
(
1 + 2νz(F ) + ν2z2(F )

)
exp (ρναΓ(F )t)F 2β

=
1

2
α2 (1 + νz(F ))2 exp (ρναΓ(F )t)F 2β

≥ 0, for F ≥ 0. (B.34)

Analogously, when ρ = −1, we find

M(t, F ) =
1

2
α2
(
1− 2νz(F ) + ν2z2(F )

)
exp (ρναΓ(F )t)F 2β

=
1

2
α2 (1− νz(F ))2 exp (ρναΓ(F )t)F 2β
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≥ 0, for F ≥ 0. (B.35)

The Crank-Nicolson scheme to solve (2.27) in matrix form is given by

1 + 3∆t
2h2M

n+1
1 − ∆t

2h2M
n+1
2 0

− ∆t
2h2M

n+1
1 1 + ∆t

h2M
n+1
2 − ∆t

2h2M
n+1
3

. . .
. . .

. . .

− ∆t
2h2M

n+1
J−2 1 + ∆t

h2M
n+1
J−1 − ∆t

2h2M
n+1
J

0 − ∆t
2h2M

n+1
J−1 1 + 3∆t

2h2M
n+1
J





Qn+1
1

Qn+1
2

...

Qn+1
J−1

Qn+1
J


=



Q̃n1

Q̃n2

...

Q̃nJ−1

Q̃nJ


(B.36)

where

Q̃n1 = Qn1 +
∆t

2h2
{Mn

2 Q
n
2 − 3Mn

1 Q
n
1} , (B.37)

Q̃nj = Qnj +
∆t

2h2

{
Mn
j+1Q

n
j+1 − 2Mn

j Q
n
j +Mn

j−1Q
n
j−1

}
, for j = 2, . . . , J − 1, (B.38)

Q̃nJ = QnJ +
∆t

2h2

{
Mn
J−1Q

n
J−1 − 3Mn

JQ
n
J

}
. (B.39)

To advance from time n∆t to time (n + 1)∆t one can solve this system with the tridiagonal
matrix algorithm.



Appendix C

Itô-Taylor expansion

This appendix gives formulas for the Itô-Taylor expansion in one and in two dimensions.

One-dimensional Itô-Taylor expansion
Assume we have an FSDE is of the form (3.1). First we introduce some notation [18, 24]:
We call a row vector

α̂ =
(
j1, j2, ..., jl(α̂)

)
, (C.1)

where ji ∈ {0, 1} for i ∈ {1, ..., l}, a multi-index of length

l(α̂) ∈ {1, 2, ...}. (C.2)

Also,
α̂− =

(
j1, j2, ..., jl(α̂)−1

)
and − α̂ =

(
j2, j3, ..., jl(α̂)

)
. (C.3)

The multi-index of length zero is denoted by v,

l(v) = 0. (C.4)

The set of all multi-indices is denoted by M,

M = {(j1, j2, ..., jl) : ji ∈ {0, 1}, i ∈ {1, ..., l}, for l = 1, 2, 3, ...} ∪ v. (C.5)

We call A ⊆ M a hierarchical set if A is non-empty, if the multi-indices in A are uniformly
bounded in length, i.e. supα̂∈A l(α̂) <∞, and if −α̂ ∈ A for each α̂ ∈ A \ {v}.
The remainder set B(A) of A is given by

B(A) = {α̂ ∈M \A : −α̂ ∈ A} . (C.6)

We define

L0 =
∂

∂t
+ µ(x)

∂

∂x
+

1

2
σ2(x)

∂2

∂x2
and L1 = σ(x)

∂

∂x
. (C.7)

Let h(t, xt) be a general sufficiently smooth function, we denote

hα̂ = Lj1Lj2 ...Ljl(α̂)h. (C.8)

Also, we define the multiple Itô integral Iα̂ [h(., x.)]s,t recursively by

Iα̂ [h(., x.)]s,t =


h(t, xt), if l(α) = 0,∫ t
s Iα̂− [h(., x.)]s,u du, if l(α̂) ≥ 1, jl(α̂) = 0,∫ t
s Iα̂− [h(., x.)]s,u dWu, if l(α̂) ≥ 1, jl(α̂) = 1,

(C.9)

84
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and we abbreviate

Iα̂,s,t = Iα̂[1]s,t. (C.10)

Theorem C.1. Let Xm,x
m+1 denote the value of Xm+1 given Xm = x and let A ⊆ M be a

hierarchical set. The Itô-Taylor expansion for a general sufficiently smooth function h(t, xt) is
given by [18, 24]

h
(
tm+1, X

m,x
m+1

)
=
∑
α̂∈A

hα(tm, x)Iα̂,tm,tm+1
+

∑
α∈B(A)

Iα̂ [hα̂ (., Xm,x
. )]tm,tm+1

. (C.11)

By using Theorem C.1 we find the following conditional expectations of the Itô-Taylor expansion
for a sufficiently smooth function h(t, x)

E
[
h
(
tm+1, X

m,x
m+1

)]
= h(tm, x) + h(0)(tm, x)∆t+

1

2
h(0,0)(tm, x) (∆t)2 +O

(
(∆t)3

)
, (C.12)

E
[(
h
(
tm+1, X

m,x
m+1

))2]
= h2(tm, x) +

[
h2

(1)(tm, x) + 2h(tm, x)h(0)(tm, x)
]

∆t

+

[
h2

(0)(tm, x) +
1

2
h2

(1,1)(tm, x) + h(tm, x)h(0,0)(tm, x)

]
(∆t)2

+ h(1)(tm, x)
[
h(0,1)(tm, x) + h(1,0)(tm, x)

]
(∆t)2 +O

(
(∆t)3

)
. (C.13)

We can observe that for A = {v, (0), (1), (0, 0), (0, 1), (1, 0), (1, 1)} and sufficiently smooth func-
tion h(t, x) the following holds

E

 ∑
α̂∈B(A)

Iα̂ [hα̂ (., Xm,x
. )]tm,tm+1

 = O
(

(∆t)3
)
, (C.14)

and

E

 ∑
α̂∈B(A)

Iα̂ [hα̂ (., Xm,x
. )]tm,tm+1

2 = O
(

(∆t)3
)
. (C.15)

Similarly, we can observe that for all l ∈ N≥2 [24], it follows that

E


 ∑
α̂∈B(A)

Iα̂ [hα̂ (., Xm,x
. )]tm,tm+1

l
 = O

(
(∆t)1.5l

)
. (C.16)

We summarize our results in the following lemma

Lemma C.1. Let Xm,x
m+1 denote the value of Xm+1 given Xm = x and let A = {v, (0), (1), (0, 0), (0, 1),

(1, 0), (1, 1)}. For a sufficiently smooth function h(t, x) it holds for all l ∈ N≥2 that

E

 ∑
α̂∈B(A)

Iα̂ [hα̂ (., Xm,x
. )]tm,tm+1

 = O
(

(∆t)3
)
, (C.17)

E


 ∑
α̂∈B(A)

Iα̂ [hα̂ (., Xm,x
. )]tm,tm+1

l
 = O

(
(∆t)1.5l

)
. (C.18)
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For the 2.0-weak-Taylor scheme we approximate I(0,1),tm,tm+1
and I(1,0),tm,tm+1

by 1
2∆t∆Wm+1.

