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Abstract

In this thesis we discuss several methods to price European options under the SABR model.
In general, methods given in literature are not free of arbitrage and/or inaccurate for long
maturities. This led to the development of a new pricing approach. We extend the BCOS
method from one dimension to two dimensions. This extension is necessary for application of
a simplification of the BCOS method, the DCOS method, to the SABR model. In this pricing
method we use the characteristic function of the discrete forward process and the Fourier-based
COS method. It is possible to price European options under the SABR model for multiple
strikes in one computation with the DCOS method. Besides valuing European options, we can
also price Bermudan and discretely monitored barrier options with this pricing approach.
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Chapter 1

Introduction

In this thesis, we will discuss different methods and in particular we propose a method for pricing
European options under the so-called SABR model. First of all, we will introduce some financial
terms.

In finance, a derivative is a contract with a value that is derived from the performance of an
underlying entity, e.g. an interest rate or an asset. In this thesis, we abbreviate the underlying
entity by the underlying. A Furopean call option is a derivative which gives the owner (holder)
of the option the right, but not the obligation, to buy an underlying asset or instrument at a
certain expiration time T for a specified price K. This price K is called the strike of the option.
The holder of a European put option has the right to sell an underlying asset or instrument at
time T for strike K. The payoff of an option is its value at the time of maturity 7', for example
the payoff of a European call option is the maximum of the value of the underlying at time T
minus the strike K and 0. The forward value of a derivative is the current agreed upon value
of the derivative on a specified date in the future. In finance, arbitrage is the practice of taking
advantage of incorrect pricing in the market, i.e. earn a higher return than the risk-free interest
rate without taking risk. In this thesis, the risk-free interest rate is assumed to be deterministic.
The risk-neutral measure Q, is a probability measure under which the value of a derivative is
equal to its expected discounted payoff.

In 2002, P.S. Hagan, D. Kumar, A.S. Lesniewski and D.E. Woodward introduced a new stochas-
tic model to price and hedge European options [14]. This model is called the SABR model. S
stands for “stochastic” and ABR represents the Greek characters o, # and p, which are para-
meters in the SABR model. In this thesis we will use ¢ instead of a, because o is the general
character used in the literature to indicate the volatility. The SABR model is developed to
improve previous asset or interest rate models, e.g. the Black-Scholes model [6] and the local
volatility model of Dupire [8], with the purpose that it matches market behaviour better than
previous models.

In [14], a very convenient formula was given to calculate the so-called Black implied volatility of
the SABR model. This formula, also known as the Hagan formula, leads however to arbitrage
possibilities for low strikes, as one can show by examining the corresponding probability density
function (PDF) [22]. Following the pricing approach of Hagan, Kumar, Lesniewski and Wood-
ward, other methods have been developed for pricing European options under the SABR model.
We discussed the Hagan formula and the methods of Obéj [19], Andreasen and Huge [1], and
Balland and Tran [5] in a previous internship report [16]. In this thesis, we discuss the Hagan
formula and two other methods to price options under the SABR model. The developers of
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2 Chapter 1. Introduction

both pricing approaches [2, 15] claimed to reduce the arbitrage possibilities or even remove the
arbitrage entirely. Besides arbitrage, we also check the accuracy of each method by comparing
so-called volatility smiles obtained by the method to smiles obtained by a finite difference solver.
The latter is a partial differential equation (PDE) solver and is very accurate. Because of this
accuracy, this thesis uses the volatility smiles given by this finite difference reference solver as
the reference smiles.

Antonov, Konikov and Spector introduced a pricing method with a mimicking model [2]. In
their paper, they derived an exact formula to calculate the value of a European call option for
the case that in the SABR model the correlation p = 0. Then, the authors discussed how one can
map the SABR parameters for the general case where p # 0 to parameters of a mimicking model
where the correlation is zero. Hagan, Kumar, Lesniewski and Woodward gave a PDE approach
[15] to recover a PDE to determine the PDF. By numerical methods, one can approximate the
PDF and this approximation can be used to calculate the price of a European option.

In particular, we propose a new method in this thesis. When the characteristic function of
a model is known, we can use the (two-dimensional) COS method to price European options
[9, 23]. Unfortunately, no analytical expression for the bivariate characteristic function of the
SABR model is available. The BCOS method (Backward Stochastic Differential Equation COS
method) of M.J. Ruijter and C.W. Oosterlee [25, 24] uses the characteristic function of the
discrete forward process to price options. In this thesis, we expand the BCOS method from one
dimension to two dimensions. Then, we use a simplified version of the two-dimensional BCOS
method for pricing European options under the SABR model. The use of backward stochastic
differential equations (BSDEs) does not appear in this simplified method, that is why we call
it the DCOS method, where D stands for discrete. We discuss different methods to use the
DCOS method to price European options under the SABR model. There are three main diffi-
culties: how to choose the best discretization scheme, how to choose the number of time steps,
and should we use logarithmic transformation(s). To gain more insight into the choice for the
best discretization scheme we compare the characteristic function of the Heston model with the
characteristic function of its discrete forward process.

This thesis is organized as follows. In Chapter 2 we introduce the SABR model and three
methods for pricing European options under the SABR model; the Hagan formula, the option
pricing method of Antonov, Konikov and Spector, and the arbitrage-free pricing method of Ha-
gan, Kumar, Lesniewski and Woodward. Then, in Chapters 3 to 6, we describe the development
of the new pricing method. The BCOS method is explained in Chapter 3. In Chapter 4 we
expand the BCOS method from one dimension to two dimensions. We discuss different methods
for pricing European options under the SABR model with the two-dimensional DCOS method
in Chapters 5 and 6. A conclusion is given in Chapter 7.

In the appendices we provide additional information and derivations. In Appendices A and
B, we give the derivation of some formulas used in the option pricing methods we discuss in
Chapter 2. We give an introduction in It6-Taylor expansion in Appendix C. In Appendix D we
determine the Euler, Milstein and 2.0-weak-Taylor schemes and in Appendix E we provide the
derivation of the characteristic function of the discrete forward process. Finally, in Appendix F
we provide the adjusted-Predictor-Corrector schemes for the Heston and the SABR model.



Chapter 2

SABR model and its pricing methods

In their model [14], Hagan, Kumar, Lesniewski and Woodward assumed that both the forward
F, e.g. the forward swap rate, and the volatility of the forward o are stochastic over time. The
SABR model is given by the following forward stochastic differential equations (FSDEs):

dF, = o ()P aw}, Fy =/, (2.1)
doy = VJtthQ, o9 =
dwldw? = pdt,

where W' and W? are standard Brownian motions under the forward measure and the para-
meters 3, v and p are constants. The exponent 0 < < 1, the vol-vol (volatility of the volatility)
v > 0 and the correlation —1 < p < 1 are constraints for the SABR, parameters.

This chapter is organized as follows. Hagan’s formula and its main advantages and disadvan-
tages are considered in Section 2.1. In Section 2.2, we explain the option pricing method of
Antonov, Konikov and Spector. Finally, the arbitrage-free pricing method of Hagan, Kumar,
Lesniewski and Woodward is given in Section 2.3.

2.1 The Hagan formula

From FSDEs (2.1) and (2.2), Hagan, Kumar, Lesniewski and Woodward derived a formula to
calculate the Black implied volatility. This so-called Hagan formula is given by [21]

op(0,T\K, f,a) = A <yé,)> B, (2.3)
with
A = @ , (2.4a)
(FK) = [0+ 5 o1/ )2 + U tog (/K]
B (1-5)?2 o pBra 2 —3p?
B = 1+ < 21 (fK)P + e + 2) T, (2.4b)
z = (fK) 7 log(f/K), (2.4¢)
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1—2p24+2247—
(@) = 1og< et ,, Tz p). (2.4d)

One can obtain
z

lim <y(z)> =1. (2.5)

The values of European options! with this pricing approach are given by the Black-Scholes
formulas [6]

V(to = 0,1 K. f,o5) = D(T)[f-N(ds) - K - N(d_)], (2.6)
Vli(to = 0.1 K. f,o5) = D(T)[K-N(~d_) - - N(~d})]. (2.7)

with
log(f/K) £ } (05T
a opVT '

Here N(-) denotes the standard normal cumulative distribution function, V¢ is the value of a
European call at time 0 and V7 is the value of a European put at time 0. f is the value of the
forward at time 0. T is the exercise date and, because we set today’s time tg at 0, T" is also the
time to maturity. D(7T') is the discount factor, the value today of €1 delivered at date 7', and
K is the strike.

dt

(2.8)

The volatility op that is used in these formulas, also called the Black implied volatility, is
calculated with the Hagan formula (2.3). A plot of the Black implied volatility op against the
strike K is called a volatility smile. The implementation of the Hagan formula and the Black-
Scholes pricing formulas is relatively simple. This ease of implementation is a great advantage
for the Hagan formula to extract the Black implied volatility of options.

2.1.1 Arbitrage

A necessary condition for non-arbitrage is the put-call parity. If a model is not compatible with
the put-call parity,

VE,T,K, f,op) —VP(0,T,K, f,o5) = D(T)[f - K], (2.9)

then the model is not free of arbitrage. In [14], financial derivatives are priced with the Black-
Scholes pricing formulas. The Black-Scholes formulas are compatible with the put-call parity,
so the Hagan formula (2.3) is too.

It is well-known that the second partial derivative of the European call price with respect to the
strike is equal to the discounted conditional probability density function Qp, (T, F|f, o) of the
forward Fr = F' at time of maturity 7', given today’s value of the forward Fy = f and volatility
oo = «, [22]

Ve

OK? |_p

When we extract the Black implied volatility of an option using the Hagan formula, we may
obtain, depending on the specific parameters, negative probabilities for low strikes and occa-
sionally also for high strikes. By definition, a probability density can never be negative, so here

D(T)QFT (T7 F’f? a) - (210)

We do not specify the underlying in our examples, e.g. the underlying F' could be a forward swap rate, such
an option is then called a swaption.



2.1 The Hagan formula 5

we observe arbitrage. We give an example below.

Example 1 We take as parameters g = 0.7, a = 0.05735, p = —0.48 and v = 0.47. Also, we
set T'= 10, f = 0.05735 and the constant risk-free interest rate » = 0. Central differences are
used to approximate the second derivative in (2.10). The PDF corresponding to this example
is shown in Figure 2.1. For low strikes the PDF is negative and by (2.10) the corresponding
values of European call options are non-convex for those strikes. So, pricing options with the Ha-
gan formula (2.3) is not free of arbitrage in this example. We give an arbitrage possibility below.

30

20+ 8

PDF
e

-20- i

-30H i

0 0.01 002 0.03 004 005 006 0.07 0.08 0.09
Forward at time of maturity F.

Figure 2.1: The incorrect conditional PDF of Fr given Fy = f.

Because of the concavity in the prices for European call options for low strikes we observe
VE(0,T,0.0095, f,op) + VC(0,T,0.0105, f,o5) < 2VC(0,T,0.01, f, o)

We buy a European call option with strike value 0.0095, a European call option with strike value
0.0105, and we sell two European call options with strike value 0.01. All options have the same
underlying F; and the same time of maturity 7.

At time T, we observe the following cases:

e When Fr <0.0095 or Fr > 0.0105 our payoff P is given by P = 0.
e When 0.0095 < Fr < 0.01 our payoff P is given by P = Fpr — 0.0095 > 0.
e When 0.01 < Fpr < 0.0105 our payoff P is given by P = 0.0105 — Fr > 0.

So, the payoff is always non-negative, our initial earning is positive and we have risk-free interest
rate r = 0. We started at time 0 with no money and at time T we have with certainty a positive
amount of money:

VE(0,T,0.0095, f,05) + VE(0,T,0.0105, f,o5) — 2V(0,T,0.01, f, o) + P > 0,

which is an example of arbitrage.

2.1.2 Accuracy of the Hagan formula

Besides the presence of arbitrage, Hagans formula has another disadvantage. The authors in
[2, 14] observed that the Hagan formula is not accurate for long maturities 7. For maturities
longer than 10 years the error in the Black implied volatility for (2.3) can be 100 basis points
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Figure 2.2: Volatility smiles calculated with the Hagan formula.
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Figure 2.3: Volatility smiles calculated with the finite difference reference solver.

(BPS) or more [2], even for options for which the strike K is equal to the current value of the
forward f, also called at the money (ATM) options.

In Figures 2.2 and 2.3 we can observe that the volatility smile given by the Hagan formula (2.3)
can move in the wrong direction when the time to maturity 7" increases. For these figures, we
used the parameters @ = 0.35, 3 =0.8, p=0, v =04, r = 0 and f = 1. The volatility smiles
for different times to maturity T are shown in these figures. In Figure 2.2 it is shown that, for
this example, the level of the volatility smile raises when T increases. The solution given by the
finite difference reference solver is shown in Figure 2.3. As explained in Section 1, in this thesis
we consider the volatility smiles given by this solver as the reference smiles. As we can see in
Figure 2.3 the curvature decreases and the level of the smile lowers when time to maturity T
increases. This incorrect behaviour of the Hagan smile in Figure 2.2 does not only happen for
this example, but it happens in many cases. This is an indication for the fact that the Hagan
formula (2.3) is only accurate for small time to maturity.

2.2 The method of Antonov, Konikov and Spector

In both [2] and [3], A. Antonov, M. Konikov and M. Spector introduced a method to price
European options with the SABR model. In this section, we describe this pricing approach
and some of its advantages and disadvantages. In Section 2.2.1 an analytical formula to price
European call options when p = 0 is given. We give a method to map the parameters of the
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correlated SABR model to parameters of an uncorrelated model in Section 2.2.2. In Section 2.2.3
we consider the (absence of) arbitrage in the method of Antonov, Konikov and Spector. Finally,
we describe some of the advantages and disadvantages of this pricing approach in Section 2.2.4.

2.2.1 Call price for the zero correlation SABR

Consider the FSDEs of the SABR model (2.1) and (2.2) with dW!dW? = 0 and 8 € [0,1). In
[2, 3] an analytical formula is given to calculate the forward value of a European call option in
this zero correlation case, which we denote by VZCC, is derived

Vio(0,T, K, f,a, B,v) = (f—K)++i¢Ff[/s+WG(TV2,S)dS (2.11)

0 efnw(s)

+ sin(mr)/ sinh(s)G(TVQ’S) dS],

where

t
2e78 [

w2
G(t,s) = u e~ 27 \/cosh(u) — cosh(s) du, (2.12a)

tv/mt Js
sinh?(s) — sinh?(s_
¢(s) = 2arctan (\/sin&ési) — sizhg(s;) , (2.12b)

sinh?(s) — sinh?

¥(s) = 2arctanh <\/sinh2(s) - SthE?;) , (2.12¢)

s+ = arcsinh <V|qiqo\> , (2.12d)
a
K18 f1=5 1
— = L = |—]. 2.12
q Ty =15 ’ﬂﬁ—ﬂ‘ (2.12¢)

As mentioned, the price of a European put can be calculated from the price of a European call
by the using put-call parity (2.9). The analytical formula (2.11) consists of two double integrals.
These integrals can be calculated numerically. This integration is slower but more accurate than
the easier to employ Hagan formula (2.3). This improvement in accuracy is especially visible for
long time to maturity and/or low strikes. To improve calculation speed the authors in [2] gave
an approximation for the function G(t, s).

inh 52
Gt ) ~ | T e 56 R, 5) 4 0R( ), (2.13)
where
3tg(s)  5t? (—8s* + 3g%(s) + 24g(s))
R(t,s) = 1+ FyoR 12353 , (2.14a)
+»Eﬁﬁ(—4B2+39%3)+2Qﬂ@)+1ﬂm@»
102456 ’
t 3072 + 384t + 24t% + 3
= — 2.14
OR(t,s) es 3072 ; (2.14b)
g(s) = scoth(s)—1. (2.14c¢)

For completeness, we give the derivation of approximation (2.13) in Appendix A.
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Figure 2.4: Volatility smiles calculated with (2.11).

The authors in [2] provided an exact solution for the zero correlation SABR model. Comparing
Figures 2.3 and 2.4 confirms this claim for the example given in Section 2.1.2, as indeed the
volatility smile moves in the correct direction in Figure 2.4.

2.2.2 Mapping to zero correlation case

In practice, the correlation in the SABR model is of course nonzero, i.e. dWi;dW, = pdt.
Antonov, Konikov and Spector explained how they used mapping techniques to produce a
mimicking model. In this case, the general SABR-model is mimicked by a SABR model with
zero correlation. For this mimicking model one can calculate the option price with formula
(2.11) and this price can be used as an approximation of the option price under the original
SABR model with correlation p.

The FSDEs of the mimicking model read:

~ N ~
dF, = & (Ft) awl, ERy=f. (2.15)
Aoy = vodW?, 5o = @, (2.16)
AW} dW? = o.
The authors in [2] fixed E and 7 and they approximated & from these two parameters as?
a=a" +ra® +0(1?%), (2.17)
where
20U i 7 KB _ 418
GO 2w g (Tmntpatvog)r —f , (2.18a)
P2 -1 (1+p)a ~- B
%(6 - B) log(Kf) + %log(aamin) -3 <05(0 \/5q V2 + a(O) > Bmin
a) — FO)z2 ,
¢2+1 log<(I))
(2.18b)
K-8 _ f1-8
Omin = V1V20¢2 + 2préqa + a2, dq = 1;, (2.18c¢)

2Note there is an error in the formula for &* given in [2], the correct formula is given in [3]
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Bp ( dqu + ap)
Bpin = — T — o — arccos(p) — 1), = arccos | —— |, (2.18d
RN (™ — o (P)=1); o p— (2.18d)
13L2 [arctan (\}L%) — arctan (ﬁ)] , for L <1,
I = 1 1 uo(L-l-m)-i-l f L 1 (2186)
Ji2—1 908 uo(L—vL2=1)+1 )’ or > 5
wy = 5q1/p + & — Omin I — Umin(l - B) (218f)

Squ/1—p2 K1=By\/1—p?

In [2], Antonov, Konikov and Spector claimed that good choices for E and v are given by

B=B and P=12- g [1/2/)2 +avp(l = B) P71 . (2.19)

They did not give a proof of the exactness of these choices and they mentioned that they based
their choices primarily on numerical experiments. In some cases, mapping the SABR model to
the mimicking model with this heuristic choices of 8 and v is however impracticable, e.g. v is

not a real number if p € ( 2/3, 1] or p~ —1.

We approximate the forward price of a European call option by using formula (2.11), i.e.
VZ%map(O) Ta K7 f7 «, /85 v, P) ~ VZ%(O’ Tv K7 fa 62) 57 Zj), (220)

where we denote the forward value of a European call option calculated by the mapping proce-
dure of [2] by VZCCmap.

2.2.3 Arbitrage

The authors in [2, 3] claimed that their approach is nearly arbitrage-free. This section gives a
view on the (absence of) arbitrage in the zero correlation pricing method (Section 2.2.3) and
the mapping to the zero correlation approach (Section 2.2.3) of Antonov, Konikov and Spector.
From now on, we call this method Antonov’s method or Antonov’s pricing approach.

Arbitrage in zero correlation model

Theoretically, Antonov’s pricing approach for the zero correlation model is arbitrage-free, be-
cause its developers gave an analytical formula for pricing in the zero correlation model. This
analytical formula is the exact solution to the model and therefore it leads to arbitrage-free
option prices. Antonov’s method is also compatible with the put-call parity (2.9), because the
method uses the parity to calculate put prices from call prices. Practically, numerical errors in
approximating the double integrals in (2.11) can however introduce arbitrage.

In Section 2.1.1, we provide an example of arbitrage as a result of pricing with the Hagan formula
(2.3). The PDFs of both Hagan’s formula and Antonov’s pricing approach, where p = 0 and
where the other parameters are the same as in Section 2.1.1, are shown in Figure 2.5. This figure
shows that for this example Antonov’s method is, neglecting numerical errors, free of arbitrage,
because the PDF is non-negative and the integral over the entire space equals one.

Arbitrage in mapping to the zero correlation model

The analysis of arbitrage in the case of the mapping to the zero correlation model is more
involved. The mapping parameter « is strike dependent, i.e. for every strike value K the pa-
rameter « is different, while the mapping parameters 8 and v do not depend on the strike K.
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Figure 2.5: The (incorrect) conditional PDF of Fr given Fy = f.

For p ~ 0 it holds that a(K) is approximately constant and for large values of |p| the function
a(K') behaves more like a higher degree polynomial. Figure 2.6 shows the function a(K) for
different values of p, while the other parameters are the same as in Section 2.2.3.

0 0.02 0.04 0.06 0.08 0.1 0.12
Strike K

Figure 2.6: « for different values of p.

The non-constant function a(K) can result in arbitrage possibilities. Function a(K) has speci-

. Lz e da d’a i 3
fically influence on —%% when both g% and $5 are large. As in (2.10) we have
Vi
= T F . 2.21
K2 K—Py QFT( ) |f7 a) ( )

This implies that a(K) has influence on PDF Qp,. (T, F|f, &) when both ‘%‘ and ‘ g;g ‘ are large.
If @(K) is constant, Antonov’s pricing approach represents the arbitrage-free zero correlation
case (2.11). For small values of |p|, Antonov’s pricing approach remains in general arbitrage-
free, because for these values of p it follows that ’% and ’3275& are also small. On the other
hand, large values of |p| can lead to non-convex option prices (mostly for high strikes). This is
d2a
K
and therefore they have a significant influence on Qp,. (T, F|f, ).

a consequence of the fact that ‘% and

are often relatively large for large values of |p|

These arbitrage possibilities are thus generally present for large |p|, small 5 and long time to

3Since formula (2.20) is for the forward option value we can omit the discount factor
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maturity T, as is shown in Figure 2.7. The result in this figure are based on the parameters
f=0.05735, B =0.1, « = 0.05735, p = —0.7, v = 0.47 and T" = 20.

15[

10¢

PDF

0 005 01 015 02 025
Forward at time of maturity FT

Figure 2.7: Incorrect PDF determined with Antonov’s method.

2.2.4 Brief analysis

In this section we give a view on some properties of Antonov’s option pricing approach in relation
to the Hagan formula (2.3) for pricing European options under the SABR model.

e Antonov’s [2] pricing approach is near arbitrage-free, wheras option pricing with the Hagan
formula often implies arbitrage for low strikes as explained in Section 2.1.1.

e Antonov’s method gives an analytical formula for option pricing in the zero correlation case.
This analytical formula is an exact solution for the model and can be easily computed. On
the other hand, the Hagan formula is in most cases not accurate for long time to maturity.

e Pricing with Antonov’s method is slower than with the Hagan formula. Also, the mapping
parameter « is strike-dependent when considering the mapping. This makes the pricing
procedure expensive when p # 0.

e The Hagan formula is applicable for every value of 3, «, p and v. Antonov’s method is
not applicable for several values of the parameters, e.g. mapping parameter v ¢ R for high
values of |p|.

e The mapping parameters given in Section 2.2.2 are based on heuristics and it is not proven
that these parameters are the optimal choices.

e The method of Antonov, Konikov and Spector is in general more accurate for longer time
to maturity than Hagan’s formula. A requirement for this is that the mapping parameters
exist. The derivation of parameter « is accurate to O (T'), so this parameter is less accurate
for long maturities 7. Still, Antonov’s method behaves better than Hagan’s formula for
long time to maturity, especially when the correlation parameter p is small.

2.3 Hagan’s arbitrage-free approach

Hagan, Kumar, Lesniewski and Woodward improved their formula (2.3) to an arbitrage-free
option pricing approach. In 2013 they introduced another pricing method for the SABR model
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[15]. In this thesis, we call this method Hagan’s arbitrage-free pricing approach. The authors in
[15] reduced the SABR model from two dimensions to one dimension and derived a PDE for the
conditional PDF Qp, (T, F|f, ), which is exact up to O(T"). Hagan’s arbitrage-free method is a
small maturity method, just as the original Hagan formula. The PDE can be solved numerically
with a finite difference scheme, e.g. the Crank-Nicolson scheme. In Section 2.3.1, we give the
PDE and the finite difference scheme for this PDE is given in Section 2.3.2. Next, Section 2.3.3
shows under which conditions this pricing approach is free of arbitrage. We give the formulas to
price European options with this method in Section 2.3.4 and we discusses the accuracy of these
formulas in Section 2.3.5. Finally, some advantages and disadvantages of this pricing approach
are given in Section 2.3.6.

2.3.1 The PDE for the conditional probability density function

The idea of Hagan’s arbitrage-free method [15] is to derive a PDE for the conditional PDF
QFr,(t, F|f,«) with singular perturbation methods. In this section, we abbreviate Qp, (¢, F'| f, «)
by Q(t, F'). Like the Hagan formula, the computed Q(t, F') is accurate for small time to maturity.
When Q(t, F) is computed for some ¢ € [0, 7], one can determine the forward value of European
options with time to maturity ¢ by using the following formulas

VC(O,t,K,f,a):/OO(F—K)Q(t,F) dr, vFP(,t, K, f,a):/K (K—F)Q(t, F) dF. (2.22)
K —00

This pricing method is free of arbitrage when Q(t, F') is a probability density function and when
the put-call parity (2.9) holds. Therefore, the requirements for this method to be arbitrage-free
are

° Q(t,F) >0,
o [CLQ(F) dF =1,
e VO(0,t,K, f,a) = VF(0,t,K, f,a) = f — K. When [*_Q(t,F)dF =1,

o) K
VOO K L) - VIO LK fa) = [ (F-K)Q@F) dF - [ (K- P)QW.F) dF
K —00

= /OO FQ(t, F) dF — K,

which results in the last requirement [*_ FQ(t,F) dF = f.

The authors in [15] derived a PDE for Q(¢, F') and they wanted to solve this PDE on a finite
domain [Fiin, Fimax] where 0 < Flin < f < Fpax. Fmin = 0 is often a good choice. Hagan,
Kumar, Lesniewski and Woodward used a finite difference method to solve the PDE on a two-
dimensional grid. They defined

0, for F' < Fmin;
QY (t)6 (F — Fui) , at F = Fuin,
Q(t,F) =1 Q°(t,F), for Foin < F < Faax, (2.23)
QT (t),0 (F — Fpax) at F = Fuax,
0, for F > Fihax.

Substitution of (2.23) in the three requirements above results in the following no-arbitrage
requirements:

QM (1),Q(t, F),Q%(t) > 0, (2.24)
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Frnax
Q (1) + / Q°(t, F) dF + QF(t) = 1, (2.25)
Fmin
Fmax
FroinQF (1) + / FQ(t,F) dF + FuaxQ®(t) = f. (2.26)
Fmin

Just as in their original pricing method (2.3), the authors in [15] used singular perturbation
techniques to determine the following PDE

0Q(t, F) 0? .
61& - aFg (M(t7F)Q (taF))v (227)
where
1
M(t, F) = 5042 (1+2pvz(F) + Z/QZQ(F)) exp (pral (F)t) F?8, (2.28)
Fl—ﬁffl—ﬁ
A(F) = 71 a=F) for 0 < p <1, (2.29)
o (log(F) —log(f)), for f=1,
FB_yB
rF) = | Fgo forFA) (2.30)
BFA=1 for F = f.
These equations come with the boundary conditions,
lim M(t, F)Q°(t,F) =0, Flim M(t, F)Q“(t, F) =0, (2.31)
and for 0 <t < T, we find
QN _ v O e mere ), 9D e et ). (232)
dt  F|Fym OF ’ A dt  FFmax OF ’ o '
The initial conditions are
QF(0) = 0, Q%(0) = 0, at F = Fyay, (2.33)
ltiﬁ)ch(t’F) = O(F — f), for Fiin < F < Fiax- (2.34)

The derivation of (2.27) is given in Appendix B.

