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ABSTRACT

This paper primarily employs Item Response Theory (IRT) to estimate item characteristics

and the proficiency levels of students as reflected in the exam results. The process includes

the application of algorithms for item characteristic parameter estimation and the utilization

of statistical techniques for item selection from an item pool. Additionally, Classical Test

Theory (CTT) is also used to gain insights into the item characteristics. The mathematical

frameworks behind every algorithm and model will be introduced in detail. Our ultimate

objective is to create an item bank that unifies all items from various exam versions onto a

common scale. The technique to put items from different versions on the same scale is the

test equating technique, and it will also be described in detail.

After a comprehensive analysis to determine the appropriate model within the framework

of Item Response Theory (IRT), the Rasch model has been selected for all versions of the

exams. One item from version 9 has been removed from the item pool due to its unsatis-

factory item fit. Based on the Item-Map plot, the conclusion can be made that all three

exam versions appear to be relatively easy for students to answer, as evidenced by the high

bar of the exams. Ultimately, the item bank has been successfully established through the

application of two test-equating methods, with results indicating its reliability.
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CHAPTER 1

Introduction

An examination or test is a form of educational evaluation designed to measure a student’s

understanding and proficiency in a particular subject or discipline. There are various forms

of questions in an exam that students can take, such as multiple-choice questions, single-

choice questions, and subjective questions. The primary goal of using examinations is to

provide a standardized way to evaluate students’ academic progress and determine their

level of proficiency.

The student’s proficiency is revealed by their scores on an exam in the most common sense.

It is commonly believed that a high score reflects a high level of proficiency, while a low score

suggests a lower level of proficiency. This perspective is in line with the principles of Classical

Test Theory (CTT). CTT utilizes measures of item characteristics, such as item difficulty

and item discrimination, to assess the items. Their values are easy to compute and are

dependent upon the distribution of student proficiency within a sample [6]. Modern research

focuses on the Item Response Theory (IRT) model, also known as the latent trait model,

which has a strong mathematical basis and considers the proficiency/ability of students as

the latent trait and measures the relationship between an individual’s proficiency/ability and

the probability of correctly responding to test items involving the item characteristics. This

relationship can be illustrated by a plot called Item Characteristic Curve [11].

In this work, we have datasets from Erasmus Medical Center (Erasmus MC). The data is

the scores that students obtained from each item/question during the final pharmacotherapy

exam. The questions are all single-choice questions and students will get 1 point for correctly

answering the question and 0 points for failing to answer the question. We have three versions

of test papers that were administered to students on several dates. And between each two

exam papers, there are some common items/questions which means there are some items

appearing more than once in those exam papers.

Our main objective is to use the Item Response Theory (IRT) model to estimate item

parameters and the ability of students for three versions of exams. Subsequently, we will
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utilize statistical analyses to evaluate the model’s goodness of fit and detect the violation of

assumptions that may require adjustment to enhance the model’s accuracy.

Following this, we employ test equating methods to establish a common scale for all three

versions of items, utilizing common items as a bridge [1]. This enables us to create an item

bank and conduct a comparative analysis of item parameters, helping us distinguish between

difficult and easy items among all the items.

Another objective is to conduct an analysis using Classical Test Theory (CTT), the tradi-

tional approach, and subsequently, perform a comparative assessment of the results obtained

from the Item Response Theory (IRT) analysis. By employing both methodologies, we aim to

gain a comprehensive understanding of the assessment’s performance, including the measure-

ment of test reliability, item difficulty, and item discrimination. This comparative analysis

will provide valuable insights into the advantages and limitations of each approach, helping

us make decisions for future research.

However, the Item Response Theory model is more strict with the sample size while the

Classical Test Theory is not [3]. Usually for Classical Test Theory to get stable parameter

estimates, it can be achieved by a sample size of 100 to 200 [4]. Since our data is only

collected from several exams from Erasmus Medical Center. The small sample size may not

provide very stable results under the IRT. However, in this thesis, we want to provide the

methodology and some suggestions to Erasmus Medical Center for future exam designs and

data collection.

The structure of this thesis is as follows. Chapter 2 provides the mathematical framework

of the models, the parameter estimation algorithm, and test equating techniques. In Chapter

3, we thoroughly analyze the results derived from employing these methods. The Conclusion

and Discussion Chapter offers a comparative analysis of IRT and CTT and provides valuable

insights into the future possibilities for the optimization of the exam items within the medical

center.
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CHAPTER 2

Methods

In this chapter, we are going to introduce the mathematical framework of both the IRT and

CTT models, their parameter estimation algorithms, the item fit statistics, and some other

techniques that will be used during the implementation process.

2.1 Item Response Theory

Item Response Theory Models are special cases of what is called generalized linear or non-

linear mixed models. Generalized linear mixed models (GLMMs) or nonlinear mixed models

(NLMMs) is an appropriate way to model repeated binary data. Models with mixing of fixed

effects (that do not vary over persons) and random effects (that do vary over persons) are

called mixed models [28]. From the perspective of IRT, the latent traits (abilities) can be

considered as random effects and the item difficulties can be considered as fixed effects.

2.1.1 Linear Mixed Model

In this model, two different symbols are used for the predictors: X for predictors with a

fixed effect, and Z for predictors with a random effect.

Ypi =
K∑
k=0

βkXik +
J∑

j=0

θpjZij + εpi (2.1)

where Ypi is the observed response variable;

k (k = 0, ..., K) is an index for predictors with a fixed effect;

j (j = 0, ..., J) is an index for predictors with a random effect;

Xik is the value of predictor k for item i;

Zij is the value of predictor j for item i;
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βk is the fixed regression weight of predictor k, an overall intercept for k = 0, and predictor-

specific effects for k = 1, . . . , K;

θpj is the random regression weight of predictor j for person p, a person-specific intercept

for j = 0, and person-specific slopes for j > 0;

εpi is the error term for person p and item i. It is assumed that εpi has an independent

normal distribution with mean 0 , and variance σ2
ε , the same for all persons and items.

It’s obvious that the linear mixed model has a continuous error term that requires contin-

uous outcomes. However, the data in item response models is categorical data, particularly

binary data in our case.

A special case of the linear mixed model random-intercepts model will be introduced,

which can be applied to produce item response theory models

Upi =
K∑
k=0

βkXik + θp0Zi0 + εpi (2.2)

where (β1, . . . , βk, . . . , βK) as multiple fixed slopes, β0 as an overall intercept, and θp0 as the

random deviation from the overall intercept.

2.1.2 IRT Models

Since the responses to the items are scored as correct or incorrect, the dichotomous response is

denoted by Upi = {0, 1} by test takers p = 1, . . . , P on items i = 1, . . . , I. The distributions of

Upi = 1 are Bernoulli distributions with the parameter πpi ∈ [0, 1] as the success parameters.

Thus, the expected value of this binary response variable is πpi.

There is a continuous variable Vpi with its expected value ηpi. This Vpi follows the linear

mixed model formula. Then we use the link function g(.) to link the expected value of the

binary response πpi to the expected value of the underlying continuous variable ηpi. The

most common link function used in Item Response Theory model is the logit function.

L (πpi) = ηpi = log
πpi

1− πpi

(2.3)

Rasch Model

First of all, the random intercept θp0Zi0 from (2.2) corresponds to the person parameter in

the IRT. It is often denoted by θp, and called ’ability’.

Then, when the item predictors are dummy variables that are used to identify the items

(Xik = 1 if i = k, and Xik = 0 if i ̸= k), then the fixed effects term ΣK
k βkXik from (2.2)

corresponds to the item parameter. It is denoted by βi

(
ΣK

k βkXik = −βi

)
, and called ’item
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difficulty’.

ηpi = θp − βi (2.4)

Using (2.3), we obtain

log
πpi

1− πpi

= θp − βi

πpi =
exp (θp − βi)

1 + exp (θp − βi)

(2.5)

Since πpi is the probability of a test taker answering the item correctly, it can be replaced

by p (Ypi = 1 | βi, θp).

Therefore, the Rasch Model is

p (Upi = 1 | βi, θp) =
exp (θp − βi)

1 + exp (θp − βi)
(2.6)

From the descriptive point of view, the log odds version of the Rasch model (the first

formula in (2.5)) shows that the natural logarithm of the odds ratio of the probability of

correct response to the probability of incorrect response is modeled by the difference between

person parameter θp and the item difficulty βi.

Two Parameter Logistic Model

The extension for the Rasch model is to include the latent item predictors which is the item

discrimination αi.

P (Upi = 1 | αi, βi, θp) =
exp [αi (θp − βi)]

1 + exp [αi (θp − βi)]
(2.7)

The item discrimination αi here is the multiplier of the difference between ability and

item difficulty [10]. From the descriptive point of view, it says that the difference between

the ability and item difficulty depends on the discriminating power of the item.

Specifically, the impact of the difference between the ability and item discrimination is

stronger on the probability when the item discrimination is higher.

The parameters

The αi is the item discrimination parameter. This parameter reflects how well an item

can distinguish individuals with different levels of the latent trait. Therefore, when αi

increases, the item will be more sensitive to individual differences in the latent trait. From

the perspective of the Item Characteristics Curve (ICC) which is the plot of the formulas

(2.6) or (2.7) to illustrate the relationship between the latent trait and the probability of
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answering items correctly, the increased item discrimination will make the ICC steeper [28].

The βi is the item difficulty parameter. This parameter represents how challenging the

item is. Therefore, when βi increases, the item discrimination parameter tends to be lower

since it is less useful for differentiating individuals at lower trait levels. In addition, the value

of the item difficulty means that the examinee with the same value of ability will have a 50%

possibility of giving the correct response for that item.

GLMM or NLLM

If the link function is the identity function, then the IRT model is still a linear mixed model.

Since the logit function is used to generate the IRT model, the IRT model is what we call

Generalised Linear Mixed Model or Nonlinear Mixed Model.

Figure 2.1: Graphical Representation

2.1.3 Local Independence

Local Independence is an important assumption and concept of the IRT model. Local

Independence says that item responses only depend on latent traits and not on the responses

to other exam items. Thus, exam designers prefer to design the exam paper with items that

provide unique information regarding the examinee’s skills or knowledge.

Detecting Local Item Dependency

The Q3 statistic is a residual-based statistic. It measures the correlations of the residuals

between any two of the items in an exam [22].
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For any item response logistic model, if the local independence is met, then

Pij (θp) = Pi (θp)Pj (θp) (2.8)

The procedure for calculating Q3 is to first remove the nonlinear effects of θ̂ from the item

scores. Define

dip = uip − p̂i

(
θ̂p

)
(2.9)

where uip is the score of the pth examinee on the ith item; p̂i

(
θ̂p

)
is the observed probability

of examinees that correctly answer the items.

and

Q3,ij = rdidj (2.10)

which is the correlation (taken over all the test takers) of these scores. In our case, the Q3

statistic for the Rasch model, any pair of items with residuals over 0.20 may violate LID.

2.1.4 Parameter Estimation

In typical IRT applications, both item parameters and latent trait levels are unknown and

must be estimated from the same dataset. The marginal maximum likelihood (MML) method

is the most popular method that is widely used nowadays.

Marginal Maximum Likelihood

Under this method, the latent traits are handled by expressing the response pattern prob-

abilities. First, the likelihood of a response pattern of person p to I items
(
X1p , ..., XIp

)
conditional on the latent trait θp and the vector of item difficulty of every item β, is the

product of their response probabilities (local independence).

P
(
X1p , . . . , Xip | θp, β

)
= ΠiPip

XipQip
1−Xip (2.11)

In the following, the P
(
X1p , . . . , Xip | θp, β

)
will be denoted as P

(
Xp | θp, β

)
due to

notational convenience.

For each response pattern Xp, there is a unique probability P
(
Xp | θp, β

)
. The persons

who produce the pattern are regarded as replicates. The number of persons with this pattern

is denoted by np. The latent trait levels θp are unknown for the persons who are observed,

but we can still specify the probability of this latent trait by P (θp). The probability may

be known in advance if the assumption of the distribution of latent traits is made.
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Assume that the probability can be generated from a population distribution, and the

distribution of latent traits is a standard normal distribution. Then the marginal probability

of the response pattern is:

P
(
Xp | β

)
= Σn

pP
(
Xp | θp, β

)
P (θp) (2.12)

The P
(
Xp | θp, β

)
is computed from the IRT model, as in (2.11).