This replacement was chosen such that it has the same moments in first order, i.e.

E
[
I(0,1),tm,tm+1

]
= E

[
1

2
∆t∆Wm+1

]
, (C.19)

E
[
I(1,0),tm,tm+1

]
= E

[
1

2
∆t∆Wm+1

]
, (C.20)

Cov
(
I(0,1),tm,tm+1

,∆Wm+1

)
= Cov

(
1

2
∆t∆Wm+1,∆Wm+1

)
, (C.21)

Cov
(
I(1,0),tm,tm+1

,∆Wm+1

)
= Cov

(
1

2
∆t∆Wm+1,∆Wm+1

)
. (C.22)

Now, we find by using Lemma C.1 and [18, Chapter 5]:

Lemma C.2. Let Xm,x
m+1 and X∆,m,x

m+1 denote the values of respectively Xm+1 and X∆
m+1 given

Xm = x, where X∆,m,x
m+1 is derived with the 2.0-weak-Taylor scheme. Also, we define A =

{v, (0), (1), (0, 0), (0, 1), (1, 0), (1, 1)}. For a sufficiently smooth function h(t, x) it holds that for
all l ∈ N

E
[(
h
(
tm+1, X

∆,m,x
tm+1

)
− h

(
tm+1, X

m,x
tm+1

))l]

= E

 ∑
α̂∈B(A)

Iα̂ [hα̂ (., Xm,x
. )]tm,tm+1

+ h(0,1)(tm, x)

(
1

2
∆Wm+1∆t− I(0,1),tm,tm+1

)

+ h(1,0)(tm, x)

(
1

2
∆Wm+1∆t− I(1,0),tm,tm+1

))l]
= O

(
(∆t)3

)
. (C.23)

Because of the replacement I(0,1),tm,tm+1
and I(1,0),tm,tm+1

by 1
2∆t∆Wm+1, we loss the higher

order of accuracy for l ∈ N ≥ 3.

Two-dimensional Itô-Taylor expansion
Assume our system of FSDEs is of the form (4.1) and (4.2). In two dimensions, the set of all
multi-indices is denoted by M,

M = {(j1, j2, ..., jl) : ji ∈ {0, 1, 2}, i ∈ {1, ..., l}, for l = 1, 2, 3, ...} ∪ v, (C.24)

and

L0 =
∂

∂t
+ µ1(x1, x2)

∂

∂x1
+ µ2(x1, x2)

∂

∂x2

+
1

2

[
σ2

1(x1, x2)
∂2

∂x2
1

+ 2ρσ1(x1, x2)σ2(x1, x2)
∂2

∂x1∂x2
+ σ2

2(x1, x2)
∂2

∂x2
2

]
, (C.25)

L1 = σ1(x1, x2)
∂

∂x1
+ ρσ2(x1, x2)

∂

∂x2
, (C.26)

L2 =
√

1− ρ2σ2(x1, x2)
∂

∂x2
. (C.27)
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The multiple Itô integral Iα̂ [h(., x.)]s,t is defined recursively by

Iα̂ [h(., x.)]s,t =


h(t, xt), if l(α̂) = 0,∫ t
s Iα̂− [h(., x.)]s,u du, if l(α̂) ≥ 1, jl(α̂) = 0,∫ t
s Iα̂− [h(., x.)]s,u dW 1

u , if l(α̂) ≥ 1, jl(α̂) = 1,∫ t
s Iα̂− [h(., x.)]s,u dW 2

u , if l(α̂) ≥ 1, jl(α̂) = 2,

(C.28)

and we abbreviate
Iα̂,s,t = Iα̂[1]s,t. (C.29)

Theorem C.2. Let Xm,x
m+1 =

(
X1,m,x
m+1 , X

2,m,x
m+1

)
denote the value of Xm given Xm = x = (x1, x2)

and let A ⊆M be a hierarchical set. The Itô-Taylor expansion for a general sufficiently smooth
function h(t,x) is given by [18]

h
(
tm+1, X

1,m,x
m+1 , X

2,m,x
m+1

)
=
∑
α̂∈A

hα̂(tm,x)Iα̂,tm,tm+1
+

∑
α̂∈B(A)

Iα̂
[
hα̂
(
., X1,m,x

. , X2,m,x
.

)]
tm,tm+1

.

(C.30)

Similar to Appendix C, we find:

Lemma C.3. Let Xm,x
m+1 denote the value of Xm+1 given Xm = x = (x1, x2) and let A =

{α̂ ∈M : l(α̂) ≤ 2}. For sufficiently smooth functions h(t,x) and ĥ(t,x) it holds that for all
l1, l2 ∈ Z≥0 with l1 + l2 ≥ 2,

E

 ∑
α̂∈B(A)

Iα̂ [hα̂ (., Xm,x
. )]tm,tm+1

 = O
(

(∆t)3
)
,

(C.31)

E


 ∑
α̂∈B(A)

Iα̂ [hα̂ (., Xm,x
. )]tm,tm+1

l1  ∑
α̂∈B(A)

Iα̂

[
ĥα̂ (., Xm,x

. )
]
tm,tm+1

l2
 = O

(
(∆t)1.5(l1+l2)

)
.

(C.32)

For the 2.0-weak-Taylor scheme we approximate I(0,j),tm,tm+1
and I(j,0),tm,tm+1

by 1
2∆t∆W j

m+1,

for j = 1, 2. Also, we replace I(1,2),tm,tm+1
and I(2,1),tm,tm+1

, respectively, by 1
2

(
∆W 1

m+1∆W 2
m+1 + V 1,2

m+1

)
and 1

2

(
∆W 2

m+1∆W 1
m+1 + V 2,1

m+1

)
, where V 1,2

m+1 is an independent random variable with

P
(
V 1,2
m+1 = ±∆t

)
= 1

2 and V 2,1
m+1 = −V 1,2

m+1 [18]. These replacements were chosen so that for all

i, j, k, l = 1, 2 with i 6= j, it follows that1

E
[
I(0,j),tm,tm+1

]
= E

[
1

2
∆t∆W j

m+1

]
, (C.33)

E
[
I(j,0),tm,tm+1

]
= E

[
1

2
∆t∆W j

m+1

]
, (C.34)

Cov
(
I(0,j),tm,tm+1

,∆W k
m+1

)
= Cov

(
1

2
∆t∆W j

m+1,∆W
k
m+1

)
, (C.35)

Cov
(
I(j,0),tm,tm+1

,∆W k
m+1

)
= Cov

(
1

2
∆t∆W j

m+1,∆W
k
m+1

)
, (C.36)

1These equalities can easily be verified in a numerical experiment
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E
[
I(i,j),tm,tm+1

]
= E

[
1

2

(
∆W i

m+1∆W j
m+1 + V i,j

m+1

)]
, (C.37)