2.3.2 Finite difference scheme

The authors in [15] employed the Crank-Nicolson scheme to solve (2.27). In [11], Le Floc’h and
Kennedy used alternative schemes for solving this PDE. Le Floc’h and Kennedy also compared
the results and properties of these different schemes. We will now follow [15].

Define a two-dimensional grid, where N and J are the number of time steps and the number of
steps in the forward F', respectively. Let At = T/N define the size of a time step and make sure
that J is chosen such that Fi,ax = Finin+Jh and f = Fiin+(jo—1/2)h for some jg € {1,2,...J}.
Define Fj = Finin + (j — 1/2)h for j = 1,...J and let cell j be defined by [F; — h/2, Fj + h/2].

Let QF = Q°(nAt, F;) be the PDF of F' = Fj at time nAt, where n =0,1,..., N. Assume that
the probability AQ7 is spread uniformly in each cell j and let M;" = M (nAt, Fj), Q7 = QL (nAt),
and Q% = Q®(nAt). Using the Crank-Nicolson scheme we obtain the following discretization of
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Q;}—H _ Qn o { ;Lj_llQ;l::ll 2Mn+1Qn+1 +Mn+1Qn+1}

+ 272 {M;LHQ;?H —2MIQT + M, Q" }, (2.35)

and for the boundaries
o - Q?+%{M”“Q““ CaMpTQET 4 MO BMIQE),  (2.36)
Q= Qi+ th S (M QI - BTy ML Q) - BMQY) . (237)

and

7LL+1 = Q'+ ﬁ {M{LHQ"H + M7QT}, (2.38)
AR QR+—{M”+1Q"+1+MJQJ} (2.39)

where the initial conditions are given by

0 _ o_J 0 for j # jo, 0 _
QL - 0’ Q] - { ]./h, for ] — jOa QR =0. (240)

To advance from time nAt to time (n+1)At one can solve the system (B.36) with the tridiagonal
matrix algorithm, also known as the Thomas algorithm.
2.3.3 Arbitrage

As explained in Section 2.3.1, there are three requirements necessary for the discretization to be
free of arbitrage (2.24), (2.25) and (2.26). Requirements (2.25) and (2.26) hold for the Crank-
Nicolson scheme, which can easily be shown by induction. Requirement (2.24) only holds for
specific choices of J and N. Here, we give an analysis for the system (B.36) and derive an
intuitive bound* for N compared to J by means of induction. This analysis uses the claim that
M(F,t) >0 for all F >0 and ¢t > 0. In Appendix B we give a proof of this claim.

The derivation of this intuitive bound is also based on induction.
One can easily observe that for n = 0 it holds that

QL,Q}, QR >0, for all j € {1,2,...,J}. (2.41)
Let us assume, for some n € {1,2,... N — 1},
QL,Q7,Qk >0, for all j € {1,2,...,J}, (2.42)

then Q?H can be found by solving system (B.36). Let (2.43) be the abbreviation of (B.36),

where A is the concerning J x J matrix and @” is as defined in Appendix B.

A-QUt =qQ" (2.43)

4The exact bound depends on «, 8, v, p, f and T.
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One can observe that A;; > 0and A;; <0 foralli,j € {1,...,J}, where j # i, because M (t, F)
is a non-negative function. Also, when % is small enough, then not only is A irreducibly
diagonal dominant, but also holds @” > 0 there. A is an M-matrix [27, Theorem 2.10] and
therefore A=! > 0. It holds that Q™" > 0 when both Q™ > 0 and A~! > 0. Now, we can
observe that Qzﬂ > 0 and Q%H > 0. By induction requirement (2.24) always holds when %
is chosen small enough.

1007 T T

—N=5
— N=10
80+ — N=50
L 60f .
[a]
o
40¢ 1
20} 1
0

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Forward at time of maturity £

Figure 2.8: The (incorrect) conditional PDF of Fr given Fy = f for different N.

Requirement (2.24) does not hold when % is too large, as shown in Figure 2.8. For the results

in this figure we set the parameters T'= 0.5, f =0.05, 5 =0.5, a =0.03, p = —0.25, v = 0.6,
Fuin = 0, jo = 100 and J = 500. For small N there are oscillations in the PDF. For N = 5
these oscillations lead to negative densities and therefore to arbitrage. For N = 10 there are
also oscillations, but no negative densities. In this case there is no arbitrage, but the PDF is
not a smooth function like for N = 50.

2.3.4 Pricing formulas

One can price European options by substituting the approximations for Q¢(T, F), Q(T) and
QT (T) in formula (2.22), which gives for Fiuin < K < Finay:

J
VEO,T,.K, f,0) = (Fuax—K)Qu+ Y WEF; —K)QY + %Qj{(me +jkh — K)?,  (2.44)
J=jk+1
Jr—1 1
j=1

where ji € {1,...,J} such that Fni, + (jx — 1)h < K < Fiin + jih and

VE(0,T,K, f,a) =0, VE0O,T,K, f,a) =K — f, when K > Fiax, (2.46)
VE0O,T,K, f,a)=f — K, VE(O,T, K, f,a) =0, when K < Fiin, '
where we denote the forward values of a European call option and a European put option
calculated with Hagan’s arbitrage-free pricing approach [15] by VI(f and Vlf , respectively.
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2.3.5 Accuracy of Hagan’s arbitrage-free method

The PDE (2.27) for the conditional PDF Q(T), F') is exact up to O(T) [15]. Hagan’s arbitrage-
free pricing approach is thus only accurate for small maturities, as is it shown in Figure 2.9.
The results in this figure are based on the parameters from Section 2.1.2 and comparison of this
figure with Figure 2.3 shows that the smile for T = 1 is accurate. However when T increases,
the smile given by Hagan’s arbitrage-free method moves in the wrong direction. The Hagan
formula exhibits this same behaviour.
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Figure 2.9: Volatility smiles calculated with Hagan’s arbitrage-free pricing approach.

2.3.6 Brief analysis

In this section we summarize some properties of the arbitrage-free option pricing method by
Hagan, Kumar, Lesniewski and Woodward. We compare it with their original method described
in Section 2.1.

e Both methods are small maturity methods, which means that the methods are not accurate
for long time to maturity.

e Hagan’s arbitrage-free method is arbitrage-free when % is small enough. So, it is possible

to obtain arbitrage-free prices by decreasing the size of a time step At or increasing dis-
cretization step h. The Hagan formula (2.3) is not always free of arbitrage as it is shown
in Section 2.1.1.

e Pricing with the Hagan arbitrage-free method is slower than with the Hagan formula.

e For Hagan’s arbitrage-free pricing approach one has to solve a linear system on a grid
for every time step. For increased accuracy the size of the grid should increase. As a
consequence also the number of time steps has to be increased to ensure arbitrage-free
prices. As a result, both the required computer memory and the CPU time will increase.

We wish to provide an arbitrage-free method to price European options under the SABR model
that is accurate. Since the pricing methods discussed in this chapter are or not arbitrage-free,
or not accurate for long time to maturity, or both, we develop a new pricing method in Chapters
4-6.



Chapter 3

The BCOS method

M.J. Ruijter and C.W. Oosterlee developed a Fourier method [25] to solve backward stochastic
differential equations (BSDEs) using the characteristic function of the underlying process. This
method is called the one-dimensional BCOS method (Backward Stochastic Differential Equation
COS method). When the underlying forward stochastic differential equation (FSDE) can be
written as

dXt = /L(Xt) dt + O'(Xt) th, X() =, t> O, (31)

and the corresponding characteristic function cannot easily be derived, we can use the charac-
teristic function of a discrete forward process to approximate the solution [24]. The underlying
FSDE (3.1) is approximated by different Taylor schemes, such as the Euler, Milstein and Order
2.0 weak Taylor schemes.

In this section we explain the BCOS method where the characteristic function is approximated
by the characteristic function of the discrete forward process and the contents of this chapter
is quite similar to the method in [24]. In Section 3.1 we describe the discretization of the for-
ward process X; by different Taylor schemes and give the corresponding characteristic functions.
We give an introduction of the COS method in Section 3.2. In Section 3.3 we give the BCOS
method to price financial derivatives for which the underlying is of the form (3.1). Formulas to
approximate some conditional expectations are given in Section 3.4. In Section 3.5 we present
briefly how to apply the BCOS method for a European option (without early-exercise dates).
In this section we also explain how to proceed if there are early-exercise dates in the option
contract. In Section 3.6 an error analysis is given. Finally, we give two examples of pricing with
the BCOS method in Section 3.7. We will employ the one-dimensional BCOS method to price
options under the SABR model in Chapter 4.

3.1 The discrete forward process and its characteristic function

Just like Ruijter and Oosterlee [24], we define! a time-grid t; = jAt for j = 0,1,..., M, with
fixed time steps At = L. We write X,, = X3,,, Wi, = Wy, and AWy = Wing1 — Wi, The
discrete forward process is denoted by X% = Xﬁ , where XOA = Xy. To determine the values
Xﬁ 11, form =0,..., M —1, we use one of the following Taylor schemes: Euler, Milstein, or 2.0
weak Taylor.

'From now on we redefine some symbols, e.g. M, N and z which are defined differently in Chapter 2.

17
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According to Kloeden and Platen [18] the definitions of the order of strong convergence and the
order of weak convergence are:

Definition 3.1. The approzimating process X2 converges in the strong sense with order v, €
(0, 00] if there exists a finite constant C' and a positive constant § such that

E [|Xm — Xii|] < CAn)™, (3.2)
for any time discretization with mazimum step size At € (0,0).

Definition 3.2. The approzimating process X2 converges in the weak sense with order vo €
(0, 00] if for any polynomial g there exists a finite constant C' and a positive constant § such that

[Elg (Xan)] —E [g (X5)]| < C(aD™, (3:3)
for any time discretization with mazimum step size At € (0,06).

The Euler scheme
The Euler approximation for FSDE (3.1) has the form

X3y, = X2+ p(X2)AL+ 0(XE)AWpi1, (3.4

for m = 0,...,M — 1. The order of strong convergence is 73 = 0.5 and the order of weak
convergence is vy = 1.

The Milstein scheme
The Milstein approximation for FSDE (3.1) has the form

do(X5)

XA (AWpmi1)? — At),  (3.5)

1
X1 = X + p(X) At + 0 (X)) AW,pp1 + §U(Xr%)
form=20,...,M — 1 and where vy =1 and 72 = 1.

The weak Taylor scheme of order 2.0
The weak Taylor scheme of order 2.0 for FSDE (3.1), given X2 = x, has the form [18]

Ko = a4 p@AL o) AW+ Lo(@) T (AW - A1)
X x 2 X
+ d‘;ya(x)AZmH + % <M(x) d’é(w )4 %d d‘;g %%)) (A1)’ (3.6)

o(z 2o(x
+ <,u(x)dd(x ) + ;UQ(x)ddx(Q )> (AW 1 At — AZpir)

where AZ,,11 = % (AW AL + QmH(At)?’/Q), Cm+1 ~ N(0,1/3) and m = 0,...,M — 1. For
the weak Taylor of order 2.0 scheme it holds that v; =1 and v, = 2.

We observe that

E[AZpy11] =0, Var (AZpy1) == (At)?  and  Cov(AWpi1, AZpmi1) = = (AH)*.  (3.7)

1 1
3 2
If we replace AZ,, 11 by AZy, 11 = %AWmHAt as the authors in [24] suggested, then

(A)®  and  Cov (AWpp1, AZpmi1) = = (A, (3.8)

N |

E[AZm+1] = 0, Var (AZm+1) =

=
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This replacement has the same moments in first order and simplifies the scheme. Ruijter and
Oosterlee called this new scheme 2.0-weak-Taylor and they observe that v = 1 and v = 2 for
the 2.0-weak-Taylor scheme.

Similarly as in [24], we can write the discretization schemes in general form, as follows:
Xo =z +m(x)At + s(2) AWpi1 + K(2) (AWii1)?, XA =g, (3.9)
For the Euler scheme, we find
m(x) = p(x), s(x)=o(x), k(x)=0, (3.10)

for the Milstein scheme, we have

m(@) = u(x) ~ 50 T s(a) = ola), wlx) = o) T, (3.11)
and for the 2.0-weak-Taylor scheme, we see that
mz) = plz)— ;a(x)dzgf) +s (u(m)dﬁf) + ;dZZ(;)”Q(w)> At,  (3.12a)
s(@) = o)+ (d/;;x)a(x) + () dZS“") +50%() diﬁ?) At. (3.12b)
K(z) = %0( )d‘;f:) (3.12¢)

For the discretization schemes above we can determine a characteristic function, which is given
in the lemma below.

Lemma 3.1. The characteristic function of X,ﬁ_i_l, given X5 = x, is given by

¢XTAR+1 (u |XT% = x) = [E [exp (iuXﬁH) ‘Xﬁ = m]
= exp (zuw + ium(x)At — m> (1-— 2ium(m)At)_%. (3.13)
Proof. For k(z) =0,
<Z>X7%+1 (u }Xn% = ac) = E [exp (iuX,%H) ‘X,% = m}
E [exp (iuz + ium(z) At + ius(z) AWp11) ‘X,% =z

= exp(iuzr + ium(x)At)E [exp (tus(z) AW,nt1)], (3.14)

where AW, 41 ~ N(0, At). This implies

¢X$+1 (u ‘XT% =x) = exp(iur + ium(z) At)opo,an (us(z))

= exp (zux + ium(z)At — ;u232(1’)At> . (3.15)

For k(z) # 0, we find
@bxﬁﬂ (U ‘Xﬁ = 17) =E [exp (z’uXﬁH) ’X,% = a:]
= E [exp (iux + ium(z) At + ius(x) AWpnp1 + iur@(x)(AWme)}
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=E

2
o it o (374 1Y 269)

K(
— exp (zu:p +ium(z) At — ius 52(9”)) E [exp (H(x)iu (AWmH + ;S(x)>2>] , (3.16)

4 k(x) k()

, 2
where AWmH—F% zg)) ~N (2 K((x)) At) or equivalent by N (AWm+1 + %Z((x))) X12 ( 1 Hf (gg)x)m)
which denotes the noncentral chi-sqaured distribution with one degree of freedom and noncen-

trality parameter }1 28( (T)At Hence,

¢X$+1 (u ‘Xﬁ =x)=exp <zuac + ium(x) At — iu lei((;))) ¢x;2(1 2(x) ) (uk(z)At)

4 k2(z)At
. . . :c) iu ‘ _1
- At — iu= 1-2 A
exp (zu:r + ium(z)At — iu @) ( 1 ~Siun(a )At) ( iuk(z)At)” 2
Fu?s?(z) At 1

to

= exp (zux + ium(z)At — ) (1 — 2iuk(z)At)" 2 (3.17)

1 — 2iuk(z)At
O

3.2 COS method

We wish to derive the value V(0,7, Xy) of an option at time 0 with as underlying X; and
expiration date T. The payoff of the option at time T is given by V(T,T, Xr) = g(Xr) for
some function g, and we assume that there are no early-exercise dates. The value of the option
V(0,T, Xp) is given by the risk-neutral valuation formula:

V(0,T, Xo) = e "TE [g(X7)| Xo] = e—’"T/Rg(X)QXT(T,XyXO)dX, (3.18)

where 7 is the risk-free interest rate and Qx, (7, X|Xo) is the probability density of X7 = X
given Xj.

The value of the option V (0,7, X() can be obtained by the COS method of F. Fang and C.W.
Oosterlee [9]. As they explained, the density Qx, (T, X|Xo) decays to zero as X — =+oo.
Therefore, we can integrate over a finite interval [a,b] C R instead of integrating over the entire
space, to approximate the option value

b
V(O,T,Xo)ze_”T/ 9(X)Qx, (T, X|Xo) dX. (3.19)

Suppose this choice of [a, b] is not only chosen such that the option value is approximated well,
but is also chosen such that the characteristic function of f can be approximated by integrating
over [a,b] instead of integrating over the entire space,

b
dxp(w]Xg) = / X Qx, (T, X|Xo)dX ~ / X Qx, (T, X|Xo) dX. (3.20)
R a
Using the Fourier-cosine expansion of the density results in
Qux, (T, X|Xo) = Z Ay cos kn 2 (3.21)
e b—a )’

k=0
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where Y indicates that the first term in the series summation is weighted by one-half and

2 b X —a
Ak = b—a/a QXT(T,X|X0) COS (]CT(' b a > dX. (322)

Rewriting A and substitution of the approximation of formula (3.20) leads to

2 [P X—a
A, = b—a/a QXT(T,X|X0)cos(k7Tb_a) dX
2 b X —-a
= b—a/a Qx, (T, X[ Xo)R [exp (kab—aﬂ dX

_ ik —> bQ T, X|X, k) dx
= W |exp | —ikm— /a x, (T, X|X0) exp ik —

2 , a km
m?ﬁ [exp <—7,k7rb — a) dxp (b . X0>] . (3.23)

Now, we truncate the series summation by setting N as the number of Fourier coefficients
employed, which leads to

Q

Nf
Qx, (T, X|X0) ~ > Ay cos <k7r)b( — “) : (3.24)

—a

k=0

~ 2 , a km

Ak = m% [exp <_Zkﬂ-b—a> ¢XT <b —a X0>:| . (325)

Finally, we can derive the option pricing formula of the COS method by using Fubini’s theorem

~

where

b
V(0,T,Xy) =~ e_TT/ 9(X)Qx, (T, X|Xo)dX
b N_% X
—rT —a
e /a g(X)Z Akcos<k7rb_a)dX
k=0
N_ll b X —a
—rT B
= A X k dX
e kZ:O k/ag( )cos(wb_a)

N-1
e N km ‘ a
e ;) ng:e |:¢XT (b—a’ Xo) exp <—'lk77b — a>:| s (326)

%

Q

where

:b—a b—a

Often Y in (3.27) is governed by an analytical expression.

Ve = 2 /abg(X) cos <ka — “) dX. (3.27)

3.3 BCOS method

Just as in the previous section, we wish to derive the value V' (0,7, Xy) of a derivative at time
0 with as underlying X; and time to maturity 7', where the FSDE of X, is given by (3.1).
The payoff of the option at time T is given by V(T,T, X7) = g(Xr) for some function g. We
assume that we work in a complete market and therefore we can make a self-financing portfolio
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Y, consisting of a; assets and bonds with risk-free return rate r, such that Yr = ¢g(Xr). For
0<t<T, we have

dY; = T(n — atXt) dt + a; dX; = (’I”Y% + (,LL(Xt) — T‘Xt) at) dt + O'(Xt)at dW;. (328)

If we set Z; = o(X¢)ay, then (Y, Z;) solves the BSDE

Y, = —f(t, X,,Ys, Z)dt + Z, dW,, Y = g(X7), (3.29)
fltz,y,2) = —ry—“(”;)(;)”’z. (3.30)

The functions ¢ : R — R and p : R — R in FSDE (3.1) are assumed to be twice differentiable
with respect to x, satisfy a Lipschitz condition in x and satisfy a linear growth condition in z.
The function f : [0,7] x R x R x R — R is assumed to be uniformly continuous with respect
to = and satisfies a Lipschitz condition in (y, z), with Lipschitz constant Ly and the function
g : R — R is assumed to be uniformly continuous with respect to . Also, there exists a constant
C such that |f(t,z,y,2)| + [g(z)] < C(1+|z|P + |y| + |2]), p > 3 holds 2. Y} is a self-financing
portfolio, and therefore the option value is given by V(0,7T, Xy) = Yp.

We make a time grid of M + 1 time points, where t; = jAt and At = % Integrating gives

T T
Y() = g(XT) + / f(t,Xt,Y;f, Zt) dt — / Zt th (331)
0 0
At time t,, we observe that
tm+1 tm+1
Yo =Y + / ft, X, Y, Zy) dt — / Zy dWy. (3.32)
tm tm

We take conditional expectations at both sides of the equation and apply the #-method, for
some 0 € [0,1] (§ = 1/2 corresponds to the Trapezium Rule)

tm+1
Yoo = En[Yims1] + / En[f(t, X, Y, Zy)] dt (3.33)
tm
=~ Em [Ym+1] =+ At&f(tm, Xm, me Zm) =+ At(l — Q)Em [f(tm—i-l, Xm+1, Ym+1, Zm_|_1)]. (334)

Analogously, we find by multiplication with AW,,,+1 and taking the conditional expectation:

tm—+1
0 = B[Vt AW + / By [f (6, X2, Yo, Z0) (Wi — Wi )] dt
tm

tm+1
- / Epn[Z] dt (3.35)
tm
~ Em [Ym+1AWm+1] + At(l - Q)Em [f(tm+17 Xm-l—la Ym-‘,—la Zm—l—l)AWm—l—l] - AtHZm
— AH(1 = 0)En[Zma)- (3.36)

Using one of the approximation schemes of Section 3.1, and formulas (3.34) and (3.36) gives, for
m=M-—1,...,0,

VA = EnVi]+ AOf (b, X5, V.5, Z5) + At(L = OB, [f (tms1, X5 41: Vi1, Z501)]

m my -m>

2The conditions on the functions f and g guarantee the existence of a unique solution (Y, Z) to BSDE (3.29)
[24]
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(3.37)
1 1-0
Zn = 7B Yo AW + == [f (bmi1, X1, Yier Zin1) AW
1-46
- 0z, (3.38)
Y8 = g(X8), and 23 = o(e) W) (3.39)
dz x:Xﬁ
We observe that Y2 and Z5 depend on the value X2, so when X2 = z, then for m =
M-1,....0
YA@) = B [V (Xal®)| + A (tn, 2.V (@), Zi())
AU = OB | (o, X l2" Vi (X0017)  Z0a (X07)) ] (3.40)
A o 1 A Am,x _ 1-0 A A,m,xz
Zn(2) = pEm |:Ym+1 (Xm+1 )AWm—i—l} —5 Em [Zm+1 (Xm+1 )]
1-46 m,x m,x m,x
t — Em [f (th,Xﬁer Yo (XnAqﬁrf ) + Zim1 (XnAz’H’ )) AWmH} ,(3.41)

where Xﬁf{’m denotes the value of X2, | given X2 = z. Y,3 () is implicit for # > 0 and can be
determined by performing P Picard iterations [25], starting with initial guess E [Ynf 1 (Xﬁ;:nl’z)} .

The next section explains how we can approximate the conditional expectations in formulas
(3.40) and (3.41). The value of the option is approximated by V (0,7, Xo) = Y (Xo)-

3.4 Approximation of the conditional expectations

For each m € {M —1,...,0}, we wish to approximate the following conditional expectations:
o i (2], (2 (VR s () ]

B [£ (o XT3 Vi (X2007) 2000 (X737 )] and

B [ (bt X Yides (X572 (X2037) ) AWona ]

We generalize this by deriving an equation for the conditional expectations E [h (th, X ﬁﬁx)}

and E [h (tm+1, Xﬁﬂ’x) AWmH} for a general function h(t,x).

Using the COS approximation with the characteristic function of the discrete scheme (3.9) we

find
N-1 !
m,r ™ i a
E [h (tm+1,Xﬁ’+1’ )} ~ 2 Hi(tm1)R {ébxﬁ“ (b—a X = l‘) exp <—lk7fb_a> } ,(3.42)
and

E [h (th, Xﬁﬁ“) AWmH]

N—% XA,m,:v
~ Z Hi(tms1)R {E exp (ikﬂ&) AWmH] exp <—ik7rb f a) } . (3.43)
k=1
Using the fact that AW,,4+1 ~ N (0, At) and integration by parts gives

E [exp (quﬁﬁ’x> AWmH}




24 Chapter 3. The BCOS method

=E [exp (zuq: +ium(z) At + ius(x) AWt + tuk(x) (AWmH)z) AWmH}

2
exp iux + tum(z) At + ius(z)y + iut@(:v)gf) d( —Ate 2a
\/H

At . . . , y? f
— /20y + At + n 2_ Y
5 Al [exp (zum ium(z) At + ius(z)y + iuk(x) 5 t)} »

+m / Ate~ 35t d (exp (tux + fum(z) At + ius(z)y + iur(z )y?))
=0+ \/;/_ (tus(z) + 2iuk(z)y) exp (iux + ium(z) At + ius(z)y + ium($)y2) 6_2% dy

= jus(z)AtE [exp (quA " x)] + 2iuk(z) AtE [exp <quA ey x) AWmH} : (3.44)

The last term can be evaluated in an analogously way, and so on, which results in
E [exp (quﬁﬁﬂ AWmH} = qus(z)At Z(Qﬁ(m)At)" (iu)"E [exp (quT%ﬁ x)}
= dus(z)At Y (26(2)A1)" ()" dya  (u]Xp =x). (3.45)

We take the first two terms and leave only an O ((At)?’) error, which gives

N—1
/ km

%k(tm-f—l)%{ {ZHS(@AWXTA”H (b—a X = :1:)

XA = x)] exp (ikmb - a> } . (3.46)

2 b T —
Hi(tmt1) = b—a/ h(tm+1,x) cos k:Trb

E [ (tnsr, Xof1") AW | ~

k=1

— 2s(z)k(z) (At)? (&)QQZ)X?%H (bk—ﬂa

where

“) da. (3.47)

—a

Let Y2 (tm), 28 (tm) and F2(t,,) denote the Fourier-cosine coefficients of, respectively, Y5 (z),
Z5(x) and f (tm, 2, V5 (2), Z5(2)), Le.

b —_—
VA(tn) = b2a/ YA () cos <ka2> dz, (3.48)
b _
25t = bfa / 75 (2) cos (mi_é‘) dz, (3.49)
A 2 b A A Tr—a
FR(tm) = b_a/ f (tm, 2, Y5 (2), Z5 (2)) cos <k7rb_a) dx, (3.50)

Vitltmn) = bfa/bg COS( Z ) x, (3.51)

2 b g(z) T —a
Z8ty) = b_a/ o ()2 g (/mb_a> dz, (3.52)
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; 2 - /abf (tm,x,g(x),a(m) dif)) cos <lm“z:z> da. (3.53)

If the above integrals cannot be computed analytically, we can approximate them by computing
the function on an z-grid and using the discrete Fourier-cosine transform or another numerical
integration method.

