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Abstract

Reliable container-tracking depends on the quality of estimated time-of-arrival (ETA) data, yet existing
logistics platforms offer little guidance on how trustworthy those timestamps really are. This thesis
proposes a fit-for-use data-quality (DQ) framework for Digital Container Shipping Association (DCSA)—
compliant event logs that flags ETA records likely to deviate from actual time of arrival (ATA) by more
than one calendar day.

Event logs from ~90 k transport legs were preprocessed into records capturing origin-destination pair,
carrier, publisher type, and timing information. Four supervised models, namely Linear Regression
(LR), Random Forest, XGBoost, and a Neural Network, were trained to predict leg duration. A prediction
that placed ATA > 1 day from the published ETA labeled that record low-quality. Model outputs were
evaluated with a precision-oriented Fg-score, where a false alarm is 50 times more costly than a missed
detection (8 ~ 0.141).

The simplest model prevailed: standard LR achieved the highest overall F 141-score (68.5 %), balanc-
ing few false positives with robust recall, while more-complex tree-based and neural models produced
excessive false alarms. When the analysis was narrowed to early-stage ETAs published by carriers
(arguably the least reliable yet most operationally valuable subset) LR’s score rose to 72.0 %. These
findings highlight that careful feature engineering and data curation outweigh algorithmic complexity for
this task.

The study delivers the first systematic, event-data-only method to quantify DQ in container tracking,
enabling near-real-time plausibility checks without AlS feeds. Limitations include a three-month ob-
servation window and absence of exogenous factors such as weather or port congestion. Future work
should extend the temporal scope, integrate AlS-derived and environmental features, and explore meta-
learning techniques to adapt to disruptions. It could also use process-mining to uncover anomalous
event sequences to take a different approach in dataquality assessment within container-eventlogs.

By demonstrating that a transparent LR baseline can reliably surface dubious ETAs, the thesis provides
a practical blueprint for logistics platforms seeking to bolster trust in their tracking data and to prioritise
corrective action where it matters most.
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summary

Containerized shipping underpins nearly 90% of international trade, and reliable container-tracking is
essential for the timely and cost-efficient functioning of global logistics networks. Yet, despite increas-
ing adoption of the Digital Container Shipping Association (DCSA) Track & Trace (T&T) standard, data
quality (DQ) within event-based container trackers remains inconsistent. Stakeholders face the recur-
ring problem that estimated times of arrival (ETAs) are often unreliable, undermining trust in tracking
platforms and complicating operational planning.

This thesis investigates how the quality of container-tracking data in a DCSA-compliant environment
can be systematically assessed. It proposes a predictive framework that classifies event data as high-
or low-quality based on whether ETAs deviate from actual times of arrival (ATAs) by more than one
day. The study thereby contributes to a practical definition of “fit-for-use” data in logistics, aligning with
operational needs for early detection of unreliable records.

The research adopts a three-phase methodology. First, a literature review identifies the limitations
of existing DQ assessment methods, which largely focus on individual dimensions such as accuracy,
completeness, or timeliness. While valuable, these metrics do not suffice to judge whether a container
journey is represented plausibly as a whole. Second, the structure of DCSA event logs is analyzed,
including the segmentation of container journeys into transport legs. This step demonstrates how event-
level data can be transformed into a tabular format suitable for machine learning. Finally, supervised
models, Linear Regression (LR), Random Forest (RF), Extreme Gradient Boosting (XGBoost), and
Neural Networks (NN), are trained on approximately 90,000 transport legs collected via the HeyWim
Container Tracking system, covering April to July 2025.

Model evaluation shows that simplicity outperforms complexity. Standard linear regression achieved
the highest Fq 141 score (68.5%), reflecting a balance between correctly identifying low-quality ETAs
and avoiding false alarms. This cost-sensitive metric assigns a false positive fifty times the penalty of
a false negative, reflecting industry priorities: spurious alerts are deemed more disruptive than missed
detections. By contrast, tree-based and neural models frequently overfitted, generating excessive false
alarms and proving less suitable for production use. Importantly, performance improved further when
focusing on carrier-provided ETAs published at least one week before arrival, an especially unreliable
yet operationally significant subset. In this restricted evaluation, linear regression reached a precision-
oriented score of 72.0%, demonstrating its robustness in detecting the most critical quality issues.

The findings underscore two main insights. First, systematic preprocessing and domain-specific feature
engineering are more decisive for predictive performance than algorithmic complexity. Second, the
proposed framework shows that event-data-only approache, without reliance on AIS trajectories or
other external feeds, can already provide actionable insights into data quality. This positions the method
as a viable near-real-time plausibility check for logistics platforms.

The study also highlights several limitations. The dataset spans only four months and does not in-
corporate exogenous factors such as port congestion, weather, or geopolitical disruptions. Sparse
coverage of certain origin—destination pairs further constrained model generalizability. Moreover, the
“fit-for-use” criterion was researcher-defined rather than validated through user studies, which may
overlook stakeholder-specific tolerances. Future work should therefore expand the temporal scope,
integrate AIS and environmental data, and explore meta-learning and process-mining techniques to
adapt to disruptions and identify anomalous event sequences.

In conclusion, this thesis presents the first systematic, predictive approach to assessing the quality of
DCSA-compliant container event data. By demonstrating that a transparent linear regression baseline
can reliably flag dubious ETAs, it offers a practical and scalable blueprint for logistics providers seeking
to improve the trustworthiness of their tracking platforms. Beyond its direct contributions, the research
opens pathways for hybrid models, user-driven definitions of “fitness,” and broader integration of con-
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textual data sources. In doing so, it strengthens the foundation for data-driven, reliable, and scalable
container-tracking solutions.



Samenvatting

Containervervoer is verantwoordelijk voor bijna 90% van de wereldhandel, en betrouwbare container-
volgsystemen zijn cruciaal voor een tijdige en kostenefficiénte werking van mondiale logistieke netwerken.
Ondanks de toenemende adoptie van de Digital Container Shipping Association (DCSA) Track & Trace
(T&T) standaard blijft de datakwaliteit (DQ) binnen event-gebaseerde containervolgsystemen echter
inconsistent. Belanghebbenden worden regelmatig geconfronteerd met het probleem dat geschatte
aankomsttijden (ETAs) onbetrouwbaar zijn, waardoor het vertrouwen in volgsystemen afneemt en op-
erationele planning wordt bemoeilijkt.

Dit onderzoek richt zich op de vraag hoe de kwaliteit van containervolgsystemen in een DCSA-conforme
omgeving systematisch kan worden beoordeeld. Het introduceert een voorspellend raamwerk dat
eventdata classificeert als hoog- of laagwaardig op basis van de afwijking tussen ETA en de werkelijke
aankomsttijd (ATA). Wanneer deze afwijking groter is dan één dag, wordt de betreffende gebeurtenis
als laagwaardig aangemerkt. Daarmee draagt dit onderzoek bij aan een praktische invulling van het be-
grip “fit-for-use” data in de logistiek, afgestemd op de operationele behoefte om onbetrouwbare records
vroegtijdig te signaleren.

Het onderzoek volgt een drieledige methodologie. Ten eerste identificeert een literatuurstudie de
beperkingen van bestaande methoden voor DQ-beoordeling, die grotendeels gericht zijn op afzon-
derlijke dimensies zoals nauwkeurigheid, volledigheid of actualiteit. Hoewel waardevol, schieten deze
metrics tekort om te bepalen of een complete containerreis op plausibele wijze wordt weergegeven. Ten
tweede wordt de structuur van DCSA-eventlogs geanalyseerd, inclusief de segmentatie van contain-
erreizen in afzonderlijke transportlegs. Hiermee wordt aangetoond hoe eventdata kan worden omgezet
in een tabelvorm die geschikt is voor machine learning. Ten slotte zijn vier supervisie-algoritmen,
Lineaire Regressie (LR), Random Forest (RF), Extreme Gradient Boosting (XGBoost) en Neurale
Netwerken (NN), getraind op circa 90.000 transportlegs, verzameld via het HeyWim Container Tracking-
systeem over de periode april tot en met juli 2025.

De modelresultaten laten zien dat eenvoud beter presteert dan complexiteit. Standaard lineaire re-
gressie behaalde de hoogste Fj 141-score (68,5%), waarmee een evenwicht werd bereikt tussen het
correct identificeren van laagwaardige ETAs en het vermijden van valse alarmen. Deze kostenbewuste
maatstaf kent aan een vals positief vijftig keer zoveel gewicht toe als aan een vals negatief, in lijn met
industriéle prioriteiten waarin foutieve waarschuwingen disruptiever worden geacht dan gemiste detec-
ties. Meer complexe modellen, zoals boomgebaseerde methoden en neurale netwerken, bleken vaak
te overfitten en genereerden te veel foutieve meldingen, waardoor zij minder geschikt zijn voor opera-
tioneel gebruik. Opvallend is dat de prestaties verder verbeterden wanneer uitsluitend werd gekeken
naar door rederijen verstrekte ETAs die minimaal een week voor aankomst waren gepubliceerd. Bin-
nen deze subset, die vaak het meest onbetrouwbaar maar ook operationeel het meest waardevol is,
behaalde lineaire regressie een precisiegerichte score van 72,0%, waarmee de robuustheid van dit
model in het detecteren van kritieke kwaliteitsproblemen werd bevestigd.

De resultaten onderstrepen twee hoofdpunten. Ten eerste zijn systematische voorbewerking en domein-
specifieke feature engineering bepalender voor de voorspellende prestaties dan algoritmische complex-
iteit. Ten tweede toont het voorgestelde raamwerk aan dat benaderingen die uitsluitend op eventdata
zijn gebaseerd, zonder gebruik van AlS-data of andere externe bronnen, reeds bruikbare inzichten
kunnen leveren in datakwaliteit. Dit positioneert de methode als een levensvatbare controle voor plau-
sibiliteit in (bijna) real-time voor logistieke platforms.

Het onderzoek wijst tevens op enkele beperkingen. De dataset bestrijkt slechts vier maanden en
houdt geen rekening met externe factoren zoals havencongestie, weersomstandigheden of geopoli-
tieke verstoringen. Daarnaast werd de generaliseerbaarheid beperkt door de schaarse aanwezigheid
van bepaalde herkomst—bestemmingsparen. Bovendien werd het criterium “fit-for-use” door de onder-
zoeker gedefinieerd, zonder validatie bij gebruikers, waardoor mogelijk niet alle praktijkrelevante toler-
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anties zijn meegenomen. Aanbevolen vervolgonderzoek zou daarom de temporele scope moeten uit-
breiden, AlS- en omgevingsdata integreren, en meta-learning en process mining verkennen om zowel
verstoringen als afwijkende eventvolgorden te detecteren.

Samenvattend presenteert dit onderzoek de eerste systematische, voorspellende benadering voor het
beoordelen van de kwaliteit van DCSA-conforme containereventdata. Hettoont aan dat een transparant
lineair regressiemodel betrouwbaar twijfelachtige ETAs kan signaleren en biedt daarmee een prak-
tisch en schaalbaar kader voor logistieke dienstverleners die het vertrouwen in hun volgsystemen
willen vergroten. Naast de directe bijdrage opent dit onderzoek wegen naar hybride modellen, gebruik-
ergedefinieerde definities van “fitness” en bredere integratie van contextuele databronnen. Daarmee
verstevigt het de basis voor datagedreven, betrouwbare en schaalbare oplossingen voor container-
tracking.