For a continuous variable, the expected value for a response pattern is to integrate across

the range of latent traits. (2.12) becomes

P
(
Xp

)
=

∫
P
(
Xp | θp, β

)
g(θ)dθ (2.13)

A posterior distribution of θp given Xp can also be computed. This posterior distribu-

tion combines the information from the (assumed) distribution of ability and the likelihood

function based on the observed responses. It can be computed using Bayes theorem [15]:

P
(
θp | Xp, β

)
=

P
(
Xp | θp, β

)
g(θ)∫

P
(
Xp | θp, β

)
g(θ)dθ

(2.14)

The marginal likelihood function and its logarithm are

L = Πn
pP

(
Xp

)
logL =

n∑
p

logP
(
Xp

) (2.15)

For a 2PL model, the vector of item parameters β = (αi, βi). And the marginal likelihood

equation for αi,
∂

∂αi

(logL) = 0 (2.16)
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Then

∂

∂αi

logL =
n∑
p

∂

∂αi

(
logP

(
Xp

))
=

n∑
p

[
P
(
Xp

)]−1
∫

∂

∂αi

[
P
(
Xp | θp, β

)]
g(θ)dθ

=
n∑
p

[
P
(
Xp

)]−1
∫

∂

∂αi

[
logP

(
Xp | θ, β

)]
P
(
Xp | θ, β

)
g(θ)dθ

=
n∑
p

∫
∂

∂αi

[
logP

(
Xp | θ, β

)] [P (
Xp | θ, β

)
g(θ)

P
(
Xp

) ]
dθ

(i)
=

n∑
p

∫
∂

∂αi

[
logP

(
Xp | θ, β

)] [
P
(
θ | Xp, β

)]
dθ

(ii)
=

n∑
p

∫
∂

∂αi

[
log ΠiPip

XipQip
1−Xip

] [
P
(
θp | Xp, β

)]
dθ

(2.17)

where (i) follows the posterior distribution equation (2.14); (ii) follows the equation (2.11).

Then, we substitute the probability Pip and Qip with (2.7). After some deduction, the

equation is as follows:

∂

∂αi

logL =
n∑
p

∫
[Xip − Pi (θp)] (θp − βi)

[
P
(
θp | Xp, β

)]
dθ = 0 (2.18)

Notice that the integral is difficult to evaluate. Thus, a method called the quadrature ap-

proximate approach can be employed here to approximate such integrals. As the distribution

of latent traits is assumed to be the standard normal distribution, the Gaussian quadrature

method is used here.

Gaussian quadrature is analogous to dividing a normal distribution into segments, with

a representative value and a probability of occurrence.

The midpoint of each rectangle on the ability scale, Yk(k = 1, 2, . . . , q), is called a ”node”.

Each node has an associated weight A (Yk) which takes into account the height of the density

function g(θ) in the neighborhood of Yk and the width of the rectangles.

Returning to equation (2.18), this equation can be rewritten in the form of Gaussian

quadrature:

αi :

q∑
k

n∑
p

[Xip − Pi (Yk)] (Yk − βi)
[
P
(
Yk | Xp, β

)]
= 0. (2.19)
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βi : (−αi)

q∑
k

n∑
p

[Xip − Pi (Yk)]
[
P
(
Yk | Xp, β

)]
= 0 (2.20)

Next, we begin defining the following two quantities:

n̄ik =
n∑
p

P
(
Yk | Xp, β

)
=

n∑
p

[ ∏I
i Pi (Yk)

Xip Qi (Yk)
1−Xip A (Yk)∑q

k

∏I
i Pi (Yk)

Xip Qi (Yk)
1−Xip A (Yk)

]
(2.21)

r̄ik =
n∑
p

XipP
(
Yk | Xp, β

)
=

n∑
p

[∏I
i XipPi (Yk)

Xip Qi (Yk)
1−Xip A (Yk)∑q

k

∏I
i Pi (Yk)

Xip Qi (Yk)
1−Xip A (Yk)

]
(2.22)

where n̄ik is the expected number of examinees at ability level Yk and r̄ik is the expected

number of correct responses to item i at ability level Yk.

Since,

L (Xk) =
I∏
i

Pi (Yk)
Xip Qi (Yk)

1−Xip (2.23)

Thus, the equation (2.14) under the quadrature form is

P
(
Yk | Xp, β

)
=

L (Yk)A (Yk)∑q
k L (Yk)A (Yk)

(2.24)

Then, the equations (2.21) and (2.22) become

n̄ik =
n∑
p

P
(
Yk | Xp, β

)
=

n∑
p

[
L (Yk)A (Yk)∑q
k L (Yk)A (Yk)

]
(2.25)

r̄ik =
n∑
p

XipP
(
Yk | Xp, β

)
=

n∑
p

[
XipL (Yk)A (Yk)∑q

k L (Yk)A (Yk)

]
(2.26)

Finally, (2.19) and (2.20) can be rewritten using n̄ik and r̄ik as follows

αi :

q∑
k

(Yk − βi) [r̄ik − n̄ikPi (Yk)] = 0 (2.27)

βi : (−ai)

q∑
k

[r̄ik − n̄ikPi (Yk)] = 0 (2.28)
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EM Algorithm

The EM algorithm is an iterative procedure for finding maximum likelihood estimates in

the presence of unobserved random variables in probability models [29]. E represents the

expectation step and M represents the maximization step. Under the IRT setting, we want

to find the maximum likelihood estimates with the latent trait. Thus, there are two steps

under the EM algorithm [15]. When it is employed for our case:

E-step: Use provisional item parameters to generate n̄ik and r̄ik, the expected number of

examinees and the expected number of correct responses.

M-step: Use n̄ik and r̄ik to calculate the new item parameters based on the maximum

likelihood functions (2.27) and (2.28).

The EM cycles are continued until the estimates become stable to the required number

of places.

2.1.5 Ability Estimation

For this ability estimation process, the maximum likelihood procedures are used. Similar to

parameter estimation, the procedure is also an iterative process. It begins with an a priori

value for the ability of the examinee of which the distribution was assumed in the process of

parameter estimation and the known values of the item parameters [11]. We can use the 2PL

formula (2.7) to compute the probability of correct response to each item for that examinee.

The ability estimation equation for the 2PL model is shown as follows,

θ̂s+1 = θ̂s −

∑I
i=1 ai

[
ui − Pi

(
θ̂s

)]
−
∑J

i=1 a
2
iPi

(
θ̂s

)
Qi

(
θ̂s

) (2.29)

where θ̂s is the provisional or estimated ability of the examinee within iteration s, ai is

the item discrimination parameter of item i, i = 1, 2, . . . , I, and ui = {0, 1} is the response

made by the examinee to item i; Pj

(
θ̂s

)
is the probability of correct response to item j,

Qj

(
θ̂s

)
= 1− Pj

(
θ̂s

)
is the probability of incorrect response to item j.

From this equation, we can consider the second term on the right side is the adjustment

term. It measures the difference between the examinee’s item response to item i and the

probability of correct response at θ̂s. Consequently, the ultimate goal is to find the ability

estimation that can let the values of Pj

(
θ̂s

)
for all items simultaneously that minimizes the

sum. After many times of iteration, the adjustment term become small enough so that the

θ̂s+1 won’t change, then the θ̂s+1 is the estimated ability.

11



2.1.6 Item Fit

Item fit statistics are calculated to assess whether the individual item fits the Rasch model

[20]. Residual-based fit statistics are widely used to assess Rasch model fit.

Infit Outfit Mean Squares Statistics

First, the standard residuals between the model and responses are

Zip =
Xip − E (Xip)√

Var (Xip)
(2.30)

with the responses Xip = {0, 1}, E (Xip) = P (Xip = 1) = pip and Var (Xip) = pip (1− pip).

Then, the outfit (unweighted mean square) and infit (weighted mean square) are calcu-

lated as means of the squared residuals,

Ui =
∑
p

Z2
ip/n, Vi =

∑
p Z

2
ip · wip∑
pwip

(2.31)

The weights wip used to calculate the infit statistics are equal to Var (Xip).

The outfit is highly influenced by a few outliers (unexpected responses) and the infit is

more sensitive to the overall pattern of responses. The mean square fit statistics have a

chi-square distribution and an expected value of 1 [25].

To detect misfitting items the fit statistics are either compared to rule-of-thumb criti-

cal values or transformed to test statistics which can be compared with the values of the

purported distribution. Linacre [17] suggested that both mean squares statistics values be-

tween 0.5 and 1.5 are acceptable. Then, the Wilson-Hilferty cube root transformation [21]

can be used to improve the approximation of a chi-square variable to the standard normal

distribution. The outcome called standardized fit statistics [2] is shown as follows:

z (Ui) =
(
U

1
3
i − 1

)(
3

σi

)
+
(σi

3

)
, z′ (Vi) =

(
V

1
3
i − 1

)(
3

σ′
i

)
+

(
σ′
i

3

)
, (2.32)

where σi and σ′
i stand respectively for the standard deviation of Ui and Vi. The formulas of

them are explicitly given in [27].

The p-values of the standardized fit statistics are very close to those of a standard nor-

mal variable. Thus, it can be interpreted as a classical t-statistic, where a value of 1.96

corresponds to a two-sided significance of 5%.

Please note that this item fit method can also be applied to responses from each person,
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then this method can be called person fit.

2.1.7 Test Equating

There are some common items between each two of our exam papers. The examinees who

took the Pharmacotherapy exams were from different groups of class or from different grades.

In this case, the test equating method that should be applied is the Non-Equivalent Common

Item Equating [1].

Non-equivalent Common Item Equating

The parameter estimation that results from non-equivalent groups of examinees is always on

different scales. When conducting equating with nonequivalent groups, the parameters from

different scales should be put on the same scale.

if an IRT model fits a set of data, then any linear transformation of the θ-scale also fits

the set of data, provided that the item parameters also are transformed [1].

Define two scales: scale I and scale J. They are the 2PL logistic IRT scales determined by

two non-equivalent groups. When an IRT model is used to fit two different exam versions,

the linear transformation φ : ΘI 7→ ΘJ is assumed. A linear equation is used to convert the

IRT score:

θJi = AθIi +B (2.33)

The relations between item parameters on the two exam versions are

aJj = aIj/A (2.34)

bJj = AbIj +B (2.35)

where A and B are equating coefficients that will be estimated after the separate calibration

of two exam versions, θJi and θIi are values of θ for examinee i on Scale J and Scale I, and

where aJj and bJj are the item parameters for item j on Scale J and aIj and bIj are the item

parameters for item j on Scale I.

Appropriateness of Scale Transformations

The 2PL model (2.7) under scale J should be converted to scale I by the linear transformation

(2.33)-(2.35). The 2PL model formula is rewritten with scale J

exp [aJj (θJi − bJj)]

1 + exp [aJj (θJi − bJj)]
(2.36)
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Now substitute all the terms with the formula (2.33)-(2.35) as follows:

exp
{aIj

A
[AθIi +B − (AbIj +B)]

}
1 + exp

{aIj
A

[AθIi +B − (AbIj +B)]
} =

exp [aIj (θIi − bIj)]

1 + exp [aIj (θIi − bIj)]
. (2.37)

Apparently, the resulting expression is the 2PL model formula with the scale I, which

indicates the A and B in formula (2.33)-(2.35) provides the scale transformation.

A and B constants

For any two items j and j∗, the A and B constants can be expressed as follows:

A =
bJj − bJj∗

bIj − bIj∗
=

aIj
aJj

(2.38)

and

B = bJj − AbIj = θJi − AθIi. (2.39)

After the separate calibration from both versions, the groups of item parameters are cali-

brated and applied to calculate the A and B constants.

A =
σ (bJ)

σ (bI)
,

=
µ (aI)

µ(aJ)
,

=
σ (θJ)

σ (θI)
,

(2.40)

and
B = µ (bJ)− Aµ (bI) ,

= µ (θJ)− Aµ (θI) .
(2.41)

where µ (bJ) , µ (bI) , µ (aI), and µ (aJ) are the means that are defined over common items

with parameters on both scale I and J and σ (bJ) and σ (bI) are the standard deviations that

are defined over common items with parameters on both scale I and J.

