

Delft University of Technology

Blockchain-Based Software Engineering

Beller, Moritz; Hejderup, Joseph

DOI
10.1109/ICSE-NIER.2019.00022
Publication date
2019
Document Version
Final published version
Published in
2019 IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER)

Citation (APA)
Beller, M., & Hejderup, J. (2019). Blockchain-Based Software Engineering. In P. Kellenberger (Ed.), 2019
IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER) (pp. 53-56). IEEE. https://doi.org/10.1109/ICSE-NIER.2019.00022

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICSE-NIER.2019.00022
https://doi.org/10.1109/ICSE-NIER.2019.00022

Blockchain-based Software Engineering

Moritz Beller
Delft University of Technology

The Netherlands

m.m.beller@tudelft.nl

Joseph Hejderup
Delft University of Technology

The Netherlands

j.i.hejderup@tudelft.nl

Abstract—Blockchain technology has found a great number
of applications, from banking to the Internet of Things (IoT).
However, it has not yet been envisioned whether and which
problems in Software Engineering (SE) Blockchain technology
could solve. In this paper, we coin this field “Blockchain-based
Software Engineering” and exemplify how Blockchain technology
could solve two core SE problems: Continuous Integration (CI)
Services such as Travis CI and Package Managers such as apt-get.
We believe that Blockchain technology could help (1) democratize
and professionalize Software Engineering infrastructure that
currently relies on free work done by few volunteers, (2) improve
the quality of artifacts and services, and (3) increase trust in
ubiquitously used systems like GitHub or Travis CI.

Index Terms—Blockchain, Distributed System

I. INTRODUCTION

The advent of Blockchain technology, i.e., systems that rely

on a distributed, tamper-proof ledger shared among multiple

parties, is said to revolutionize industries across the board—

and has partly done so already [1]: Bitcoin [2], the world’s

first cryptocurrency, allows one to send money on a peer-

to-peer basis without a central intermediary, disrupting the

banking sector [3]. Ethereum [4], a Blockchain protocol often

referred to as “Blockchain 2.0,” allows parties to engage in

smart contracts, a way of codifying the exchange of goods or

the execution of other, predefined behavior in a transaction.

The content of smart contracts can be of great flexibility

because they are written in a programming language. A smart

contract can be seen as the automated execution of a contract

between parties [5]. All contracts and transactions are stored

for everyone to inspect on the Blockchain, serving both as a

historical archive as well as a protection mechanism against

fraudulent behavior. Despite the public visibility, both the

sender and the receiver of a transaction on the Blockchain

can remain pseudonymous.

Blockchain technology, however, has more applications

than these two widely known examples of permissionless

Blockchains, i.e., Blockchain protocols in which any party

without prior trust can simply partake. Companies are explor-

ing permissioned Blockchains as a way to do mutual business

more securely, which should not be visible to outsiders. For

example, the startup Provenance offers supply-chain auditing

of consumer goods (“is my fish harvested sustainably?”) [6],

[7]. Governments are looking to formalize transactions with

their citizens; even IoT devices could make use of it [8].

Given that large Software companies such as IBM have

started to heavily invest in Blockchain technology, it is some-

what surprising that application possibilities of Blockchain-

technology have not yet been extended to how we make

software itself. In this visionary paper, we want to explore

how Blockchain technology could revolutionize Software En-

gineering (SE) under the term Blockchain-based Software

Engineering (BBSE): We first describe the core principles

and guarantees Blockchain technology provides and which of

them would be useful for SE. We then explore a handful of

existing SE problems and sketch how we might use Blockchain

technology to solve them. While this paper cannot (and does

not aim to) provide a complete list of SE problems that

would benefit from Blockchain support, we sketch how BBSE

promises to solve fundamental issues plaguing SE as a craft:

Professionalization, quality, and trust.

II. RELATED WORK

To the best of our knowledge, this vision paper is completely

different from most existing works in that it introduces and

applies the ideas behind Blockchain to the practice of SE itself.

Perhaps most closely following this principle is Nikitin

et al.’s work on Chainiac [9], a proactive software-update

system. Their practical implementation shows among others

the feasibility of verified builds, which we rely on as part of a

Blockchain-based CI system. The majority of existing work,

however, addresses SE challenges within Blockchain, such as

smart contract verification [10], [11], vulnerability detection

[12], and interoperability [13]. Bell et al. [14] propose a data

management system with Blockchain guarantees to ensure

researchers publish tamper-proof and reproducible data sets.