Nomenclature

Abbreviations

Abbreviation  Definition

AIS  Automatic Identification System
ATA  Actual Time of Arrival
DQ data quality
ETA Expected Time of Arrival
FN False Negative
FP False Positive
LLM Large Language Model
LR Linear Regression
ML Machine Learning
OD origin-destination
RF Random Forest
TN  True Negative
TP  True Positive
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Introduction

It has been estimated that about 90% of the world’s trade is transported in cargo containers (Camossi,
Dimitrova, and Tsois, 2012), making containerized shipping a cornerstone of global commerce. Con-
tainer tracking plays a crucial role in ensuring that goods move smoothly across international logistics
networks. Shippers, carriers, and end-users rely on timely, accurate information to plan routes effi-
ciently and avoid costly delays. Yet, as the velocity and volume of shipments increase, so do the
demands placed on the underlying data infrastructure. Small errors in container location, transit mile-
stones, or estimated arrival times can compound quickly, resulting in misplaced goods, scheduling
conflicts, and higher operating costs [2]. These challenges underscore the necessity of robust data
quality (DQ) within container tracking systems.

Compounding the problem is the diversity of data sources. Major concerns for container tracking in-
clude missing or inconsistent event records and inaccurate timestamps. Data can originate from ship-
ping lines’ enterprise systems, port authorities’ databases, or third-party logistics providers, each with
different formats and reliability standards. This complexity amplifies the risk of poor DQ and compro-
mises the ability of stakeholders to trust the system’s outputs [3].

A recent development shaping the digital transformation of container logistics is the founding of the
Digital Container Shipping Association (DCSA). Some of the major shipping companies (i.e. MSC,
Maersk, CMA CGM, Hapag-Lloyd, ONE, Evergreen, Yang Ming, HMM, and ZIM) formed the DCSA to
establish shared information technology standards across the industry. By promoting a unified digital
language, the DCSA aims to improve data interoperability and enable seamless communication be-
tween everyone within the industry [4]. One of the standards the DCSA has developed is the DCSA
Track & Trace (T&T) standard. This standard is an API specification that standardizes event definitions
(i.e. timestamped records of specific logistics milestones), which allows shippers, carriers, and other
supply-chain partners to exchange container-movement information in a consistent way. With growing
adoption, this standard is helping to align a wide range of tracking systems and software providers
around consistent semantics and data structures.

However, standardization alone does not guarantee the quality of the data being exchanged. Even
DCSA-compliant platforms may propagate incomplete, delayed, or erroneous information. This the-
sis addresses that gap by exploring a preliminary approach to monitoring DQ in a DCSA-compliant
container tracking system. The resulting findings aim to identify the possibilities of DQ monitoring in
tracking platforms that adhere to DCSA standards. Ultimately, this research contributes to ensuring
that container event data are not only timely but also trustworthy and fit for operational use.

1.1. Research questions

The purpose of this thesis is to contribute to an understanding of how DQ can be assessed in container-
tracking systems to foster accurate information for global logistics operations. Specific objectives are:

+ To evaluate the applicability of existing DQ assessment methods to event-based data.
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» To develop new DQ assessment methods that can detect whether or not a container journey is
“fit-for-use”.

To achieve these objectives, the central research question in this thesis is:

How can data quality in a DCSA-based container tracker be systematically assessed to
support accurate and scalable container tracking?

To answer this question, the following sub-questions are posed:

1. What data quality assessment methods are suitable for evaluating event-based tracking data?

2. How can the analysis of individual transport-legs within container journeys be used to systemati-
cally assess data quality?

Study limitations
While this research systematically assesses and seeks to improve DQ in DCSA-compliant container
tracking, several constraints temper the generalisability of its findings.

1. Quantitative focus without user validation. ‘Fitness for use’ is widely recognized as a cen-
tral concept in DQ research. However, it is assessed solely with researcher-defined metrics;
no interviews or surveys were conducted to capture stakeholder perceptions of error criticality.
Consequently, some defects flagged by the model may be operationally benign and vice versa.

2. Restricted temporal window. The evaluation is performed on a historic dataset covering the
months April, May, June, and July 2025, because ground-truth data were available for that period.
This limited time window means the results should be viewed as indicative rather than definitive
and should inspire further research across additional periods.

3. No real-time performance benchmarking. Latency, throughput, and computation cost metrics
are not measured under live streaming loads, leaving open the question of readiness for produc-
tion deployment.

4. Dependence on DCSA Track & Trace version 3.0. All parsing logic and validation rules tar-
get the current schema. Future DCSA releases could introduce slightly changed fields of field
definitions, necessitating minor re-engineering.

1.2. Methodology

To arrive at a conclusive answer to the research question, the study adopts the following three-phase
methodology:

1. Literature Review on DQ Assessment Methods
A systematic literature review will identify established methods for assessing DQ. The review
will provide a rationale for selecting or adapting metrics and evaluation techniques suitable for
container-tracking data.

2. Analysis of the Role and Structure of DCSA Event Data
The study then establishes a detailed understanding of the DCSA Track & Trace schema and its
implementation, cataloguing attributes, dependencies, and use-cases critical for quality assess-
ment. This structural analysis ensures that subsequent techniques remain applicable across
DCSA-based container-tracking systems.

3. Transport-Leg-Level DQ Assessment
Because existing methods do not fully align with the requirements of a container tracker, the qual-
ity of event data will be assessed at the transport-leg level, defined as the continuous movement
of a container on a single mode of transport equipment. Machine learning (ML) algorithms (linear
regression, extreme gradient boosting, random forests, and neural networks) will predict arrival
times. When the predicted arrival time differs substantially from the ETA recorded in the data, the
corresponding data point will be flagged as low-quality.

Each step of this methodology is described in more detail in the next chapters. Specifically, Chapter 2
contains a literature review of DQ assessment methods. Chapter 3 explores container-event data in
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greater depth. Chapter 4 then explains the machine learning approach and presents the results. Chap-
ter 5 discusses limitations and proposes avenues for further research. Finally, Chapter 6 summarises
the principal conclusions of this study.



[Literature Review

High-quality data is essential for enabling information-driven decision-making in Logistics 4.0, yet many
organizations still face persistent data quality issues (Xie, Sun, and Zhao, 2025).

Most scholars agree that DQ can be assessed through a range of attributes, including completeness,
accuracy, timeliness, validity, periodicity, relevance, reliability, and precision (Chen et al., 2014). Due
to the abundance of such attributes, many researchers have proposed categorizing them into broader
dimensions to facilitate evaluation (Hazen et al., 2014).

Wang and Strong (1996) categorized 15 attributes in 4 categories; intrinsic, contextual,representational
and accessibility. Askham et al. refined this classification in 2013 by reducing the list of 15 attributes
to six core attributes: completeness, uniqueness, timeliness, validity, accuracy, and consistency. This
reduction negated the need for categorization and represents a widely accepted approach (Xie, Sun,
and Zhao, 2025).

However, there is considerable variation in both the terminology and the structure used to categorize
DQ attributes. For instance, Hazen et al. (2014) employs the term dimensions to describe individual
attributes, and categorizes these as either intrinsic (those native and objective to the data) or contextual,
referring to attributes that depend on the circumstances in which the data is used.

Conversely, Cai and Zhu (2015) proposes a different categorization, introducing five categories: avail-
ability, usability, reliability, relevance, and presentation quality. In this framework, the term "dimen-
sions” is used to denote categories, while “elements” correspond to individual attributes. So, whereas
in Hazen et al. dimensions is used to describe attributes, here the term dimensions is used to describe
categories.

These variations highlight the lack of consensus on both the structure and terminology of DQ categories
and attributes, a challenge also noted by Chen et al. (2014).

Despite this lack of clarity, the attributes scholars mention most often are accuracy, timeliness, con-
sistency, and completeness (Hazen et al. (2014) and Wang, Hulstijn, and Tan (2016), and Batini et al.
(2009)). In the literature they are described as follows:

» Accuracy can be assessed by comparing values with external values that are known to be (or
considered to be) correct (Hazen et al., 2014). This can be done by comparing the value to a
trusted source of truth.

+ Completeness is defined as the degree to which a given data collection includes data describing
the corresponding set of real-world objects (Batini et al., 2009). It characterizes the number of
missing values. A value can be missing for the following three reasons:

— because it exists, but is not known;
— because it does not exist;
— because it is not known whether it exists.



» Consistency can be seen as whether or not the representation of the data value is the same in
all cases (Ballou and Pazer, 1985). Batini et al. (2009) introduces the concept of intra-relation
constraints and inter-relation constraints. Intra-relation consistency refers to the value range a
certain data value can have. Inter-relation is whether a value is the same in different databases.
Inter-relation consistency might seem to overlap with accuracy, however, accuracy is only about
whether the data value corresponds to its real-world equivalent. Inter-relation consistency is
about values matching each other in different databases, so it is comparing different values to
each other.

» Timeliness refers to the degree to which data are up-to-date (Hazen et al., 2014). Data may
become outdated if it is not updated when source information changes. In the case of container
trackers, timeliness can be compromised if initially incomplete data is not refreshed once it be-
comes available from the source, or when the source itself is updated.

When looking further for articles on how to assess DQ, authors other than those mentioned above
continue to evaluate DQ solely on single dimensions (Bergdahl et al. (2007), Verhulst (2016), and
Bokrantz et al. (2017)).

Bergdahl et al. (2007) provided a comprehensive framework for statistics agencies.Verhulst (2016)
also evaluated data as a sum of single dimensions, and Bokrantz et al. (2017) charted 33 simulation-
data issues, mapped these issues to nine quality dimensions and revealed major gaps in accessibility,
completeness, consistency.
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Table 2.1: Analysis of articles on DQ assessment

Reference Focus Approach Key Contri- Strengths Limitations
bution
Xie et al. [5] DQ in ML Systematic lit- Taxonomy of Broad and Domain-
design/manu-  eraturereview concepts and up-to-date specific
facturing methods overview
Chenetal.[6] DQ in health Review of Classification Clear frame- Health-
information assessment of DQ meth- work; domain specific
systems methods ods and examples
dimensions
Hazen et al. DQ for supply- SPC control Links DQ with Integrates Only concep-
[7 chain analyt- charts SPC SCM & data- tual
ics science views
Wang et al. Consumer Two-stage 4-category Seminal, Single-
[8] perspective survey & fac- DQ frame- widely domain
on DQ tor analysis work adopted survey study
Caietal. [10] Big-data DQ 5 dimensions Two-layerindi- Maps 4V to Only concep-
challenges &feedbackcy- cators per di- metrics tual
cle mension
Batini et al. DQ assess- Systematic Classified Comprehensive Only concep-
[12] ment & 5-perspective  phases, cross-domain  tual
improvement  comparative steps, and synthesis
methods survey cost factors
Bergdahl et al.  Statistical Assessment Structured im- Comprehensive Primarily
[14] quality report- on dimen- plementation framework for statistics
ing sions roadmap agencies
Verhulst [15] Event DQ Assessment Software plu- Systematic Individual
on dimen- gin approach value analysis
sions
Bokrantz et al. DQ in DES Interviewing Provides im- Investigates Focus on
[16] professionals  provement data produc- manufactur-
guidelines tion ing
Camossi et al. Container- SVMon CSM  End-to-end Scales to 300 Limited fea-
[1] route anomaly pipeline k real trips tures &
detection unsupervised
Chen et al. DQ improve- Spectral De- Nonlinear Highly visual High computa-
[17] ment composition & cluster detec- method tion cost
VAT Partition- tion
ing
Feiter et al. Fault detec- Machine Shows quality Clear feature Not used on
[18] tion Learning Assessment selection logistic data
with ML

2.1. Assessment Methods Beyond Dimensional Metrics

A handful of works move beyond single-attribute metrics and propose genuinely novel concepts or holis-
tic approaches. Camossi, Dimitrova, and Tsois (2012) evaluates Container Status Messages (CSMs)
to identify anomalous container routes. This research was primarily intended to be used by customs,
so customs agents had a better idea on what containers to check. However, this method can with some
re-engineering also be used to detect low-quality data points in container journeys, as anomalous con-
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tainer routes can also be a sign of incorrect data.