Fit(tar)

3.5 BCOS method summarized

We define a time-grid ¢; = jAt for j = 0,1,... M, with fixed time steps At = % The algorithm
reads:

Initial step: Compute the terminal coefficients Y2 (tar), Z2(tar) and F2 (tpr) with formulas
(3.51), (3.52) and (3.53).

Loop: Form=M —1tom=1

approximate the necessary conditional expectations with Section 3.4 and compute functions
Y2 (z), Z5(z) and f (tm,z,Y,5(2), Z5(x)) for z € [a,b] with formulas (3.40) and (3.41).
Thereafter,  compute/approximate the corresponding Fourier-cosine coeffcients
VR (tm), ZR(tm) and F2(ty,) with formulas (3.48), (3.49) and (3.50). Those inte-
grals can be approximated by computing the function on an z-grid and using the discrete
Fourier-cosine transform or another numerical integration method.

Terminal step: Compute Y2 (Xp) and Z5(Xo).

We approximate the value V (0,7, Xo) of the option by V(0,T, Xo) = Y{*(Xo) and the corre-
sponding Delta by

v (0,1,%) ZO (‘-(0)
A L .54
0 ()JZ‘ =X, g (X(]) ’ (3 g )

which corresponds to the amount of assets in the self-financing portfolio Y; at time ¢ = 0.

Remark 3.1. If an option is governed by early-exercise dates 7; for j = 1,2,...,n, then we
choose At such that each of the early-exercise dates corresponds to a point in our time-grid. We
replace formula (3.40) by

.
max {g(:c),IEm YH%H (Xﬁﬁ’mﬂ + ALl f (tm,x,er(x), Z,%(a:))
£ A= 0B 1 (tmer, X" Vi (XA07) 20 (K2} fortn =

B [V (Xnf1")| + AW (t, 2.V (@), Z5 (@)
\ —|—At(1 - H)Em |:f tm+17XnA1ﬁ7x,Y$+1 (Xﬁﬁ,x) ’Zﬁ+1 <X$ﬁ:x>)i| , fO’I" tm 7& Tj,

and formula (3.41) by

o) 42, for tn =73, Y2 (@) = 9(o)

m

A —
(@) = B [V (XA AW | — 2B |28, (X570
108 1 (b X3 Vi (X077) 20000 (X0757) ) AW | otheruise
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form = M — 1,...,0. In Section 3.7 we give an example of approrimating the value of a
Bermudan option by using the BCOS method and in Section 4.8 we explain more about path-
dependent options, such as Bermudan options.

3.6 Error analysis

In this section we perform an error analysis for the BCOS method under the risk-neutral Q-
measure, because we will not use the physical P-measure in the development of the method
to price European options under the SABR model in Chapters 4-6. This means basically that
we only analyze the error in the option price Y, and not the error in the Delta Z,,. There-
fore, we abbreviate f(t,x,y, z) to f(t,z,y). Nevertheless, we give the formulas for pricing under
the P-measure in this chapter and in Chapter 4, to make these formulas available for general use?.

The error in option value Y;,, consists of four different components, namely the error as a result
of the A-time-discretization, the #-method-discretization, the COS method, and the Picard
iterations. Just like Ruijter and Oosterlee [24], we perform the error analysis for the 2.0-weak-
Taylor scheme and parameter 6 = % In Sections 3.6.1 and 3.6.2, we discuss the local errors as
a result of the A-time-discretization and the #-method-discretization, respectively. In Section
3.6.3 we give a short overview of other errors related to the BCOS method. Finally, we consider
the global error in Section 3.6.4. For the error analysis we use the notation and results of
Appendix C.

3.6.1 Local error A-time-discretization

Let Xn"ffl and X ’m’w denote, respectively, the values of X,,+1 and X2 mi1 given X, = x, where
A,m,x
X s 11l

mi1 1s derived by the 2.0-weak-Taylor scheme.

Lemma 3.2. For a sufficiently smooth function h(t,x) we have the following local weak error

E [h (tmsr, X5) = B (tmﬂ,xﬁf}@)} -0 ((At)3) . (3.55)

Proof. The 2.0-weak-Taylor scheme corresponds to

m,r 1
Xﬁ;l’ = Z ca(:E)Ia,tm,th + C(071) ($) <2AWm+1At — I(Ovl)vtmvthrl)
acA
1
+ C(Lo)(l‘) (2AWm+1At - I(l 0) tm,t ,,L+1> ) (356)

where ¢(z) = z and A = {v,(0), (1), (0,0),(0,1),(1,0),(1,1)}. By Lemma C.2, we have for all
leN

1
E [(X;Zfl - Xph*) } -0 ((At)3) . (3.57)
A Taylor series expansion of function h around Xﬁﬁ T = X" gives
A ,M,T - Am,x ! al m,x
h (th, o ) Z ( e XA ) (b1, X)) - (3.58)
=0 (8 m+1)

3In risk management the possibility of valuing under the P-measure is important, e.g. for value at risk (VaR)
and for credit valuation adjustment (CVA).
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Combining formulas (3.57) and (3.58) implies

E [h (tmgr, X5) = B (th,Xﬁﬁ@)} ) ((At)3) . (3.59)

3.6.2 Local error 9-method-discretization

We observe from formula (3.33) that given X,,, = z,

V(@) = Em[Yisr(Xomsr)] + / " B (6 X0 V(X)) dt

= Em [Ym+1(Xm+1)] + %At (f(tmv Z, Ym(l‘)) + Em[f(thrla Xm+1a Ym+1(Xm+1))])
+ RY(2), (3.60)

which gives for the -method-discretization error
tm+1
Ri@) = [ Ealfe Xe Vi) de
tm

AL (f b 2, V() + Bl it X1, Yo (X)) (361)

Lemma 3.3. For a sufficiently smooth function f(t,z,y) and payoff function g(x) we have the
following 08-method-discretization error

RY (z) = O ((At)3> . (3.62)

Proof. For a generally smooth function h(t, x), we find with Theorem C.1, A = {v, (0), (1)} and
A={(0,0,0),(1,0,0),(0,1,0),(1,1,0)}

tma1 tm41
/t h (t, in’w) dt = /tv h(tm, :L') + h(o) (tm, :E)I(O),tm7t —|— h(l) (tﬂ’h x)[(1)7tm7t

+ > Ialha (LX), dt

aEB(A)
- h(tm’ x)I(O)’tm’t’"H’l + h(o) (tm7 :U)I(O,O),tm,tm+1 + h(l) (tm7 x)I(lyo)vtm,thrl
+ > Ialhas (XM, L (3.63)
acA

which implies

tm+1
E [/ h(t, X)) dt — %At (h(tm, ) + h (tms1, X:,jfl))]
tm
— h(ty, )AL+ %h(o) (1) (A1) + O ((2)°)
1 1
— A <h(tm, 2) + hl(tm, @) + (o) (b @) At + Shio,0) (tms 7) (A1) + O ((At)3)>

~=0 ((At)3) . (3.64)

O]
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3.6.3 Fourier errors
The COS method introduces an error which consists of four parts

e The integration range truncation error €1, introduced in formula (3.19)
£ = e_TT/ 9(X)Qx, (T, X|Xo) dX. (3.65)
R\ [a,b]

e The series truncation error 2 introduced in formula (3.24), i.e

= b X—a
__—rT .,
gg=e k_ENAk/a g(X) cos <k7r — > dX. (3.66)

e The error e3 related to the approximation of Ay in formula (3.23):

_e—rTZ /\

Qx, (T, X|Xp) cos (lwr)[f > dX V. (3.67)

[a,b]

e The error ¢4 related to the use of discrete cosine transform for formulas (3.48) and (3.50),
when those integrals cannot be computed analytically:

E4 = € 2 X 7b—a 0 ) €Xp 1 Wb—a
(3.68)

where z, = a+ (n + 1/2) . In this paper we choose to set N; equal to the number of
Fourier cosine coefficients N

Fang and Oosterlee discussed the errors €1, e5 and €3 in Section 4 of their paper [9] and Atkinson
discussed the error ¢4 in Chapter 5 of his book [4].

Also the Picard iterations introduce an error. The authors in [25] briefly discussed this error in
Section 4.5 of their paper and they obtained that the iterations converge when At is small.

3.6.4 Global error

In this section we give the global error of the BCOS method, where we omit the errors intro-
duced by the COS method and by the Picard iterations, as they can be made arbitrarily small
depending on parameters. Just as the authors in [24], we define

&4 (Xim, X5) == Yul(Xm) - Y5 (X5), (3.69)
ey (X, X5) = fltm, X, Yi(Xin)) = f (tm, X3, Y2 (X5)) (3.70)
and
eV (z) = Yp(z)—Y5(x), (3.71)
el (@) = [(tm,2, Yo (@) = f (tm, 2, Y5 (2)) . (3.72)

We can rewrite the error e, (Xm, X,%) to

gr”n (XmaXﬁm) = Ym(Xm) - YA(Xm) + Yn%(Xm) - Yrﬁ (Xr%)

m
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= &% (Xm) + Y5 (Xm) - Y52 (X5)- (3.73)

The triangle inequality implies

[Bo [efy (Xm, X2)]| < [Bo [el(Xon)]| + [Bo [V (Xim) — Vi (X2)]|
< Eo[le% (X)) + [Bo V5 (Xm) — VA (X2)]]. (3.74)

If Y,,,(x) is a sufficiently smooth function, we find with Lemma 3.2 that

IEo [e2, (Xom, X2)]| < Eo [|et, (Xm)]] + O <(At)3) . (3.75)

The following lemma gives a bound on the error e, (X,,),

Lemma 3.4.
Eo et (Xm)l] = O ((A1)?). (3.76)

Proof. Formulas (3.40) and (3.60) give
(@) = Yu(r) =Y (2)
m,T 1 m,T m,T
B (Yo (X)) 20 (2 Y0+ E [ (bt X2 Yt (X0222))]) + R0
m,T 1 ,m,x ,m,x
[ (x237)] = Lot (Ftw YA 4 [f (rmen X305 18 (x20))])

1
= Efeh (X0 Xnii7)] + 380 (ch(0) + B [l (X Xa2i”)]) + Rbu(a).

(3.77)
With Lemma 3.2, we find
E [e%wl (ngfl,Xﬁﬁ’x)] = E Yo (X)) = Vi (X010)]
+ E[VR (00) - YR (Xah)]
= B[l (X)) + 0 ((a?) (3.78)
and, analogously,
E e (X Xn i) | = E ef (X)) | + 0 ((a0°) (3.79)

The function f(t,z,y) is Lipschitz in y with Lipschitz constant L, so

’651(1‘)’ - |f(tm7-1'aym($)) —f (tm7x7Y'r$ (x))‘ < Lf ‘Ym (l’) - Y,ﬁ (.CE)‘ - Lf |€%1(x)‘7 (3'80)

and
E{|efn ()] < LeB (et ()] - (3.81)

Then combining all the results and Lemma 3.3 gives us the following result:

IN

1
en@l < Bl (Xmm Xan®)|] + 58 (Jeh@)| +E{|ehn (i Xan)|])

m—+12 “*m+1
Ry ()]

B {lehys (X270 ) 4 5 (Jeh)] + B [Jel (x5 []) + 0 (1a077)

_l’_

IN
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< Eflef (X)) + %At[’f (leh @)+ E [len (X)) +0 ((At)3) , (3.82)

which implies, for At <2/Ly,

1+ 2AtL; -
v ()| < F;WE (et (X)) + 0 ((a0?). (3.83)
. 1+1AtLy _ y m,x _ . .
Since iaiL, 1+ O(At) and E HeM (X} )H 0, we can observe, by iterating formula
(3.83), that
le¥ (z)| = O ((At)2> . (3.84)
O

Substitution of Lemma 3.4 into formula (3.75) gives us

[Eo [ef, (Xm, X2)]| = O ((A0)?). (3.85)

3.7 Examples

In this section we give two examples, one in which the value of a European call option under
the CEV model is derived and one where the value of a Bermudan put option under the Black-
Scholes model is computed. In both examples we price under the Q-measure, which makes the
BCOS method easier, because then p(X;) = rX;, where r is the risk-free interest rate. Like
Ruijter and Oosterlee [24], we set N = 2% and the domain [a, b] is determined as

la,b] = [Xo + c1 — L\/c3, Xo + e1 + Ly/c3) , (3.86)

where ¢ = u(Xo) T, c2 = 0% (X)) T and L = 10.

Remark 3.2. If X1 is constrained, then one can adjust the interval [a,b] to these constraints,
i.e. if X7 > 0 then boundary a can be set equal to max{0, Xo + ¢1 — L\/cz}. Because of an
absorption condition, we have to add an atom at 0 on the conditional probability density of
X1 giwen Xg. In this thesis, we choose to omit constraints that depend on the underlying. In
the current market some underlyings, i.e. interest rates, can even become negative, while some
underlyings, i.e. stock prices, can not be negative.

Example 1 We derive the value of a European call option, where the underlying under the
risk-neutral Q-measure follows a CEV process, i.e.

AX; = rXedt + 0 (X)7dW,,  Xo==x, t>0, (3.87)

where the risk-free interest rate r and the volatility o > 0 are constants. The Euler approxima-
tion for FSDE (3.87) gives

Xo = Xh +rXAAt+ 0 (X5) AWpi1, X5 =, (3.88)

and Lemma 3.1 states that the characteristic function of XT% 11, given X% = T, is given by

. . 1
¢X$+1 (u ‘X,% = xm) = exp (zumm + ure, At — §u202 (xm)%’ At) . (3.89)
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Here, we choose the following parameter values: x = 100, K = 100, T =1, ¢ = 0.2, r =

0.1 and v = 0.5.
We obtain

dY; = —rY, dt + Z, dW, Yr = max(K — Xrp). (3.90)
Notice that f(¢,x,y,z) = —ry, is independent of z, and as a result we do not have to calculate

the functions Z5 (x) and therefore we are allowed to use 6 = 0.

We use § = 0, N = 29 and [a, b] = [90, 130]. Also, we approximate each Fourier-cosine coefficient
by the discrete Fourier-cosine transform. V(0,T,z) = 9.5162582 is the reference value of the
call option from [17]. Table 3.1 shows the results of the BCOS method and we observe linear
convergence. We can see that with 100 time steps the absolute error is less than one basis point.

Time steps M 1 10 100 1000 10.000 100.000
abs error 0.4679 4.9657e-02 4.9964e-03 4.9986e-04 4.9894e-05 4.8942e-06

Table 3.1: BCOS method where the FSDE is discretized with the Euler scheme.

Example 2 We derive the value of a Bermudan put option, where the underlying under the
risk-neutral Q-measure follows the Black-Scholes process

dX, = rX,dt + o X, AWy, Xo=uaz, t>0, (3.91)

where the risk-free interest rate r and the volatility ¢ > 0 are constants. The Euler approxima-
tion for FSDE (3.91) gives us:

Xhi = X+ rXEAt+ o XAAW,, 41,  X§ ==, (3.92)

and Lemma 3.1 gives the characteristic function of X2 11, given XA =z, is

¢Xﬁ+1 (u }Xﬁ =T ) = exp (iuxm + turc, At — %u202 (zm)? At> . (3.93)
We use the following parameter values: x = 100, K =110, T =1, 0 = 0.2 and r» = 0.1.

The holder of a Bermudan option has the right to exercise the option at a set of predetermined
dates. We assume that the option has 10 exercise dates, t; = % for j =1,...,10. The number
of time steps M should be equal to a multiple of the number of exercise dates, so that each
exercise date corresponds to a point in our time grid. We reproduced this example from Section
4.1 in [10]. The authors in [10] gave as reference value V' (0,7, x) = 10.479520123. Table 3.2
shows the results of the BCOS method, where we approximate each Fourier-cosine coefficient
and we use 6 = 0, N = 2% and [a,b] = [-90,310]. We observe that the absolute error goes to
zero for M — oo. Just as in the previous example, the BCOS method with the Euler scheme
gives highly satisfactory results for M = 100. The 2.0-weak-Taylor scheme can also be used and
fewer time steps are then necessary to reach the same accuracy.

Number of time steps M 10 50 100 500 1000
abs error 1.5558e-02  2.3886-03 1.0696e-03 6.5052 e-05 5.7383e-05

Table 3.2: BCOS method where the FSDE is discretized with the Euler scheme.



Chapter 4

Extension of the BCOS method to two
dimensions

In this chapter, we expand the BCOS method of Ruijter and Oosterlee [24] from one dimension
to two dimensions. This is necessary for application of the BCOS method to the SABR model.
We assume that the underlying system of FSDEs, for ¢ > 0, can be written as

dth = ,Ufl(Xt) dt—f—O’l(Xt) thI, Xé = 1, (41)
dX7? = pa(Xy)dt + poa(Xe) AW + /1 — p2oa(Xy) AW, X§ =2, (4.2)

where W' and W? are uncorrelated standard Brownian motions and X = (X}, X?).

In this chapter we explain the two-dimensional BCOS method where the bivariate characteristic
function is approximated by the bivariate characteristic function of the discrete forward process.
In Section 4.1, the discretization of the forward process X; by different Taylor schemes and
the corresponding bivariate characteristic function is given. We propose an adjusted-Predictor-
Corrector scheme in Section 4.2. In Section 4.3 we determine the accuracy of the bivariate
characteristic function of the discretized Heston model. This is helpful for understanding the
errors made with the two-dimensional BCOS method. In Section 4.4, an introduction in the two-
dimensional COS method is given. In Section 4.5 we give the two-dimensional BCOS method
to price derivatives for which the underlying follows FSDEs (4.1) and (4.2). We derive formulas
to approximate some conditional expectations in Section 4.6. In Section 4.7 we describe how to
apply the BCOS method for an option without path-dependency. In Section 4.8 we discuss the
change in procedure of the BCOS method for some path-dependent options. An error analysis
is given in Section 4.9. Finally, we give examples of pricing with the two-dimensional BCOS
method in Section 4.10.

4.1 The discrete forward process and its characteristic function

We again define a time-grid ¢; = At for j = 0,1,..., M, with fixed time steps At = % For
j=1,2, wewrite X, = Xy, Xp = X{ Wi, =W/ and AW | =W, |, —Wj,. The discrete
forward process is denoted by X,% = Xﬁn, X,];;A = ng, where X5 = (XS’A, Xg’A> = (Xé, Xg).
To determine the values of Xﬂ;ﬁl, for m = 0,...,M — 1, we use one of the following Taylor
schemes: the Euler, Milstein, or 2.0 weak Taylor schemes.
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As in the one-dimensional case, we can write the discretization schemes in general form, as

follows

X = fl+m1( )AL+ 51 (x )AW1+1+51 (x )AW2+1+”1 “(x VAW, 1 AW

+ R0 (AW )+ R () (AW240) + m(x) Ve, (4-3)
anﬁl = zo+ ma(x) At + sgvl (X)AI/VT}AL+1 + 32 (X)AanH + mng’WQ (X)AWT%HAW%H
1 2 2 2
+ k(%) (AWpat)” + 1) (%) (AW 1) + 02(0)Vt ), (4.4)

where X4 = x = (z1,22), AW}, ; and AW? ,, are uncorrelated and both normally distributed
with mean zero and variance At, and anzil is an independent random variable with probability

P Vol =+4t) =4

For the Euler scheme, we have

mi(x) = (), s ()=o), s () =0, m ) =0,
AU =0, s (x) =0, vi(x) =0,
ma (x) = 2 (%), sY” () = poz (), sY () = VI= P (), ky ) =0,
Ky (x) =0, Ky (x) = 0, v2(x) =0

The order of strong convergence is v; = 0.5 and the order of weak convergence is v = 1.

For the Milstein scheme, we find,

ma (%) = 1 (%) = § (01 (%) 252 4+ pry () 220) S (x) = o1 (),
py () = V0 (x) 29109 I (x) = 0,
A () - 4 (o1 () 258 + poy (x) 2520 A (x) = 0,
vi(x) = =50y (x) 20,
ma (%) = iz (%) = & (por (%) 2522 + 03 (x) 2220 ) s (x) = poz ().
ﬁgVI’WQ (x) = 1T_p2 (01 (x) % 802( ) 4 2p0s (x) 6%21(;)) , ngz (x) = /1 — p202 (%),
WV x) = 8 (0_1 (%) 229 | g (x )%(2)) R (x) = 15 o (x) 22209
v9(x) = 12_p2 o1 (x) &32755(1)

(4.6)

The order of weak convergence is 7o = 1. The order of strong convergence is y; = 1 when FSDEs

(4.1)-(4.2) satisfy the following commutativity condition [18, Chapter 10 (3.13)]:

0 0
\/1—p02($1,$2)w—0 and /1 — p20q ( xl,wg)mz() Va1, zo € R

0xo Oxy
For the 2.0-weak-Taylor scheme, it follows that
o B 1 80’1 (X) 801 (X)
) = =3 (2109 22 1 o 9 2L
1 o (x 0 1 0%y (x

(4.7)
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oo (%) 02 (%) %Zlaz) + %ag (%) 8(2;;2(;)) A, (4.8a)
1700 = 160+ 5 (00 2y 0 P 4y 9 DL g L
Lot 0(2;6()") o ()02 00 T 4 L3 8(2 S )an s
) = Y o B g, g = YL (9 2B e
@00 = 5 (160 2 oy o0 27 g 0, (1.54)
(%) L0 () 27 (450)
ma () = )~ g (501 00 22 o 0 P2
5 (100 22 4y 0 22 1 S o T2
po1 (x) 7 (x) ffa(;) + %U% (x) af;;;)’?) At, (4.8f)
) = poa 00+ 3 () L2 g
2 (o200 220 1y 9 22200 g 0 222 ;a%<x>a(2§;()’?
pm ) 09 G2 4 St 0 T2 ) (4.58)
3700 = VI o+ Y (0200 220 sy o0 270 sy ) 220
%a% (x) 8(25;()};) + por (x) 02 (x) %2;23(;) 4 %05 (%) a(;”;g’?) At,  (4.8h)
A = (0 22200 4 9 22200 (48)
A0 = 5 (0109 72 4o 0 22, (459
W00 = 500 220 g = VP g 0720 (4.8%)

The order of strong convergence is y; = 1 when the FSDEs (4.1)-(4.2) satisfy the commutativity
condition (4.7). The order of weak convergence is vo = 2 [18].
The derivation of these Taylor schemes is given in Appendix D.

Remark 4.1. For the strong convergence v1 = 1, the Milstein scheme and the 2.0-weak- Taylor
scheme the FSDEs (4.1)-(4.2) have to satisfy the commutativity condition (4.7). We will observe
in section 4.9 that the convergence of the BCOS method depends only on the order of weak
convergence and not on the order of strong convergence, which implies that for application of
the BCOS method it does not matter whether the FSDEs (4.1)-(4.2) satisfy the commutativity

condition.
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Lemma 4.1. The bivariate characteristic function of anﬂ, given an =x = (r1,x2), is given

by
cosh (icgAt) exp (iug [z1 + mq (x) At] + dusg [x9 + mo (x) At
b, (i) = AN o1 (00 M)+ et ma (98]
\/ (1 — 2icaAt)(1 — 2ics At) + & (At)
exp At c% + c% + [4(0204 + 0105) 4eicacs(eq + c5) + (c1 + 02)03] (At)
Cexp | =2
2 1+ (22 + 4¢3 + 4¢2) (AD)? + (& — deaes)? (AL)*
- exp i(At)2 —c%04 — 0305 — cieac3 + (c% — 40405)(0%05 — c1eac3 + 0564) (Ai&)2
1+ (2¢3 +4c] + 4cd) (At)? + (c3 - 40405)2 (At)? 7
where ) ) ) )
c1 = upsV (%) + uasy (%), ey = uklV (%) + gk (%),
2 2 2 2
co = U18¥V1(X)2 + ugsy (x)l, i cs = urk!V (%) + ugk (%), (4.10)
c3 = um‘fv W (x) + uQﬁgV W (x), ce = uiv1(X) + ugva(x).

For the Euler scheme it follows that

1
¢Xﬁ+1 (u1,uz|x) = exp <iu1x1 + dugma + dug py (X) At + dugpa(x) At — 2u10%( x)At
1
2u302( X)At — ujugpoy (x)oa(x )At) . (4.11)

The proof of Lemma 4.1 is given in Appendix E.

4.2 An adjusted-Predictor-Corrector scheme

Besides the discretization schemes given in Section 4.1, we also consider whether we can use a
predictor-corrector method. Following Kloeden and Platen [18], the family of predictor-corrector
Euler schemes with 73 = 0.5 as the order of strong convergence [7] and 72 = 1 as the order of
weak convergence [18] is given by

Xpt = @i+ [91ﬂ1 (X}rﬁprrZi) +(1- 91)ﬂ1($1,$2)} At
+ [77101 (X,%ﬁl,f(gﬁl) + (1 =)o <x1,x2)} AW, (4.12)
b G [92M2 ( }nﬁl,)‘(f,ﬁl) . ez)gg(xl,@)} At (4.13)
+ [77202 <XW;+1,X,2,;$1> + (1 —m2)o2 ($1,$2)} ( +1 4 \/1_7AW2 ) ,

where 01,602,11,12 € [0, 1] and

X},ﬁl = z1 + p1(w1, 22) At + o1 (21 )AWm—l-lv (4.14)
X2 = 3+ (e, 22) At + 0o (21, ) ( V11— AW ) o (415)
_ (9 do1(z,
pi(z,y) = —m | ou(x 991(@,y) + poa(z ,y)la(yy)>, (4.16)
do Z, do Z,
oley) = ol )~ (pal(fﬂ,y)%(wy)wtaz(w,y)za(yy)) (1.17)

Often, the discretized FSDEs X - +1 and X +1 are not in the general form (4.3)-(4.4). We use a
Taylor series expansion to obtain discretized FSDEs in this form. We call the resulting scheme
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the adjusted-Predictor-Corrector scheme. An example is given below.