E
[(
I(i,j),tm,tm+1

)2]
= E

[
1

4

(
∆W i

m+1∆W j
m+1 + V i,j

m+1

)2
]
, (C.38)

E
[
I(i,j),tm,tm+1

∆W k
m+1

]
= E

[
1

2

(
∆W i

m+1∆W j
m+1 + V i,j

m+1

)
∆W k

m+1

]
, (C.39)

E
[
I(i,j),tm,tm+1

∆W k
m+1∆W l

m+1

]
= E

[
1

2

(
∆W i

m+1∆W j
m+1 + V i,j

m+1

)
∆W k

m+1∆W l
m+1

]
, (C.40)

E
[
I(i,j),tm,tm+1

I(0,k),tm,tm+1

]
= E

[
1

2

(
∆W i

m+1∆W j
m+1 + V i,j

m+1

)
I(0,k),tm,tm+1

]
, (C.41)

E
[
I(i,j),tm,tm+1

I(k,0),tm,tm+1

]
= E

[
1

2

(
∆W i

m+1∆W j
m+1 + V i,j

m+1

)
I(k,0),tm,tm+1

]
. (C.42)

Now, we find by using Lemma C.3 and [18, Chapter 5] the following lemma:

Lemma C.4. Let Xm,x
m+1 and X∆,m,x

m+1 denote the values of respectively Xm+1 and X∆
m+1 given

Xm = x, where X∆,m,x
m+1 is derived with the 2.0-weak-Taylor scheme. Also, we define A =

{α̂ ∈M : l(α̂) ≤ 2}. For sufficiently smooth functions h(t,x) and ĥ(t,x) it holds that for all
l1, l2 ∈ Z≥0

E
[(
h
(
tm+1,X

∆,m,x
tm+1

)
− h

(
tm+1,X

m,x
tm+1

))l1 (
ĥ
(
tm+1,X

∆,m,x
tm+1

)
− ĥ

(
tm+1,X

m,x
tm+1

))l2]

= E

 ∑
α̂∈B(A)

Iα̂ [hα̂ (.,Xm,x
. )]tm,tm+1

+ h(0,1)(tm,x)

(
1

2
∆W 1

m+1∆t− I(0,1),tm,tm+1

)

+ h(1,0)(tm,x)

(
1

2
∆W 2

m+1∆t− I(1,0),tm,tm+1

)
+ h(0,2)(tm,x)

(
1

2
∆W 2

m+1∆t− I(0,2),tm,tm+1

)
+ h(2,0)(tm,x)

(
1

2
∆W 2

m+1∆t− I(2,0),tm,tm+1

)
+ h(1,2)(tm,x)

(
1

2
∆W 1

m+1∆W 2
m+1 + V 1,2

m+1 − I(1,2),tm,tm+1

)
+ h(2,1)(tm,x)

(
1

2
∆W 1

m+1∆W 2
m+1 + V 2,1

m+1 − I(2,1),tm,tm+1

))l1
·

 ∑
α̂∈B(A)

Iα̂

[
ĥα̂ (.,Xm,x

. )
]
tm,tm+1

+ ĥ(0,1)(tm,x)

(
1

2
∆W 1

m+1∆t− I(0,1),tm,tm+1

)

+ ĥ(1,0)(tm,x)

(
1

2
∆W 2

m+1∆t− I(1,0),tm,tm+1

)
+ ĥ(0,2)(tm,x)

(
1

2
∆W 2

m+1∆t− I(0,2),tm,tm+1

)
+ ĥ(2,0)(tm,x)

(
1

2
∆W 2

m+1∆t− I(2,0),tm,tm+1

)
+ ĥ(1,2)(tm,x)

(
1

2
∆W 1

m+1∆W 2
m+1 + V 1,2

m+1 − I(1,2),tm,tm+1

)
+ ĥ(2,1)(tm,x)

(
1

2
∆W 1

m+1∆W 2
m+1 + V 2,1

m+1 − I(2,1),tm,tm+1

))l2]
= O

(
(∆t)3

)
. (C.43)



Appendix D

Taylor schemes

In this appendix we derive the Euler, Milstein and 2.0-weak-Taylor schemes. We have the
following FSDEs

dX1
t = µ1(Xt) dt+ σ1(Xt) dW 1

t , X1
0 = x1, (D.1)

dX2
t = µ2(Xt) dt+ ρσ2(Xt) dW 1

t +
√

1− ρ2σ2(Xt) dW 2
t , X2

0 = x2. (D.2)

Integrating gives

X1
m+1 = X1

m +

∫ tm+1

tm

µ1(Xt) dt+

∫ tm+1

tm

σ1(Xt) dW 1
t , (D.3)

X2
m+1 = X2

m +

∫ tm+1

tm

µ2(Xt) dt+ ρ

∫ tm+1

tm

σ2(Xt) dW 1
t

+
√

1− ρ2

∫ tm+1

tm

σ2(Xt) dW 2
t . (D.4)

Let h(x, y) be a function whose first and second partial derivatives are defined and are continuous.
The two-dimensional Itô Lemma [26, Formula (4.6.8)] gives

dh (Xt) =
∂h (Xt)

∂X1
t

dX1
t +

∂h (Xt)

∂X2
t

dX2
t +

1

2

∂2h (Xt)(
∂X1

t

)2 (dX1
t

)2
+
∂2h (Xt)

∂X1
t ∂X

2
t

dX1
t dX2

t

+
1

2

∂2h (Xt)(
∂X2

t

)2 (dX2
t

)2
. (D.5)

Integrating gives [26, Formula (4.6.10)], for all t ≥ tm

h (Xt) = h (Xm) +

∫ t

tm

(
µ1 (Xu)

∂h (Xu)

∂X1
u

+ µ2 (Xu)
∂h (Xu)

∂X2
u

+
1

2
σ1 (Xu)2 ∂

2h (Xu)

(∂X1
u)2

+ ρσ1 (Xu)σ2 (Xu)
∂2h (Xu)

∂X1
u∂X

2
u

+
1

2
σ2

2 (Xu)
∂2h (Xu)

(∂X2
u)2

)
du

+

∫ t

tm

σ1 (Xu)
∂h (Xu)

∂X1
u

+ ρσ2 (Xu)
∂h (Xu)

∂X2
u

dW 1
u

+
√

1− ρ2

∫ t

tm

σ2 (Xu)
∂h (Xu)

∂X2
u

dW 2
u . (D.6)
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We assume that µ1, µ2, σ1 and σ2 are functions whose first and second partial derivatives are
defined and are continuous. Substitution of result (D.6), for µ1(Xt), µ2(Xt), σ1(Xt), and σ2(Xt),
in formula (D.3) gives

X1
m+1 = X1

m +

∫ tm+1

tm

µ1 (Xm) dt+

∫ tm+1

tm

σ1 (Xm) dW 1
t

+

∫ tm+1

tm

∫ t

tm

(
µ1 (Xu)

∂µ1 (Xu)

∂X1
u

+ µ2 (Xu)
∂µ1 (Xu)