Chen, Zhu, and Lee (2013) presents a visual-assessment-based data-partitioning workflow that judges
whether a dataset is “model-ready” before prognostic modelling begins. The method projects high-
dimensional sensor data into a low-dimensional spectral space, applies a VAT-style image to expose
natural clusters, and then quantifies each cluster’s internal fitness and mutual separation; outliers are
flagged via a minimum-spanning-tree disparity analysis. The same logic can potentially be transferred
to DCSA container-event streams, where implausible clusters or isolated outliers likewise signal low-
quality transport-leg records.

Next, Feiter, Strickland, and Garcia-Marti (2025) recast wind-vane stalling as a machine learning (ML)
classification task rather than rating data against predefined quality dimensions. Using twenty years
of Cabauw-tower observations, they benchmark five supervised algorithms and a one-class SVM, find-
ing that K-Nearest Neighbours and Random Forest detect stalling episodes with 75% accuracy while
sharply reducing false positives.

As Table 2.1 demonstrates, most prior work relies on value-level or dimension-based evaluation frame-
works; only a handful of studies explore clustering or outlier detection, and none address DCSA-
compliant container-events. This gap underscores the novelty and relevance of the method developed
in this thesis. The approach employs ML models to predict the actual arrival time at each planned desti-
nation, and any journey whose predicted arrival deviates by more than one day from the ETA recorded
in the DCSA data is flagged as low-quality. Crucially, the method operates without Automatic Identifi-
cation System (AIS) data, an input on which all comparable studies still depend, as Jiang et al. (2025)
found in a comprehensive literature review.

Another way of looking at DQ is evaluating whether it is ’fit-for-use’ (Wang and Strong, 1996), which
means that DQ is determined by whether the user can do something useful with is. This is also em-
phasized by Galway and Hanks (1996), which states that DQ can only be meaningfully judged in the
context of its application.

While the dimensions discussed above provide useful indicators for evaluating individual data values,
they fall short of assessing whether the data, as a whole, forms a coherent and trustworthy represen-
tation of reality. This is particularly relevant in the context of container tracking systems, where users
interpret data at the level of entire container journeys. Thus, it is proposed that the quality of a con-
tainer journey should not be assessed as the sum of isolated value-level metrics, but instead as a
holistic judgment of plausibility and internal consistency. To this author’s knowledge, no such method
currently exists in the literature. Therefore, this thesis develops a novel DQ assessment technique
tailored to event-based container tracking. This method is already introduced briefly in Section 1.2,
where the methodology for this research project is discussed. Chapter 4 will go into greater depth on
this approach.

To summarize:

* There is no consensus on what framework to use in order to structurally assess DQ.

» There are a few common denominators, such as assessment on data attributes. However, the
question remains of what attributes to use.

» Therefore, there exists an enormous research gap that this thesis fills for the field of container
logistics

* This thesis fills that gap by applying ML models to assess the quality of the ETAs provided in
event data



Data Processing

International container transport is orchestrated by dozens of actors. Shipping lines, terminals, rail and
barge operators, freight forwarders/ Each maintains its own information system and vocabulary. To
make these disparate data streams interoperable, the Digital Container Shipping Association (DCSA)
has published the Track & Trace (T&T) standard. A machine-readable schema that defines what con-
stitutes a transport “event,” which attributes must accompany it, and how those attributes should be
encoded.

This chapter explains how the T&T event model is structured and why those design choices matter for
downstream analytics. We begin by mapping the standard’s three event families: Shipment, Equipment,
and Transport, and clarify the four allowed status codes (Planned, Estimated, Actual, and Requested).
Next, we show how individual events are stitched together into traces and how a collection of traces
forms an eventlog, the core data asset used throughout the remainder of this work. Finally, we discuss
practical considerations when building such a log from heterogeneous sources, and show the data
processing steps (duplicate suppression, UN/LO-code cleansing, and the segmentation of container
journeys into distinct transport legs) needed, laying the groundwork for the ML techniques developed
in Chapter 4.

3.1. Events in the DCSA T&T standard

The DCSA Track & Trace (T&T) standard provides a structured framework for representing container
transport events in a unified, interoperable format. An event can be any important step in the lifecycle
of a container, such as it being loaded on a ship, or it being delivered to the customer. Understanding
the event types defined in this standard is essential for segmenting container journeys and assessing
DQ across transport legs.

3.1.1. Event Types
In the DCSA T&T standard, events are organized into three groups: Shipment events, Equipment
events, and Transport events.

» Shipment events pertain to the shipment of an object itself, such as furniture, cars, pieces of
clothing, etc. These types of events often reference associated documents, such as booking
details or transport instructions. They focus on tracking the lifecycle of a shipment, including its
booking, documentation, and completion.

* Equipment events are linked to specific pieces of equipment being tracked. In this research,
the equipment events will always be linked to containers, although these types of events are not
exclusive to containers, as they can also be used to track other pieces of equipment. In the case
of containers, these events represent actions such as a container being loaded onto a vessel,
arriving at a terminal, or being dropped off at the customer.

» Transport events are associated with specific transport calls and are connected to transport-



3.1. Eventsin the DCSA T&T standard 9

related actions (i.e., arrivals and departures). In the T&T standard, they are used to track occur-
rences of the movement of transport vehicles (not only land vehicles, but also watercraft, railed
vehicles and aircraft), such as vessels and barges, at facilities like deep-sea terminals and inland
terminals.

In summary, transport events track movements; equipment events focus on the handling of shipping
tools like containers; and shipment events document the lifecycle of a shipment.

Each event may carry one of four statuses: Actual (ACT), Planned (PLN), Estimated (EST), or Requested
(REQR). Actual represents an event that has already occurred, Planned refers to an event that is sched-
uled to happen in the future, Estimated indicates an event with a predicted occurrence time or status,
and Requested denotes an event that has been requested to occur, often as part of a process or
workflow. The REQ status can only be assigned to events of the Shipment type.

An overview of all events in the DCSA standard is provided in Appendix B.

3.1.2. Creating an Eventlog
All events belonging to one specific process instance is called a trace. In container tracking, a trace
would be all the events for one container journey. An eventlog is a collection of all these traces.

For container logistics, creating an eventlog means that container data is gathered from various sources,
transformed into the DCSA format (if not already compliant), and assembled into an eventlog that
reflects each shipment’s progress. Table 3.1 provides an illustrative trace for container ABCD1234567.
Certain mandatory DCSA fields are omitted here for simplicity, and column names are not always
corresponding to the names in the DCSA standard; the table’s purpose is solely to demonstrate the
eventlog structure. The event data used in this thesis is kindly provided by Poort8, as part of their
container tracker product HeyWim Container Tracking. The data is collected during the months of April,
May, June and July of 2025. The data was collected once every working day, with the exception of some
national holidays that occurred on a working day. HeyWim already contains logic to filter out duplicate
events from different sources, so to provide the most reliable data for each event. This makes the fleet
mix skewed towards Poort8’s customer base, and when collecting it via other sources, this duplication
filtering needs to be manually created.

Table 3.1: Event Log of Container ABCD 1234567

Event Date- Status Event Location UN/LO Mode ModeName Publisher
Time Code

2025-04- ACT GTOT JODHPUR INJDH TRUCK Hapag
14T16:00:00

2025-04- ACT ARRI MUNDRA INMUN TRUCK Hapag
16T15:28:00

2025-04- ACT LOAD MUNDRA INMUN VESSEL Charleston Hapag
21T710:37:00 Express

2025-04-21- ACT DEPA MUNDRA INMUN VESSEL Charleston Hapag
T21:18:00 Express

2025-05- PLN ARRI DDE (Delta) NLRTM VESSEL Charleston ECT
28T15:00:00 Express

2025-05- PLN DEPA DDE (Delta) NLRTM VESSEL Charleston ECT
30T14:30:00 Express

2025-05- PLN DEPA ROTTERDAM NLRTM Hapag
30T22:00:00

2025-06- PLN ARRI VENLO NLVEN Hapag
02T22:00:00

Table 3.1 shows the journey of a container from Jodhpur, India, to Venlo, the Netherlands The container
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is transported on a truck to Mundra Port in India, where it is loaded on the Charleston Express. This
vessel transports the container to Delta Terminal in Rotterdam, The Netherlands. From there, the
container is further transported to Venlo. At the time of writing, the arrival event at Delta Terminal
remains “Planned,” indicating the vessel is still en route.

It is also interesting to note there are multiple publishers of the data. ECT (the operator of the Delta
terminal) is not providing information in DCSA, while Hapag (the shipping company Hapag-Lloyd) is
one of the founders of DCSA and thus providing data according to the DCSA T&T standard. This
has an impact on the data quality of the event log. Integrating a non-standard ECT feed requires a
robust normalization and reconciliation layer. ECT'’s proprietary status codes, local-time timestamps,
and non-DCSA field names must be mapped into the standard schema, introducing a potential source
of inconsistency if mappings are incomplete or drift over time. This shows the need for a thorough
monitoring of data quality.

Although it may initially appear that the presence of multiple data sources warrants a comprehensive
assessment of data quality across all dimensions (consistency in particular) this is not the primary
intent. Rather, this example illustrates that while established data quality dimensions provide a useful
analytical lens, they should neither be disregarded nor treated as a rigid framework. For instance,
shifting focus from consistency to completeness highlights that the Mode field is empty for the segment
between Rotterdam and Venlo. This is likely because the shipping company has not yet arranged
or confirmed onward transport for the container. Given that the distance between these locations is
approximately 200 kilometers, the container could plausibly be moved by truck, barge, or rail. In this
case, the absence of a Mode value reflects operational uncertainty rather than a data quality failure per
se, illustrating the limitations of relying exclusively on predefined dimensions for evaluation.

3.2. Transport-leg definition
A transport-leg is defined as being one container move on a single mode of transport. So if we take
the event log from Table 3.1, there would be three legs:

» Jodhpur — Mundra on a truck
* Mundra — Rotterdam on the Charleston Express
* Rotterdam — Venlo on a transport vehicle yet to be determined

Identifying transport-legs within a container event log is a relatively straightforward task for a human
observer. However, automating this process presents several challenges. As a first step, the event
log must be sorted chronologically based on the Event DateTime. While iterating through the ordered
events, one might consider using a heuristic whereby a change in transport mode indicates the begin-
ning of a new leg. However, such arule is insufficient. For instance, itis not uncommon for containers to
be transshipped between vessels. If the corresponding discharge and load events are missing (whether
due to incomplete reporting or data quality issues) the sequence of events looks like the container is on
the same mode of transport, while in reality, the container has moved from one vessel to another. To
mitigate this, an additional condition is required: the ModeName of the current event must differ from
that of the previous event to trigger the start of a new leg. This helps to prevent misclassification of
vessel transshipments as a single uninterrupted transport-leg.

Although it is technically feasible to analyze transport segments occurring entirely within a terminal, re-
ferred to in this study as intra-terminal legs,this introduces further complications. Specifically, equipment-
related events, which often capture intra-terminal activity, frequently lack a specified ModeName. Ac-
cording to the DCSA standard, the omission of this field is permissible. An exploratory analysis of event
data reveals that approximately 64.7% of all equipment events contain an empty ModeName field.

This incomplete information leads to inconsistencies in how intra-terminal legs are identified. For ex-
ample, a new leg might be initiated by a discharge event lacking a ModeName, while in other instances
it may be triggered by a subsequent event. Such ambiguity complicates any systematic analysis of
container dwell times at terminals. As a result, equipment events must be excluded from the dataset to
ensure consistent leg segmentation. Consequently, this study focuses solely on transport events and
restricts its analysis to infer-terminal legs.
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By filtering out all equipment events, the event log for container ABCD1234567 looks like the one in
Table 3.2, where sequential events with the same color belong to the same leg.