Example 1 For the SABR model with FSDEs,

dF, = oy (F)"aw}, (4.18)
doy = proydW}! + /1 — p2vo dW2, (4.19)

m? m

and (F5,05) = (f,@). We find

Fiva = f+[maf®+(1—m)af?] aw

— m [01 (ﬁd2 P14 pua fﬂ> Y (1—6) (ﬁa2 871 4 pua fﬂﬂ At, (4.20)
ompr = o= R [Ba+ (1- 02)a] At + v Ipa + (1 - m)a] (pAWhyy + V1= 2AWE,))

= a—mprialt + (va — fampriait) ( AW+ MAW@J

+ o | p? (AW ) 4 20V T PAWL L AWE L+ (1= %) (AW2.0)7] (4.21)
where the predictors f and @ are given by

f=f+affAWL,, and a=a+va [pA VL= AW } (4.22)

Because of the complexity of FT% 1, it would be complicated, if not impossible, to find an ana-
lytical expression for the bivariate characteristic function of the discrete processes:

¢(FT%+1,O'TAH+1) (u1,us|f, ). Ourideais to use a Taylor series expansion around (AVV1 1 AW,%H) =

(0,0), which gives

Five = f+af AW+ [Be2 70 4+ praf®] (AW),,)°

+my/1 = pPvafP AW AW
— o [Ba? 20+ puaf?) At — by T= 07 2800 2571 4 putaf®] ALAWE
— mby [3pBra N 4 B28 — 1)a’ I 4+ plaf?] ALAW,
— b, [2p2ﬂy2a2 7 (283 - 382+ B) at f13 4 %pﬁ(gﬁ —5)va’ f3/32] At (AW, )
—mh1— 2B [3pu2oz2 F2571 4 228 — 1)va® f3/3*2} AAWE  AW2 |
— by (1= p?) Br2a2fP AL (AWE )" + O (AW + AWE ) )4.23)

Now, we can determine the corresponding bivariate characteristic function by using Lemma 4.1,
where

my (f,a) = —m [Brff”’l +pvaf5] , (4.24a)
sV (fa) = aff —mo [3pﬁua2f25‘1 +B(28 — 1)adf382 & p%ﬂafﬂ At,  (4.24b)
S (fa) = —me/T= g2 28002 7 4 prtaf?] A, (4.24c)
A (fa) = /T 2 [vaf? - 005 {3020 25 4 2(260 — we 2] ] (4.240)
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a7 (F) = m [Ba2 P 4 praf? - 0 {20802 T+ (28° = 367 + B) ot 1T

1
+ 5PB9B - 5)va’ f35—2} At] : (4.24¢)
"/‘7}/[/2 (f7 Oé) = _77191 (1 - 02) ,8U2042f25_1At, vl(fa Oé) =0, (424f)
my (f, @) = —mar’a, sng (f,a) = pra — Oampr3alrt,
1 2
sgvi (f,a) = /1 — p2va — Oama/1 — p?ri3alt, mgVQ’W (f, @) = 2n2py/1 — p22a, (4.24p)
rky (f, @) = mp*via, kY (f,a) = m(1l = p*)va,

va(f, ) = 0.

In Appendix F, we give the adjusted-Predictor-Corrector schemes for the Heston and the SABR
model.

4.3 The characteristic function of the Heston model

Whereas we cannot easily analyze errors made with the discrete characteristic function for the
SABR model, but we can analyze these errors for the Heston model. We therefore compare the
bivariate characteristic function of the Heston model with the bivariate characteristic function
of its discretization in this section. The FSDEs of the Heston model, where X} and X7 denote
the log forward process and the volatility process, respectively, are given by

1
dx} = —§Xt2 dt + /X2 dW}, (4.25)

dX? = py/ XFAW! 4+ /1 — p2vyy/ X2 dWE. (4.26)

This is an affine model, and therefore we can derive an analytical formula for its bivariate
characteristic function [12]. The characteristic function of X% 4, given X4 = x = (21, 22), is
then given by

, 1 iuay? + iu At .
OX iy (U1, u2]X) = exp (zulml + ? [( tan <arctan [ﬂglp’q + 2() — wlpv} xg) ,
(4.27)

where

(= \/—iuw2 +ug(p? — 1)72 (4.28)

A Taylor series expansion around v At = 0 gives

: 2 2,2
2
¢Xm+l (ula U2|X) e eXp (iulxl + iUQI'Q B U1 + ul + U22'7 + ulqu’yngt>
1
exp <—4 [u%p’y + u%u2(2p2 + 1)’)/2 + 3ulu%p’y3 + ug”yﬂ T9 (At)2>
1
exp <4 [y + wruzy?] 22 (A1) + O ((At)3>> . (4.29)

For each scheme (Euler, Milstein, 2.0-weak-Taylor, and adjusted-Predictor-Corrector) we will
use Lemma 4.1 to determine the characteristic function of the discretized forward process. The
Taylor series expansion of the characteristic function of X2 11, given X5 = x = (z1, 1), around

VAt = 0 is given by

2i [uymy (x) 4+ ugma (x) + ¢4 + 5] — 2 — 3 At)

2

¢xa, (u1,uzlx) = exp (iuwl + dugas +
m
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2 2 2., 2 T2 2
5+ 2¢; 4 2¢t + cg + 2t |cieqa + 505 + creac
eXp<_3 4 51T C 2[14 265 123] (At)2+(9((At)3>).
(4.30)
For the Euler scheme, we find
. 2 2,21 9
QZ)XA_H (u1,u2|x) = exp <iu1x1 + tUgxy — 0 B u22'y + ulu%wngt) . (4.31)

For the Milstein scheme, we have

: 2 2,2
2
iuy +u? + u227 + Ul“QPVxQAt)

¢X$+1 (up,uslx) = exp <iu1x1 + tugxy —
]
exp <_4 [uipy + ufua(1 + 2p")9% + Buruspy” + uiy*] w2 (At)2>
1
exp (—16 [W3(1+ P + 2uruapn® + 3] (A1) + O ((At)?’)) (4.32)

For the 2.0-weak-Taylor scheme, it follows that

. . iy + u? + u2y? + 2uiu
¢X$+1 (ui,ug|x) = exp (zula:l + tuoxy — ! L 227 ! QP’Y.TQAt)
1
exp (—4 [ubpy + uua(1 + 2792 + Burudpy® + udy'] o2 (At)2>
1
exp <4 [u%pv + uluQ'y2] 2o (A2 + O ((At)3>> . (4.33)

For the adjusted-Predictor-Corrector scheme, see Section 4.2 and Appendix F, we finally find

- 2, .22
2
jug + uy + usy” + ulquvaAt)

éf)xﬁ“ (u1,u2(x) = exp (iulfﬁl + tugre — 5

i
exp <_2 [ufmpy + ufus(nap® + m(1+ p*))7? + wrud (mp + 2n2p0)7°

+  udmeyt] ma (A1) + % [ui01p7y + urugb1y] w2 (At)2> (4.34)
exp (_; [ (1 + p)7* + gy’ + 20303y '] (A1) + O (<At>3)) ,
where 61,m1,m2 € [0, 1].
So, the bivariate characteristic function of the Heston model discretized with the Euler, Milstein

or adjusted-Predictor-Corrector scheme, independent of the choices for 61, 11 and 7, is exact
up to O (At), i.e.

0% s (U1, u2lx) = G (u1,usf) + O ((A1)°) (4.35)
and for the Heston model discretized with the weak-2.0-Taylor scheme it is even exact up to
o ((an?):

OXir (11, u2]%) = b (1, ualx) + O ((At)3) . (4.36)

For the Heston model, the discretization with the weak-2.0-Taylor scheme gives the best ap-
proximation for the characteristic function. We expect similar results for the SABR model.
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4.4 Two-dimensional COS method

We derive the value V (0,7, X() of an option at time 0 with as underlying X; and exercise date
T. The payoff of the option at time T is given by V (T,T,X7) = g (Xp) for some function g
and we assume that there are no early-exercise dates. The value of the option V (0,7, Xp) is
then given by the risk-neutral valuation formula,

V(0,T,Xp) = e’“T/ 9(X1, X0)Qx (T, X1, Xo|Xo) X1 dXo, (4.37)
R

where 7 is the risk-free interest rate and Qx, (T, X1, X2|Xp) is the conditional density function

of X1 = X; and X% = X, given Xy. We abbreviate (X1, X2) by X.

The value of the option V (0,7, Xy) can be derived by using the two-dimensional COS method
of M.J. Ruijter and C.W. Oosterlee [23]. As in Section 3.2, we truncate the integration domain
from R? to some finite domain [a1, b1] x [a2, ba] € R?, which leads to

ba b1
V(0,T,Xg) ~e T / / X)Qx, (T, X|Xo) dX;dXs. (4.38)

The two-dimensional Fourier-cosine expansion of the density results in

Xo —ag
QXT T X|X0 Z Z Ali€2 COS (]ﬁlﬂ' b1 . ) COS <k27r bz P > s (439)

=0ko=0

2 b b1 1—a Xo —an
A = — T, X|X k k dX; dXo,.
ke bl—albz—GQ/ Ox (T X] O)COS<1ﬁb1—a1>COS<ﬂbQ—a2> L
(4.40)

oy . o + —
Rewriting Ap, k, gives 24k, k, = Ap 1, + A, i, Where

bo b1
A = — T, X|X k :I: k
kyskz b1 — a1 by — a9 /2 a1 QXT( | O) €08 ( i b1 —aq 2 9 — a9

> dX; dXs.

(4.41)
We truncate the series summations by setting N1 and N» as the numbers of Fourier coefficients,
which leads to

N1— 1N2 1

—ay Xo — a
Qx, (T, X|Xp) ~ Z Z Ap, ko COS <k:17r — ) cos <k27r T— > . (4.42)
k1=0 ko=0
Finally, we approximate Ai ky DY
2 2 X1 —a; X2 —ao
A ~ T,X|X k +k dX;dX
ko o bl—albg—ag//RQQXT( , X O)COS< S — 27Tb2_a2> 1dXo
2 2 . al az
— R —ik 1k
b1 — a1 ba — a2 {exp( ! 17Tb1 q:z 27Tb2—a2>

X X
/ / Qx., (T, X|X) exp (ikim——— +ikyr——2— ) dX;dX,
R2 b1 —ax by — az

2 2 ki kom
b1 — a1 by — as {¢XT<bl—a1’ by — as
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exp (—ikmbl ai ¥ zk;27rb2 Cf@) } . (4.43)

This results in the following option pricing formula of the two-dimensional COS method:
V (0,7, Xp)

by b1
~e TT/ / QXT T X‘Xo) dX; dXs

Ni— INQ 1

o [ bl X1 —ay Xy —ay
=e Z Z Ay gy cos | Ky cos | kom dX; dXs
by — a1 ba — ao
az Ja1 k1=0 k2=0
b b paRChy
—a —a
_ e_’"TlTl% Z Z Ay o Vi o
k1=0 ko=0
) b N1—1 Np— 1
701 — al 2 — a2 _
=’ Z Z ( Fiks T Ak1,k2) Vi ko
=0 ko=
N1—1Nz—1
T L e 1 k‘lﬂ' kom . aq . ag
~e Z Z R{ ox, , Xg | exp | —ikym — tkom
—ay by —as by —ax by — a2
=0 ko=
ki kom . ai . ag
,— X —ik k Y , 4.44
+¢XT<b1_a1 by — a3 0>€XP< Z1Wb1_a1+2 27rb2—a2 k1,ka (4.44)

where

2 2 b by X1 — a1 XQ
= — X k k dX,dX,. (4.45
Vit ko bl—ale—az/@ /a1 g( )COS<17Tb1—a1>COS< ng—@g) 1dXs. (4.45)

4.5 Two-dimensional BCOS method

Just as in Section 4.4, we derive the value V (0,7, Xy) of a derivative at time 0 with as underlying
X; and exercise date T', where the FSDEs of X; = (X}, X?) are given by (4.1) and (4.2). The
payoff of the option at time 7T is given by V (T,T,Xr) = g (Xr) for some function g and we
assume that there are no early-exercise dates. We also assume that we are working in a complete
market and therefore we can make a self-financing portfolio Y; consisting of a} assets of X}, a?
assets of X? and bonds with risk-free return rate r, such that Yy = g (Xr), and:

Y, = r(Yi—a; X} — afX?) dt + af dX} + af dX7
= [PV + (1 (Xo) —7X}) af + (po (Xe) — rX}) af] dt
+ [o1(Xe) af + poa (X¢) af] AW} + /1 = p203 (Xy) af dWP, (4.46)
for 0 <t <T. If we set Z} = 01 (X4)a} and Z? = 09 (X4) a2, then (Y, Z1, Z?) solves the BSDE
dY, = —f (t, X}, X2, Y3, Z}, Z2) dt + (Z} + pZ7) AW} + /1 — p2ZE AW, (4.47)

p1 (1, w2) — ran . p2(z1, w2) — rag
o1(z1,2) o2(x1, T2)

ft,z1, 20,9, 21, 22) = =1y — 29, (4.48)

where Y7 = ¢(Xr). The functions 01,09, 1,2 : R? — R in FSDEs (4.1) and (4.2) are
assumed to be twice differentiable with respect to x; and g, Lipschitz in z; and xo and
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satisfy a linear growth condition in 27 and xe. The function f : [0,7] x R® — R is as-
sumed to be uniformly continuous with respect to x; and xo and satisfies a Lipschitz condi-
tion in (y, 21, 22), with Lipschitz constant L and the function g : R? — R is assumed to be
uniformly continuous with respect to x1 and 9. Also, there exists a constant C such that
f(t,x,y,2)| + |g(x)| < C(L+ [x[P + |y| + ||z]), p > &' V; is a self-financing portfolio, and
therefore the option value is given by V (0,7, Xy) = Y.

We define again a time grid of M + 1 time points, where t; = jAt and At = % We define
Ay = (X}, X2, Y3, 21, Z2), A = Ay, and AD = (X},ﬁ,x YA, Z5A 728 ) Integrating
(4.48) gives us:

T T T
\ :g(xT)+/ £t Ay) dt—/ (2} + pzE) AW} — \/1—,02/ Z? AwWi. (4.49)
0 0 0

At time ¢, this gives the recursion:
tm+1

tm41 tm+1
Y, = m+1+/ It Ay) dt—/ (2} +pz}) AW} — /1 —p2/ Z2 AW?. (4.50)
tm tm tm

We take conditional expectations at both sides of the equation and use numerical integration to
approximate the integral, for some 6 € [0, 1]

Yin = En[Ymy1] +En [ / o [t Ay) dt] (4.51)
tm
~ K., [Ym-i-l] +En [At@f (tma Am) + At<1 - 0)f (tm-i-la Am-‘rl)]
= En [Yms1] + AOf (tm, Am) + AUL = 0)En, [f (trot1, Amtr)] - (4.52)

Multiplying equation (4.50) with AW} 1 gives
tm+1 tm+1

ViAW 1 = Y1 AW, 4 + / ft,Ay) dtAW,) | — / (Z} + pZ}) AW AW, .,
tm tm

tm+1
— V1= p? /t ZE AWEAW,, . (4.53)

Again, we take conditional expectations at both sides of the equation and use numerical inte-
gration. This gives

0 ~ Em Yo 1 AW 1] + B [(AOf (tin, A) + At(1 = 0) f (tm+1,Am+1)) AW,i4]
- [(‘9AW1+1 (Zn +0Z53) + (L= AWy (Zyr + pZi11)) AW ]
Em [0AW,, 1 (20, + Z2 1) AW,
= E, [Ym+1AW1+1] + At(1 = 0)Ep, [f (tnot1, Ampt1) AW 44 ]
A0 (Z), + pZ2) — AL — OBy, [Z) 11 + pZE 4] - (4.54)

Analogously, we can find
0 =~ Ep Y1 AW2 ] + At(1 = 0)Ep, [f (tms1, Aps1) AW 4]
— AtO1—p2Z2 — At(1 - 0)\/1— pE,, [Z2,.1] - (4.55)

'The conditions on the functions f and g guarantee the existence of a unique solution (Y, Z;, Z2) to BSDE
(4.47), [24]
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Using one of the approximation schemes of Section 4.1, and formulas (4.54) and (4.55) gives, for
m=M—1,...,0,

VA = En [YE0] + AOf (tm, AS) + At(1 — O)En [f (tmt1, Al )] s (4.56)
Zyt = Ainm Y1 AW, ] — #Em [Z'rln’ﬁl + szrﬁl]

B [ (s, M) AW ] — 72, (1.57
Zal WEW Yo AW ] - %Em [Z?n’ﬁl}

+ a\}%ﬂim [f (tms1s Ay 1) AWE L] (4.58)

YE = 9(X5),  ZMA=oa(x) dﬁff) s and  Z3P = oy(x) dgg) e (4.59)

We observe that Y5, ZyS and ZE° depend on the value X2, so when X2 = x, for m =
M —1,...,0, we have

YAx) = E, [Yﬁﬂ (Xﬁﬂ’xﬂ#—Atef (fms AL ()

+ Al —0)E, [f (th,AﬁLH (Xﬁﬁx)ﬂ (4.60)
250 = g [V (A1) ] - 15 R [258 (XAT) + 0222, (XA1)]

+ I%OQEW [ f (th,Aﬁ » (X,ﬁﬂ’x)) AWL H} — pZ2A (%), (4.61)
B0 = e i () A - 15 23, (8

n &%Em [f (th,Aan (Xﬁﬁ’x»AWﬁLH}, (4.62)

where Xﬁﬂ’x denotes the value of X2 | given X5 = x. Y,5(x) is implicit for # > 0 and can be

determined by performing P Picard iterations, starting with initial guess E [erﬂ (Xﬁﬁx)}
The value of the option can be approximated by V' (0,7, Xo) = YOA(XO).

4.6 Approximation of the conditional expectations

For each m € {M —1,...,0}, we wish to approximate the conditional expectations that appear
in formulas (4.60), (4.61) and (4.62):
i ()] maln ()] E ()]

A? 9y A? b A? 9y
Em [f (tm+17A7An+1 (Xm—tllx)ﬂ? Em [Yn§+1 (melx> AW#@—H}? Em [Yﬁ—i-l (iji:nlx) AWTQrL+1:|’
Ep [ (tmir AD 1 (X0I7) ) AW | and By [ (b, D (X)) AW .
As in the 1D case, we generalize this by deriving an equation for the conditional expectations
E [ (ts, X27°) | and B B (tmer, X 1Y) AW

o +1} for a general function h(t, x) and where
J € {1,2}.
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Let

2 2 b2 b - -
Hiey ey (tmr1) = / / h(tm+1, 21, 22) cOS (kﬂxl al) cos <7€27Tz2 a2> dzq dzs.
as Jay

b1 — a1 by — as b1 — a1 2 — a2
(4.63)

Using the two-dimensional COS method, we find
Am,x
)

iy 11 k‘lﬂ' ]CQ?T
~ Z 2%{¢X$+1 < ’

by — a1 b —as

Xﬁ =x |exp | —ikim “o ikom @2
b1 — aq b2 — ag

kym kom A . aq . as
,— X5 = —ik k H t
+ ¢Xﬁ+1 <bl — a1 bg — ag m X ) exp ! 17Tb1 — a1 T 27rb2 — ag kiokz ( m+1)
(4.64)
and
E [ (tmi1, X 1‘;‘) AW |
N1— 1N2 1 1,A,m,x 2,A,m,x
/ 1 X It LA X 3=y 1Tby
= Z Z exp | ikym =P ko L) AW
k10k20 by —ay by — az
1,A,m,x 2,A,m,x
, a . as X T X 1
. —ik — ik E kim————— —ikor————— | AW,
exp( ) 17Tb1_a1 227762_@2)4- exp(z 17 by — ar tkom by — o el
~exp | —ikim ! + ikom a2 Hiey ey (Ems1) - (4.65)
b1 b2 — a9 ’
For convenience, we abbreviate the following expression
Xl,A,m,x X2,A,m,x
. +1 . +1 1
E |exp (zk:ﬂrbzn_al + ’Lkzﬂ'b;n_ﬁ AW
= E [exp ( (d1 + doyv + dsw + dgvw + dsv® + dgw )) v] (4.66)
where
1 2 1 2
di = bfial (a;1 + my(x)At) +1b2’“3’;2 (xo +mao(x)At), dy= bl’fy;l ,qu,W (x) + beZQ fgv W(x),
dy = 5 sl () + 2l (), ds = 5270 k1 (%) + g2kl (%),
d3 = bflglsW (x) + 522 sh % (x), ds = 5227k} (x),
v=AWL ., w=AW2,,
(4.67)

where v and w are uncorrelated and both are normally distributed with mean zero and variance
At. Using integration by parts gives us

E [exp ( (d1 + dyv 4 dzw + dgvw + dsv* + dgw )) v]
d 2 00
= % / exp(i(dsw + dgw?)) exp (—;&) / exp (i ((d2 + daw)v + d5v?))

v? -
d <—Atexp ( 2At>> dw

exp(idy) L w?
=oAL /_OO exp(i(dsw + dgw?)) exp < 2At>
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2

o fon 6o (2]

2A

00 2
+ iAt/ (d2 + daw + 2dsv) exp (i ((d2 + dsw)v + d5v?)) exp ( ! ) dv} dw

. 9At

_exp(idy) /Oo . 2 _“i
= et ) exp(i(dzw + dew=)) exp SAL

At /Oo (dg + daw + 2d5v) exp (i ((d2 + dyw)v + d5v?)) exp ( ;Zt) dv dw
= iAtE Exp (i (dy + dov + dsw + dgvw + d5v® + dew?)) (d2 + daw + 2d5v)] . (4.68)
Analogously, we find
E [exp (i (dy + dov + dsw + dgvw + d5v® + dew?)) w]
= iALE [exp (i (d1 + dov + dsw + dyvw + d5v* + dgw?)) (ds + dav + 2dgw)] . (4.69)
This implies
E [exp (i (d1 + dov + dsw + dgvw + d5v® + dew?)) v]
— (id2At = dsd (A)* = 2dads (A ) E [exp (i (di + dyv + dgw + dyvw + dsv? + dguw?)) |
+O <(At)3)

Xl,A,m,x X2,A,m,x
= (idgAt - d3d4 (At)2 — 2d2d5 (At)2> E [exp (ik’l’]‘[‘nm + ’ikg?TWLJrl)]

b —aq ba — aq
+O <(At)3) . (4.70)
Xl,A,m,x XQ,A,m,x
Repeating this analysis for E [exp (ikur ;’f_lal — ikom g’;f@ ) ern+1} results in
E [ (s, X0 T7) AW
Ni-1Na—1 " .
_ Z Z (id;m — dfdf (At)? — 2dfd (At)2> dxa LU '
mt1 \ by —a1 by —ag
=0 ko=
cexp [ —ikim— 2 ik — 2 ) + (id;At —dydy (A1) — 2dy ds (At)2) (4.71)
by —ay by — a2
kym ko A . a . as
. — X2 = —ik k tm >
¢XrAn+1 <b1—a1’ bQ—ag m X> eXp< ¢ 17Tb1—a1 T Zwbg—dg)}/Hkl’l@( +1)

+ k k + k wtw? k W W2
di = bli; (x11+m1( x)At) £ b227(; (x2 + ma(x)At), di = blfgl Ky 1 (x) + b227;2 9 (x),
+ k k + k k
dy = bliZISVQ (x) + bo 27;2 ngz (x), ds = 3, 17;1”114/ (;‘) + 27;2 HI2/V (x),
+ k k + k
dy = blfgl s‘l/v (x) £ 5 27(;2 SI2/V (x), dyg = :l:b2 27;2 Iigv (x).
(4.72)

Analogously, we find

E [h (th, Xﬁﬁx) AW2 +1}
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Ni—1Na—1

1 k k
= 3 ome (idf Ar— aiaf (an? - 2dfdf (A)?) ox 1T ke
2 m41 bl —ai b2 — as
k1:0 k2:0
— tkom

e —ik
Xp< ! 17Tb1_a1 by — a2

klﬂ' kQTI' A . ay .
, - XA = —ik k
¢XWA1+1 <b1 —a17 bg—ag m X> exp ( ‘ 17rb1 — ai e 27Tb2—a2

X%—x)

> + (id;m —dydy (At)? — 2d5 dg (At)2> (4.73)

)}t

Let y,ﬁ,,w (tm), Z;ﬁ@ (tm), Z;;Ak (tm) and f,ﬁh (t) denote the Fourier-cosine coefficients of

32
respectively V2 (x), Zm™(x), Z52(x) and f (tm, Aoy (x)), ie.

2 2 by b1 T —a To —a
A A 1 1 2 2
t = Y k k dxq d
Vi ko (tm) T S— /a2 . m(xl,xg)cos< 17Tb1_a1)cos< 27Tb2—a2) x1 dza,
(4.74)
2 2 b by r1 — aq o — an
Z0 (tm) = / / ZLA k k da; d
kl,kz( m) by — a1 by — ag Jo, Ju m- (x1,m2) cos | ki by — ay COs | Ko7 by — ap r1dr,
(4.75)
2 2 by by 1 — aq To — a2
Z25 (tm) = / / Z3A k k dz;d
s g (T —aibs—as )y, [, O (21, x2) cos | kym b a, ) S\ Py, —, ) derda,
(4.76)
fA (t ) 2 2 /b2 /bl s (t AA( )) 1 1 —ay
= 21, T2)) cos 0
k,‘l,kg m bl _ CLl b2 _ CL2 @ o mo m 1,42 1 bl . al
cos <k‘27rx2 — a2> dxq dxg, (4.77)
bg — ag
and at time of maturity T', we have
Y]@(;pl,@) = g(x1,x2), Zjl\f(:nl,:cg) = al(:vl,:vz)%lim), ZJQV’[A(IELM) = 02(-’701,332)%1;:2),
and f (tM,Aﬁ(xl,@)) =f (tM,ml,xg,g(xl,:cg),al dg(g;;”),agdg(;;;”)). When the above in-

tegrals cannot be computed analytically, we can approximate them by computing the function on
an x-grid and using the two-dimensional discrete Fourier-cosine transform or another numerical
integration method.

4.7 Two-dimensional BCOS method summarized

We define a time-grid ¢; = jAt for j = 0,1,... M, with fixed time steps At = % Also, we
define function f by formula (4.48).

Initial step: Compute the terminal coefficients y,ﬁ ey (1), Z;;A,Q(tM), ZE;A,Q(tM) and

Fies 1k, (tar) with formulas (4.74), (4.75), (4.76) and (4.77).

Loop: Form=M —1tom=1

approximate the necessary conditional expectations with Section 4.6 and compute functions
Y2 (x), Z,lrzA(x), Z,%{A(x) and f (tm,tm, A5 (x)) for x € [a1,b1] X [a2,bo] with formulas
(4.60), (4.61) and (4.62).
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Thereafter, compute/approximate the corresponding Fourier-cosine coefficients y,ﬁ ko (tm),

A A .
2305, (tm), 225, (tm) and F£ 4 (tm) with formulas (4.74), (4.75), (4.76) and (4.77). Those
integrals can be approximated by computing the function on an x-grid and using the
two-dimensional discrete Fourier-cosine transform or another numerical integration method.

Terminal step: Compute Y (Xo), Z&’A(Xo) and Zg’A(XO).

We approximate the value V (0,7, Xg) of the option by V(0,7,Xo) = Y{*(Xo) and the corre-
sponding Deltas by
oV (0,7, x) Zy (Xo) aV (0,7, x) Zg™ (Xo)

Ay = o2 =20 2V and AZ = =20 V(478
0 8.1‘1 x=X, Ul(Xo) 0 8:62 x=Xo UQ(X()) ( )

which corresponds to the amount of assets in the self-financing portfolio Y; at time ¢t = 0.

4.8 Path-dependent options

In this section we describe the change in procedure of the BCOS method for pricing some path-
dependent options. Section 4.8.1 describes the procedure for a Bermudan option and Section
4.8.2 gives the procedure for a discretely monitored barrier option.