Moments Methods to Estimate Equating Coefficients

These methods use the mean and the standard deviation of the common items to obtain

the equating coefficients A and B. The mean/mean method and mean/sigma method are

introduced by Kolen and Brennan [1] with early descriptions from Marco [12] and Loyd and

Hoover [5].
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The first two equations in (2.40) can be used to calculate the constant A respectively and

the first equation in (2.41) can be used to calculate the constant B. If the first equation

in (2.40) is used, the method is called the mean/sigma method. If the second equation in

(2.41) is used, the method is called the mean/mean method.

Common-Item Equating to a Calibrated Pool

When several exam versions need to be equated together, the common item equating to a

calibrated pool method can be employed. A calibrated pool is a set of items coming from

different versions whose parameters are expressed on the same scale. When a new form is

constructed, some items from the calibrated item pool are included. The parameters that

result from estimating this new version are transformed to the scale that was established for

the pool and is then included in the pool.

Suppose that a pool is formed by 3 versions (labeled 1, 2, and 3) and that they enter

the pool in order 1, 2, and 3 [14]. We take the Rasch model as an example and apply the

mean/mean method here to do the conversion. Then the conversion of the item difficulty

parameters of version 2 to the scale of version 1 is b2+B21. Let B31 be the equating coefficient

for converting from the scale of version 3 to the scale of version 1, B32 the equating coefficient

for converting from the scale of version 3 to the scale of version 2, n13 the number of common

items between version 1 and 3 and n23 the number of common items between version 2 and

3.

Figure 2.2: Common-Item Equating to a Calibrated Pool

Thus, parameters of version 3 can be converted on the scale of the pool (composed of

versions 1 and 2) using the equation b3 +B∗
31, where

B∗
31 =

n13B31 + n23 (B21 +B32)

n13 + n23

. (2.42)
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The above methods can be called the separate calibration, since we estimate the param-

eters for the common item separately and then use the transformation to put the items on

the same scale. There is another method called concurrent calibration, which is a method

that doesn’t estimate the parameters separately but simutaneously.

2.1.7.1 Concurrent Calibration

Another method to equate different versions of exams is to put two datasets into one dataset

and estimate the parameters simultaneously. In this case, we should rearrange the order of

the items to make them between the unique items. The illustration [8] is in the Figure 2.3.

Figure 2.3: Concurrent Calibration

2.2 Classical Test Theory

Classical Test Theory is also called true score theory. It assumes that each person has a

true score T that would be obtained if there were no errors in measurement. A person’s

true score is the expected score over an infinite number of independent scale administrations

[3]. However, true scores can’t be observed, only the observed scores can. The relationship

between observed scores and true scores is that the observed score (X) = true score (T ) +

some error (E). This model assumes that the expected value of the random errors is zero

and that the random errors are uncorrelated with the true score [23].

The true score reflects the concept of the trait or ability of interest. There should be a

monotonically increasing relationship between true scores and observed scores so that higher
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responses reflect higher values of the concept.

2.2.1 Reliability Coefficient

Reliability, in the context of educational testing, is intimately tied to the notion of consis-

tency. It is a term employed to evaluate the consistency of individuals’ scores on educational

assessments [13].

Before Cronbach’s alpha was developed, the split-half coefficients were employed in most

cases. In this method, the test is randomly split into two halves, and the sum scores of the

two halves are compared as if they were two separate administrations of the same test score

[7]. The correlation between the sum scores of the two halves is an estimate of the reliability

of the half test. The high split-half coefficient indicates high reliability. High reliability

indicates that an examinee would perform equally well on both halves of the exam.

Cronbach’s alpha is the average of all possible split-half estimates. The limitation of

split-alpha coefficients is that the estimate depends on the way the split is made since there

are multiple ways to divide the items into two halves. Therefore, Cronbach’s alpha removes

in a way the arbitrariness of how to split an exam.

αC =
p

p− 1

Var
(∑p

j=1Xj

)
−
∑p

j=1Var (Xj)

Var
(∑p

j=1Xj

)
=

p

p− 1

∑∑
j ̸=k σjk

Vt

,

(2.43)

where Xj is the observed scores of item j for j = 1, . . . , p; Vt is the variance of the total

score; σjk is the covariance of the pair (Xj, Xk).

2.2.2 Item Analysis

Item Difficulty

Item difficulty is the proportion of the number of examinees who give a correct response to

the items among all the examinees. It means item difficulty is a measure of the proportion of

examinees that answered the item correctly. The item difficulty parameter is called p-value

and it can be simply calculated by dividing the number of examinees who gave the correct

response by the total number of examinees who responded to the item [9].

pj =

∑n
i=1Xij

n
(2.44)
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Xij is the observed score for examinee i and item j; n is the total number of items.

Item Discrimination

Item discrimination refers to the degree to which an item differentiates correctly among

examinees in the behavior that the exam is designed to measure. It is an index that assesses

an item’s capability to differentiate between examinees who are good at acquiring knowledge

and those who are not. The discrimination parameter can be described as the correlation

between the performance of an item and the performance of the total test. The formula

used here is the point biserial correlation, which is a special case of Pearson correlation. The

formula is as follows:

rpb =
M1 −M0

sn

√
n1n0

n2
(2.45)

where M1 is the mean of the total test scores for those whose dichotomous response was 1

and M0 is the mean of the total test scores for those whose dichotomous response was 0; sn

is the standard deviation of all scores on the total exam.
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CHAPTER 3

Results

3.1 Data

The datasets are collected from Erasmus Medical Center (EMC). The data is the binary score

that examinees obtain on every item during the pharmacotherapy tests. Simply Speaking,

the examinees will obtain 1 point for giving the correct response and 0 for giving the wrong

response.

Items A1.1.817it A1.4.1017j A4.1.817iu A1.1.817fm A2.1.198
1 1 1 1 0 1
2 0 0 1 1 1
3 0 1 1 1 1
4 1 1 1 1 1
5 1 1 1 1 1
6 0 1 1 0 1
7 0 1 0 0 0

Table 3.1: Example

For this specific pharmacotherapy exam, EMC has several versions of exam papers, and

each of them has 60 items in total. Between each two versions, there are some common items,

which means some items appear in more than one version of the exam. Different versions of

exams were administered at different times to different groups of medical students.

Version1 Version5 Version9
Number 174 95 261

Table 3.2: Number of Samples in each version

The total score of the exam is 60. Examinees who can give correct responses to at least

85% of the items can pass the exam. In our case, examinees who obtain 51 out of 60 can
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pass the exam. The numbers of examinees who passed or failed the exam of three versions

are shown in Table3.3. The frequency of the total scores is shown in Figure3.1.

Version1 Version5 Version9
Pass 112 40 162
Fail 62 55 99
In total 174 95 261

Table 3.3: The number of examinees who passed/failed the exam

Figure 3.1: Histograms of the examinees’ score for exam papers of three versions
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3.2 Classical Test Theory

Internal Consistency

Under the classical test theory, the first thing is to test the reliability, which is to test the

internal consistency across items within an exam. The method is Cronbach’s alpha and the

result is shown in

Cronbach’s Alpha

version1 value version5 value version9 value

All Items 0.7666 All Items 0.796 All Items 0.8754

A1.1.817it 0.7619 A1.4.817dx 0.7858 A2.817dg 0.8734

A1.4.1017j 0.7632 A2.1.817dw 0.7973 A3.4.817fl 0.8756

A4.1.817iu 0.7627 A4.1.817s 0.7944 A4.1.817s 0.874

A3.4.817fl 0.7681 A4.4.2.817fk 0.7974 A4.3.2.817jr 0.8741

A6.4.1.817ck 0.7547 A5.4.2.817fz 0.7899 A5.4.817r 0.8728

A1.1.817fm 0.7623 A6.2.2.817cp 0.7956 A6.2.2.817cj 0.8724

A2.1.198 0.7663 A6.4.1.817ev 0.796 A6.4.1.817ck 0.8724

A5.2.4.817p 0.7629 A7.2.1.817dy 0.7966 A6.4.1.817ew 0.8779

A4.4.2.817ix 0.767 A7.4.2.817dv 0.7962 A7.2.1.817dy 0.875

B1.1.052 0.7661 B1.1.052 0.7992 B1.1217ar 0.8703

B.1017m 0.7639 B.1017m 0.7919 B2.2.051 0.8749

B.1017n 0.7601 B2.3.817fp 0.795 B2.2.1.817f 0.8715

B2.1217au 0.7621 B3.3.817iy 0.7936 B3.4.032 0.8735

B2.2.3.817a 0.7597 B3.4.072 0.7941 B3.7.fu 0.8721

B3.7.fu 0.7617 B3.7.fu 0.7936 B5.6.817ez 0.8739

B.5.5.3 0.7663 B5.3.817ey 0.784 B6.1.817jb 0.8693

B5.6.036 0.7597 B5.6.817ez 0.7947 B8.3.077 0.8716

B6.1.079 0.7601 B6.3.817js 0.7946 B8.7.817fv 0.871

C1.1.1217bf 0.7624 C1.4.1217bj 0.7907 C1.2.1.817hk 0.8747

C1.1.2.069 0.7623 C1.6.068 0.7951 C1.2.1217az 0.8764

C1.2.1217bg 0.7611 C2.1.3.817ek 0.7931 C1.2.817fa 0.8731

C1.2.4.158 0.764 C2.2.4 1217ab 0.7894 C1.7.817fg 0.8751

C1.3.2.817jj 0.76 C2.6.817jk 0.7924 C2.6.817fj 0.875

C1.4.817ci 0.762 C4.1.1.817hu 0.7956 C4.1.3.029 0.8693

C2.6.817fj 0.7581 C4.2.028 0.7937 C4.1.3.031 0.8798
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C4.1.3.031 0.7663 C4.4.817hp 0.7898 C5f.817hs 0.8753

C4.4.171 0.7661 C6.6.817dp 0.7899 C8.8b.817w 0.8698

D.1017y 0.7629 D1.1.817bu 0.788 D3.3.1.817ee 0.8736

D2.2.165 0.7637 D3.4.817by 0.7856 D4.2.101 0.8713

D4.3.108 0.7662 D5.1217ae 0.8 D6.2.817hz 0.8682

E.2.1 0.7616 E1.1217bk 0.7969 E1.1217bk 0.872

E1.1217bb 0.7585 E1.1217bn 0.7853 E1.817gh 0.872

E8.817gk 0.7689 E1.817gi 0.795 E4.1.055 0.8739

E2.2 0.764 E4.1.056 0.7884 E4.4.2.817ie 0.8724

E4.1.055 0.7658 E5.2.2.045 0.7935 E6.1.1.126 0.8738

E5.2.2.124 0.7627 E6.1.1.1217w 0.7874 E8.817gk 0.8723

F1.1217bw 0.7556 F2.1.1.817j 0.7888 F3.1 0.8733

F.1017q 0.7666 F3.1217by 0.7959 F5.1217ca 0.8722

F4.4.3 0.7649 F4.4.2 0.7955 F6.1.1.817da 0.8738

G.1017a 0.7688 G1.1.1.817am 0.793 G.1017d 0.8702

G.1017c 0.7675 G3.4.817ca 0.7906 G1.1.817ai 0.8738

G6.5.026 0.7668 G4.4.1.043 0.7944 G3.3.040 0.8716

G3.5.817cb 0.7559 G4.4.2.064 0.796 G3.817cc 0.8755

G4.2.214 0.7591 G4.5.216 0.7889 G4.2.213 0.8762

G5.6.025 0.7664 G5.5.167 0.789 G4.2.214 0.8719

H.1 0.7672 H.2.084 0.7938 H2.1 0.8793

H1.817ba 0.7673 H3.817ah 0.7938 H2.817bb 0.8735

H3.1 0.7612 H4 0.7908 H3.817je 0.8705

I1.2.817dj 0.7598 I2.1.090 0.7961 I1.2.817dj 0.8731

I1.817dl 0.7619 I2.2.006 0.7916 I2 1217an 0.8719

I5.1.010a 0.7667 I5.817di 0.7868 I5.1.008 0.8759

J.2.2 0.7659 J1.1.2.817io 0.7946 J1.1.1.817im 0.8743

J1.1.817x 0.766 J1.2.817cv 0.7956 J1.2.208 0.8733

J1.1.1.817il 0.7691 J2.2.1217c 0.8016 J2.817eb 0.8764

K.1017u 0.7682 K3.3.817bi 0.7965 K.318d 0.8742

K2.3.817en 0.7629 k3.817aa 0.7971 K3.817ab 0.8756

K4.5.817eq 0.7674 K4.2.817eo 0.8006 K4.5.817ac 0.8744

L1 1217k 0.7653 L2.1217o 0.7943 L2.318a 0.8732

L2.318a 0.7628 L3.2.1 1217g 0.7932 L3.2.1 1217p 0.8749

L3 1217s 0.7641 L3 1217q 0.7922 L3 1217r 0.8767
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Table 3.4: Cronbach’s alpha for three versions of exams

We calculate Cronbach’s alpha for three versions and simultaneously calculate them ex-

cluding one item at a time to see if Cronbach’s alpha increases and decreases. If Cronbach’s

alpha has distinct changes after excluding one item, this item can be considered as the item

that affects internal consistency.