III. A BLOCKCHAIN PRIMER

In this section, we present some of the core ideas behind

Blockchain technology. We mean to equip readers unfamiliar

with the technology with its basic ideas and focus on concepts

we consider relevant for SE.

A. Terminology

Formally, by Blockchain, we mean a single file that rep-

resents an interlinked set of blocks, each daisy-chained to

its parent.1 The Blockchain protocol (“specification”) governs

what constitutes a valid block. Implementations of the protocol

manifest themselves as a client.2 Therefore, most colloquial

1In Bitcoin’s case, this file was 161GB large on 2018-6-15, per
https://charts.bitcoin.com/chart/Blockchain-size.

2The Ethereum project, for example, maintains three such equitable clients.

53

2019 IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-
NIER)

978-1-7281-1758-4/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE-NIER.2019.00022

references to “Blockchain” refer to the protocol behind it,

rather than the file itself. The current state of a Blockchain is

implicit and can be verified by every client through executing

all of its blocks in order (or, to abbreviate the process, by

relying on a Merkle tree). Every block contains a finite number

of transactions (e.g., “Send money from A to B”). The low

number of transactions that can be included in a block3 and its

slow growth—a new block is found only every 10 minutes—

are the prime reasons for Bitcoin’s low throughput [15]. Other

Blockchains perform much better.

B. Types of Blockchains

In principle, we distinguish two forms of Blockchain pro-

tocol: permissioned and permissionless Blockchains. Permis-

sioned Blockchains are restricted to a set of known actors,

implying the need to identify and authenticate themselves

(examples are most business-to-business applications). Per-

missionless or open Blockchains allow anyone to participate,

either as a miner or as a regular node.

Miners bring order to the Blockchain by picking a set of

waiting-to-be-included transactions from the so-called mem-
pool. They typically choose the most lucrative ones (i.e.,

willing to pay the highest fee for their inclusion in the chain,

called gas limit in Ethereum) and generate a suitable block

with them that they can append to the chain. In the case

of Bitcoin, this means solving a hash puzzle, an otherwise

pointless operation of trying to find a hash h for the current

block of transactions such that h begins with an ever-growing

number of 0s. This proof-of-work algorithm made Bitcoin con-

sume more power than the Czech Republic in June 2018 [16].

Permissioned Blockchains typically do not require proof-of-

work, and newer open Blockchain protocols try to employ a

concept called proof-of-stake to fix the power consumption.

The incentive to create, i.e., “mine,” new blocks Bn+1 comes

from the rewards: once a block has been found and appended

to the chain, the miner receives a bounty in addition to the

transaction fees contained in the block. Thus, reward(Bn+1) =
block bounty(Bn+1) +

∑
transaction fees(Bn+1). Regular

full nodes are nodes which do not mine, but pertain full copies

of the Blockchain. Participants specify the transaction they

want to commit, as well as the maximum fee they are willing

to pay for the transaction to be included in the Blockchain.

Full nodes can accept these requests from users and put them

into the mempool.

Several Blockchains, most prominently Ethereum, allow the

execution of smart contracts. A smart contract is a program,

i.e., a set of functions, which are stored on the Blockchain and

executed by the nodes. In Ethereum’s case, since space on the

Blockchain is expensive, contracts are practically confined to

about 600 lines of code. Its contracts are compiled to opcodes

and executed by the EVM, the Ethereum Virtual Machine.

In our vision, the ability to execute code has the strongest

implications for Blockchain-based SE.

3Defined by the block size ranging on average below 900kB, see
https://bitinfocharts.com/comparison/bitcoin-size.html

Because there is no central authority to trust, Blockchain-

based solutions offer absence of single-point-of-failure type

scenarios. However, when presented with two different, valid

Blockchains, how would a client know which one to trust?

This has been the question of consensus protocols such as

Paxos, which have existed long before the idea of Blockchains

came up [17]. In Bitcoin’s case, its Nakamoto consensus is

achieved by selecting the longest chain, i.e., the one which

most computational work has gone into. Achieving consensus

is a hard problem, especially in the presence of adversarial

nodes (so-called byzantine behavior), but practical solutions

such as Bitcoin or Ethereum show that it is feasible.