∂X2
u

+
1

2
σ2

1 (Xu)
∂2µ1 (Xu)

(∂X1
u)2

+ ρσ1 (Xu)σ2 (Xu)
∂2µ1 (Xu)

∂X1
u∂X

2
u

+
1

2
σ2

2 (Xu)
∂2µ1 (Xu)

(∂X2
u)2

)
dudt

+

∫ tm+1

tm

∫ t

tm

σ1 (Xu)
∂µ1 (Xu)

∂X1
u

+ ρσ2 (Xu)
∂µ1 (Xu)

∂X2
u

dW 1
u dt

+
√

1− ρ2

∫ tm+1

tm

∫ t

tm

σ2 (Xu)
∂µ1 (Xu)

∂X2
u

dW 2
u dt

+

∫ tm+1

tm

∫ t

tm

(
µ1 (Xu)

∂σ1 (Xu)

∂X1
u

+ µ2 (Xu)
∂σ1 (Xu)

∂X2
u

+
1

2
σ2

1 (Xu)
∂2σ1 (Xu)

(∂X1
u)2

+ ρσ1 (Xu)σ2 (Xu)
∂2σ1 (Xu)

∂X1
u∂X

2
u

+
1

2
σ2

2 (Xu)
∂2σ1 (Xu)

(∂X2
u)2

)
dudW 1

t

+

∫ tm+1

tm

∫ t

tm

σ1 (Xu)
∂σ1 (Xu)

∂X1
u

+ ρσ2 (Xu)
∂σ1 (Xu)

∂X2
u

dW 1
u dW 1

t

+
√

1− ρ2

∫ tm+1

tm

∫ t

tm

σ2 (Xu)
∂σ1 (Xu)

∂X2
u

dW 2
u dW 1

t . (D.7)

We find with iterative use of formula (D.6) that

X1
m+1 = X1

m + µ1 (Xm) ∆t+ σ1 (Xm) ∆W 1
m+1

+

(
µ1 (Xm)

∂µ1 (Xm)

∂X1
m

+ µ2 (Xm)
∂µ1 (Xm)

∂X2
m

+
1

2
σ2

1 (Xm)
∂2µ1 (Xm)

(∂X1
m)2

+ ρσ1 (Xm)σ2 (Xm)
∂2µ1 (Xm)

∂X1
m∂X

2
m

+
1

2
σ2

2 (Xm)
∂2µ1 (Xm)

(∂X2
m)2

)∫ tm+1

tm

∫ t

tm

du dt

+

(
σ1 (Xm)

∂µ1 (Xm)

∂X1
m

+ ρσ2 (Xm)
∂µ1 (Xm)

∂X2
m

)∫ tm+1

tm

∫ t

tm

dW 1
u dt

+
√

1− ρ2σ2 (Xm)
∂µ1 (Xm)

∂X2
m

∫ tm+1

tm

∫ t

tm

dW 2
u dt
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µ1 (Xm)

∂σ1 (Xm)

∂X1
m

+ µ2 (Xm)
∂σ1 (Xm)

∂X2
m

+
1

2
σ2

1 (Xm)
∂2σ1 (Xm)

(∂X1
m)2

+ ρσ1 (Xm)σ2 (Xm)
∂2σ1 (Xm)

∂X1
m∂X

2
m

+
1

2
σ2
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∂2σ1 (Xm)

(∂X2
m)2

)∫ tm+1

tm

∫ t

tm

dudW 1
t

+

(
σ1 (Xm)

∂σ1 (Xm)

∂X1
m

+ ρσ2 (Xm)
∂σ1 (Xm)

∂X2
m

)∫ tm+1

tm

∫ t

tm

dW 1
u dW 1

t (D.8)

+
√

1− ρ2σ2 (Xm)
∂σ1 (Xm)

∂X2
m

∫ tm+1

tm

∫ t

tm

dW 2
u dW 1

t +O

 2∑
j1,j2,j3=0

I(j1,j2,j3),tm,tm+1

 ,
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where I(j1,j2,j3),tm,tm+1
is defined as in (C.29), for example

I(0,2,1),tm,tm+1
=

∫ tm+1

tm

∫ t

tm

∫ u

tm

ds dW 2
u dW 1

t . (D.9)

We can also obtain this result by using Theorem C.2 and A = {α̂ ∈M : l(α̂) ≤ 2}.

Like Ruijter and Oosterlee [24], we replace
∫ tm+1

tm

∫ t
tm

dW j
u dt and

∫ tm+1

tm

∫ t
tm

dudW j
t by 1

2∆W j
m+1∆t,

and∫ tm+1

tm

∫ t
tm

dW j
u dW j

t by 1
2

((
∆W j

m+1

)2
−∆t

)
.

Let V i,j
m+1 independent random variables, with P

(
V i,j
m+1 = ±∆t

)
= 1

2 and V i,j
m+1 = −V j,i

m+1, for

i, j ∈ {1, 2} and i 6= j. According to Kloeden and Platen [18], the replacement
∫ tm+1

tm

∫ t
tm

dW i
u dW j

t

by 1
2

(
∆W i

m+1∆W j
m+1 + V i,j

m+1

)
, is correct when the diffusion matrix satisfies the commutativity

condition√
1− ρ2σ2 (x1, x2)

∂σ1 (x1, x2)

∂x2
= 0 and

√
1− ρ2σ1 (x1, x2)

∂σ2 (x1, x2)

∂x1
= 0 ∀x1, x2 ∈ R2.

(D.10)
Now, we have

X1
m+1 ≈ X1

m + µ1 (Xm) ∆t+ σ1 (Xm) ∆W 1
m+1

+
1

2

(
µ1 (Xm)

∂µ1 (Xm)

∂X1
m

+ µ2 (Xm)
∂µ1 (Xm)

∂X2
m

+
1

2
σ2

1 (Xm)
∂2µ1 (Xm)

(∂X1
m)2

+ ρσ1 (Xm)σ2 (Xm)
∂2µ1 (Xm)

∂X1
m∂X

2
m

+
1

2
σ2

2 (Xm)
∂2µ1 (Xm)

(∂X2
m)2

)
(∆t)2

+
1

2

(
σ1 (Xm)

∂µ1 (Xm)

∂X1
m

+ ρσ2 (Xm)
∂µ1 (Xm)

∂X2
m

)
∆W 1

m+1∆t

+

√
1− ρ2

2
σ2 (Xm)

∂µ1 (Xm)

∂X2
m

∆W 2
m+1∆t

+
1

2

(
µ1 (Xm)

∂σ1 (Xm)

∂X1
m

+ µ2 (Xm)
∂σ1 (Xm)

∂X2
m

+
1

2
σ2

1 (Xm)
∂2σ1 (Xm)

(∂X1
m)2

+ ρσ1 (Xm)σ2 (Xm)
∂2σ1 (Xm)

∂X1
m∂X

2
m

+
1

2
σ2

2 (Xm)
∂2σ1 (Xm)

(∂X2
m)2

)
∆W 1

m+1∆t

+
1

2

(
σ1 (Xm)