Table 3.2: Filtered Event Log of Container ABCD 1234567

Event Date- Status Event Location UN/LO Mode ModeName Publisher
Time Code

2025-04- ACT ARRI MUNDRA INMUN TRUCK Hapag
16T15:28:00

2025-04-21- ACT DEPA MUNDRA INMUN VESSEL Charleston Hapag
T21:18:00 Express

2025-05- PLN ARRI DDE (Delta) NLRTM VESSEL Charleston ECT
28T15:00:00 Express

2025-05- PLN DEPA DDE (Delta) NLRTM VESSEL Charleston ECT
30T14:30:00 Express

2025-05- PLN DEPA ROTTERDAM NLRTM Hapag
30T22:00:00

2025-06- PLN ARRI VENLO NLVEN Hapag
02T22:00:00

3.3. Outlier Detection

An initial attempt at detecting low-quality data was made using outlier detection. There are several
ways to measure outliers in the transport legs. In this research a data point is determined as outlier
when it is more than 1.5 times the Interquartile Range (IQR) below the first quartile (Q1) or above the
third quartile (Q3) of the reference dataset.

Another common method for detecting outliers is the 3-sigma rule, where data points falling outside
three standard deviations ( & 30) from the mean are considered outliers. However, this method explic-
itly assumes that data are normally distributed around the arithmetic mean, an assumption often not
valid for container transport durations. Container durations typically deviate from a normal distribution,
as illustrated by the boxplot in Figure 3.1b. The asymmetry between quartiles (the interval between Q1
and the median significantly exceeds that between the median and Q3) indicates a left-skewed distri-
bution. This observation is further supported numerically: the arithmetic mean is 978.54 hours, while
the median is notably higher at 934.30 hours. Such a discrepancy confirms the non-normal distribution
of container transit times, as visualized in Figure 3.1a.

Due to this inherent skewness, the 3-sigma rule is less robust, particularly in scenarios involving sys-
temic disruptions or shifts in logistics operations that substantially affect travel times. In contrast, the
IQR-based approach provides more reliable and distribution-independent outlier detection, making it
better suited for analyzing data with irregular distributions typical in container transportation contexts.

Now that the interquartile range (IQR) method has been identified as a better fit for outlier detection
than the traditional 3-sigma rule, it is important to clearly define the approach used to implement it.

For a given origin—destination (OD) pair, the historical records of all containers that have travelled
between the two locations are compiled to form a dataset. For each container in this dataset, the
duration of the journey, from departure at the origin to arrival at the destination, is calculated. This
duration can be either an actual value, if the arrival event is recorded with status ACT, or an expected
value, if the arrival status is EST or PLN.

Once the durations for each container are computed, the first quartile (Q1), third quartile (Q3), and
interquartile range (IQR) can be derived from the training subset of the dataset. These reference
values are then used to define a valid range for journey durations, serving as the basis for inlier and
outlier classification.
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(a) Distribution of durations for Shanghai to Rotterdam (b) Boxplot of durations from Shanghai to Rotterdam

Figure 3.1: Transport-legs of all direct containermoves from Shanghai to Rotterdam

Let d; denote the observed duration of container journey j, and define the valid range using the first

quartile Q1, third quartile Qs, and interquartile range IQR = Qs — Q1. Then, the classification function
x; for each journey j is given by:

J1 Qi —15xIQR<d; <Qs+15x IQR
710 otherwise

Here, z; = 1 indicates that the journey is classified as an inlier (regular duration), and x; = 0 indicates

that it is classified as an outlier (non-regular duration).

There are several important design choices in how this dataset should be constructed and sampled:

1. Sampling one container per vessel: To avoid over-representing vessels carrying a large num-
ber of containers, only one container per vessel should be included in the dataset. Otherwise,
vessels that transport many containers would disproportionately influence the calculated duration
distribution.

2. Sampling frequency per vessel: Including the duration of a vessel on every day a container on
it is being tracked may introduce bias since the duration for that vessel will likely not change often.
Instead, it is necessary to determine how many samples to use per unique vessel. One option is
to select only a limited number of representative data points to reduce overrepresentation.

3. Inclusion of only completed journeys: Limiting the dataset to vessels that have already arrived
provides ground truth values for duration. However, this choice excludes emerging disruptions or
anomalies in real-time data, such as events like a Suez Canal blockade, which can delay many
vessels similarly and should ideally be captured in the model.

As an initial implementation, the dataset consists of one container per vessel per day. For example, if
containers A, B, C, and D are tracked for five days, and containers A, B, and C are on vessel V, while
container D is on vessel W, the dataset will include one duration from vessel V' and one from vessel
W for each day. This results in a total of 10 data points (5 for vessel V' and 5 for vessel ).

This method is visualized in Figure 3.2using Buenos Aires as the origin and Rotterdam as the des-
tination. Only containers with an actual recorded arrival in Rotterdam are considered. According to
the historical event data, a total of 25 containers completed the Buenos Aires — Rotterdam leg, dis-
tributed across 6 distinct vessels. For this dataset, the calculated reference values are: @, = 715.72,
Q3 = 824.30, and IQR = 108.58.

From Figure 3.2, it can be observed that several data points fall below the lower bound defined by
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Figure 3.2: Durations for completed transport legs between Buenos Aires and Rotterdam

the IQR method. Upon further investigation, these points correspond to two containers which initially
appeared to have a duration of 407.92 hours. However, one week later, updated tracking data extended
the duration to 591.3 hours, lifting them above the lower threshold. The evolution of these durations
over time is shown in Figure 3.3. It is important to note that we are now referring to containers rather
than vessels. Since both containers were aboard the same ship and shared identical event timestamps
throughout the tracking period, only one line is visible in the plot for these two outlier containers. The
remaining tracked containers did not exhibit durations below the lower bound or above the upper bound
during the tracking period. To demonstrate this, the expected duration of two representative containers
from different vessels on every day is also plotted.

Broadly speaking, outliers in the data can have two possible causes:

1. Errors in the data (e.g. incorrect vesselname or incorrect Eventtime)
2. Actual operational anomalies (e.g. delays due to congestion or blockages)

Outlier detection (or at least, this method of using outlier detection) can not distinguish between these
two and is therefore not suited as a way of detecting data quality issues.

Another issue with outlier detection is that it can not detect inlier container issues. When the IQR is too
large, certain inlier containers will not be captured. Figure 3.3 also illustrates this. A DQ question is
whether you can predict that a change in duration is going to happen. The outlier container that first took
400 hours (17 days), all of a sudden spiked to around 550 hours (23 days), and can thus be correctly
classified as low DQ. However, the inlier container on the left is not captured by outlier detection, but
its duration also increased (from 600 hours to 800 hours).

Because of these two reasons another method of detecting DQ issues is necessary.
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Figure 3.3: Graph of container durations on every tracked day. Note that not all containers between Buenos Aires and
Rotterdam are shown.

3.4. Preprocessing for Machine Learning

Another method which can be used to detect low-quality data is with the use of ML. The timestamps
of arrivals can be checked by predicting the arrival time, and, assuming that the ML model is able to
accurately predict arrivals, when this predicted arrival time and the arrival time in the data correspond,
it can safely be assumed that the data is of high quality. However, when the predicted arrival time and
the expected arrival time do not correspond, the data points will be flagged as low quality.

Before feeding the eventlog into a ML model, preprocessing needs to take place.

3.4.1. Converting Legs to Tabular Dataformat
First of all, instead of taking the eventlog divided into transport legs, every transportleg is converted to
one row. Every row contains the following characteristics of the transport leg:

» Containernumber

* Retrieval date (so on what date this record was recorded)
» Publishing datetime of the departure

 Publishing datetime of the arrival

» The origin

» The destination

» The departure time in the origin

» The arrival time at the destination

» The duration of that leg (departure time substracted from the arrival time)
» The status of the leg (ACT, PLN or EST)

* Which carrier is transporting the container
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» The publisher of the arrival event

* The role of the publisher of the arrival event

* How many days the container has been tracked

» And the time between the arrival and the publication datetime of the arrival

An example of such a conversion can be seen in Table 3.3. In there, the journey of container CXDU1789553
is divided into two tranpsort legs. The first from Tianjin Port (CNTXG) to Qingdao (CNQIN), the second
leg from Qingdao to Rotterdam (NLRTM). The two legs from the table are retrieved on both May 19th
and on June 19th. The leg from Tianjin was already completed when the data was retrieved on May
19th, and as such, the data for that leg is the same on June 19th. However, the leg from Qingdao to
Rotterdam are on both retrieval dates not yet completed, and so, as the journey is nearing its comple-
tion, the data from June is different than the data from May. From the June data it can be concluded
that the vessel left earlier than planned in May, and the arrival is also planned slightly earlier than it
was planned in May.

This table alone is not yet enough, since model training requires verified actual times of arrival (ATA).
ATAs for each containers’s legs were retrieved by scanning the eventlog for records where the status of
the arrival event for the container in each leg transitioned from EST or PLN to ACT. Subsequent inspection
revealed that some ATAs were retrospectively amended. While 86%of such revisions were under 4
hours, a non-negligible amount of containers exhibited corrections that exceeded four hours, with one
extreme case of 79 hours (Figure 3.4). To ensure consistency, the last recorded ATA for each container
was adopted as ground truth. Each row in the table is enriched with its last collected ATA and with the
timestamp at which that ATA first became available. This distinction is important, because the last
collected ATA may have been available at earlier days too.
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Figure 3.4: Histogram of the maximum time difference between multiple ATAs recorded for the same OD-pair.

3.4.2. Cleaning Invalid UN/LO codes

As part of the initial data exploration, a manual correction procedure was carried out to resolve non-
existing UN/LO codes in the dataset. This is important, since the transport leg its origin and destination
are based on the UN/LO codesThe top most frequently occurring UN/LO codes were reviewed and
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cross-checked against the official UN/LO code directory of the UN [20]. In cases where a non-existing
UN/LO code was identified, the corresponding location description was used to infer the correct UN/LO
code. A mapping table was then created to replace incorrect codes with their correct counterparts. This
correction step was essential to avoid misclassifications in origin—destination pairings and to ensure
accurate grouping and analysis of container journeys. The full mapping table is provided in Appendix
C.

3.4.3. Train-test split

To simulate operations as closely as possible, a time-based train-test split is used, instead of a random
train-test split. This means that all data collected upto a certain date is used to train the data, and data
collected after that date is used to test the ML models. This strategy mimics the forward-looking nature
of real-time deployment and avoids information leakage. In section 4.1.1 the effect of using this split
instead of a random split is expanded upon.

After converting all legs in a format usable for the ML regression models, the total amount of legs
collected is 89431. Of the 89431 legs, the number of training samples are 72894, while the number of
test samples is 16537, this is about equal to an 80/20 train-test split, commonly used in ML problems.
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Predicting Arrival Times with
Machine Learning

This study adopts supervised machine learning models to classify individual data points as high- or
low-quality on the basis of their predicted arrival times. However, the question remains what high- and
low-quality data is. By talking to experts at Poort8, we came to the following definition for high-quality,
fit-for-use data.

Definition 1: Within a DCSA-compliant container-tracking context, data are deemed fit-for-use when
the system is capable of alerting stakeholders that an ETA is likely to shift by at least one calendar day.

Rather than predicting absolute arrival timestamps, which increase as operations progress, the models
estimate the duration of each transport leg. Durations seldom exceed two months and therefore this re-
duces extrapolation error. This extrapolation error becomes significant when using models that are not
well-suited for extrapolation, such as tree-based models. This issue is explored more in Section 4.2.2.
The predicted duration will then be added to the departure time to construct a prediction for the arrival
time. When this arrival time differs by more than one day from the estimated arrival time of the leg,
the data record will be flagged as low-quality. This rule enables automated, journey-level plausibility
monitoring without reliance on AIS data.