We can summarize that Blockchain-based technology al-

lows us to build robust, distributed systems including a pay-

mechanism (the currency, e.g., Bitcoins), the execution of pre-

defined behavior (via smart contracts), a consensus protocol,

and a tamper-proof history of every transaction. The actors

in such a system can be anonymous, pseudo-anonymous,

or known. We argue that these characteristics are of high

significance for certain SE problems. Core among them stand

the promises of decentralized trust and verifiability.

C. Security

While the applications for Blockchain-based software are

seemingly countless, so are possible attack vectors. Several

attacks have been tried on both Bitcoin and Ethereum. For

example, so-called 51%-attacks, in which a malicious attacker

controls the majority of the network, pose a large threat.4

However, in practice, it seems that successful attacks have

been confined largely to exploiting user- rather than protocol-

induced bugs. For example, the DAO, an investor-backed

venture capital fund implemented on Ethereum, lost 55 million

US-$ because of a relatively trivial bug in its smart con-

tract [19]. Nevertheless, Blockchain-based technology is just

in its infancy.

IV. BLOCKCHAIN-BASED CONTINUOUS INTEGRATION

If Continuous Integration is a success story in SE, then

Travis CI is the epitome of a success story: More than half of

all projects doing CI on GitHub, do it with Travis CI. Travis CI

provides a build environment for developers to test and deploy

their code changes. Travis CI internally does this by renting

computing power from AWS. Moreover, Travis provides a

historic view of previously executed builds, a log that lends

itself to a Blockchain application.

In Figure 1, we propose a Blockchain-based CI system

called BCI. After a developer enters a build and its reward

price (similar to Etherum’s gas limit) in the mempool (1), it

is then broadcast to the BCI network (2). Interested workers

execute the build (3) and report the outcome to each other (4).

If they find consensus (e.g., “pass”), they add the build to the

Blockchain (5). Inspired by Ethereum’s ability to execute func-

tions, our nodes perform build tasks in a shielded environment

similar to the EVM (e.g., Docker images to isolate the builds

4Eyal and Sirer have shown that in the case of Bitcoin, even controlling
less than 50% might suffice. [18]

54

Fig. 1. Example of a BCI.

from the host system). The execution of build tasks could serve

as a viable proof-of-work by hashing and signing the build log

output, more useful than the wasteful proof-of-work Bitcoin

currently employs. Moreover, the highly parallel nature of CI

with its many build and test execution environments lends

itself toward expediting via a large set of worker nodes.

This design alleviates a number of problems of traditional

CI (TCI) services. First, as monolithic systems, every TCI

outage disrupts the workflow of its users. Implemented as a

distributed system running on the Blockchain, there would

no longer be a single point of failure. Second, as a quasi-

monopoly, a TCI dictates private hosting prices. A BCI opens

a market for computing power in which everyone can partake

and earn money with otherwise idling resources. This in

turn also means that the economic rules of demand and

supply regulate build prices, not a single company. Most TCI

providers only give their users a fixed number of n (n ≤ 4)

build workers. There is no flexibility to upscale this to test

and release an urgent bug fix. A Blockchain-based CI would

allow developers to specify a high transaction cost on this one

build. Nodes would prioritize the execution of this build job

because of its high profit margin. Developers would be more

flexible, but only pay for what they need at the moment.

If Travis CI or another TCI goes bankrupt, we might lose

access to its history of builds. A Blockchain of CI builds on

the other hand would self-serve as a distributed archive.

Several challenges to implement a BCI remain:

1) How to store build logs? Should build logs be part of

the Blockchain, this leads to a file that might soon outgrow

Bitcoin’s 150 GB ledger. Possible solutions could be the light

clients of Ethereum, where nodes do not need to know the full

ledger, thanks to Merkle trees. Other solutions could be heavy

compression, storing information off-the-chain, or relying on

existing Blockchain-based file share solutions.

2) How to resolve non-deterministic builds? For others to

verify a build, builds themselves need to be reproducible.

An obvious solution is to execute builds in encapsulated

containers. But how can we combine this with the advantages

of having a multitude of different build environments at hand,

which containers would diminish?

3) How to guarantee the proof-of-work? The hashing of build

log files is not enough proof of the execution of the actual build

work, as a build log could be estimated from previous builds.

Hardware like Intel’s SGX, which was thought to provide

trusted execution enclaves, might help solve this.

4) How to enable secrets? Travis CI allows the definition

of private environment variables containing, e.g., deployment

keys. How can we support them in a transparent BCI?