∂σ1 (Xm)

∂X1
m

+ ρσ2 (Xm)
∂σ1 (Xm)

∂X2
m

)((
∆W 1

m+1

)2 −∆t
)

+

√
1− ρ2

2
σ2 (Xm)

∂σ1 (Xm)

∂X2
m

(
∆W 1

m+1∆W 2
m+1 − V

1,2
m+1

)
. (D.11)

For the Euler scheme we only use the the first line of (D.11), this results in

X1,∆
m+1 = X1,∆

m + µ1

(
X∆
m

)
∆t+ σ1

(
X∆
m

)
∆W 1

m+1. (D.12)

For the Milstein scheme we remove the terms (∆t)2, ∆W 1
m+1∆t, ∆W 2

m+1∆t of (D.11), we find

X1,∆
m+1 = X1,∆

m + µ1

(
X∆
m

)
∆t+ σ1

(
X∆
m

)
∆W 1

m+1

+
1

2

(
σ1

(
X∆
m

) ∂σ1

(
X∆
m

)
∂X1,∆

m

+ ρσ2

(
X∆
m

) ∂σ1

(
X∆
m

)
∂X2,∆

m

)((
∆W 1

m+1

)2 −∆t
)



92 Appendix D. Taylor schemes

+

√
1− ρ2

2
σ2

(
X∆
m

) ∂σ1

(
X∆
m

)
∂X2,∆

m

(
∆W 1

m+1∆W 2
m+1 − V

1,2
m+1

)
. (D.13)

For the 2.0-weak-Taylor scheme, we obtain

X1,∆
m+1 = X1,∆

m + µ1

(
X∆
m

)
∆t+ σ1

(
X∆
m

)
∆W 1

m+1

+
1

2

µ1

(
X∆
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) ∂µ1

(
X∆
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∂X1,∆
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X∆
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∂X2,∆
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2
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(
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) ∂2µ1

(
X∆
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)(
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m

)
σ2
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X∆
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(
X∆
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+
1

2
σ2

2

(
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) ∂2µ1

(
X∆
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)(
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 (∆t)2

+
1

2

(
σ1

(
X∆
m
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(
X∆
m

)
∂X1,∆
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(
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m

)
∂X2,∆
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)
∆W 1

m+1∆t

+
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(
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(
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+
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) ∂σ1

(
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)
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(
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) ∂σ1

(
X∆
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)
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+
1

2
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(
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) ∂2σ1

(
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)(
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X∆
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(
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+
1

2
σ2

2

(
X∆
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) ∂2σ1

(
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)(
∂X2,∆

m

)2

∆W 1
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+
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(
σ1

(
X∆
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) ∂σ1
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)
∂X1,∆

m

+ ρσ2

(
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m

) ∂σ1

(
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)
∂X2,∆
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)((
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)2
−∆t

)

+

√
1− ρ2

2
σ2

(
X∆
m

) ∂σ1

(
X∆
m

)
∂X2,∆

m

(
∆W 1

m+1∆W 2
m+1 − V

1,2
m+1

)
. (D.14)

Analogously, we can find the schemes for X2,∆
m+1 and we can write the discretization schemes in

the general form

X1,∆
m+1 = x1 +m1 (x) ∆t+ sW

1

1 (x)∆W 1
m+1 + sW

2

1 (x)∆W 2
m+1 + κW

1,W 2

1 (x)∆W 1
m+1∆W 2

m+1

+ κW
1

1 (x)
(
∆W 1

m+1

)2
+ κW

2

1 (x)
(
∆W 2

m+1

)2
+ v1(x)V 1,2

m+1, (D.15)

X2,∆
m+1 = x2 +m2 (x) ∆t+ sW

1

2 (x)∆W 1
m+1 + sW

2

2 (x)∆W 2
m+1 + κW

1,W 2

2 (x)∆W 1
m+1∆W 2

m+1

+ κW
1

2 (x)
(
∆W 1

m+1

)2
+ κW

2

2 (x)
(
∆W 2

m+1

)2
+ v2(x)V 1,2

m+1, (D.16)

where X∆
m = x = (x1, x2).

For the Euler scheme, it follows that

m1 (x) = µ1 (x) , sW
1

1 (x) = σ1 (x) , sW
2

1 (x) = 0, κW
1,W 2

1 (x) = 0,

κW
1

1 (x) = 0, κW
2

1 (x) = 0, v1(x) = 0,

m2 (x) = µ2 (x) , sW
1

2 (x) = ρσ2 (x) , sW
2

2 (x) =
√

1− ρ2σ2 (x) , κW
1,W 2

2 (x) = 0,

κW
1

2 (x) = 0, κW
2

2 (x) = 0, v2(x) = 0.

(D.17)
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For the Milstein scheme, we find

m1 (x) = µ1 (x)− 1
2

(
σ1 (x) ∂σ1(x)

∂x1
+ ρσ2 (x) ∂σ1(x)

∂x2

)
, sW

1

1 (x) = σ1 (x) ,
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1,W 2
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∂x2

)
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)
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2
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(D.18)

For the 2.0-weak-Taylor scheme, we have

m1 (x) = µ1 (x)− 1

2

(
σ1 (x)

∂σ1 (x)

∂x1
+ ρσ2 (x)

∂σ1 (x)

∂x2

)
+

1

2

(
µ1 (x)

∂µ1 (x)

∂x1
+ µ2 (x)

∂µ1 (x)

∂x2
+

1

2
σ2

1 (x)
∂2µ1 (x)

(∂x1)2

+ ρσ1 (x)σ2 (x)
∂2µ1 (x)

∂x1∂x2
+

1

2
σ2

2 (x)
∂2µ1 (x)

(∂x2)2

)
∆t, (D.19a)

sW
1

1 (x) = σ1 (x) +
1

2

(
σ1 (x)

∂µ1 (x)

∂x1
+ ρσ2 (x)

∂µ1 (x)

∂x2
+ µ1 (x)

∂σ1 (x)

∂x1
+ µ2 (x)

∂σ1 (x)

∂x2

+
1

2
σ2

1 (x)
∂2σ1 (x)

(∂x1)2 + ρσ1 (x)σ2 (x)
∂2σ1 (x)

∂x1∂x2
+

1

2
σ2

2 (x)
∂2σ1 (x)

(∂x2)2

)
∆t, (D.19b)

sW
2

1 (x) =

√
1− ρ2

2
σ2 (x)

∂µ1 (x)

∂x2
∆t, κW

1,W 2

1 (x) =

√
1− ρ2

2
σ2 (x)

∂σ1 (x)

∂x2
, (D.19c)

κW
1

1 (x) =
1

2

(
σ1 (x)

∂σ1 (x)

∂x1
+ ρσ2 (x)

∂σ1 (x)

∂x2

)
, κW

2

1 (x) = 0, (D.19d)

v1(x) = −
√

1− ρ2

2
σ2 (x)

∂σ1 (x)

∂x2
(D.19e)

m2 (x) = µ2 (x)− 1

2

(
ρσ1 (x)

