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Introduction

In Europe, alongside its extensive flight network, KLM operates a trucking network that plays a crucial role in
transporting a substantial portion of its cargo. Over the years, this network has grown organically, meaning
that adjustments have been made without relying on data-driven insights or forecasts of customer demand.
As a result, a number of complications and inefficiencies have arisen in the trucking operations that need to
be addressed.

Hub constraints are not always satisfied due to limited handling capacity, leading to waiting times at the hub
airport. Additionally, trucks with low load factors are operated in the network, leading to less optimal util-
isation of truck capacities. Moreover, connections between inbound trucks and outbound flights are tight,
resulting in missed connections and delays in shipment deliveries. On-time delivery is crucial for customers,
as it directly impacts customer satisfaction and future bookings.

This thesis report is the result of a collaboration between Delft University of Technology and KLM Cargo and
aims to describe the process of designing an integrated vehicle routing and dock-door scheduling model to
improve the current operations of KLM Cargo’s trucking network. The research presents both an Mixed In-
teger Linear Programming formulation and an Adaptive Large Neighbourhood Search framework that incor-
porate the real-world operational conditions of the KLM Cargo trucking network. To the best of the Masters
student’s knowledge, this specific integration of vehicle routing and dock-door scheduling has not been pre-
viously addressed in the literature.

The structure of this thesis report is as follows: Part I contains the relevant Literature Study that supports
the research, along with the Research Proposal and Project Plan. Finally, in Part II the Scientific Paper is
presented, which includes the models’ methodologies, results and conclusions of the thesis project.
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1
Introduction

The trucking network of KLM Cargo has grown organically and decisions regarding its development have neither been
data-driven nor based on forecasted customer demand. Several complications have emerged within the routing and
scheduling processes, which should ideally be improved. Hub constraints are not always satisfied due to limited
handling capacity at the dock-doors, and trucks with low load factors are frequently operated, using only a few of the
available four cargo positions in a truck. Additionally, tight connections between inbound trucks and outbound flights
lead to missed connections and delays in on-time deliveries, which are critical for customer satisfaction and future
bookings. Given the dynamic nature of the air cargo industry, KLM Cargo is continuously seeking ways to enhance its
operational performance. In collaboration with TU Delft, KLM Cargo has initiated a thesis project aimed at optimizing
and scheduling its trucking network, which is responsible for transporting cargo that connects with outbound flights
for final delivery.

The objective of this report is to describe the first phase of the thesis project: literature review and research defini-
tion. The literature review aims to provide insights into the research conducted on vehicle routing problems, parallel
machine scheduling problems, combined vehicle routing and scheduling problems, and both exact and approximate
optimisation methods. Additionally, the research definition formulates the research proposal, describing the problem
explanation, research objective, and research questions.

The report is structured in two parts. First, Chapter 2 presents the content of the literature study. The second part
of the report, Chapter 3, presents the research proposal and project plan. This chapter introduces the problem and
describes the relevance of the project. Furthermore, the research question is presented as well as the methodology
and project planning of the thesis project.
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2
Literature Review

This chapter presents the literature review which aims to provide insights into the research conducted on vehicle
routing problems, parallel machine scheduling problems, combined vehicle routing and scheduling problems, and
both exact and approximate optimisation methods. Sections 2.1 and 2.2 will cover vehicle routing problems and
parallel machine scheduling problems. After that, Section 2.3 will describe the research conducted on combined
routing and scheduling problems. Finally, Section 2.4 will delve into the field of exact and approximate optimisation
algorithms.

2.1. Vehicle Routing Problem
In 1959, the Vehicle Routing Problem (VRP) was introduced for the first time by Dantzig and Ramser (1959), described
as the truck dispatching problem. Dantzig and Ramser opted to design an optimum routing for a homogeneous fleet
of gasoline delivery trucks that start and end their trip at a depot. The trucks were used to transport gasoline between
a bulk terminal and multiple service stations. The goal was to design a route for each truck to meet the customers’
demands while minimising the total distance covered. To solve the problem, they designed a linear programming
formulation to find a near-optimal solution (Dantzig & Ramser, 1959). A more recent description of the basic vehicle
routing problem is described by Toth and Vigo:

"Determine a set of vehicle routes to perform all (or some) transportation requests with a given vehicle fleet at minimum
cost; in particular, decide which vehicle handles which requests in which sequence so that all vehicle routes can be fea-
sibly executed." (Toth & Vigo, 2014)

The vehicle routing problem is a generalisation of the Traveling Salesman Problem (TSP). The assignment related to
the TSP is, given a set of nodes, to design a route for a vehicle or salesman that has to visit each node in the network
once and only once. The topic of vehicle routing problems is one of the most studied topics within the domain of
combinatorial optimisation. Despite its long history of published papers, the field of VRPs remains of great interest to
both scientists and practitioners. Advances in technology and knowledge have enabled researchers to bridge the gap
between theory and real-world applications, exploring more realistic scenarios, efficient solution methods, and com-
plex VRPs (Mor & Speranza, 2022). Since the publishing of the paper of Dantzig and Ramser, multiple developments
and derivatives on the vehicle routing problem have arisen. This includes research on exact algorithms, heuristics
and meta-heuristics. Several papers have been published that provide surveys and taxonomies of the vehicle routing
problem and its derivatives (Caceres-Cruz et al., 2014; Han & Wang, 2018; Khayya et al., 2024; Koç et al., 2016; Kumar
& Panneerselvam, 2012; Lahyani et al., 2015; Laporte, 2009; Mor & Speranza, 2022).

The VRP encompasses numerous variations, with additional constraints required to address complexities beyond its
basic form, depending on the specific application. Next, various derivatives of the VRP will be introduced along with
a brief explanation of each variant.

Capacitated VRP
The Capacitated Vehicle Routing Problem (CVRP) stands out as the classical variation of the VRP, widely regarded as
one of the most extensively researched in the field (Bombelli et al., 2024). In the CVRP, a fleet of vehicles is tasked
with deliveries, where all vehicles have a predefined capacity. This capacity can be defined by a number of items, the
total weight of shipments, or the dimensions of the packages loaded in the vehicle. Additionally, the CVRP assumes a
homogeneous fleet, where all vehicles share identical characteristics, including capacity. (Mor & Speranza, 2022)
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2.1. Vehicle Routing Problem 3

The mathematical model of the CVRP, presented by Bombelli et al. (2024), is as follows:

CVRP Mathematical Model (Bombelli et al., 2024)

Sets and indices
N Set of nodes i , j ∈ N , |N | = n + 2, 0 is the start and n + 1 is the end node

(depot)
C Set of customer nodes i , j ∈C , excluding the depot nodes 0 and n+1,C ⊂N

V Set of vehicles k ∈V

Parameters
Ci j Cost (or distance or time) from node i ∈N to node j ∈N

Di Demand of node i
Qk Capacity of vehicle k

Decision Variables
xi j k ∈ {0,1} Unitary if arc (i , j ) is traversed by vehicle k, 0 otherwise
ui k Order of node i ∈N \{n +1} in the tour of vehicle k

min
∑

i∈N

∑
j∈N

∑
k∈V

Ci j xi j k (2.1)

subject to:

∑
k∈V

∑
j∈N

xi j k = 1 ∀i ∈C (2.2)∑
i∈C

Di
∑

j∈N

xi j k ≤Qk ∀k ∈V (2.3)∑
i∈N

x0i k = 1 ∀k ∈V (2.4)∑
i∈N

xi hk −
∑

j∈N

xh j k = 0 ∀h ∈C ,k ∈V (2.5)∑
i∈N

xi ,n+1,k = 1 ∀k ∈V (2.6)

u0k = 1 ∀k ∈V (2.7)

2 ≤ ui k ≤ n +1 ∀i ∈C ,k ∈V (2.8)

ui k −u j k + (n +1)xi j k ≤ n ∀i , j ∈N \{n +1}, i ̸= j ,k ∈V (2.9)

xi j k ∈ {0,1} ∀i , j ∈N ,k ∈V (2.10)

ui k ≥ 0 ∀i ∈N \{n +1},k ∈V (2.11)

The objective function of the model (2.1) minimises the sum of the costs of travelling over the arcs between the nodes
in the network. The constraints ensure that:

• each node is visited exactly once (2.2);

• the shipment per vehicle does not exceed the vehicle’s capacity (2.3);

• all vehicles start their trips at the depot (2.4);

• each customer node is visited and left by the same vehicle (2.5);

• all vehicles end their trips at the depot (2.6);

• subtours (disjoint routes) are avoided (2.7-2.9);

• the correct domain of the decision variables (2.10 and 2.11)

Note that in this model the fleet can also considered to be heterogeneous as the vehicle capacity (Qk ) can be different
per vehicle in the fleet. For the fleet to be homogeneous, the values of Qk should be the same. Furthermore, when
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using the model it is assumed that the demand of each customer fits solely in one vehicle because the model does not
allow multiple vehicles to visit the same customer. However, a variation of the CVRP, the split delivery VRP, does allow
multiple vehicles to visit the same customer. This type of VRP will be explained later on in this section.

Heterogeneous VRP
In addition to the CVRP, the Heterogeneous VRP (HVRP) considers a fixed fleet of heterogeneous vehicles, which in-
creases the complexity of the model. This means that different types of vehicles are available in the fleet to fulfill the
shipping demand. Vehicles with varying capacities and costs are considered in the model for this type of VRP. (Taillard,
1999)
Furtermore, the Fleet Size and Mix VRP (FSMVRP) considers a heterogeneous fleet of vehicles. However, instead of a
fixed number of vehicles per vehicle type, an unlimited number of vehicles is available. The number of vehicles used
in the network will be determined by the model. (Golden et al., 1984)

VRP with Time Windows
The VRP with Time Windows (VRPTW) was introduced for the first time by Solomon and Desorios, after which many
papers have been published presenting different solutions to solve this type of problem (Rabbouch et al., 2018). The
VRP variation with time windows adds an extra layer of complexity to the CVRP. The VRPTW takes into account hard
or soft time windows depending on the nature of the problem. The VRP variant with hard time windows requires
the vehicles to arrive within a specified time interval at the customers’ nodes. The model with a soft time interval
allows vehicles to violate the time interval constraint, however, a cost penalty is added to the objective function if the
time interval constraint is violated (Toth & Vigo, 2014). Furthermore, some models include multiple time windows
per customer node (VRP with multiple time windows), meaning the model provides multiple options for a vehicle to
arrive at a customer (Caceres-Cruz et al., 2014).

VRP with Pickup and Delivery
In various real-world scenarios, vehicles serve not only to deliver goods to designated customer nodes but also to
facilitate the pickup of new goods. Those goods are subsequently transported to another node along the same route or
back to the depot. This requires the capability for both loading and unloading goods at customer nodes (Caceres-Cruz
et al., 2014). VRPs with Pickup and Delivery (VRPPD) are also known in the literature under the name of Dial-A-Ride
problems (DARP). This pertains to situations involving persons or goods that are picked up and dropped off at various
locations in the network (Bombelli et al., 2024).

Split Delivery VRP
The basic VRP assumes that the demand of each customer can completely be served by one vehicle and that each
customer is only visited once. However, this is not a realistic scenario when looking at real-world applications. In
some scenarios, it will not be possible to serve the entire demand of a customer by one vehicle. This is mostly caused
by capacity-related limitations. For example, when the weight or dimensions of a shipment exceed a vehicle its capa-
bilities, an extra vehicle will be needed to transport the shipment. This extension of the VRP is covered by the Split
Delivery VRP (SDVRP)). (Dror et al., 1994; Mor & Speranza, 2022)

Multi-Depot VRP
The Multi-Depot VRP (MDVRP) deals with networks featuring multiple depots or hubs. In this scenario, vehicles are
assigned to start their routes from a particular depot within the network and conclude their journey at the same depot
(Rabbouch et al., 2018). Another variant of this problem exists in which vehicles have the option to terminate their
routes at a different depot. This type of problem is related to the Open Vehicle Routing Problem (OVRP), which will
also be discussed in this section.

Periodic VRP
The Periodic VRP (PVRP) extends traditional route planning to cover multiple days, considering varying frequencies
of customer visits. This involves optimising delivery routes over a period, deciding which customers to serve each day
and which orders to postpone. The PVRP addresses scenarios such as recurring service or restocking cycles, providing
a comprehensive approach to long-term route planning. (Khayya et al., 2024)

Green VRP
Instead of minimising the operational costs or total distance covered, the Green VRP (GVRP) aims to optimise the
routing problem in terms of minimising negative environmental effects. For example, the carbon footprint, waste or
noise pollution could be chosen to be minimised when planning the routing of the vehicles (Caceres-Cruz et al., 2014).
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VRP with Incompatible Products
Another relevant variant of the VRP, is the VRP with incompatible products. This variant entails that some of the to be
shipped goods need to be separated and can not be transported using the same vehicle or in the same compartment.
For instance, some goods require different temperature levels during transport. This means the goods need to be split
and transported using different trucks with different temperature-controlled environments (Lahyani et al., 2015; Z.
Wang et al., 2015). Z. Wang et al. (2015) describe a model that considers two types of vehicles: refrigerated and non-
refrigerated. The model also categorises products into three types based on their storage requirements: refrigerated,
non-refrigerated, and those that can be stored using either option. They developed a mathematical model to optimise
truck routing, minimising overall costs while ensuring that products are transported in the appropriate trucks.

Multiple papers explore the VRP with Multi-Compartment Vehicles (MCVRP) (Chen et al., 2019; Coelho & Laporte,
2015; Hübner & Ostermeier, 2019; L. Wang et al., 2020). This approach allows products to be separated in the same ve-
hicle without sharing the same environment. For example, when transporting animals, not all animals can be shipped
using the same vehicle or compartment (Oppen & Løkketangen, 2008; Oppen et al., 2010).

Another approach to tackling product incompatibilities discussed in the literature is the Separated VRP (SVRP). Sev-
eral studies have detailed different models within this category of VRP (Guo et al., 2021; Huang et al., 2019; Veenstra
et al., 2018). The SVRP enables the delivery of products needed by distinct customers using dedicated vehicles.

Moreover, multiple papers introduce and address VRPs with (pairwise) incompatibility between goods (Bianchessi
et al., 2021; Ceselli et al., 2009; Gendreau et al., 2016; Manerba & Mansini, 2015; Palma-Blanco et al., 2019). Products
that are incompatible with one another are not allowed to be placed in the same vehicle. To incorporate this in a
mathematical model, for example, an additional set with product incompatibilities or compatibilities can be added.
Manerba and Mansini (2015) and Gendreau et al. (2016) both introduce such sets in their mathematical models, along
with two constraints that ensure incompatible products cannot be loaded in the same vehicle.

Open VRP
Finally, an important variation, relevant to the trucking network of KLM Cargo, will be discussed. KLM Cargo does
not own a fleet of vehicles and outsources its transportation activities. When a company outsources its trucking ac-
tivities, the company does not have to manage a fleet of vehicles which involves several time consuming tasks such
as handling maintenance, insurances and taxes. The company that is outsourcing its transportation activities to a
Third Party Logistic (3PL) company acts as a customer and only needs to focus on the trip from the depot to the last
customer or from the first customer to the depot (Vincent et al., 2016). This type of routing is covered by the OVRP. The
OVRP is different in terms of the final destination of each vehicle in the network. This type of VRP permits vehicles to
terminate their trip after serving the last customer node. In contrast to the basic VRP, where vehicles are required to
return to the depot where they initiated their route, vehicles in the OVRP do not to return to their home base (Caceres-
Cruz et al., 2014). This makes the OVRP relevant for scenarios where companies that do not own a fleet of trucks.
Various extensions to the OVRP exist in the literature, most of which are combinations with the VRP types discussed
in this section. A few of those OVRP extensions will be briefly discussed in the remainder of this section.

Vincent et al. (2016) developed a mathematical model for a single-product, homogeneous OVRP with cross-docking.
The model introduces a dummy depot with zero transportation costs to all nodes to correctly simulate an open route
network. They proposed a heuristic approach to solve the model using a simulated annealing algorithm.

Aksen et al. (2007) introduced an OVRP with driver nodes (OVRP-d) and time deadlines. Instead of finishing the route
at a customer node, each route has to end at a predefined driver node, which can be the home of the driver or a vehicle
parking facility. A mathematical model is presented in the paper as well as a new Tabu Search (TS) algorithm to solve
the problem.

Another real-world scenario is the VRPTW with both open and closed routes (COVRPTW). A model for this is presented
by Brito et al. (2015), were they propose a mathematical model using fuzzy constraints. Travel times and customer de-
mands are considered to be uncertain, and therefore capacity and time window constraints are modelled using fuzzy
constraints (Brito et al., 2015). The paper presents hybrid meta-heuristic algorithm called ACO-GRASP-VNS, which
combines Ant Colony Optimisation (ACO), the Greedy Randomised Adaptive Search Procedure (GRASP), and Variable
Neighbourhood Search (VNS) to solve the problem with fuzzy constraints.

As explained before, the SDVRP allows multiple vehicles to visit the same customer node. Ruiz y Ruiz et al. (2022)
proposed an extension to the OVRP that incorporates split deliveries, known as the OVRP with split deliveries. Their
paper presented two mathematical formulations that describe the problem. Furthermore, a cutting-plane algorithm
is proposed to improve the performance of one of the formulations.
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Furthermore, Eroglu et al. (2014) analysed a real-world scenario for a production company, which they categorised as
an OVRP. They introduced a mathematical model for the problem which they classified as a multi-capacity heteroge-
neous OVRP with split delivery and multi-products. Each vehicle in the model is restricted to visiting two customer
nodes at most, meaning that the demand of each customer can be split over a maximum of two vehicles. The authors
of the paper present a genetic algorithm with local search to handle large-size problems with more than 50 customer
nodes.

In some real-world applications, instead of transporting shipments from a depot to a set of customers, scenarios in-
volve a 3PL collecting shipments from customer nodes to eventually deliver them to a central depot. Schopka and
Kopfer (2015) described this variation of the OVRP as the Reverse Open Vehicle Routing Problem (ROVRP). Addition-
ally, their problem incorporates time windows, resulting in a problem called the Reverse Open Vehicle Routing Prob-
lem with Time Windows (ROVRPTW). In this scenario, trucks start from specific positions and are routed to the depot
while visiting other customer nodes along the way, adhering to operational constraints. A mathematical model is pre-
sented in the paper as well as an adaptive large neighbourhood search algorithm to solve the problem and generate a
near-optimal solution.

Rich VRP
Since the VRP was first introduced by Dantzig and Ramser, numerous variations have been researched, addressing in-
creasingly complex scenarios. Over the years, the literature has evolved to describe a class of Rich VRPs (RVRPs), which
aim to represent the complexities of real-world routing scenarios by incorporating various constraints and specifi-
cations. For example, combining several of the above mentioned classes of VRPs. Unlike traditional VRPs, which
often focus on idealised models, RVRPs address the challenges encountered in practical situations by integrating fac-
tors such as multiple constraints, diverse objectives, and real-world conditions into the routing problem formulation.
Lahyani et al. (2015) described the taxonomy of RVRPs and presented a figure outlining the taxonomy of the RVRP. Fig-
ure 2.1 shows the figure presented in their paper. The figure illustrates the most commonly found applications in the
industry, although not all derivatives of the VRP are shown. Furthermore, as described by the authors, the taxonomy
shown is dynamic and should be updated according to developments and challenges in industry (Lahyani et al., 2015).

Figure 2.1: RVRP Taxonomy (Lahyani et al., 2015)

2.2. Parallel Machine Scheduling Problem
The Parallel Machine Scheduling Problem (PMSP) involves scheduling a set of predefined tasks across multiple ma-
chines. Objectives typically include minimising the total time required to complete all tasks or minimising the total
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delay time of all tasks. A simplified variation of the PMSP is a scheduling problem where a task should solely be
processed and finished using one machine from the set of available machines. Bombelli et al. (2024) present a math-
ematical model for this type of PMSP which minimises the total time required to complete all tasks.

PMSP Mathematical Model (Bombelli et al., 2024)

Sets and indices
N set of jobs i ∈N

S set of job pairs i , j ∈S ⊆N ×N such that i ≺ j
M set of machines m ∈M

Parameters
Pi processing time of job i ∈N

Di deadline of job i ∈N

Variables
ti ∈R0 start time of job i
ci ∈R0 completion time of job i
xi m ∈ {0,1} unitary if job m is assigned to machine m
yi j ∈ {0,1} unitary if job i precedes job j
c ∈R0 latest completion time across all jobs i ∈N

minc (2.12)

subject to

∑
m∈M

xi m = 1 ∀i ∈N (2.13)

ci ≥ ti +Pi ∀i ∈N (2.14)

c ≥ ci ∀i ∈N (2.15)

ti +Pi ≤ t j +M
(
3− yi j −xi m −x j m

) ∀i , j ∈N \{δ}∧ i < j ,m ∈M (2.16)

t j +P j ≤ ti +M yi j ∀i , j ∈N \{δ}∧ i < j (2.17)

ti +Pi ≤ t j ∀i , j ∈ δ (2.18)

ti ≤ Di −Pi ∀i ∈N (2.19)

ci ≤ Di ∀i ∈N (2.20)

xi m ∈ {0,1} ∀i ∈N ,m ∈M (2.21)

yi j ∈ {0,1} ∀i , j ∈N \{δ}∧ i < j (2.22)

c ∈R0 (2.23)

The objective function of the model (2.12) minimises total time required to complete all tasks. The constraints of the
model ensure that:

• each task is assigned to one and only one machine (2.13);

• determines the time that each task is finished (2.14);

• defines the time the last task is completed (2.15);

• if task i and j are scheduled on the same machine, task j starts after task i is finished and vice versa (2.16 - 2.17);

• tasks with a pre-defined hierarchy start in the right order and do not overlap (2.18);

• tasks are finished before their pre-defined deadlines (2.19);

• the completion time of each task is smaller than the imposed deadline for that task. (2.20)

• the correct domain of the decision variables (2.21-2.23)
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This type of problem can also be translated to a truck-to-dock assignment problem. The tasks in the problem are sim-
ilar to loading and unloading processes of trucks, and the machines are similar to the docks, which are used to load
and unload the trucks at a depot. Extensions to this type of problem are widely discussed in the literature (Li et al.,
2024). Most variations are about cross-docks. Cross-dock-door assignment problems cover the assignment of both
incoming and outgoing goods to trucks and the assignment of trucks to dock-doors at a depot, focusing on optimising
the flow of goods through the cross-docking facility.