4.8.1 Bermudan option

In section 3.5, we described the change in the procedure for pricing a Bermudan option with
the one-dimensional BCOS method. These changes are similar for the two-dimensional BCOS
method. As mentioned, a Bermudan option can be exercised at predetermined dates. Let n be
the number of early-exercise dates and let 7; denotes the early-exercise dates for j = 1,2,...,n,
where 0 < 7 < 79 < ... < 7, = T. We choose At such that each of the early-exercise dates
corresponds to a point in our time-grid2. We replace formulas (4.60), (4.61) and (4.62) by,
respectively,

<A s
YA(x) = IilaX{g(X),Ym (x)}, for ¢, = 7, (4.79)
Y2 (x), for t,, # 75,
A o1(x) 99(x) for t,, =75, Y2 (x) = g(x)
28 = ) m = Ti> Yo ’ (480)
Zm = (%), otherwise,
99(x) — . VA(x) —
Z%A(X) _ 222(2() Oxg for t,, — Tj, Ym (X) g(X), (4.81)
Zm~ (%), otherwise,
where
< A,m,x
VA = En [V (Xafy)| +A0F (tn AL ()
+ At1 - 0)E., [ f (tm+1, AR (xmxm , (4.82)
= 1 1-6
1,A - A A,m,x 1 LA Am,x 2,A A,m,x
Zm (X) - TwEm |:Ym+1 (Xm+1 > AWm-‘rl} - TEW [Zm+1 (Xm+1 ) + IOZerl <Xm+1 )]

2If desired, it is possible to choose At non-constant
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b B [ (e A (X5257)) AW - 9222 00), (4:83)

0
1-46

> A, s Q»A Av ’
Z%A(X) = [Yn%—‘rl (XmJTlx) AWT?%+1:| - TEW [Zm+1 (ijrnlx):|

1
AT 2
e\}%ﬂim [f (tm+1>A%+1 (

+ Xﬁﬁ’x)) AW2 H} . (4.84)

4.8.2 Discretely monitored barrier options

The value of a barrier option depends on the value of the underlying at the observation dates.
Whether, or not the value of the underlying hits the predetermined barrier at one of the obser-
vation dates determines the value of the barrier option. A knock-in barrier option has no value
before the underlying hits the barrier, while a knock-out barrier option has no value after the
underlying hits the barrier. In this section we consider barrier options of European and Bermu-
dan style. The early-exercise dates of the Bermudan option can be different from the observation
dates. Without loss of generality, we consider that the barrier B is for the underlying X}. Let n;
be the number of observation dates and let 7; denotes the observation dates for j = 1,2, ..., nq,
where 0 <7 < 1y < ... < Ty, <T. Let ny denote the number of early-exercise dates and let (;
denote the early-exercise dates for i = 1,...,n92, where 0 < (4 < (2 < ... < (n, = T. We choose
At such that each of the observation dates and each of the early-exercise dates corresponds to
a point in our time-grid.

For the original European or Bermudan option we obtain ?ﬁ (x), Z\QﬁA(x) and Z&2 (x) with the
formulas (4.60), (4.61) and (4.62) if the option is European style, or with formulas (4.79), (4.80)
and (4.81) if the option is Bermudan style. Also, define Y2 (x), Zl,{A(X) and ZQT;A(X) the same
as in section 4.8.1.

Knock-out barrier option
For an up-and-out option we define the event F; = {th > B } and for an down-and-out option we
define the event By = { X} < B}. We replace formulas (4.60), (4.61) and (4.62) by, respectively,

0, for t,, = 75, B4,
YAx) = max {g(x), ?n%(x)} , for ty, =G, (tm =75, E4,,) (4.85)

}N/rf x), otherwise,
0, for t,, = 75, E4,,,

Z%{A(x) = o1(x) agg), for t,, = G, Yﬁ(x) = g(x), (4.86)
ZhA (x), otherwise,
0, for t,, = 75, E4,,,

Z2A(x) = o2(x) 855;‘), for t,, = G, Y2(x) = g(x), (4.87)
Z58 (x), otherwise.

So, at each observation date we observe if the underlying hits the barrier or not.

Knock-in barrier option

For an up-and-in option we define the event F; = {th > B} and for an down-and-in option we
define the event By = { X} < B}. We replace formulas (4.60), (4.61) and (4.62) by, respectively,

YA(x), for ty, =1j, B
YR(x) = ¢ JaT mo T 4.88
(x) { Y2 (x), otherwise, (4.88)
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Z>1,A
’ for ty, =7, F
ZI,A — “m (X)a m 7y Lt 4.89
m- () { Zy2(x), otherwise, (489)
72,A
’ for t, =7, E
Z2’A — “m (X)a m Jr Lt 4.90
m- () { Z%2(x), otherwise, (4.90)

where YA (X&) = ZLAXE) = Z2A(X8) = 0if 7, < T.

So we have two BSDESs, one for the value of the original European or Bermudan option, and one
represents the value of the barrier option. At each observation date we observe if the underlying
hits the barrier or not. The value of the barrier option equals the value of the original option
at an observation date, when the underlying hits the barrier.

4.9 Error analysis

Analogously to the analysis in Section 3.6, we perform an error analysis for the two-dimensional
BCOS method under the risk-neutral Q-measure. Again, we only analyze the error in the option
price Y;,, and not the error in the Deltas Z!, and Z?2,. Therefore, we abbreviate f(t, 21, 2,7y, 21, 22)
by f(t,x1,x2,y). The error analysis for the two-dimensional BCOS-method is not significantly
more challenging then the analysis for the one-dimensional method.

The error in option value Y,, consists of four different components, namely the error as a
result of: the A-time-discretization, the #-method-discretization, the COS method, and the
Picard iterations. Like in Section 3.6, we perform the error analysis for the 2.0-weak-Taylor
scheme scheme and parameter 6 = % The analysis of the Fourier errors introduced by the two-
dimensional COS method [23] and the Picard iterations [4, 25] is analogously to Section 3.6.3. In
Sections 4.9.1 and 4.9.2, we discuss the local errors as a result of the A-time-discretization and
the f-method-discretization respectively. Finally, we look at the global error in Section 4.9.3.
For the error analysis we use the notation and results of Appendix C.

4.9.1 Local error A-time-discretization

Let X% and Xm +1 * denote respectively the values of X, and X2 11 given X, = x =
(1, x2) and where Xmls-fx is derived with the 2.0-weak-Taylor scheme.

Lemma 4.2. For a sufficiently smooth function h(t,x) we have the following local weak error
E [h (tmr1, X0000) — b <tm+17 Xﬁﬁx)] = 0 ((At)3> : (4.91)
Proof. For j = 1,2, the 2.0-weak-Taylor scheme corresponds to

A 1
X0 = Y @) Iapm s + c01)(@)) <2AW51+1N—f<o,1>,tm,tm+1>

acA
1
2AWI +1At - (1 0)7tm7tm+l> + 6(012) ('I]) < AWQ +1At - (0 2)utm7tm+1)

1
+ <2A m+1At (2 0),tm,tm+1>

1
2AW1 +1A +1 + Vm+1 (1 2)7tm7tm+1>
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+ cen(e) ( AW G AWE = V2 — I<271),tm,tm+1> : (4.92)

where c(zj) = z; and A= {a € M :l(a) < 2}. Now, Lemma C.4 gives for all 1,1y € Z>q

I !
B | (- s (e - xaee)®| = of@o?).
The Taylor series expansion of function h around Xﬁ}ﬁx = X% gives

l1+l2) (

h(tm+1, ﬁﬁx) ZZ{ 11!

11=012=0

I l2
1,m,x 1,Am,x 2,m,x 2,A,m,x
Xm+1 - Xm+1 ) (Xm+1 - Xm+1 )

811 +12
A l
(oxtr) (o)

Combining formulas (4.94) and (4.93) implies

(b1, Xon) ¢ - (4.94)

E [h (tmsr, X)) = B (tm+1, Xﬁﬂ’x)} - 0 ((At)3> . (4.95)

4.9.2 Local error f-method-discretization

We observe from formula (4.51) that, given X,,, = x = (21, z2),
tm+1 1 9
Vo) = B Vs Kol + [ B [F (6], X2, (X0)]
tm
1
= En [Ym+1 (Xm—i-l)] + *Atf (tma Zy,T2, Ym(x))
1
+ AR, [f (b1, X1 X1 Yot (Xing1))] + R (x). (4.96)
So, the #-method-discretization error is given by
tm+1
RY (x) = / En [f (t, X}, X2 Y, (Xy))] dt
t"’L

- %At (f(tm,x, Yin(x)) +Em [f (tm+1?X71n+17X72n+17 Yint1 (Xm+1))]) - (4.97)

Lemma 4.3. For a sufficiently smooth function f(t,z1,22,y) and payoff function g(x) we have
the following 0-method-discretization error

RY (x) = O((At)) (4.98)

Proof. For a generally smooth function h(t,x), we find with Theorem C.1, A = {v,(0),(1),(2)}
and A = {(0,0,0),(0,1,0),(0,2,0),(1,0,0),(2,0,0),(1,2,0),(2,1,0)}

tm+1 tm+1
/ B XY = / B(tns %) + o) (b X) 000+ 1) (s X) T2 1,4
tm tm

+ h(Q)(tm, tm,t—l_ Z me)]tm,t dt
acB(A)
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= h(tms X) L0t tmsr T 200) s X)L(0,0) 0 st T P10 Ems X)L (1,0) 0t

+ ) (s X) 2.0 st + O Ta [ (X)), (4.99)
acA

This implies
tm+1 1
E [ [ X = A (bl )+ (tm+1,X7’Z’j_‘1))}
t’l’L
1
= (b, X)At + Shio)(tns %) () 4O ((At)3)
1
- S (h(tm,x) + hltm, %) + o) (tm, X) At + O ((At)2)>

-0 ((At)3) : (4.100)

4.9.3 Global error

In this section we detail the global error of the two-dimensional BCOS method, where we omit
the errors introduced by the 2D COS method and by the Picard iterations. We define

e (Xms Xin) = Yu(Xm) = Yo' (X)) s (4.101)
ey (X, Xin) = Fltms Xy Xoos Yin (X)) = f (b, X052, X002,V (X03)) 5 (4.102)
and
el (x) = Yu(x) = V2 (x), (4.103)
e (x) = fltm, 1,72, Yin(x)) = f (tm, 71, 22, Vit (%)) - (4.104)

We rewrite the error e, (X, X4) to

el (X, X5) = Yn(Xm) = Y2 Xn) + Y5 (X)) - Y5 (X5)
= & (Xm) + Y5 (Xm) — Y5 (X5). (4.105)

The triangle inequality implies
Eo [¢, (Xm, X2)]| < Eolled, (Xon)l] + [Eo [V (Xm) — Vi3 (X5)]]. (4.106)

m

If Y,,(x) is a sufficiently smooth function, we find with Lemma 4.2,
IEo [e2, (Xom, X2)]| < Eo [Je%, (Xon)|] + O ((At)3> . (4.107)

The following Lemma gives a bound on the error e, (X, ).

Lemma 4.4.
Eo et (Xm)l] = O ((A1)°) . (4.108)

Proof. Formulas (4.60) and (4.96) give us
en(x) = Yn(x) =Y (%)

1
= E e (Xp Xamr)] + gat (eh ) +E [ef, ) (X X0
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+ RY(x). (4.109)

With Lemma 4.2, we find

k) A7 9 9 b
E e (Xpi Xalt™)| = E N (X2) = Vi (X))
b A? b
+ E [Yrﬁﬂ (Xmi1) = Y (ijrnlxﬂ
= E[el (Xp)] +0 ((a0°) (4.110)
and analogously
b A7 b} »
E [‘%J;H (X%rhxm:llx)} =E [efnJrl (Xzﬁ)] +0 ((At)3> : (4.111)

The function f(t,21,22,y) is Lipschitz in y with Lipschitz constant L¢, which gives

eh )| = Lylenol, (4.112)
E[|efn Xn2)|] < LeE el (X)) (4.113)

Then, combining all results and Lemma 4.3 gives us:

lem ()]

]+ %At (e +E [|efy (3 xA73)

¢ offn () )
+ RL()]
< Eflef (X)) + %Ath (len Gl +E [Jen, 1 (X)) +0 <<At>3) [(4.114)

This implies for, At <2/Ly,

1+ AL
Y L it y m,x 2
(ol < %AthIE (e ., (X™X)|] +0 ((At) ) . (4.115)
. 1+%Ath _ y m,x _ . .
Since —iaiL, 1+ O(At) and E HeM (XM )H 0, we can observe by iterating formula
(4.115) that
et (x)| = O ((At)2> . (4.116)
O

Substitution of Lemma 4.4 into formula (4.107) gives
[Eo et (X Xi2)]| = O (A7) . (4.117)

Remark 4.2. We find first order convergence by performing a similar error analysis for the
FEuler, Milstein and adjusted-Predictor-Corrector schemes for 6 = %
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4.10 Example

In this section we give an example in which we determine the value of a European call option
under the SABR model. In the example we price under the Q-measure, which simplifies the
two-dimensional BCOS method. We set Ni = Ny = N and we also choose N as the size of
the x-grid in both dimensions. Independent of the choice of the Taylor scheme, we define the
domain [a1, b1] X [az, ba] by

[a1,b1] %X [ag, bo] = [c%L\/c%Jr./cl,c%Jerc%qL\/cE x[c%L\/cng\/ci,c%JrL c§+\/ci],
)

‘ ' (4.118
where L = 10 and ¢}, is the n-th cumulant of X%A with only one Euler step [9, 24]. There holds
=Xt +m (Xo)T, e =02 (Xo) T, ci =0, 2 = X3+ p2 (Xo) T, c3 = 03 (Xo) T and 2 = 0.

Example 2 We use the two-dimensional BCOS method to detemine the value of a European
call option under the SABR model. Remember from formulas (2.1) and (2.2) that

dF, = oy (F)Paw}, Fy = fo,
doy = proydW} ++/1 - p2vo dW?, 09 = a,
where W' and W? are uncorrelated Brownian motions. This system of FSDEs corresponds to

formulas (4.47) and (4.48), so we can use the two-dimensional BCOS method to derive the value
of the option. The payoff function of this option is given by

9(X7) = max(Xy — K,0). (4.119)

We work under the risk-neutral measure, so f(¢, 1, x2,y, 21, 22) = —ry is independent of z; and
2. Therefore, we do not have to calculate the functions Zp;™ (x) and Z?,;A(X) and we are allowed
to use 8 = 0.

We have the following parameter values:
fo=2 K=19, T=05, =02, =05, p=0, v=0.3, r=0, N =2,

We use [a1,b1] X [az2,b2] ~ [0,4] x [—0.2243,0.6243] and we approximate each Fourier-cosine
coefficient by the two-dimensional discrete Fourier-cosine transform. For the adjusted-Predictor-
Corrector scheme we take n; = 01 =1y = 0 = % Using Antonov’s method, we find the value
of the call option V (0, T, fo,a) = 0.13903754, which is our reference value. The results of the
2D BCOS method are shown in Table 4.1.

Number of time steps M 1 5 10 50 100
Absolute error 5.2178e-04 1.5384e-04 7.9643e-05 1.5932e-05 7.7008e-06

Table 4.1: Absolute error using 2D BCOS method where the FSDEs are discretized with the
Euler scheme.

When we consider different values for 5 and different discretization schemes, we find the results
in Table 4.2. We observe that the 2.0-weak-Taylor scheme performs the best for this example.
Even for only one time step, the results for all schemes are satisfactory.
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Euler Milstein

M 1 5 10 1 5 10
B =0.1 | 2.0739e-04 1.8461e-05 5.2542e-06 | 6.8269e-05 9.3294e-06 6.8178e-06
B =0.3 | 1.0261e-04 5.6768e-05 3.4169e-05 | 1.1306e-04 1.6551e-05  1.1381e-05
B =0.5 | 5.2178e-04 1.5384e-04 7.9643e-05 | 1.6382e-04 1.4253e-05 5.5868e-06
B =0.7 | 1.0979e-03 3.1321e-04 1.6478e-04 | 2.6224e-04 2.6913e-05 1.4108e-05
B =09 | 1.8368e-03 5.4024e-04 2.8307e-04 | 4.1953e-04  3.0748e-05  1.3998e-05

2.0-weak-Taylor adjusted-Predictor-Corrector
M 1 5 10 1 5 10
B =0.1 | 6.2035e-05 7.9196e-06 6.1018e-06 | 2.0874e-04  4.6906e-05 2.1370e-05
B8=0.3 | 8.9721e-05 1.1381e-05 8.7613e-06 | 2.3975e-04  5.3688e-05 2.3745e-05
B =0.5| 1.1978e-04 4.6900e-06 7.5319e-07 | 3.0434e-04  7.8035e-05 4.0513e-05
B =0.7 | 2.0416e-04 1.4538e-05 7.8685e-06 | 4.0929e-04 1.0576e-04  5.2183e-05
B =09 | 3.8073e-04 2.2627e-05 9.9133e-06 | 6.4697e-04 1.8260e-04 9.2731e-05

Table 4.2: Absolute error using 2D BCOS method where the FSDEs are discretized with different

schemes.



Chapter 5

One time step DCOS method

We wish to propose a method for calculating the forward value of European options under the
SABR model under the risk neutral measure, which simplifies the 2D BCOS method significantly
as we observed in example 2 of Chapter 4. The use of BSDEs, which is mainly the basis of the
BCOS method, does not appear in this simplified method. Therefore we call it the DCOS
method, where D stands for discrete. In Table 4.2, we observed promising results for the DCOS
method with only one time step, which is why we propose to price European options under the
SABR model with the one time step DCOS method. In this chapter, we discuss this method
and its advantages and disadvantages. Section 5.1 gives the pricing formulas of this method
and Section 5.2 discusses the (dis)advantages. In Section 5.3, we use the logarithmic transform
of the forward before we apply the DCOS method and in Section 5.4 we discuss the accuracy.
Finally, in Section 5.5 we summarize our results.

5.1 The method

The underlying system of FSDEs is given by formulas (2.1) and (2.2)
dFy = oy (F)"dWy, Fy =,
doy = proydWl + /1 — pProy dW2, 00 = a,

where W1 and W2 are uncorrelated standard Brownian motions.

We work in one instead of two dimensions, when we apply the DCOS method with only one
time step to calculate the call price of a European option under the SABR model. This is,
because our payoff function only depends on the forward value at time of maturity (Fr) and
not on the volatility value at time of maturity (o7). By the same reasoning, we observe that
pricing European options under the SABR model with the one time step DCOS method and the
Euler scheme is independent of the correlation parameter p. Since we wish to propose a pricing
method which depends on parameter p, we exclude the Fuler scheme. Applying the theory of
Chapters 3 and 4, we find the following formula to calculate the forward value of a European

f, a) exp (—ilmb - a> } Ve(T),  (5.1)

la,b] = [f—mafB\/T,ermafﬂ\/T], (5.2)

call option

~

N—
km
VdC;OSl(O?Tmef)a): %{QﬁFqé <ba
k=0

where

54
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b p—
Vie(T) = bfa/ (F — K)* cos <k7rllj_ 5) dF,
(3K%+ 3b* — Kb) , ifk=0and a < K <b,
= b(b“ Yk (5.3)
k%g ((—1) — o8 (lm}b(:;)) , ifk#0and a < K <b.

Also, we find with Lemma 4.1:

bps (ul fr0) = ——BOBY o ulf 4 (,0) A
\/1 — 2ica At + 3 (At)?

( At cd + 3 + [Ac3c] — dercacses + (¢ + c3) 3] (At) )
exp | ——

5)
2 1+ (262 +4c%) (AY)? + ¢ (At)*

. o [ —C3cq — crcacs + (c3eq — creacs)cd (At)
exp (z (At) ( 1+ (262 +4c3) (AY)? + ¢ (At)* )) ; (5.4)

where
1= USl (f a) C2 = u51 (f Oé) C3 = u’k';Il/V1 W (fv (X) ’ (55)

cy = urlV Y(f,a), v =uvi(f,a).
For the Milstein scheme, we observe
— 1
mi (f,0) = =52 —buaft, sV (f,a) = aff,

W2 (f,a) =0, KV (fa) = Va8, (5.6)
W' (fa) = 222871 4 Buaff,  uy(f,a) = — Y pafs,

For the 2.0-weak-Taylor scheme, we have

my (f,a) = 5’ — fuaf? sl <f, @) = aff + 1B(8 - 1)a f¥72T + §a’y f2P7IT,
st (,0) =0, W (fa) = Y g8,
W (f ) = 52207 + buaff, vl(f,a) — _@,/afﬁ_
(5.7)
wt w?2

For the adjusted Predictor-Corrector scheme, we choose to ignore the O (T') terms in k" , k|

1 2
and Ii‘l/v W , because these terms introduce a significant error for large time to maturity 7'. For
this scheme it follows

mi(f0) = —m B+ praf?], (5.82)
¥ (fra) = aff —mon [3pBra? P 4 A28 — 1)a’ FP 4 2 fO| T, (5.80)
S (fra) = —mbi/1= g2 28002 P g prtag?| T (5.8¢)
Hyl’wz(f,a) = mvV1-pvaf?, (5.8d)
W (fa) = m [ﬁazfzﬁ‘%puafﬁ}, (5.8¢)
vi(f,a) = 0. (5.8f)
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5.2 Advantages and disadvantages

Pricing European options by this method has some advantages. It is a fast method and, in con-
trast to pricing with Hagan’s formula, we do not obtain negative densities. These non-negative
densities are the result of the mapping of the SABR model to its corresponding discretization
model. The characteristic function of this discretized model is known, which ensures that there
are no negative densities and the integral over the entire space equals 1 when N, a and b are
chosen carefully.

Unfortunately, our new method has disadvantages too. The results in Figures 5.1 and 5.2 are
based on the parameters from Section 2.1.2 and N = 2''. When we compare these figures to
Figure 2.3, we observe that the smiles are inaccurate. For T' = 1 the volatility smile is inaccurate
for out of the money options and when 7' increases the smile moves in the wrong direction. We
can improve the accuracy by increasing the number of time steps, as we will show in Chapter 6.

1.3
1.2
1.1

n
09"
08"
0.7
0.6
0.5+
04F

02 04 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Strike K

QO —

e e

Black implied volatility o,

Figure 5.1: Volatility smiles calculated with the one time step DCOS method and the Milstein
scheme. The smiles for the 2.0-weak-Taylor scheme look similar.
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02 04 0.6 0.8 1 1.2 14 1.6 1.8 2
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Figure 5.2: Volatility smiles calculated with the one time step DCOS method and the adjusted
Predictor-Corrector scheme, where 6; = 0.5 and n; = 0.5.
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Figure 5.3 shows the conditional probability density functions, Qp, (T, F|Fy = f,00 = «),
corresponding to the volatility smiles of Figure 5.1. The conditional PDFs for the 2.0-weak-
Taylor scheme, look quite similar. We can observe the following properties

e As we mentioned before, we have no negative densities.

e P(Fr <0|f,a) > 0, especially when the time to maturity is large, which implies underpri-
cing European call options for especially small strikes. This is a result of the discretization.
In Section 5.3 we suggest a solution to prevent this.

e The PDF is peaked for larger time to maturity. Such peaks should be avoided, because
the PDF has to be a differentiable function when 7' > 0. Andreasen and Huge [1] noticed
similar behaviour when they were developing their pricing method. The reason for the
peak occurring is the same as for the peaks we observe: it is the result of performing one
time step instead of multiple. The authors in [1] tried to remove the peak by an adjustment
to the method, but this adjustment is not beneficial for the accuracy. For their method
we observed in [16] that it is better, with respect to the accuracy, to use more time steps
than using the adjustment.

Remark 5.1. P(Fr < 0|f,a) > 0 is not always a disadvantage, for example in the case that
the model is applied to interest rates where the rates may become negative [13]. On the other
hand, since we are price under the SABR model, we prefer absorption at zero as [2, 5, 15].

T=1 T=2 T=5 T=8

PDF

0.5 0.5 0.5 0.5

—101239‘]0123910123910123
Forward at time of maturity FT

Figure 5.3: PDFs calculated with the one time step DCOS method and the Milstein scheme.

Figure 5.4 shows the conditional probability density functions, Q(Fr|Fy = f,00 = «), corre-
sponding to the volatility smiles of Figure 5.2. We observe that, for this example, the adjusted-
Predictor-Corrector scheme does not suffer from peaked densities. Unfortunately, this scheme

does not exhibit this behaviour in general. For example, we also observe peaked densities, when
we change the exponent parameter to 8 = 0.1 or when we do not ignore the O (T') terms in /{‘fVl,

w2 wiw?
ki and Ky .
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T=1 T=2 T=5 T=8

PDF
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%% 1 23 %o z3 “Toai 23 %013

Forward at time of maturity FT

Figure 5.4: PDFs calculated with the one time step DCOS method and the adjusted Predictor-
Corrector scheme.

5.3 Using the log transform for the forward variable

To avoid the positive probability of a negative Fr, we apply the DCOS method with one time step
to the SABR model under the logarithmic transform for the forward!. We define X} = log(F})
and using It6’s Lemma [26, Formula (4.4.23)], we find

1 9 1
X} = _TFt?U?Ft Pat + Eath AW,
1
= —503 exp(2(8 — D)X} dt + orexp((B — 1) X}) dW, (5.9)
doy = progdW! 4+ /1 — p?vo dW2, (5.10)

where X} = z; = log(f) and og = a.

This results in the following pricing formula

N-1
/ km . a
Vioosa (0.7 K, z1,0) = > R {qu;,A (b — :cl,a> exp <—zk7rb_a> } Ve(T),  (5.11)
k=0
where
R (512
[a,b] = [wl - %anQﬁ_QT —10afP T, 21 — %azfzﬁ_QT—i— 1004f5_1\/f] , (5.13)
2 b + X —a
Ve(T) = b—a/a (exp(X) — K)™ cos (kﬂr — > dX,
= (bexp(b) — K - Kb+ Klog(K)), o if k=0 and a < log(K) <b,
2(b—a —a
_ m ((—1)k exp(b) — K cos (kw%)) (5.14)
—a 2 . O —a .
+#ﬁ(b)—a)2 sin (/mr%) : if k# 0 and a <log(K) <b.
Also, we find
cosh (ivAt)

dxra (ula1,0) exp (i [z1 +mi (21, ) AF])

\/1 — 2ics At + ¢ (At)?

We can also use the log transform for the volatility. This transformation only affects the pricing formula of
the adjusted-Predictor-Corrector method, but the results regarding to the accuracy are not significantly different.
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At cf + 3 + [dc3c] — dercacses + (o] + &3)c3] (At
ex -4
2 1+ (265 + 4cf) (A1)* + ¢ (Ar)*

—c2 —
exp (Z (At)? < cley — cieacs + (c3eq — creacs)cl (At) )) . (5.5)

1+ (263 +4c3) (At + ¢4 (At)!

where
wlw?2 (

1 2
1 = us‘fV (x1,a), cy = us‘fv (x1,0), €3 = UKy x1, ),

cs = urlV' (21, 0), v =uvy(z1, @).
We have for the Milstein scheme
v
my (r1,) = —§a2 exp(2(8 — 1)xy) — %a exp((8 — 1)x1),
sy (z1,a) = aexp((f—1)z1),

0,
V1-=p?
2

vaexp((f — 1)zy),

N

vi(@i,0) = — vaexp (8 —1)a1).