∂σ2 (x)

∂x1
+ σ2 (x)

∂σ2 (x)

∂x2

)
+

1

2
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µ1 (x)

∂µ2 (x)

∂x1
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∂2µ2 (x)

∂x1∂x2
+

1

2
σ2

2 (x)
∂2µ2 (x)
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)
∆t, (D.19f)
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+
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∂2σ2 (x)

(∂x2)2

)
∆t, (D.19g)
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sW
2

2 (x) =
√

1− ρ2σ2 (x) +

√
1− ρ2

2

(
σ2 (x)

∂µ2 (x)

∂x2
+ µ1 (x)

∂σ2 (x)

∂x1
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∂x2

+
1

2
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+

1
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)
∆t, (D.19h)

κW
1,W 2

2 (x) =

√
1− ρ2

2

(
σ1 (x)

∂σ2 (x)

∂x1
+ 2ρσ2 (x)

∂σ2 (x)
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)
, (D.19i)

κW
1

2 (x) =
ρ

2

(
σ1 (x)

∂σ2 (x)

∂x1
+ ρσ2 (x)

∂σ2 (x)

∂x2

)
, (D.19j)

κW
2

2 (x) =
1− ρ2

2
σ2 (x)

∂σ2 (x)

∂x2
, v2(x) =

√
1− ρ2

2
σ1 (x)

∂σ2 (x)

∂x1
. (D.19k)



Appendix E

Characteristic function

apc In this appendix, we derive the characteristic function of X∆
m+1, given X∆

m = x, where

X1,∆
m+1 = x1 +m1 (x) ∆t+ sW

1

1 (x)∆W 1
m+1 + sW

2

1 (x)∆W 2
m+1 + κW

1,W 2

1 (x)∆W 1
m+1∆W 2

m+1

+ κW
1

1 (x)
(
∆W 1

m+1

)2
+ κW

2

1 (x)
(
∆W 2

m+1

)2
+ v1(x)V 1,2

m+1, (E.1)

X2,∆
m+1 = x2 +m2 (x) ∆t+ sW

1

2 (x)∆W 1
m+1 + sW

2

2 (x)∆W 2
m+1 + κW

1,W 2

2 (x)∆W 1
m+1∆W 2

m+1

+ κW
1

2 (x)
(
∆W 1

m+1

)2
+ κW

2

2 (x)
(
∆W 2

m+1

)2
+ v2(x)V 1,2

m+1. (E.2)

Also, ∆W 1
m+1 and ∆W 2

m+1 are uncorrelated and both are normally distributed with mean zero

and variance ∆t and V 1,2
m+1 is an independent random variable with P

(
V 1,2
m+1 = ±∆t

)
= 1

2 .

The characteristic function of X∆
m+1, given X∆

m = x, is given by

φX∆
m+1

(u1, u2|x) = E
[

exp
(
iu1X

1,∆
m+1 + iu2X

2,∆
m+1

)∣∣∣X∆
m = x

]
= E

[
exp

(
iu1

[
x1 +m1 (x) ∆t+ sW

1

1 (x)∆W 1
m+1 + sW

2

1 (x)∆W 2
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1,W 2

1 (x)∆W 1
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1 (x)
(
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+ κW

2
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(
∆W 2
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)2
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]
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2 (x)∆W 1
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(
∆W 1

m+1

)2
+ κW

2

2 (x)
(
∆W 2

m+1

)2
+ v2(x)V 1,2

m+1

])]
. (E.3)

We further abbreviate

c1 = u1s
W 1

1 (x) + u2s
W 1

2 (x), c4 = u1κ
W 1

1 (x) + u2κ
W 1

2 (x),

c2 = u1s
W 2

1 (x) + u2s
W 2

2 (x), c5 = u1κ
W 2

1 (x) + u2κ
W 2

2 (x),

c3 = u1κ
W 1,W 2

1 (x) + u2κ
W 1,W 2

2 (x), c6 = u1v1(x) + u2v2(x),
v = ∆W 1

m+1, w = ∆W 2
m+1,

V = V 1,2
m+1.

(E.4)

Recall from Section 3.1 that the characteristic function of the non-central chi-squared distribu-
tion with one degree of freedom and non-centrality parameter λ reads

φ
χ
′2
1 (λ)

(u) = exp

(
iλu

1− 2iu

)
1√

1− 2iu
. (E.5)
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We can rewrite the characteristic function to

φX∆
m+1

(u1, u2|x) = exp (iu1 [x1 +m1 (x) ∆t] + iu2 [x2 +m2 (x) ∆t])

· E
[
exp

(
i
(
c1v + c2w + c3vw + c4v
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· E
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2 + c5w
2
))]

. (E.6)

We assume c4 6= 0 and c5 6= 0, which gives

φX∆
m+1

(u1, u2|x) = cosh (ic6∆t) exp (iu1 [x1 +m1 (x) ∆t] + iu2 [x2 +m2 (x) ∆t])
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·
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− (c1 + c3w)2

4c4

))

· exp

(
−v

2 + w2

2∆t

)
dv dw

=
cosh (ic6∆t)

2π∆t
exp (iu1 [x1 +m1 (x) ∆t] + iu2 [x2 +m2 (x) ∆t])

·
∫ ∞
−∞

exp

(
i

(
c2w + c5w

2 − (c1 + c3w)2

4c4

))
exp

(
− w2

2∆t

)∫ ∞
−∞

exp

(
ic4

(
v +

c1 + c3w

2c4

)2
)

· exp

(
− v2

2∆t

)
dv dw

=
cosh (ic6∆t)√

2π∆t
exp (iu1 [x1 +m1 (x) ∆t] + iu2 [x2 +m2 (x) ∆t])

·
∫ ∞
−∞

exp

(
i

(
c2w + c5w

2 − (c1 + c3w)2

4c4

))
exp

(
− w2

2∆t

)
φ
χ
′2
1

(
(c1+c3w)2

4c24∆t

) (c4∆t) dw

=
cosh (ic6∆t)√

2π∆t(1− 2ic4∆t)
exp (iu1 [x1 +m1 (x) ∆t] + iu2 [x2 +m2 (x) ∆t])

·
∫ ∞
−∞

exp

(
i

(
c2w + c5w

2 − (c1 + c3w)2

4c4

))
exp

(
− w2

2∆t

)
exp

(
i(c1 + c3w)2

4c4(1− 2ic4∆t)

)
dw

=
cosh (ic6∆t) exp (iu1 [x1 +m1 (x) ∆t] + iu2 [x2 +m2 (x) ∆t])√

2π∆t(1− 2ic4∆t)

· exp

(
−

(1
2 + ic4)c2

1 (∆t)2

1 + 4c2
4 (∆t)2 +

µ2

2σ2

)∫ ∞
−∞

exp

(
−(w − µ)2

2σ2

)

· exp

(
i

((
c2 −

2c1c3c4 (∆t)2

1 + 4c2
4 (∆t)2

)
w +

(
c5 −

c2
3c4 (∆t)2

1 + 4c2
4 (∆t)2

)
w2

))
dw, (E.7)

where

σ2 =
∆t(1 + 4c2

4 (∆t)2)