Table 4.1 lists all the features put in the model. Firstly, categorical variables were one-hot encoded
to avoid imposing an arbitrary ordinal structure and to enable the models to learn separate effects
for each category without introducing spurious distances. As can be read in D the total amount of
features after one-hot encoding was 491, of which 459 were OD-pairs. Next, temporal features were
converted to seconds to ensure a consistent, numeric representation that preserves relative intervals.
Lastly, standardization of numeric and temporal features to zero mean and unit variance was applied to
place all variables on a comparable scale, preventing features with larger magnitudes from dominating
the model optimization process. These transformations follow established preprocessing practices in
machine learning and improve model stability and interpretability.

Occasionally, the publication timestamp of an ETA comes after its eventDateTime, yielding a negative
Time before ETA publication. All observations in which this lead time was negative are removed,
as these records should not show up in real-time operations.

Since a time-based split is used, and the dataset only contains records from container journeys in the
HeyWim system, there are a few OD-pairs that are only travelled occasionally. This means that some
OD-pairs only show up in the trraining dataset or in the test set. If they only occur in the test set, it
means that the ML model is not trained on it, and this arrival time can not be predicted accurately.
Therefore, an additional filtering step is needed for the test set which is that it can only contain records
with an ODpair that is also present in the training set. This filtering step removes around 700 records

18
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Table 4.1: Features used for duration prediction

Feature Type
Origin—destination (OD) pair Categorical
Carrier Categorical

ETA publisher (terminal, carrier, ...) Categorical
Published ETA (expected duration) Time

Time before ETA publication Time
Total days tracked Numeric (days)
Departure timestamp Time

from the test set, filtering from 16537 samples to 15741 samples. The training set still contains 72894
samples. The impact of this filtering step is further explored in Section 4.1.2.

Now that the preprocessing has been done, the ML models can be trained. The results of testing
these models’ its ability to predict ATAs is summarized in Table 4.5. All models are implemented in the
Python programming language, using the library scikit-learn. Each section provides a table with the
hyperparameters used in each model. If there are hyperparameters not mentioned in the table, then
the default of scikit-learn was used. The ML models trained in this thesis are:

+ Linear Regression (LR): As the least computationally demanding approach, LR enables rapid
feature experimentation and establishes a robust baseline for assessing more sophisticated mod-
els. The marginal performance improvements offered by more complex techniques may not justify
their additional computational cost.

* Random Forest (RF): RF has been extensively employed in ATA prediction using AIS data, and
showed promising results (Jiang et al., 2025).

» XGBoost: This gradient-boosting method has also yielded promising results in ATA forecasting
with AIS inputs, as evidenced by Jiang et al. (2025).

* Neural Network (NN): When AIS data are combined with environmental variables, NNs have
achieved one-hour accuracy in ATA prediction (Jahn and Scheidweiler, 2018). Furthermore,
Mekkaoui, Benabbou, and Berrado (2022) demonstrated that neural networks outperform other
models in this domain.

However, because all prior studies have exclusively utilized AlS data, and sometimes enriching it with
environmental data, strong predictive performance in that context does not necessarily translate to
comparable effectiveness when applied to event data. However, predicting ATAs with AIS data is the
closest analogue to the subject of this thesis.

4.1. Linear Regression

The first predictive model is a Linear Regression model. Owing to its low computational cost, linear
regression provides a convenient test-bed for feature experimentation, rapid diagnostics, and transpar-
ent coefficient interpretation. Moreover, it establishes a reference point against which any performance
gains from more sophisticated algorithms can be meaningfully assessed. LR can be used to test the
impact of the methodological choices made in this research.

We proceed in three steps. First we compare a random split with a time-based split, because prediction
in this setting is time-ordered and a random split can look better than it should when the same container
appears in both sets. Secondly, the time-based split leads to OD-pairs that occur only in the test set; in
a dummy-encoded linear model this creates large errors, so we compare two remedies and choose the
structural one. Lastly, after fixing the split and the OD-pair coverage, we add two frequency features to
test whether they improve accuracy.

4.1.1. Random versus Time-based Train—Test Splits
Firstly, the impact of using a time-based train-test split instead of using a random split is explored.
Figure 4.1 displays residuals obtained from a random 80/20 train—test split. Nearly all residuals lie
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within £10 days; the model achieves an RMSE of 2.41 days and an R? of 0.989, suggesting an almost
perfect fit.

Linear Regression - Arrival Time Prediction Results
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Figure 4.1: Linear Regression performance using a random train—test split.

By contrast, Figure 4.2 shows results obtained with the time-based split. The RMSE increases to 3.25
days and the R? drops sharply to 0.381. The apparent visual improvement is therefore an artifact of
differing residual scales rather than superior predictive accuracy.

The linear effects in the residuals plots are an artifact of having multiple predictions for a single container.
For instance, for a container that arrives on July 1st, during the entire period it is being tracked through
HeyWim an arrival time is also predicted. All these predictions are bound to a single arrival time, which
means that as predictions get more accurate, the residuals become smaller and smaller for that arrival
time.
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Figure 4.2: Linear-regression performance using a time-based train—test split.
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4.1.2. Effect of Unseen Origin—Destination Pairs

A time-based split can yield origin—destination (OD) pairs in the test set that are absent from the training
set. Because the associated dummy variables are unseen during training, the model assigns them zero
weight. Because OD pair is among the most influential predictors (see Appendix D) this will produce
large systematic errors. Without mitigation, the structure appears as in Figure 4.3a, with two clusters.
Note that this was done on a previous iteration of the model, so the figures are only illustrative. Two
remedial strategies were investigated:

1. Reactive filtering: discard predictions whose absolute error exceeds one year. The results
(Figure 4.3b) show only one cluster.

2. Proactive filtering: restrict the test set to OD-pairs present in the training data, yielding an iden-
tical improvement without post-hoc trimming.

Since the outcomes of the two strategies are the same not differ, the most structural approach is the
best strategy and thus option 2 is adopted.

Original Model: ATA vs. PTA Model with outliers removed: ATA vs. PTA
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Figure 4.3: Impact of excluding unseen OD-pairs. Notice the two clusters in Figure 4.3a

4.1.3. Effect of Adding Frequency-Based Features
To assess whether additional context could improve predictive accuracy, two additional features were
introduced: Route Frequency and Carrier Route Frequency.

* Route Frequency records the total number of observations for a given OD pair
* Carrier Route Frequency tallies the number of observations for that identical OD pair per carrier

For example, if an OD pair occurs 40 times, 30 times for Carrier A and 10 times for carrier B, then Route
Frequency equals 40, while Carrier Route Frequency takes the values 30 for records with carrier A
and 10 for records with carrier B.

Inclusion of these variables produced only marginal change in the linear-regression baseline: the RMSE
decreased from 3.25 to 3.24 days (a reduction of roughly 10 minutes), and the R? increased slightly from
0.381 to 0.383. Figure 4.4 illustrates the corresponding residual pattern.

The negligible performance gain suggests that, for a linear model, frequency counts fail to capture
additional variance beyond that already explained by existing features.
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Figure 4.4: Linear regression augmented with frequency-based features.

4.2. Other models

Having established a linear-regression baseline, we next evaluate non-linear algorithms to determine
whether predictive accuracy can be improved. The results of all models are plotted just like the example
of Figure 4.2. On the left the actual vs predicted times are shown, while on the right a plot of the residuals
is shown.

4.2.1. Random Forest

A Random Forest regressor was selected because its ensemble of decision trees can capture complex,
non-linear relationships and higher-order feature interactions. For example, an RF can learn that extra
delay tends to occur when the ETA Publisher equals COSCO and the 0D-pair is 'NLRTM-CNNGB’,
an effect that is non-additive and difficult to encode manually. After experimenting with the data, the
hyperparameters in Table 4.2 are set for the RF model.

Table 4.2: Random Forest
hyper-parameters

Parameter Value
Number of trees 500
Maximum depth None @
Min. samples per node 5

Min. samples per leaf 2
Random seed 42

a8 Maximum depth is left at its de-

fault value (None), meaning each tree
Neural-network predictions of leg dura-
tionis expanded until all leaves are pure
or contain fewer than the minimal sam-
ples per node observations, thereby
constraining depth implicitly.

Figure 4.5 summarizes the results. The model performs markedly worse than the linear baseline, yield-
ing an RMSE of 6.28 days and an R? of —1.308, indicating that this model is not fit-for-use in this regres-
sion task.
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Random Forest - Arrival Time Prediction Results
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Figure 4.5: Predicting durations with a Random Forest

Because frequency-based variables improved the linear model marginally (Section 4.1.3), the same
two features (Route Frequency and Carrier Route Frequency) were appended to the RF feature set.
Accuracy improved but remained inferior to the linear benchmark: RMSE decreased to 5.39 days and
R? rose to —0.699. Hence, even with additional contextual information, the RF model is not suitable for
the present regression task.

4.2.2. Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is a tree-based ensemble method that has performed well in pre-
vious ATA-prediction studies [19]. Initial experimentation revealed a fundamental limitation of an earlier
approach: predicting arrival times instead of durations. Decision-tree ensembles cannot extrapolate
well beyond the numerical range encountered during training. Unlike linear or polynomial regression,
trees partition the feature space and return the value stored in one of its leaves. Consequently, an
input that lies outside the training range, e.g. an arrival date later than any date seen during training,
receives a prediction equal to the historical maximum. In the present data set, the latest training date
was June 11th. Figure 4.6 illustrates the resulting horizontal asymptote.

To mitigate this, the target variable was changed from ATA to actual duration, as already explained in
the introduction of this chapter. The hyperparameters for the XGBoost model can be found in Table 4.3

Table 4.3: XGBoost hyper-parameters

Parameter Value
Number of estimators 1200

Learning Rate 0.2

Max. depth 40

Objective Squared Error
Random seed 42

The duration-based XGBoost model outperformed the RF but remained inferior to LR. Its RMSE is
5.61days and R? is —0.836. Augmenting the feature set with Route Frequency and Carrier Route
Frequency provided some improvement (RMSE = 5.45 days; R? = —0.736), but not as much of a jump
as in the RF model. Figure 4.7 summarizes the final residual pattern. The few points on the bottom
suggest that the tree could not fully fit the test data, so training with bigger trees might resolve the fitting
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Basic XGBoost - Arrival Time Prediction Results
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Figure 4.6: Extrapolation failure of XGBoost when trained to predict arrival timestamps; note the plateau at 11 June.

of these points. However, it can also be that a more informative feature already captured the split, such
that its sibling never got used.

XGBoost - Arrival Time Prediction Results
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Figure 4.7: Predicting durations with XGBoost

4.2.3. Neural Network

Neural networks are capable of approximating complex, highly non-linear relationships that may exist
in the data; however, their predictive power is sensitive to hyper-parameter selection and they require
longer training times, making rapid experimentation more costly. After trial and error, the hyperparam-
eters in Table 4.4 seemed like the best performing, so they were used throughout this research.

The baseline NN (Figure 4.8) achieved an RMSE of 4.20 days and an R? of —0.030, performing worse
than both linear regression and XGBoost. Adding the frequency-based variables further degraded
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Table 4.4: Neural-network hyper-parameters

Parameter

Value

Architecture
Optimiser
Learning Rate
L2-regularization
Epochs

Loss function
Random seed

[40, 30, 40, 20] neurons, ReLU

Adam
0.001
0.01
2000

Squared Error

42

Neural Net - Arrival Time Prediction Results
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Figure 4.8: Neural-network predictions of leg duration

performance (RMSE = 7.36days; R?> = —2.166), unlike the LR, RF, and XGBoost models. This NN
therefore offers no practical advantage for this regression task.