V1= p?
2
For the 2.0-weak-Taylor scheme, we have

v 3—58+ 242
m(ea) = —Da?exp(2(8 — ) — Laexp((8 - 1)ar) — > g
2
v
— Za2exp(2(8 — Va)T — pra® (8 — 1) exp(3(8 — )T,

4
(8- )(5 4) 3

1

sll/v (x1,0) = aexp((B8—1)z1)+
B—2

o exp(3(8 — 1)a1)T

,oa%exp@(/s - 1>x1>T,

2

s\ (z1,0) = —Y———va’exp(2(8 — 1)z1)T,

n}/Vl’WQ (r,a) = -~ Vaexp (B—1)z1),

i (z,0) = % (a2(5 — 1) exp(2(8 — 1)x1) + praexp((8 — 1)z1))

\ﬁ

vi(r1,0) = —~——vaexp((f—1)x1).

(aQ(B — 1) exp(2(8 — 1)x1) + praexp((S — 1)3;1)) ,

(5.16a)

(5.16b)
(5.16¢)

(5.16d)

(5.16e)

(5.16f)

o' exp(4(8 — D)an)T

(5.17a)

(5.17b)
(5.17¢)

(5.17d)

(5.17e)

(5.17f)

For the adjusted-Predictor-Corrector scheme, where we choose again to ignore the O (T) terms

. 1 2 tw? .
in k], k1" and /@‘fv W= it follows that

mi(x1,a) = —6 {(; +m(B — 1)> o A% (z1) + mpraA(x)

(5.18a)

-0 | (5 mE- D) e (28 - Do) + mpvaexn((5 - ).

1

s\ (z1,0) = madA(z) + (1 —m)aexp((8 — 1)z1)
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— 01 [(1+2m(8—1) [(B—1)a’ exp((8 — V)a1) + pra®] A%(x1)
+ mpv[(B- Da?exp((f —1)z) + pra) A(z1)] T, (5.18Db)
3114/2 (z1,0) = —b1v/1—p?[(142m(8-1)) va? A%(z1) + nipv ozA(:vl)] T, (5.18¢)
}/Vl’WQ (x1,) = mV1—p?vaexp((8—1)z1), (5.18d)
R‘I/Vl(:cl, @) = m[(B- Da?exp (8 —1)z1) + pral exp (8 — 1)a1), (5.18e)
vi(z1,a) = 0, (5.18f)

where

Alz1) = exp ((/3 1) — %(5 ~1)exp (2(8 — 1)an) T) . (5.19)

5.4 Accuracy

We proposed to use the log transform to ensure that there is zero probability of a negative forward
value Fp at time of maturity. Figure 5.5 shows that indeed P(Fr < 0|f, o) = 0. Unfortunately,
we observe now overpricing instead of underpricing for small strikes. The 2.0-weak-Taylor scheme
behaves similarly and the adjusted-Predictor-Corrector scheme behaves even worse.

T=1 T=2 T=5 T=8
1 1 1 1
LL
[
o
0.5 0.5 05 105
0 0 0 — 0

1 01 2 3 1 012 3 1 041 2 3 410 1 2 3
Forward at time of maturity FT

Figure 5.5: PDFs calculated with the one time step DCOS method and the Milstein scheme.

Like in Section 5.1, the probability density function is non-negative and peaked for larger time
to maturity 7. Also, we find that pricing with formula (5.11) leads to lower accuracy and for
the 2.0-weak-Taylor scheme even to unrealistic volatility smiles, as we can see in Figures 5.6, 5.7
and 5.8.
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Figure 5.6: Volatility smiles calculated with the one time step DCOS

scheme.
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Figure 5.8: Volatility smiles calculated with the one time step DCOS method and the adjusted-
Predictor-Corrector scheme, where #; = 0.5 and n; = 0.5.
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5.9

Brief analysis

In this section we look at some properties of option pricing with the formulas (5.1) or (5.11)
compared with the Hagan formula (2.3) as described in Section 2.

Neglecting numerical errors introduced by the COS method, formulas (5.1) and (5.11) are
free of arbitrage, because we are pricing European options where the underlying follows
the discretized FSDE and the characteristic function is known for the discretized FSDE.

None of the methods is accurate, especially for larger time to maturity.

Pricing with formula (5.1) or (5.11) ensures non-negative probabilities in contrast to pricing
with the Hagan formula (2.3), as is shown in Section 2.1.1.

Pricing with the Hagan formula gives continuous densities in contrast to pricing with
formula (5.1) or (5.11), because those formulas generate peaked densities for larger time
to maturity.

Pricing with formula (5.1) or (5.11) is fast, e.g. pricing a European call option with
N = 21 the Euler scheme and formula (5.1) takes less than 0.005 seconds.

For small strikes, formula (5.1) generates too small values and formula (5.11) generates
too high prices for European call options.

As we mentioned in Chapter 2, we wish to provide an arbitrage-free method to price European
options under the SABR model that is accurate. Since the pricing formulas (5.1) and (5.11)
are not accurate for small strikes, we propose in Chapter 6 to apply the DCOS method with
multiple time steps to price European options under the SABR model.



Chapter 6

The DCOS method applied to the SABR
model

As we observed in Chapter 5, taking only one time step is not sufficient for pricing European
options under the SABR model with the two-dimensional DCOS method. In this chapter we
apply the DCOS method to the SABR model with multiple time steps'. Under the SABR
model, the volatility o, is independent of the forward value F}, which simplifies formulas (4.3)
and (4.4) for the Euler, Milstein, 2.0-weak-Taylor and adjusted-Predictor-Corrector schemes. In
Section 6.1 we give three pricing formulas for this method and in Section 6.2 we discuss the
results. In Section 6.3 we explain a transformation to price European options under the SABR
model for multiple strikes in one computation. In Section 6.4, we discuss the advantages and
disadvantages of the best performing pricing formula and schemes. Finally, we compare our
proposed method with the Hagan formula in Section 6.5.

6.1 The method

We derive the forward value V¢(0, T, K) of a European call option under the SABR model, with
exercise date T and strike value K. We consider the following three cases:

Case 1 F; denotes the forward process and oy denotes the volatility process. Following (2.1)
and (2.2), the underlying system of FSDEs is given by

dF, = oy (F)aw}, Fy = f, (6.1)
doy = pvoy th1 + V1= p2voy thQ, oo = (6.2)

where W1 and W2 are uncorrelated standard Brownian motions.

Case 2 Defining the log forward process by X} = log(F};) and o; denotes the volatility process.
Following (5.9) and (5.10), results in the following underlying system of FSDEs

1
dx} = —503 exp (2(8 — 1)X}) dt + opexp ((8 — 1)X}) dW/, Xi=z1, (6.3)

'The SABR model does not satisfy the commutativity condition (4.7), so we do not have the certainty that
the Milstein scheme or the 2.0-weak-Taylor scheme have strong order of convergence vy; = 1. Importantly, as we
mentioned in Remark 4.1, the order of convergence of the DCOS method depends on the order of weak convergence
72 and not on the order of strong convergence ;.
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doy = proy thl + V1 — p2voy de, oo = «, (6.4)

where z1 = log(f) and where W' and W? are uncorrelated standard Brownian motions.

Case 3 We use the logarithmic transformation for both the forward and the volatility. We
define X! = log(F;) and X? = log(c;), the underlying system of FSDEs is given by

1

dX} = —Jexp (2X7 +2(8 — DX]) dt +exp (X} + (8- DX)) AW}, X§ = 1,(65)
1

AX}P = S dtpr dW] + V1 pPrdiWy, X§ = 22,(6.6)

where (71, 72) = (log(f),log(a)) and where W' and W? are uncorrelated standard Brownian
motions.

Just as in Chapter 4, we define the time-grid t; = At for j = 0,1,..., M, with fixed time steps
At =L For j = 1,2, we again write Fy, = Fy,,, o = 04,,, X = X}, X2, = X7, Wi, = W}
and AVVTJ,'ZJrl = Wng — Wi,. We denote the discrete processes by (FT%,UT%) = (Ftﬁ,aﬁn),
(X},{A,a%) = (thT;A,atAm> and (X},;A,XT%{A> = (th?;lA,XQA’tm» for case 1, case 2 and case
3, respectively. The initial values of the discrete processes are given by (FOA,O'OA) = (f,a),
(XS’A, O'OA) = (z1,a) and (XS’A, Xg’A) = (x1,2z2). To advance from time m to time m + 1, for
m=20,...,M — 1, we use one of the following schemes: the Euler, Milstein, 2.0-weak-Taylor, or
adjusted-Predictor-Corrector scheme.

The forward value of a European call option at time 0 with underlying Fj, strike value K and
expiration date T is given by:
For Case 1:

VSc0s1(0, T, K, f,a) = V(f, @), (6.7)
where the functions V5 (Fy,, 07 can be recovered recursively backwards in time for all (Fy,,, 0,,,) €

[a1,b1] X [ag,b2] = [f—lOafB\/T,f—FlOafﬂ\/T} X [a—lOya\/T,a—i—lOVa\/T and m =
M—2,...,0,

Vrﬁ(F’VNJ Um) = IEm [V$+1(Fm+1a O'm-l—l)‘ Fm7 Um]

/ 11 k‘17T k27r
— - F,
Z 2%{¢(FT%+17JWAT+I) <b1—a1’b2—a2 m;O'm)
k1=0 k=0
. al . as k17T ]{727T
. — - — F,
P ( Zkﬂrbl — al Zk27rb2 — a2> + (b(Fr%-!—lrUﬁ-&-l) <b1 — (],17 b2 — az e Um)
. ai . a2
- exp <—zk17rbl o + zkgwb2 — a2) } Vier ko (tmg1)-
(6.8)
The characteristic function qﬁ( FA oA ) (u1,u2|Fp, 0m) is determined with Lemma 4.1 for any
m+1'"m
of the discussed discretization schemes and we have
2 2 by rb1 F—a o — as
Vi, ko (E = VA L(F k k dF do.
er ko (Ems1) T — /a2 5 e ( ,a)cos< 17rbl_a1>cos< gwa_a2> o

(6.9)
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We approximate the above double integrals by computing the function Vn%H(FmH, Om+1) ON &
two-dimensional grid and using the (2D) discrete Fourier-cosine transform. As a special case,
for m = M — 1, we find with formulas (5.1) and (5.3):

Ni—1
A _ / :ICTI' . a1
Vit—1(Fy—1,00m-1) = kz_:o R {gb(Fﬁ,aﬁ) <b1 — al,O' FM_l,UM_1> exp ( zkwbl — al) } Vi(ta),
(6.10)
where
4 b F — al
Vi(tm) = F—-K)* k dF
e e A G
blzaq (%K2+%b%_Kbl)7 if k=0 and a1 < K < by,
_ A1
W) ((—1)’“ — cos (lmfjii)) k£ O0anday <K <by. O
Analogously, we have for Case 2,
VSCOSQ(OvTv K,CCl,OZ) = ‘/(]A(l‘laa)a (612)
and for Case 3,
VDCCOS3(07T7 K7x17x2> - ‘/()A(.’L'l,xQ), (613)
where the functions V,5(-,-) can be recovered recursively, backwards in time, for all m = M —
2,...,0. The integration domains are given by

[a1,b1] X [as, bo] = [ml — a?exp(2(8 — 1)a1)T — 10aexp((8 — )z )VT |

21 + a2 exp(2(8 — 1)a1)T + 10a exp((8 — 1):51)\/17} X [a — 10vaVT,a + 10vavVT|
a1, b1] X [as, bo] = [xl —exp(2z2 + 2(8 — )T — 10exp(z2 + (8 — V)a)VT

21 + exp(2z2 + 2(B — 1)21)T + 10 exp(za + (8 — 1)x1)\/ﬂ

x |22 = V2T/2 = 100VT, 0 = v*T/2 + 100VT |

for Case 2 and Case 3, respectively. For both cases, formula (5.14) leads to the following formula
for Vi (tm+1), for the special case m = M — 1,

2 bl X —
Wit = 52 [ ) K eos (ki —2 ) ax,
1—0a1 Jg, 1—al
= (exp(b1) — K — Kby + K log(K)), if k=0 and a; <log(K) < br,
_ % ((—1)k exp(by) — K cos (kﬂilogb(fi)a:al)> (6.14)
g 2Ema) G (pple()—a if k#£0and a <log(K) <b
k‘37T3+k7T(b17a1)2 b1—a1 ’ = log = “1-

6.2 Results

In this section we present some results for the pricing formulas (6.7), (6.12) and (6.13) of Cases
1,2 and 3, respectively, by means of an example. We use the parameters of the example of
Section 2.1.2, i.e. @ =0.35, 3 =08, p=0, v = 0.4, also we take f =2, T =1, N = 27
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and strikes K = 1.8,1.95,...3,3.15. As explained in Section 4.10 that N denotes the number
of Fourier-cosine coefficients and the size of the grid in both dimensions. In this example, we
determine the Black implied volatility smiles by the 2D DCOS for Case 1 with the Euler scheme
and number of time steps M = 20, 50, 100. These volatility smiles and the mean of the absolute
errors in basis points are given in Figure 6.1. When M increases, the volatility smile determined
with formula (6.7) converges to the reference smile, which is determined by Antonov’s pricing
approach (2.11).

——Reference || ——M=20
—M=20 » 30 M=50
M=50 = ——M=100
---M=100 g
@ 25+
®
A~ A4 <20t
< [
s =
- 215
s )
@
g 510t
P Q
/,’ g
NP = < 54
I 1 1 I 1 I 0 T [ L L L L
1.8 2 22 2.4 26 2.8 3 18 2 22 24 26 28 3
Strike K Strike K

Figure 6.1: The volatility smiles and the absolute error in Black implied volatility in basis points.

Besides formula (6.7) for the Euler scheme, we also determine the Black implied volatilities
with the formulas (6.12) and (6.13), for the other schemes: the Milstein, 2.0-weak-Taylor and
adjusted-Predictor-Corrector schemes. Figure 6.2 shows the mean of the absolute errors in basis
points for this example. Where Cases 1, 2 and 3 refer to the pricing formulas (6.7), (6.12) and
(6.13), respectively. Formula (6.13) gives the best results for the Euler, Milstein and 2.0-weak-
Taylor schemes, while formula (6.12) shows the fastest convergence for the adjusted-Predictor-
Corrector scheme. In Section 4.9, we performed an error analysis for the 2.0-weak-Taylor scheme.
In our analysis we observed second-order weak convergence for the option value, and analogously
we obtained at least first-order weak convergence for the other schemes. In Figure 6.2 we ob-
serve the fastest convergence for the 2.0-weak-Taylor and the slowest convergence for the Euler
scheme. This example indicates that 2.0-weak-Taylor performs best with respect to convergence.

We find it remarkable that formula (6.13) performs best for the Euler, Milstein and 2.0-weak-
Taylor scheme and worst for the adjusted-Predictor-Corrector scheme. We believe this is a
consequence of the errors introduced by the truncation of the Taylor series expansions. In
formula (4.23) the truncation for the adjusted-Predictor-Corrector scheme in Case 1 is given.

We observe convergence of order 1.75 for the 2.0-weak-Taylor scheme, while we expected second
order convergence. We also notice that the error introduced by the choice of the number of
grid-points N is visible for the Milstein and the 2.0-weak-Taylor schemes when the absolute
error is less than one basis point in Case 1 and less than 0.3 basis points in Cases 2 and 3. We
believe that we do not observe the second order convergence for the 2.0-weak-Taylor scheme due
to this same error. Because of the results in Figure 6.2, we advise to use pricing formula (6.13)
with the Euler or the 2.0-weak-Taylor scheme. We will discuss this choice further in Section 6.4.
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Figure 6.2: Mean of the absolute error in Black implied volatility with respectively the Euler,
Milstein, 2.0-weak-Taylor and adjusted-Predictor-Corrector schemes, and formulas (6.7), (6.12)
and (6.13).

6.3 Multiple strikes

It is possible to price European options under the SABR model for multiple strikes at once, by
using the scaling symmetry of H. Park [20]. The forward value of a European call option under
the SABR model with strike value K > 0 and time to maturity T is given by

VO0O,T,K, f,a) =E[(Fr — K)*| f,a] , (6.15)

where the underlying system of FSDEs is given by (6.1) and (6.2). We use the following scaling
transformations

~ K R Ko\
Ft:?OFt and at:<K?> ot (6.16)

and we observe that, for any Ky € Ry, it holds that

VOO, T K, f,a) = E[(Fr—K)"| fa]

f, a} . (6.17)
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By Itd’s Lemma it follows that
Ko

dﬁt = ?O't(Ft)ﬂthl
(%) o (R)
= (=2 o | —F ) aw,
K \ K Ky ! ¢
~\B
_— (Ft) awy, (6.18)
K, 1-8 K. 1-8
dEt = p<;) VUtth1+ ].—p2 <_KE)> I/O'tth2
= pvoy dW} + /1 — p2v5, dWE. (6.19)

F\t and o, follow a SABR process, with the same parameters 3, v and p as F; and ;. Combining
this observation and result (6.17) implies

K Ko, (Ko\'™”
VC(T7K,f,a):EVC (T,KO,KOf, (KO) a). (6.20)

This results in the following relations for the pricing formulas (6.7), (6.12) and (6.13):

K Ko . [(Ko\' ™"
VDCCOSI(OaT7 Ka fv Oé) ~ FOVDCCOSI <O7T7 KO)?fa (K) al, (621)
o K ¢ Ko Ko\'™*
VDCOSQ(O,T, K,ZL'l,OZ) [ 7VDCOSQ O,T, Ko,log - ‘|‘l’1, - « ), (622)
Ko K K

K K K
ViScos3(0, T, K, x1,02) = E)VDCCOS:; (07T7 Ko, log (KO) + 21, (1 — B) log <K?> + x2) .
(6.23)

We use those approximations to price European options with multiple strikes in one computation,
by pricing the corresponding European option for one general strike K for different initial values.
Such a strike K can be for example the ATM strike value or the mean of the minimal and the
maximal strike value. We advise to use this scaling symmetry for strike values that are close to
each other, because the multiple initial conditions increase the size of the domain [ay, b1] X [az, ba].
If the size of the domain is increased significantly, we also have to increase the number of Fourier
coeflicients and the number of grid-points to obtain the same accuracy.

6.4 Advantages and disadvantages

In Section 6.2 we advised to use pricing formula (6.13), i.e. Case 3, with the Euler or the 2.0-
weak-Taylor schemes. We explain this choice and give some advantages and disadvantages for
both pricing methods in this section.

e Formula (6.13) is more accurate than pricing formula (6.7) for the Euler, Milstein and
2.0-weak-Taylor schemes. An example is shown in Figure 6.2.

e In formula (6.13) we use the logarithmic transformation of the volatility. In Chapter 5 we
observed that such a transformation avoids a positive conditional probability of a negative
volatility at expiration time, i.e. the transformation ensures P (o < 0|Fp = f,00 = a) =
0, while for formulas (6.7) and (6.12) this probability may be positive.
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e The 2.0-weak-Taylor scheme exhibits the fastest convergence. As we can see in Figure 6.2,
the error for the 2.0-weak-Taylor scheme with only five time steps is less than one basis
point, while we need 28 time steps for the Euler scheme to obtain this accuracy.

e The discretized SABR model has a significantly easier characteristic function for the Euler
scheme compared to the other schemes, which ensures that the CPU time per time step
is the lowest for the Euler scheme. As a consequence, the Euler scheme often uses less
CPU time than the 2.0-weak-Taylor scheme to gain the same accuracy. The characteristic
functions for the Milstein, 2.0-weak-Taylor and adjusted-Predictor-Corrector schemes have
the same order of size. In Table 6.1 we give an overview of the number of time steps and
the CPU time we need for the Euler and 2.0-weak-Taylor schemes to obtain a certain
accuracy for the example given in Section 6.2, where we use formula (6.23).

M  CPU  Absolute error in BPS
Euler 28 65.41s <1
2.0-weak-Taylor | 5  140.86s <1
Euler 56 134.82s < 0.5
2.0-weak-Taylor | 8 412.51s < 0.5

Table 6.1: Number of time steps and CPU time needed to obtain an absolute error of 1 or 0.5
basis points in Black implied volatility for the Euler and 2.0-weak-Taylor schemes.

e We observe from Table 6.1 that the CPU time we need to obtain an accuracy of 1 basis
point is 65.41 seconds for the FEuler scheme and 140.86 seconds for the 2.0-weak-Taylor
scheme (in Matlab on an i5-4670 CPU @ 3.40GHz, 4 Cores). Those high computation
times are a disadvantage of the 2D DCOS method. We however expect that we can reduce
those computation times significantly by using the GPU, because for every time step we
do a large number of parallel computations. This is left for future research.

e When we neglect errors introduced by the COS method, i.e. by the choice of N and the
domain [ag, b1] X [ag, be], our pricing method is free of arbitrage, because as a result of the
chosen discretization scheme variable Fr, given Fy = f and o9 = «, is a random variable
with a certain distribution, e.g. Fr is normally distributed with mean f and variance
afP At for formula (6.7), the Euler scheme and one time step. For multiple time steps the
distribution of variable £ is more involved and we apply the DCOS method to determine
the distribution, this ensures non-negative conditional probabilities and its integration over
the entire space equals one. Also, this ensures compatibility with the put-call parity (2.9).
The COS method may introduce errors which lead to arbitrage possibilities. When the
domain [a1, b1] X [ag, be] is chosen incorrectly, the integration of the conditional PDF over
the entire space is significantly less than one. When the number of grid-points in both
dimensions and the number of Fourier-cosine coefficients IV is chosen too small, it is possible
to obtain oscillations in the conditional PDF and/or its integral over the entire space is
unequal to one. So, we recommend to choose the domain [a1, b1] X [a2, b2] and the number
N carefully.

To prevent arbitrage-possibilities for the DCOS method due to an incorrect choice for
[a1,b1] X [ag, bs] and N, we advise to calculate the price of a European put from the price
of a European call by using the put-call parity (2.9).
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6.5 Brief analysis

We proposed to use pricing formula (6.13) with the Euler or the 2.0-weak-Taylor scheme. In
this section we summarize some properties of those two pricing methods and we compare them
with the Hagan formula. (2.3).

e The Hagan formula is not accurate for long time to maturity, while pricing European
options with pricing formula (6.13) for the Euler or the 2.0-weak-Taylor scheme can be as
accurate as desired by choosing N, M and the domain [a1, b1] X [a2, ba] carefully.

e The Hagan formula often implies arbitrage for low strikes, whereas option pricing with the
DCOS method is free of arbitrage when domain [a1,b1] X [ag, b2] and the number N are
chosen carefully.

e Pricing with the DCOS method is significantly slower than pricing with the Hagan formula.
We are sure to reduce the computation times in the future by using GPU programming.
Still, we think it is not feasible to have an accurate pricing method that is as fast as the
almost instantaneous Hagan formula, but we believe it is possible to have an accurate
pricing method that is as fast as Hagan’s arbitrage-free pricing approach.



Chapter 7

Conclusion

In this chapter we present a conclusion of the thesis in section 7.1 and we give recommendations
for further research in section 7.2.

7.1 Conclusion

In 2002, P.S. Hagan, D. Kumar, A.S. Lesniewski and D.E. Woodward introduced the SABR
model and gave a formula to calculate the Black implied volatility of the SABR model [14].
This formula, also known as the Hagan formula, leads however to arbitrage possibilities for low
strikes. Besides the presence of arbitrage, the Hagan formula has another disadvantage. The
formula is not accurate for long maturities. Following the pricing approach of Hagan, Kumar,
Lesniewski and Woodward, other methods have been developed for pricing European options
under the SABR model. We discussed Antonov’s method [2, 3] and Hagan’s arbitrage free
pricing approach [15]. Unfortunately, Antonov’s method is not free of arbitrage, while Hagan’s
arbitrage free pricing approach is not accurate for long maturities. This led to the development
of a new method.

M.J. Ruijter and C.W. Oosterlee developed a Fourier method [25, 24] to solve BSDEs using
the characteristic function of the one-dimensional underlying process. This method is called
the one-dimensional BCOS method. When the characteristic function of the underlying process
cannot easily be derived, we can use the characteristic function of a discrete forward process
to approximate the solution, where we approximate the underlying FSDE by the Euler scheme,
the Milstein scheme or the 2.0-weak-Taylor scheme.

We extended the BCOS method from one dimension to two dimensions to solve BSDEs with
a two-dimensional underlying process. This extension is necessary for application of a simpli-
fication of the BCOS method, the DCOS method, to the SABR model. Since no analytical
expression for the bivariate characteristic function of the SABR model is available, we use the
bivariate characteristic function of the discretized SABR model, where the underlying FSDEs are
approximated by one of the following Taylor schemes: the Euler, Milstein, adjusted-Predictor-
Corrector or 2.0-weak-Taylor scheme. Besides European options, some path-dependent options
can be priced with the DCOS method. The change in procedure for the DCOS method is small
for pricing Bermudan or discretely monitored barrier options.

Because of the the scaling symmetry of H. Park [20], it is possible to price European options
under the SABR model for multiple strikes in one computation. We advise to use this scaling
symmetry for strike values that are close to each other to retain the same accuracy.
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We recommend to use the Euler scheme or the 2.0-weak-Tayor scheme for pricing European op-
tions under the SABR model with the DCOS method. The 2.0-weak-Tayor scheme has second
order convergence, while for the other schemes only first order convergence can be achieved. As
a consequence, for the 2.0-weak-Taylor scheme we need the smallest number of time steps to
gain a certain accuracy. Unfortunately, the DCOS method is not fast yet. The characteristic
function of the SABR model, discretized with the Euler scheme, is significantly simpler than the
one determined with one of the other schemes, which ensures that the Euler scheme uses the
least amount of CPU time per time step.

Also, we suggest to use the logarithmic transformations for both the forward and the volatility
processes before applying the DCOS method. This ensures not only faster convergence for Eu-
ropean option prices under the SABR model, but it also prevents the occurrence of a positive
probability for a negative volatility.

7.2 Outlook

In this section we present three suggestions for future research.

Firstly, we would like to speed up the DCOS method. We are sure that we can reduce the
required computation time significantly by using GPU programming in C or C++, because the
DCOS method uses a large number of parallel computations.

When the DCOS method is fast, we can extent the DCOS method to a method that valuates
options for which the underlying process has time-dependent parameters. Because of this time-
dependency, we expect that more time steps are needed to gain a certain accuracy than without
the time-dependency. The DCOS method is feasible for time-dependent parameters when it is
fast.