1 + 4c2
4 (∆t)2 + (∆t)2 c2

3

and µ = − σ2c1c3∆t

1 + 4c2
4 (∆t)2 . (E.8)
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We abbreviate

c7 = c2 −
2c1c3c4 (∆t)2

1 + 4c2
4 (∆t)2 and c8 = c5 −

c2
3c4 (∆t)2

1 + 4c2
4 (∆t)2 . (E.9)

So, the integral is given by∫ ∞
−∞

exp
(
ic7w + ic8w

2
)

exp

(
−(w − µ)2

2σ2

)
dw = σ

√
2πE

[
exp

(
ic7 [σW + µ] + ic8 [σW + µ]2

)]
,

(E.10)
where W ∼ N (0, 1). Rewriting gives that

E
[
exp

(
i(c7 [σW + µ] + c8 [σW + µ]2)

)]
= exp

(
i

(
c7µ+ c8µ

2 − (c7 + 2c8µ)2

4c8

))
E

[
exp

(
ic8σ

2

(
W +

c7 + 2c8µ

2c8σ

)2
)]

= exp

(
i

(
c7µ+ c8µ

2 − (c7 + 2c8µ)2

4c8

))
φ
χ
′2
1

((
c7+2c8µ

2c8σ

)2
) (c8σ

2
)

= exp

(
i

(
c7µ+ c8µ

2 − (c7 + 2c8µ)2

4c8

))
exp

(
i (c7 + 2c8µ)2

4c8(1− 2ic8σ2)

)
1√

1− 2iσ2c8

. (E.11)

So, the characteristic function of X∆
m+1, given X∆

m = x, is given by

φX∆
m+1

(u1, u2|x) =
σ cosh (ic6∆t) exp

(
i
(
u1 [x1 +m1 (x) ∆t] + u2 [x2 +m2 (x) ∆t] + c7µ+ c8µ

2
))√

∆t(1− 2ic4∆t)(1− 2iσ2c8)

· exp

(
− c2

1∆t

2(1 + 4c2
4 (∆t)2)

+
µ2

2σ2
− (c7 + 2c8µ)2 σ2

2(1 + 4c2
8σ

4)

)

· exp

(
i

(
− c4c

2
1 (∆t)2

1 + 4c2
4 (∆t)2 −

(c7 + 2c8µ)2 c8σ
4

1 + 4c2
8σ

4

))
. (E.12)

We can simplify this to

φX∆
m+1

(u1, u2|x) =
cosh (ic6∆t) exp (iu1 [x1 +m1 (x) ∆t] + iu2 [x2 +m2 (x) ∆t])√

(1− 2ic4∆t)(1− 2ic5∆t) + c2
3 (∆t)2

· exp

(
−∆t

2

c2
1 + c2

2 +
[
4(c2

2c
2
4 + c2

1c
2
5)− 4c1c2c3(c4 + c5) + (c2

1 + c2
2)c2

3

]
(∆t)2

1 +
(
2c2

3 + 4c2
4 + 4c2

5

)
(∆t)2 +

(
c2

3 − 4c4c5

)2
(∆t)4

)

· exp

(
i (∆t)2

(
−c2

1c4 − c2
2c5 − c1c2c3 + (c2

3 − 4c4c5)(c2
1c5 − c1c2c3 + c2

2c4) (∆t)2

1 +
(
2c2

3 + 4c2
4 + 4c2

5

)
(∆t)2 +

(
c2

3 − 4c4c5

)2
(∆t)4

))
. (E.13)

In a similar way, we found that the above characteristic function is true for c4 = 0 and/or c5 = 0
as well.
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Adjusted-Predictor-Corrector schemes

For the Heston model, where X1
t denotes the log forward process and no mean reverting for the

volatility X2
t is included, we have the FSDEs,

dX1
t = −1

2
X2
t dt+

√
X2
t dW 1

t , (F.1)

dX2
t = ργ

√
X2
t dW 1

t +
√

1− ρ2γ
√
X2
t dW 2

t . (F.2)

The corresponding bivariate characteristic function of
(
X1,∆
m+1, X

2,∆
m+1

)
is given for

(
X1,∆
m , X2,∆

m

)
=

(x1, x2), by using Lemma 4.1 where

m1 (x1, x2) = −1
2x2 − 1

2η1ργ, sW
1

1 (x1, x2) =
√
x2 − 1

2θ1ργ
√
x2∆t,

κW
1,W 2

1 (x1, x2) = 1
2η1

√
1− ρ2γ, sW

2

1 (x1, x2) = −1
2θ1

√
1− ρ2γ

√
x2∆t,

κW
1

1 (x1, x2) = 1
2η1ργ, κW

1

1 (x1, x2) = 0,
v1(x1, x2) = 0,

m2 (x1, x2) = −1
2η2γ

2, sW
1

2 (x1, x2) = ργ
√
x2,

κW
1,W 2

2 (x1, x2) = η2ρ
√

1− ρ2γ2, sW
2

2 (x1, x2) =
√

1− ρ2γ
√
x2,

κW
1

2 (x1, x2) = 1
2η2ρ

2γ2, κW
2

2 (x1, x2) = 1
2η2(1− ρ2)γ2,

v2(x1, x2) = 0.

(F.3)

For the SABR model, where Ft denotes the forward process and σt denotes the volatility process,
we have the FSDEs,

dFt = σt (Ft)
β dW 1

t , (F.4)

dσt = ρνσt dW 1
t +

√
1− ρ2νσt dW 2

t . (F.5)

The corresponding bivariate characteristic function of
(
F∆
m+1, σ

∆
m+1

)
is given for

(
F∆
m , σ

∆
m

)
=

(f, α), by using Lemma 4.1 where

m1 (f, α) = −η1

[
βα2f2β−1 + ρναfβ

]
, (F.6a)

sW
1

1 (f, α) = αfβ − η1θ1

[
3ρβνα2f2β−1 + β(2β − 1)α3f3β−2 + ρ2ν2αfβ

]
∆t, (F.6b)

sW
2

1 (f, α) = −η1θ1

√
1− ρ2

[
2βνα2f2β−1 + ρν2αfβ

]
∆t, (F.6c)
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κW
1,W 2

1 (f, α) = η1

√
1− ρ2

[
ναfβ − θ1β

{
3ρν2α2f2β−1 + 2(2β − 1)να3f3β−2

}
∆t
]
, (F.6d)

κW
1

1 (f, α) = η1

[
βα2f2β−1 + ρναfβ − θ1

{
2ρ2βν2α2f2β−1 +

(
2β3 − 3β2 + β

)
α4f4β−3

+
1

2
ρβ(9β − 5)να3f3β−2

}
∆t

]
, (F.6e)

κW
2

1 (f, α) = −η1θ1

(
1− ρ2

)
βν2α2f2β−1∆t, (F.6f)

v1(f, α) = 0, (F.6g)

m2 (f, α) = −η2ν
2α, sW

1

2 (f, α) = ρνα− θ2η2ρν
3α∆t,

sW
2

2 (f, α) =
√

1− ρ2να− θ2η2

√
1− ρ2ν3α∆t, κW

1,W 2

2 (f, α) = 2η2ρ
√

1− ρ2ν2α,

κW
1

2 (f, α) = η2ρ
2ν2α, κW

2

2 (f, α) = η2(1− ρ2)ν2α,
v2(f, α) = 0.