For all three versions, Cronbach’s alpha is beyond the acceptable level of 0.70. For some

items in Version 5 and all the items in Version 9, Cronbach’s alpha is beyond 0.8, which is

considered excellent for internal consistency.

Item Analysis

The item difficulty in CTT can be obtained by calculating the proportion of correct answers

for each item, which is called the p-value. The item discrimination in CTT can be obtained

by the point biserial correlation between the item response and the total score.

After looking into the datasets, there is one item in each version of the exam to which

all the examinees give the correct responses. In this case, this item should be removed

since the all-correct responses won’t provide any information about the item discrimination.

Therefore, we will use 59 items to do the item analysis.

Item Parameters for CTT

V1 Diff Disc V5 Diff Disc V9 Diff Disc

A1.1.817it 0.897 0.310 A1.4.817dx 0.695 0.499 A2.817dg 0.866 0.354

A1.4.1017j 0.908 0.268 A2.1.817dw 0.979 -0.028 A4.1.817s 0.973 0.342

A4.1.817iu 0.937 0.289 A4.1.817s 0.989 0.279 A4.3.2.817jr 0.973 0.322

A3.4.817fl 0.983 -0.034 A4.4.2.817fk 0.979 -0.041 A5.4.817r 0.843 0.397

A6.4.1.817ck 0.902 0.538 A5.4.2.817fz 0.937 0.451 A6.2.2.817cj 0.866 0.425

A1.1.817fm 0.977 0.378 A6.2.2.817cp 0.726 0.231 A6.4.1.817ck 0.931 0.455

A2.1.198 0.983 0.105 A6.4.1.817ev 0.516 0.243 A6.4.1.817ew 0.402 0.164

A5.2.4.817p 0.925 0.281 A7.2.1.817dy 0.874 0.142 A7.2.1.817dy 0.870 0.235

A4.4.2.817ix 0.983 0.053 B1.1.052 0.895 0.015 B1.1217ar 0.851 0.560

B1.1.052 0.759 0.230 B.1017m 0.832 0.325 B2.2.051 0.651 0.309

B.1017m 0.897 0.247 B2.3.817fp 0.832 0.220 B2.2.1.817f 0.770 0.473

B.1017n 0.477 0.377 B3.3.817iy 0.979 0.309 B3.4.032 0.954 0.373
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B2.1217au 0.948 0.323 B3.4.072 0.758 0.267 B3.7.fu 0.889 0.455

B2.2.3.817a 0.713 0.375 B3.7.fu 0.895 0.255 B5.6.817ez 0.950 0.322

B3.7.fu 0.920 0.321 B5.3.817ey 0.768 0.557 B6.1.817jb 0.843 0.619

B.5.5.3 0.977 0.114 B5.6.817ez 0.968 0.201 B8.3.077 0.755 0.470

B5.6.036 0.511 0.385 B6.3.817js 0.421 0.278 B8.7.817fv 0.904 0.547

B6.1.079 0.925 0.384 C1.4.1217bj 0.768 0.366 C1.2.1.817hk 0.893 0.247

C1.1.1217bf 0.443 0.334 C1.6.068 0.463 0.266 C1.2.1217az 0.858 0.141

C1.1.2.069 0.937 0.308 C2.1.3.817ek 0.347 0.311 C1.2.817fa 0.897 0.378

C1.2.1217bg 0.649 0.352 C2.2.4 1217ab 0.768 0.404 C1.7.817fg 0.563 0.309

C1.2.4.158 0.741 0.282 C2.6.817jk 0.842 0.310 C2.6.817fj 0.751 0.282

C1.3.2.817jj 0.856 0.363 C4.1.1.817hu 0.884 0.177 C4.1.3.029 0.793 0.602

C1.4.817ci 0.948 0.328 C4.2.028 0.758 0.280 C4.1.3.031 0.571 0.069

C2.6.817fj 0.724 0.408 C4.4.817hp 0.842 0.398 C5f.817hs 0.996 0.146

C4.1.3.031 0.448 0.258 C6.6.817dp 0.926 0.433 C8.8b.817w 0.797 0.572

C4.4.171 0.736 0.236 D1.1.817bu 0.863 0.466 D3.3.1.817ee 0.805 0.352

D.1017y 0.971 0.319 D3.4.817by 0.789 0.516 D4.2.101 0.847 0.498

D2.2.165 0.943 0.249 D5.1217ae 0.421 0.136 D6.2.817hz 0.870 0.717

D4.3.108 0.989 0.117 E1.1217bk 0.779 0.178 E1.1217bk 0.801 0.447

E.2.1 0.920 0.325 E1.1217bn 0.884 0.580 E1.817gh 0.920 0.482

E1.1217bb 0.661 0.402 E1.817gi 0.979 0.184 E4.1.055 0.759 0.341

E8.817gk 0.856 0.115 E4.1.056 0.905 0.476 E4.4.2.817ie 0.847 0.425

E2.2 0.954 0.238 E5.2.2.045 0.726 0.291 E6.1.1.126 0.927 0.319

E4.1.055 0.718 0.247 E6.1.1.1217w 0.811 0.469 E8.817gk 0.866 0.432

E5.2.2.124 0.701 0.314 F2.1.1.817j 0.705 0.422 F3.1 0.958 0.402

F1.1217bw 0.931 0.554 F3.1217by 0.989 0.086 F5.1217ca 0.843 0.435

F.1017q 0.805 0.202 F4.4.2 0.968 0.139 F6.1.1.817da 0.774 0.343

F4.4.3 0.977 0.204 G1.1.1.817am 0.884 0.283 G.1017d 0.766 0.545

G.1017a 0.897 0.087 G3.4.817ca 0.768 0.370 G1.1.817ai 0.943 0.324

G.1017c 0.943 0.089 G4.4.1.043 0.926 0.213 G3.3.040 0.862 0.482

G3.5.817cb 0.816 0.460 G4.4.2.064 0.979 0.084 G3.817cc 0.996 0.069

G4.2.214 0.885 0.395 G4.5.216 0.737 0.418 G4.2.213 0.858 0.160

G5.6.025 0.931 0.144 G5.5.167 0.884 0.440 G4.2.214 0.881 0.468

H.1 0.977 0.054 H.2.084 0.916 0.245 H2.1 0.421 0.092

H1.817ba 0.805 0.185 H3.817ah 0.811 0.268 H2.817bb 0.579 0.387

H3.1 0.655 0.351 H4 0.442 0.375 H3.817je 0.870 0.562
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I1.2.817dj 0.862 0.369 I2.1.090 0.989 0.068 I1.2.817dj 0.870 0.372

I1.817dl 0.931 0.318 I2.2.006 0.916 0.348 I2 1217an 0.854 0.458

I5.1.010a 0.908 0.150 I5.817di 0.874 0.515 I5.1.008 0.985 0.017

J.2.2 0.966 0.143 J1.1.2.817io 0.779 0.247 J1.1.1.817im 0.931 0.275

J1.1.817x 0.994 0.150 J1.2.817cv 0.968 0.129 J1.2.208 0.958 0.407

J1.1.1.817il 0.885 0.087 J2.2.1217c 0.737 0.047 J2.817eb 0.900 0.106

K.1017u 0.989 -0.074 K3.3.817bi 0.789 0.186 K.318d 0.575 0.349

K2.3.817en 0.609 0.322 k3.817aa 0.863 0.132 K3.817ab 0.977 0.096

K4.5.817eq 0.908 0.123 K4.2.817eo 0.895 -0.043 K4.5.817ac 0.969 0.280

L1 1217k 0.977 0.182 L2.1217o 0.958 0.218 L2.318a 0.762 0.378

L2.318a 0.718 0.310 L3.2.1 1217g 0.863 0.278 L3.2.1 1217p 0.858 0.246

L3 1217s 0.845 0.255 L3 1217q 0.421 0.340 L3 1217r 0.552 0.229

Table 3.5: The Item Difficulty and Item Discrimination for Classical Test Theory Analysis

Figure 3.2: CTT Item Difficulty for V1 Figure 3.3: CTT Item Difficulty for V5

Figure 3.4: CTT Item Difficulty for V9
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Figure 3.5: CTT Item Discrimina-
tion for V1

Figure 3.6: CTT Item Discrimina-
tion for V5

Figure 3.7: CTT Item Discrimina-
tion for V9

From the above tables and graphs. It is evident that the item difficulty and item discrim-

ination in CTT depend on the characteristics of the students and are irregularly patterned.

An item that is easy for one group of students may be difficult for another group. There-

fore their values are relative values. And also they are easy to compute since there are no

complicated models.

3.3 Item Response Theory

In this section, we will employ Item Response Theory to analyze the response data. We have

two models to select: the Rasch model and the 2PL model

3.3.1 Parameter Estimation

First, we estimate the parameters using the Marginal Maximum Likelihood (MML) for both

the Rasch model and 2PL model, the result is shown in
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Rasch 2PL Rasch 2PL

Version1 Diff Disc Diff Version9 Diff Disc Diff

A1.1.817it -2.357 0.948 -2.623 A2.817dg -2.186 0.997 -2.202

A1.4.1017j -2.494 0.884 -2.926 A4.1.817s -4.042 4.267 -1.995

A4.1.817iu -2.918 0.997 -3.108 A4.3.2.817jr -4.042 2.714 -2.247

A3.4.817fl -4.296 -0.581 7.244 A5.4.817r -1.975 1.247 -1.72

A6.4.1.817ck -2.424 2.577 -1.569 A6.2.2.817cj -2.186 1.311 -1.838

A1.1.817fm -3.999 3.117 -2.291 A6.4.1.817ck -2.999 2.391 -1.854

A2.1.198 -4.296 0.786 -5.511 A6.4.1.817ew 0.489 0.221 1.811

A5.2.4.817p -2.731 1.237 -2.502 A7.2.1.817dy -2.223 0.631 -3.232

A4.4.2.817ix -4.296 0.45 -9.203 B1.1217ar -2.042 1.985 -1.41

B1.1.052 -1.266 0.48 -2.508 B2.2.051 -0.734 0.65 -1.055

B.1017m -2.357 0.723 -3.257 B2.2.1.817f -1.428 1.278 -1.242

B.1017n 0.106 0.779 0.131 B3.4.032 -3.458 2.278 -2.121

B2.1217au -3.138 1.435 -2.593 B3.7.fu -2.426 1.605 -1.814

B2.2.3.817a -1.005 0.768 -1.332 B5.6.817ez -3.369 1.61 -2.445

B3.7.fu -2.647 1.146 -2.557 B6.1.817jb -1.975 2.536 -1.266

B.5.5.3 -3.999 0.852 -4.792 B8.3.077 -1.329 1.262 -1.166

B5.6.036 -0.048 0.958 -0.062 B8.7.817fv -2.609 2.446 -1.637

B6.1.079 -2.731 1.552 -2.179 C1.2.1.817hk -2.47 0.794 -2.96

C1.1.1217bf 0.261 0.54 0.455 C1.2.1217az -2.113 0.276 -6.628

C1.1.2.069 -2.918 1.228 -2.677 C1.2.817fa -2.515 1.38 -2.037

C1.2.1217bg -0.683 0.872 -0.824 C1.7.817fg -0.288 0.58 -0.475

C1.2.4.158 -1.165 0.6 -1.891 C2.6.817fj -1.304 0.645 -1.866

C1.3.2.817jj -1.959 0.957 -2.172 C4.1.3.029 -1.586 2.133 -1.086

C1.4.817ci -3.138 1.497 -2.528 C4.1.3.031 -0.326 0.001 -222.104

C2.6.817fj -1.068 0.985 -1.173 C5f.817hs -6.042 6.809 -2.268

C4.1.3.031 0.235 0.454 0.478 C8.8b.817w -1.614 1.78 -1.181

C4.4.171 -1.132 0.364 -2.899 D3.3.1.817ee -1.67 0.801 -1.995

D.1017y -3.766 2.038 -2.531 D4.2.101 -2.008 1.775 -1.453

D2.2.165 -3.023 1.005 -3.196 D6.2.817hz -2.223 4.599 -1.286

D4.3.108 -4.712 1.29 -4.043 E1.1217bk -1.642 1.287 -1.413

E.2.1 -2.647 1.215 -2.458 E1.817gh -2.819 2.458 -1.745

E1.1217bb -0.739 0.775 -0.976 E4.1.055 -1.353 0.875 -1.516

E8.817gk -1.959 0.181 -9.913 E4.4.2.817ie -2.008 1.111 -1.882

E2.2 -3.266 1.154 -3.109 E6.1.1.126 -2.937 1.265 -2.49
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E4.1.055 -1.037 0.456 -2.15 E8.817gk -2.186 1.348 -1.808