Furthermore, in parallel machine scheduling, some tasks cannot be processed on every machine. In the literature,
this is referred to as machine eligibility. Tasks can only be processed on machines that are in the eligible subset of
machines for that task. Eligibility constraints are used to avoid tasks from being processed on machines that are not
suitable for that task. (Jiang et al., 2021)

The machine eligibility constraints can also be used for truck-to-dock assignment problems. If machine eligibility is
translated to the subject area of truck docking, this means that not all trucks can load and unload at every dock. This
depends mostly on the type of cargo that is being transported. For example, air cargo can be shipped using pallets or
Unit Load Devices (ULDs). Pallets are loaded and unloaded using forklifts, and ULDs are loaded and unloaded using
a special lift at the dock. However, only one of the two options is available at each dock. Depending on how the cargo
is transported, different docks are suitable at the hub to load and unload cargo.

Karadgi and Hiremath (2022) presented a Mixed Integer Linear Program (MILP) formulation for job scheduling on
parallel machines with both precedence and machine eligibility constraints. Precedence constraints ensure that cer-
tain tasks are processed only after other specified tasks have been completed. The model uses several precedence
constraint sets to specify which tasks must be finished before others can start, and whether those tasks should be
processed on the same machine, on different machines, or on any of the available machines. For the eligibility con-
straints, a set is created for each task that contains the machines eligible to process that task. Each task should be
assigned to one of the eligible machines in their corresponding set of eligible machines. Furthermore, to reduce the
computational time of the model, the authors introduced an genetic algorithm.

The same method of implementing the machine eligibility constraints in a MILP model is used in several other papers
(Kurt & Çetinkaya, 2024; Maecker et al., 2023). Kurt and Çetinkaya (2024) and Maecker et al. (2023) developed a local
search and genetic algorithm, respectively, to reduce computation times. Furthermore, Ik et al. (2023) also imple-
mented machine eligibility constraints in their model but introduced a binary parameter that should equal 1 if a job
can be processed on a machine and 0 otherwise.

2.3. Combined Vehicle Routing and Scheduling Problems
The previous sections have provided insights into the research conducted on vehicle routing problems and parallel
machine scheduling. This section will address the integration of both vehicle routing problems and scheduling prob-
lems, with a particular focus on dock scheduling.

If a limited number of docks is available at a depot, trucks need to be individually scheduled and assigned to a dock-
door to prevent waiting times at the depot. Lower waiting times decrease the overall transportation times from the
pickup location to the destination of the shipments, which is favourable for the customers requesting the transporta-
tion activities. This combination of routing and scheduling problems is described in several papers.

Most papers discuss this VRP variation with Cross-Docking (VRPCD). Cross-docking refers to the process where prod-
ucts from inbound vehicles are unloaded at a cross-docking terminal and directly loaded onto outbound vehicles for
delivery to customers. Instead of directly loading products onto outbound vehicles, products can also be temporarily
stored at the cross-dock to bridge the time between offloading from the inbound vehicle and loading onto the out-
bound vehicle. The VRPCD involves planning optimal routes for vehicles or assigning pre-defined routes to vehicles,
while also scheduling and assigning vehicles to the available dock-doors. This ensures efficient handling of both in-
bound and outbound logistics, timely transferring of goods through the cross-dock, minimising transportation costs,
and meeting customer demands. In most papers, the model of the VRPCD is separated into three parts: routing of
inbound vehicles, scheduling at the docks, and routing of outbound vehicles.

Dondo and Cerdá (2014) formulated a mathematical model that integrates the VRP with dock-door scheduling, while
considering a limited number of dock-doors. Dondo and Cerdá (2015) expanded this model by replacing the homo-
geneous fleet of vehicles with a heterogeneous fleet of vehicles. A sweep heuristics algorithm was used to allocate the
customer nodes to the vehicles available when solving the problem. Additionally, Rahbari et al. (2019) and Grangier
et al. (2021) proposed other models to solve the VRPCD with a fixed amount of dock-doors available. The papers of
Rahbari et al. (2019) and Grangier et al. (2021) described exact methods and a combination of exact methods and
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meta-heuristics based on large neighbourhood search, respectively, to solve the problem.

In addition to VRPCDs, several other papers have investigated the combination of vehicle routing and dock-door
scheduling. Gromicho et al. (2012) combined vehicle routing and dock-door scheduling, addressing constraints that
consider a limited amount dock-doors and strict delivery windows. They employed a decomposition scheme with
a heuristic column generation framework, generating columns for a master problem via dynamic programming and
solving an integer linear programming model. In their approach, the working period is discretised into fixed time
intervals, allowing the evaluation of loading sequences and routing decisions to be separated.

Furthermore, Liang et al. (2023) investigated the VRPTW and Loading Scheduling (VRPTW-LS). They presented a MILP
model and an Adaptive Large Neighbourhood Search (ALNS) algorithm, featuring a tailored solution representation
and an efficient feasibility check mechanism, to solve the VRPTW-LS.

Moreover, Liao (2020) introduced a new model for the integrated vehicle routing and scheduling problem and pro-
posed a hybrid optimisation method using Iterated Local Search (ILS) and greedy search. The method iteratively
solves the vehicle routing and scheduling problem, where in each iteration, the vehicle routing sub-problem is solved
first by ILS, followed by a greedy search for the vehicle scheduling sub-problem.

Note that the three above mentioned papers consider a vehicle routing problem where the trucks are loaded at the de-
pot, deliver the products to the customers, and then return to the depot. Liao (2021) instead, proposed an integrated
vehicle routing and scheduling problem where vehicles depart from the depot, pick up products at suppliers and de-
liver them at a cross-dock of which outbound vehicle’s routes, dock-doors and shipments have been pre-determined.
This is similar to the trucking process at KLM cargo, which can be compared to an inbound open vehicle routing and
scheduling problem. To solve the problem, Liao (2021) proposed a cooperative co-evolutionary decomposition-based
algorithm. The author presented four types of heuristic methods. The SAABC-HACO method was proven to perform
the best in terms of both solution quality and computational time. The method combines Artificial Bee Colony (ABC)
with Simulated Annealing (SA) for routing and ACO with local search for scheduling.

2.4. Exact Optimisation Algorithms
Numerous optimisation methods have been studied for solving combinatorial problems. In the literature, optimisa-
tion methods are categorised into two groups: exact and approximate optimisation algorithms. Exact optimisation
methods aim to find the optimal solution and bring the optimality gap to zero percent, while approximate optimi-
sation methods aim to find a near-optimal solution to the problem. Compared to exact algorithms, approximate
algorithms are able to find a solution to the problem within a relatively low time frame. As mentioned before, ap-
proximate algorithms do not aim to find an optimal solution but try to find a solution that is near-optimal. Moreover,
approximate algorithms are able to solve large-scale problems. This section will discuss the type of exact optimisation
algorithms. Next, Section 2.5, will elaborate on approximate algorithms, which includes heuristic and meta-heuristic
optimisation algorithms.

Depending on the size of the problem, complexity and computational resources, exact methods are being used to
solve optimisation problems. A variety of approaches exist such as Branch and Bound, Branch and Cut, Branch and
Price, Column Generation, Dynamical Programming, and Bender’s decomposition. Each of these methods will be
explained briefly below.

Branch and Bound uses a tree structure to find the optimal solution. The search space is divided in branches, and
pruning rules are used to eliminate branches of the search space that will not help to find a better solution to the
problem. Gurobi, a well-known commercial solver, employs the branch and bound technique, among others, when
solving optimisation problems. Branch and Cut uses a combination of Branch and Bound and cutting planes, where
cutting planes are used to strengthen the linear relaxation of the Branch and Bound tree at each node (Lysgaard et
al., 2004). A Column Generation algorithm is usually used for problems with a relatively high number of variables.
The algorithm starts with solving the Restricted Master Problem (RMP) using a subset of the problem’s variables. A
pricing problem is then solved to determine which variables should be added to the RMP to improve the solution.
This process is repeated until the result of the pricing problem does not show any variables that should be added
to improve the solution. Branch and Price combines the bound step of the Branch and Bound approach and the
pricing step of the Column Generation approach to efficiently explore the search space and add useful columns to
improve the solution. Furthermore, the dynamic programming approach divides optimisation problems into several
sub-problems. For each sub-problem, an optimal solution is found, and the solution for the full problem is then built
up recursively using the solutions to the sub-problems. Dynamic programming is mostly used for optimisation prob-
lems that consist of overlapping sub-problems. By storing the solutions to the sub-problems, each solution needs
to be determined only once, which reduces computational time. Lastly, Bender’s decomposition technique breaks
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down large-scale mixed-integer linear programming problems into a master problem, which handles the integer vari-
ables, and a sub-problem, which addresses continuous variables. Through an iterative process, the master problem is
solved to provide candidate integer solutions, which are then used in the sub-problem to find continuous solutions.
If the sub-problem is infeasible or the solution doesn’t satisfy all constraints, Bender’s cuts, additional constraints, are
generated and added to the master problem to refine it. This iterative refinement continues until an optimal solu-
tion is found that satisfies all constraints, making Benders decomposition an efficient technique for solving complex
optimisation problems.

2.5. Approximate Optimisation Algorithms
The VRP has been proven to be NP-hard, meaning that the problem cannot be solved in polynomial time (Lenstra
& Kan, 1981). Given that the basic VRP is NP-hard, all its variants inherently share this computational complexity.
Consequently, exact algorithms are primarily used for smaller-scale instances due to their computational demands,
resulting in limited presence in the literature compared to approximate algorithms. For VRPs with large scale in-
stances, approximate algorithms are commonly applied in order to obtain near-optimal solutions within a reasonable
amount of time. The available literature on VRP solution methods shows that approximate optimisation techniques
are widely used to solve the VRP, its variants and other real-world applications of the VRP (Khayya et al., 2024; Kon-
stantakopoulos et al., 2022; X. Liu et al., 2023).

Approximate algorithms are often divided into two categories: heuristic and meta-heuristic algorithms. Both heuris-
tic and meta-heuristic algorithms aim to find solutions that are close to the optimal solution of the problem. Gener-
ally, approximate algorithms are more time-efficient and can determine a solution to the problem relatively quickly
compared to exact algorithms. Heuristic algorithms are problem-specific approaches, specific for particularities of a
given problem, and may not always be applicable to a broader range of problems. On the other hand, meta-heuristic
algorithms are high-level approaches that can be applied to a wide variety of problems. It should be noted that ap-
proximate algorithms are not always able to generate feasible solutions, especially as the complexity of real-world
problems continues to increase. (Goel & Bansal, 2020)

2.5.1. Heuristics
Heuristics for the VRP are broadly divided into three categories: construction algorithms, two-phase algorithms and
improvement algorithms. Each type of heuristic contains specific algorithms. The number of algorithms is extensive
as numerous methods have been developed to address the VRP and its variants. Therefore, it is impossible to review
every type of heuristic in this literature study. The savings algorithms and sweep algorithms have been selected and
will be explained in this section. Those heuristics formed the basis of multiple algorithms that have been developed
after its introduction.

Five years after Dantzig and Ramser published their paper about the truck dispatching problem, Clarke and Wright
presented a heuristic for the VRP called the savings algorithm. This is one of the first heuristics for the VRP described
in the literature and is a construction heuristic. The algorithm first assigns a separate truck to every single node in the
network, resulting in an infeasible solution. After that, the algorithm identifies where it can merge two single routes
in order to remove one truck from the solution and reduce costs. Then it examines whether an extra single route can
be added to the merged route. This process is repeated until the maximum capacity of the vehicle has been reached.
Once the truck’s capacity is reached, the algorithm continues by attempting to merge two existing routes to further
reduce the number of trucks and overall costs. (Clarke & Wright, 1964)

The sweeping algorithm is another simple heuristic which has been developed by Gillett and Miller (1974). The algo-
rithm is known for its two phase method. During the first phase, the algorithm selects a vehicle and starts to assign
nodes with the smallest angle relative to its starting point. The process of assigning nodes is repeated until the capacity
of the truck is reached. After that, a new truck is selected, and the process of assigning nodes to the truck is repeated.
The entire process is finished after all nodes have been assigned to a truck. Lastly, the second phase is initiated and
the TSP is solved for each truck. (Gillett & Miller, 1974)

Examples of improvement heuristics are the k-opt algorithm and the λ-interchange algorithm. Improvement heuris-
tics use the an incumbent solution to the problem and try to apply local changes in the neighbourhood to improve
the solution. For further reading, Liu et al. (F. Liu et al., 2023) offer a comprehensive survey on heuristics for VRPs. The
paper discusses multiple heuristic algorithms as well as the savings method and sweeping method.

2.5.2. Meta-heuristics
Meta-heuristic optimisation is a rapidly evolving field within approximate optimisation algorithms. Meta-heuristics
are particularly attractive because the methods can be applied to a wide range optimisation problems, regardless
of problem specific characteristics. The literature distinguishes local search methods and population-based search
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methods.

Local search methods focus on iteratively improving an incumbent solution by exploring its neighbourhood, and they
are well-suited for finding good solutions. However, there is a risk of getting stuck at a local optimum. On the other
hand, several meta-heuristics have been developed that are able to escape local optima. For example, algorithms that
use procedures to avoid getting trapped in local optima and escape them include SA, Variable Neighbourhood Search
(VNS), TS, GRASP, and ILS (Konstantakopoulos et al., 2022).

Population-based search algorithms use multiple solutions to the problem to find a near-optimal solution. By com-
bining and pairing existing solutions, a diverse exploration in the search space is possible which reduces the risk of
getting stuck in local optima. Mainly, two classes of population-based search meta-heuristics are described in the
literature: swarm intelligence, which includes methods such as Particle Swarm Optimisation (PSO) and ACO, and
evolutionary computation, which includes Genetic Algorithms (GA) and Differential Evolution (DE). These classes of
population-based search algorithms utilise inspiration from natural processes, such as social behaviour of animals
and natural selection, to iteratively improve the solution population towards a near-optimal solution. Some of the
local search and population-based search methods will be discussed below.

Simulated Annealing
Simulated Annealing (SA) is an optimisation technique that uses probabilities to escape from local optima when trying
to find a global optimum. This technique is inspired by the process of material annealing. In SA, after a new solution
to the problem is generated, it is always accepted if it is better than the previous solution. However, if the new solution
is worse than the previous one, it is either rejected or accepted based on a probability determined by the acceptance
probability function, Equation 2.24. For a minimisation problem, the probability of acceptance is calculated using the
following formula:

P (accept new solution) =
e

− ( f (new)− f (old))
Tk , if f (new) > f (old)

1, if f (new) ≤ f (old)
(2.24)

After determining the probability of acceptance, a random continuous number between 0 and 1 is picked and com-
pared with this probability. If the probability of acceptance is smaller than the random number, the solution is re-
jected. If it is equal to or larger than the random number, the solution is accepted and used for the next iteration. An
important feature of this method is the decreasing temperature over time, which reduces the probability of accepting
worse solutions. As the process continues, the model becomes less likely to accept worse solutions as its current solu-
tion. This is analogous to the process of material annealing, where the temperature Tk in Equation 2.24 decreases over
time. After each iteration, a new temperature is calculated using Equation 2.25. The temperature changes based on
the value of α, which can be tuned (0 < α < 1) to modify the behaviour of the algorithm. The algorithm aims to even-
tually find a solution that is near the global optimum. The model ceases execution after a predetermined duration, a
specified number of unimproved solutions, or once a certain temperature is reached. (Delahaye et al., 2019)

Tk =αTk−1 (2.25)

The SA algorithm is used and described in numerous papers which try to solve different kinds of VRPs. Mostly, the
algorithm is used in combination with other meta-heuristic algorithms, which are called hybrid algorithms. Recently,
a paper has been published by Y. Liu et al. (2023) that introduces a hybrid GA-SA algorithm to solve a combination of
the SDVRP and VRPPD. Furthermore, J. Zhang et al. (2022) describe in their paper an algorithm to solve a multi-trip
time-dependent SDVRP. Their algorithm includes the concept of SA in combination with an intelligent auction mech-
anism. Vincent et al. (2022) presented a paper that described a SA algorithm for solving a VRPTW with locker delivery.

Genetic Algorithms
Similar to the concept of SA, Genetic Algorithms (GAs) draw inspiration from a natural phenomenon, the biological
theory of evolution. Instead of iterating on a single solution, GAs work with a population of multiple solutions. The
theory of evolution explains how natural selection operates through the inheritance of chromosomes, where offspring
with beneficial traits are more likely to survive and reproduce. Additionally, random genetic mutations occasionally
provide beneficial changes that further enhance a species’ adaptation over time.

In GAs, two parent solutions are selected from a pool of solutions based on their fitness. The better a solution’s fitness,
the higher its chance of being chosen as a parent. These parent solutions are then used to form new trial solutions,
called children, which inherit features from both parents. Similar to natural processes, child solutions occasionally
undergo mutations that introduce new traits. Over successive generations, the algorithm selects the fittest solutions,
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gradually evolving towards a near-optimal solution for the given optimisation problem. (Hillier & Lieberman, 2015)

Genetic algorithms continue to be a popular approach for solving VRPs, particularly the more complex rich VRPs. The
literature introduces various modifications and hybrid approaches to improve the efficiency and effectiveness of GAs
in solving these problems. Given the extensive literature on GAs, only a few recently published papers will be briefly
discussed. Olaniyi et al. (2022) presented a modified GA to solve a VRPTW with split delivery. Their work focused on
enhancing the reproduction, crossover, and mutation operators. Furthermore, Dubey and Tanksale (2023) introduced
a GA integrated with a 3-opt local search algorithm to address a MDVRPTW that includes split pickup and delivery.
Their simulations, using benchmark problems from the literature, demonstrated a significant improvement in perfor-
mance, validating the effectiveness of their approach. Also, Su et al. (2024) proposed a lightweight GA combined with
a Variable Neighbourhood Search (VNS) algorithm to solve the MDVRPTW. In this hybrid model, the GA operates as
the upper-level optimisation method, while the VNS serves as the local search mechanism to explore different neigh-
bourhood structures and refine the solutions.

Variable Neighbourhood Search
Variable Neighbourhood Search (VNS) was first introduced by Mladenovi and Hansen (1997). The idea behind the
method is to systematically explore the solution space by making changes to the solution and moving through differ-
ent neighbourhood structures. This process involves both descending to local minima and escaping from the valleys
of these local optima, with the eventual goal of finding a solution that is near the global optimum, which is not neces-
sarily guaranteed.

As explained, the core concept of VNS is to systematically explore the search space by changing neighbourhood struc-
tures to escape local optima and find better solutions. VNS starts with an initial solution and performs local search
within a neighbourhood. If no improvement is found, the search is moved to a different neighbourhood. However, if
an improved solution is found, the search continues within the same neighbourhood, refining the solution further.

Several types of VNS have been developed which consist of deterministic, stochastic or both stochastic and determin-
istic phases. Variable Neighbourhood Descent (VND) follows a deterministic approach for neighbourhood changes.
It performs a local search in one neighbourhood at a time, only moving to the next neighbourhood once a local mini-
mum is reached in the current neighbourhood. This systematic search ensures that each neighbourhood is thoroughly
explored. Reduced VNS (RVNS) uses a stochastic approach to navigate through the search space. It applies a shaking
function, which randomly perturbs the current solution without performing any local search after shaking. Futher-
more, Basic VNS (BVNS) uses both deterministic and stochastic phases in its method of optimisation. It first uses a
stochastic shaking function after which a deterministic local search is being used. Examples of local search are best
improvement or first improvement heuristics. Lastly, General VNS (GVNS) is similar to BVNS but uses a VND algo-
rithm for its local search step. (Hansen et al., 2019)

Similar to GAs for VRPs, the literature on VNS for VRPs is as extensive. A few recent papers that describe VNS algo-
rithms for VRPs will be highlighted in this section. Zhen et al. (2024) proposed a tailored VNS algorithm to solve a
routing and scheduling task for unmanned aerial vehicles. Their algorithm included a VND and shaking algorithm
which makes it a VNS of the type GVNS. They demonstrated its scalability for large scale and instances, similar to
the algorithm developed for a VRPTW by Dhahri et al. (2016). Furthermore, Baniamerian et al. (2019) presented a
modified VNS with four shaking and two neighbourhood structures, combined with a GA to solve a HVRPCD prob-
lem. They compared the GA-MVNS algorithm with their developed SA and ABC algorithms. The results showed that
the GA-MVNS algorithm efficiently finds optimal solutions for small-size problems within a reasonable time, and for
large-size instances, it outperforms the other algorithms in both computational time and solution quality. Bezerra et
al. (2023) proposed Smart General Variable Neighbourhood Search with an Adaptive Local Search (SGVNSALS) algo-
rithm for solving an MDVRPTW. By alternating between local search strategies based on the strategies’ success rates,
the algorithm outperformed standard VNS methods. This type of algorithm is also known as the ALNS algorithm,
first developed by Ropke and Pisinger (2006). The work highlighted the effectiveness of VNS approaches for rich VRPs
involving multiple depots and time windows. Also, Y. Wang et al. (2024) addressed an MDVRPTW, focusing on optimis-
ing urban logistics networks for sustainability. They developed a model to minimise operating costs, fleet size, and
carbon emissions, solving it with a hybrid meta-heuristic that combines clustering, ACO, and VNS. Their approach
demonstrated showed a better performance compared to other algorithms, highlighting its potential for solving VRPs
of its type (Y. Wang et al., 2024).