V. BLOCKCHAIN-BASED PACKAGE MANAGER

Reuse is a central element in SE. We not only use package

repositories such as Debian’s apt-get to manage binaries,

but also to drive software development itself, with library

repositories such as Java’s Maven Central or JavaScript’s

npm. npm used to do essentially no vetting of the quality of

new releases. This was painstakingly obvious in the left-pad

incident, in which an Open-Source Software (OSS) developer

who turned malicious caused great disturbance among the

community by removing a trivial package on which thousands

of other npm packages relied [20].

Limited measures to avoid such ripple effects of breaking re-

leases already exist. For example, Debian uses a trust network

that relies on personal connections. With their signature, De-

bian maintainers verify that they have done proper integration

testing of a package.5 Even so, this 1) cannot prevent random

malicious actions, 2) puts a lot of work on few shoulders,

3) does not prevent package breakages,6 and, 4) implies that

testing is limited to what a package maintainer can do.

To remedy these problems, we propose BAPT, a

Blockchain-based package repository. BAPT encapsulates a

verifiable community-driven regression test framework for

package repositories. Similar to BCI, every participant in

BAPT can pick a new release candidate from the mempool,

verifies that the release works as intended and does not break

compatibility with downstream clients.

Important questions on how to implement BAPT remain:

1) How do we find consensus on what is a “good release?”
Traditional majority-based consensus voting means that it

would be enough if 51% of integrators verify the package

works for them. This is clearly not suitable for bugs that

only appear in some environments. On the other hand, a veto-

based consensus would mean that one malicious attacker could

prevent a release. We need to find the right middle ground,

perhaps by replicating integrations in the same environment

and comparing their outcome. This might require fundamental

research on new consensus protocols.

2) How do we test packages? Should we rely on manual

testing like Debian does? What is the proof-of-work then? For

semantic versioning, we could make downstream clients of a

library run their tests to verify that a proclaimed non-breaking

change is indeed non-breaking. This adds a layer of trust by

third parties, democratizing the decision to formally release

a new package version (i.e., putting it on the Blockchain).

While it empowers the clients of a library, it does not take

5https://debian-handbook.info/browse/stable/sect.
becoming-package-maintainer.html

6https://lists.debian.org/debian-devel/2002/09/msg00066.html

55

power from the creator, as they can still release software as

they wish—they just have to adhere to semantic versioning.

3) How do we ensure all packages are included? In the case

of Bitcoin, it is natural that miners want to work on the most

lucrative transactions first. However, in BAPT, we want to

ensure that eventually all packages are included and no work

is wasted (i.e., miners work on different packages).

VI. DISCUSSION

In the following, we discuss the larger implications that

BBSE could bring with it to the SE landscape.

Professionalization. In SE, there exist many micro-to-small

tasks. These are not per se difficult to execute, but require

human diligence, e.g., to maintain packages, or CPU power,

e.g., to execute builds. Like other distributions, Debian uses

a fixed pool of mostly voluntary maintainers to manage

packages. This noble principle of OSS, unfortunately, leads

to a significant amount of peripheral packages being outdated

because of inactive maintainers. Instead, in BAPT, an open

package marketplace could flourish in which everyone could

participate, propose that new packages be included, and verify

the work of others. The reward for taking part in this transpar-

ent and open process comes in the form of a small payment,

both as a transaction fee and bounty. The market could reward

urgent updates or builds in BCI with a higher bounty.

Improved Quality. In addition to being out of date, packages

often break in different integration environments than what the

maintainer has available to them. In a distributed system where

a transaction gets verified by others, such as BAPT or BCI,

the quality of releases or builds could improve due to a greater

diversity in testers and equipment available to them. Moreover,

it is of vital importance then that these results be reproducible,

a requirement the Debian community strives toward, but that

is still often violated.7

Trust. Whenever there is a monopoly, trust becomes an

issue—be it for pricing or other reasons. Debian’s maintainer

system as a meritocrazy is inherently susceptible to left-pad-

like incidents. With Blockchain technology, we can replace a

centralized system—be it a personal trust network or a techni-

cal system such as Travis CI or GitHub—with a decentralized

system verifiable by everyone. Moreover, a distributed system

promises higher availability and resilience to partial outages.