E5.2.2.124 -0.944 0.681 -1.38 F3.1 -3.554 2.822 -2.014

F1.1217bw -2.821 2.995 -1.724 F5.1217ca -1.975 1.148 -1.812

F.1017q -1.56 0.306 -4.716 F6.1.1.817da -1.454 0.73 -1.873

F4.4.3 -3.999 1.093 -3.919 G.1017d -1.403 1.719 -1.05

G.1017a -2.357 0.16 -13.568 G1.1.817ai -3.208 1.714 -2.262

G.1017c -3.023 0.114 -24.69 G3.3.040 -2.149 1.685 -1.583

G3.5.817cb -1.641 1.253 -1.521 G3.817cc -6.042 1.316 -4.808

G4.2.214 -2.231 1.357 -1.947 G4.2.213 -2.113 0.471 -3.989

G5.6.025 -2.821 0.553 -4.94 G4.2.214 -2.342 1.665 -1.724

H.1 -3.999 0.226 -16.683 H2.1 0.395 0.132 2.411

H1.817ba -1.56 0.302 -4.777 H2.817bb -0.363 0.855 -0.434

H3.1 -0.711 0.688 -1.032 H3.817je -2.223 2.353 -1.439

I1.2.817dj -2.009 1.099 -2.017 I1.2.817dj -2.223 1.152 -2.027

I1.817dl -2.821 1.173 -2.673 I2 1217an -2.077 1.379 -1.701

I5.1.010a -2.494 0.384 -6.122 I5.1.008 -4.628 0.331 -12.748

J.2.2 -3.573 0.725 -4.923 J1.1.1.817im -2.999 0.918 -3.203

J1.1.817x -5.415 2.062 -3.4 J1.2.208 -3.554 2.68 -2.047

J1.1.1.817il -2.231 -0.047 43.661 J2.817eb -2.561 0.413 -5.491

K.1017u -4.712 -1.643 3.494 K.318d -0.345 0.66 -0.505

K2.3.817en -0.491 0.586 -0.819 K3.817ab -4.205 0.547 -7.105

K4.5.817eq -2.494 0.324 -7.193 K4.5.817ac -3.899 1.831 -2.594

L1 1217k -3.999 1.258 -3.536 L2.318a -1.378 0.996 -1.406

L2.318a -1.037 0.636 -1.602 L3.2.1 1217p -2.113 0.604 -3.19

L3 1217s -1.862 0.701 -2.644 L3 1217r -0.232 0.506 -0.437

Table 3.6: Item Parameter Estimation for Version 1 and 9 under IRT

Version 5

Item Diff Item Diff Item Diff Item Diff

A1.4.817dx -0.927 B5.6.817ez -3.683 E1.1217bn -2.242 H3.817ah -1.621

A2.1.817dw -4.105 B6.3.817js 0.358 E1.817gi -4.105 H4 0.261

A4.1.817s -4.816 C1.4.1217bj -1.344 E4.1.056 -2.479 I2.1.090 -4.816

A4.4.2.817fk -4.105 C1.6.068 0.165 E5.2.2.045 -1.098 I2.2.006 -2.614

A5.4.2.817fz -2.937 C2.1.3.817ek 0.71 E6.1.1.1217w -1.621 I5.817di -2.137
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A6.2.2.817cp -1.098 C2.2.4 1217ab -1.344 F2.1.1.817j -0.983 J1.1.2.817io -1.41

A6.4.1.817ev -0.073 C2.6.817jk -1.859 F3.1217by -4.816 J1.2.817cv -3.683

A7.2.1.817dy -2.137 C4.1.1.817hu -2.242 F4.4.2 -3.683 J2.2.1217c -1.157

B1.1.052 -2.355 C4.2.028 -1.28 G1.1.1.817am -2.242 K3.3.817bi -1.478

B.1017m -1.776 C4.4.817hp -1.859 G3.4.817ca -1.344 k3.817aa -2.039

B2.3.817fp -1.776 C6.6.817dp -2.765 G4.4.1.043 -2.765 K4.2.817eo -2.355

B3.3.817iy -4.105 D1.1.817bu -2.039 G4.4.2.064 -4.105 L2.1217o -3.377

B3.4.072 -1.28 D3.4.817by -1.478 G4.5.216 -1.157 L3.2.1 1217g -2.039

B3.7.fu -2.355 D5.1217ae 0.358 G5.5.167 -2.242 L3 1217q 0.358

B5.3.817ey -1.344 E1.1217bk -1.41 H.2.084 -2.614

Table 3.7: Item Parameter Estimation for Version 5 under IRT

Notice that we only estimate the parameters in Version 5 under the Rasch model. This

is due to the small number of samples (95) we have. Since we have 60 items, we need more

data to implement 2PL models.

Throughout the obtained results of 2PL in Table 3.6, it is evident that certain

items exhibit significantly high difficulty parameters, for example, G.1017a, G.1017c, H.1,

J1.1.1.817il, and C4.1.3.031, which means these items are challenging, to the extent that

even proficient students may struggle to provide correct responses. This is due to the dis-

crimination values being close to 0.

It is crucial to emphasize that, during the estimation process, the number of Expectation-

Maximization (EM) iterations exceeded 3000. This suggests that the specified model is oper-

ating with very limited empirical data. Empirical analysis further underscores the limitation

of the sample size, particularly in the context of examining 60 items. To be specific, there

are only 174 and 261 samples available for assessing these 60 items.

Since the 2PL model requires more information compared to the Rasch model, the decision

has been made to use the Rasch model for the subsequent analysis in light of these limitations.

3.3.2 Local Dependency Detection

In this section, we employ the traditional Q3 method to compute residuals for pairs of items.

This analysis helps us assess whether there is local item dependency and guides our decision

on whether to retain or remove specific items.
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Q3 A1.4.1017j A6.4.1.817ck A1.1.817fm A2.1.198 A5.2.4.817p B2.1217au B3.7.fu B.5.5.3 C1.3.2.817jj C1.4.817ci D.1017y D4.3.108 E.2.1 E2.2 F1.1217bw F4.4.3 G.1017c J.2.2 L1 1217k
A1.1.817fm 0.24
B2.1217au 0.22 0.24
B6.1.079 0.32 0.32 0.27 0.26
D.1017y 0.22
D2.2.165 0.22
D4.3.108 0.34
E.2.1 0.26
E2.2 0.32 0.22
F1.1217bw 0.22 0.21 0.29
F4.4.3 0.26
G3.5.817cb 0.23
G4.2.214 0.21
I1.2.817dj 0.20 0.37
I1.817dl 0.38
I5.1.010a 0.28
J.2.2 0.31
J1.1.817x 0.43 0.25 0.39
K.1017u 0.22
L1 1217k 0.26 0.20 0.28 0.31 0.21
L2.318a 0.20
L3 1217s 0.22

Table 3.8: Q3 residual values exceeding 0.2 for version 1
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Q3 A5.4.2.817fz A7.2.1.817dy B3.7.fu B6.3.817js C1.4.1217bj C2.1.3.817ek C4.2.028 C6.6.817dp D1.1.817bu E1.1217bn E4.1.056 E5.2.2.045 E6.1.1.1217w F2.1.1.817j F3.1217by F4.4.2
A1.4.817dx 0.206727 0.213351
A4.1.817s 0.3459922 0.241161 0.213673
A5.4.2.817fz 0.209879 0.328525 0.288111 0.246762
A6.2.2.817cp 0.234387 0.326917
A6.4.1.817ev
B.1017m 0.230048
B1.1.052 0.334759 0.325204
B2.3.817fp 0.260929 0.256856 0.22189
B3.3.817iy 0.399672
B3.7.fu 0.248789
B5.3.817ey 0.20564 0.258182 0.267191
B5.6.817ez 0.292735
C1.6.068
C2.2.4 1217ab
C2.6.817jk
C4.2.028 0.258696
C6.6.817dp 0.240599 0.528763 0.384908
D1.1.817bu 0.399476 0.219324 0.244551
D3.4.817by 0.204581
D5.1217ae
E1.1217bk
E1.1217bn
E1.817gi
E4.1.056 0.309576
E5.2.2.045 0.270578
F2.1.1.817j 0.245712

Table 3.9: Q3 residual values exceeding 0.2 for version 5, PART 1
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Q3 G1.1.1.817am G3.4.817ca G4.4.1.043 G4.4.2.064 G5.5.167 H.2.084 H3.817ah I2.1.090 I2.2.006 I5.817di J1.1.2.817io J1.2.817cv K3.3.817bi k3.817aa K4.2.817eo L2.1217o L3.2.1 1217g
A1.4.817dx
A4.1.817s 0.217113 0.285281
A5.4.2.817fz 0.30901
A6.2.2.817cp
A6.4.1.817ev 0.250854
B.1017m 0.220425
B1.1.052
B2.3.817fp 0.224058
B3.3.817iy 0.361405
B3.7.fu
B5.3.817ey 0.201407 0.265813
B5.6.817ez 0.30098 0.232544
C1.6.068 0.291118
C2.2.4 1217ab 0.266119
C2.6.817jk 0.22991
C4.2.028 0.219268562
C6.6.817dp 0.211441
D1.1.817bu 0.206476 0.270159
D3.4.817by
D5.1217ae 0.328684
E1.1217bk 0.226448 0.231339
E1.1217bn 0.202204 0.441004 0.26111
E1.817gi 0.268417 0.462553 0.352199
E4.1.056 0.243281
E5.2.2.045
F2.1.1.817j
F3.1217by 0.257437 0.295116 0.249262422
F4.4.2 0.244548
G1.1.1.817am 0.280279 0.285962
G3.4.817ca 0.204046
G4.4.1.043 0.230178
G5.5.167 0.410146
H.2.084 0.249097
H3.817ah 0.281437
I2.1.090 0.298576 0.490511
I2.2.006 0.236484
J1.1.2.817io 0.208486

Table 3.10: Q3 residual values exceeding 0.2 for version 5, PART 2
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Q3 A4.1.817s A4.3.2.817jr A6.4.1.817ck B1.1217ar B3.4.032 B3.7.fu B5.6.817ez B6.1.817jb B8.3.077 B8.7.817fv C4.1.3.029 C8.8b.817w D6.2.817hz E1.817gh F3.1 J1.2.208
A4.3.2.817jr 0.3572531
B5.6.817ez 0.34016
B8.7.817fv 0.2385423
C1.2.817fa 0.250578
C4.1.3.029 0.205508 0.242794
C5f.817hs 0.3533781
D6.2.817hz 0.2280548 0.271552 0.218385
E6.1.1.126 0.289424
E8.817gk 0.249366
F3.1 0.223499 0.239045
F5.1217ca 0.238328
F6.1.1.817da 0.205513
G1.1.817ai 0.251177 0.276242
G3.817cc 0.27724
G4.2.214 0.257641
H3.817je 0.237812 0.330222 0.27198 0.308759
J1.1.1.817im 0.215939
J1.2.208 0.3671693 0.239393
K4.5.817ac 0.215179

Table 3.11: Q3 residual values exceeding 0.2 for version 9
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Based on empirical analysis, the critical value for Q3 is determined to be 0.2. The four

tables provided above list item pairs that do not adhere to the principle of local independence,

based on their Q3 values. The highest Q3 value observed is 0.39 for version 1, 0.53 for version

5, and 0.37 for version 9. It’s important to note that each version contains a total of 1711

pairs of items. However, version 1 has 35 pairs with Q3 values exceeding 0.2, version 5 has

77 pairs with Q3 values exceeding 0.2, and version 9 has 28 pairs with Q3 values above 0.2.