Ant Colony Optimisation
The ACO algorithm has been inspired by the natural behaviour of ants. When looking for food sources, ants make use
of pheromones to communicate with other ants in their colony. If an ant finds a food source, it returns to its nest and
leaves a pheromone trail. The strength of this pheromone trail depends on the quality and quantity of the food source.
This type of communication is called stigmergy (Dorigo & Stützle, 2004). Other ants in the colony are more likely to
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follow a strong trail of pheromones leading them to the food source that the other ant found. At the same time the
trail of pheromones becomes even stronger because of the other ants leaving pheromones on the same trail as well.
However, pheromones gradually evaporate over time, preventing ants from being attracted to less optimal paths and
reinforcing those paths. Furthermore it allows for the continuous exploration of better routes. This creates a positive
feedback loop in the cycle where ants will choose the shorter paths which are rich of pheromones. (Bell & McMullen,
2004)

The ACO algorithm mimics the natural processes of real ant colonies described above. This is done by creating an
artificial ant colony that operates on pheromone trails laid along each route in the VRP. The algorithm has a stocastic
nature, meaning the path choice of each artificial ant is probabilistic. However, this decision is heavily influenced by
the intensity of the pheromone on each path, where stronger pheromone trails represent routes more likely to be cho-
sen by the ants. ACO is considered an agent-based model, since each ant acts independently that follows simple local
rules based on pheromone levels in the network. This decentralised decision-making, combined with pheromone up-
dating and evaporation, allows the algorithm to collectively explore and converge on near-optimal routes. The ACO
algorithm can be tuned by for example changing the pheromone evaporation rate and the parameters for calculating
the probabilities of ants choosing a certain path. (Rizzoli et al., 2004)

Finally, this section about ACO concludes with a brief overview of several recent studies addressing VRPs using ACO.
Liao (2021) developed an ACO algorithm for the dock-door scheduling part of an integrated vehicle routing and
scheduling problem. ACO is often combined with other meta-heuristic algorithm such as TS and SA (Moghadam et al.,
2014; Ren et al., 2023). The paper of Ren et al. (2023) proposed an ACO algorithm for a SDVRP where SA is employed
to update the pheromone trails, and TS is used to improve the local search process. Their ACO algorithm showed im-
provements in model performance when compared to traditional ACO, without the integration of TS and SA. Further-
more, Siddalingappa et al. (2023) combined an ACO algorithm with a graph algorithm to solve a VRPTW, describing
the model’s performance as comparable to state-of-the-art techniques. Moreover, Fahmy and Gaafar (2023) presented
a hybrid ACO algorithm integrated with Local Search techniques (ACO/LS) for a SDVRP to improve exploitation capa-
bilities and convergence speed. Their experiments demonstrated that the ACO/LS algorithm effectively managed the
complexities of the SDVRP.

Artificial Bee Colony Optimisation
Similar to ACO, ABC optimisation mimics the behaviour of a group of animals, this time a bee colony. It uses the be-
haviour of bees searching for nectar sources near their hives. A bee colony consists of three types of bees: employed
bees, onlookers and scouts. The employed bees are responsible for gathering information about food sources they
found and sharing that with onlooker bees. Onlooker bees use that information to select the food sources to exploit
based on their quality. Employed bees transform in scout bees when they abandon a food source and start looking for
a new food source near their hive. (Szeto et al., 2011)

The ABC algorithm starts by randomly assigning food sources (solutions) to employed bees. Each bee explores other
food sources near its assigned food source, and the current source is replaced if the new solution has a better fitness.
After the employed bees have shared this information, onlooker bees select and exploit those food sources based on
roulette wheel selection. If a food source does not improve after a set number of iterations of neighbourhood oper-
ators, the employed bee abandons it and becomes a scout bee to randomly be assigned to a new food source. The
process repeats until a stopping condition, such as a maximum number of iterations or a number of non-consecutive
improvements, is met. (Szeto et al., 2011)

Compared to the other meta-heuristics discussed in this section, ABC is used less for solving VRPs. However, a few
papers have been published that present ABC algorithms for solving VRPs. Szeto et al. (2011) proposed an enhanced
ABC to solve a CVRP. It was shown that this algorithm outperformed the original ABC heuristic, and thus a better al-
ternative to solve the CVRP. Furthermore, D. Zhang et al. (2017) introduced a hybrid meta-heuristic using TS and ABC
(TS-ABC), which was proven to be an effective method for solving the VRPTW. Liao (2021) presented a hybrid meta-
heuristic that combined SA with ABC (SAABC) to solve the routing problem of an integrated routing and scheduling
problem.

Hybrid meta-heuristics
The algorithms mentioned above represent only a fraction of the meta-heuristic methods developed for solving VRPs.
However, hybrid meta-heuristics, which combine two or more meta-heuristic algorithms, are increasingly used and
often demonstrate better performance compared to individual meta-heuristics. In a literature survey about meta-
heuristics for VRPs, Elshaer and Awad (2020) presented a classification tree of meta-heuristic algorithms used for
VRPs, which can be found in Figure 2.2. Furthermore, an explanation of how and how often the most widely used
meta-heuristic algorithms for VRPs work is provided by the paper of F. Liu et al. (2023). The surveys indicate that VNS
and TS are the most frequently utilised local search methods for solving VRPs, while GAs are the predominant choice
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among population-based search methods.

Figure 2.2: Overview of Meta-heuristic Algorithms (Elshaer & Awad, 2020)



3
Research Proposal and Project Plan

Using the findings of the literature study, a research proposal has been formulated. Together with a project planning,
this will be presented in this chapter. This chapter is structured as follows: Section 3.1 provides an introduction to
the trucking processes at KLM Cargo, explains the relevance of the project, and presents the research objective. Fol-
lowing from the research objective, the research questions will be introduced in Section 3.2. Furthermore, Section 3.3
presents the research methodology that will be used to answer the research questions. Finally, Section 3.4 outlines the
planning and timeline of the thesis project.

3.1. Introduction and Relevance of the Project
A substantial amount of cargo that KLM Cargo transports in Europe is tranported using trucks. Customers deliver their
shipments to outstations in the KLM Cargo trucking network. At the outstations, Ground Handling Agents (GHA) pro-
cess the delivered shipments and ensure that the trucks at the outstations are properly loaded. Once loaded, the trucks
drive towards the Amsterdam Airport Schiphol (AMS), where the shipments are unloaded and subsequently loaded
into cargo aircraft ready to fly to their destinations. Figure 3.1 shows a simple schematic overview of this process.

Figure 3.1: Schematic Representation of KLM Cargo’s Transport Process

Furthermore, trucks can also make an intermediate stop at one of the outstations on the way to AMS in order to in-
crease the load factor of the truck. Note that this is not visualised in Figure 3.1. KLM Cargo does not operate own trucks
in the network but outsources its transportation activities to 3PL companies. KLM Cargo has several contracts with
3PL companies that operate trucks in the network. Figure 3.2 provides an overview of most of the outstations in the
European network. The network of KLM Cargo consist of more than 000 outstations. In the network, approximately

00000 rides are carried out per month. For about 00 % of the rides, a refrigerated truck is used. Table 3.1 presents
the different markets in Europe and their corresponding number of rides and outstations.

15
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Figure 3.2: Outstations in the KLM Cargo Network (confidential) Table 3.1: KLM Cargo Market Segmentation (confidential)

Customers of KLM Cargo can book an itinerary that consists of one or multiple flight legs, truck legs, or a combination
of both. The trucking slot visible for the customer is a virtual truck with unlimited capacity. Once all bookings are
received, the planning department starts assigning the bookings to operational trucks. One operational truck usually
consists of four ULD positions. An approximation of the capacity of one position is roughly 10 m3, which means that
an average truck can transport about 40 m3 of cargo. However, there are exceptions on this as on some legs trucks
with two or seven positions are available.

Until now, the trucking network of KLM Cargo has grown organically. Furthermore, when changing and developing
the network, decisions on this were neither data-driven nor based on forecasted customer demand. Several compli-
cations are currently relevant and should ideally be improved. Hub constraints are not always satisfied due to limited
handling capacity and dock-doors. Low load factor trucks are operated in the network, meaning that only a few of the
positions in a truck are used instead of the, usually, four available positions. Moreover, connections between inbound
trucks and outbound flights are tight, resulting in missed connections and a lack of on-time deliveries of shipments.
On-time delivery of shipments is important for customers as it influences customer satisfaction as well as future book-
ings of customers.

This research will look into ways to improve the above mentioned factors within the trucking network of KLM Cargo.
A vehicle routing problem and truck to dock-door scheduling problem will be integrated to design a model that is ca-
pable of both routing and scheduling trucks in the KLM Cargo network. In addition, the model will take into account
special handling constraints for different cargo and truck types, split collection of cargo, a heterogeneous fleet, and
dock limitations. Furthermore, an open routing network will be considered when designing the model. To the best
of the MSc student’s knowledge conducting this research, this specific integrated approach has not been explored in
existing literature, making it a novel contribution to the field. Following from this, the research objective has been
defined as follows:

Research Objective

Optimising a cargo airline’s trucking network by increasing truck load factors, reducing operational costs and
ensuring on-time delivery of cargo to the hub, to match with outbound flight legs, by designing a vehicle routing
and scheduling model.

3.2. Research Question
After defining the research objective, it is necessary to formulate the research question. The research question helps
to yield information that is necessary for accomplishing the research objective that has been described in the previous
section. Furthermore, it aids in designing the technical part of the research project. Specifically, the research question
has been formulated as follows:

Main Research Question

How can integrating a vehicle routing problem and dock-door scheduling problem be used to design and im-
plement a model that optimises a trucking network for outbound air cargo and does this integration provide
operational benefits with respect to the current operations?
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To address the main research question, it has been broken down into several sub-questions. These sub-questions
will together contribute to answering the main research question. The sub-research questions have been defined as
follows:

Sub-Research Questions

• What are the constraints in the truck routing problem that should be considered for the cargo airline?

• What are the constraints in the truck to dock-door scheduling problem that should be considered for the
cargo airline?

• What optimisation methods can be used to integrate the vehicle routing and scheduling problem?

• What modelling decisions should be made to improve the computational time of the model while still
producing a near optimal solution?

• To what extent does the model improve the current performance of operations of the cargo airline?

• To what extent is the solution of the model implementable in the current operations of the cargo airline?

3.3. Methodology
This section will explain how the research questions will be answered during the research project. Utilising the find-
ings from the literature study, a methodology has been formulated, which will be elaborated upon in this section.

Simultaneously, during the execution of the literature study, a preliminary assessment of the available data in the
databases of Air France-KLM (AFKL) was conducted. Data needed for both the routing and scheduling problem was
collected. Table 3.2, shows the available data that was found to be useful for the project. The table provides the
description, format and storage location of the data sets. Furthermore, it is described how the data is retrieved, the
purpose of processing the data, and who has access to the data. Before using the data provided by the company super-
visor, it is necessary to address issues with incomplete and missing data. Therefore, data pre-processing and cleaning
are required. Additionally, all tables containing data from files with a .pdf extension should be converted to files with
a .csv or .xlsx extension to facilitate data analysis and manipulation.

Table 3.2: Available data for the thesis project

Type of data File
Format

How will the data
be collected

Purpose of processing Storage
Location

Who will have
access to the data

Stations and
station coordinates

.csv Retrieved from database
by company supervisor

To visualise the locations of the
outstation in Europe

OneDrive Company supervisor
and thesis intern

Trucking contract data .csv Retrieved from database
by company supervisor

To collect data about the available
trucking options including distances,
trucking prices per position, transit times,
contract duration and name of the
trucking company

OneDrive Company supervisor
and thesis intern

Historical data of
booking and ops trucks

.csv Retrieved from database
by company supervisor

To collect data about historical shipments
including transit times, costs, shipment
weight, shipment volume, number of
positions and flight connection times

OneDrive Company supervisor
and thesis intern

Segregation rules of
incompatible shipments

.pdf

Downloaded from the AFKL
SharePoint ->CarGo
Documentation Records
Management ->AF & KL
Cargo Procedures

To collect data about which type of
shipments should be taken into
account when applying incompatibility
constraints

OneDrive
& AFKL
Sharepoint

Thesis intern (OneDrive)
All AFKL employees
(Sharepoint)

Special handling codes .pdf Downloaded from
amerijet.com

To understand the meaning of all special
handling codes needed for using the
shipment segregation rules

OneDrive Company supervisor
and thesis intern

After all the data is processed, a MILP will be formulated for the routing and scheduling model. The paper by Liao
(2021) will serve as the theoretical basis of this research. As described in Section 2.3, the paper proposes a model
for an integrated vehicle routing and scheduling problem. The model considers a homogeneous fleet of trucks that
start at a cross-dock, visit several suppliers to collect multiple types of goods, and then return to the cross-dock. In
this model, the routes, dock-doors, and shipments for outbound trucks have been predetermined. This model will be
tailored to reflect real-world conditions which are applicable to the inbound trucking network of the cargo airline. To
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achieve this, adjustments will be made to the objective function, and modifications will be required for some of the
constraints.

In order to ensure that shipments are separated when they are not allowed to be transported together, it is necessary
to add incompatibility constraints to the model. The models of Manerba and Mansini (2015) and Gendreau et al.
(2016) will be used as references for incorporating those constraints. These models contain pairwise incompatibility
constraints among product types to prevent loading two or more incompatible products into the same truck. Simi-
lar to those models, a set of incompatibilities between product types will be introduced into the model, along with
a constraint for a combination of each truck and pair of incompatible products that prohibit placing those products
together in the same truck.

Furthermore, the model of Liao (2021) addresses a closed routing problem where all trucks start and finish their route
at a depot. The model should be adjusted such that the routes in the model are open, which means that each truck
can start its route at any node in the network and finishes its route at the depot. Therefore, a dummy depot will be
introduced in the model, as demonstrated in the paper of Vincent et al. (2016). This dummy depot has arcs connecting
to all nodes in the network with a cost and travel time of zero.

Moreover, the paper of Taillard (1999) will be used to adjust the fleet described in the model by Liao (2021) from a
homogeneous fleet to a heterogeneous fleet. Additionally, the model will be adjusted to a routing problem with split
delivery, as described by Dror et al. (1994). This will allow multiple trucks to visit the same node in the network instead
of the restricted visits of one truck per node. Also, a set of constraints will be designed that sets a time deadline for
each truck to arrive at the depot. This deadline is determined by the group of products in the truck with the shortest
transfer time to their corresponding outbound flight.

The MILP model will be programmed using Python, and GitHub will be used to control the different versions through-
out the development of the model in Python. This can be especially useful if any updates to the model need to be
reverted. The Gurobi solver will be used to solve the MILP model programmed in Python. The laptop provided by
the company, a Lenovo Thinkpad with a 13th Gen Intel(R) Core(TM) i7-1365U processor running at 1.80 GHz and 32
GB of RAM, will be used for all programming tasks and the execution of the model. The laptop operates on a 64-bit
Windows operating system.

After formulating the MILP model, an approximate optimisation algorithm will be developed. As described by Liao
(2021), the model in the paper is classified as a NP-hard problem. In the literature, exact algorithms are mostly used
for small-scale problems. Therefore, to solve the problem for larger-scale instances, an approximate optimisation al-
gorithm will be developed.

Finally, it will be examined if the models can improve the current state of the network: will truck load factors increase,
will the required connection times be satisfied without making transfer times at the cross-dock too long, and will
handling constraints at the hub be met? The performance of both the exact and approximate model will be tested and
compared.

3.4. Planning
The timeline of the thesis project is divided into four parts: the literature review & research definition, research phase
1, research phase 2, and research dissemination. A Gantt chart has been created to illustrate the work that needs to
be done for each of the four parts of the thesis project. The chart shows time estimates for each work package and the
dependencies between them. Furthermore, each of the four parts on the timeline includes the milestones and review
points for that phase of the thesis project. Breaks and holidays are included in the chart as well. Figure 3.3 shows the
Gantt chart for the parts literature review & research definition and research phase 1, and Figure 3.4 shows the Gantt
chart for the parts research phase 2 and research dissemination.
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Abstract

This study addresses the initial phase of a multi-modal air cargo transport network, where trucks collect
shipments from multiple origins and deliver them to the hub airport of an airline. Efficient coordination

between ground transport and outbound flights is crucial for optimising truck load factors, reducing oper-
ational costs, and ensuring on-time cargo transfers at the hub. Poor synchronisation can cause delays and
increased expenses, reducing the efficiency of the entire transport network. This paper presents a novel Mixed
Integer Linear Programming (MILP) formulation and an Adaptive Large Neighbourhood Search (ALNS)
framework for an integrated vehicle routing and dock-door scheduling problem that includes split delivery,
incompatible products, time windows, and open routes, with the objective of minimising operational costs.
The ALNS framework uses a dock-door-based route representation along with multiple insertion and removal
operators to improve the solution to the problem at hand. A comparative analysis between the MILP and
ALNS model shows that the ALNS model consistently outperforms the MILP model in computational effi-
ciency and solution quality for larger and more complex instances. The ALNS model efficiently finds feasible
solutions within significantly reduced computational times, making it practical for real-world applications.
Moreover, using a case study of an airline, the ALNS-generated network demonstrates improvements in cost
efficiency, fleet utilisation, and truck load factors compared to the airline’s historical routing data. Despite
differences between the actual network data and the model-generated data, stemming from assumptions that
create an idealised scenario that does not fully capture the complexities of real-world operations, the ALNS
model offers significant enhancements in efficiency for the airline’s trucking network.

1 Introduction

Air cargo plays an important role in the world-wide
logistics network of cargo. Airline networks help to
transport goods across long distances in a fast and ef-
ficient way. This is particularly crucial for high-value,
time-sensitive products such as electronics, pharmaceu-
ticals, and perishable goods, where on-time delivery
and reliability are required. Although the volumet-
ric percentage of cargo transported by air is relatively
low, the value of those shipments is significantly high
considering the small volume. As the global air cargo
demand continues to rise, the importance of air cargo
in facilitating global trade becomes even more critical
(IATA, 2025).

The transport of air cargo requires precise route and
time planning. Effective routing and planning involves
determining the optimal transportation method, route,
and time schedule for each shipment from its origin to
its final destination. In many cases, multiple trans-
port modes and carriers are involved in moving cargo
from its origin to its destination. Typically, a customer
chooses one carrier that is tasked with complete the
transport process. This carrier can either manage the

entire process or outsource parts of the transportation
activities.

In particular, air cargo is frequently transported
through a multi-modal transport network. A network
of trucks collects the cargo from pickup locations and
delivers it to the airline’s airport. This trucking net-
work is integrated with a network of cargo and passen-
ger aircraft that transport the cargo to its destination
country. Upon arrival, the cargo can be picked up by
the customer or transported by trucks to its final des-
tination.

In addition to planning the routes of the trucks in
the network, scheduling their arrivals at the airport is
important because customers prioritise on-time deliv-
ery, which, together with the shipping costs, influences
their choice of shipment carrier. Therefore, the truck-
ing network and flight schedules must be synchronised
to ensure on-time arrival at the airport for processing
and transfer to the correct flight. Furthermore, the
number of truck docking spaces at the airport can be
limited, which means careful coordination of truck ar-
rivals is needed to avoid exceeding the dock-door capac-
ity. Integrating both the truck routing and dock-door
scheduling steps improves the efficiency of the entire
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network (Schiewe & Schöbel, 2022).
This research focuses on designing an integrated ve-

hicle routing and dock-door scheduling model to opti-
mise an airline’s trucking network by increasing load
factors, reducing operational costs, and ensuring on-
time cargo delivery to the hub, to match with out-
bound flight legs. This paper presents a novel Mixed
Integer Linear Programming (MILP) formulation and
an Adaptive Large Neighbourhood Search (ALNS) al-
gorithm (Ropke & Pisinger, 2006) for a vehicle routing
and dock-door scheduling problem with split delivery,
incompatible products, time windows and open routes.

This paper is organised as follows. Section 2
presents the literature review and research gap found.
After that, Section 3 describes methodology followed
during the research, which includes the problem def-
inition, the mathematical formulation of the MILP,
and an explanation of the ALNS algorithm. Further-
more, Section 4 describes the study case scenario which
is used to evaluate the performance of both models.
Then, the results of the case study scenario are dis-
cussed in Section 5. Section 6 concludes this paper
with the findings of the research presented and recom-
mendations for future research.

2 Literature Review
Optimising truck routes while simultaneously schedul-
ing those trucks to different dock-doors at their des-
tination hub requires addressing multiple complexities
of the optimisation problem. The problem can divided
into two subproblems, which are the Vehicle Rout-
ing Problem (VRP) and the Dock-door Assignment
Problem (DAP). This literature review explores and
discusses relevant studies presenting research about
VRPs, DAPs and a combination of both problems.