In this thesis, we discussed the DCOS method for European, Bermudan and discretely monitored
barrier options. As a final suggestion, we recommend to investigate other path-dependent options
under the SABR model, e.g. Asian and American options.
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Appendix A

Derivation of the approximation

G(t, s)

for

The authors in [2] gave the following formula

i h 32 t
G(t,s) ~ Sms(s)ems [R(t,5) + 6R(t, )],
where
5t2 (—8s% + 3¢° 24
Rit.s) = 14 30(s) 5 (=8"+39°(s) +24g(s))
8s2 12854
N 35t% (—40s* + 3g3(s) + 249%(s) + 120g(s))
102456 ’
¢ 3072+ 384t + 2412 + t3
OR(t = e’ —
(t,s) es 3072 ,
g(s) = scoth(s)—1,
as an approximation for
B 2”5 [

u2
G(t,s) u e~ 27 \/cosh(u) — cosh(s) du.

Tt s

(A1)

(A.3)

The derivation of the leading term in the approximation is given in [3], where R(t,s) = 1. In
this appendix, we give the derivation of (A.1). This derivation uses integration by the following

substitution:

w
u=+s24+w? and du = —— dw.
V8?2 + w?

A Taylor series expansion around w = 0 gives

2 4 6

)
u:\/52+w2:s+wf—w7+w =

25 8s3 | 165> 1287

8
+ 0O (8_9) ,

and
2 4 6 8
w w w Sw 9
cosh(u) = cosh|s+———<+-—-——=+0(s"
() ( 2s  8s3 1655  128s7 ( )
1 w? _wt | w8 508 -9 1 _w? wt Wb w8 _9
= —efe2s 853 T 1655 12857 +O(S ) + 56_56 25 T 33 1655 12857 +O(S )

(A.4)

(A.5)
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1 14 w?  w? n w® 5w n 1wt n w® w76+ w®
- 3¢ 25  8s3 165 12857 2 \4s2  64s6 8st 1656
n 1 [ wb 3uws n 3w!o n 3w!o n 1 wd 410 n 1 [ wld Hwl?
31\ 8s3 3255  128s7 = 64s7 41 \ 1651 645 5\ 3255  128s7
12 14 2 4 6 8
w w 1 w w w Sw
O —8 ZeS 1 - =— el v
* Gt T rizssr O 0 )] o [ s "85 165 12857

2 \4s2 " 6456 1656 ) 31\ 8s3 3255 ' 12857 ' 6457
+ - < 1~ = 6) < 105 i 27) + w126 o 7 +0 (5_8)]
4! \ 165 64s 32s 128s 6!64s 711285
= cosh()[1+ —|—( + ) 1 +<5w8_w10+w12>1]
8s2 16 ' 4116 128 4116 6164 ) s6
+ sinh(s) [w2+ (_w+w6> ! + (wﬁ—w8+w10>1
2s 8 48 16 64 5132/ §5

Ew® 3wl® w2 w4\ 1
- - - +0 A6
* < 128 256 428 T 7‘128) +O (s )} (A.6)

1/ wt wB wb w® 1 [ wb 3w8 3wt 3w10
+ + 7_’_ — — + +

We substitute this result in \/cosh(u) — cosh(s) and remove all terms w" under the square root
sign, where n > 8. Thereafter, a Taylor series expansion around % =0 gives

smh wh\ 1 wt  wb\ 1 HwS
\/COSh —COSh —‘ ’ —T—FZZ *—i- g—ﬁ g—m

+coth()[4 +<—8+192)83+§ij] +0(574)

~ ) 51nh( ) { ar  4dag —a? (a3 —4dajaz + 8a3)

142t
+2 + 852 + 16s3

9 1 45a1a3
+ < a;@ — 6ajag — 3a% + 12(14) 115 + < ndy 30ai1a4 — 30asas + 60&5)

2 5155
+ (45a3 — 180asas + 360ag) 6‘ =+ O (s~ )} , (A.7)
o oy = L 1y 8= (<) bl 0 5 s =
and ag = —3%. Rewriting (A.7) and removing all terms w" in the term [-- -], for n > 6, leads
to
h
V/cosh(u) — cosh(s) = |uw] sin ( sinh(s) [1+ Ayw? + Agw + Asu® + O (8_4)} . (A.8)
where

coth(s) 1
_ _ A.
Al Ss 882 ) ( 93,)
coth?(s) 1 3 coth(s) 7
- _ _ A.9b
= 12852 4852 64s® | 12851 (A.95)
coth®(s)  5coth?(s) ) 27 coth(s) 33

102453 102454 38454 102455 102455
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Using the moments of a normal distribution with mean 0 and variance ¢, one can obtain

o0 w2 n
/ e 2tw" dw =nlly/m/2 t#, for n = even, (A.10)
0

where n!! denotes the double factorial, for even n it holds that n!! = HZL:/ ?(22 —1).

Now, the approximation (A.1) for (A.3) can be found

27E [ 2
G(t,s) = t\e/w»if w e~ 2t \/cosh(u) — cosh(s) du

\/— 52 t h
2 s __t . o w?
= te\/% : Sms(S) /0 wle 2r (1+ Arw® + Agw + Azw® + O (3_4)) du

R Sini(s) [1 4 3tA; + 1562 Ay + 105t A3 + O (s7)]
_ sinlsl(s)e_i_g [R(t,s) + O (s79)] . (A.11)

Here, R(t,s) is as in formula (A.1). The authors in [2, 3] added dR(t, s) as a correction to ensure
G(t,0) = 1.



Appendix B

Hagan’s arbitrage-free method

In this appendix we give the derivation of PDE (2.27), the proof of M (¢, F') > 0 (2.28), and the
Crank-Nicolson scheme to solve (2.27) in matrix form.

Derivation of Hagan PDE (2.27)

Using perturbation techniques the authors in [15] derived PDE (2.27). The start of this deriva-
tion is analogously to the start of the derivation of the Hagan formula which is given in [16].
Assume that both the volatility o and the vol-vol v are small and write Fy — ft, oy — €0y and
v — ev, where € > 0 is small. The system of FSDEs (2.1)-(2.2) becomes

dF, = e (E)BdW}, (B.1)

doy = evo, dW2, (B.2)
dwldw? = pdt.

Define the probability density function p (¢, f, a; s, F, o) by?
p(t, f,a;8, F,0)dF do :prob{F < F, < F+dF,o0 <0, < 0+d0‘ﬁt =f, ot = a}, (B.3)

where p (¢, f,o0;t,F,0) =0 (F — f)d (0 — ).

As given in [16], p satisfies the Fokker-Planck equation which leads to the PDE

% =3 20288;2 [F2Pp] + 162’/28f2 [0%p] + € VPaFaa [0FPp], for s >t, (B.4)
p =06(F—-f)d(c—a), at s=t. )
Define for £ =0,1,2,...
QW = QW (t, f a5, F) = / o"p(t, f,a5s,F,0) do. (B-5)

We showed in [16, Appendix D] that Q@ satisfies the Kolmogorov backward equation. With
a similar proof, one can show that Q) satisfies the Kolmogorov backward equation for all
k € NU {0}, which leads to the PDE

o = 2 dfda

oQk) _%GQQQfZBasz;k) — 1621/204282%&(;) — 62VP042fﬁ v for t <'s, (B.6)
QW  =adks(F - ), =

In Chapter 4 we denoted this probability density function by Qr, .-, (s —t, F,o|f,a). In this appendix we
choose to use another notation to avoid confusion.

78
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Using the PDE for p, interchanging integration and differentiation and [16, Formula (D.5)] gives
the following relation between Q® and Q@ for s > t,

Jp 1223 28 12262 2 2 0 2 128
9s = 267 5 [F70] + 36 50 [0%8] + Evogn [ F)
=
ap 2 > 232 28 o2FB
/ do /_OoaaFQ[F p]da+e / wop}do—keup/ aFa[F]d
=
0 & _1282 908
63(/_00de) 2€6F2</OOUF pdo]+0+0
=
0Q 159" [ras5@
5 =3 WAFQ]- (B:1)

The goal of the authors in [15] was to write Q® in terms of Q). For this analysis we write
T=s—tand 7, =T —t, and we take

I
z=— — df, (B.8)
(0 f f
and define
B(eaz) = fP. (B.9)
One can notice that B(0) = F”.
For the partial derivatives it holds that
9 , 00 __-1 90
of 0z 0f "~ eaB(eaz) 0z’
P (o1 oY 1P Bl 0
of? eaB(eaz) 0z © 2a2B(eaz)? 022 eaB(eaz)? 02’
00 90 Y
o da 0z O« - da a0’
P (0 20V _ 9220 22 97 29
da? da a0z 0o a?20z o« 0200 a2 022’
02 . -1 9 (9 =z0 _ 1 s +lg+282
dfda eaB(eaz) 0z \da a0z ~ eaB(eaz) 0z0a  «adz «dz?
which leads to the PDE
agi’” =[5 + zepv + €227 826%;’“) + { eggé:g) + 222 + eup} aQ(k)
[eupa + z€e%v 04] 8838(;) + %62112042 8283(;), for 7 > 0,
QW =152, at 7=0.
(B.10)
We define Q%) (r,z,a) = % ()(7, 2, ), then
Q) ok laQ(k)
3285(k) (k 1) I?Tz é@(k) ak—1 92Qk) B.11
020a eFP Bz eFﬂ 0200’ ~ ( ’ )
82Q®) (k=2)(k—1)aF~ Q(k)Jr 2(k—1)ak=2 90k) | 4k—1 §2Q*)
Oa? - eFP eFB O eFB a2
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~

QW) (7,2, ) is the solution of the PDE

%ﬁ_}c) = [% + zepy + %62u222] 2Qw |:EOéB/(eozz) + (€2V22: 4 el/p) (k — 2)] aQ®)

57 3B(caz) oz
— [evpa + ze*al 8(‘;2@8(2) + %EQVZ [az 822(;> + (k—2)(k — 1)@(k)
+ 2(k — l)a%} ) for 7> 0,
@(k) =6(2), at 7=0.

(B.12)
As the authors in [15] noticed, o does not enter the PDE for Q™) until O(e) approximation, so
aQ®)  92Q k) d 92Q*)

Sa > “aa and e are all O (¢). The PDE can be reduced to
90 (k) 920(k) B’ 90 (k)
B = Th ey §en?2%) B8 - [R5+ (st a) (b - 2)] 2
—eypaagz%(s) + 322 (k —2)(k — HE® + 0 (¢%), for 7 >0,
Q(k) =6(2), at 7=0.

The aim of this analysis is to write Q?) in terms of Q(©), and one can observe that when 7 > 0
and when k£ = 0 or k£ = 2 it holds that

o0 e 1, 4 o] 2QO eaB'(eaz) 2 92 Q)
or = [2“6'0”*26”} 52 {‘zmm)“(””wﬁ o2
92Q ) .
 paoe +e22Q0 + 0 (63) (B.13)
9?2 1 L5 5 9\ A0 eaB'(eaz) 8@(0) 82@(0) 3
022 [<2+zepy—|—26 v >Q ] © 2B(eaz) 0z — P 5200 +0(),
oQ® e 1, 5 5] 2Q®  eaB'(eaz) QW@ 92Q® 3
or [2 eyt et } 922 2B(eaz) 0z R T O(), (B.14)
with initial conditions
QO (r, 2, a)=9(z) and @(2)(7, z,a) = 0(2), at 7 =0. (B.15)

The PDEs for @(0) and @(2) are very similar and both functions have the same initial condi-
tion. The next step is to transform QWO in a few steps such that this final transformed quantity
satisfies the PDE of Q@ in © (62) accuracy, because then this transformed quantity equals Q2
up to O (62).

For the first transformation, we define

U(r, z,a) = (14 2zepv + €v22?) QO (7, z, ). (B.16)

For the partial derivatives it holds that

(0) i
(1 + 2zepr + e2v22%) 8% = %{7
8Q©) U 2 22125
(1 2w+ 20222) 290 — 20— s -
2. 2. 2\ 82Q® _ 820 2epv+22v22 90 :
(1 + 2zepy + €V f ) 0z0a T 0z0a  142zepr+e21222 da?
82(1+2zepu+e2u222)Q<0) 020
022 = 922"
We obtain with the geometric series, i.e.
1 2
=1-2zepv+ 0O (€%). (B.18)

1+ 2zepv + 21222
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The PDE of U is now given by

(1+ 2zpv + 2222) 92U _eaB'(eaz) @ eaB'(eaz)(2epr + 262122)
022 2B(eaz) 0z  2B(eaz) (1 + 2zepv + €21222)
82U 2 2¢222) U
epva(2epy + 2e“v°2) Lo (63)

9200 ' (14 2zepv + €21222) Do

ou 1
or 2

— epra

1 92U  eaB'(caz)0U  2aB'(eaz)py -
2 (1422600 +€072%) 022 2B(eaz) 0z B(eaz)
0*U oU :
_ 962 52,2 3y B.1
epuaazaa+ epvaaa—i-(’)(e) (B.19)

We observe that o does not enter the PDE for U up to O(e), so &= is O (€) accurate. The PDE
can be reduced to

au  _ 1 22,2\ 92U B'(eaz) 9U 2aB'(ecaz)pv 5
¥ =30 + 2mepu + ¢ ) 57 — SBteary 9: T Brean U
R —epyaazaa +0 ( ) for 7 > 0, (B.20)
U =46(2), at 7=0.
For the second transformation we define
B'(eaz)
r = ———2 B.21
B(eaz)’ ( )
U(r,z,a) = eEzPVO‘FTU(T, Z, Q). (B.22)
One can notice that or o
Y ) . =9 (ez) ’ (B.23)
da 0(6), 9z0a 0(6)
For the partial derivatives it holds that
€ 2pval'r %U — ?97U _ 62pI/OéFU
e T oU ou
errdl W0 ()
- 62 aQU (B.24)
e pval't 5 — +0 (E ) ,
cmere B 0@,

This leads to the PDE

B =504zt ) B - DL o +0(@). x>0
U =4d(z), at 7 =0.
(B.25)
This PDE equals (B.14) through O (€?). From this, one can conclude that
Q¥(r,z,a) = U(r,z,0)+ 0O (¢*)
= QU(r,z, a)e€2pl’aFT (1 + 2zepr + vt 40 (63)) . (B.26)
Using
N ~ eFs
Q(O) — eFﬂaQ(O) and Q(2) — 7Q(2)’ (B.27)
a

one can obtain

Q¥ (t, f,a;s,F) = a?Q (t, f,a;s, F)e€2p”ar(5_t) (1 + 2zepr + 21222 + O (63)) . (B.28)
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From the geometric series, [16, Formula (D.14)] and forward differences, one can obtain that

__ Bl(eaz) :_B(eaz)fB(O) .
b= B(eaz) eaz B(eaz) +0()
B _ B B _ B
- T Lo —- F}f B Lo
<fff1ﬁ df) f5 (TB+O(6)) 1P
FP — (P
= F—F 00 (B-29)

Substitution of (B.28) in (B.7) leads to the following PDE

aQ©

1
5 2€ ¥ 5 [FQﬂQ(O)eezpmr(s_t) (1 + 2zepr + 62V2Z2)} , for s > t, (B.30)
s

which is accurate up to O (62) and where

1 1 o PR g8
FP — (B
r = o (B.32)

Rewriting ea — « and ev — v gives (2.27).

Proof of M(t,F) >0

Let t > 0 fixed. We observe that M (¢, F') is continuous in F' and for the initial forward value f
it holds that M(¢, f) > 0.

When F = 0 or when 1+ 2pvz(F) +1v22%(F) = 0 it holds that M (¢, F) = 0. With the quadratic
formula

—2pv £ 2v4/p? — 1
14 2pv2(F) +v*2%(F) =0 when 2(F) = ik 5 V2 i , (B.33)
v

there is only a real solution when |p| = 1, then z(F) = —£.

NI

For the case —1 < p < 1 it holds that M (¢, F') > 0 for all F' > 0, because M (t, F') is continuous,
M(t, f) > 0and M(t,F) # 0 for all F' > 0.

When p = 1, one can obtain that M (¢, F') is a product of non-negative functions,
1
M(t, F) = 5(12 (14 2vz(F) + v*2*(F)) exp (pral (F)t) 2

= %()52 (14 vz(F))? exp (pral(F)t) F28

> 0, for ' > 0. (B.34)

Analogously, when p = —1, we find

M(t, F) = %az (1 —2vz(F) + v*2*(F)) exp (pral (F)t) P28
= %aQ (1 — vz(F))* exp (pral (F)t) F?8
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> 0, for F' > 0. (B.35)

The Crank-Nicolson scheme to solve (2.27) in matrix form is given by

- 1+?§TA§M{1H _2ATI;M§L+1 0 17 QT n
_QATngnH 1+ %Mgzﬂ —QATEM:?H QSH Ng
—ge Mty 1+ MY —ge Myt Q5 Q-1
: 0 —gEMyE 1+ gEMy Lot L | Qn
(B.36)
where
Qb = Qf+ g (MFQE - 3MIQP), (B.37)
Q= Q'+ 2% (MPLQr .y —2MPQY + M, QP }, forj=2,....,J—1, (B.38)
@ = Q5+ g {MIQ - 3M5Q3) (B.39)

To advance from time nAt to time (n + 1)At one can solve this system with the tridiagonal
matrix algorithm.



Appendix C

Ito-Taylor expansion

This appendix gives formulas for the It6-Taylor expansion in one and in two dimensions.

One-dimensional It6-Taylor expansion

Assume we have an FSDE is of the form (3.1). First we introduce some notation [18, 24]:

We call a row vector

a = (j1, 42, Ji@)) »
where j; € {0,1} for i € {1,...,1}, a multi-index of length

(@) e {1,2,...}.
Also,
a— = (j1,J2, - Jua—1) and  —a= (jo,J3, - Ju@)) -
The multi-index of length zero is denoted by v,
l(v) =0.

The set of all multi-indices is denoted by M,

M = {(jl,jg, ...,jl) 17 € {0, 1},i € {17 ...,l}, for1 =1,2,3, } Uw.

(C.1)

(C.5)

We call A C M a hierarchical set if A is non-empty, if the multi-indices in A are uniformly

bounded in length, i.e. supzc 4 (@) < 00, and if —a € A for each & € A\ {v}.
The remainder set B(.A) of A is given by

BA)={ae M\ A: —aec A}.
We define
0 1, 0?2 0

0
0 1
L’ = g + u(az)—x + 5 ()55 and L =o(x)4-.

Let h(t,z;) be a general sufficiently smooth function, we denote
hg = L' L. .L@h,

Also, we define the multiple It6 integral I [A(., x.)]&t recursively by

h(t,x¢), if I(«)

Lilh( o)), = Joda b @), du, i 1(@)
Ji o ()], AW, if 1(@)

s

84

(C.9)
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and we abbreviate
I&,s,t = Ia[l]s,t~ (C.lO)

Theorem C.1. Let X +1 denote the value of Xma1 given X, = z and let A C M be a
hierarchical set. The Ito-Taylor expansion for a general sufficiently smooth function h(t,x;) is
given by [18, 24]

h(tm+1’ m+1 Zh (s D)@ b g0+ Z me)]tmytm+l' (C.11)
acA a€cB(A)

By using Theorem C.1 we find the following conditional expectations of the It6-Taylor expansion
for a sufficiently smooth function h(t, z)

E [h (fnss, X™2)] = Bl @) + By (s 2)AE + %h(op)(tm,x) (A2 +0 (A1), (C12)
E[(h (b, Xuf))*| = D2 ) + [y (tans @) + 20t @) ) (b, )| At
+ [h%o) (tm, ) + ;hﬁl 1y (b @) + Bt @) ho,0) (tm,x)] (At)?
By (s @) [0, (tans @) + By (s )] (A0 + 0 ((A0)°) . (C.13)

We can observe that for A = {v, (0),(1),(0,0),(0,1),(1,0),(1,1)} and sufficiently smooth func-
tion h(t,z) the following holds

E| Y Lalha (X", | = 0(@0°), (C.14)
GEB(A)
and
2
Ell Y Lalha (. X™)), 00 - o((mﬁ). (C.15)
aeB(A)

Similarly, we can observe that for all [ € N>o [24], it follows that

l

Ell Y Lilha(X™)), . - 0((&)1-55). (C.16)
acB(A)

We summarize our results in the following lemma

Lemma C.1. Let X", denote the value of X411 given X, = x and let A = {v,(0), (1), (0,0), (0, 1),
(1,0),(1,1)}. For a sufficiently smooth function h(t,x) it holds for all | € N>o that

E| Y Ialha (X", 00| = 0207, (C.17)
acB(A) i
E
Ell Y Lalha ( X™)), 00, - o((At)1~5l). (C.18)
acB(A)
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For the 2.0-weak-Taylor scheme we approximate I(o.1) ¢, ¢t @0 1(1,0) 600 tmsy DY %AtAWmH.
This replacement was chosen such that it has the same moments in first order, i.e.

E[l0 1) tmine] = E [;AtAWm-i—l] ; (C.19)
E 1000 tmitmss) = E [;AtAWm—i-l] : (C.20)
Cov (I(o,l),tmth» AWmH) = Cov <;AtAWm+1, AWmH) , (C.21)
Cov (I(1,0) tstmsss AWmy1) = Cov <;AtAWm+1, AWmH) : (C.22)

Now, we find by using Lemma C.1 and [18, Chapter 5]:

Lemma C.2. Let X +1 and Xﬁﬁm denote the values of respectively Xpm41 and X2 ma1 given

Xm = x, where Xm+ " s derived with the 2.0-weak-Taylor scheme. Also, we define A =
{v,(0), (1), (0,0),(0,1),(1,0),(1,1)}. For a sufficiently smooth function h(t,z) it holds that for
alll e N

A,m,x m,r !
E (h <t’m-‘r17‘)(Plf»,7174_17 ) —h < m+1’Xtm+1))

m,T ]'
- E Z Ia [ha <.’ X 7 )]tm,tnz+l + h(071) (tm7 .’L') <2AWm+1At - I(Ovl)th7tm+l>
acB(A)

1 !
+ ko) (tm, ) <2AWm+1At - I(l,O),tm,tm+1>> ]
-0 ((At)3> . (C.23)

Because of the replacement I(q 1) by %AtAWmH, we loss the higher

order of accuracy for [ € N > 3.

and 1(170)

7tm 7tm+1 7tm 7tm+1

Two-dimensional It6-Taylor expansion
Assume our system of FSDEs is of the form (4.1) and (4.2). In two dimensions, the set of all
multi-indices is denoted by M,

M ={(j1, 42, 71) : ji €{0,1,2},0 € {1,...,1}, for 1 =1,2,3,...} U, (C.24)
and
0 0
L’ =
ot +M1($17$2)a$ +M2($1,9€2)8 -
—i—l 2 x)2+2 (x1,x2)02(21, T2) m—F5— ” + o3 (x x)—Q (C.25)
5 01(%1, X2 o 2 pPo1\T1,22)02(21, T2 971075 02(%1, X2 8x§ ) .
0
L' = 0'1(1’1,1’2) —i—pag(xl,xg)—, (C.26)

or 0w
L2 = 1\ 1-— pzag(l'l,xg)ai. (027)
2
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The multiple It6 integral I5 [A(.,z.)]y, is defined recursively by

h(t xt), if [(a) =0,
f Ta_[h(, )], du, i 1(@) > 1, 5y@) =0,
Ia [h('7x.):|s7t - f I’\, h 7:1; ] dWl lf l(a) 2 1,]1(&) — 17 (028)
f I h ,.’B ] dW2 if l(a) > 1,jl(a) = 2,
and we abbreviate
Ia,s,t = Ia[l]s,t- (C29)

Theorem C.2. Let X5 = (anillx, Xiff‘) denote the value of X, given X, = x = (21, 72)
and let A C M be a hierarchical set. The Ito-Taylor expansion for a general sufficiently smooth

function h(t,x) is given by [18]

1,m,x 2mx 1,m,x 2,m,x
h (tm+17Xm+1 » Am+l ) Z ha(tms X)Lty 1+ Z IA hg (., X277, X5 )]tmvtmﬂ '
acA acB(A)

(C.30)
Similar to Appendix C, we find:

Lemma C.3. Let X7'Y denote the value of Xyq1 given X, = x = (21,22) and let A =
{a e M :l(a) <2}. For sufficiently smooth functions h(t,x) and ﬁ( x) it holds that for all

l1,l5 € ZZO with l1 + 15 > 2,

E| Y Lilha(.X™ ), . | =0 ((At)3) ,
acB(A) ]
(C.31)
I T
E Z Is [ha ('7X.m7x)]tm,tm+1 Z I [h X_m’X)L . = 0 ((At)1'5(l1+l2)) ]
aeB(A) aeB(A) mylm41 ]
(C.32)

For the 2.0-weak-Taylor scheme we approximate /(g j) ¢, tms1 @0 1(5,0) tm tmis POY 2AtAWm+1,

for j =1,2. Also, we replace I(; 7). and I(Q 1), respectively, by 1 5 (AW#%HAWQ ot Vl’il)

tm,tm1 tmytm+1

and <AW2 AWE 1+ Vn%L) where V1 +1 is an independent random variable with
P (V = iAt) 5 ! and Vm’ 1= —vh +1 [18]. These replacements were chosen so that for all

m m

i, 5.k, 1 = 1,2 with i # j, it follows that!

E 103 tmtmsr] = E[;AtAW%H}, (C.33)
E [Ioemenn] = E[lAtAVVng}, (C.30)
Cov (L0 )t AW ) = Cov< AtAW,{Hl,AWf@Jrl), (C.35)
Cov (13 0) ot 1 AW ) = cov< AtAW,;H,AW,zH), (C.36)

! These equalities can easily be verified in a numerical experiment
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E[Lijyimimi] = E % (AW AW+ Vi ] (C.37)

E [(I(m),tm,tmﬂ)z: E E(A W AW, +Vm’11)2 ; (C.38)

E [I(i,j),tm,tm+1AWr’:L+l E % <A W AW, + Vm’il) AWmH} , (C.39)

E [f<i,j),tm,tm+1AW AW E % (A Wi AW+ V2 ) AWT’;HAW,;H} ,(C.40)
E i) st 2 L0,8) ot 1] E % (A Wi AW, + Vm+ ) I(O,k),tm,tm+1] , o (C41)

E [105.5) 00 toer L.0) s ] E % ( AW L4 VmH) J(k,o),tm,tmﬂ] . (C42)

Now, we find by using Lemma C.3 and [18, Chapter 5] the following lemma:

Lemma C.4. Let Xzfl and X
is derived with the 2.0-weak-Taylor scheme.

m,X
X,n = x, where Xerl

denote the values of respectively X,,+1 and Xerl given

Also, we define A =

{a e M :l(a) <2}. For sufficiently smooth functions h(t,x) and ﬁ(t,x) it holds that for all

l1,l5 € ZZD

E [(h (tmsr, XE) = o (B, X

= E
GeB(A)

m,X
tm+1

l1 /~ ~ l2
)" (5 (b X27) = (b 2,)) ]

m,X 1
Z Ig [ha (X)), i+ Ro,1) Gy X) <2AW$L+1At - I(o,1),tm,tm+1>

+ h1,0)(tm; X) ( AW At — Iy, 0),tm,tm+1> + ho,2) (tm, x) < AW? At — Lo, 2),tm,tm+1>

1
+ h’(2 0 <2AW3’L+1At - (2 0) tm: m+1>

1

+ h1,2)(tm, x <2A W1 AW,

1
+ k) (tm, ) <2A

+1+

Vm+1

> nfietxe,
aeB mylm+41
1
+ h(g 0) ZA m+1At - I(2,O),tm,tm+1
1
+ h(lz (tm,x <2AW1+1A 2V -

1

(1 2)7tm7tm+1>

1
Wv}w+1AW2 +1t Vm+1 1(271),tm,tm+1>>
) ( AWI +1At (0 1)7tm7tm+1>

1 ~ 1
SAWE At — 110, tm,tm+1> + ho,2) (tm, %) <2AW31+1A?5 - I(O,Q),tm,th)

(1 2)7tm7tm+1>

l2
+ h(2,1)(tm7 X) <2AW51+1AW31+1 + Vm+1 I, 1),tm,tm+1>> ]

) ((At)3> .