The assumptions of local independence can be violated through response dependency. It

occurs when items are linked in some way, such that the response on one item governs the

response on another because of similarities in, for example, item content or response content

[16].

Therefore, we delve into the content of the items to check for any overlapping content

or inner relationships between pairs of items. It turns out that all the pairs of items are

incomparable and independent of each other. Thus, it is advisable to keep all the items.

3.3.3 Item Fit

In this section, the infit, outfit, standardization, and p-value can be used to test item fit

simultaneously.

The expected value of the Infit and Outfit mean squares is 1. Values larger than 1

mean underfit and indicate unexpected responses, for example, lucky guesses and careless

mistakes. Values smaller than 1 mean overfit and indicate there are overly predictable

outliers. Underfit is easier to detect than overfit, and Outfit is easier to explain than Infit

since Infit is sensitive to the pattern of inlying observations [18]. As indicated in the Methods

section, Lincare suggested that both mean squares statistics values between 0.5 and 1.5 are

acceptable, the interpretation is as follows:

Interpretation of parameter-level mean-square fit statistics:
>2.0 Distorts or degrades the measurement system.

1.5 - 2.0 Unproductive for construction of measurement, but not degrading.
0.5 - 1.5 Productive for measurement.
<0.5 Less productive for measurement, but not degrading. May produce misleadingly good reliabilities and separations.

The expected value of the Z-standardized Infit and Ourfit is 0. Less than 0 indicates

models are too predictable. More than 0 indicates there is a lack of predictability. However,

if mean-squares are acceptable, Zstd can be ignored.

The general principle is:

(1) Investigate outfit before infit.

(2) Investigate Mean-squares before z-standardized.
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(3) Investigate high values before low or negative values.

The Outfit and Infit, their z-standardization, and their p-values for both version 1 and

version 9 are shown in table (3.12) - (3.14).

item - V1 outfit z.outfit outfit.p infit z.infit infit.p

A1.1.817it 0.909 -0.296 0.767 0.984 -0.017 0.986

A1.4.1017j 0.896 -0.313 0.754 1.006 0.099 0.921

A4.1.817iu 0.789 -0.558 0.577 0.995 0.071 0.943

A3.4.817fl 1.732 1.095 0.274 1.08 0.326 0.744

A6.4.1.817ck 0.619 -1.638 0.101 0.873 -0.584 0.559

A1.1.817fm 0.456 -0.951 0.342 0.967 0.095 0.924

A2.1.198 1.035 0.282 0.778 1.054 0.284 0.776

A5.2.4.817p 0.798 -0.609 0.543 1.004 0.099 0.921

A4.4.2.817ix 1.083 0.349 0.727 1.067 0.306 0.760

B1.1.052 1.003 0.062 0.951 1.037 0.408 0.683

B.1017m 0.923 -0.238 0.812 1.018 0.159 0.874

B.1017n 0.919 -1.637 0.102 0.93 -1.745 0.081

B2.1217au 0.713 -0.709 0.478 0.982 0.043 0.966

B2.2.3.817a 0.904 -0.969 0.333 0.952 -0.578 0.563

B3.7.fu 0.758 -0.811 0.417 0.988 0.027 0.978

B.5.5.3 0.795 -0.168 0.867 1.06 0.284 0.776

B5.6.036 0.913 -1.809 0.070 0.912 -2.179 0.029

B6.1.079 0.703 -0.983 0.326 0.953 -0.115 0.908

C1.1.1217bf 0.943 -1.051 0.293 0.961 -0.904 0.366

C1.1.2.069 0.751 -0.693 0.488 0.989 0.05 0.960

C1.2.1217bg 0.919 -1.094 0.274 0.96 -0.629 0.529

C1.2.4.158 0.977 -0.17 0.865 1.006 0.096 0.924

C1.3.2.817jj 0.852 -0.734 0.463 0.962 -0.199 0.842

C1.4.817ci 0.664 -0.874 0.382 0.987 0.06 0.952

C2.6.817fj 0.899 -0.978 0.328 0.93 -0.821 0.412

C4.1.3.031 1.005 0.104 0.917 1.007 0.169 0.866

C4.4.171 1.013 0.159 0.874 1.033 0.394 0.694

D.1017y 0.476 -1.058 0.290 1 0.144 0.886

D2.2.165 0.815 -0.431 0.666 1.018 0.159 0.874

D4.3.108 0.652 -0.18 0.857 1.053 0.31 0.757
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E.2.1 0.788 -0.686 0.493 0.98 -0.01 0.992

E1.1217bb 0.921 -1.001 0.317 0.932 -1.042 0.297

E8.817gk 1.195 1.01 0.312 1.087 0.602 0.547

E2.2 0.704 -0.673 0.501 1.028 0.194 0.846

E4.1.055 1.015 0.184 0.854 1.028 0.363 0.717

E5.2.2.124 0.956 -0.443 0.658 0.989 -0.121 0.904

F1.1217bw 0.477 -1.933 0.053 0.879 -0.407 0.684

F.1017q 1.039 0.306 0.760 1.051 0.465 0.642

F4.4.3 0.774 -0.209 0.834 1.023 0.209 0.834

G.1017a 1.226 0.933 0.351 1.088 0.503 0.615

G.1017c 1.055 0.27 0.787 1.082 0.372 0.710

G3.5.817cb 0.829 -1.097 0.273 0.904 -0.753 0.451

G4.2.214 0.771 -1.009 0.313 0.948 -0.233 0.816

G5.6.025 0.962 -0.013 0.990 1.065 0.333 0.739

H.1 1.082 0.333 0.739 1.071 0.305 0.760

H1.817ba 1.158 1.055 0.291 1.053 0.479 0.632

H3.1 0.936 -0.834 0.404 0.962 -0.582 0.561

I1.2.817dj 0.852 -0.711 0.477 0.957 -0.222 0.824

I1.817dl 0.8 -0.56 0.575 0.979 0.002 0.998

I5.1.010a 1.173 0.7 0.484 1.054 0.322 0.747

J.2.2 0.999 0.159 0.874 1.047 0.248 0.804

J1.1.817x 0.424 -0.335 0.738 1.004 0.328 0.743

J1.1.1.817il 1.281 1.198 0.231 1.086 0.522 0.602

K.1017u 2.008 1.203 0.229 1.078 0.344 0.731

K2.3.817en 0.972 -0.43 0.667 0.975 -0.449 0.653

K4.5.817eq 1.054 0.289 0.773 1.08 0.436 0.663

L1 1217k 0.676 -0.41 0.682 1.041 0.246 0.806

L2.318a 0.965 -0.312 0.755 0.99 -0.089 0.929

L3 1217s 0.961 -0.155 0.877 1.02 0.188 0.851

Table 3.12: Outfit, Infit, and their standardization for Version 1

item - V5 outfit z.outfit outfit.p infit z.infit infit.p

A1.4.817dx 0.819 -1.432 0.152 0.875 -1.271 0.204

A2.1.817dw 2.215 1.33 0.184 1.072 0.333 0.739
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A4.1.817s 0.288 -0.431 0.666 1.001 0.333 0.739

A4.4.2.817fk 1.787 1.022 0.307 1.078 0.341 0.733

A5.4.2.817fz 0.556 -0.964 0.335 0.913 -0.125 0.901

A6.2.2.817cp 1.008 0.101 0.920 1.046 0.44 0.660

A6.4.1.817ev 1.038 0.546 0.585 1.032 0.519 0.604

A7.2.1.817dy 1.172 0.642 0.521 1.062 0.343 0.732

B1.1.052 1.362 1.063 0.288 1.121 0.535 0.593

B.1017m 0.931 -0.213 0.831 0.977 -0.067 0.947

B2.3.817fp 0.944 -0.157 0.875 1.045 0.308 0.758

B3.3.817iy 0.384 -0.641 0.522 0.994 0.222 0.824

B3.4.072 0.921 -0.412 0.680 1.025 0.235 0.814

B3.7.fu 0.894 -0.205 0.838 1.009 0.122 0.903

B5.3.817ey 0.721 -1.658 0.097 0.842 -1.201 0.230

B5.6.817ez 0.78 -0.103 0.918 1.019 0.219 0.827

B6.3.817js 1.016 0.214 0.831 0.988 -0.156 0.876

C1.4.1217bj 1.017 0.153 0.878 0.952 -0.319 0.750

C1.6.068 1.029 0.408 0.683 0.995 -0.054 0.957

C2.1.3.817ek 0.998 0.016 0.987 0.97 -0.332 0.740

C2.2.4 1217ab 0.849 -0.823 0.411 0.936 -0.442 0.658

C2.6.817jk 0.933 -0.184 0.854 0.985 -0.019 0.985

C4.1.1.817hu 1.011 0.142 0.887 1.057 0.311 0.756

C4.2.028 0.964 -0.156 0.876 1.013 0.143 0.886

C4.4.817hp 0.86 -0.492 0.623 0.936 -0.282 0.778

C6.6.817dp 0.599 -0.946 0.344 0.924 -0.125 0.901

D1.1.817bu 0.715 -1.022 0.307 0.899 -0.423 0.672

D3.4.817by 0.769 -1.206 0.228 0.865 -0.913 0.361

D5.1217ae 1.132 1.545 0.122 1.109 1.561 0.119

E1.1217bk 1.218 1.143 0.253 1.063 0.487 0.626

E1.1217bn 0.531 -1.668 0.095 0.843 -0.608 0.543

E1.817gi 0.582 -0.271 0.786 1.034 0.28 0.779

E4.1.056 0.55 -1.347 0.178 0.908 -0.248 0.804

E5.2.2.045 0.944 -0.334 0.738 1.009 0.114 0.909

E6.1.1.1217w 0.756 -1.153 0.249 0.897 -0.606 0.545

F2.1.1.817j 0.872 -0.929 0.353 0.925 -0.704 0.481

F3.1217by 0.732 0.162 0.871 1.047 0.38 0.704

37



F4.4.2 0.81 -0.053 0.958 1.047 0.268 0.789

G1.1.1.817am 0.858 -0.359 0.720 1.001 0.086 0.931

G3.4.817ca 0.865 -0.727 0.467 0.959 -0.267 0.789

G4.4.1.043 0.834 -0.264 0.792 1.031 0.202 0.840

G4.4.2.064 0.962 0.249 0.803 1.055 0.309 0.757

G4.5.216 0.835 -1.065 0.287 0.929 -0.576 0.565

G5.5.167 0.696 -0.956 0.339 0.913 -0.293 0.770

H.2.084 0.859 -0.241 0.810 1.007 0.124 0.901

H3.817ah 0.985 0.006 0.995 1.013 0.135 0.893

H4 0.951 -0.611 0.541 0.936 -0.968 0.333

I2.1.090 0.807 0.235 0.814 1.05 0.382 0.702

I2.2.006 0.681 -0.773 0.440 0.968 -0.006 0.995

I5.817di 0.628 -1.326 0.185 0.876 -0.5 0.617

J1.1.2.817io 0.989 0.002 0.998 1.032 0.271 0.786

J1.2.817cv 1.359 0.693 0.488 1.037 0.249 0.803

J2.2.1217c 1.237 1.46 0.144 1.158 1.316 0.188

K3.3.817bi 1.133 0.711 0.477 1.06 0.448 0.654

k3.817aa 1.174 0.676 0.499 1.07 0.395 0.693

K4.2.817eo 1.609 1.615 0.106 1.14 0.603 0.547

L2.1217o 0.673 -0.415 0.678 1.026 0.211 0.833

L3.2.1 1217g 0.846 -0.475 0.635 1.009 0.114 0.909

L3 1217q 0.967 -0.373 0.709 0.959 -0.586 0.558

Table 3.13: Outfit, Infit, and their standardization for Version 5

item - V9 outfit z.outfit outfit.p infit z.infit infit.p

A2.817dg 1.006 0.096 0.924 1 0.041 0.967

A4.1.817s 0.33 -1.54 0.124 0.981 0.066 0.947

A4.3.2.817jr 0.357 -1.439 0.150 0.992 0.097 0.923

A5.4.817r 0.874 -0.683 0.495 0.985 -0.096 0.924

A6.2.2.817cj 0.811 -0.944 0.345 0.954 -0.319 0.750

A6.4.1.817ck 0.497 -1.88 0.060 0.915 -0.37 0.711

A6.4.1.817ew 1.249 3.23 0.001 1.144 3.056 0.002

A7.2.1.817dy 1.138 0.712 0.476 1.096 0.755 0.450

B1.1217ar 0.634 -2.234 0.025 0.848 -1.3 0.194
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B2.2.051 1.038 0.51 0.610 1.073 1.157 0.247