Table 4.5: Performance of regression models

Model Standard With extra features
RMSE (days) R? RMSE (days) R?
LR 3.25 0.381 3.24 0.383
RF 6.28 -1.308 5.39 -0.699
XGBoost 5.61 -0.836 5.45 -0.736
NN 4.20 -0.030 7.36 -2.166

4.3. Data quality assessment

While the previous sections focused on accurate regression, the ultimate goal of this research is data-
quality assessment. Definition 1 is used in this section to classify each transport leg as either low-quality
or high-quality, with the help of the regression models created in the previous sections.

To visualize the process of classification, Figure 4.9 is taken as an example.

The ATA is on 29 June 2025, at 21:00 UTC. The ETA provided in the eventlog always remained earlier
than 28 June 2025, 11:00 UTC until the final update, when the ETA was almost spot on. Therefore, all
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Figure 4.9: Predicted ATAs and ETAs of container MEDU7335755 over time

records, except for the last should be flagged as low-quality, according to Definition 1.

Turning to the predicted ATA: From day -30 to day -16 the prediction was closer to the ATA than the ETA
provided in the data was. This difference is at least one day, until around day -19. Therefore, all those
records were flagged as low-quality data. However, one day later (day -17), the prediction was within
a day of the ETA provided in the data. From this point on, all records were not flagged as low-quality,
while they should have been flagged as low-quality.

To summarize, 27 records are available for this container. 26 out of these 27 are low-quality, and 1 is
high-quality. A total of 14 records were correctly flagged as low-quality. The remaining 13 records were
flagged as high-quality, although only 1 of them actually was high-quality.

4.3.1. Aggregate Classification Performance

This single-container example illustrates both correct hits and missed detections. The following sections
quantify such outcomes across the full data set, reporting True Positives (TP), True Negatives (TN),
False Positives (FP), and False Negatives (FN) for the LR-model, RF-model, XGBoost-model and NN-
model. The interpretation of TPs, FNs, FPs, and TNs are provided in Table 4.6.

Table 4.6: Outcome classes for container-quality flags

Outcome Flag vs. reality Interpretation

True Positive  Flagged low-quality, actually low-quality Hit
False Negative Flagged high-quality, actually low-quality = Missed
False Positive Flagged low-quality, actually high-quality ~ False Alarm
True Negative Flagged high-quality, actually high-quality Correct Rejection
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Linear Regression

The confusion matrices for the Linear Regression models are shown in Figure 4.10. Linear Regression
without extra features is among the best-performing models. Its TP-rate is near that of RF and NN but
these models are also raising a lot of false alarms. Linear Regression has the least FP, the highest
amount of TNs and only a few FN. Incorporating the extra features, the TP-rate only increased, FN
decreased, but the FP increased a bit while the TN decreased. Raising false alarms is not desirable,
since it suggests that something is wrong, while nothing is wrong in reality. Missing a few datapoints
(FNs) is less of a problem, since doing nothing (which is the current situation) is simply missing all data.
Thus, the confusion matrices indicate that adding frequency features degrades LR performance.

Confusion Matrix: Quality Data Prediction using Linear Regression Confusion Matrix: Quality Data Prediction using refined Linear Regression
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Figure 4.10: Confusion Matrices for Linear Regression

Random Forest

The confusion matrices for the RF models are shown in Figure 4.11 The Random Forest model clearly
has a tendency to predict ATAs that are at least a day apart from the ETA. This makes it that the model
captures a lot of accurately predicted low-quality datapoints, but it also raises even more false alarms.
Incorporating extra features did lower the amount of low-quality predictions, but since there is still such
a large amount of FPs, it seems like Linear Regression is the better choice.

Confusion Matrix: Quality Data Prediction using Random Forest Confusion Matrix: Quality Data Prediction using refined Random Forest
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Figure 4.11: Confusion Matrices for Random Forest

XGBoost

Using the regressions of the XGBoost model and then classifying the data as either low-quality or
high-quality provides confusion matrices as shown in Figure 4.12. This already shows more balance
in high-quality and low-quality, so false alarms are raised not as often as with the RF models, which
is good. Adding extra features lowers the amount of low-quality predictions, which in turn lower the
amount of false alarms even more. However, the amount of false alarms is slightly higher than it is with
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Linear Regression, and the amount of missed data points is substantially higher. Therefore, XGBoost
looks like it is performing not as good as Linear Regression is.

Confusion Matrix: Quality Data Prediction using XGBoost Confusion Matrix: Quality Data Prediction using refined XGBoost
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Figure 4.12: Confusion Matrices for XGBoost

Neural Network

The confusion matrices for the NNs (Figure 4.13) show a similar pattern as the confusion matrices for
RF; both have a tendency to often predict low-quality data. The amount of false alarms here is very
high, and adding extra features does help a bit, but not enough to match the performance of XGBoost
or LR.

Confusion Matrix: Quality Data Prediction using NN Confusion Matrix: Quality Data Prediction using refined Neural Net
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Figure 4.13: Confusion Matrices for NN

Overall Model Ranking

For implementation of this process in production, it is of utmost importance that whenever a leg is
flagged as low-quality, this is also actually the case. So in an ideal world, no false alarms are raised
(i.e. the number of FPs is 0). However, this would reward models that only predict high-quality data.
Therefore, a metric that captures good model performance should also include the number of TPs, so
that it will actually predict low-quality data. A metric that takes into account both TPs and FPs is the
Positive Prediction Value (PPV), also known as precision. The definition for PPV is PPV = %.
However, if positives are rare, the PPV will be high, and so this metric would still not be able to capture
the performance well of models that predominantly predict high-quality data. Such a model would
contain a lot of misses (FNs) which is also undesirable. However, since avoiding false alarms is of
such high importance, the model should rather make a few FNs, than make a single FP.

Therefore, to make a decision on what model performs best, a KPI is needed that rewards:

* High purity of positive predictions (i.e. few FPs)
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+ High reliability of negative predictions (i.e. few FNs, but these matter less than FPs)

A KPI that checks all these boxes is the generalized F-score. The formula for the F-score is as follows:

precision - recall

j— 2 .
Fp=(1+5) (2 - precision) + recall

(4.1)

When setting 8 to 1, Fy is the harmonic mean of precision (PPV) and recall. Precision measures
how many of the items labelled “positive” are actually positive, where recall measures how many of
the true positives are successfully caught. Recall is defined as % The Fi-score combines recall
and precision into one number by taking their harmonic mean, so you only get a high F-score if both
precision and recall are high. By setting a different value for 3, the importance of precision and recall

relative to each other can be set.

Speaking to experts at Poort8, it was decided that for every 50 FNs (misses) a single FP (false alarm)
could be accepted. So, the 'cost’ of a FP is 50, while the 'cost’ of a FN is 1. 3 can then be calculated

according to the following formula: 5 = g;li where Crp and Cry are the cost of a FP and a FN,
respectively. Substituting in the cost values of a FN and a FP, provides a g of % ~ 0.141.

The Fy.141 score for all models is provided in Table 4.7, alongside the number of TPs, FNs, FPs and
TNs. The Fj 141 score for standard Linear Regression is the best, as looking at the confusion matrices
already suggested, and now is confirmed by the Fj 141 score.

Table 4.7: Classification metrics for each model (8 = 0.141)

Model
Metric Linear Regression Random Forest XGBoost Neural Network
Standard
TP 39.7% 43.1% 29.4% 43.6%
FN 10.6% 7.2% 20.9% 6.7%
FP 18.4% 45.1% 22.4% 44.8%
TN 31.3% 4.6% 27.3% 4.9%
PPV 68.3% 48.9% 56.8% 49.3%
Fjs 68.5% 49.3% 56.8% 50.0%
With extra features
TP 40.1% 43.7% 28.7% 43.0%
FN 10.2% 6.6% 21.6% 7.2%
FP 19.1% 41.2% 20.8% 36.2%
TN 30.7% 8.5% 28.9% 13.5%
PPV 67.8% 51.5% 57.9% 54.3%
Fs 68.0% 51.9% 58.0% 54.7%

4.3.2. Carrier-only Evaluation: Detecting Early-stage ETA Errors

Terminal-sourced ETAs tend to be more reliable than carrier-generated ETAs, because terminals can
schedule berth windows with high accuracy. By contrast, carriers aggregate information from heteroge-
neous and sometimes conflicting sources; several carriers even display explicit disclaimers regarding
data accuracy, as shown in Figure 4.14.

Figure 4.9 illustrates that the data in the beginning of a container’s journey is highly susceptible to
change, while in the later stages of a container its journey the predictions do not really matter anymore,
as the difference between ETA and prediction is negligible.

This is further supported by aggregating over all containers and looking at the mean error between the
ETA and the ATA, as a function of the lead time to arrivals, plotted in Figure 4.15. Substantial variation is
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Insert B/L, Booking or container number

Please enter up to 10 reference numbers separated by a comma, space or enter. 0
Trace your shipments by container, B/L or Booking
number(s)

Dear Customer, the information presented on ZIM’s tracking tool is based on various data sources, including
third party data sources. Therefor there may be some discrepancies, inaccuracies or gaps between ZIM’s
system and real-time events, to which ZIM shall not be liable for.

Figure 4.14: Accuracy disclaimer displayed on the ZIM customer portal.

evident in earlier periods, while the average discrepancy narrows to zero after approximately 20 days.

Mean ETA Error

Mean error (days)

T
50 40 30 20 10 0
Days before ATA (binned)

Figure 4.15: Mean ETA-ATA error as a function of days before arrival.

Consequently, in all subsequent analyses only expected arrival events that are published at least 7 days
before the ATA and originate from carrier sources are subjected to the high/low-quality classification
scheme. Only 1192 observations meet these criteria, so the class balance differs markedly from the
full-set analysis.

Linear Regression

Figure 4.16 displays the confusion matrices after restricting the test set to carrier-published ETAs that
precede the actual arrival by at least a week. LR now captures even more of the low-quality records, it
misses barely anything. Adding the frequency features offers again no significant benefit.

Random Forest

With no extra features the forest flags almost 60% of genuinely bad legs (up from 43% in the full data)
while its false-alarm rate drops from roughly 45% to 32%. Adding the two frequency variables increases
the performance, although the RF variants still have a bias toward predicting low-quality, so the absolute
number of false alarms remains much higher than for the linear baseline.
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Confusion Matrix: Quality Data Prediction using Linear Regression Confusion Matrix: Quality Data Prediction using Linear Regression
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Figure 4.16: Confusion Matrices for Linear Regression filtering on carriers and one week before estimated arrival

Confusion Matrix: Quality Data Prediction using Random Forest Confusion Matrix: Quality Data Prediction using refined Random Forest
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Figure 4.17: Confusion Matrices for Random Forest filtering on carriers and one week before estimated arrival

XGBoost

Over the carrier-only sample XGBoost behaves much as it did on the full test set: its calls are noticeably
more balanced than the RF. In the standard model (Figure 4.18a) the number of false alarms is the
lowest of all models, however, the number of missed classifications is the highest of all models. In
regards to the LR models, the number of hits is also much lower, so this model performs worse than
LR. Adding the frequency features (Figure 4.18b) decreases the performance of the model. The number
of false alarms increase, and it almost becomes a 50/50 chance whether a record is correctly classified
as high- or low-quality.

Neural Network

Just like in the classification of the full set, NNs have a bias to predicting low quality, as can be seen in
Figure 4.19. 32.7% false alarms are raised as a consequence of this. Adding extra features lowers the
amount of low-quality predictions, reducing the amount of false alarms, but also decreasing the amount
of hits.
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Confusion Matrix: Quality Data Prediction using XGBoost Confusion Matrix: Quality Data Prediction using refined XGBoost
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Figure 4.18: Confusion Matrices for XGBoost filtering on carriers and one week before estimated arrival

Confusion Matrix: Quality Data Prediction using NN Confusion Matrix: Quality Data Prediction using refined Neural Net
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Figure 4.19: Confusion Matrices for Neural Net filtering on carriers and one week before estimated arrival

Model Ranking for Early-Stage Carrier ETAs
Just like in Section 4.3.1, Table 4.8 summarizes the key metrics.