(C.43)
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Taylor schemes

In this appendix we derive the Euler, Milstein and 2.0-weak-Taylor schemes. We have the
following FSDEs

dth = Iu,l(Xt) dt + Ul(Xt) thl, Xé = 1, (Dl)
AX7? = pa(Xy)dt + poa(Xe) AW + /1 — p2oa(Xy) AW, Xg =z (D:2)

Integrating gives
1 1 tm+1 tm+1 1
Xm+1 = Xm + / ,UJl(Xt) dt + / Ul(Xt) th ’ (DB)
tm tm
5 5 tm+1 tm+1 1
Xerl = Xm + / ﬂ?(Xt) de + /0/ UQ(Xt) th
tm tm
tm+1
+ V1= p2/ o9 (Xy) dWZ. (D.4)
tm

Let h(z,y) be a function whose first and second partial derivatives are defined and are continuous.
The two-dimensional It6 Lemma [26, Formula (4.6.8)] gives
oh (Xy)

Oh(Xi) | o 10%h(X) 9%h (X,)

dh (X;) = dx} dX})" + S dX) dX7
(X,) o] ¢ + ax? ¢ Q(ath)g( 0) +athaXt2 ¢ daA¢
2
LOR(X) (a2 (0:5)
2 (0x})
Integrating gives [26, Formula (4.6.10)], for all ¢ > ¢,
t oh (X,) oh(X,) 1 2 O°h (Xo)
h(X,) = h(Xm)+/tm </~L1 (Xu)W+M2 (X“)TXng?Ul %) (0x1)”
Ph(Xa) 1 5o 0Ph(Xu)
+  po1 (Xy) og (X“)W+5®( 2 (8X5)2>
t oh (Xu) oh (Xu) 1
N /t 71 (Xu) =g+ P02 (X) T AWy
' Oh (X.,)
— U 2
I /t 72 (%) Ty AW (D.6)
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We assume that pq, pe, 01 and o9 are functions whose first and second partial derivatives are
defined and are continuous. Substitution of result (D.6), for p1(X:), p2(Xe), 01(Xy), and o2(Xy),
in formula (D.3) gives

1 1 tm+1 tm41 1
XL, = X} / 11 (Xom) dt + / o1 (X)) AW,
tm

bmt1 3 Xu o (Xy, 1 0%u1 (X,
o [ () 200 4 ) 280 L x, 2

oX} 0X?2 (0X))
b o (K)o (06 G0 Lo ) aing)”) duds
+ /MH/ o1 ( 6X}1( W 4 oy (XU)WdW;dt
+ W/mﬂ/t o (Xu)a‘gg“dvvgdt
+ /t:nH /tm <u1 805)((1 ) + p2 (Xq) 805)%(“) - %a% (X.) 8?;;((;(;)
b (X () G2 1 L () 8(2;)”) du i}
+ /t:nH /tm o1 ( 805)(1 ) + poa (Xy) aag;{,}gu) dwlaw}
+ V-2 /t e /t o5 (Xo) def dw}. (D.7)
We find with iterative use of formula (D.6) that
Xy = X+ (Xon) At + 01 (X)) AW, 4
b (i O 200 4 x,) 2t ) +§ o, 2
4 por (Xom) 09 (Xom) w + %U% (Xom) aX2 ) e / dudt

tm+1
+ <U1 (Xom) a/g)(;(m) + po2 (Xo) 8M1 ) / / dw}ldt
tm tm

5 8“1 tm+1 9
V= o () S 55" / /dW dt

801( ) 8Ul )

+ <M1(X )W+M2(X )W+§U1(X )7

(OX1)?
8201 (Xm) 1 9 bmt1
+  poy (Xop) 02 (Xin) OXLOX2 +§0’2 (Xon) 8X2 >/tm /tmdUth
80'1 (Xm) 60’1 > /tm+1 / 1
+ 01 (X)) —————= + po Xm dw,, dawl D.8
(o0 06m) 275552 oy (%) 25 5 [ awiaw, D8

5 801 (Xm) tm+41 9
+ Vi-pio (Xm)ﬁT . ¢ dW th +0 Z I(jl»anjS)vtm7tm+l )

J1,J2,73=0
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is defined as in (C.29), for example

tm41 t u
L0021t b1 = / / / ds dW?2 dw!. (D.9)
tm tm Jtm

We can also obtain this result by using Theorem C.2 and A = {a € M :[(a) < 2}.

Where I(]l ,J2:J3 ) tmstm

Like Ruijter and Oosterlee [24], we replace ft i ft AW dt and j;tm“ ft dudW; by AW/, 1At
and

S C\2
ftiv:ﬂ ft’; dwW;, dW} by % <<AW£H+1) — At>.
Let V;;il independent random variables, with P (V J = j:At) L and Vnﬁsz = _an{ilv for
i,j € {1,2} and i # j. According to Kloeden and Platen [18], the replacement ft;”“ fttm dWE dwy
by 3 (AWI AW a1 T Vm +1) is correct when the diffusion matrix satisfies the commutativity

condition

0 0
vV 1 —p20'2 (xl,azg) M =0 and vV 1 —p20'1 (:Ul,xg) M =0 V331,.%’2 S R2.

AR 0z
(D.10)
Now, we have
Xﬁn—l—l ~ X+ (X)) At + 01 (Xp) AWT}’H—I
1 I (Xim) Oy (Xm) 1 P (Xim)
b g (00 )y 0, LG 4 2ot ) T
P (Xim) 1, 0?1 (Xim) 2
+  po1(Xm) 02 (Xim) OXIoX2 T 502 (Xm) (0X2)? > (At)
1 Ot (Xin) o1 (Xim) 1
=+ 5 <0'1 (Xm) W + PO2 (Xm) W AWm+1At
1—p? Opr (Xim) \ 110
+ TO’Q (Xm) WAWTnA»lAt
1 Oo1 (Xm) Jo1 (X)) 1 4 0?01 (Xin)
= Xm) o Xm) —— + 01 (X)) ————
b g (00 2 )y 0, 25 ) St k) T2
%oy (X)) 1 4 0?01 (Xom) L
+ pO'l (Xm) o9 (Xm)m+§0'2( m) W) AW +1At
1 801 (Xm) 80’1 (Xm) 1 2
V1-=p? Oo
+ Yo (Xa) 5)((2) (AW1+1AW31+1 - Vnﬁ1> . (D.11)
For the Euler scheme we only use the the first line of (D.11), this results in
X2 = XA 4y (XB) At + oy (X5) AW, (D.12)

For the Milstein scheme we remove the terms (At)%, AW?L LAt AWE At of (D.11), we find
XM = XEA 4 (XB) At 40y (XB) AWL

n 1 (0'1 (XA) M + pos (XA) W) ((AW71rL+1)2 - At)

2 oX A oXm
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1-— p2 801 (XnAl)
b ) Tt

For the 2.0-weak-Taylor scheme, we obtain

(AerrL+1AW72n+1 - Vé’il) : (D.13)

X, = XA 4 (X2) At 4 oy (X8) AW,
b o) 20 4 ey 2B ot ?;XLX?
+ po1 (X5) 02 (X5) aig;g’?ﬂi 3 (Xm) ?2;;%?2 (A1)?
5 (o 0 2B o ) PR )
+ 12_p20 (X2) 8‘;1)§;§)AW;HAI:
oo L) 2B ) 20X o “ZGXLX’;)
b (63 02 (x2) 7SO 4 Lo ) ?aXiX}") NI
+ % (m (X2) 8(;1)((;;%) + poy (XB) 8‘2}%@) ((Awgﬁlf - At)
+ \/12_702 (XQ)W(AW;HAW;H—VT%). (D.14)

Analogously, we can find the schemes for Xﬁﬁl and we can write the discretization schemes in

the general form

Xiﬁl = x1+m (x) At + s‘fvl (X) AW 1 + s‘fVQ (x)AW2 4 + /@i/Vl’WQ (X) AW, AWE
1 2 2 2 2
+ m (%) (AW )"+ w1 (%) (A2 )"+ o1 (x) V2, (D.15)
XZ0 =y tma (0) A+ s (AW + sV AWR 4 ey Y AW AW
2 2
+ &V (x) (AW.L1)" + kY (x) (AW2 1) +wa(x)Vr2), (D.16)
where X2 = x = (21, 22).
For the Euler scheme, it follows that
mi (%) = (x), sV (x)=a1(x), sV (x)=0, W (%) = 0,
KV (x) =0, KV (x) =0, vi(x) =0,
(D.17)
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For the Milstein scheme, we find
ma (%) = 1 (%) = (01 (%) 252+ poy (x) 250 S () = o1 (),
A ) = Y g () 2520, st (x) =
o1 (x o1 (x 2
w1 00) = § (0 (0 2520 4 poz (x) T ) Al () =
vi(x) = =50y (x) 250,
(D.18)
ma (%) = iz (%) = § (o1 (1) 2220 4 03 (x) 2209) sl (x) = pon (),
2 x) = Y (o1 (0 P 4 2900 (%) 2200 ) |l (%) = V1T P02 (),
w00 = § (1100 T+ o (x) 7)) )Y 00) = S0 (x) 220,
va(x) = Yo (x) 20,
For the 2.0-weak-Taylor scheme, we have
o 1 80’1 (X) 80'1 (X)
mi() = () - (ol 09 22 4 o o 2L
1 I (x) O (x) |1 5, 9 (x)
o5 (00 25k 0 252 St o T
P (x) 1y P ()
- At D.1
+ om0 (0 A+ o0 T ) A (D192
Wi _ 1 O (x) I (x) doy (x) doy (x)
st (%) = o1(x)+3 (0’1 () =g, T Po2(X) =g = (%) =5 =+ e (%) —5 -
1 ,, 0% (x) 001 (x) 1 5, 0% (x)
= = At D.19b
+ 201( ) Oz, + po1 (x) o2 (%) 921015 +502 (x) (022)° ,  (D.19b)
/1= 2 1 _ 2
3‘1/V2 (x) = 1=p o2 (x) Ot (x) At, F&Il/vl,w2(x) _Vi-» o2 (x) 901 (X), (D.19c)
2 0o 2 Oz
ki (x) = 2(01 (x) . +'OU2(X)76$2 , Ky (x) =0, (D.19d)
B 1—p? 0oy (x)
vi(x) = — 502 (X)Txg (D.19e)
. 1 802 (X) 8(72 (X)
ma ) = a0~ g (pm 00 U0 gy 2720
1 Opua (x) Opz (X3) | 1 5 9%z (x)
+ 2 (/,1/1 (X) 8371 + H2 (X) axQ + 20-1 (X) (8171)2
Pus(x) 1, 0 (%)
- D.19f
v (o0 G 1 St 0 T2 Y (D191
1 1 Oug (x
sV(x) = poy (x)—i—im (x) 8235(1 )At
p Ops (x) dos (x) doz(x) 1 , 0?09 (x)
5 (00022 0 220 0 220 Dt T
oy (x) 1 ,, 0% (x)
— 1
b om0 0 G St 00 S o (D.19g)
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=

VI o 0+ I (0.0 220 s o 2720y g 272

1 0209 (x) Doy (x) 1 0?09 (x)

50% (x) (0;)2 + poy (x) o9 (x) 6x12am +§a§ (x) (a;)? >At, (D.19h)

g <o—1 (x) a?x(1X) + poy (x) 8‘;2$(QX)> , (D.19j)
— p? 092 (X — 092 (X

! oy (x)a;;z ) ) = V12 L (X)aazx(l ). (D.19K)
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Characteristic function

apc In this appendix, we derive the characteristic function of Xﬁ 11, given X4 = x, where

Xrln’ﬁl = 951+m1( ) At + s} ( )AW1+1+51 (x )AW2+1+"51 ( VAW, AW

+ V) (AWE) + Y (%) (A2 )+ ui (VR (E-1)
X2 = a4 ma (%) At + sy ()AL + 8 () AWE  + ks V) AW AW
+ ) (%) (AW )+ Y (x) (AR L) + v (x) VR (E.2)

Also, AW} 41 and AW? 1 are uncorrelated and both are normally distributed with mean zero

and variance At and V 1 is an independent random variable with P (Vm = iAt) =z
The characteristic function of Xﬁl 41, given X4 = x, is given by

gf)xﬁ_‘_l (up,uzglx) = E [exp (zulX 1T zuszH) ‘ XA = x}
= E [exp (iu1 [xl +my (x) At + 57" ( VAW, 1 + 81V ( JAW? 4
1 2 2
+ )Y AW AW R () (W) R () (AW )
+ v (X)V;L’il} + dus {xz + ma (x) At + s;” (x) AW 44
2
+ ( VAW, | + “2 ( VAW, AW L + Ky ( ) (AW,,11)

+ R x) (AW2L )+ vg(x)vnﬁl})} . (E.3)
We further abbreviate
c] = ulsl ( )+ u232 (x), c4 = ulml (x) + ugks :(x),
ey = uysy (X) + u2sy’ (X)a cs =ik} (x) + ugkl” (%),
c3 = ullill/v W2 (x) + UQHgV W2 (x), c = u1v1(X) + ugve(x), (E.4)
v=AWL ., w=AW2,,
V= Vr}ir

Recall from Section 3.1 that the characteristic function of the non-central chi-squared distribu-
tion with one degree of freedom and non-centrality parameter A reads

AU 1

95
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We can rewrite the characteristic function to
¢xa  (u1,uglx) = exp (i [z1 + mq (x) At] + tug [z2 + ma (x) At])
E [exp (i (c1v + cow + cgvw + cgv? + esw? + c6V)) ]
= exp (iug [x1 + my (x) At] + iug [:Uz + my (x) At))
E [exp ( (clv + cow + cgvw + v + C5w2))] E [exp (icgV)]
= cosh (icgAt) exp (tug [x1 + m1 (X) At] + dug [z2 + ma (x) At))
E [exp ( (clv + cow + cgvw + cv® + 05w2))] . (E.6)

We assume ¢4 # 0 and ¢35 # 0, which gives

Pxa (u1,uz|x) = cosh (icgAt) exp (fu1 [x1 + m1 (x) At] + fug [x2 + ma (x) At])

2 2
exp | ¢ | cow + C5w2 +cy v+ €1+ csw — (e1 + caw)
2cy 4y

_ cosh (icgAt)
27/

2 2
/ / exp cow + 05w +cq v+ o1+ csw — (e1 + caw)
264 404

- exp (—U 2—2;0 ) dv dw

cosh (icg At)

- W exp (i [1 -+ iy (x) Af] + iy [+ m (x) Af])

N (c1 + caw)? w? /°° . n c1 4 csw\ 2
ex CoWw C 'UJ _ ex _ ex 1C v _—
P\ T 4y P\ 7oA ) ) P\ 24

- exp ( 2UAt> dv dw

‘E

exp (tug [x1 + mq (x) At] + dug [x2 + mo (x) At])

N——

osh (icg At ) .
= \/% ) exp (tuy [x1 + my (x) At] + dug [z2 + ma (x) At])
. o ) 2 (c1 + 03w)2 w2
/Oo exp (z (czw + csw T de >> exp < A% ¢ ((CZCX:)Q) (csAt) dw
cosh (icg At)

exp (tug [x1 + my (x) At] + dug [z2 + ma (x) At])

T 2rAH(1 - 2icat)

o0 5 (c1+ caw)? w? i(c1 + caw)?
. N s b . d
R (O e ) Sl & Y € e R
cosh (icgAt) exp (iuq [x1 + mq (x) At] + iug [z2 + ma (x) At])

V21 A1 — 2icyAt)

riepd A7 ) - (o)

+ X - — ex

P 1142 (an? 202 ) ) 5P

2
- exp |1 co — M w4+ | c5 — 0364 At w? (E.7)
1+ 4¢3 (At) 1+ 4c3 (At)?
where ) ) )
At(1 + 4c5 (A A
o2 — t(1 + 4cy (At)") and p= 2 A2 L (E.8)

1+4c2 (At)? + (At)? 2 1+4c2 (At)?
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We abbreviate

2ercaes (A0 08205_M. (E.9)

Ccr=cg— —————~— 2
2T 1443 (At)? 1+ 4¢3 (At)’

So, the integral is given by

/OO exp (icrw + icgw?) exp (—W) dw = oV/27E [exp (i07 (oW + p] +icg [oW + u]2>] ;

—o 20
(E.10)
where W ~ N (0,1). Rewriting gives that

E [exp (i(C7 [oW + p] + cg [oW + #]2))}

2cs ) 2egi >
_exp< <C7M+Cg,u — C7+ cst) ))E[exp (zq;a <W+C73;8§8'u> )]

cr + 208.“ )
- eXp < <C7M + CSN’ - (b 12 (‘7+2c8;1. ) (080-2)

Xl 2cgo

. 5 (7 + 2Cg,u )2 cr + 2c8u) 1
= - . (E.11
exp <z <C7M + cgp )) <4CS 1 — 2icgo?) 1— 2io%cq (E.11)

So, the characteristic function of XTAn 11, given XA =x, is given by

o cosh (icg At) exp (i (u1 [z1 + mq (x) At] + ug [w2 + ma (x) At] + crp + csp?))
VA1 = 2icgAt)(1 — 2i02cs)

¢xa (U1, u2lx) =

exp | — At u? (e + 2cgp)? o2
2(1 +4¢2 (A1)?) 202 2(1+4cgo?)
2 2 2 4
, cqcy (At) (c7 + 2csp)” cgo
exp | @ - 12 5 — L ac2od . (E.12)
+ 4ci (At) +4cgo

We can simplify this to
cosh (icgAt) exp (iuq [z1 + my (x) At] + iug [z2 + ma (x) At])
\/ (1 — 2icsAt)(1 — 2ics At) + 3 (At)?
exp (_At c% + C% + [4(0%0421 + C%C%) — 4ereaes(eq + c5) + (01 + 62)03} (At) )
2 1+ (22 + 4¢3 4+ 4¢2) (AD? + (B — deyes)? (A1)

. exp i(At)2 —cfeq — c5e5 — cicacs + (03 deges)(cies — 6162632+ Cgcf) (At)2 . (E.13)
14 (263 + 42 + 4¢2) (A1)? + (& — deaes)” (AY)

dxa (ur,uzlx) =

In a similar way, we found that the above characteristic function is true for ¢4 = 0 and/or ¢5 = 0
as well.
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Adjusted-Predictor-Corrector schemes

For the Heston model, where X} denotes the log forward process and no mean reverting for the
volatility X? is included, we have the FSDEs,

1
dx} = —§Xt2dt+\/Xt2th1, (F.1)
dX? = py/ XFAW! 4+ /1 — p2vyy/ X2 dWE. (F.2)

The corresponding bivariate characteristic function of (X iﬁl, Xfrﬁl) is given for (X%{A, XZ;A> =

(1, x2), by using Lemma 4.1 where

my 1(1’1;532) = —1xo— Smp, sV (21, 22) = /T3 — 301p7/T2AL,

2
my N (an,w2) = fmy/1— P, sI7 (w1, 22) = —300V/1 = pPyy/T2At,

Wi 1 Wi _
k1 (T1,22) = 5MP7, kY (z1,22) =0,
v (21, 22) =0,
(F.3)

ma 1(ﬂfléﬂﬁz) = —3m7? sV (21, 29) = py /T2,

2
fsng’W (z1,22) = n2py/1 — p22, s (o, m0) = V1= 29/,
kY (21, m2) = %772P2V2, kY (21, m0) = %772(1 - )2,

UQ(.’El,fI,'Q) =0.
For the SABR model, where F; denotes the forward process and o, denotes the volatility process,
we have the FSDEs,

dF, = oy (F)aw}, (F.4)
doy = progdW! 4+ /1 — p?vo dW?. (F.5)

The corresponding bivariate characteristic function of (F,ﬁ 1O +1) is given for (Fqﬁ,aﬁ) =
(f, ), by using Lemma 4.1 where

mi(fia) = —m B+ praf?. (F.6a)
7 (f0) = af? —mby [3pBra® P4 528 — 1)l R4 tPaf AL (F.6D)
811“ (f,a) = —mbiv/1—p? [2ﬁva2f26_1 + pPafP| At, (F.6c)
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n‘l/vl’wz(f,a) = my/1-p? |:VOéfB — 0 {3pu2a2f25_1 +2(28 - 1)7/043f35_2} At} , (F.6d)

A (F0) = m [Bal Pk praf® - 0 {207 8020 P 4 (28° - 367 4 B) ot 4P
+ %pﬁ(Qﬁ — 5)1/a3f3/3_2} At] , (F.6e)
kY (f,a) = by (1-p?) B fPIAL, (F.6f)
U1 (f7 Oé) = 07 (FGg)
my (f, @) = —pr’a, SIZ/VI (f, @) = pra — Oamapr3at,
1 (1.0) = V= pPra—am/T= Piast,  wl Y (f0) = 2mpy/T = ok,
Hg[/ (f,Oé) :772/)21/2047 H‘Q/V (f: Oé) = 772(1 _:02)7/2047
v2(f’ Oé) =0.
(F.6h)

For the SABR model, where X} denotes the log forward process and o; denotes the volatility
process, we have the FSDEs

1
ax}! = —iof exp (2(8 — 1)X}) dt + orexp ((8 — 1)X}) dW/, (F.7)
doy = prodW} + /1 — p2voy dWE. (F.8)
We find the corresponding bivariate characteristic function of (X ;ﬁl, 0,% +1> , given (X}r;A, a,%) =

(1, @), by using Lemma 4.1 where

mi(ra) = —6, K; + (8- 1)) 02 A2(x) + mpuaA(:cl)] (F.9)

= )| (5 m - 1)) o exp (206 — D) + mpvaexp(5 -~ D)

s (@,a) = mad(e) + (1 m)aexp((8 — D)
01 [(1+2m (8 —1)) [(B— 1)’ exp((8 — 1)a1) + pra®] A*(z1)
+ mpv [(ﬂ — 1)a2 exp((B—1)x1) + pl/a] A(ZL‘l)} At, (F.9b)
sII/VQ (z1,0) = —b1v/1—p?[(142m(8-1)) va?A?(zy) + 771pV2OéA(1‘1)] At, (F.9¢c

Ky O (r1,a) = my1— pPraA(x)
— 011 —p2® [(142m (8 — 1)) [2(8 — V)varexp((B — 1)a1) + pv?] A%(21)

mp(B8 — 12 exp((8 — V)a1) Az1)] At, (F.9d)
Y (@,a) = o [(8-1)a” exp (8 — Dar) + pra] Alwr)
- 0 K; +m(B - 1)) [p°v*a® +4p(B — 1)va’ exp (B — 1)a1)
+ 2(8-1)%a"exp (2(8 — 1)z1)] A%(z1) (F.9)
+ mpw (908 — Vv exp(5 — o) + (6~ 0P exp (209~ o) ) Alen)| A,
Vi (z1,0) = —6 @ +m(B - 1)> (1= p2)2a?A%(z1)At, (F.9f)

vi(z1,) = 0, (F.9¢)
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ma (21, 0) = —mara, 812/1/1 (x1, ) = pra — Oaneprialt,
sgVQ (r1,0) = /1 — p2va — Oaman/1 — p2r3aAt, ngﬂ’wz(xl, a) = 2mpy/1 — p?ra,
wi _ 2.2 W2 _ o 2Y,,2
Ky (21,0) =mpria, Ky (21,a) = n2(l — p*)via,
vo(x1,a) =0,
(F.9h)
where .
A(z1) = exp <(ﬁ — 1 — 5(5 —1)exp(2(6—1)z1) At> . (F.10)

For the SABR model, where X} denotes the log forward process and X? denotes the log volatility
process, we have the FSDEs

1

dx} = —5 OXp (2X7 +2(8 - 1)X}) dt + exp (X7 + (8 — 1) X)) dW/, (F.11)
1

AXP = —gvRdt+ prdW! /1= Prdwd, (F.12)

We determine the corresponding bivariate characteristic function of (X;ﬁl, Xg,ﬁl), given

(X},;A,X%A> = (x1,x2), by using Lemma 4.1 where

my (x1,22) = —b K; +m(B— 1)) A?(zy, 29) + 7]1pVA(.CC1,$2)j| —(1-61) (F.13a)
(5 m8 = 1) exp 2o+ 205 - Do) +mpvesp (e2-+ (5 D).
st (v1,02) = mA@n @) + (1= m)exp (w2 + (8= D)
01 [pv + (B — 1) exp (z2 + (8 — 1)z1)]
[(1+2m (8 —1)) A%*(z1,22) + mprA(z1, 22)] At, (F.13Db)
3114/2 (x1,22) = —61/1—p?v [(1 +2m (8 —1)) A2($1,1'2) + mpVA(:cl,xg)] At, (F.13c)
ﬁll/vl’wz(xl,xg) = mv1-—pvA(zy,x2) — 01y/1 — p? [pl/z + (B —1)vexp (z2 + (B8 — 1)z1)]
- 2004 2m(B-1)) A?(xy,19) + mpvA(zy, z2)] At, (F.13d)
iV (@1,22) = v+ (B—1)exp(z2+ (B — D)a)] Az, 22) (F.13¢)

01 [pv + (B — 1) exp (z2 + (B — 1)z1))?
(15205 = 1) a1, + gmpvAle, )] At

1
f<a‘1/V2 (z1,22) = —601(1—p*)? [(1 +2m (B —1)) Az, 20)% + 2171pyA(x1,a:2)] At, (F.13f)
’01(1‘1,162) = 0, (F.13g)
ma 1($1;x2) = —%1/2, sgvl (x1,x2) = pv, S¥V2 (x1,22) = /1 — p?v,
Ky " (x1,22) = 0, kY (z1,22) = 0, kY (1, 22) = 0, (F.13h)

A(z1,x2) = exp <$2 +(B—-1)z1 — %VZAt - %(ﬂ —1)exp (222 4+ 2(8 — 1)z1) At) . (F.14)