B2.2.1.817f 0.883 -0.926 0.354 0.928 -0.814 0.416

B3.4.032 0.489 -1.457 0.145 0.963 -0.059 0.953

B3.7.fu 0.724 -1.257 0.209 0.925 -0.476 0.634

B5.6.817ez 0.569 -1.218 0.223 1.002 0.092 0.927

B6.1.817jb 0.584 -2.728 0.006 0.8 -1.828 0.068

B8.3.077 0.861 -1.205 0.228 0.932 -0.802 0.423

B8.7.817fv 0.53 -2.163 0.031 0.851 -0.913 0.361

C1.2.1.817hk 1.021 0.168 0.867 1.075 0.54 0.589

C1.2.1217az 1.446 2.11 0.035 1.169 1.335 0.182

C1.2.817fa 0.726 -1.176 0.240 0.985 -0.045 0.964

C1.7.817fg 1.064 1.028 0.304 1.06 1.19 0.234

C2.6.817fj 1.109 0.949 0.343 1.1 1.201 0.230

C4.1.3.029 0.655 -2.787 0.005 0.816 -2.045 0.041

C4.1.3.031 1.33 4.798 0.000 1.286 5.145 0.000

C5f.817hs 0.267 -1.098 0.272 0.804 -0.009 0.993

C8.8b.817w 0.693 -2.388 0.017 0.843 -1.699 0.089

D3.3.1.817ee 1.013 0.136 0.892 1.028 0.313 0.754

D4.2.101 0.648 -2.178 0.029 0.906 -0.787 0.431

D6.2.817hz 0.401 -3.784 0.000 0.721 -2.312 0.021

E1.1217bk 0.859 -0.979 0.328 0.949 -0.499 0.618

E1.817gh 0.586 -1.624 0.104 0.902 -0.496 0.620

E4.1.055 0.987 -0.07 0.944 1.046 0.568 0.570

E4.4.2.817ie 0.877 -0.649 0.516 0.955 -0.353 0.724

E6.1.1.126 0.8 -0.605 0.545 1.001 0.069 0.945

E8.817gk 0.801 -1.003 0.316 0.945 -0.391 0.696

F3.1 0.373 -1.856 0.063 0.952 -0.088 0.930

F5.1217ca 0.856 -0.798 0.425 0.949 -0.415 0.678

F6.1.1.817da 1.036 0.322 0.747 1.043 0.51 0.610

G.1017d 0.707 -2.608 0.009 0.867 -1.58 0.114

G1.1.817ai 0.614 -1.163 0.245 1.006 0.103 0.918

G3.3.040 0.695 -1.686 0.092 0.912 -0.678 0.498

G3.817cc 0.578 -0.376 0.707 0.816 0.01 0.992

G4.2.213 1.177 0.935 0.350 1.17 1.341 0.180

G4.2.214 0.688 -1.533 0.125 0.915 -0.578 0.563
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H2.1 1.377 4.978 0.000 1.182 3.881 0.000

H2.817bb 0.994 -0.076 0.939 0.989 -0.19 0.849

H3.817je 0.566 -2.47 0.014 0.849 -1.169 0.242

I1.2.817dj 0.795 -1.011 0.312 1.001 0.051 0.959

I2 1217an 0.793 -1.125 0.261 0.926 -0.582 0.561

I5.1.008 1.461 0.81 0.418 1.085 0.333 0.739

J1.1.1.817im 1.022 0.174 0.862 1.019 0.163 0.871

J1.2.208 0.403 -1.723 0.085 0.943 -0.12 0.904

J2.817eb 1.275 1.105 0.269 1.172 1.089 0.276

K.318d 1.052 0.828 0.408 1.041 0.809 0.419

K3.817ab 1.146 0.434 0.664 1.073 0.313 0.754

K4.5.817ac 0.566 -0.865 0.387 1.002 0.117 0.907

L2.318a 0.978 -0.142 0.887 1.016 0.209 0.834

L3.2.1 1217p 1.107 0.604 0.546 1.095 0.784 0.433

L3 1217r 1.125 2.004 0.045 1.11 2.169 0.030

Table 3.14: Outfit, Infit, and their standardization for Version 9

According to the general principles, all the Infit values for Version 1, 5, and 9 are between

0.5 and 1.5. Thus, we don’t have to check the infit values anymore.

In version 1, the initial focus is on examining items A3.4.817fl and K.1017u. These

two items exhibit very low difficulty parameters, indicating that they are relatively easy

items. When analyzing the data, it becomes evident that some examinees with high scores

and strong abilities have answered these questions incorrectly. This unexpected pattern of

responses contributes to the high Outfit values for these items. For items with lower Outfit

values, the data shows there are some good matches between the examinees’ abilities and

their responses, accounting for the lower Outfit values in such cases.

Same as version 1, in version 5, the items A4.4.2.817fk and K4.2.817eo should be checked

first. The high outfit values are also due to the unexpected pattern of responses. The

data which shows there are some good matches between the examinees’ abilities and their

responses is causing low Outfit values.

In version 9, we observed no instances of underfit, but there were multiple instances

of overfit. Similar patterns were noted in Version 1, where the data revealed some strong

connection between examinees’ abilities and their responses, particularly for item D6.2.817hz,

0The numbers highlighted in red indicate that they fall outside the required range specified by the critical
value.
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resulting in lower Outfit values. Furthermore, our attention turned towards examining Zstd.

Interestingly, only item D6.2.817hz exhibited significant p-values for Zstd. Simultaneously,

through an analysis of both theoretical Item Characteristic Curves (ICC) and observed ICC

plots, we made the decision to remove item D6.2.817hz from the assessment.

Figure 3.8: Expected and Observed ICC plot

For the other items, making a decision to delete them is not easy. This is because

(1) Sometimes, the underfit or overfit is due to an inefficient number of samples since an

insufficient number of samples directly corresponds to a limited variety of response patterns.

(2) Removing the misfitting items only improved the results in the case of severe multidi-

mensionality and a large proportion of misfitting items, and deteriorated them otherwise

[24].

3.3.4 Person Fit

If an individual with a high ability fails to correctly respond to a simple item, their perfor-

mance deviates from the model. Conversely, if a person with low ability successfully answers

a highly challenging question, this also represents a deviation from the model. In practical

terms, it is expected that a limited number of individuals may not conform closely to the

model.

However, as long as the percentage of non-conforming examinees remains below 5%, we

consider it acceptable. If less than 5% of respondents exhibit z standardized infit and outfit

values exceeding 1.96 and -1.96, respectively, the model is considered satisfactory.
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Version 1 Version 5 Version 9
infit.outside outfit.outside infit.outside outfit.outside infit.outside outfit.outside

Zstd>1.96 0.98850575 0.96551724 0.97894737 0.97894737 0.95785441 0.97318008
Zstd<-1.96 0.01149425 0.03448276 0.02105263 0.02105263 0.04214559 0.02681992

Table 3.15: the proportion of Zstd exceeding 1.96 and -1.96

As shown in Table 3.15 and Figures 3.9, 3.10, and 3.11 (the green bars indicates the person

that fall outside the range between -1.96 and 1.96), less than 5% of respondents exhibit Zstd

values exceeding 1.96 and -1.96, suggesting that the model is satisfactory.

3.3.5 Item-Person Map

The item-person map is also called the Wright map. This visualization initially displays the

distribution of the latent ability within the analyzed samples. Then, it plots the difficulty

of each item on the same theta scale. The alignment of these two plots enables us to assess

the extent to which the items cover the latent ability.

Figures (3.12) - (3.14) show that the item difficulties are generally lower than the latent

traits in Version 1, 5, and 9. Specifically, it is observed that approximately 50% of the items

possess item difficulties that fall below the minimum latent trait value. This observation

leads to the conclusion that the items are relatively easy for examinees to answer in general.

This conclusion aligns with the fact that the bar for the exams is very high (85%). In order

to maintain a proper pass rate, it follows that the exam items are designed to be not too

challenging for examinees to answer.

3.3.6 Item Characteristic Curve

Each item has its own item characteristic curve (ICC). Since we are using the Rasch model,

there is no item discrimination parameter. The only factor that determines how the ICC

looks like is the item difficulty. The difficulty parameter in the ICC represents the level of

ability at which there is a 50% chance of an examinee answering the item correctly. The

discrimination parameter in the ICC determines how steep or shallow the curve is.

In our case, the point on the ability continuum at which there is a 50% probability of

success on the item is different for different items. However, the steepness of the curve

remains the same for different items.

Figure 3.15 shows an example of ICCs of three items that have different difficulty param-

eters. All the ICCs of items in Version 1, 5, and 9 are in the AppendixA.
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Figure 3.9: Person Fit of V1 Figure 3.10: Person Fit of V5

Figure 3.11: Person Fit of V9

3.4 Test Equating

There are two methods to do the test equating which have been introduced in Chapter 2.

However, One benefit of separate calibration is that it facilitates examining item parameter

estimates for the common items, while concurrent calibration can not. Concurrent calibration

could be used as an adjunct to the separate calibration method [1].

After the selection of items from the previous steps, the items in each version and the

number of their common items are shown in Table 3.16.

3.4.1 Separate Calibration

First, we construct a scatterplot of the IRT parameter estimates by plotting the parameter

estimates for the common items between any two versions.
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Figure 3.12: Item and Person Fit for Version 1
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Figure 3.13: Item and Person Fit for Version 5
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Figure 3.14: Item and Person Fit for Version 9

46



Figure 3.15: ICC Example

Figure 3.16: Scatterplot of the IRT parameters for common items between version 1 and 9
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Figure 3.17: Scatterplot of the IRT parameters for common items between version 1 and 5

Figure 3.18: Scatterplot of the IRT parameters for common items between version 9 and 5
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Common v1 v5 v9
v1 59 3 9
v5 3 59 5
v9 9 5 58

Table 3.16: Common Items between any two versions

The parameter estimates for the common items are represented in Figure (3.16) - (3.18) to

look for outliers - items with estimates that do not appear to lie in a straight line. In those

illustrations, it is obvious that item A6.4.1.817ck in Figure 3.16 stands out as an outlier.

Specifically, item A6.4.1.817ck has parameter estimates of -2.424 on Version 1 and -2.999 on

Version 9. This item needs to be removed from the common item set. In Figure 3.18, all the

spots are lying in a straight line which means there is no outlier. However, in Figure 3.17,

due to the small number of common items, it’s impossible to determine which one is the

outlier. Due to this uncertainty, we can not involve version 5 to do the equating. However,

whether removing an item or not is a judgemental process.

Mean/Mean Method

The mean/mean method uses equations (2.40) and (2.41) to estimate the A and B constants

(scaling constants). Since we are using the Rasch model, the A constant is always 1 and the

B constants are calculated.

Common Items V1 V9 V1 to V9 Average
B3.7.fu -2.647 -2.426 -2.87013 -2.64806
C2.6.817fj -1.068 -1.304 -1.29113 -1.29756
C4.1.3.031 0.235 -0.326 0.011875 -0.15706
E8.817gk -1.959 -2.186 -2.18213 -2.18406
E4.1.055 -1.037 -1.353 -1.26013 -1.30656
G4.2.214 -2.231 -2.342 -2.45413 -2.39806
I1.2.817dj -2.009 -2.223 -2.23213 -2.22756
L2.318a -1.037 -1.378 -1.26013 -1.31906
Mean -1.46913 -1.69225
A 1
B -0.22313

Table 3.17: Commom-item estimates rescaled using mean/mean method

Since item A6.4.1.817ck has been removed, the number of common items is 8 now. The

means after removing this item shown in Table 3.17 are the A- and B-constants. The scale

of version 1 can be converted to the scale of version 9 using Equation (2.35). The result is
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shown in the column V1 to V9. The item parameter estimates from the original scale and

the transformed item parameter estimates from the target scale for the common items are

averaged to obtain the final estimates [26]. The final estimates are shown in the column

Average in Table 3.17.