For carrier data the best performer is again the standard LR model, although the variant with frequency
features trails behind by only a tenth of a percentage point. Itis interesting to note that the PPV is almost
identical as the Fj. 141 score, illustrating that missed detections carry far less weight than false alarms
under the chosen cost ratio. Using PPV as the KPI ties standard XGBoost with Linear Regression,
however, LR detects many more low-quality legs (higher TP) and misses fewer low-quality legs (lower
FN), so the Fy 141 metric justifiably gives LR the edge.
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Table 4.8: Classification metrics for carriers (8 = 0.141)

Model
Metric Linear Regression Random Forest XGBoost Neural Network
Standard
TP 56.3% 58.3% 37.7% 57.7%
FN 4.6% 2.6% 23.2% 3.2%
FP 22.2% 32.4% 14.8% 32.7%
TN 16.9% 6.7% 24.2% 6.4%
PPV 71.7% 64.3% 71.7% 63.8%
Fjs 72.0% 64.7% 71.6% 64.2%
With extra features
TP 56.3% 58.9% 38.6% 52.9%
FN 4.6% 2.0% 22.3% 8.0%
FP 22.4% 28.4% 19.7% 27.8%
TN 16.7% 10.7% 19.4% 11.3%
PPV 71.5% 67.5% 66.2% 65.6%

Fg 71.9% 67.9% 66.2% 65.9%




Discussion

This study represents an initial investigation into the prediction of Actual Time of Arrival (ATA) using
event data formatted according to the DCSA standard. While voyage-based prediction employing AIS
data has been extensively explored and is relatively mature, the present approach, relying solely on
eventlogs, constitutes a novel contribution. Future research could enhance predictive performance by
incorporating additional features that capture temporal dynamics, such as Suez Canal closures or port
congestion. Moreover, a hybrid methodology that synthesises event data with AlS-derived features
(e.g., geospatial trajectories) would merit rigorous evaluation.

Also, the weather plays a big role in the arrival of ships, so taking into account weather conditions is
key in predicting accurate ATAs. This would also be something to look into in further research.

In this thesis, data quality assessments were conducted through binary judgements regarding whether
observations met a minimum standard. An alternative strategy involves training a supervised classifier,
such as a support vector machine, to distinguish between high- and low-quality records. Investigating
this approach may yield more nuanced insights into the characteristics of inadequate data and improve
overall model robustness

Certain OD-pairs appear infrequently in the training data. This scarcity likely limits the model’s predictive
capability for underrepresented routes. Therefore, restricting analysis to well-trained, high-frequency
OD pairs or developing techniques to augment sparse routes (e.g., transfer learning) represents an
important avenue for advancement.

Not only scarce data can be a cause of lackluster performance, it is plausible that certain corridors
or particular operators exhibit more predictable patterns. Disaggregating results by route or carrier in
follow-up research could uncover such heterogeneity and inform targeted model improvements.

Comparable temporal-event-prediction problems may exist in other industries. Although a compre-
hensive review is beyond this thesis’s scope, analogous work in healthcare, predicting timestamps of
clinical events, could offer transferable methodologies or evaluation frameworks.

The training dataset spans only a three-month period, during which the Suez Canal remained blocked
until near the study’s conclusion (Jumelet, 2025). This temporal dependency compromises the statisti-
cal independence of training and testing samples. To mitigate this bias, future work should extend data
collection across longer intervals or introduce features that explicitly models such disruptions. Another
way could be to introduce meta-features that capture disruptions; for example average durations in the
last week.

Once such drift-sensitive meta-features are in place, a natural extension is meta-learning. This trains
the model itself to adapt rapidly when those features signal a distributional shift. Gradient-based frame-
works such as Model-Agnostic Meta-Learning pre-train a shared set of weights on many “tasks” (e.g.,
weekly corridor slices) so that only one or two gradient steps on fresh data are sufficient to regain
accuracy.
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Duration predictions were evaluated by comparing forecasted voyage durations to actual ATAs; how-
ever, this approach conflates departure time updates with arrival forecasts. In practice, if a vessel’s
departure is delayed (e.g., by one week), a correct duration estimate may nonetheless yield arrival pre-
diction of a week earlier. Future evaluations should decouple duration accuracy from departure time
variability by comparing predicted durations directly to observed durations, irrespective of departure
time revisions.

This methodology does not address all dimensions of data quality. For instance, it presumes location
reports are accurate. Engaging the client to define and prioritise quality dimensions would clarify the
requirements for truly “fit-for-use” datasets. In fact, the concept of fit-for-use recurs throughout this
thesis. Ultimately, however, the determination of fitness lies with the client; this thesis adopts a one-day
discrepancy threshold as the criterion. Incorporating direct client feedback into the fitness evaluation
process would provide a more defensible, application-driven standard.

The present analysis focuses exclusively on inter-terminal eventlogs. Investigating intra-terminal events,
such as gate processing or yard handling, could reveal additional predictors of ATA and merits further
study.

Neural networks typically excel with large volumes of data. Although the current dataset is substantial,
its sufficiency for deep learning remains uncertain. As the time horizon of data collection expands, the
potential of neural architectures should be evaluated alongside traditional models.

Beyond the statistical and machine learning techniques applied here, process-mining methodologies
could uncover anomalous event sequences within container logs (e.g., detecting occurrences where
a Gate In event immediately follows a Load event). Applying conformance checking might enhance
anomaly detection and data validation efforts.

Large Language Models (LLMs) may possess the capacity to identify intricate patterns indicative of log-
ical routing sequences. This thesis does not explore such approaches, yet examining their applicability
represents a promising direction for future work.

Finally, this research trained each predictive model only once with a set random seed, to ensure repro-
ducibility. In a production context, however, repeated training runs with varying random seeds would
yield distributional performance measures and guard against overestimating the efficacy of a particular
model instance (e.g., linear regression marginally outperforming XGBoost). Aggregating results over
multiple runs would deliver more reliable model comparisons.



Conclusion

This research addressed the systematic assessment of data quality in event-based container tracking,
particularly within container trackers that are DCSA-compliant. Given the vital role of accurate and
timely container tracking in global logistics, ensuring robust DQ is essential. The primary contribution
of this study lies in developing a novel approach to assessing data quality based on predicting deviations
in ETAs.

The thesis first identified the limitations of traditional dimensional metrics and proposed a "fit-for-use”
criterion defined through consultation with industry experts: data is considered high-quality if ETA de-
viations do not exceed one calendar day.

Next it showed the process of creating an eventlog from single events, and how this eventlog can be
processed to create a single data record for every transport leg.

Machine learning models (Linear Regression, Random Forest, XGBoost, and Neural Networks) were
consequently applied to predict ATAs for each transport leg. When this predicted ATA was at least one
day apart from the ETA provided for the leg, this record was flagged as low-quality. This enabled a
systematic identification of any transport leg.

Among the evaluated models, Linear Regression emerged as the most effective, demonstrating su-
perior precision and reliability in classifying data quality. Notably, more complex models like Random
Forest and Neural Networks underperformed relative to the simpler linear model, emphasizing the im-
portance of meticulous preprocessing and domain-specific feature engineering over algorithmic com-
plexity. XGBoost came quite close to the LR, and it had the least amount of false positives, but this
came at the cost of having more false negatives, and also less true positives.

When focussing purely on ETAs provided early by carriers, the perfomance of the models increased
a bit, which confirms the hypothesis that ETAs provided early in the journey and ETAs provided by
carriers are less reliable than ETAs provided by terminals.

Nevertheless, the study faced constraints such as a limited temporal dataset, reliance solely on event-
log data without real-time AIS or environmental variables, and the challenge of sparse data for spe-
cific origin-destination pairs. Future work should address these limitations by integrating broader data
sources, exploring hybrid methods combining event data with AIS trajectories, and extending the time
frame to enhance model generalizability.

In conclusion, this thesis demonstrates the feasibility of systematically improving data quality in con-
tainer tracking through predictive analytics, offering a concrete methodological advancement for indus-
try practitioners and paving the way for further research in this promising area.
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Abstract. Accurate tracking of container shipments is vital for effi-
cient global logistics operations, yet current event-based tracking systems
face significant data quality (DQ) challenges. This research introduces a
novel, systematic approach for assessing data quality within event-based
container tracking systems compliant with the Digital Container Ship-
ping Association (DCSA) standard. By employing supervised machine
learning models (Linear Regression, Random Forest, XGBoost, and Neu-
ral Networks), the study predicts durations of container journeys and if
the duration deviates at least one calender day from the duration pro-
vided, it classifies it as low-quality data. Results demonstrate that a rel-
atively simple Linear Regression model significantly outperforms more
complex models, highlighting the importance of domain-specific feature
engineering. Furthermore, this research emphasizes that durations pro-
vided by carriers at early stages frequently exhibit inaccuracies. Conse-
quently, the Linear Regression model offers substantial practical utility
by reliably classifying early-stage durations as trustworthy or untrust-
worthy. Future research should integrate additional data sources, such
as real-time AIS and environmental factors, to further enhance predic-
tive robustness.

Keywords: Container tracking - DCSA - Machine-learning - data qual-
ity - ETA - Regression Analysis

1 Introduction

It has been estimated that about 90% of the world’s trade is transported in
cargo containers [5]. Accurate container tracking significantly influences logis-
tics efficiency, scheduling reliability, and overall operational performance. As
global trade volumes grow and supply chains become increasingly complex, the
data infrastructures underpinning container tracking systems face heightened
challenges. Even minor inaccuracies in container location, transit milestones, or
estimated arrival times (ETAs) can escalate into considerable operational dis-
ruptions and financial consequences.

These challenges are amplified by the diverse range of data sources involved.
Container tracking data originate from shipping lines, port authorities, terminal
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operators, and third-party logistics providers, each maintaining distinct data col-
lection methods, standards, and reliability levels. This variability introduces in-
consistencies, incomplete information, and inaccuracies, diminishing trust among
stakeholders and complicating operational decisions.

The Digital Container Shipping Association (DCSA) developed the Track &
Trace (T&T) standard to address these issues, providing a unified format for con-
tainer transport event data. Although this standardization significantly enhances
interoperability, it does not inherently guarantee the accuracy or completeness
of the data exchanged.

This research addresses the urgent need for systematic data quality (DQ) as-
sessment methods tailored specifically to DCSA-compliant event-based container
tracking systems. By employing machine learning (ML) methods to predict de-
viations in ETAs, this study aims to proactively identify inaccuracies, ensuring
timely, accurate, and trustworthy data for stakeholders.

2 Related literature

Data quality (DQ) assessment has been extensively explored, primarily through
dimensional metrics such as accuracy, completeness, consistency, and timeliness.
[12] provided foundational definitions for these metrics, with accuracy reflect-
ing closeness to true values, completeness indicating data availability, consis-
tency representing uniformity across databases, and timeliness measuring data
currency. [1] refined these metrics into six core attributes to enhance practical
applicability.

[8] emphasized the importance of dimensional metrics within supply chain
analytics but highlighted their limitations when addressing complex, real-world
DQ challenges. Similarly, [2] conducted a systematic review of methodologies
for assessing and improving data quality across diverse sectors, categorizing pro-
cesses and identifying associated costs. Their framework facilitates structured
approaches for targeted quality enhancement.

While [4] recognized challenges in Big Data environments, proposing a com-
prehensive and contextualized DQ assessment framework, significant variability
persists in how scholars categorize and prioritize these dimensions. [3] further
underscored the variability in existing approaches by providing a structured im-
plementation roadmap primarily tailored for statistical quality reporting, thus
illustrating the lack of consensus.