(F.6h)

For the SABR model, where X1
t denotes the log forward process and σt denotes the volatility

process, we have the FSDEs

dX1
t = −1

2
σ2
t exp

(
2(β − 1)X1

t

)
dt+ σt exp

(
(β − 1)X1

t

)
dW 1

t , (F.7)

dσt = ρνσt dW 1
t +

√
1− ρ2νσt dW 2

t . (F.8)

We find the corresponding bivariate characteristic function of
(
X1,∆
m+1, σ

∆
m+1

)
, given

(
X1,∆
m , σ∆

m

)
=

(x1, α), by using Lemma 4.1 where

m1(x1, α) = −θ1

[(
1

2
+ η1(β − 1)

)
α2A2(x1) + η1ρναA(x1)

]
(F.9a)

− (1− θ1)

[(
1

2
+ η1(β − 1)

)
α2 exp (2(β − 1)x1) + η1ρνα exp((β − 1)x1)

]
,

sW
1

1 (x1, α) = η1αA(x1) + (1− η1)α exp((β − 1)x1)

− θ1

[
(1 + 2η1(β − 1))

[
(β − 1)α3 exp((β − 1)x1) + ρνα2

]
A2(x1)

+ η1ρν
[
(β − 1)α2 exp((β − 1)x1) + ρνα

]
A(x1)

]
∆t, (F.9b)

sW
2

1 (x1, α) = −θ1

√
1− ρ2

[
(1 + 2η1(β − 1)) να2A2(x1) + η1ρν

2αA(x1)
]

∆t, (F.9c)

κW
1,W 2

1 (x1, α) = η1

√
1− ρ2ναA(x1)

− θ1

√
1− ρ2α2

[
(1 + 2η1(β − 1))

[
2(β − 1)να exp((β − 1)x1) + ρν2

]
A2(x1)

+ η1ρ(β − 1)ν2 exp((β − 1)x1)A(x1)
]

∆t, (F.9d)

κW
1

1 (x1, α) = η1

[
(β − 1)α2 exp ((β − 1)x1) + ρνα

]
A(x1)

− θ1

[(
1

2
+ η1(β − 1)

)[
ρ2ν2α2 + 4ρ(β − 1)να3 exp ((β − 1)x1)

+ 2(β − 1)2α4 exp (2(β − 1)x1)
]
A2(x1) (F.9e)

+ η1ρν

(
ρ(β − 1)να2 exp((β − 1)x1) +

1

2
(β − 1)2α3 exp (2(β − 1)x1)

)
A(x1)

]
∆t,

κW
2

1 (x1, α) = −θ1

(
1

2
+ η1(β − 1)

)
(1− ρ2)ν2α2A2(x1)∆t, (F.9f)

v1(x1, α) = 0, (F.9g)
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m2 (x1, α) = −η2ν
2α, sW

1

2 (x1, α) = ρνα− θ2η2ρν
3α∆t,

sW
2

2 (x1, α) =
√

1− ρ2να− θ2η2

√
1− ρ2ν3α∆t, κW

1,W 2

2 (x1, α) = 2η2ρ
√

1− ρ2ν2α,

κW
1

2 (x1, α) = η2ρ
2ν2α, κW

2

2 (x1, α) = η2(1− ρ2)ν2α,
v2(x1, α) = 0,

(F.9h)
where

A(x1) = exp

(
(β − 1)x1 −

1

2
(β − 1) exp (2(β − 1)x1) ∆t

)
. (F.10)

For the SABR model, where X1
t denotes the log forward process and X2

t denotes the log volatility
process, we have the FSDEs

dX1
t = −1

2
exp

(
2X2

t + 2(β − 1)X1
t

)
dt+ exp

(
X2
t + (β − 1)X1

t

)
dW 1

t , (F.11)

dX2
t = −1

2
ν2 dt+ ρν dW 1

t +
√

1− ρ2ν dW 2
t . (F.12)

We determine the corresponding bivariate characteristic function of
(
X1,∆
m+1, X

2,∆
m+1

)
, given(

X1,∆
m , X2,∆

m

)
= (x1, x2), by using Lemma 4.1 where

m1 (x1, x2) = −θ1

[(
1

2
+ η1(β − 1)

)
A2(x1, x2) + η1ρνA(x1, x2)

]
− (1− θ1) (F.13a)

·
[(

1

2
+ η1(β − 1)

)
exp (2x2 + 2(β − 1)x1) + η1ρν exp (x2 + (β − 1)x1)

]
,

sW
1

1 (x1, x2) = η1A(x1, x2) + (1− η1) exp (x2 + (β − 1)x1)

− θ1 [ρν + (β − 1) exp (x2 + (β − 1)x1)]

·
[
(1 + 2η1(β − 1))A2(x1, x2) + η1ρνA(x1, x2)

]
∆t, (F.13b)

sW
2

1 (x1, x2) = −θ1

√
1− ρ2ν

[
(1 + 2η1(β − 1))A2(x1, x2) + η1ρνA(x1, x2)

]
∆t, (F.13c)

κW
1,W 2

1 (x1, x2) = η1

√
1− ρ2νA(x1, x2)− θ1

√
1− ρ2

[
ρν2 + (β − 1)ν exp (x2 + (β − 1)x1)

]
·
[
2 (1 + 2η1(β − 1))A2(x1, x2) + η1ρνA(x1, x2)

]
∆t, (F.13d)

κW
1

1 (x1, x2) = η1 [ρν + (β − 1) exp (x2 + (β − 1)x1)]A(x1, x2) (F.13e)

− θ1 [ρν + (β − 1) exp (x2 + (β − 1)x1)]2

·
[
(1 + 2η1(β − 1))A2(x1, x2) +

1

2
η1ρνA(x1, x2)

]
∆t,

κW
2

1 (x1, x2) = −θ1(1− ρ2)ν2

[
(1 + 2η1(β − 1))A(x1, x2)2 +

1

2
η1ρνA(x1, x2)

]
∆t, (F.13f)

v1(x1, x2) = 0, (F.13g)

m2 (x1, x2) = −1
2ν

2, sW
1

2 (x1, x2) = ρν, sW
2

2 (x1, x2) =
√

1− ρ2ν,

κW
1,W 2

2 (x1, x2) = 0, κW
1

2 (x1, x2) = 0, κW
2

2 (x1, x2) = 0,
v2(x1, x2) = 0,

(F.13h)

where

A(x1, x2) = exp

(
x2 + (β − 1)x1 −

1

2
ν2∆t− 1

2
(β − 1) exp (2x2 + 2(β − 1)x1) ∆t

)
. (F.14)