3.4.2 Concurrent Calibration

In the concurrent calibration method [19], the parameters of items that belong to both exam

versions are estimated together in a single calibration. In the context of non-equivalent

common item equating, it’s important to acknowledge that the abilities of the two popula-

tions are not equivalent. However, in accordance with the principle of Marginal Maximum

Likelihood, it is necessary to make an initial assumption about the distribution of abilities

within each population. As a consequence of this assumption, the combined population is

treated as if it follows a normal distribution, even though it is a simplification that doesn’t

account for the actual differences in ability distributions between the two groups. However,

the simulation study in [8] showed that the amount of bias was small.

Therefore, we ignore the bias and perform the concurrent calibration.

Separate Calibration Concurrent Calibration

Item Difficulty Item Difficulty

C5f.817hs -6.022 C5f.817hs -5.947

G3.817cc -6.022 G3.817cc -5.947

J1.1.817x -5.63 J1.1.817x -5.53

D4.3.108 -4.927 D4.3.108 -4.826

K.1017u -4.927 K.1017u -4.826

I5.1.008 -4.609 I5.1.008 -4.535

A2.1.198 -4.511 A2.1.198 -4.41

A3.4.817fl -4.511 A3.4.817fl -4.41

A4.4.2.817ix -4.511 A4.4.2.817ix -4.41

A1.1.817fm -4.214 A1.1.817fm -4.112

B.5.5.3 -4.214 B.5.5.3 -4.112

F4.4.3 -4.214 F4.4.3 -4.112

H.1 -4.214 H.1 -4.112

L1 1217k -4.214 K3.817ab -4.112

K3.817ab -4.186 L1 1217k -4.112

A4.1.817s -4.024 A4.1.817s -3.95

A4.3.2.817jr -4.024 A4.3.2.817jr -3.95
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D.1017y -3.981 D.1017y -3.878

K4.5.817ac -3.881 K4.5.817ac -3.808

J.2.2 -3.788 J.2.2 -3.685

F3.1 -3.537 F3.1 -3.464

J1.2.208 -3.537 J1.2.208 -3.464

E2.2 -3.481 E2.2 -3.377

B3.4.032 -3.441 B3.4.032 -3.369

B5.6.817ez -3.353 B5.6.817ez -3.28

B2.1217au -3.353 B2.1217au -3.249

C1.4.817ci -3.353 C1.4.817ci -3.249

D2.2.165 -3.238 D2.2.165 -3.133

G.1017c -3.238 G.1017c -3.133

G1.1.817ai -3.192 G1.1.817ai -3.12

A4.1.817iu -3.133 A4.1.817iu -3.027

C1.1.2.069 -3.133 C1.1.2.069 -3.027

F1.1217bw -3.036 F1.1217bw -2.93

G5.6.025 -3.036 G5.6.025 -2.93

I1.817dl -3.036 I1.817dl -2.93

J1.1.1.817im -2.984 J1.1.1.817im -2.913

A5.2.4.817p -2.946 E6.1.1.126 -2.851

B6.1.079 -2.946 A5.2.4.817p -2.839

E6.1.1.126 -2.921 B6.1.079 -2.839

E.2.1 -2.862 E.2.1 -2.755

E1.817gh -2.804 E1.817gh -2.734

A1.4.1017j -2.709 A1.4.1017j -2.6

I5.1.010a -2.709 I5.1.010a -2.6

K4.5.817eq -2.709 K4.5.817eq -2.6

B3.7.fu -2.6375 B8.7.817fv -2.526

B8.7.817fv -2.596 B3.7.fu -2.499

A1.1.817it -2.572 J2.817eb -2.479

B.1017m -2.572 A1.1.817it -2.462

G.1017a -2.572 B.1017m -2.462

J2.817eb -2.548 G.1017a -2.462

C1.2.817fa -2.502 C1.2.817fa -2.433

C1.2.1.817hk -2.457 C1.2.1.817hk -2.388
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J1.1.1.817il -2.446 J1.1.1.817il -2.336

G4.2.214 -2.388 G4.2.214 -2.292

I1.2.817dj -2.218 A7.2.1.817dy -2.144

A7.2.1.817dy -2.212 H3.817je -2.144

H3.817je -2.212 I1.2.817dj -2.131

A2.817dg -2.174 A2.817dg -2.107

A6.2.2.817cj -2.174 A6.2.2.817cj -2.107

C1.3.2.817jj -2.174 E8.817gk -2.087

E8.817gk -2.174 G3.3.040 -2.071

G3.3.040 -2.138 C1.3.2.817jj -2.06

C1.2.1217az -2.102 C1.2.1217az -2.035

G4.2.213 -2.102 G4.2.213 -2.035

L3.2.1 1217p -2.102 L3.2.1 1217p -2.035

L3 1217s -2.077 I2 1217an -2

I2 1217an -2.067 B1.1217ar -1.966

B1.1217ar -2.032 L3 1217s -1.962

D4.2.101 -1.998 D4.2.101 -1.932

E4.4.2.817ie -1.998 E4.4.2.817ie -1.932

A5.4.817r -1.965 A5.4.817r -1.899

B6.1.817jb -1.965 B6.1.817jb -1.899

F5.1217ca -1.965 F5.1217ca -1.899

G3.5.817cb -1.856 G3.5.817cb -1.739

F.1017q -1.775 F.1017q -1.658

H1.817ba -1.775 H1.817ba -1.658

D3.3.1.817ee -1.662 D3.3.1.817ee -1.598

E1.1217bk -1.634 E1.1217bk -1.57

C8.8b.817w -1.606 C8.8b.817w -1.543

C4.1.3.029 -1.579 C4.1.3.029 -1.516

B1.1.052 -1.481 F6.1.1.817da -1.385

F6.1.1.817da -1.447 B2.2.1.817f -1.36

B2.2.1.817f -1.422 B1.1.052 -1.359

G.1017d -1.397 G.1017d -1.335

C1.2.4.158 -1.38 B8.3.077 -1.262

C4.4.171 -1.347 C1.2.4.158 -1.257

B8.3.077 -1.323 L2.318a -1.232
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L2.318a -1.312 C4.4.171 -1.224

E4.1.055 -1.2995 E4.1.055 -1.218

C2.6.817fj -1.291 C2.6.817fj -1.205

B2.2.3.817a -1.22 B2.2.3.817a -1.096

E5.2.2.124 -1.159 E5.2.2.124 -1.034

E1.1217bb -0.954 E1.1217bb -0.826

H3.1 -0.926 H3.1 -0.797

C1.2.1217bg -0.898 C1.2.1217bg -0.768

B2.2.051 -0.732 B2.2.051 -0.676

K2.3.817en -0.706 K2.3.817en -0.574

H2.817bb -0.364 H2.817bb -0.311

K.318d -0.345 K.318d -0.293

C1.7.817fg -0.289 C1.7.817fg -0.237

B5.6.036 -0.263 L3 1217r -0.182

L3 1217r -0.233 B5.6.036 -0.123

C4.1.3.031 -0.153 C4.1.3.031 -0.093

B.1017n -0.109 B.1017n 0.033

C1.1.1217bf 0.046 C1.1.1217bf 0.191

H2.1 0.391 H2.1 0.436

A6.4.1.817ew 0.484 A6.4.1.817ew 0.528

A6.4.1.817ck -2.742

Table 3.18: Rescaled item parameter estimates

3.4.3 Comparison

The items have been arranged in order of their difficulties from the smallest to the largest.

The items that are marked red are the ones that are not in the same position as the other

ones for the other category. In general, most of the items are in the same position. Even for

the unpaired items, their positions don’t change a lot from the other ones, which indicates

that the equating result is acceptable.

It’s evident that there is an item A6.4.1.817ck appearing in the concurrent calibration

section while it has already been removed from the separate calibration process. This is the

0The item names highlighted in red in one column indicate that they are not in the same position as the
other
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feature of concurrent calibration in that there is no selection step but putting every item

together and doing a single run.

Therefore, we think the separate calibration provides a reliable result, and all the items

can become an item bank.
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CHAPTER 4

Discussion & Conclusion

The ultimate goal of this thesis is to establish an item bank for the medical center, which will

facilitate future exam item allocation and lead to the creation of more effective and compre-

hensive exam papers for assessing student proficiency. However, the limitations imposed by

the sample size pose challenges. For instance, although the medical center has ten different

versions of exam papers, most of them lack a sufficiently large sample size, particularly for

conducting IRT analysis.

Out of the ten versions of exam papers, versions 1, 5, and 9 initially appeared to have

reasonably adequate sample sizes for analysis. However, as suggested in some literature, for

example [3], said that the Rasch model needs fewer samples to estimate the parameters than

2PL, while at least 200 samples are needed. In general, it is recommended that a sufficient

sample size for IRT analysis should ideally amount to at least five times the number of items

or a minimum of 300. it is obvious that during our implementation version 1, 5, and 9 did

not provide a sufficient sample size for both Rasch and 2PL as suggested. For version 9, the

presented issue is that the response patterns did not converge for 2PL parameter estimation,

considering it doesn’t provide enough empirical data. In the case of both version 1 and 5,

they are able to produce the estimation results. However, to guarantee stable estimations

and ensure alignment with version 9, it is better to apply the Rasch model to these versions.

Furthermore, it’s important to note that the data collection process was not carried out

in an ideal way. Typically, when the intention is to perform IRT analysis and create a solid

item bank, it is advisable to administer different exam papers to specific populations with

known characteristics. This includes ensuring that these populations are either in the same

academic grade or possess equivalent educational backgrounds in the subject that is tested

by the exam papers. Additionally, it is recommended to have a sufficient number of common

items among the exam papers, ideally at least one-fifth of the total number of items in

each paper. The medical centers can intentionally administer the exam papers to targeted

students and get enough data to have more stable and accurate results.
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Upon conducting our item fit assessment and local dependency detection, most of the

items exhibit good fit within the Rasch model. Nevertheless, there are instances where

certain item pairs fail to meet the Q3 critical value threshold, and the item fit statistics fall

outside the acceptable range. Throughout our analysis, no evident violations were observed

at either the item content or response pattern levels. Consequently, only one item was

deleted. Additionally, the deleted item is not considered a bad item since we can only

consider that this specific group answered this item has some unexpected response or the

amount of sample size is not sufficient to provide stable information.

As the scatterplot of common item parameter estimates was shown, the common item

parameter estimates were lying in a straight line. This pattern typically indicates that the

items exhibit measurement invariance across these different exam forms, meaning that their

relationship with the latent trait under assessment remains stable and parallel. Thus, this is

the other way to illustrate that there is a stable measurement during the estimation process.

The item bank under development is undergoing two equating methods: the mean/mean

method and concurrent calibration. Our findings indicate that, following the scale conversion

and concurrent run, no distinct differences are observed between the two methods. The item

bank that is made is reliable and can be used in the future. Since we don’t adopt version

5 to do the equating due to the small amount of common items between version 1 and 5.

However, the common item parameter estimates scatterplot between versions 5 and 9 has a

good outcome, in which all of the spots are in a straight line.

When comparing Item Response Theory (IRT) and Classical Test Theory (CTT) in terms

of constructing an item bank, a notable distinction arises. In CTT, there is no method to

establish a relationship for converting item difficulty parameters and putting them on a

common scale, especially when dealing with non-equivalent populations. CTT equating

methods primarily focus on equating students’ scores.

In contrast, IRT offers the advantage of equating item characteristics in a lot of situations.

This capability allows us to employ IRT effectively in the development of an item bank,

making it work for applications like Computer Adaptive Testing (CAT). In CAT, the next

item a student will answer is determined by their performance on the last item, exemplifying

a dynamic approach to assessment. In the future, after we have a larger item bank with

difficulties covering a larger range, we can build a CAT system for the pharmacotherapy

exam.
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APPENDIX A

Item Characteristic Curves

The Item Characteristic Curves for each item in each version of exams are shown in this

appendix.
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Figure A.1: Item Characteristic Curve for version 1
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Figure A.2: Item Characteristic Curve for version 5
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Figure A.3: Item Characteristic Curve for version 9
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