2.1 Vehicle Routing Problem
The VRP was introduced by Dantzig and Ramser in
1959. Dantzig and Ramser opted to design an opti-
mum routing for a homogeneous fleet of gasoline de-
livery trucks. The trucks were used to transport gaso-
line between a bulk terminal and multiple service sta-
tions. The goal was to design a route for each truck
to meet the customers’ demands while minimising the
total distance covered. To solve the problem, Dantzig
and Ramser designed procedure based on a linear pro-
gramming formulation to find a near-optimal solution
(Dantzig & Ramser, 1959). The most basic form of the
VRP can be described as follows: “Determine a set of
vehicle routes to perform all (or some) transportation
requests with a given vehicle fleet at minimum cost; in
particular, to decide which vehicle handles which re-
quests in which sequence so that all vehicle routes can
be feasibly executed” (Toth & Vigo, 2014).

The VRP has been proven to be NP-hard, which
means that the problem cannot be solved in polyno-
mial time (Lenstra & Kan, 1981). Given that the basic
VRP is NP-hard, all its variants inherently share this

computational complexity. Consequently, exact algo-
rithms are primarily used for smaller-scale instances
due to their computational demands, resulting in lim-
ited presence in the literature compared to approxi-
mate algorithms. For VRPs with large-scale instances,
approximate algorithms are commonly applied to ob-
tain near-optimal solutions within a reasonable amount
of time compared to the computational time of exact
algorithms. The available literature on VRP solution
methods shows that approximate optimisation tech-
niques are widely used to solve the VRP, its variants
and other real-world applications of the VRP (Khayya
et al., 2024; Konstantakopoulos et al., 2022; Liu et al.,
2023).

Given the extensive history of VRPs in the litera-
ture and the numerous variations of the problem, this
review will only focus on the aspects of the VRP closest
to this research, which are the Open VRP (OVRP),
the VRP with incompatible products and the Split
Delivery VRP (SDVRP).

SDVRP
The basic VRP assumes that the demand of each cus-
tomer can completely be served by one vehicle and that
each customer is only visited once. However, this is not
a realistic scenario when looking at real-world applica-
tions. In some scenarios, it will not be possible to serve
the entire demand of a customer by one vehicle. This
is mostly caused by limitations of the vehicle capacity.
For example, when the weight or volume of a shipment
exceeds a vehicle’s capacity, an extra vehicle will be
needed to transport part of the shipment. This exten-
sion of the VRP is covered by the SDVRP.

Dror and Trudeau (1989) introduced this SDVRP
for the first time and Archetti et al. (2006) showed
the potential for cost savings by splitting customer de-
mands among vehicles. Since the introduction of the
SDVRP, several heuristic algorithms have been pro-
posed to solve the SDVRP. Archetti and Speranza pro-
vided a survey on SDVRPs in 2012, highlighting the
potential savings of split deliveries (Archetti & Sper-
anza, 2012). A more recent survey on SDVRPs is pub-
lished by Zhang et al. (2022). Local Search (LS), Tabu
Search (TS), Variable Neighbourhood Descent (VND),
Iterated Local Search and Genetic Algorithms (GAs)
are proven to be useful methods to solve the SDVRP
(Chen et al., 2017; Zhang et al., 2022). Moreover,
Khmelev and Kochetov (2015) showed that their TS
outperformed GAs in solving performance. Further-
more, literature shows that the trend towards hybrid
heuristic algorithms has grown, and it has been shown
that hybrid heuristic algorithms can achieve better so-
lutions than a single heuristic algorithm (Zhang et al.,
2022).

Two more recent papers involving the splitting of
shipments where published by Gu et al. (2019) and
Chen et al. (2017). Gu et al. used an Adaptive Large
Neighbourhood Search (ALNS) and used a splitting
procedure to make their initial solution feasible such
that the capacity constraints of the vehicles are satis-
fied. It showed that high-quality solutions for large and
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medium instances could be obtained by their method
(Gu et al., 2019). Chen et al. used an a priori splitting
strategy in their method, which means that the ship-
ments are split into smaller pieces in advance. They
used the 25/10/5/1 and 20/10/5/1 rules to split ship-
ments in as many large pieces as possible using the
quantities defined by the rule used. This splitting pro-
cedure allows the use of any existing VRP solver, and
Chen et al. showed that their algorithm is faster and
often equally effective compared to state-of-the-art al-
gorithms across 82 benchmark instances (Chen et al.,
2017). Torkzaban et al. (2024) used this a priori split-
ting concept and improved it by adapting the splitting
rule based on customer locations, customer demand
and vehicle capacities. Using this adaptive splitting
rule, they showed that their technique outperformed
the model with the fixed splitting rule of Chen et al..

VRP with Incompatible Products
The VRP with incompatible products addresses real-
world constraints where some of the shipments need
to be separated and can not be transported using
the same vehicle. For instance, some shipments re-
quire different temperature levels during transport.
This means the shipments need to be separated
and transported using different trucks with different
temperature-controlled environments.

Wang et al. (2015) describe a model that con-
siders two types of vehicles: refrigerated and non-
refrigerated vehicles. Their model categorises ship-
ments into three types based on their storage require-
ments: refrigerated, non-refrigerated, and shipments
that can be stored using either option. They developed
a mathematical model to optimise truck routing, min-
imising overall costs while ensuring that products are
transported in trucks with appropriate environmental
control capabilities. Wang et al. claim to be the first
to address a VRP with such loading constraints. A
ruin-recreate heuristic algorithm, and a threshold tabu
search method is presented in their paper to solve the
described problem.

Moreover, several papers introduce and address
VRPs with pairwise incompatibilities between ship-
ments (Bianchessi et al., 2021; Gendreau et al., 2016;
Manerba & Mansini, 2015; Palma-Blanco et al., 2019).
Products that are incompatible with one another are
not allowed to be placed in the same vehicle. To incor-
porate this in a mathematical model, an additional set
with product incompatibilities or compatibilities can
be added.

Manerba and Mansini (2015) and Gendreau et al.
(2016) both introduce similar sets in their mathemati-
cal models, along with two constraints that ensure in-
compatible products cannot be loaded in the same vehi-
cle. Manerba and Mansini proposed a branch-and-cut
algorithm and also introduced a four-step heuristic to
find an initial feasible solution. Their method is found
to be a valuable procedure to replace exact approaches
for the large instances (Manerba & Mansini, 2015).
However, Gendreau et al. propose a branch-and-price
algorithm for which the pricing problem is solved by

combining two exact methods: a tailored branch-and-
cut algorithm, and a labelling algorithm for solving a
Resource-Constrained Elementary Shortest Path Prob-
lem. They compared their model performance with the
model of Manerba and Mansini and showed that it out-
performs in both solution quality and computational
time (Gendreau et al., 2016). In 2021, Bianchessi et
al. proposed a branch-price-and-cut algorithm where
the sub-problems of the column generation are solved
by a dynamic programming labelling algorithm. They
proved it to achieve better results in terms of computa-
tional time and solution quality compared to the model
of Gendreau et al. (Bianchessi et al., 2021).

Furthermore, Palma-Blanco et al. (2019) use an
ant colony optimisation with a two-pheromone trail
strategy while handling shipment incompatibility con-
straints among others. They achieve this by removing
shipments from the list of possible loads for a vehicle if
that vehicle already contains shipments with which the
new possible shipment is incompatible. The same tech-
nique is applied to vehicle capacity and routing time
constraints to ensure that all constraints are satisfied.
This model has been demonstrated to achieve signifi-
cant solutions for instances of the well-known Solomon
instances for VRPs (Palma-Blanco et al., 2019).

OVRP
The OVRP is a variant of the VRP where vehicles are
not required to return to the depot after completing
their routes, first described by Schrage (1981). The
OVRPis particularly suitable for companies that out-
source their transportation to Third-Party Logistics
(3PL) providers. This eliminates the need to manage a
fleet, allowing focus solely on route planning (Vincent
et al., 2016). Various extensions to the OVRP have
been explored to address diverse real-world scenarios.

Vincent et al. (2016) developed a mathematical
model for a single-product, homogeneous OVRP with
cross-docking. The model introduces a dummy depot
with zero transportation costs to all nodes to correctly
simulate open routes. They proposed a Simulated An-
nealing (SA) algorithm that uses several neighbour-
hood structures to improve the initial solution. It was
shown that it could find optimal solutions for small
and medium instances while requiring a shorter com-
putational time than the CPLEX solver. On large
instances the SA performed better in terms of com-
putational time and solution quality compared to the
CPLEX solver.

Pisinger and Ropke (2007) adopted a similar ap-
proach for modelling open routes, setting the travel
times and distances to the depot to zero. In their pa-
per, they propose an ALNS algorithm to solve five dif-
ferent variants of the VRP, one of which is the OVRP.
The authors argue that the ALNS framework can be
applied to a wide range of highly constrained optimisa-
tion problems. This is useful for problems with a rich
nature of various constraints and specifications.

Furthermore, Eroglu et al. (2014) analysed a real-
world scenario for a production company. They intro-
duced a Mixed Integer Programming (MIP) model for
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the problem which they classified as a multi-capacity
heterogeneous OVRP with split delivery and multi-
products. Each vehicle in the model is restricted to vis-
iting two customer nodes at most. The authors present
a GA with local search to handle large-size problems
with more than 50 customer nodes. GA reaches feasi-
ble solutions of problems within the time limit of 7200
seconds, something that could not be achieved with the
MIP model.

Contrary to what has been discussed before, some
real-world applications involve a 3PL collecting ship-
ments from customer nodes for delivery to a central
depot, rather than transporting shipments from a de-
pot to customers. Schopka and Kopfer (2015) de-
scribed this variation of the OVRP as the Reverse
Open Vehicle Routing Problem (ROVRP). Addition-
ally, their problem incorporates time windows, result-
ing in a problem called the Reverse Open Vehicle Rout-
ing Problem with Time Windows (ROVRPTW). In
this scenario, trucks start from specific positions and
are routed to the depot while visiting other customer
nodes along the way, and adhering to operational con-
straints. A MIP model is presented in the paper as
well as an ALNS algorithm to solve the problem and
generate a near-optimal solution.

2.2 Dock-door Assignment Problem
The DAP is of similar nature as the Parallel Machine
Scheduling Problem (PMSP), which involves schedul-
ing a set of predefined tasks across multiple machines.
The PMSP’s objective typically includes minimising
the total time required to complete all tasks or min-
imising the total delay time of all tasks. The PMSP
can be translated to a DAP. The tasks in the PMSP re-
semble the loading and unloading processes of trucks,
while the machines correspond to dock-doors, which
are used for loading and unloading trucks at a depot.
Extensions to this type of problem are widely discussed
in the literature (Li et al., 2024). Most variations are
about cross-docks. Cross-dock Door Assignment Prob-
lem (CDAP) covers the assignment of both incoming
and outgoing goods and trucks to dock-doors at a de-
pot, focusing on optimising the flow of goods through
the cross-docking facility.

Karadgi and Hiremath (2022) presented a Mixed
Integer Linear Program (MILP) formulation for job
scheduling on parallel machines with both precedence
and machine eligibility constraints. Precedence con-
straints ensure that certain tasks are processed only
after other specific tasks have been completed. For the
eligibility constraints, which restrict some tasks from
being assigned to certain machines, a set is created for
each task, containing the machines eligible to handle it.
Each task must be assigned to one of the machines in
its corresponding eligibility set. Furthermore, to create
a model that has lower computational times than the
MILP, the authors introduced a GA.

The same method of implementing the machine
eligibility constraints in a MILP is used in several
other papers. To reduce computation times, Kurt and

Çetinkaya (2024) and Maecker et al. (2023) developed
a model using local search and GA, respectively.

2.3 Combined Vehicle Routing and
Scheduling Problems

The previous sections have provided insights into the
research conducted on VRPs and PSMPs. This section
will address the integration of both VRPs and DAPs.

If a limited number of dock-doors is available at
a depot, trucks need to be individually scheduled and
assigned to a dock to prevent waiting times at the de-
pot. Lower waiting times decrease the overall trans-
portation times, from the pickup location to the mo-
ment of completing unloading at the destination, which
is favourable for the customers requesting the trans-
portation activities. This combination of routing and
scheduling problems is described in several papers.

Most papers discuss this VRP variation with Cross-
Docking (VRPCD). Cross-docking refers to the process
where shipments from inbound vehicles are unloaded
at a cross-docking terminal and loaded into outbound
vehicles for delivery to customers. Instead of directly
loading shipments into outbound vehicles, shipments
can also be temporarily stored at the cross-dock to
bridge the time between offloading from the inbound
vehicle and loading into the outbound vehicle. The
VRPCD involves planning optimal routes for vehicles
or assigning pre-defined routes to vehicles, while also
scheduling and assigning vehicles to the available dock-
doors. This ensures efficient handling of both inbound
and outbound logistics, transferring goods through the
cross-dock on time, minimising transportation costs,
and meeting customer demands. In most papers, the
model of the VRPCD is separated into three parts:
routing of inbound vehicles, scheduling vehicles at the
dock-doors, and routing of outbound vehicles.

Dondo and Cerdá (2014) formulated a mathemat-
ical model that integrates the VRP with cross-dock
scheduling, while considering a limited number of dock-
doors. Dondo and Cerdá (2015) expanded this model
by replacing the homogeneous fleet of vehicles with a
heterogeneous fleet of vehicles. A sweep heuristics al-
gorithm was used to allocate the customer nodes to
the vehicles available when solving the problem. Ad-
ditionally, Rahbari et al. (2019) and Grangier et al.
(2021) proposed other models to solve the VRPCD
with a fixed amount of dock-doors available. The pa-
pers of Rahbari et al. and Grangier et al. describe
exact methods and a combination of exact methods
and meta-heuristics using large neighbourhood search,
respectively.

Several other papers describe the integration of ve-
hicle routing and loading dock scheduling. Compared
to VRPCDs, shipments do not have to be moved from
incoming to outgoing vehicles and only need to be
picked up from a depot. Gromicho et al. (2012) com-
bined vehicle routing and loading dock scheduling, ad-
dressing constraints that consider limited dock-doors
and strict delivery windows. They employed a decom-
position scheme with a column generation framework,
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generating columns for a master problem via dynamic
programming and solving an integer linear program. In
their approach, the working period is discretised into
fixed time intervals, allowing the evaluation of loading
sequences and routing decisions to be separated.

Furthermore, Liang et al. (2023) investigated the
VRP with Time Windows and Loading Scheduling
(VRPTW-LS). They presented a MILP model and an
ALNS algorithm, featuring a tailored solution repre-
sentation and an efficient feasibility check mechanism,
to solve the VRPTW-LS. In the ALNS a dock-based
route representation is used that allows for an efficient
feasibility check. The representation captures the load-
ing sequence for a fleet of vehicles at the dock and
specifies the routing sequence for each vehicle.

Moreover, Liao (2020) introduced a model for an
integrated vehicle routing and scheduling problem and
proposed a hybrid optimisation method using Iter-
ated Local Search (ILS) and Greedy Search (GS).
The method iteratively solves the vehicle routing and
scheduling problem, where in each iteration, the vehicle
routing sub-problem is firstly solved by an ILS, followed
by a GS for the vehicle scheduling sub-problem.

Note that the three above mentioned papers about
vehicle routing and loading dock scheduling problems
consider a vehicle routing problem where the trucks are
loaded at the depot, deliver the products to the cus-
tomers, and then return to the depot. Liao (2021)
instead, proposed an integrated vehicle routing and
scheduling problem where vehicles depart from the
cross-dock, pickup shipments at suppliers, and deliver
them at a cross-dock. The outbound vehicle’s routes,
dock-doors and shipments have been pre-determined in
his model. To solve the problem, Liao (2021) proposed
MIP formulation and a cooperative co-evolutionary
decomposition-based algorithm. The author presented
four types of heuristic methods. The method that com-
bines Artificial Bee Colony (ABC) with SA for routing
and Ant Colony Optimisation (ACO) with local search
for scheduling, SAABC-HACO in short, was proven to
perform the best in terms of both solution quality and
computational time.

2.4 Research Gap
Optimising truck routes while simultaneously schedul-
ing those trucks to different dock-doors at their des-
tination hub involves multiple layers of complexity in
the optimisation problem. This problem can be broken
down into two sub problems: the VRP and the DAP.
The VRP focuses on finding the most efficient routing
solution for a fleet of trucks, while the DAP focuses
the optimal scheduling of trucks to the available dock-
doors. The integration of both problems introduces
a further layer of complexity, as it is necessary to si-
multaneously optimise the routes of the trucks and the
scheduling of their arrival at the dock-doors.

The literature on these problems is extensive, as
discussed in the preceding sections. Studies have ex-
plored various variations of the VRP, including the ba-
sic VRP, SDVRP, VRP with Incompatible Products,

and OVRP, alongside various approaches to the DAP.
However, despite the wide range of studies, there re-
mains a gap in research specifically combining the VRP
with dock-door scheduling in the presence of VRP vari-
ations: split delivery, open routes, time windows and
deadlines, and incompatible products. The interaction
of these multiple variations make the problem challeng-
ing, as it requires an integration of both vehicle routing
and scheduling decisions, with the goal of finding op-
timal or near-optimal solutions in a computationally
efficient manner.

In this work, a model is developed for solving the
integrated Vehicle Routing and Dock-door Scheduling
Problem with the following key features:

• Split Delivery: Accommodating scenarios where
demands exceed vehicle capacities, thus requiring
multiple deliveries by different vehicles.

• Open Routes: Considering the case where ve-
hicles do not need to return to the depot after
completing their delivery routes or do not need
to start at the depot before visiting the first lo-
cation of their route.

• Time Windows: The vehicle routing and dock-
door scheduling problem incorporates time win-
dows that impose specific constraints on both
vehicles and shipments. Each shipment has a
fixed delivery deadline at the depot, and a de-
fined availability time, specifying when the ship-
ment is ready for pickup at its origin. Addition-
ally, pickup locations in the network have closing
hours during which vehicles are not allowed to
visit.

• Incompatible Products: Some products cannot
be transported together on the same vehicle
due to incompatibilities. Furthermore, certain
products require refrigerated environments dur-
ing transport, while others do not.

• Limited Dock-doors: The depot has a limited
number of dock-doors available for vehicle un-
loading activities. This restriction means that
only a maximum number of vehicles can visit the
depot simultaneously.

By developing both a MILP formulation and ALNS
framework, this research aims to find a method that
can produce near-optimal solutions to this integrated
problem. The model objective is to minimise trans-
portation costs which are a function of leg costs, truck
cooling costs, and truck load factor costs. The MILP
formulation will be useful for smaller problem instances
as the problem itself is NP-hard. On the other hand,
the heuristic method will be tailored for large complex
real-world instances that will be able to provide bal-
ance between solution quality and computational effi-
ciency.
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3 Methodology
This section outlines the methodology followed in de-
veloping the MILP formulation and ALNS framework
used to solve the problem. Section 3.1 will present the
problem definition and the general assumptions made
prior to the development of the models. Following that,
Section 3.2 will provide an explanation of the MILP
formulation, and Section 3.3 will describe each step of
the ALNS framework. Finally, the differences between
the two models will be discussed in Section 3.4.

3.1 Problem Definition and General
Assumptions

The vehicle routing and dock-door scheduling prob-
lem with split delivery, incompatible products, time
windows and open routes is an integration of a VRP
and DAP. The VRP aims to determine an optimal set
of routes for a heterogeneous fleet of trucks, ensuring
that all transportation requests from the stations to
the hub in the network are fulfilled while adhering to
all operational constraints. The DAP seeks to find a
feasible docking schedule for the trucks to unload all
shipments. These problems are combined to determine
a near-optimal set of routes for a given fleet of trucks,
ensuring that all transportation requests are fulfilled.
The solution should also ensure that trucks do not have
to wait before they can begin unloading at the hub’s
dock-doors.

Before developing the models, a number of general
assumptions were made:

(i) A limited number of dock-doors are available at
the hub for unloading.

(ii) Each dock-door can serve one truck at the time.

(iii) Each truck needs a fixed amount of minutes for
unloading all shipments, and this unloading pro-
cess cannot be interrupted.

(iv) Each truck needs a fixed amount of minutes to
make a stop at an extra location to load addi-
tional shipments.

(v) A location cannot be visited by a truck during its
closing hours.

(vi) Trucks should be able to immediately start un-
loading after arriving at the hub, which means
that waiting times at the hub are not allowed.

(vii) Each truck can start its route at a random loca-
tion and should finish its route at the hub.

(viii) Each truck should undock from the dock-door be-
fore the earliest arrival deadline of any shipment
it carries is reached.

(ix) Each truck has 4 cargo positions, each with 25%
of the total truck volume capacity.

(x) The fleet of trucks is heterogenous, which means
that each truck has a predefined volume based
capacity and cooling type.

(xi) Weight based capacity of trucks is assumed not
to be a limiting constraint.

(xii) There are three types of trucks: non-refrigerated,
temperature controlled type 1 and temperature
controlled type 2.

(xiii) Each shipment that needs to stay within a pre-
defined temperature range should be placed in a
truck with the corresponding temperature condi-
tions. Shipments that do not need to be placed
in a temperature controlled truck can be placed
in every truck.

(xiv) Each shipment has an availability time, specify-
ing when the shipment is ready for pickup. Trucks
cannot collect a shipment if it arrives at a station
before that time.

(xv) Shipments that are incompatible with each other
cannot be transported by the same truck.

(xvi) A shipment can be split over multiple trucks.

(xvii) Constraints about truck driver times are ne-
glected.