In maritime logistics specifically, several studies addressed DQ through in-
direct or targeted approaches. [5] explored anomaly detection methods for mar-
itime container itineraries to enhance customs and supply chain security, a useful
but limited approach concerning broader event-based DQ. [6] presented visual
assessment techniques for data readiness evaluations, while [7] utilized machine
learning to identify specific data faults in other contexts, demonstrating potential
applicability in container logistics.

[10] reviewed AIS-based studies on vessel arrival predictions, showcasing the
successful use of advanced machine learning models such as Random Forest, XG-
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Boost, and neural networks. [9] and [11] similarly utilized AIS data combined
with environmental variables to optimize vessel arrival predictions at ports, un-
derscoring the effectiveness of ML techniques.

Despite these advancements, there remains a notable gap in applying such
comprehensive methods directly to DCSA-compliant event-based container track-
ing systems. Existing literature reveals no consensus or widely-adopted frame-
work specifically for holistic DQ assessments within container tracking contexts.
This lack of consensus leaves significant opportunities for developing and validat-
ing tailored methodologies that address the practical complexities of event-based
container tracking data, thereby motivating this research.

3 Methodology

The methodology employed in this research consists of three primary stages. Ini-
tially, container tracking event data complying with the DCSA T&T standard
were systematically collected and preprocessed. Preprocessing included consol-
idating event logs from multiple sources, removing duplicates, and segmenting
container journeys into individual transport legs.

Next, a set of supervised machine learning models, namely Linear Regres-
sion (LR), Random Forest (RF), Extreme Gradient Boosting (XGBoost), and
Neural Networks (NN), were trained to predict actual transport-leg durations.
Training utilized a time-based train-test split to simulate real-world operational
forecasting scenarios and avoid information leakage.

Lastly, predictions were assessed by comparing predicted arrival times to
recorded ETAs. Data points were classified as low-quality if the predicted ar-
rival deviated from the recorded ETA by more than one calendar day. Model
performance was then evaluated using precision-oriented metrics designed to
balance the costs of false alarms against missed detections, ensuring practical
applicability within operational settings.

4 Results

The results demonstrate that the supervised machine learning models varied
significantly in their predictive accuracy and their effectiveness in classifying data
quality. The Linear Regression (LR) model, despite its computational simplicity,
exhibited robust predictive performance with an RM SE of 3.25 days and an R?
of 0.381. In contrast, more complex models such as Random Forest (RF) and
Neural Networks (NN) underperformed considerably. Specifically, the Random
Forest (shown in Figure2) produced a notably worse RMSE of 6.28 days and
a negative R? value, indicating the model’s inability to adequately fit the event
data.

Similarly, the Neural Network model yielded an RM SFE of 4.20 days, under-
performing compared to Linear Regression, with residuals highlighting substan-
tial variability in predictions, as shown in Figure 3.
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Linear Regression - Arrival Time Prediction Results
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Fig. 2. Predicting durations with a Random Forest

Extreme Gradient Boosting (XGBoost) also demonstrated lackluster results
with an RMSE of 5.61 days, still notably behind the simpler LR approach. The
results are shown in Figure 4.

The primary goal of this research was not merely accurate duration predic-
tion but effective classification of event data quality. Here, Linear Regression also
emerged as the most effective model, consistently achieving a precision-oriented
Fg-score of approximately 68.5% at a S-value of 0.141. This f is specifically
engineered so that a false positive has the same impact as having 50 false nega-
tives. This score reflects an appropriate balance, heavily penalizing false alarms
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Neural Net - Arrival Time Prediction Results
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Fig. 4. Predicting durations with XGBoost

while tolerating occasional missed detections, aligned with operational priori-
ties defined by industry stakeholders. XGBoost achieved a comparable F-score
of 56.8%, whereas Random Forest and Neural Networks lagged further behind,
primarily due to their excessive generation of false alarms.

Since ETAs provided by terminals are usually more accurate than ETAs
provided by carriers, and ETAs get more and more accurate as a container ap-
proaches its destination, the value of this research is especially relevant for clas-
sifying ETAs that are published at most a week before ATA and only for ETAs
provided by carriers. The performance of the models improved further when
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analyses were restricted exclusively to early-stage ETAs provided by carriers, re-
inforcing the notion that carrier-generated ETAs in early stages of transport are
generally less reliable. Under this scenario, Linear Regression exhibited increased
classification accuracy with fewer false alarms and missed detections, yielding an
F-score of 72.0%, further validating its suitability in practical, carrier-oriented
operational contexts.

A summary of the classification performance of all 4 models is provided in
Table 1.

Table 1. Fg.141 score for all models

Model‘ LR ‘ RF ‘XGBoost‘ NN
Overall model performance|68.5%49.3%| 56.8% [50.0%
Early carrier classification performance|72.0%(64.7%| 71.6% |64.2%

5 Discussion

Several limitations warrant consideration. The dataset’s relatively short tempo-
ral scope, coupled with the inherent limitations of relying exclusively on event-
based data without incorporating real-time AIS or environmental data, may
restrict the models’ broader applicability. Future research could therefore ben-
efit from integrating additional external data sources, such as AIS trajectories
and real-time environmental conditions (e.g., weather disruptions or port con-
gestion), potentially enhancing predictive robustness and adaptability.

Additionally, given the observed variability in carrier-provided ETAs, further
research could explore meta-learning techniques to dynamically adapt to opera-
tional shifts or disruptions, thereby maintaining high predictive accuracy despite
evolving operational conditions.

6 Conclusion

This research provides a systematic approach to assessing data quality within
DCSA-compliant event-based container tracking systems. Findings demonstrate
that straightforward predictive models, particularly Linear Regression, effec-
tively identify inaccuracies in ETAs, offering robust performance and operational
practicality. The study confirms that rigorous preprocessing and domain-specific
feature engineering significantly influence model outcomes.

The practical value of this research is particularly relevant for early-stage
ETAs from carriers, which frequently exhibit significant deviations. Future re-
search should address existing limitations by incorporating broader datasets and
external variables to enhance the generalizability and resilience of predictive
models, ultimately contributing to more reliable global container logistics oper-
ations.
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DCSA events

Tables B.1, B.2, and B.3 provides an overview of all the events used in the DCSA standard.
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Table B.1: Codes used for shipment events in the DCSA standard. Retrieved from [24]

Event Code | Event Name Event Description

RECE Received Indicates that a document is received by the carrier or
shipper

DRFT Drafted Indicates that a document is in draft mode being updated
by either the shipper or the carrier.

PENA Pending Approval Indicates that a document has been submitted by the car-
rier and is now awaiting approval by the shipper.

PENU Pending Update Indicates that the carrier requested an update from the
shipper which is not received yet.

PENC Pending Confirmation | Indicates that a document has been submitted by the
shipper and is now awaiting approval by the carrier.

REJE Rejected Indicates that a document has been rejected by the car-
rier.

APPR Approved Indicates that a document has been approved by the
counterpart.

ISSU Issued Indicates that a document has been issued by the carrier.

SURR Surrendered Indicates that a document has been surrendered by the
customer to the carrier.

SUBM Submitted Indicates that a document has been submitted by the cus-
tomer to the carrier.

VOID Void Cancellation of an original document.

CONF Confirmed Indicates that the document is confirmed.

REQS Requested A status indicator that can be used with a number of iden-
tifiers to denote that a certain activity, service or doc-
ument has been requested by the carrier, customer or
authorities. This status remains constant until the re-
quested activity is “Completed”.

CMPL Completed A status indicator that can be used with a number of ac-
tivity identifiers to denote that a certain activity, service
or document has been completed.

HOLD On Hold A status indicator that can be used with a number of activ-
ity identifiers to denote that a container or shipment has
been placed on hold i.e. can’t progress in the process.

RELS Released A status indicator that can be used with a number of activ-
ity identifiers to denote that a container or shipment has
been released i.e. allowed to move from depot or termi-
nal by authorities or service provider.

CANC Cancelled A status indicator to be used when the booking is can-

celled by the Shipper




50

Table B.2: Codes used for equipment events in the DCSA standard. Retrieved from [25]

Event Code | Event Name Event Description

LOAD Load The action of lifting cargo or a container on board of the
mode of transportation. Load is complete once the cargo
or container has been lifted on board the mode of trans-
port and secured.

DISC Discharge The action of lifting cargo or containers off a mode of
transport. Discharge is the opposite of load.

GTIN Gate in The action when a container is introduced into a con-
trolled area like a port - or inland terminal. Gate in has
been completed once the operator of the area is legally
in possession of the container.

GTOT Gate out The action when a container is removed from a con-
trolled area like a port — or inland terminal. Gate-out has
been completed once the possession of the container
has been transferred from the operator of the terminal
to the entity who is picking up the container.

STUF Stuffing The process of loading the cargo in a container or infonto
another piece of equipment.

STRP Stripping The action of unloading cargo from cantainers or equip-
ment.

PICK Pick-up The action of collecting the container at customer loca-
tion.

DROP Drop-off The action of delivering the container at customer loca-
tion.

INSP Inspected Identifies that the seal on equipment has been inspected.

RSEA Resealed Identifies that the equipment has been resealed after in-
spection.

RMVD Removed Identifies that a Seal has been removed from the equip-
ment for inspection.

AVPU Available for Pick-up Identifies that shipment/ Container is ready to be picked
up / collection at a facility.

AVDO Available for Drop-off | Identifies that shipment/ container is ready to be dropped
off / delivered at a facility

CUsSSs Customs Selected for | Identifies that Customs has selected the equipment for

Scan scanning
Cusl Customs Selected for | Identifies that that Customs has selected the equipment
Inspection for inspection

CUSR Customs Released Identifies that Customs has released the equipment for
either export from or import into the country.

WAYP Way Point Crossed A waypoint is an intermediate point or place during transit

of shipment, waypoint crossed indicates that the equip-
ment has crossed the particular waypoint on its transit.

Table B.3: Codes used for transport events in the DCSA standard. Retrieved from [26]

Event Code | Event Name Event Description
ARRI Arrival
DEPA Departure




UN/LO Codes mapping

In Table C.1 the mapping of incorrect UNLO codes to correct UNLO codes can be found.

Table C.1: Mapping of incorrect UN/LO to correct UN/LO codes

Incorrect UN/LO | Correct UN/LO
NLVNL NLVEN
NLALP NLAPN
NLTIL NLTLB
NLNRN NLNIJ
NLNRJ NLNIJ
NLVL NLVEN
NLTI NLTLB
NLNRD NLNIJ
NLNRB NLNIJ
NLNR NLNIJ
NLVLX NLVEN
TNTNG MAPTM
MAMED MAPTM
KRBUS KRBNP
BGCGP BDCGP
PKBIN PKBQM
MAMSA MAPTM
ECPOS ECPSJ
MAMDI MAPTM
PKMBQ PKBQM
ILASD ILASH
HRRIJ HRRJK
EGDMT EGDAM
PKQAS PKBQM
MAMTD MAPTM
ILHAI ILHFA
MAMES MAPTM
MAMON MAPTM
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Feature Weights

Table D.1 reports the absolute coefficients of the linear-regression model, rounded to two decimal
places. After one-hot encoding, the feature matrix contains 491 columns: 459 OD-pair dummies, 12
carrier dummies, and 16 ETA-publisher dummies, in addition to four numeric variables. Because listing
all dummy coefficients is impractical, the table shows the mean absolute value for each categorical
group; absolute values are used to avoid the misleading cancellation of positive and negative effects.
A large mean absolute coefficient indicates that the corresponding group exerts substantial leverage
on the prediction surface, whereas values near zero have negligible influence.

Table D.1: Weight of features

Feature Weight
Published ETA 874,788.64
OD pair (mean of 459 dummies) 216,665.62
ETA publisher (mean of 16 dummies) 150,490.55
Carrier (mean of 12 dummies) 140,658.42
Time before ETA 83,714.44
total days tracked 17,041.59
Departure timestamp 3,423.22
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