Scalability. Orchestrating systems at scale might become

problematic, perhaps only a challenge for BCI with hundreds

of builds waiting to be executed. A solution might be to

dynamically partition the system into disparate groups or

topics. This might also solve the problem of some tasks—

builds in BCI or packages in BAPT—not being picked up.

VII. CONCLUSION

While a lot of hype surrounds Blockchains, behind the noise

is a possibly breakthrough-enabling technology. This paper

can merely scratch the tip of the iceberg of the opportunities

7https://wiki.debian.org/ReproducibleBuilds

Blockchain-based SE (BBSE) can enable. We have exempli-

fied that we can use BBSE to solve elementary problems in

SE. In particular, we have sketched designs for

• a distributed, democratized build service, called BCI,

• a user-run package management system, called BAPT.

As these examples show, Blockchains seem particularly

promising to problems that deal with centralization and trust.

Many examples include a monetary component, a question

often raised in SE (“but how to make money with this?”).

We believe that paying small amounts, instead of relying

on free work by few volunteers in the OSS community for

micro tasks such as verifying a new release, has far-reaching

consequences in the professionalization of SE infrastructure.

While we outlined ideas for how to tackle SE challenges using

Blockchain technology, many research opportunities and their

implementation remain for future work, e.g., a truly distributed

version of Git on the Blockchain or, abstracting from BCI, a

decentralized computing platform.

ACKNOWLEDGMENT

We thank Stefanie Roos for a fantastic review of this paper.

REFERENCES

[1] M. Swan. Blockchain: Blueprint for a new economy. ” O’Reilly Media,
Inc.”, 2015.

[2] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.
[3] A. Scott. 10 reasons why bitcoin is better than paypal, 2018. https://

cointelegraph.com/news/10-reasons-why-bitcoin-is-better-than-paypal.
[4] Wikipedia. Ethereum, 2018. https://en.wikipedia.org/wiki/Ethereum.
[5] P. De Filippi. Blockchain and the Law: The Rule of Code. Harvard

University Press, 2018.
[6] Project Provenance Ltd. Blockchain: the solution for transparency in

product supply chains, 2015. https://www.provenance.org/whitepaper.
[7] H. Kim and M. Laskowski. Toward an ontology-driven blockchain

design for supply-chain provenance. Intelligent Systems in Accounting,
Finance and Management, 25(1):18–27, 2018.

[8] M Walport. Distributed ledger technology: Beyond blockchain. uk
government office for science. Technical report, Tech. Rep, 2016.

[9] K. Nikitin et al. Chainiac: Proactive software-update transparency via
collectively signed skipchains and verified builds. In 26th USENIX
Security Symposium (USENIX Security 17), pages 1271–1287, 2017.

[10] Q. Xu et al. Blockchain-based decentralized content trust for docker
images. Multimedia Tools and Applications, pages 1–26, 2017.

[11] S. Porru et al. Blockchain-oriented software engineering: challenges and
new directions. In Proceedings of the 39th International Conference on
Software Engineering Companion, pages 169–171. IEEE Press, 2017.

[12] G. Destefanis et al. Smart contracts vulnerabilities: a call for blockchain
software engineering? In Blockchain Oriented Software Engineering
(IWBOSE), 2018 International Workshop on, pages 19–25. IEEE, 2018.

[13] P. Zhang et al. Applying software patterns to address interoperability in
blockchain-based healthcare apps. arXiv preprint 1706.03700, 2017.

[14] J. Bell et al. Advancing open science with version control and
blockchains. In Software Engineering for Science, 2017 IEEE/ACM
12th International Workshop on, pages 13–14. IEEE, 2017.

[15] Wikipedia. Bitcoin scalability problem, 2018. https://en.wikipedia.org/
wiki/Bitcoin scalability problem.

[16] Digiconomist. Bitcoin energy consumption index, 2018. https://
digiconomist.net/bitcoin-energy-consumption.

[17] L. Lamport et al. Paxos made simple. ACM Sigact News, 32(4), 2001.
[18] I. Eyal and E. Sirer. Majority is not enough: Bitcoin mining is

vulnerable. In International conference on financial cryptography and
data security, pages 436–454. Springer, 2014.

[19] M. Leising. The ether thief, 2017. https://www.bloomberg.com/features/
2017-the-ether-thief.

[20] R. Abdalkareem et al. Why do developers use trivial packages? an
empirical case study on npm. In 11th Joint Meeting on Foundations of
Software Engineering, pages 385–395. ACM, 2017.

56