(xviii) The cost of each truck is calculated based on the
individual legs of its route. This base cost is ad-
justed by a cooling factor if the truck is refriger-
ated and further modified by a load factor. The
load factor is determined by the maximum num-
ber of cargo positions filled upon the truck’s ar-
rival at the hub (e.g., 1 position = 70%, 2 posi-
tions = 80%, 3 positions = 90%, 4 positions =
100%).

3.2 Mixed Integer Linear Program-
ming Formulation

A novel MILP formulation has been developed based
on the MIP formulation of the model presented in the
paper of Liao (2021). This model served as the basis for
designing the MILP formulation. The model has been
linearised, with several constraints added or removed
to align with the routing and scheduling assumptions
described above.

In order to ensure that shipments are separated
when they are not allowed to be transported to-
gether, shipment incompatibility constraints have been
added to the model. The mathematical formulations
of Manerba and Mansini (2015) and Gendreau et al.
(2016) were used as references to incorporate these
constraints. Their formulations contain pairwise in-
compatibility constraints to prevent the loading of two
or more incompatible products into the same truck.
Similar to those models, this model introduces a set
that defines incompatibilities between product types,
along with constraints that prevent incompatible prod-
uct types from being placed in the same truck.

Furthermore, the model of Liao (2021) addresses a
closed routing problem in which all trucks start and
finish their route at a hub. The model has been ad-
justed to an open routing problem, which means that
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each truck can start its route at any station in the
network and finishes its route at the hub. Therefore,
a dummy hub has been introduced to the model, as
demonstrated in the paper of Vincent et al. (2016).
This dummy hub has arcs connecting to all stations in
the network with zero travel cost and zero travel time,
and all combinations of legs starting at the dummy hub
will be excluded from the cost calculation in the objec-
tive function. If the leg from the dummy hub to the
actual hub is activated for a truck, it means that this
truck will not be used in the network.

Moreover, the fleet described in the model by Liao
(2021) has been modified from a homogeneous fleet to a
heterogeneous fleet. Furthermore, the model has been
adapted to a routing problem with split delivery, as
described by Dror et al. (1994). This allows multiple
trucks to visit the same station in the network instead
of the restricted visits of one truck per station. In ad-

dition, multiple sets of time constraints are introduced
to the model. An undocking deadline is set for each
truck to ensure on-time delivery of all its shipments.
This deadline is determined by the shipment with the
earliest transfer time to its next mode of transport. Ad-
ditionally, constraints are added that prevent a truck
from arriving at or departing from a station outside
of operating hours, and a constraint is introduced that
prevents a truck from picking up a shipment before it
has been become available at its origin station.

The next part of this section presents the novel
MILP formulation and notation. Table 1, Table 2,
and Table 3 respectively show the sets, decision vari-
ables, and parameters used in the mathematical for-
mulation. After that, the mathematical formulation,
including the objective function and constraints, will
be presented.

Table 1: Model Sets.

Set Description

Td Set of trucks including 2 dummy trucks
(i=0 & i=-1) i ∈ Td

T Set of trucks i ∈ T ⊆ Td
Tnc Set of non refrigerated trucks i ∈ Tnc ⊆ T
T2−8deg Set of 2− 8 deg refrigerated trucks i ∈ T2−8deg ⊆ T
T15−25deg Set of 15− 25 deg refrigerated trucks i ∈ T15−25deg ⊆ T
Jd Set of stations including dummy hub (j=-1) j ∈ Jd
Jh Set of stations including hub (j=0) j ∈ Jh
J Set of stations excluding (dummy) hub j ∈ J
P Set of shipments p ∈ P
P2−8deg Set of 2− 8 deg refrigerated shipments p ∈ P2−8deg ⊆ P
P15−25deg Set of 15− 25 deg refrigerated shipments p ∈ P15−25deg ⊆ P
Pj Set of shipments in station j p, j ∈ Pj ⊆ P
D Set of dock-doors d ∈ D
B Set of incompatible shipments (p1, p2) ∈ B ⊆ P x P
K Set of truck positions k ∈ K
CH Set of closing hours (tc, to) ∈ CH

Table 2: Model Decision Variables.

Decision
Variable Description

zposi,j,j′,k

1 if truck i travels from station j to station j′

with k positions filled,
0 otherwise

zi,j,j′

{
1 if truck i travels from station j to station j′,

0 otherwise

xi,i′

{
1 if truck i docks before truck i′ at the same dock,
0 otherwise

yi,d

{
1 if truck i is assigned to dock d,

0 otherwise

wi,p

{
1 if truck i collects (part of) shipment p,

0 otherwise

posi,k

{
1 if truck i has exactly k positions filled,
0 otherwise

btci,j,(tc,to)


1 if truck i finishes operations at station j

before closing time tc of the closing hours,
0 if truck i finishes operations at station j

after opening time to of the closing hours
vi,p Volume of shipment p collected by truck i

tdocki Docking time of truck i at hub
tundocki Undocking time of truck i at hub
tsi,j Departure time of truck i from station j

tsi,0 Arrival time of truck i at the hub
li Total volume (m3) of shipments loaded in truck i

Table 3: Model Parameters.

Parameter Description

Qt
i Capacity (m3) of truck i

Qp
k Capacity (m3) of k truck positions

Vp Volume (m3) of shipment p

Ct
j,j′ Transportation cost between station j and j′

Cp
k Cost multiplier for k positions filled

Cc
i Cost multiplier for refrigerated trucks for truck i

T l Loading time (h) at station
Tul Unloading time (h) at hub
T t
j,j′ Transportation time (h) between station j and j′

T sa
p Time shipment p becomes available for pickup

T sd
p Time of delivery deadline of shipment p

M Large positive number used in the Big M Method
E Lowest volume (m3) that a shipment can be split into

Objective Function:

min
∑
i∈T

∑
j∈J

∑
j′∈Jh,
j ̸=j′

∑
k∈K

Ct
j,j′ · C

p
k · C

c
i · z

pos
i,j,j′,k (1)

subject to:

Routing Constraints:∑
j∈Jd

zi,j,0 = 1, ∀i ∈ T (2)

∑
j∈Jd,
j ̸=h

zi,j,h −
∑

j′∈Jh,
j′ ̸=h

zi,h,j′ = 0, ∀i ∈ T , h ∈ J (3)

Capacity and Supply Constraints:∑
p∈P

vi,p = li, ∀i ∈ T (4)

∑
p∈P

vi,p ≤ Qt
i, ∀i ∈ T (5)

∑
i∈T

vi,p = Vp, ∀p ∈ P (6)
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vi,p ≤ Vp ·
∑

j′∈Jh,
j ̸=j′

zi,j,j′ , ∀i ∈ T , j ∈ J , p ∈ Pj (7)

Truck Position Constraints:

posi,1 + posi,2 + posi,3 + posi,4 = 1− zi,-1,0,

∀i ∈ T (8)

li ≤ Qp
1 + (1− posi,1) ·Qp

3, ∀i ∈ T (9)

li ≤ Qp
2 + (1− posi,2) ·Qp

2, ∀i ∈ T (10a)

li > Qp
1 · posi,2, ∀i ∈ T (10b)

li ≤ Qp
3 + (1− posi,3) ·Qp

1, ∀i ∈ T (11a)

li > Qp
2 · posi,3, ∀i ∈ T (11b)

li > Qp
3 · posi,4, ∀i ∈ T (12)

zposi,j,j′,k ≥ zi,j,j′ + posi,k − 1, ∀i ∈ T , j ∈ Jd,
j′ ∈ Jh, j ̸= j′, k ∈ K (13a)

zposi,j,j′,k ≤ zi,j,j′ , ∀i ∈ T , j ∈ Jd, j′ ∈ Jh,
j ̸= j′, k ∈ K (13b)

zposi,j,j′,k ≤ posi,k, ∀i ∈ T , j ∈ Jd, j′ ∈ Jh,
j ̸= j′, k ∈ K (13c)

Dock Time Constraints:

tdocki′ ≥ tundocki −M ·(1−xi,i′), ∀i, i′ ∈ T , i ̸= i′ (14)

tdocki ≤M · (1− zi,-1,0), ∀i ∈ T (15a)

tdocki ≥ −M · (1− zi,-1,0), ∀i ∈ T (15b)

tundocki = tdocki + Tul · (1− zi,-1,0), ∀i ∈ T (16)

Docking Deadline Constraint:

T sd
p +M · (1− wi,p) ≥ tundocki , ∀i ∈ T , p ∈ P (17)

Dock Allocation Constraints:∑
d∈D

yi,d = 1− zi,-1,0, ∀i ∈ T (18)

xi,i′ − 1 ≤ yi,d − yi′,d, ∀i, i′ ∈ T , i ̸= i′, d ∈ D (19)

yi,d − yi′,d ≤ 1− xi,i′ , ∀i, i′ ∈ T , i ̸= i′, d ∈ D (20)

∑
i∈Td,
i ̸=−1,
i ̸=i′

xi,i′ = 1− zi′,-1,0, ∀i′ ∈ T (21)

∑
i′∈Td,
i′ ̸=0,
i′ ̸=i

xi,i′ = 1− zi,-1,0, ∀i ∈ T (22)

∑
i′∈T

x0,i′ ≤ |D| (23)

∑
i∈T

xi,-1 ≤ |D| (24)

x0,i + x0,i′ + yi,d + yi′,d ≤ 3,

∀i, i′ ∈ T , i ̸= i′, d ∈ D (25)

Pairwise Incompatibility Constraints:

wi,p · E ≤ vi,p, ∀i ∈ T , p ∈ P (26)

vi,p ≤ Qt
i · wi,p, ∀i ∈ T , p ∈ P (27)

wi,p1 + wi,p2 ≤ 1, ∀i ∈ T , (p1, p2) ∈ B (28)

Truck Cooling Constraints:∑
i∈T2−8deg

∑
p∈P15−25deg

vi,p = 0 (29)

∑
i∈T15−25deg

∑
p∈P2−8deg

vi,p = 0 (30)

∑
i∈Tnc

∑
p∈(P15−25deg

∪P2−8deg)

vi,p = 0 (31)

Sub-tour Elimination / Station Service Time
Constraints:

tsi,j + T t
j,j′ + T l · (1− zi,j,0)

−M · (1− zi,j,j′) ≤ tsi,j′ ,

∀i ∈ T , j ∈ J , j′ ∈ Jh, j ̸= j′

(32a)

tsi,j + T t
j,j′ + T l · (1− zi,j,0)

+M · (1− zi,j,j′) ≥ tsi,j′ ,

∀i ∈ T , j ∈ J , j′ ∈ Jh, j ̸= j′

(32b)

tsi,j ≤M ·
∑

j′∈Jh,
j ̸=j′

zi,j,j′ , ∀i ∈ T , j ∈ J (33)

tsi,0 = tdocki , ∀i ∈ T (34)
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Shipment Availability at Station Arrival Time
Constraint:

tsi,j − T l ≥ T sa
p −M · (1− wi,p),

∀i ∈ T , j ∈ J , p ∈ Pj (35)

Out Station Time Window Constraints:

tsi,j ≤ tc +M ·(1− btci,j,(tc,to)),

∀i ∈ T , j ∈ J , (tc, to) ∈ CH (36a)

tsi,j ≥ to + T l −M ·btci,j,(tc,to),
∀i ∈ T , j ∈ J , (tc, to) ∈ CH (36b)

Domain Decision Variables:

zposi,j,j′,k ∈{0, 1},
∀i ∈ T , j ∈ Jd, j′ ∈ Jh, j ̸= j′, k ∈ K (37)

zi,j,j′ ∈ {0, 1}, ∀i ∈ T , j ∈ Jd, j′ ∈ Jh, j ̸= j′ (38)

xi,i′ ∈ {0, 1}, ∀i, i′ ∈ T , i ̸= i′ (39)

yi,d ∈ {0, 1}, ∀i ∈ T , d ∈ D (40)

wi,p ∈ {0, 1}, ∀i ∈ T , p ∈ P (41)

posi,k ∈ {0, 1}, ∀i ∈ T , k ∈ K (42)

btci,j,(tc,to) ∈{0, 1},
∀i ∈ T , j ∈ J , (tc, to) ∈ CH (43)

Equation 1 is the objective function and aims to min-
imise the sum of the costs per truck used in the net-
work, which is based on the truck route, truck load
factor and truck cooling type factor. Constraint 2 en-
sures that every truck completes its route at the hub.
Constraint 3 ensures that each truck leaves a station
as many times as it arrives at that station, thereby
creating a continuous and uninterrupted route.

Constraints 4 - 7 is the group of capacity and supply
constraints. Constraint 4 ensures that the total volume
of shipments in each truck equals the sum of the indi-
vidual shipment volumes. The volume of shipments in
each truck is limited to the volume capacity of each
truck in constraint 5. Constraint 6 ensures that each
shipment is picked up from its origin station. Further-
more, constraint 7 ensures that a truck can only pick
up a shipment if it departs from the station supplying
the shipment.

Constraints 8 - 13c handle the decision variables
that involve determining the amount of positions filled

in each truck, i.e. 1, 2, 3, or 4 positions. Constraint
8 ensures that if a truck is activated in the network,
only 1, 2, 3, or 4 positions can be filled. Otherwise, all
corresponding truck position decision variables are set
to zero. Constraints 9, 10a & 10b, 11a & 11b, and 12
determine whether 1, 2, 3, or 4 positions are filled in a
truck, respectively. Constraints 13a - 13c ensure that if
truck i travels between station j and j’ and k positions
are filled, decision variable zijj′k should be set to 1, 0
otherwise.

Constraints 14 - 17 determine the correct and feasi-
ble docking times and undocking times of the the trucks
used in the network. In these constraints, the big M
represents the latest delivery deadline among all ship-
ments. Constraint 14 ensures that if a truck docks
after an another truck at the same dock-door, the sec-
ond truck docks after that the first truck has undocked
from the dock-door. This ensures that the trucks do
not have overlapping times at the same dock-door. The
docking time of an unused truck is set to 0 by con-
straints 15a and 15b. The undocking time of a truck
is determined by constraint 16. Similar to the docking
time of a truck, its undocking time is set to 0 if a truck
has not been assigned a route. Finally, constraint 17
ensures that a truck meets the delivery deadlines of
the shipments loaded into it by undocking before the
earliest deadline of any of the shipments has passed.

The group of constraints 18 - 25 ensures a correct
and feasible schedule for the allocation of trucks to
dock-doors. Constraint 18 ensures that if a route is
assigned to a truck it should be allocated to one of
the dock-doors at the hub. Furthermore, constraints
19 and 20 allocates two trucks to the same dock-door
if they are scheduled to dock after each other at the
same dock-door. Constraints 21 and 22 ensure that
each truck allocated to a dock-door has, respectively,
a preceding truck or dummy truck and a succeeding
truck or dummy truck at the dock-door. Two dummy
trucks are introduced for each available dock-door at
the hub. The dummy trucks are placeholders used to
manage situations at the start and end of the schedul-
ing sequence, serving to initiate and close the docking
sequence. This is ensured by constraints 23 and 24.
In addition, constraint 25 ensures that if two trucks
have a dummy truck preceding them at their allocated
dock-door, they must be assigned to two different dock-
doors.

Constraints 26 - 31 represent the pairwise incom-
patibility and truck cooling constraints, which ensure
that incompatible shipments are not loaded into the
same truck and that shipments are loaded into trucks
with the corresponding environmental cooling condi-
tions. A binary decision variable w is introduced to
indicate whether a shipment is loaded into a truck (w
= 1) or not (w = 0). If the volume of a shipment ex-
ceeds the parameter E, the shipment is considered to
be loaded into the truck. This implicitly introduces
a lower bound (E) on the minimal volume of a ship-
ment that must be loaded into a truck. Constraints 26
and 27 are introduced to determine the value of deci-
sion variable w. Moreover, constraint 28 ensures that

9



incompatible shipments are not loaded into the same
truck using the previously described binary decision
variable w. Constraints 29 - 31 ensure that shipments
are only loaded into trucks that satisfy the shipments
cooling requirements.

The constraints that determine the truck departure
times at each station are presented by constraints 32a -
36b. Constraints 32a and 32b ensure the elimination of
sub-tours and the correct determination of station de-
parture times by using travel times between previously
visited stations and loading times at those stations. If
a truck does not travel to a station, the departure time
from that station is set to zero by constraint 33. Fur-
thermore, constraint 34 ensures that a truck immedi-
ately start its docking process at one of the dock-doors
once it arrives at the hub. Constraint 35 ensures that
a truck cannot collect a shipment if it arrives at the
shipment’s origin station before the shipment becomes
available for pick up. The last two operational con-
straints prevent trucks from arriving or departing from
stations during their closing hours. This is shown by
constraints 36a and 36b. The big M used in constraint
35 represents the time when the last shipment becomes
available for pickup among all shipments. The big M
used in the other constraints represents the latest de-
livery deadline among all shipments.

The last group of constraints defines the domain of
the decision variables used in the mathematical model.
They are presented by constraints 37 - 43 and conclude
the model’s formulation.

3.3 Heuristic Algorithm: an Adaptive
Large Neighbourhood Search

Numerous heuristic approaches have been proposed
in the literature to solve VRPs. Among them, the
Adaptive Large Neighbourhood Search (ALNS) algo-
rithm, introduced by Ropke and Pisinger (2006), has
demonstrated significant successes in addressing VRPs
(Liang et al., 2023; Pisinger & Ropke, 2007; Schopka
& Kopfer, 2015). The principles of ALNS were chosen
as the foundation for designing the heuristic algorithm
to solve the integrated VRP and DAP. To further im-
prove its performance, the algorithm incorporates a SA
acceptance criterion, which balances exploration and
exploitation by probabilistically accepting inferior so-
lutions to escape local optima.

3.3.1 Solution Representation

Before introducing the algorithm’s framework, it is im-
portant to explain how the solution representation is
constructed, as it provides the foundation for its exe-
cution. The principle of a dock-based route represen-
tation, introduced by Liang et al. (2023), is used to
store and organise the solution structure during the al-
gorithm’s execution. Each dock-door is represented by
a separate string, divided into equal docking time win-
dows spanning the problem’s timespan. Each window
is allocated to a specific truck identified by a unique ID,
illustrated by Figure 1. Furthermore, each truck has its

own individual string representing a unique sequence of
shipments assigned to that truck, captured by Figure 2.
This sequence determines the truck’s route based on
the origin station of the shipments, shown at the bot-
tom of Figure 2. The routes and station departure
times of each truck are derived after the shipments are
allocated to a truck. This is done in reverse, starting
from the hub, as the docking time is pre-fixed. This
ensures that every truck has a reserved docking slot
and a planned route aligned with the overall schedule.
This structure enables efficient problem-solving by co-
ordinating truck-to-dock-door assignments and route
planning.
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#d2

#T1.1          #T1.2                               #T1.3                             #T1.4                               #T1.5

…

…

#T2.1          #T2.2                               #T2.3                             #T2.4                               #T2.5

Figure 1: Solution representation of the dock-door
schedule.

#T1.1 

Shipment    #Sh.1a       #Sh.1b #Sh.2a      #Sh.3a      #Sh.3b      #Sh.3c 

Station         #St.1            #St.1 #St.2          #St.3          #St.3         #St.3            #Hub 

       Route:       #St.1 #St.2       #St.3         #Hub

Figure 2: Solution representation of the shipment allo-
cation and truck route.

3.3.2 Cost Calculation

Similar to the MILP formulation, the primary objective
of the ALNS is to minimise the operational costs of the
trucks within the network. The costs per truck in the
network are based on the individual legs that make up
the truck’s route, the load factor of the shipments being
transported, and an additional factor that is applied if
the truck is equipped with a refrigerated trailer. The
base cost of the truck route is determined by summing
all separate leg costs of the legs in the truck route. This
cost is multiplied by a cooling multiplier if the truck
uses a refrigerated trailer. Furthermore, the truck’s
total cost is adjusted by a cost multiplier based on its
load factor at the hub, i.e., when the truck carries its
highest load factor during the trip. This multiplier is
predefined for each number of filled positions.

In contrast to the MILP formulation, this ALNS ap-
proach introduces an extra type of cost for trucks with
an infeasible time schedule. A penalty, in the form of
an extra cost, is applied to these trucks. These time
penalty costs are applied if the routing does not satisfy
one or more of the following conditions:
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1. A truck arrives at or departs from a station dur-
ing operating hours;

2. A truck picks up a shipment from a station after
the shipment is available for pickup.

The time penalty costs serve as a mechanism to convert
the hard time constraints of the MILP formulation into
soft time constraints within the ALNS framework. The
soft constraints are introduced to allow for greater flex-
ibility in navigating through the solution space with-
out being overly constrained. By minimising the costs
described above, the goal is to achieve a time penalty
cost of zero, ensuring that the time constraints are fully
satisfied and no longer violated.

The time penalty cost for each truck is determined
for each station visit by calculating the time differences
relative to feasible operational time conditions. For the
first case, the time difference is determined by calcu-
lating the smallest time difference between the truck’s
infeasible operating times (arrival and departure) at
the dock and the station’s operating hours. For the
second case, the time difference is calculated by identi-
fying the latest release time of the shipments scheduled
for pickup at each station along the truck’s route. This
time difference is then determined as the interval be-
tween the truck’s arrival time at the station and the lat-
est release time of any shipment at that station. Once
the relevant time differences have been calculated, they
are multiplied by a predefined time penalty factor. The
resulting penalty is then added to the real trucking
costs previously described.

3.3.3 Algorithm Framework

A flowchart of the ALNS framework is presented in
Figure 3. The framework starts with the initialisation
of the SA and ALNS parameters. After that, the in-
put data is preprocessed to make it compatible with
the model. Then an initial solution is created to begin
with. This process is explained in Section 3.3.4.

In the next step, the ALNS selects one of the five
available removal operators and one of the three in-
sertion operators based on their respective operator
weights. The functioning and selection of removal and
insertion operators is explained in Section 3.3.5. After
the selection of the operators, the temperature and it-
eration number are updated based on the SA principle.

The selected removal operator selects a number of
shipments to be removed from the trucks. This number
of shipments is a percentage of the total shipments in
the problem, which is defined during the initialisation
of the algorithm parameters. If the removal is success-
fully executed, the next step involves re-inserting the
removed shipments based on the logic of the selected
insertion operator. The shipments will be re-inserted
into specific trucks at specific positions in the solution
string of the truck. The sequence of shipments in the
solution string of each truck determines the route se-
quence, as shown in Figure 2.

Start

Initilialise Algorithm
Parameters

Preprocess Input
Data

Create
Initial Solution

Apply Removal
Operator

Select Removal and
Insertion Operator

Removal
Succeeded?

Apply Insertion
Operator

Yes

NoCompleted the
Cycle of Iterations before

Update of Weights?

Update Operator
Weights

Yes

No

Insertion
Succeeded?

Yes

No

Accept and Update
Current and Best
Solution using the

Simulated
Annealing Principle 

Temperature < Mininmum Temperature

Update 
Temperature and
Iteration Number

End
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No

Split Shipments
using Splitting

Technique

Create Time
Window for each

Dock-door

Initialise a Truck for
each Time Window

and Dock-door
Combination

Add Shipments to
Trucks using

Closest Truck to
Deadline Principle

Update Operator
Scores

Reset Iteration
Number, Operator

Scores and
Operator Counts

Save solution to list of
previously accepted
solutions if it has not

been accepted
before 

Reset Solution to
Pre-Removal State

Reset Solution to
Pre-Removal State

Figure 3: Flowchart of the ALNS Framework for the
Vehicle Routing and Dock-door Scheduling Problem.

If the insertion of all removed shipments succeeds,
the new solution will be accepted or rejected based on
the SA principle, which is explained in Section 3.3.6.
Following this, the scores of the selected operators are
updated based on their performance during the cur-
rent iteration. Then, if the temperature has dropped
below the specified minimum temperature, the algo-
rithm stops and outputs its best found solution.

If the temperature has not reached the minimum
temperature threshold, or if the removal or insertion
of shipments has not succeeded, a new iteration starts,
and a new set of removal and insertion operators will
be selected. Before moving to the next iteration, the
algorithm checks whether a cycle of a predefined num-
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ber of iterations has been completed. After completing
a cycle of iterations, the operator weights are updated
based on their performance scores obtained during the
cycle, and the iteration parameters and operator per-
formance scores are reset before starting a new cycle.
Section 3.3.7 will explain how the operator weights are
updated after the completion of one cycle.

3.3.4 Initial Solution and Volume Splitting

Before constructing the initial solution, the shipment
volumes are divided using the splitting technique de-
scribed by Chen et al. (2017). An a priori splitting
strategy is applied based on the maximum capacity
of the trucks. All shipments are divided into smaller
portions based on the truck’s maximum capacity. If
the total shipment volume exceeds the truck’s capac-
ity, the first split creates a portion equal to half the
trucks capacity. This process of halving continues un-
til the remaining volume is less than 1 unit. Once
the remaining volume is smaller than 1, the splitting
process stops. This means for a truck with a volume
capacity of 40m3, the "40/20/10/5/2/1" rule is applied
to divide the shipment into as many large portions as
possible, following the quantities defined by the rule.

The initial solution is created using the split ship-
ments and the trucks assigned to each docking time
window. By adding shipments to trucks with an un-
docking time closest to and before the shipment’s ar-
rival deadline. This process is carried out for each ship-
ment individually. If a shipment cannot be added to a
truck because its volume exceeds the truck’s remaining
capacity, or due to differing cooling requirements or in-
compatibilities with the shipments already assigned to
that truck, the process is repeated with the next truck
closest to the shipment’s deadline.

3.3.5 Removal and Insertion Operators

After the initial solution has been generated, the algo-
rithm starts improving the solution by iteratively de-
stroying and repairing it. At the start of each itera-
tion, a removal operator and an insertion operator are
selected based on their weights. These weights are ad-
justed after a cycle of iterations has been completed,
which will be described in Section 3.3.7. A roulette
wheel selection principle is used to select a removal
and insertion operator, where the probability of select-
ing a particular operator is proportional to its weight.
The probability of choosing operator i is defined as the
ratio of its weight to the sum of the weights of all op-
erators, as shown in Equation 44 (Ropke & Pisinger,
2006):

P (Selecting operator i) = wi∑k
i=1

wi

(44)

A total of five removal operators and three insertion
operators have been added to the algorithm. While
an endless number of operators can be used in the
algorithm, their number should be limited to ensure
that the algorithm remains efficient. Voigt (2024)

conducted a literature review on ALNS for VRPs
and ranked the operators based on their effectiveness.
Based on the findings presented in his paper, a num-
ber of operators has been selected for the ALNS frame-
work, along with two additional removal operators and
one additional insertion operator. The choice of oper-
ators is made such that a balance is achieved between
intensification and diversification. During each itera-
tion a predefined percentage of the total shipments in
the solution will be removed, after which the insertion
operator will re-insert all removed shipments into the
solution.

The following removal operators have been added
to the model:

• Removal of random shipments (Ropke &
Pisinger, 2006);

• Removal of shipments with highest cost (Ropke
& Pisinger, 2006);

• Removal of a posteriori score related shipments
(Shaw Removal) (Shaw, 1997);

• Removal of all shipments from random trucks;
• Removal of all shipments from random trucks

with a penalty cost

Below, all five removal operators are described in de-
tail. Note that, to successfully complete the removal
phase, each removal operator must aim to remove the
pre-specified percentage of shipments from the solution
string.

Removal - Random Shipments
The random removal of shipments operator removes
the shipments at random until the predefined percent-
age of shipments has been removed.

Removal - Shipments with Highest Cost
This operator focuses on removing shipments with the
highest associated costs to improve overall cost effi-
ciency. It identifies and calculates the removal costs
for each shipment, ranks them based on these costs,
and probabilistically selects the highest cost shipments
for removal. The pseudocode for this operator can be
found in the paper of Ropke and Pisinger (2006)

Removal - A Posteriori Score-related Shipments
This operator, also known as the Shaw Removal
Heuristic, aims to remove clusters of related shipments.
It removes shipments based on their relatedness to im-
prove the solution’s flexibility and diversity. It starts
by randomly selecting an initial shipment and itera-
tively adds the most related shipments to a removal
set by using a similarity measure. The similarity be-
tween shipments is calculated using a combination of
five shipment characteristics: the distance between
shipments’ origins, the travel cost between origins,
the differences in shipment arrival deadlines and avail-
ability times, and the difference in shipment types.
Shipments are then probabilistically selected for re-
moval, favouring those with higher similarity. This

12



operator aims to remove clusters of related shipments.
The pseudocode for this operator can be found in the
paper of Ropke and Pisinger (2006). The procedure
for determining the shipments’ similarity is shown in
pseudocode in Algorithm 1.

Algorithm 1 Shipment Similarity Determination
1: Input: Shipment1, Shipment2
2: Output: Similarity_factor
3: S1← Shipment1
4: S2← Shipment2
5: vol_diff ← |S1.volume− S2.volume|
6: Normalise vol_diff
7: if S1 and S2 are split from the same shipment

then
8: Similarity_factor ← 1/(1 + vol_diff)
9: return Similarity_factor

10: end if
11: if S1.type = S2.type then
12: type_diff ← 0
13: else
14: type_diff ← 1
15: end if
16: dl_diff ← |S1.deadline− S2.deadline|
17: avail_diff ← |S1.availability − S2.availability|
18: Normalise dl_diff and avail_diff
19: if S1.origin = S2.origin then
20: Similarity_factor ← 1/(1 + vol_diff +

dl_diff + avail_diff + type_diff)
21: else
22: time ← travel time between S1.origin and

S2.origin
23: cost ← travel cost for travelling between

S1.origin and S2.origin
24: Normalise time and cost
25: Similarity_factor ← 1/(1 + vol_diff +

dl_diff+avail_diff+type_diff+time+cost)
26: end if
27: return Similarity_factor

Removal - All Shipments from Random Trucks
This operator selects random trucks from which all
shipments are removed. The operator continues to
select new trucks until the number of shipments to be
removed is reached. All shipments will be removed
from the last truck, even if the number of shipments
to be removed has been reached.

Removal - All Shipments from Random Trucks
with a Penalty Cost
For this operator, a list is created that includes all
trucks in the current solution that add a penalty cost
to the objective function. This operator randomly se-
lects trucks from this list from which all shipments are
removed. Similarly, to the operator described above,
this operator continues to select trucks until the correct
percentage of shipments has been removed. If the re-
quired percentage cannot be reached due to insufficient
trucks in the list, the removal phase ends prematurely,

and the insertion phase reinserts the removed ship-
ments back into the solution string. Furthermore, note
that if no trucks with a penalty cost exist at the be-
ginning, this operator cannot execute. In such cases, a
different removal and insertion operator is selected.

After the removal phase is completed, the selected in-
sertion operator will reinsert the removed shipments
and repair the solution. The available insertion opera-
tors are listed below:

• Insertion in random order at best position
(Greedy Insertion) (Lei et al., 2011);

• Insertion in random order into random truck at
best position

• Insertion highest position 2 regret at best posi-
tion (Qu & Bard, 2012);

During the insertion phase each insertion operator
performs the same feasibility check to ensure that
the shipment can be inserted into the selected truck.
This feasibility check verifies the insertion’s compliance
with truck capacity limits, shipment incompatibilities,
truck cooling requirements, and arrival deadlines. The
remaining part of this section explains each of the in-
sertion operator in more detail.

Insertion - Random Order at Best Position
This insertion operator, known as Greedy Insertion,
randomly selects a shipment from the set of removed
shipments. It makes a list of trucks suitable for load-
ing the shipment, ensuring the solution remains feasi-
ble. The operator then inserts the shipment into one
of these trucks at the position that minimises the ad-
ditional cost to the objective function. This process is
repeated until all shipments have been reinserted.

If the removal operator used to remove the ship-
ments to be reinserted is the ’Removal of all shipments
from random trucks with a penalty cost’, the first ship-
ment to be reinserted will be placed in the best position
within the solution string of an empty truck. This al-
lows all shipments to potentially be moved to the same
new truck without incurring a time penalty. However,
if the first shipment is placed in a non-empty truck,
it removes the opportunity to allocate all shipments
into the same truck, as the insertion into a non-empty
truck is typically cheaper. The primary goal of this
removal operator is to eliminate the penalty cost.

Insertion - Random Order into Random Trucks
at Best Position
This insertion operator randomly selects a shipment
from the list of removed shipments and selects a ran-
dom truck that is suitable for loading the shipment.
Then, it will try to insert the selected shipment into
the selected truck at the position which adds the lowest
cost to the objective function. This process is repeated
until all shipments have been reinserted. Similar to the
insertion operator described before, the first shipment
to be reinserted will be placed in the best position
within the solution string of an empty truck if the
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removal operator ’Removal of all shipments from ran-
dom trucks with a penalty cost’ was used to destroy
the solution in that iteration.

Insertion - Highest Position 2 Regret at Best
Position
The process of this insertion operator begins with de-
termining the insertion costs of every shipment at every
feasible position in the solution string. As explained,
feasible positions are identified by considering arrival
deadlines, truck capacity, cooling requirements, and
shipment incompatibilities. The calculated insertion
costs are then sorted in ascending order for each ship-
ment. The regret value for each shipment is calculated
as the difference between the costs of inserting the ship-
ment at the best and second-best position. If there is

only one feasible position, the regret value the inser-
tion cost of that position. The operator then selects
the shipment with the highest regret value among all
the shipments. This approach minimises potential fu-
ture regret by ensuring that the most critical shipment
is inserted first. The selected shipment is inserted into
the truck at the position with the lowest cost. This
process repeats until all shipments are reinserted into
the solution. Similarly to the insertion operators de-
scribed above, the first shipment to be reinserted will
be placed within the solution string of an empty truck
if the removal operator ’Removal of all shipments from
random trucks with a penalty cost’ is selected. The
procedure of this insertion heuristic is shown in pseu-
docode in Algorithm 2

Algorithm 2 Insertion - Highest Position 2 Regret at Best Position Algorithm

1: Input: removed_shipments (List of removed
shipments), full_truck_removal_with_penalty
(Boolean stating if shipments are removed from
truck with time penalty)

2: Output: Insertion Costs
3: insertion_costs← 0
4: while removed_shipments is not empty do
5: Set regret_values to an empty list
6: for each shipment in removed_shipments do
7: Set insertions to an empty list
8: if full_truck_removal_with_penalty

and shipment is first removed from
removed_shipments then

9: possible_trucks_for_insertion ← list of
empty trucks with feasible docking deadline

10: else
11: possible_trucks_for_insertion ← list of

trucks with feasible docking deadline, truck
capacity, cooling requirements and ship-
ment incompatibilities

12: end if
13: for each truck in possible_trucks_for_insertion

do
14: for each position in truck do
15: Calculate insertion_cost
16: Add (insertion_cost, truck, position,

shipment) to insertions
17: end for
18: end for
19: Sort insertions by insertion_cost in ascend-

ing order

20: if insertions is not empty then
21: if there are at least 2 insertions in

insertions then
22: regret_value ← difference between

insertion_cost of the first two insertions
in insertions

23: else
24: regret_value ← insertion_cost of the

insertion in insertions
25: end if
26: Append (regret_value, best insertion) to

regret_values
27: end if
28: end for
29: if regret_values is not empty then
30: Shuffle regret_values
31: max_regret_value ← first max value in

regret_values
32: insertion_cost, truck, position, shipment ←

Extract details from max_regret_value
33: Add shipment to truck at position in solution

string
34: total_insertion_costs← total_insertion_costs+

insertion_cost
35: remove shipment from removed_shipments
36: else
37: return None
38: end if
39: end while
40: return insertion_costs

3.3.6 Simulated Annealing Acceptance Crite-
rion

Within the ALNS framework, the principle of SA is ap-
plied. This helps to balance exploration and exploita-
tion of the solution space by probabilistically accept-
ing inferior solutions to escape local optima. Accepting
only superior solutions may lead to being trapped in

a local optimum, thereby removing the opportunity to
move towards a global optimum. This technique is in-
spired by the process of material annealing.

The approach works as follows: after a removal op-
erator has removed shipments from the trucks in the
solution and a insertion operator has reinserted them
into the solution, a new solution is generated. If the
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new solution is better than the previously obtained so-
lution, it is always accepted. However, if the new solu-
tion is worse, it is either rejected or accepted based on
a probability determined by an acceptance probability
function. For this minimisation problem, the probabil-
ity of acceptance is calculated using Equation 45. For
maximisation problems, the same equation can be used
but the terms f(new) and f(old) need to be swapped.

P (accept new solution) ={
e
− (f(new)−f(old))

Tk , if f(new) > f(old)
1, if f(new) ≤ f(old)

(45)

If the objective value of the new solution (f(new)) is
smaller than or equal to the objective value of the pre-
vious solution (f(old)), the probability of accepting the
new solution is 1. If the new solution’s objective value
is greater than that of the old solution, the probability
of acceptance is determined by the formula with the
corresponding inequality requirement shown in Equa-
tion 45, with Tk representing the state temperature of
iteration k.

After determining the probability of acceptance, a
random continuous number between 0 and 1 (exclud-
ing 1) is picked and compared with this probability. If
the probability of acceptance is smaller than the ran-
dom number, the solution is rejected. If it is greater or
equal to the random number, the solution is accepted
and becomes the current solution for the next iteration
(k + 1).

An important feature of this method is the decreas-
ing temperature Tk over time. Lowering the tempera-
ture Tk reduces the probability of accepting solutions
with a higher objective value. As the number of it-
erations progresses, the model becomes less probable
to accept these solutions as the current solution. This
mirrors the process of material annealing, where the
temperature of the material gradually decreases. After
each iteration, a new temperature is calculated using
Equation 46:

Tk+1 = α · Tk (46)

The temperature decreases per iteration based on the
temperature coefficient α, which is predefined. The
model ceases execution after the predefined minimum
temperature is reached.

3.3.7 Adaptive Weight Adjustment

The idea of adaptive weight adjustment, as described
in the paper of Ropke and Pisinger (2006), which char-
acterises ALNS, updates the operator weights based on
their performance during each cycle of iterations. Op-
erators that lead to better solutions are given higher
weights, while those that perform poorly are assigned
lower weights. The goal of this approach is to increase
the probability of using more effective operators over
time, allowing the algorithm to focus on the best per-
forming search strategies.

At the start of a new cycle of iterations, all oper-
ator scores are reset to zero. After each iteration in a

cycle, the scores of the chosen removal and insertion
operators are increased by σ1, σ2, or σ3 based on the
outcome of the remove-insert operation, as defined by
the logic of Ropke and Pisinger (2006), presented in
Table 4:

Table 4: Score Adjustment Parameters (Ropke &
Pisinger, 2006).

Parameter Description
σ1 The last remove-insert operation resulted

in a new global best solution.

σ2 The last remove-insert operation resulted
in a solution that has not been accepted
before. The cost of the new solution
is better than the cost of current solution.

σ3 The last remove-insert operation resulted
in a solution that has not been accepted
before. The cost of the new solution is
worse than the cost of current solution
but the solution was accepted.

After the completion of iteration cycle, consisting of a
predefined number of iterations, the operator weights
are updated individually using Equation 47:

wi,j+1 = wi,j · (1− r) + r · πi,j

θi,j
(47)

If an operator has not been selected during a cycle,
Equation 48 is used to update the operator weight:

wi,j+1 = wi,j · (1− r) (48)

In these equations, wi,j is the weight of operator i dur-
ing the latest completed jth cycle, and r is the reaction
factor (0 < r ≤ 1), which controls the influence of the
latest cycle’s performance on the updated weight. A
larger value of r makes the weight update more sensi-
tive to the operator’s performance in the most recent
cycle, while a smaller value of r puts greater emphasis
on the weight of the operator during last cycle.

Parameter πi,j is the total score obtained by oper-
ator i during the jth cycle. This score is the sum of
operator i’s scores over all iterations in the jth cycle,
determined using the scoring logic described in Table 4.
The accumulated score πi,j is normalised by θi,j , which
is the total number of times operator i was used during
the jth cycle. This normalisation ensures that opera-
tors that are used less frequently are not penalised for
lower total scores.

3.3.8 Hyperparameter Tuning

As the algorithm uses multiple parameters that should
be initialised before running the algorithm, a parame-
ter configuration has to be selected that positively af-
fects the performance of the ALNS algorithm.

Algorithm parameters that need to be tuned are
shown in Table 5:
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Table 5: Algorithm Parameters.

Algorithm Parameter

Initial Temperature (Tstart)
Minimum Temperature (Tmin)
Temperature Coefficient (α)
Iterations per Cycle
Score New Global Best Solution (σ1)
Score New Best Current Solution (σ2)
Score New Worse Solution Accepted (σ3)
ALNS Reaction Factor (r)
Percentage of Shipments To Be Removed
Time Penalty Cost Factor per Hour

An automated machine learning (AutoML) hyperpa-
rameter optimisation (HPO) tool has been selected for
tuning these parameters. The working of the tool,
called SMAC (Lindauer et al., 2022), short for Sequen-
tial Model-based Algorithm Configuration, will be ex-
plained below briefly. The SMAC tool uses the con-
cept of Bayesian optimisation and starts by sampling a
set of initial configurations of hyperparameters. After
that, the tool evaluates each configuration by running
the ALNS algorithm and measuring its performance
based on the objective value. After the initial evalua-
tions, SMAC builds a surrogate model using Random
Forest (RF) to approximate the performance landscape
of the hyperparameter configurations. This surrogate
model helps to predict the performance of new configu-
rations without the need to run the actual ALNS algo-
rithm. Additionally, SMAC uses an acquisition func-
tion that interplays with the surrogate model to select
new configurations to evaluate. The acquisition func-
tion balances the exploration of new configurations and
the exploitation of promising configurations identified
by the surrogate model. This is an iterative process,
where each new evaluation helps to refine the surro-
gate model. The iterations continue until the maxi-
mum number of function evaluations has been reached.

By using the SMAC package in Python, the param-
eter space can be explored such that a combination of
parameter values can be found that positively affect
the performance of the ALNS algorithm. This Python
package allows for systematic and effective tuning of
the ALNS algorithm’s parameters.

3.4 Model Differences
Before presenting the performance results of both mod-
els, this section highlights some minor differences in
their setup and programming. Firstly, there is a differ-
ence in how shipments are split. In the ALNS model,
all shipments are split according to the technique pre-
sented by Chen et al. (2017). In constrast, the MILP
model permits unlimited shipment splitting, with the
volume lower bound determined by the parameter e in
constraint 26. Secondly, the models differ in whether
they allow a station to be visited multiple times within
a route. The ALNS model allows a truck to visit the
same station multiple times within a route, while the
MILP model restricts each station to being visited only

once per route. However, revisiting a station is gen-
erally inefficient and unlikely to occur. Furthermore,
the models differ in how docking time windows are de-
termined. The MILP model employs continuous time
windows, allowing for more precise scheduling, while
the ALNS model uses on discrete, predefined time win-
dows.

These differences in model setup result in different
solution spaces, which impact the potential solution
quality and performance of each model. The MILP
model, with its unlimited shipment splitting and con-
tinuous docking time windows, explores a broader so-
lution space, potentially leading to a better solution
quality. Note that, while the restriction on station vis-
its may seem limiting, it is unlikely to have a significant
impact, as repeated visits lead to inefficient routes. In
contrast, the ALNS model operates within a more con-
strained solution space due to predefined time windows
and limited shipment splitting but benefits from in-
creased computational efficiency. Consequently, while
the MILP model may achieve solutions with a better
quality, the ALNS model could provide more practical
solutions within a reasonable computation time.

4 Description of the Case Study
To compare and evaluate the performance of the MILP
and ALNS model, they are applied to different sce-
narios of a case study from an airline. The European
trucking network for outbound air cargo of an airline
has been used for this. The airline’s network consists
of approximately 50 stations located near airports in
Europe.

At the hub airport, the airline has five available
dock-doors which are connected to two cargo lifts. This
means that two trucks can be processed at the same
time. In addition, at most three other trucks can al-
ready start docking while the other two trucks are still
being unloaded. When the other two trucks have fin-
ished unloading, the unloading of two other trucks that
are already connected to a dock-door can be started im-
mediately. Therefore, both models will consider that
only two dock-doors are available but trucks can im-
mediately start unloading once another preceding truck
has finished unloading at a dock-door.

Shipments that need to be transported within the
network have several time-bound constraints. Each
shipment becomes available for pickup at a station in
the network at a given time. However, shipments can-
not be picked up at their origin stations at all times.
This is determined by the station’s opening hours. Al-
though each truck can arrive 24/7 at the hub airport,
each shipment must arrive at the hub airport before
its predefined arrival deadline, which is determined by
its departing flight. This is to ensure enough time is
available to process the shipments at the hub airport
and to transfer them to the correct flights.

Furthermore, the shipment data for each station is
grouped by shipment type, with each group having a
corresponding arrival deadline and pickup time. Since
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three shipment types are considered in this case study,
three shipment volumes per station are scheduled for
daily transport, which can be distributed across multi-
ple trucks.

Three types of trucks are considered in the scenar-
ios of the case study: one non-refrigerated truck and
two types of refrigerated trucks, each type having its
own temperature range. The shipments scheduled for
transportation must be assigned to a truck based on
their specific temperature requirements. It is assumed
that shipments which do not require refrigeration can
be allocated to any of the three types of trucks. Fur-
thermore, each truck has a volume capacity of 40m3

divided over four cargo positions, with each position
assumed to have a capacity of up to 10m3 of cargo
volume.

5 Results
After completing the development of the MILP and
ALNS models and defining the case study, several sim-
ulations were run to analyse their performance and
compare them. This section presents those results, be-
ginning with Section 5.1, which details the hardware
and software specifications used to obtain them. Sub-
sequently, Section 5.2 discusses the model comparisons,
followed by Section 5.3, which presents the results of
running the ALNS model on a large instance.

5.1 Hardware and Software Specifica-
tions

The simulations that have been run to obtain the
results presented in this section are executed on a
Lenovo ThinkPad T16 Gen 2 with a 13th Gen Intel(R)
Core(TM) i7-1365U processor running at 1.80 GHz and
32 GB of RAM. The laptop operates on a 64-bit Win-
dows 10 operating system and has been used for all pro-
gramming tasks and the execution of the algorithms.

The algorithms that are presented in the previ-
ous section are programmed in Python using version
3.12.2. The input data used in both models has been
preprocessed using the Pandas 2.2.2 package, and the
MILP formulation is solved by using the commer-
cial solver Gurobi, version 11.0.3. Furthermore, the
SMAC3 package (Lindauer et al., 2022), version 2.2.0,
has been used for tuning the hyperparameters used in
the ALNS algorithm.

5.2 MILP and ALNS Comparison

For the MILP and ALNS comparison, two datasets,
each containing 28 data instances, are used to evalu-
ate the performance of both models. Each instance
contains 1 day of shipment requests from several sta-
tions in the network of the airline. The instances of
dataset 1 contain shipment data from two market seg-
ments within the network, and the instances of dataset
2 includes two additional market segments. For all 56
instances, the truck routes and dock-door scheduling
have been optimised using both models. First, Sec-
tion 5.2.1 presents the results of the tuning process for
the two parameter configurations, each optimised for
one of the datasets. Section 5.2.2 describes the simula-
tion stopping conditions for both models. After that,
Section 5.2.3 presents the results of the model compar-
ison.

5.2.1 Tuning Results for the ALNS Algorithm
Parameter Configurations

As explained in Section 3.3.8, the parameters of the
ALNS algorithm are tuned using the AutoML tool
SMAC. For comparison of the MILP and ALNS mod-
els, the parameters of the ALNS model are tuned only
once using one of the instances in each dataset. This
approach is chosen because of the limited time avail-
able during the research project. To ensure effective
functioning of the SA acceptance criterion, the instance
with the highest initial cost is selected to tune the pa-
rameters. Tuning the model parameters using an in-
stance with a lower initial cost could result in a param-
eter configuration with a relatively low starting tem-
perature (Tstart). Subsequently, for instances in the
dataset with relatively high objective values, this could
lead to a situation where the algorithm rarely accepts
worse solutions throughout its execution. This would
limit exploration of the solution space, which is some-
thing that should be avoided.

Table 6 presents the tuning ranges used during
the tuning phase, along with the parameter configu-
rations that resulted from running the SMAC tuning
algorithm. After completing the tuning phase for the
model comparison, the resulting configurations have
been used for the simulations using the instances in
their corresponding dataset.

Table 6: ALNS algorithm parameter tuning ranges and configurations for instance sets 1 and 2.

Algorithm Parameter Tuning Range
Set 1

Tuning Range
Set 2

Configuration
for Instance Set 1

Configuration
for Instance Set 2

Initial Temperature (Tstart) 10,000-50,000 40,000-150,000 12,402 87,746
Minimum Temperature (Tmin) 5-500 10-10,000 55 1,395
Temperature Coefficient 0.9-0.999 0.99-0.999 0.9981 0.9990
Iterations per Cycle 5-20 5-20 5 12
Score New Global Best Solution (σ1) 1-5 1-5 3.3489 2.6842
Score New Best Current Solution (σ2) 0.1-1 0.1-1 0.6543 0.7625
Score New Worse Solution Accepted (σ3) 0.1-1 0.1-1 0.1002 0.9998
ALNS Reaction Factor (r) 0.01-0.5 0.01-0.5 0.0101 0.0607
Percentage of Shipments to be Removed 0.001-0.1% 0.001-0.1% 7.245% 4.268%
Time Penalty Cost Factor per Hour 200-10,000e/h 400-10,000e/h 7,935e/h 7,183e/h
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5.2.2 Simulation Stopping Conditions and So-
lution Stability

Before executing the MILP model, the running time
and optimality gap must be constrained. As the model
is NP-hard, a running time limit is needed to avoid
long running times, despite using relatively small data
instances for the comparison. The running time limit
is set to 1800 seconds. Furthermore, the optimality
gap constraint has been set to 3%. The MILP model
has been run once for each instance. The ALNS model
needs to be run multiple times because its solutions
vary with each run due to the random factor that in-
fluences the selection of removal and insertion oper-
ators. To gather sufficient data and to evaluate the
model’s performance, the coefficient of variation is used
to determine the number of simulation runs required.
The coefficient of variation (cv) is determined by using
Equation 49:

cv =
σ(Avg Obj)
µ(Avg Obj)

(49)

In this formula, σ(Avg Obj) represents the standard de-
viation of the average objective value, measuring the
spread or variability of the objective values around the
mean, denoted by µ(Avg Obj). After each simulation
run with a different random seed, the coefficient of
variation is recalculated for each instance. When the
coefficient of variation stabilises, it indicates that the
required number of simulation runs has been reached
to obtain a reliable estimate of the distribution of the
model’s average objective value output. For each in-
stance, the algorithm was run at least 10 times until
the change in the coefficient of variation of the objective
value was less than 0.001 for at least five consecutive
simulation runs.

5.2.3 Model Comparison Results

Table 7 and Table 8 show the results for optimising the
truck routes and dock-door schedules of the instances
in dataset 1 and 2, respectively. Both tables are di-
vided in three parts: the instance characteristics, the
optimisation results of the MILP model, and the op-
timisation results of the ALNS model. Furthermore,
the last column in both the tables present the percent-
age difference between the minimum objective value
obtained by the ALNS model and the best incumbent
solution found using the MILP model, relative to the
latter.

First of all, for all instances in dataset 1, both the
MILP and ALNS model succeeded in finding a feasi-
ble solution. Furthermore, for all instances, the mini-
mum objective values found by the ALNS are greater
than or equal to the best bound found by the MILP
model. If this had not been the case, ALNS found a so-
lution that is better than what the MILP guarantees as
achievable at that point. This would indicate potential
issues with the constraints in the MILP model or the
accuracy of the ALNS model’s solutions, which could
result in MILP solutions of lower quality or infeasible
ALNS solutions.

For more than 70 percent of the instances, the
MILP model was not able to reach the 3 percent opti-
mality gap threshold before reaching the running time
limit. Furthermore, the MILP model achieved rela-
tively low computational times only for instances 3
and 4, with times of 5.24 and 1.04 seconds respectively.
Moreover, for instances where the MILP model reached
the defined optimality gap before reaching the running
time limit, the combination of the number of stations
in the network, number of shipments, and the total
shipment volume was relatively low compared simu-
lations of instances that were terminated after reach-
ing the running time limit. This is expected, as the
number of constraints in the MILP model significantly
decreases with fewer stations, shipments, and a lower
total shipment volume, which requires fewer trucks to
be modelled.

The last column in the table shows the percentage
difference between the minimum objective value found
by ALNS model and MILP model’s best incumbent so-
lution, which highlights how closely ALNS approaches
the MILP’s objective values. In a significant amount
of cases, this difference is relatively small (< 2%). For
instances with a high MILP optimality gap (> 75%),
ALNS provides solutions that are often close to the
MILP’s best incumbent solutions but with significantly
less computational time required. Moreover, the ALNS
model generally runs faster on average compared to
the MILP model’s running time limit. Furthermore,
for instances where the MILP model finds the optimal
solution, indicated by an optimality gap of zero (in-
stances 9 and 23), the ALNS model also performs well
and matches the MILP results.

The variability in ALNS solutions, indicated by the
standard deviation of the objective value, indicates how
consistent the heuristic is across multiple runs. This
increases for more complex instances with a relatively
high number of shipments, stations and total shipment
volume. These instances also needed more runs for the
coefficient of variation to converge.
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Table 7: Simulation results of instance set 1 for the MILP and ALNS model comparison.

Instance
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1 4 8 208.53 3,584.07 3,693.54 2.96 1,169.12 3,726.45 3,739.83 3,730.50 ± 5.67 26.01 10 0.89%
2 5 7 162.3 527.80 3,186.17 83.43 1,801.76 3,186.17 3,186.17 3,186.17 ± 0.00 39.17 10 0.00%
3 3 5 226.51 2,761.93 2,842.42 2.83 5.24 2,899.54 2,899.54 2,899.54 ± 0.00 45.49 10 2.01%
4 2 5 334.82 2,607.28 2,685.06 2.90 1.04 2,685.39 2,720.89 2,690.97 ± 12.60 17.46 11 0.01%
5 3 6 250.51 2,759.74 2,843.38 2.94 18.27 2,843.38 2,843.38 2,843.38 ± 0.00 28.93 10 0.00%
6 4 7 461.43 1,672.45 3,260.14 48.70 1,800.96 3,474.26 3,503.59 3,488.83 ± 12.99 29.20 10 6.57%
7 4 7 375.27 438.80 2,796.04 84.31 1,801.25 2,802.54 2,810.60 2,807.40 ± 3.51 33.10 10 0.23%
8 4 8 129.14 2,014.37 2,069.84 2.68 137.80 2,281.61 2,294.63 2,282.91 ± 4.11 39.51 10 10.23%
9 4 5 131.18 2,925.52 2,925.52 0.00 74.80 2,925.52 2,927.10 2,926.47 ± 0.81 40.75 10 0.00%
10 4 7 242.92 392.31 1,866.81 78.99 1,801.24 2,059.13 2,066.39 2,063.59 ± 3.62 25.24 10 10.30%
11 3 7 468.79 1,780.20 1,928.48 7.69 1,801.24 2,080.75 2,119.67 2,097.95 ± 16.45 35.52 10 7.90%
12 5 8 446.1 281.30 5,859.55 95.20 1,802.68 5,890.67 6,354.68 6,156.50 ± 208.67 40.09 20 0.53%
13 5 8 414.99 10.57 4,584.89 99.77 1,801.94 4,628.44 4,920.78 4,820.91 ± 109.03 41.21 19 0.95%
14 4 7 405.28 262.53 2,204.11 88.09 1,802.44 2,233.54 2,262.14 2,258.06 ± 10.39 36.89 14 1.34%
15 4 7 314.69 618.70 2,858.52 78.36 1,801.52 2,889.56 2,889.56 2,889.56 ± 0.00 28.34 10 1.09%
16 5 6 223.51 538.47 3,417.65 84.24 1,802.99 3,417.65 3,477.86 3,447.75 ± 31.44 48.12 12 0.00%
17 4 7 229.93 2,789.53 2,868.84 2.76 438.83 2,904.01 2,904.01 2,904.01 ± 0.00 28.82 10 1.23%
18 4 7 346.07 551.71 2,500.37 77.93 1,803.60 2,526.27 2,532.57 2,531.31 ± 2.66 44.45 10 1.04%
19 5 8 357.99 351.63 4,311.64 91.84 1,801.77 4,373.36 4,467.89 4,440.97 ± 42.18 46.38 11 1.43%
20 5 8 374.23 0.00 5,177.02 100.00 1,801.93 5,582.09 5,585.19 5,583.95 ± 1.60 45.35 10 7.82%
21 5 7 606.31 40.79 3,399.33 98.80 1,801.78 3,399.33 3,921.51 3,674.67 ± 234.80 41.93 23 0.00%
22 4 8 172.77 774.44 2,024.03 61.74 1,801.07 2,230.47 2,244.13 2,240.44 ± 5.61 60.66 10 10.20%
23 4 5 152.11 3,139.15 3,139.15 0.00 106.97 3,139.15 3,146.05 3,145.36 ± 2.18 47.85 10 0.00%
24 4 7 342.31 1,810.26 2,504.50 27.72 1,801.15 2,509.55 2,509.55 2,509.55 ± 0.00 48.91 10 0.20%
25 4 8 503.92 129.35 3,213.91 95.98 1,802.66 3,412.04 3,413.59 3,413.12 ± 0.75 44.94 10 6.16%
26 4 6 420.22 512.43 4,468.04 88.53 1,801.96 4,491.31 4,500.18 4,494.42 ± 2.41 45.46 10 0.52%
27 5 8 364.68 1,044.10 3,990.26 73.83 1,801.80 4,181.70 4,181.70 4,181.70 ± 0.00 53.08 10 4.80%
28 4 7 296.92 2,666.29 3,045.59 12.45 1,801.02 3,046.50 3,103.89 3,090.87 ± 18.12 53.19 15 0.03%
*Excluding depot, **Optimality gap threshold = 3%, ***CPU limit = 1800s

After the algorithmic comparison, a managerial com-
parison will be provided based on three network char-
acteristics: the average truck load factor, the average
number of legs per truck route, and the total number
of shipments after splitting. The results used for the
comparison are presented in three box plots in Figure 4.

Figure 4a shows the average truck load factor re-
sulting from the MILP and ALNS models. While the
instance characteristics vary, the results indicate that
MILP generally achieves a higher average truck load
factor. This means that, for small instances, the MILP
model optimises truck utilisation more effectively than
the ALNS model, leading to better use of volume ca-
pacity in transportation.

Furthermore, Figure 4b presents the average num-
ber of legs per truck route for both the MILP and
ALNS models. The box plot shows that the MILP
model’s solutions generally result in a higher number
of legs per truck route compared to the results of the
ALNS model. This means that the MILP model plans

more truck routes with intermediate stops. In con-
trast, ALNS tends to generate routes with fewer legs,
meaning that routes with more direct deliveries are
used. Furthermore, the figure shows that both mod-
els solved instances using only truck routes with one
leg per route, as indicated by the minimum value of 1.

Lastly, Figure 4c illustrates the total number of
shipments after splitting. It is evident that the ALNS
solutions use a significantly higher number of ship-
ments compared to the MILP model. This can be ex-
plained by the differences in how both models operate.
The ALNS model uses an a priori splitting technique
based on a set of predefined volume thresholds, irre-
spective of the network characteristics. On the other
hand, the MILP model splits the shipments during the
optimisation process based on what splitting decisions
contribute to achieving a lower objective value.

These results are in line with the results shown in
Table 7. Overall, the MILP model performs similarly
to or better than the ALNS model. A higher average
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truck load factor and a larger number of legs per truck
route contribute to more efficient utilisation of truck

capacities, leading to lower objective values achieved
by the MILP model.
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Figure 4: Distribution of network characteristic results of instance set 1.

The second table, Table 8, presents the simulation re-
sults for the instances in dataset 2, which includes two
additional market segments compared to dataset 1. For
most of the instances, the MILP model did not succeed
in finding a feasible solution within the given running
time limit. Therefore, no best incumbent objective
value is available for instances 32-56. A feasible so-
lution was found only for the first three instances, all
characterised by a relatively low total shipment vol-
ume (< 400m3). Furthermore, the MILP model found
a best bound for all instances, however, all except in-
stance 31 have a value of zero.

Since no incumbent solution has been found for in-
stances 32-56, the solver has not yet identified a fea-
sible integer solution for any of those instances. The
best bound of zero means that, in the relaxation of the
continuous decision variables, the lowest possible ob-
jective value found so far is zero. However, this does
not imply that a feasible integer solution achieving zero
exists, only that the relaxation allows for such values.
The use of the Big M formulation in multiple MILP

constraints could be causing numerical instability or
weak relaxations, making it harder for the solver to
find feasible integer solutions or tighten the bounds ef-
fectively.

On the other hand, the ALNS model found a fea-
sible solution for all instances within a maximum of
four and a half minutes. Moreover, the majority of the
instances was solved within two minutes. The ALNS
outperforms the MILP model for all instances except
for instance 29, for which the minimum objective value
found is approximately 4.75% higher than the best in-
cumbent solution of the MILP model.

Compared to the performance of the ALNS model
on the instances of dataset 1, the number of simula-
tions needed to converge to a stable coefficient of vari-
ation is generally higher, as is the standard deviation
of the objective value found. However, from the re-
sults of datasets 1 and 2, it is evident that the more
complex the instances are, the better the ALNS model
performs in terms of computational time and objective
value compared to the MILP model.

Table 8: Simulation results of instance set 1 for the MILP and ALNS model comparison.
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29 9 17 344.54 0.00 13,316.34 100.00 1,801.19 13,949.10 15,472.02 14,438.52 ± 469.40 153.82 29 4.75%
30 10 14 342.68 0.00 16,123.02 100.00 1,800.86 15,945.79 17,105.24 16,664.34 ± 351.50 215.07 15 -1.10%
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Table 8 continued from previous page
31 9 12 397.8 316.47 21,423.60 98.53 1,800.68 18,228.36 19,929.96 18,978.14 ± 381.09 107.81 21 -14.91%
32 9 16 532.5 0.00 - - 1,801.15 17,734.88 18,932.52 18,197.46 ± 396.38 166.60 17 -
33 8 16 499.3 0.00 - - 1,801.13 20,298.13 20,775.49 20,521.31 ± 160.88 177.50 11 -
34 9 16 654.92 0.00 - - 1,801.05 16,592.49 18,085.11 17,127.11 ± 390.79 135.39 16 -
35 10 16 652.61 0.00 - - 1,802.72 20,343.05 21,970.96 21,179.87 ± 472.17 152.28 17 -
36 10 19 295.8 0.00 - - 1,801.07 14,784.42 16,267.47 15,815.33 ± 420.21 216.65 22 -
37 11 16 644.8 0.00 - - 1,802.79 32,632.20 34,199.38 33,638.99 ± 533.05 250.23 15 -
38 12 18 458.46 0.00 - - 1,802.19 22,252.60 23,282.66 22771.72 ± 384.59 217.96 16 -
39 8 13 733.75 0.00 - - 1,801.01 16,427.63 17,029.68 16,703.42 ± 227.25 74.30 10 -
40 11 18 697.72 0.00 - - 1,801.64 23,774.18 25,842.91 24,697.57 ± 683.66 130.71 21 -
41 10 18 757.68 0.00 - - 1,802.80 23,829.42 25,520.45 24,847.09 ± 597.34 86.01 17 -
42 9 17 957.94 0.00 - - 1,801.61 34,391.30 35,952.08 35,007.18 ± 518.14 85.62 13 -
43 10 21 546.99 0.00 - - 1,810.88 21,635.13 22,892.19 22,551.3 ± 459.80 108.48 17 -
44 13 16 560.7 0.00 - - 1,801.44 24,626.48 25,376.52 25,023.66 ± 212.74 122.12 10 -
45 11 17 492.1 0.00 - - 1,801.87 24,216.61 24,364.69 24,331.33 ± 59.08 117.70 10 -
46 9 14 394.69 0.00 - - 1,801.04 8,500.00 9,360.60 9,116.196 ± 250.53 89.87 20 -
47 9 17 549.25 0.00 - - 1,801.16 17,940.64 19,353.82 19,076.73 ± 369.90 98.42 14 -
48 10 17 570.89 0.00 - - 1,802.83 19,912.18 21,457.77 20,992.56 ± 486.48 84.86 21 -
49 10 17 876.3 0.00 - - 1,809.31 22,320.17 23,532.83 22,876.89 ± 440.87 82.30 15 -
50 10 19 501.93 0.00 - - 1,801.17 21,766.49 21,939.00 21,841.02 ± 66.78 120.15 10 -
51 11 15 296.75 0.00 - - 1,801.13 17,529.87 18,098.53 17,878.87 ± 203.52 140.36 12 -
52 11 18 567.52 0.00 - - 1,802.98 20,964.21 21,956.84 21,505.61 ± 362.57 126.05 11 -
53 10 16 627.35 0.00 - - 1,801.64 17,479.59 18,326.07 17,802.78 ± 206.57 107.61 13 -
54 11 19 699.64 0.00 - - 1,801.78 29,630.57 30,230.83 29,928.29 ± 180.21 122.54 10 -
55 10 18 640.54 0.00 - - 1,806.87 21,166.90 22,045.81 21,414.82 ± 289.00 99.26 11 -
56 9 16 608.96 0.00 - - 1,801.15 20,823.98 22,140.70 21,519.65 ± 409.86 97.01 17 -
*Excluding depot, **Optimality gap threshold = 3%, ***CPU limit = 1800s

5.3 ALNS Results for a Large Instance

This section analyses the performance of the ALNS
algorithm using a large instance. Instance 57, cov-
ering a full week of all shipment requests across the
entire network of the airline, is used for this analysis.
The instance’s network consists of 40 stations (includ-
ing the depot) and contains 361 unique shipment re-
quests with a total volume of 12,769m3. Section 5.3.1
will present the parameter configuration used for run-
ning the ALNS model on instance 57. After that Sec-
tion 5.3.2 and Section 5.3.3 will discuss the model’s
general performance and the performance of the oper-
ators used in the model. Finally, Section 5.3.4 presents
a comparison between the airlines actual network and
the model-generated network obtained using the ALNS
algorithm.

5.3.1 Tuning Results for the ALNS Algorithm
Parameter Configuration

The tuning process for this instance follows the same
procedure as for the small instances, as described in
Section 5.2.1. Table 9 presents the tuning ranges used
during the tuning phase, along with the parameter con-
figurations that resulted from running the SMAC tun-
ing algorithm. The model results presented in the next
section were obtained by running the model with this
specific parameter configuration.

Table 9: ALNS algorithm parameter tuning range and
configuration for a week of shipment transportation re-
quests.

Algorithm Parameter Tuning Range Configuration

Initial Temperature (Tstart) 500,000-1,000,000 841,997
Minimum Temperature (Tmin) 1-400,000 56
Temperature Coefficient 0.99-0.999 0.9911
Iterations per Cycle 5-20 10
Score New Global Best Solution (σ1) 1-5 4.9984
Score New Best Current Solution (σ2) 0.5-1 0.9230
Score New Worse Solution Accepted (σ3) 0.1-0.5 0.4099
ALNS Reaction Factor (r) 0.01-0.5 0.2819
Percentage of Shipments to be Removed 0.001-0.1% 3.912%
Time Penalty Cost Factor per Hour 500-10,000e/h 5,345e/h

5.3.2 General Algorithm Performance

To determine the number of runs needed for this anal-
ysis, the algorithm was run until the change in the
coefficient of variation of the objective value was less
than 0.00025 for at least five consecutive simulation
runs. For this instance some simulations returned a
best solution that still contained a time penalty cost,
which means that the solution was infeasible. These
run results were neglected in the calculation for the
coefficient of variation. A total of 84 simulations were
run, of which 38 found a feasible solution with a time
penalty cost of 0. Table 10 summarises the general
simulation results of the runs that resulted in a feasi-
ble solution.
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Table 10: General simulation results of the runs that
found a feasible solution for instance 57.

Variable Result

Average Run Time ± st. dev. 4,112.64s ± 695.59s
Number of Iterations per Run 1,079
Number of Simulations 84
Simulations with Feasible Solution 38
Simulations with Infeasible Solution 46

The distribution of total costs, including the average,
as well as the upper and lower bounds of the total costs
for the feasible solutions found for instance 57, is pre-
sented in Figure 5 and Table 11.
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Figure 5: Distribution of the total costs of the feasible
solutions found for instance 57.

Table 11: Summary of the total costs of the feasible
solutions found for instance 57.

Variable Result

Average Total Cost ± st. dev. 439,465.11e± 5,958.27e
Median Total Cost 440,435.10e
Minimum Total Cost 426,959.33e
Maximum Total Cost 453,623.04e

After running the model, the model outputs six graphs
that illustrate the behaviour of various costs and oper-
ator weights as the number of iterations during a run
progresses. Specifically, The first four graphs show the
trucking cost, time penalty cost, the combined total
of both costs and the direction of total cost changes
over iterations. An example of these graphs is shown,
on the next page, in Figure 7, representing the results
from the run that found the minimum total cost.

Figure 7 shows that during the first phase of the
run, the model tries to bring down the time penalty
costs. This behaviour can be explained by the value
of the time penalty cost factor, shown in Table 9. As
the penalty per hour is relatively high compared to the
trucking costs per leg in the network, the model can
save more costs by removing shipments that impose a

time penalty cost on the total costs. At the same time,
the trucking costs increase as a result of moving ship-
ments that imposed a time penalty cost to other trucks
where they do not impose a time penalty cost. In this
case, the gain from a decreasing time penalty offsets
the increasing trucking cost.

After the majority of the initial time penalty costs
have been reduced, the graphs show that the model
begins to reduce the trucking costs. The graphs also
indicate that at certain points, the model accepts so-
lutions with a higher total cost compared to the total
cost of the best solution found so far. However, the
frequency of the model accepting worse solutions de-
creases as the number of iterations increases, which is
shown by the last graph in Figure 7. This behaviour is
a consequence of the simulated annealing concept used
in the model.

Figure 7 also shows the iteration at which the to-
tal cost was last reduced by at least 0.1%, illustrated
by the green vertical dotted-dashed line. Furthermore,
the vertical red line indicates the first iteration where
the solution with the minimum total cost was found.

The performance in terms of the two variables men-
tioned in the previous paragraph is further illustrated
in Figure 6. This figure presents the distribution of
both variables across all runs that resulted in a feasi-
ble solution, providing insight into their variability. As
shown in Table 10, the total number of iterations per
run is 1079. Figure 6 shows that in most runs the best
solution is found near the end of the run, close to the
final iteration. The other variable represents the last
iteration in which the total cost of the best solution
decreased by at least 0.1%. For this instance, based on
the average trucking cost, this corresponds to a truck-
ing cost reduction of approximately €440.
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Figure 6: Distribution of iterations at which the best
solution was first found and the last iteration where the
best solution’s total cost decreased by at least 0.1%,
over all feasible solutions obtained for instance 57.
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Figure 7: Cost progression during the run that found the minimum cost value for instance 57.

As shown in Table 10, 46 out of the 84 simulation runs
resulted in a time penalty cost greater than zero, in-
dicating unsuccessful attempts at finding a feasible so-
lution. The time penalty cost is a measure of the to-
tal time difference relative to the feasible operational
conditions for each truck and station combination, in-
dicating a degree of infeasibility. Figure 8 shows the
distribution of the time penalty costs of the 46 infeasi-
ble solutions found for instance 57. The figure shows a

median time penalty cost of 1,292e, which corresponds
to a total infeasible operational time difference of ap-
proximately 15 minutes. Given that the average travel
time across all generated routes is around 13.5 hours,
this represents a relatively low infeasible time differ-
ence. As a result, one could argue that time penalty
costs in this order of magnitude could be acceptable in
practical scenarios. So, while these solutions are tech-
nically infeasible under strict constraints, they may still
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be viable in real-world operations where minor devia-
tions can be accommodated.
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Figure 8: Distribution of the time penalty costs of the
infeasible solutions found for instance 57.

To further examine the effect of changing the time
penalty cost factor on the performance of solution fea-
sibilities, the ALNS model has been run using the same
seed as for the run that found the minimum total cost
value but for different values of the time penalty cost
factor. Table 12 presents the results of those runs. Al-
though, the model has been run once for each value
time penalty cost factor, shows that for values lower
than 10,000e/h the model is more likely to found in-
feasible solutions.

Additionally, the results in the table show that
while increasing the time penalty cost factor lowers
the chance on finding infeasible solutions, the trucking
cost increases. Relatively high penalty factors can re-
strict exploration of the solution space, which can lead
to solutions of lower quality. However, lower penalty
factors increase the likelihood of finding in infeasible
solutions, which emphasises the importance of choos-
ing an appropriate time penalty cost factor to balance
feasibility and cost efficiency.

Furthermore, the lowest total cost found in these
runs (423,208.31e at a penalty factor of 10,000e/h) is
lower than the solution found with the tuned penalty
factor of 5,345e/h, which resulted in a total cost of

426,959.33e. This indicates that the tuning process
may not have identified an appropriate or effective set-
ting.

Table 12: Time penalty cost factor sensitivity for in-
stance 57.

Time Penalty
Cost Factor (e/h)

Total Cost (e) Trucking Cost (e) Time Penalty
Cost (e)

1000 433,780.09 432,713.42 1,066.67
2500 435,745.62 435,745.62 0.00
4000 429,383.00 429,383.00 0.00
5000 439,883.63 439,050.30 833.33
6000 443,638.87 443,638.87 0.00
7500 458,185.12 441,685.12 16,500.00
10000 423,208.31 423,208.31 0.00
25000 444,862.44 444,862.44 0.00
50000 449,897.45 449,897.45 0.00
100000 446,378.91 446,378.91 0.00

5.3.3 Performance ALNS Operators

The performance and selection of each removal and in-
sertion operator vary per run. The distribution of the
total usage counts per operator over all the runs that
found a feasible solution is captured in Figure 9. It
illustrates the variation in selection frequency for each
insertion and removal operator. The insertion opera-
tors, indicated by the green colour, show that the op-
erators “Random Order at Best Position” and “High-
est Position 2-Regret at Best Position” are the most
frequently used. On the other hand, “Random Truck
at Best Position” is rarely selected, indicating its lim-
ited success and effectiveness in constructing new so-
lutions. Among the removal operators, shown in red,
the operators “Random Shipments”, “Highest Cost”,
and “Shaw” show a significant high usage count during
the simulations. Note that the variability of the first
two removal operators is significantly higher compared
to the other operators. In contrast, the operators “All
Shipments from Random Trucks” and “All Shipments
from Random Trucks with Time Penalty” are used less
frequently.
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Figure 9: Distribution of total usage counts per operator over all the runs that found a feasible solution for
instance 57.
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As explained, the frequency of operator selection
changes throughout each run. This selection is closely
linked to the weights assigned to the operators, which
are adjusted after each cycle of iterations. The adjust-
ment interval is defined during the parameter tuning
phase and set to 10 iterations before updating the op-
erator weights.

In addition to the four graphs shown in Figure 7,
two additional graphs illustrate how the removal and
insertion operator weights change throughout a simu-
lation run. Figure 10 presents an example of how the
operator weights change after each cycle of iterations,
specifically from the run that found the minimum to-
tal cost. The removal operator plot shows high ini-
tial weights for the “Random Shipments” and “High-
est Cost” removal operators. However, their weights
gradually decrease as iterations proceed. The “Shaw”
operator and “All Shipments from Random Trucks”
operator show fluctuating weights, highlighting their

dynamic role in different stages of optimisation. The
“All Shipments from Random Trucks” operator even
approaches zero as the number of completed iterations
increases. Despite high weights in the initial stage of
the run, the ’All Shipments from Trucks with Time
Penalty’ operator quickly decreases and approaches
zero, due to a significant reduction in time penalty
costs, as shown in Figure 7. This decrease limits the
number of shipments requiring removal, thus reduc-
ing the options for finding an improved solution. The
insertion operator plot show that the “Random Or-
der at Best Position” and “Highest Position 2-Regret
at Best Position” operators initially have the highest
weights, indicating their early effectiveness. However,
their weights gradually decrease as the number of iter-
ations increases. In contrast, the weight of the ’Ran-
dom Order Random Truck at Best Position’ operator
decreases from the beginning and approaches zero, in-
dicating its limited impact on solution quality.
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Figure 10: Operator weights during the run that found the minimum value for instance 57.

5.3.4 Network Characteristic Results

This subsection compares the historical routing data of
the airline’s actual network with the model-generated
network obtained using the ALNS algorithm, based
on the same historical shipment requests. As shown
in Table 13, the optimised model significantly reduces
trucking costs by up to 19.7%, decreases the number
of required trucks by 31.2%, and increases the aver-
age load factor from 63.1% to 85.8%, demonstrating a
more efficient routing network. Additionally, the aver-
age number of legs per route increases slightly from 1
to 1.153, indicating that every 6th to 7th truck adds
an extra stop on its route to the hub. This outcome
was expected, as the actual network did not use multi-
leg routes. These optimisations lead to lower trucking
costs, improved fleet utilisation, and reduced fuel con-
sumption, as trucking costs are a function of the dis-
tance travelled. However, increasing the average load
factor and decreasing the number of trucks used in the
network does not necessarily result in lower trucking

costs, as factors such as route length and detours can
impact total costs.

The ALNS model balances cost efficiency and oper-
ational constraints and has the potential to improve the
performance of the airline’s trucking network. How-
ever, as discussed in Section 3.1, several assumptions
are made in the routing and scheduling model that dif-
fer from real-world operations.

First, in the actual network, truck scheduling at
dock doors has not been implemented, leading to wait-
ing times that occur in practice but are not accounted
for in the model. Second, while the model enforces a
strict maximum volume capacity for trucks, deviations
from this capacity sometimes occur in practice.

Additionally, the model allows for splitting total
shipment volumes based on shipment type and origin
station, whereas, in the actual network, shipment re-
quests are handled individually. Since the model relies
on forecasted total volumes per shipment type and ori-
gin, it does not have access to exact shipment-specific
volumes.
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Lastly, extra operational costs resulting from ex-
tra stops in a route are not considered in the model.
Furthermore, some actual truck routes are not always
feasible, as certain shipments did not arrive on time to
meet their required delivery deadlines.

When comparing the results, it is important to keep
the assumptions in mind. The model generates a rout-
ing and scheduling plan based on an idealised scenario
that follows these assumptions. However, real-world
operations often deviate from this idealised scenario.

Table 13: Comparison of actual network characteristics and model-generated network characteristics.

Actual Network
Characteristics

Model Generated Network Characteristics
Solution with Lowest
Trucking Costs

Solution with Lowest
Number of Trucks

Solution with Highest
Average Load Factor

Trucking Costs (e) 531,399.74 426,959.32 437,640.66 437,640.66
Number of Trucks 542 372 359 359
Average Load Factor (%) 63.1 85.8 88.9 88.9
Average Number of Legs per Route 1.000 1.153 1.212 1.212
Average Route Distance (km) 694.32 738.38 773.47 773.47

6 Conclusions
This study focused on designing an integrated vehicle
routing and dock-door scheduling model to optimise a
airline’s trucking network by increasing truck load fac-
tors, reducing operational costs, and ensuring on-time
cargo delivery to the hub, to match with outbound
flight legs. A novel Mixed Integer Linear Program-
ming (MILP) model and Adaptive Large Neighbour-
hood Search (ALNS) model for a vehicle routing and
dock-door scheduling problem with split delivery, in-
compatible products, time windows and open routes,
was presented.

The comparative analysis of the MILP and ALNS
models showed that while the MILP model performs
better in achieving near-optimal solutions for small in-
stances, the ALNS model outperforms the MILP model
in terms of computational efficiency for more complex
instances. However, for a significant amount of the
small instances, the difference in objective value is be-
tween 0% and 2%, which is remarkable when consider-
ing that the ALNS model works with a smaller solution
space compared to the MILP model because of the a
priori splitting technique and pre-determined discrete
time windows used in the ALNS model. Moreover,
the ALNS model consistently finds feasible solutions
within significantly less computational time, even for
larger and more complex instances, where as the MILP
model is not able to find feasible solutions within a rea-
sonable computational time frame. The ALNS model
shows a better performance in terms of running time
and solution quality, making it a more useful alterna-
tive for large and complex instances where the MILP
model results show high optimality gaps or do not find
feasible solutions.

From the results of running the ALNS model for
a large instance, it can be concluded that it is im-
portant to make a trade-off between solution quality
and the likelihood of finding feasible solutions, which
is influenced by the chosen time penalty cost factor in
the hyperparameter configuration. Additionally, the
results indicate that the last solution improvement of
the trucking costs in most simulation runs occurred

near the end of the simulation. This shows that there
is still potential for improving the solutions by either
increasing the temperature coefficient or lowering the
minimum temperature in the simulated annealing pro-
cess. Furthermore, the results show that the configu-
ration of the hyperparameters derived from the tuning
process did not yield the best-known solution. The
best-known solution was found later during the inves-
tigation of the time penalty cost factor’s sensitivity on
the model’s performance. This stresses the importance
of determining an appropriate configuration setting as
well as the significant influence of the chosen configu-
ration on the model’s performance.

The performance indicators of the removal and in-
sertion operators in the ALNS model show that the
insertion operators “Random Order at Best Position”
and “Highest Position 2-Regret at Best Position” are
most frequently used, whereas insertion operator “Ran-
dom Truck at Best Position” is rarely selected, indi-
cating its limited effectiveness, caused by its random
nature. The removal operators, “Random Shipments”,
“Highest Cost”, and “Shaw” are frequently used, with
significant variability in their usage. In contrast, the
other removal operators, “All Shipments from Random
Trucks” and “All Shipments from Random Trucks with
Time Penalty”, are used less frequently and tend to
drop in weights as the number of iterations progresses.
This can be explained by the fact that these operators
disrupt the solution by removing all shipments from a
truck, which may already be forming a relatively low
cost toward the end of the simulation runs. Addition-
ally, the number of trucks with a time penalty are more
likely to approach zero, making the latter operator less
useful. Furthermore, the dynamic adjustments of the
operator weights during a simulation highlight the im-
portance of tuning the corresponding operator scores
and iteration cycle parameters to enhance the model’s
performance.

In the ALNS model, the insertion operators “Ran-
dom Order at Best Position” and “Highest Position
2-Regret at Best Position” are most frequently used,
while “Random Truck at Best Position” is rarely se-
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lected due to its limited effectiveness. Frequently used
removal operators include “Random Shipments, “High-
est Cost, and “Shaw, with significant variability in
their usage. In contrast, “All Shipments from Ran-
dom Trucks” and “All Shipments from Random Trucks
with Time Penalty” are less frequently used and their
weights decrease as the number of iterations progresses.
This is because these operators destroy solutions by re-
moving all shipments from a truck, which may already
have a low cost towards the end of simulations. Addi-
tionally, trucks with time penalties tend to diminish,
reducing the latter operator’s usefulness. Dynamic ad-
justments of operator weights emphasise the need for
tuning operator scores and iteration parameters to en-
hance model performance.

Finally, when comparing the model-generated net-
work with the historical routing data of the airline’s
actual network, the solutions produced by the ALNS
model show substantial improvements in cost efficiency,
fleet utilisation, and truck load factors. Modelling the
network with a week of shipment requests show that it
can reduce trucking costs by up to 19.7%, decrease the
number of required trucks by 31.2%, and increase the
average truck load factor from 63.1% to 85.8%. Fur-
thermore, the results indicate that increasing the av-
erage load factor and decreasing the number of trucks
used in the network does not necessarily lead to lower
trucking costs, as route length and detours impact to-
tal expenses. However, the comparison also highlights
several assumptions in the model that differ from real-
world operations. These include the absence of dock-
door scheduling in the actual network, the models strict
adherence to maximum truck volume capacity, and its
allowance for shipment splitting. These assumptions
should be kept in mind, as they create an idealised
scenario that does not fully capture the complexities,
deviations, and disturbances present in actual airline
operations.

Based on the conclusions drawn and the assump-
tions made during the development of the model, the
final part of this section will present recommendations

to improve the models presented in this paper. For
the ALNS model, it is crucial to ensure robustness and
adaptability for each new instance of similar scale. To
achieve this, a more extensive sensitivity analysis is
recommended. This will provide a deeper understand-
ing of the sensitivity of the model’s hyperparameters,
which helps to improve the robustness of the model.

Furthermore, the current MILP model does not ac-
count for transitions between summer and winter time.
This was not a problem with the data instances used
for this study, as they did not encounter changes be-
tween summer and winter times. However, implement-
ing these seasonal adjustments will improve the accu-
racy and reliability of the scheduling and routing solu-
tions.

Additionally, both model inputs do not account for
the uncertainty of transit times between different sta-
tions in the network and driver rest times. Accord-
ing to European-wide regulations, drivers must take
mandatory rest periods after daily driving periods. By
introducing variable transit times that account for traf-
fic delays and seasonal variations, and incorporating
driver rest times, the model can provide a more precise
simulation of route durations, which helps to reflect
real-world conditions more accurately.

Moreover, the influence of new network configura-
tions on customer choices has not been taken into ac-
count. It is vital to model and analyse how changes in
the network affect customer behaviour to ensure that
the solutions do not result in a loss of customers opting
for the airline to ship their goods.

Finally, the models should be designed to be robust
and not overly tuned for specific instances. This will
ensure broad applicability and practical utility across
various scenarios, making the models more versatile
and useful in different operational contexts. By ad-
dressing these recommendations, the models can be
significantly improved, providing more accurate, reli-
able, and practical solutions for dock scheduling and
shipment routing.
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